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ABSTRACT 

Eetu Manninen: Autonomous Racing Robot: Hardware and Software Implementation 
Bachelor’s Thesis 
Tampere University 
Bachelor’s Degree Programme in Information Technology 
June 2020 
 

Artificial intelligence and machine learning are used to solve more and more different and 
complex problems. One popular machine learning subfield is imitation learning, where robot 
learns to solve a specified task using demonstrations from a human expert. Imitation learning is 
popular because it is easy to show an example solution to a task and let the machine figure out 
how to replicate it. One of the most used methods of imitation learning is behavioural cloning, 
where robot learns from expert demonstrations to map observations to actions. 

This thesis proposes a simple hardware and software implementation for a small-scale auton-
omous robot. Behavioural cloning is used to teach a robot to autonomously drive around a small 
test track. Training data contains about 50 minutes of video, which corresponds to about 58000 
images as well as control commands for those images. Training image set consists of 3 different 
classes, which correspond to the three different movement commands. The tests show that the 
proposed implementation works well on the chosen test track.  
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1. INTRODUCTION 

World Health Organization lists road injuries as one of the leading causes of death in 

2016 [1]. There are many factors contributing to road traffic injuries such as inadequate 

traffic laws, unsafe vehicles, unsafe road infrastructure and human interaction [2]. By far 

the biggest contributor of these is the human interaction. Despite strict system of rules 

even the best human drivers make mistakes every now and then. One of the proposed 

solutions to this problem is to take humans out of the equation and let machines handle 

the driving. Artificial intelligence (AI) systems aren’t perfect drivers either, therefore more 

research is needed if they are to replace human drivers. [3] 

The continued increases in computing power has enabled the integration of AI in many 

applications including vehicles. This is one of the reasons why self-driving technology is 

now seeing a surge in popularity. Many car manufacturers and tech companies are tak-

ing on the challenge of developing their own self driving car technology [4][5][6][7][8][9]. 

Some of them having promising results [10]. 

The purpose of thesis is to implement simple small-scale hardware and software solution 

for autonomous driving which can easily be expanded upon. This thesis is done on a real 

robot on a short racing test track, seen in Figure 1. The goal is to make the robot auton-

omously and reliably drive around the track without any human intervention.  

 

 Racing track 

The proposed Neural Network (NN) implementation takes learning from demonstration 

approach to imitate the behaviour of a human driver. Expert demonstrations used for 
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training are created on the same track with a human driving the robot. The expert drives 

with the same information and control possibilities the robot has when it is driving auton-

omously. 

For sensor data, the proposed implementation uses one front-facing camera to capture 

images of the racing track. Camera is a cheap and small sensor therefore ideal to use in 

situations where camera can get reliable and clear data. One camera is enough on this 

closed track when there are no obstacles to avoid. But this sensor arrangement might 

not be enough if there are many moving obstacles in the way.  

Related work is presented in Chapter 2. Chapter 3 explains what kind of robotic archi-

tecture is used in this thesis. Neural network controller is discussed in Chapter 4. Chapter 

5 shows the NN training methods and the self-driving test performed and their results. 

Finally, Chapter 6 presents the conclusions of this thesis and discusses possible related 

future work and how this implementation can be expanded and improved upon. 
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2. RELATED WORK 

The huge computational capacity current computers have, and the huge volumes of data 

modern sensors are able collect, are couple of the factors that contributed to the surge 

of AI applications. However, current trends are to reduce the amount of generated data 

and to reduce the training time and to make AI applications more power efficient. Making 

AI application more power efficient enables them to be used on mobile devices. [11] 

Imitation learning (IL) is growing area in research due the recent surge in AI applications. 

Another reason why IL is growing area is because of the ease of showing examples of a 

task and letting NN to learn the behaviour. Letting NN to learn the behaviour of an expert 

is far easier than to program precise rules. [11] 

One of the first success stories of IL was the Autonomous Land Vehicle In a Neural 

Network or ALVINN from the year 1989. It managed to autonomously drive a test vehicle 

at a speed of ½ meters per second along a path thought a wooded area of the Carnegie 

Mellon University campus with a fraction of the computing power modern computers 

have. [12] Many of the more recent papers about IL and autonomous robots are based 

on small unmanned air vehicles rather than big land-based vehicles. Giusti et al. in their 

publication A Machine Learning Approach to Visual Perception of Forest Trails for Mobile 

Robots used IL to teach a small robot to follow forest trails [13]. Other quite similar usage 

of IL can be found in the publication Learning monocular reactive UAV control in cluttered 

natural environments by Ross et at. In their publication, Ross et al. used IL to teach the 

robot to avoid trees in the forest. [14] 

IL methods aim to mimic human experts’ behaviour. The goal of IL is that a machine 

agent learns how to map observations to actions. Agent learns those mapping from the 

demonstrations of the given task. The use of IL enables to make the learning process 

faster by knowing the correct actions at training time. It also enables to make training 

process safer by limiting the number of different actions the agent can perform. Com-

pared to reinforcement learning where agent tests different possibly dangerous actions, 

IL is safer because it is limited to predefined set of actions that the expert has shown. 

[15] However, showing the correct actions is not the only way to teach an agent like 

Gandhi et al wrote in their publication Learning to fly by crashing. The authors used ex-

amples of collisions to teach the agent what not to do. Their conclusion was that showing 

negative examples was a viable method to teach an agent. [16] 
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The main IL methods are behavioural cloning and inverse reinforcement learning. The 

main difference between these two is that the behavioural cloning aims to learn the tra-

jectories of the expert while inverse reinforcement learning aims to learn the reward func-

tion or the intent of the expert. One of the problems with behavioural cloning is that if the 

agent is put into a state that the expert observations have not covered then the agent 

doesn’t have any data on how to recover from that situation. [16] In that case the behav-

iour of the agent is undefined, and it can lead to a failure. One of the solutions is to get 

more observations of different situations. Other solution could be that there would be 

other reinforcement learning systems or sensors to detect and correct untrained states. 
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3. ROBOTIC SYSTEM ARCHITECTURE 

In this chapter the used hardware and software components are presented. The robot 

used in the experiments is shown is Figure 2 and the racing track used is shown in Figure 

1. Hardware configuration consists four parts Nvidia Jetson Nano, Raspberry Pi (RPi), 

MonsterBorg and a laptop. Software implementation is divided into three parts RPi, lap-

top/Jetson and Convolutional Neural Network (CNN) training. Hardware configuration is 

discussed in Chapter 3.1 and software implementation is presented in Chapter 3.2. CNN 

training is discussed in later chapters, in Chapters 5.1 and 5.2.  

 

  MonsterBorg robot 

3.1 Hardware 

Figure 3 show how the different hardware components are connected to each other. 

Jetson Nano and Raspberry Pi are onboard the MonsterBorg and connected to each 

other via an ethernet cable. The laptop is connected wirelessly to the RPi using Wi-Fi. 

Laptop is only used for training data collection and starting the python programs on the 

RPi and Jetson Nano.  
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 Hardware connections 

MonsterBorg was chosen as the platform which the robot was built on. MonsterBorg 

includes four direct current motors with wheels, aluminium chassis, mounting holes for 

RPi and its camera. MonsterBorg also includes a ThunderBorg motor controller. [17] 

ThunderBorg motor controller runs on voltages between 7 and 35 volts and can supply 

5 volts to RPi to which it attaches directly. ThunderBorg can supply up to 5 amperes to 

both motors and it can control the rotation speed of the motors via Pulse Width Modula-

tion. [18] Three cells series and two cells parallel 14,4-volt lithium-ion battery was used 

to power the MonsterBorg. Separate 5-volt battery was used to power the Jetson Nano.  

For controlling the motors on the MonsterBorg a RPi was used. RPi 3B+ is ARM based 

single-board computer designed to be used in wide range of electronics, IOT and com-

puting applications. RPi 3B+ has wireless network adapter, wired ethernet port, con-

nector for a camera and 40-pin GPIO header. [19] In this thesis the wireless connection 

is used to connect the RPi to the controlling laptop, and the wired ethernet connection is 

used to connect Jetson Nano to the RPi. Camera is connected to the camera connector 

and it is used to get images of the track. ThunderBorg motor controller is connected to 

the 40-pin GPIO header of the RPi. 

For autonomous driving Nvidia Jetson Nano was used to drive the Neural Network (NN). 

Jetson Nano is ARM based computer designed to be used as a low-power platform for 

AI and IOT applications. Nano has 128-core Nvidia Graphics Processing Unit (GPU) 

onboard for accelerating NNs and other AI algorithms. Jetson Nano also has wired ether-

net port, connector for a RPi camera and 40 GPIO pins which can be used to control 

peripherals and sensors. [20] In this thesis Jetson Nano is used to run a CNN and send 

the results over the wired ethernet connection to the RPi. 
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Figure 4 shows all the previously discussed hardware components except MonsterBorg 

chassis or the used Lenovo Yoga 900 laptop. The make and the model of the used laptop 

is irrelevant in this case as long as it has Wi-Fi capabilities. 

 

  Hardware components 

3.2 Software 

Figure 5 shows and overview on how the different devices and programs interact with 

each other. Figure 5 shows the order in which the steps occur and example data for 

every step. The top part shows an example where the laptop is the controller device and 

the expert gives the control command via the laptop’s keyboard. Bottom part shows an 

example where Jetson Nano is the controller. 

Chapter 3.2.1 presents the control commands. The image capturing and motor controller 

software running on RPi is discussed in Chapter 3.2.2. Controller programs that are run-

ning on the laptop and the Jetson Nano is discussed in chapter 3.2.3. 
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  Software interactions 

3.2.1 Control Commands 
There are four basic movement commands to control the robot. Those commands are 

“w” straight, “a” turn left, “s” backwards and “d” turn right. Turn left and turn right com-

mands are implemented by slowing down the wheels on the inside curve and speeding 

up the wheels on the outside curve. That is why they need either “w” or “s” command at 

the same time to change direction of the robot. 

An example command could be “w,a;” telling the robot to move forward and turn left. 

Colon separates the different parts of the command and semicolon indicates the end of 

command. Control commands are sent between the devices using User Datagram Pro-

tocol to reduce unnecessary latency. 

3.2.2 Image Capturing and Motor Control Program 
Program running on RPi is written in python 2.7 and is responsible for capturing and 

sending images of the track and receiving control commands from one of the controllers. 

RPi is also responsible for sending motor control commands to the ThunderBorg motor 

controller. The ThunderBorg library is based on python 2.7 and there was no reason to 

port it over to newer versions of python. 

RPi captures images sized 480x360 pixel at either 20 or 30 Frames Per Second (FPS) 

depending on which device is the controller. When laptop is acting as the controller the 

frame rate is limited to 20 FPS, because the wireless connection causes too much la-

tency on higher frame rates. There is no such problem on the wired connection and the 
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frame rate is limited by the speed of which the receiver can process the images. In this 

implementation the Jetson can process images at 30 FPS and therefore RPi camera 

frame rate is limited to 30 FPS. Images are sent to the receiver using Transmission Con-

trol Protocol where RPi acts as the server and receivers act as clients. 

Target speeds for the motors are set according to the control commands received from 

the controller. Motor speeds are controlled in a loop where in every cycle current motor 

speeds are changed a little towards the target speeds. This slightly reduces the respon-

siveness of the robot but makes it more resilient to small steering errors coming from the 

controller. It also makes the movements smoother by removing sudden movements hap-

pening when target speeds changes drastically. 

3.2.3 Controller Programs 
Both controller programs are written in python 3.7. They are responsible for receiving 

images from the RPi and sending commands back to it. The two programs quite similar 

to each other because the Jetson version is modified version of the laptop program. The 

only thing they differ from each other is the way they acquire the control commands.  

Controller program running on the laptop shows the human user the image stream and 

receives keyboard presses from the user and sends them over the network to the RPi. 

While the program running on Jetson doesn’t have the component where images are 

shown to the user. Also, the component where keyboard presses are received from the 

user is replaced with a component that computes commands with the NN. 

Laptop program also handles the training data capturing. It saves the received images 

into a video using computer vision library OpenCV and saves the sent commands to a 

text file in the form of one line per command. Commands are synchronized to the image 

so that every time the laptop receives a new image it sends a command back. This way 

every frame of the saved video is automatically annotated and can be easily used for 

training. 
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4. NEURAL NETWORK CONTROLLER 

The used CNN is implemented in TensorFlow 2.1 using the Keras frontend. The structure 

of the implemented model is shown in Figure 6 on page 14. Model has five convolutional 

layers and five max pooling layers. After the convolution and pooling layers there is a 

flatten layer and four fully connected dense layers. The following subchapters present 

more in-depth information about the layers of the model. 

Many different configurations were tested. Different number of layers and parameter for 

those layers were tested and, in the end, decided to try to reduce the number of param-

eters the model had. The reasoning behind the decision to reduce the number of param-

eters was to reduce overfitting and to ensure that the Jetson Nano could run the model.  

In addition to the model configuration presented in Figure 4, during training dropout lay-

ers were added after the first two dense layers to reduce overfitting. Dropout layers set 

on random some percentage of outputs to zero. This makes harder for model to learn 

specific information from the training data and helps the model to generalize the data 

better. [21][22] Every dropout layer had 30% drop rate. 

4.1 2D Convolutional Layer 

Convolutional layer is one of the basic building blocks of a CNN. Convolution layer ex-

tracts features from the input image using a set of filters. These filters are learnable and 

are learnt during the training process. Convolutional layer performs convolution between 

the input image and the learnt filters, to produce a feature map of the input. [23][24] 

Convolutional Layer has three main configurable parameters that are depth, stride and 

zero-padding and activation function with which the user can tune the layer fit the in-

tended purpose. [22][24] 

Depth corresponds to the number of filters the layer has. With a large number filters the 

layer can extract more features, but with increased computing requirements [22]. In his 

thesis the number of filters is increased as the model get deeper. The first two layers 

have 32 filters, the next two have 64 filters and the last layer has 128 filters. 

Stride is the number of pixels by which the filter matrix is moved. Having a stride of 1 

means that the filter is moved by one pixel at a time. A larger stride leads to fewer ex-

tracted features but reduces overlapping [22]. Every convolutional layer in the imple-

mented model uses a stride of 1 which is the default value in Keras.  
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Zero-padding means that zero values are added to the edges of the input image. If no 

zero-padding is used the size of the output feature map is smaller than the input image. 

The reason is that the filters need adjacent pixels to perform the convolution and, on the 

edges, there is no adjacent pixels without zero-padding. [22] In the implemented models’ 

convolutional layers zero-padding is used to avoid the reduction in size. 

Activation function is used to define how the layers’ output behaves when given an input 

and to add non-linearity to the layer [23]. All convolutional layers in the implemented 

model uses Rectified Linear Unit as their activation function. Rectified Linear Unit is dis-

cussed in Chapter 4.4. 

4.2 2D Max Pooling Layer 

Pooling is used to reduce the computational cost by reducing the number of parameters 

to learn. The reduction of parameters also helps to reduce over-fitting. Pooling also make 

the network more invariant to small changes or distortions in the input image. There is 

couple of different types of pooling layer, for example average pooling, sum pooling and 

max pooling. In this thesis max pooling us used as the pooling layer. Max pooling outputs 

the largest value in the current window. Max pooling layer forms a new smaller feature 

map by filtering the whole map with a maximum filter. [22] 

The first configurable parameter of pooling layers is window size. Every pooling layer in 

this model uses windows size of 2x2 pixels. Because the input images are not very high 

resolution, 2x2 pixel window performs well to reduce the number of parameters. For 

larger images larger window sizes might be more suitable to reduce the parameter count 

even faster. 

Other configurable parameter for pooling layers is stride which is discussed in the previ-

ous chapter. In this case the used stride value is the Keras default which is the same as 

the window size. There is also parameter for padding which is also discussed in the 

previous chapter. In all pooling layers the Keras default padding of no padding is used. 

4.3 Flatten Layer and Fully Connected Layer 

Flatten layer takes features that are in a multidimensional matrix and rearranges them to 

a one-dimensional vector. This allows connecting multidimensional feature maps from 

for example 2D convolutional layer or 2D max pooling layer to a fully connected layer. 

[25] 

Fully connected layers’ purpose is to form connections between high-level features and 

that way classify an image. Fully connected layer as its name suggests is fully connected 
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to previous layers’ neurons. Action that one neuron in fully connected layer performs is 

a weighted sum with every connection to previous neurons getting its own weight or 

multiplier. Training changes these weights to improve the layers ability predict the right 

outcome. [25] 

Number of neurons is one of the main configurable parameters of a fully connected layer. 

In the implemented model the number of neurons decrease as the model gets deeper. 

First fully connected layer has 150 neurons, second has 75, third 25 and the last one has 

only 3. The other parameter to configure is the activation function. The model uses Rec-

tified Linear Unit function for the first three fully connected layers and Softmax for the 

last one. Softmax function is discussed in the next chapter. 

4.4 Rectified Linear Unit and Softmax Activation Function 

Rectified Linear Unit (ReLU) has become common for many types of NNs. That is be-

cause in many situations a model that uses ReLU is easier to train and achieves better 

performance than when other more complicated activation functions are used. [25][26] 

ReLU is a piecewise linear function which allows it to be more simple than other activa-

tion function like Sigmoid or Tanh. ReLU consists of two linear function which are 

𝑓(𝑥) =  {
0,   𝑖𝑓 𝑥 < 0
𝑥, 𝑖𝑓 𝑥 ≥ 0

,         (4.1) 

where x is the input to the ReLU. ReLU outputs zero when its input is negative and when 

the input is positive it outputs the same value it received as input. [26][27] 

Softmax is often used as the activation function for the last layer of a NN. That is because 

Softmax outputs probability distributions based on the input and when used on the last 

layer it outputs the probabilities of the labels for the input image. In practise Softmax 

takes a vector of numbers like those values from previous neurons multiplied by weights 

as its input. Then Softmax takes exponents of each element of the input vector. Next the 

Softmax normalizes these exponential values by diving by the sum of all those expo-

nents. After normalization sum of all the output vector probabilities add up to one. [24][25] 

4.5 Adam Optimizer and Categorical Cross-Entropy Loss 

The implemented model uses Adam as its optimizer algorithm. In this mode the predic-

tion accuracy is the metric that Adam tries to optimize. For the loss function Cross en-

tropy loss is used.  

Adam is an adaptive learning rate optimization algorithm to update the weights in the 

network. Adam or Adaptive Moment Estimation is relatively new optimizer first published 
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in 2014. Adam uses adaptive learning rate to minimize the problem of overfitting the 

model without sacrificing speed during training. Adam combines the advantages of 

AdaGrad and RMSProp optimizers to provide robust and well-suited optimizer for wide 

range of different problems in the field of machine learning. [28] 

Cross-entropy loss is a popular choice when dealing with classification problems. One 

of the reasons is that it has been proven to work quite well to solve them. It works very 

well with Softmax activation function on the last layer of the model. It is used to compare 

the one-hot encoded label vector to the probability distribution output vector from the 

Softmax layer. With this comparison cross-entropy loss determines how far of the pre-

dictions were. [25] Cross-entropy is defined as  

𝐽 =  −
1

𝑁
(∑ 𝑦𝑖 ∗ log(�̂�𝑖)𝑁

𝑖=1 ),         (4.2) 

where J is the loss, N is the number of classes, yi is the ground truth probability of a class 

and ŷi is the predicted probability of a class. [25][27] Cross-entropy loss is dependent 

only on the probabilities of the correct classes. Unlike in Mean square, loss distribution 

of wrong predictions does not matter, only the probabilities of the right answers. 
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  Structure of the neural network 
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5. EXPERIMENTS 

In this chapter the training process and the three self-driving tests are discussed. Chapter 

5.1 presents the training data collection process and the needed pre-processing of the 

collected data. Chapter 5.2 presents the training process and Chapter 5.3 presents the 

TensorRT optimization. Chapter 5.4 presents the three self-driving tests. 

5.1 Training Data Collection 

Training data was collected while a human expert was driving around the track. Data 

was save to the laptop which the expert used to control the robot during data collection. 

The expert used the laptops keyboard to input commands. Image data was recorded to 

video files and action data was collected to text files. Figure 7 shows and example of a 

training image and corresponding expert action.  

 

  Example training data. 

To reduce complexity only three different commands were chosen that the robot could 

perform. The chosen commands were drive straight, turn left and turn right. Because of 

the decision that the robot always had to move forward, the action data must be filtered 

to remove every command and the corresponding image from the dataset that did not 

have “w” in the command. The final dataset had a little bit of a bias towards straight 

commands because about half of the commands were straight as seen in Figure 8. 
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  Image label distribution. 

Actions shown in the Figure 5 had to be converted to one-hot encoded vectors for the 

model. Actions were converted so that “1,0,0” represents turning left, “0,1,0” represents 

turning right and “0,0,1” represent driving straight. Before using images from the camera, 

pre-processing has to be done. The following steps describe the implemented pre-pro-

cessing steps. 

1. Cropping images: The images are cropped from the top by 170 pixels in order to 
remove unnecessary data and to focus on the region of interest which is the track. 
Other benefit is that smaller image is computationally faster meaning faster train-
ing. Cropped images have the size of 480x190x3. 

2. Normalization: Each colour channel is scaled to values between zero and one by 
dividing the pixel value by the maximum 8-bit integer value which is 255.  

After the pre-processing steps, the total of number of valid action image pairs in the 

dataset was 58745. 49933 images were used to train the CNN and 8812 images were 

used to validate the network. 

5.2 CNN Training 

Training was done on a computer with Intel I7-8700k processor, Nvidia GTX 1080TI GPU 

and 16 GB of DDR4 memory running on Windows 10. First, the model was trained for 

10 epochs to get information when overfitting was occurring. Figure 9 shows the valida-

tion and the training accuracy as well the loss for both the training and the validation for 

every epoch. Training for 10 epochs took about 25 minutes with the presented model 

and hardware configuration. Epoch 5 was chosen as the number of epochs to train the 

final model. This seemed as a good compromise between the accuracy and the loss.  
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  Training information 

As seen in Figure 9 the validation accuracy is not very high. One of the reasons might 

be that there are many similar images with different labels because human expert has 

the ability to predict the direction from the image and for example start turning before the 

center line turns in the image. Other reason might be that a human can remember the 

track from the previous laps and can start turning in corners earlier than on the previous 

lap and this creates two different actions for same kind of input image. I this thesis a 

large dataset is used to avoid this problem. 

5.3 TensorRT Optimization 

TensorRT is a C++ library that enables high-performance inference on Nvidia GPUs. It 

is designed to work in conjunction with NN training frameworks. Some framework such 

TensorFlow have built-in TensorRT components so TensorRT can be used within the 

framework. [29] 

TensorRT optimizes the model by performing platform specific optimizations or by opti-

mizing the model layout directly. The optimization process can remove unused layers 

and operations that are equivalent to no operation. It can also fuse convolutions and 

ReLU operations together. Optimization also modifies weights if different precision is 

used than on the original model. [29] Lowering the precision makes the model faster by 

removing unnecessary calculation when lower precision is sufficient. 

Inferencing with the TensorFlow model on the Jetson Nano took too much time for it to 

be real-time as it needed to be. Inferencing took about 200ms when it needed to be a 
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fraction of that. The    ms was measured when Jetson was on power saving “  watt” 

mode. On a TensorRT model optimized and with the power saving mode the inferencing 

took only about 30ms thus enabling real-time operation with a 30 FPS video stream. 

5.4 Self-driving Tests 

In total three self-driving tests were done. In the first test the NN was on the laptop and 

in the second test NN was moved from the laptop to the Jetson Nano. First two tests 

used a NN model that used grayscale images as input. This was done to save memory 

on the training machine, the laptop and the Jetson Nano. In the final test, the NN was 

changed to a model that used colour images because of the limitations of grayscale data. 

First self-driving test used the laptop as the controller where the NN was running. Be-

cause the laptop didn’t have a discrete GPU the throughput of the NN was about 10 

interferences per second. This was too slow to make the robot reliably react to changes 

in direction of the track. The wireless connection latency was also a hampering effect on 

the reliably. The robot often drove off the track and could not complete even one lap 

because of the previously mentioned limitations. 

To increase the throughput, the NN was moved to the onboard Jetson Nano. With the 

Jetson Nano and the optimization discussed in the previous chapter, the throughput was 

increased to about 30 interferences per second. With this increased throughput the robot 

was able to react much faster and was able to follow the track quite accurately. On tighter 

curves the robot was not able to make the turn and drove out of the track. With a little bit 

tuning to the motor turning speed multipliers, the robot was able to drive the track on its 

own. However, with the tuned multipliers it was very hard for a human to drive the track, 

because the robot made too sharp turns for a human to drive accurately. 

Next tests showed that the robot sometimes started to falsely follow side lines of the 

track. The robot didn’t distinguish the side line from the center line. This problem was 

solved by using colour images for the NNs input. With colour images the NN was able to 

more easily distinguish the yellow center line from the white side line. 

The last test used the model presented in Chapter 4. This model performed quite reliably, 

and the robot was able to drive multiple laps autonomously. The only problem remaining 

was that sometimes the robot turns sharply on the starting straight. The reason is that 

the robot confuses the starting lines to a sharp turn. Error! Reference source not f

ound. shows two example images from the training dataset. Left image shows a situation 

where robot can confuse starting lines to a sharp left turn. Right image shows an example 

of a sharp left turn to ease comparison. The almost horizontal white lines might be the 
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reason for this confusion, but the confusion only happens when the robot arrives to the 

starting lines at the right angle. However, this confusion happened quite rarely so it 

wasn’t a big problem. 

 

  Starting straight wrong turn examples 
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6. CONCLUSIONS 

The goal of this thesis was to implement robot that is able to autonomously drive around 

the chosen test track. The proposed implementation used NN to classify images to three 

different actions that the robot should take. Hardware implementation used Jetson Nano 

to compute the NN and RPi to capture images and control the robot’s motors. The NN 

model and code used in this thesis is available at Github1. 

Experiments show that the proposed implementation works reasonably well on the cho-

sen test track. Moving the NN from the laptop to the Jetson Nano and that way speeding 

up the computation made noticeable improvement to the robot’s performance. NN con-

troller’s low validation accuracy did not seem to affect to the robot’s performance on the 

track. However, this implementation could be further improved by further optimizing the 

NN parameters and configuration.  

Possible future hardware improvements could be changing the camera setup. One 

change could be to move the camera higher of the ground so that the robot could see 

farther and react earlier to changes in the track. Another change could be to increase 

the field of view of the camera to make the robot more aware of its position on the track. 

Other hardware improvement could be to remove RPi from the configuration and connect 

the camera and motor controller directly to the Jetson Nano. This improvement would 

decrease the latency between the image capture and the movement action. 

Software improvements could be to change the NN controller to output steering angle 

and throttle values instead of direction commands. This change would make the robot 

movement more precise and possibly faster. Another improvement would be to add a 

system to help the robot to avoid obstacles on the track. This improvement would make 

the robot more reliable and in addition, it would enable multi robot racing. 

 

 

 
 
1 https://github.com/Manninee/Monsterborg 
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