

Juho Tieaho

DATA PLANE PROGRAMMABILITY
in network-attached FPGA accelerators

Faculty of Information
Technology and Communication

Sciences
Master of Science thesis

June 2020

i

ABSTRACT

Juho Tieaho: Data plane programmability in network-attached FPGA accelerators
Master of Science thesis
Tampere University
Master’s Degree Programme in Electrical Engineering
June 2020

To increase capital efficiency and flexibility in networking, virtualization methods, following

the concept of Network Function Virtualization (NFV), can be used. In NFV, network functions
conventionally implemented on proprietary hardware appliances are migrated to Commercial Off-
The-Shelf (COTS) hardware as software-implemented virtualized functions. This may come at
the cost of performance, and some performance-critical functions may require the usage of spe-
cialized hardware as hardware accelerators.

This work is focused around the reconfigurable Field-Programmable Gate Array (FPGA)
accelerators, and more specifically, FPGA accelerators that are network-attached, as in accessi-
ble directly via network. In this thesis, a data plane programmability language, P4 (Programming
Protocol-independent Packet Processors), was trialled as a method for implementing packet pro-
cessors in the FPGA ingress and egress paths as networking logic surrounding the core acceler-
ator functionality. This was done to map its usability as an alternative to a Register-Transfer Level
(RTL) Hardware Description Language (HDL).

For the study, three design variants were implemented, all providing the same networking
functionality of Virtual Tunnel Endpoint (VTEP) termination and a five-tuple based firewall. The
design variants were a software interfaced P4 design, a reference hard-coded VHDL (Very High
Speed Integrated Circuit Hardware Description Language) design, and finally, a hard-coded P4
design for more comparable hardware resource utilization metrics. As the P4 language is a plat-
form-independent high-level description language, a third-party back end compiler was used in
the hardware design.
 The P4-based implementations were compared against the VHDL-based implementation
in terms of FPGA resource utilization, performance, as in latency and throughput, and design
automation, as in lines of source code. From the variants, the VHDL design proved to be superior
by the lowest resource utilization. Additionally, the VHDL design achieved the lowest latency from
the variants, being able to process 1kB frames in 0,5µs, whereas the P4 software interfaced and
hard-coded design variants achieved latencies of 1,1µs and 1,3µs, respectively. However, the P4
proved to provide a more automated implementation design flow, indicated by the lines of code:
the VHDL description consisted of 8,1x more lines than the P4 software interfaced variant.

Keywords: Data plane programmability, FPGA, hardware accelerator, P4, NFV

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIIVISTELMÄ

Juho Tieaho: Reititystason ohjelmoitavuus verkkoon kytketyissä FPGA-kiihdyttimissä
Diplomityö
Tampereen yliopisto
Sähkötekniikan diplomi-insinöörin tutkinto-ohjelma
Kesäkuu 2020

Verkkofunktioiden virtualisointikonseptin (engl. Network Function Virtualization, NFV) mu-

kaisia menetelmiä voidaan käyttää tiedonsiirtoverkkojen kustannustehokkuuden ja joustavuuden
lisäämiseksi. Tämä konsepti tarkoittaa verkkotoimintojen toteutusta virtuaalisina ohjelmistofunkti-
oina. Tällöin perinteisten, erikoiskäyttöisten ja patentoitujen verkkolaitteiden käyttöä voidaan kor-
vata yleiskäyttöisellä ja yleisesti saatavilla olevalla laitteistolla. Ohjelmistototeutuksien käyttö voi
kuitenkin näkyä suorituskyvyn heikkenemisenä, jolloin vaativimpien toimintojen suorittamisessa
voidaan käyttää apuna erillisiä laitteistokiihdyttimiä.

Tämä työ keskittyy verkkoon kytkettyihin uudelleenohjelmoitaviin FPGA-kiihdyttimiin
(engl. Field-Programmable Gate Array). Työssä koekäytettiin reititystason (engl. data plane) oh-
jelmointiin tarkoitettua P4-kieltä (engl. Programming Protocol-independent Packet Processors)
FPGA-kiihdyttimen verkkotoiminnallisuuden toteutuksessa. Työn tavoitteena oli kartoittaa P4-kie-
len käytettävyyttä tässä käyttökohteessa vaihtoehtona perinteiselle rekisterisiirtotason (engl.
Register-Transfer Level, RTL) laitteistokuvauskielelle (engl. Hardware Description Language,
HDL).

Tutkimuksessa tuotettiin kolme reititystason toiminnallisuudeltaan vastaavaa toteutusta,
jotka toteuttivat virtuaalitunnelin päätepisteen (engl. Virtual Tunnel Endpoint, VTEP) terminnoin,
sekä protokollikenttien avulla muodostettuun monikkoon pohjautuvan palomuurin. Toteutuksina
olivat ohjelmistorajapinnallinen P4-totetutus, vertailukohtana toimiva kovakoodattu VHDL-toteu-
tus (engl. Very High Speed Integrated Circuit Hardware Description Language), sekä tarkemman
resurssien käyttöasteen vertailun mahdollistava kovakoodattu P4-toteutus. P4-kielen kuvaukset
käännettiin käyttäen kolmannen osapuolen kääntäjää.

P4-toteutuksia vertailtiin VHDL-toteutukseen käyttäen vertailukohtina FPGA:n resurssien
käyttöastetta, suorituskykyä, sekä suunnitteluvuon automaatiota lähdekoodiriveissä mitattuna.
VHDL-toteutuksen resurssien käyttöaste osoittautui matalimmaksi. VHDL-toteutus kykeni myös
matalimpaan käsittelyviiveeseen, joka oli noin 0,5 µs käsiteltävien pakettien ollessa 1 kilotavun
kokoisia. Täyden ohjelmistorajapinnallisen P4-toteutuksen viive oli 1,4 µs, ja kovakoodatun P4-
toteutuksen viive 1,1 µs. Automaatioltaan, tässä työssä lähdekoodirivien lukumäärässä mitattuna,
P4-toteutus oli ylivertaisin: VHDL-toteutuksessa käytettyjen koodirivien määrä oli 8,1-kertainen
P4-toteutukseen nähden.

Avainsanat: Reititystason ohjelmoitavuus, FPGA, laitteistokiihdytin, P4, NFV

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

PREFACE

Big thanks to Prof. Timo D. Hämäläinen and Arto Oinonen from Tampere University and

Jouni Markunmäki from Nokia for supervision and help throughout the writing process of

this thesis.

I also want to express my gratitude for Nokia and my excellent colleagues in the com-

pany. Special thanks to Hannu Tulla for assistance in all technical matters, as well as

Talita Tobias Carneiro and Daniel Koslopp for collaboration throughout the CRUN pro-

ject.

Tampere, 12.06.2020.

Juho Tieaho

CONTENTS

1. INTRODUCTION .. 1
2. NETWORKING PARADIGMS ... 4

2.1 NFV ... 4

2.2 SDN ... 6

3. HARDWARE ACCELERATION IN THE NFV CONTEXT 9
3.1 FPGA accelerators ... 10

4. DATA PLANE PROGRAMMABILITY .. 13
4.1 Programmability to the forwarding plane: How? 14

4.2 P4 brought into focus ... 16

4.2.1 P4 targets and compilers .. 18

5. METHODOLOGY .. 20
5.1 Hardware design methodology ... 21

5.2 Test and measurement setup ... 21

6. SYSTEM DESCRIPTION .. 24
6.1 CRUN framework ... 24

6.2 Top level FPGA design .. 26

6.3 Use case description .. 28

7. IMPLEMENTATION .. 31
7.1 VHDL implementation .. 32

7.2 Software interfaced P4 implementation .. 35

7.3 Hard-coded P4 implementation .. 39

8. RESULTS AND ANALYSIS... 41
8.1 Utilization ... 41

8.2 Performance .. 44

8.3 Degree of automation ... 48

9. CONCLUSIONS .. 51
REFERENCES... 52

LIST OF FIGURES

Figure 1. The architectural framework of NFV. Adopted from [6] 5
Figure 2. The architecture of a) a traditional network element and b) SDN.

Adopted from [15]. ... 7
Figure 3. FPGA accelerator attachment options: a) a tightly coupled

coprocessor model, b) a network-attached, network appliance
model, c) a tightly coupled and network-attached model. Adapted
from [23]. .. 12

Figure 4. Testing and measurement system description. 22
Figure 5. Network architecture in CRUN. .. 25
Figure 6. Server architecture in CRUN. ... 25
Figure 7. Top level accelerator shell design implementation on the FPGA. 27
Figure 8. Protocol stack supported by the packet processors. Fixed header

lengths in bytes (B). ... 28
Figure 9. Packet processing flow diagram for a) ingress and b) egress

packet processors. ... 30
Figure 10. Generic flow graph of the design process for all packet processor

variants. ... 31
Figure 11. Design architecture of the VHDL-implemented ingress packet

processor. .. 33
Figure 12. Design architecture of the VHDL-implemented egress packet

processor. .. 34
Figure 13. P4-defined packet processor IP. .. 39
Figure 14. FPGA resource utilization percentages in ingress packet

processors. .. 42
Figure 15. FPGA resource utilization percentages in egress packet

processors. .. 43
Figure 16. Latencies with only inner headers for each design variant per

frame size. ... 47
Figure 17. Latencies with VxLAN encapsulation headers on top of inner

headers for each design variant per frame size. 47
Figure 18. Design and verification workflow graphs for a) VHDL and b) P4

design in this work. .. 49

LIST OF SYMBOLS AND ABBREVIATIONS

4G Fourth Generation
5G Fifth Generation
API Application-Programming Interface
ASIC Application-Specific Integrated Circuit
ASSP Application-Specific Standard Product
BCAM Binary Content-Addressable Memory
BRAM Block Random-Access Memory
BSV Bluespec SystemVerilog
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
DMA Direct Memory Access
DUT Device Under Test
EM Element Manager
EMS Element Management System
ETSI European Telecommunications Standards Institute
FF Flip-flop
FIFO First In, First Out
ForCES Forwarding and Control Element Separation
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GPP General Purpose Processor
GPU Graphics Processing Unit
HDL Hardware-Description Language
ID Identifier
ILA Integrated Logic Analyzer
iNIC Intelligent Network Interface Controller
IP Intellectual Property
IPv4 Internet Protocol version 4
JTAG Joint Test Action Group
LOC Lines of Code
LUT Lookup Table
LUTRAM Lookup Table Random-Access Memory
MANO Management and Orchestration
NFP Network Flow Processor
NFV Network Function Virtualization
NFVI Network Function Virtualization Infrastructure
NIC Network Interface Controller
NOS Network Operating System
NPU Network Processing Unit
OS Operating System
OVS Open vSwitch
P4 Programming Protocol-independent Packet Processors
pcap Packet capture
PCIe Peripheral Component Interconnect Express
PHY Physical layer
POC Proof of Concept
PP Eg. P4 HC Hard-coded P4 implementation of the egress packet processor
PP Eg. P4 SW IF Software interfaced P4 implementation of the egress packet proces-

sor
PP Eg. VHDL VHDL implementation of the egress packet processor
PP Ing. P4 HC Hard-coded P4 implementation of the ingress packet processor

PP Ing. SW IF Software interfaced P4 implementation of the ingress packet proces-
sor

PP Ing. VHDL VHDL implementation of the ingress packet processor
RAM Random-Access Memory
RAN Radio Access Network
RTL Register-Transfer Level
RX Receive
SDN Software-Defined Networking
Shell P4 HC Shell design with hard-coded P4 implementations of the packet pro-

cessors
Shell P4 SW IF Shell design with software interfaced P4 implementations of the

packet processors
Shell VHDL Shell design with VHDL implementations of the packet processors
SR-IOV Single Root Input/Output Virtualization
TX Transmit
UDP User Datagram Protocol
UVM Universal Verification Methodology
VHDL Very High Speed Integrated Circuit Hardware Description Language
VLAN Virtual Local Area Network
VM Virtual Machine
VNF Virtual Network Function
VNFM Virtual Network Function Manager
VNI Virtual Network Identifier
vRAN virtualized Radio Access Network
VTEP Virtual Tunnel Endpoint
VxLAN Virtual Extensible Local Area Network

1

1. INTRODUCTION

Mobile traffic is increasing, both in volume and variety, due to growing amounts of smart

phones and other connected devices [1], creating an increasing demand for lower la-

tency and greater capacity in mobile networks [2]. The telecommunications industry is

pressured for higher data rates by the subscribers [3], and for example with the fifth

generation (5G) mobile networks, the data rate demand can be up to 100x compared to

the fourth generation (4G), while the end-to-end latency must be reduced to a fifth [4].

The higher capacity requirements force the communications service providers to invest

in the network, while concurrently finding ways to preserve profitability [1].

For a telecommunications service provider, the Radio Access Network (RAN) causes a

major part of capital and operating expenses, respectively up to 80% and 60%. This

makes RAN a compelling choice for expense reduction [3]. One method to achieve this

is to utilize the concept of Network Function Virtualization (NFV).

In the NFV concept, network functions are separated from proprietary hardware devices

and implemented as software virtual functions, running on Commercial Off-The-Shelf

(COTS) hardware, for example x86 architecture high volume servers [5]. In the domain

of a virtualized RAN (vRAN), this means the virtualization of baseband unit functions to

run on a shared physical infrastructure, separating the baseband units from their dedi-

cated remote radio units [3].

With the usage of COTS hardware and virtualized, software-implemented functions, the

NFV concept brings benefits such as capital efficiency and flexibility to the network [6].

However, some virtual network functions may require performance not attainable with

standard servers and require the usage of specialized hardware as hardware accelera-

tors [7].

One candidate for a hardware accelerator is the Field-Programmable Gate Array

(FPGA), which is a reconfigurable platform, and due to its hardware structure can offer

improved performance compared to General-Purpose Processors (GPP). In addition to

serving as local accelerators for their host server, they can be connected directly to a

data centre network. As network-attached, the FPGA is additionally enabled for network

acceleration as well as global acceleration [8]. This work is focused on the networking

logic on these FPGAs, bringing in the concept of data plane programmability.

2

Software-Defined Networking (SDN) is a networking paradigm which aims to decouple

the control plane from the data plane and to centralize it. The data plane then forwards

traffic based on the control plane instructions via a well-defined Application-Program-

ming Interface (API). [9]

On the data plane level, its programmability can be enabled with different programming

models and abstractions that are exposed to the control plane. One of the abstractions

is the match-action abstraction, where the controller configures the packet processing of

the device by managing entries in flow tables. [10] The target is programmed to match

values from protocol headers against the values in flow tables and based on the match

result and the configuration of the table a certain action is executed. A programming

language using this abstraction is the P4 (Programming Protocol-independent Packet

Processors).

P4 is a platform-agnostic, domain specific language for the programming of protocol-

independent packet processors. In a P4 program, the programmer defines the supported

set of protocols, a protocol parser and control programs. The control programs contain

the match-action tables and action definitions, which determine how the packets are pro-

cessed. [11]

The goal of this thesis is to map the feasibility and use cases of using a data plane

programmability method, the P4 language, in the implementation of networking logic in

network-attached FPGA accelerators. The thesis was done as a part of a larger in-house

framework, the CRUN, which presented a cloudified datacentre architecture, where

FPGAs could be flexibly provided as hardware accelerator resources, accessible both

locally and via network.

The feasibility study was done by implementing packet processors, i.e. the networking

logic surrounding the accelerator on the FPGA, with both the P4 language and VHDL

(Very High Speed Integrated Circuit Hardware Description Language). The resulting

hardware designs were compared against each other by performance metrics, latency

and throughput, utilization, as well as by the degree of automation in the design flows.

This thesis is structured as follows. Chapter 2 presents the main networking paradigms

behind this work, the NFV and SDN, focusing on an architectural description. Chapter 3

presents hardware acceleration with the NFV framework, as well as an introduction to

FPGA accelerators in this context. Chapter 4 opens the domain of data plane program-

mability, alongside a description of the P4 language as a part of this work. Chapter 5

describes the methodology, tools, and platforms used in this work. Chapter 6 presents

3

the project framework, implemented top level FPGA design, and the implemented net-

working functionality. Chapter 7 gives a more detailed description of the VHDL and P4

packet processing designs, and of how they were implemented. Chapter 8 presents the

utilization, performance and degree of automation results for all design variants, and

chapter 9 concludes the thesis.

4

2. NETWORKING PARADIGMS

In conventional networking, the implementation of network functions often includes the

usage of proprietary hardware appliances. Addition of new features is costly and com-

plex, as it requires the purchase of new devices [12]. A large variety of equipment, such

as switches and middleboxes, further increases the complexity and slows innovation, as

these devices often come with closed and proprietary control software and configuration

interfaces varying across vendors [9]. This chapter presents the networking concepts of

SDN and NFV, which aim to address these issues.

2.1 NFV

Network Function Virtualization is a networking paradigm which aims to bring capital

efficiency and flexibility to networking by replacing proprietary hardware devices with

COTS hardware and providing the network functions implemented by them as virtualized

functions (Virtualized Network Function, VNF) [6]. This is purposed for a more cost-ef-

fective, shareable and homogenous hardware architecture. Additionally, with VNFs flex-

ibly assignable to hardware, functionality is decoupled from location, scalability is in-

creased, and the software-based deployment model enables faster innovation for new

services. In conclusion, the European Telecommunications Standards Institute (ETSI)

group specification in [6] summarizes the service provisioning differences in NFV com-

pared to non-virtualized traditional networks as follows:

• Decoupled software and hardware, enabling independent evolution for both, and

leading to

• flexible network function deployment and dynamically scalable operation, adjust-

ing the performance capacity as required by traffic in the network.

To better understand the NFV framework, it can be divided into 3 main working domains,

as in [6]:

• VNFs, software-implemented network functions running on top of the

• NFV Infrastructure (NFVI), which in turn includes all the physical resources and

their virtualization methods, and finally the

• NFV Management and Orchestration (MANO), including the orchestration and

management of hardware and software resources supporting the virtualization

and the VNFs.

5

How these domains are connected is depicted in the NFV architectural framework in

figure 1. The NFVI can be seen as the data plane of the network [13]. It consists of

hardware resources, which are virtualized as virtual resources by the virtualization layer.

The computing hardware is realized by general-purpose COTS compute nodes. Storage

hardware consists of data storage devices divisible into for example shared network at-

tached storage and server-specific storage. Finally, the networking hardware is a com-

bination of switches, routers, and wired or wireless links. [6]

Figure 1. The architectural framework of NFV. Adopted from [6]

The virtualization layer decouples the hardware resources from the VNF software. The

physical resources are abstracted and partitioned as virtual resources for the VNFs to

use. A typical solution to provide the virtual resources is the usage of hypervisors, which

in turn provide Virtual Machines (VMs). A VNF can then be implemented on one or sev-

eral VMs. [6] Virtual resources are interconnected with typically software-based virtual

networking, implemented with for example virtual switches [13]. Techniques such as vir-

tual networks and network overlays, e.g. Virtual Local Area Network (VLAN) or Virtual

Extensible Local Area Network (VxLAN) can be used to create virtualized paths to inter-

connect VMs and VNFs [6].

The VNF domain consists of VNFs and the Element Management System (EMS). The

VNFs are software-implementations of network functions, providing the same function-

ality and external operational interfaces as physical implementations on dedicated hard-

ware. The implementation of a VNF can be distributed to components (VNF Component,

VNF

Manager(s)

VNFs

...

NFVI

NFV MANO

Virtualization layer (eg. hypervisor)

Virtual

Computing
Virtual

Storage
Virtual

Network

Virtual resources

Hardware resources

VNFCVNFC

VNF

VNFCVNFC

VNF

EMS

...
EM EM

Network

HW

Storage

HW

Computing

HW

VIM(s)

NFVO

VNF

Manager(s)

6

VNFC) on different VMs. The VNFs are managed by Element Managers (EM), which

together form the EMS. [13]

In the NFV MANO, the responsibility of the NFV Orchestrator (NFVO) is the management

and orchestration of the NFVI and its resources, and realizations of the networking ser-

vices in it. The VNF lifecycle from instantiation to termination is managed by VNF man-

agers (VNFM). A VNF is tied to a single VNFM, whereas a VNFM may manage several

VNFs. Finally, the Virtual Infrastructure Managers (VIM) are responsible for resource

management and monitoring of the NFVI, including tasks such as VM allocations to hy-

pervisors, resource adjustments to VMs, and fault information collection from the NFVI.

[6]

2.2 SDN

Whereas NFV focused on the separation of software and hardware, Software-Defined

Networking focuses on the decoupling of the data plane from the control plane [14]. Con-

ventionally, a network consists of separate network devices, which in turn are entities of

tightly coupled hardware and software, performing both data and control plane functions

(figure 2 a)). In SDN, the planes are separated by centralizing the control of the network

onto SDN controllers, which configure the data plane according to rules set by network

applications in the application plane (Figure 2 b)). [15]

The SDN survey in [14] describes a software-defined network by an architecture based

on 4 principles:

1. Decoupled control and data planes, resulting in network devices becoming sim-

ple forwarding elements.

2. Forwarding rules are based on flows instead of destinations, i.e. sets of packet

field values matched for a set of actions.

3. Control is centralized and moved to the SDN controller, or the network operating

system (NOS), which is running on server hardware.

4. The programming of the network is done by applications on top of the NOS.

7

Figure 2. The architecture of a) a traditional network element and b) SDN. Adopted
from [15].

The centralized control is purposed to maintain a global view of the network, and to pro-

vide a more abstracted model of the underlying hardware, enabling the use of high-level

programming languages and software components. Through this centralization, state

and information of the network is available to all applications, and the applications are

less tied to location. The higher-level abstractions are also more shareable and reusable

between applications. [14]

The decoupled planes in the SDN architecture, and the interfaces between them, can be

seen in figure 2 b). In the bottom of the figure reside the forwarding elements, also ref-

erable as forwarding devices as in [14]. These devices, e.g. routers and switches [15],

perform actions such as forwarding and dropping of packets, or header modifications

[14]. These actions are taken based on flow rules, which are received from the control

plane through the southbound interface [14, 15]. Interconnected by wireless or wired

connections, together these devices form the data plane [14].

The control plane is the centralized intelligence of the network [14], consisting of a con-

troller or controllers [15]. The controllers generate configuration rules derived from the

application plane, and pass these rules to the data plane devices via the southbound

interface [14, 15]. The southbound interface, implemented with for example OpenFlow

[16], defines the communication protocol between the forwarding elements and the con-

trol plane [14].

Traditional Network Element Architecture Software-Defined Network Architecture

Control Plane

Data Plane

Control Plane

Hardware

Data Plane

... Forwarding

Element N

Forwarding

Element 1

Controller 1 Controller N

Network

Application 1

Network

Application N

ASICASIC

CPU Memory

Operating System

Network

Application 1

Network

Application N

Software

...

Application Plane

Southbound Interface

...

...

...

a) b)

8

On the top of the figure is the application plane, also referable as the management plane

[14]. This plane consists of applications for example routing [15], quality of service mech-

anisms [15], firewalling [14] and load balancing [14]. These applications use an API, the

northbound interface, and its functions to generate and deliver rules for network traffic

treatment to the control plane [14].

9

3. HARDWARE ACCELERATION IN THE NFV

CONTEXT

In NFV, networks gain flexibility, scalability and capital efficiency by replacing the propri-

etary hardware middleboxes with COTS hardware. However, this comes with a trade-

off: using software virtualizations to run network functions in place of specially tailored

ASICs (Application-Specific Integrated Circuit) can have a negative impact in throughput

and latency [17]. To improve performance, whether the goal is in relation to e.g. cost,

power, area, or to reach the sheer maximum, acceleration techniques can be introduced

into the NFVI. The usage of specialized hardware to gain this performance improvement,

is called hardware acceleration. [7]

Hardware accelerators can be such as custom ASICs, FPGAs, NPUs (Network Pro-

cessing Unit) or GPUs (Graphics Processing Unit). A further classification for VNF hard-

ware accelerators can be done by their type, and according to [18] these types can gen-

erally be divided in the following categories:

• in-line accelerators, which process packets in-line with software [7], as they trav-

erse to or from the network, i.e. on the fly [18].

• look aside accelerators, which typically operate on data and commands submit-

ted by software. Based on the command, the accelerator processes the data and

sends a response. [7]

Look aside accelerators are typically associated with compute-intensive algorithmic ac-

celeration, such as crypto or compression [7]. Compute-intensive functions characterize

with the complexity and dynamism being in the calculations, while the processed data is

more static, in relation to network-intensive functions. Network-intensive functions, e.g.

network address translation and load balancing, have high throughput constraints and

the data is dynamic, while the processing code itself can be relatively small. [19] Due to

the data being mediated by a Central Processing Unit (CPU), look-aside acceleration

can introduce higher latencies and more limited throughput by the CPU I/O in comparison

to in-line acceleration [18].

Additional taxonomy for the hardware accelerators can be brought by their housing. The

ETSI group specification for NFV acceleration [7] lists accelerator housings as

• integrated CPU, as in the accelerator (e.g. ASIC, GPU, FPGA) is implemented

as a hardware function in the CPU socket

10

• iNICs (intelligent Network Interface Controller) or smartNICs, which are program-

mable and can be based around CPU or NPU cores (multicore system-on-chip-

based, or an FPGA (FPGA-based). Additionally, the programmable cores on a

SmartNIC can be accompanied by custom hardware blocks as acceleration en-

gines. [4]

• bus attached, or

• network-attached, where the accessing is done over the network.

All of the above housings support both inline and look-aside acceleration, excluding the

network-attached housing model, which is tied to only in-line acceleration in the group

specification.

For the location of the accelerators, as in deployment models, generally two options for

data centres can be identified [20] as in having the accelerators deployed in clusters, in

centralized pools, or each server is coupled with acceleration hardware. Pooling of the

accelerator hardware is a way of retaining uniformity in the core server infrastructure. On

the other hand, from the perspective of the complete data centre, the homogeneity of the

infrastructure is reduced. Whether to deploy the accelerators with each server, or in a

subset of servers with the downside of more complex management and configuration is

essentially a matter of cost-effectiveness. [20]

3.1 FPGA accelerators

An FPGA is a reprogrammable silicon device used to implement hardware circuitry. It

consists of a certain amount of basic circuit elements, which are used and interconnected

according to an architecture definition. Generally, the programmer writes this definition

using an HDL, such as VHDL or Verilog. With automated tools, the hardware design is

translated into a binary file, a bitstream, which, once loaded onto the FPGA, implements

the circuit. As computational data paths are customisable and parallelization can be ex-

ploited, an FPGA can offer considerable performance gain in comparison to software

implementations running on GPPs. [21]

The reconfigurability of an FPGA is a crucial feature in an accelerator, as cloudified en-

vironments come with a large variety of workloads changing in a fast pace. [20] With

FPGAs, as opposed to ASICs, there is no manufacturing process as the functionality can

be changed with a binary file, enabling more rapid design changes. [21] In comparison

to another commonly used [20, 21] accelerator, the GPU, FPGAs are less demanding

on size and power [20]. Besides, even though well-suited for their original purpose of

11

video and image processing offloading, the GPU-provided performance gain in domains

such as signal processing and ciphering is neglectable [22].

A common way of bringing FPGA accelerators to data centres is by tightly-coupling them

with a host CPU in a co-processor manner [23] (figure 3 a)), most commonly on by using

a daughter-card with a point-to-point connector such as PCIe (Peripheral Component

Interconnect Express) [24]. A tighter coupling could be achieved by integrating the CPU

and the FPGA on the same board for latency and memory access benefits [25], but the

approach breaks server compute module homogeneity, power and size limits for a server

board could be exceeded, and a fault on the CPU would lead to the waste of the FPGA

resource [24]. The tightly-coupled option in general can be effective on local compute

acceleration [8], but without network connectivity, the accelerators are more prone to

under- or overutilization by their host CPUs [23].

By making the FPGA network-attached as in figure 3 b), it can be used as a standalone

appliance essentially a peer processor in the network with CPUs [24]. Additionally, for

more efficient hardware and software co-processing, the FPGA can be made both tightly

coupled and network attached [23], as in figure 3 c). For example in [8], FPGA acceler-

ators are network-attached and PCIe-connected to a server, enabling local compute ac-

celeration via PCIe, as well as network acceleration and global acceleration. In network-

acceleration, the FPGA can function as an in-line, bump-in-a-wire accelerator for tasks

such as network encryption and deep-packet-inspection. In global acceleration, the

FPGAs unused by their hosts can function as remote accelerators for large-scale appli-

cations, e.g. machine learning. [8]

Network-attachment also brings varying amounts of required logic on the FPGA, as some

functionalities, such as protocol parsing [26], are essential on all network-attached de-

vices. In for example [24], where the FPGA is a stand-alone network appliance, network-

ing layer is done completely on the FPGA itself, removing the need for an external Net-

work Interface Controller (NIC) and enabling the implementation of a protocols as de-

manded by the network environment. NIC functionalities, however, utilize resources

which could be otherwise used for accelerator functionalities [8].

12

Figure 3. FPGA accelerator attachment options: a) a tightly coupled coprocessor
model, b) a network-attached, network appliance model, c) a tightly coupled

and network-attached model. Adapted from [23].

Compute NodeAcceleration Node

CPU Board

CPU

FPGA Board

Network

FPGA

Acceleration/Compute Node

CPU Board

CPU

FPGA Board

FPGA

PCIe

Network

Coprocessor Node

CPU Board

CPU

FPGA Board

FPGA

PCIe

Network

a) b)

c)

13

4. DATA PLANE PROGRAMMABILITY

A network device, be it a router, switch or a NIC, may have a varying amount of network

functions to fulfil. These functions can range from switching and routing to for example

firewalling, network telemetry, quality of service management and load balancing. [10,

15] Traditionally, the devices often implement these functions utilizing vendor-specific

protocols, algorithms and interfaces, [15] in a way leaving the devices black boxes for

the network operators [27]. Because of this, the operators dependent on the device ven-

dor when it comes to device configuration, maintenance and re-deployment [15, 27].

Additionally, as compatibility between devices in larger networks needs to be ensured,

the requirement of interface and protocol standardization can be seen as an obstacle for

innovation, driving development time up alongside the cost [15].

At the same time as the operators are depending on the vendors, the network device

vendors are facing the burden of implementing and supporting new functionalities on top

of pre-existing ones, as per requests from the operators. New protocols and functions,

such as new encapsulation methods in datacentre networks [28], are following the re-

quirements set by evolving trends in for example 5G, machine learning and cloud com-

puting [10]. With a rigid data plane, as in one implemented with dedicated hardware,

adding these new features requires continuous development and manufacturing of new

and increasingly complex devices. Additionally, an overly extensive supported feature

set on a device might lead into unnecessary hardware resource utilization or perfor-

mance degradation, should a specific deployment of the device not require it in its en-

tirety [10].

Bringing programmability to the network devices to address these issues is not exactly

a novel idea, as research on active networks was started in the 1990’s. Active network

research was based on the idea of bringing the analogy of a programmable computer to

networking, with usage of smart packets to program the network device for wanted func-

tionality. [29] More recently, in the 2000s, the architecture standardization for SDN began

with the Forwarding and Control Element Separation (ForCES) specification [30] by In-

ternet Engineering Task Force and with OpenFlow [15, 16] . Both ForCES and OpenFlow

stated, that the programmability in the network devices requires the decoupling of the

control and forwarding planes, with an open, standardized API in between. For this in-

terface in SDN, OpenFlow has gained the most traction [27].

14

With SDN, the OpenFlow provides a standard API to give the network control plane a

possibility for configuring the data plane [16]. However, OpenFlow and the switches uti-

lizing it are limited by a predefined set of supported protocols, and the programmability

of the forwarding device is limited to flow-rule setting with a predefined set of actions

[28].

4.1 Programmability to the forwarding plane: How?

One fundamental factor to the programmability and flexibility of the data plane is the

choice of hardware platform in the network devices. SDN is targeted to utilize general-

purpose hardware in the network for programmability [31], but at the same time, from the

network parts, the data plane is the most heavily constrained by performance require-

ments [10].

The highest programmability comes with software switches implemented on CPUs, or

GPPs. High abstraction levels in programming languages and design tools provide flex-

ibility and speed in the implementation, at the cost of limited performance due to the

general-purposed nature of the hardware architecture. [31]

Network processing units or Network Flow Processors (NFPs), similarly as GPPs, are

hardware platforms for software switches. Unlike GPPs, these platforms are specifically

designed with network processing in mind, e.g. by using dedicated accelerator units [32]

and an architecture enabling processing parallelization. Utilization of this architecture, on

the other hand, requires more specific programming than with GPPs, at the cost of flex-

ibility. [31]

Moving to the domain of hardware switches, programmable logic devices, such as

FPGAs, offer the highest flexibility [31]. These reconfigurable hardware devices enable

parallel and pipelined processing with wanted functionality. As a downside, the available

logic is limited per-chip, and compared to ASICs, these chips consume more power,

come with a higher per-chip-cost, and are more limited in performance due to the gen-

eral-purpose architecture.

Application-Specific Standardized Products (ASSP) are designed to implement functions

commonly used or targeted for high-volume products. ASSP use cases can be for ex-

ample physical and data link layer products [31] and switching fabric implementations

[33] in network devices. Performance for the targeted function come with the downside

of functionality configuration limitations. [31]

Performance-wise, the Application-Specific Integrated Circuits (ASICs) reside at the top

of the curve. These devices are custom made for a certain purpose, designed for the

15

applications where either the required features are outside the scope of standard prod-

ucts, or the performance requirements are too strict for programmable platforms [31].

Consequence from the custom application-specification, the ASICs have the poorest re-

configurability from the platform choices.

In reality, forwarding element devices are not strictly limited to a one certain platform,

and the optimal trade-off between performance, cost and programmability can be also

reached with hybrid platforms [10, 31]. A hardware switch appliance can for example use

a CPU for functions less demanding on performance, and vice versa, a software switch

could use external hardware components for efficiency. [10]

As seen in survey [10], one classification criteria for data plane programmability methods

is the abstraction model of the data plane exposed to the control plane. These abstrac-

tions provide language constructs for an architectural model and means to configure the

programmable target with. The survey identifies three common abstractions for the data

plane:

• The data flow graph abstraction,

• the match-action pipeline abstraction, and finally,

• the hybrid-switch abstraction.

Data flow graph abstractions are based on division of processing logic into smaller enti-

ties, nodes, which are connected by edges. This abstraction model lets the programmer

choose and connect the processing functions modularly, in the wanted order. An exam-

ple of a data flow graph software switch architecture is Click [34]. Click implements the

processing nodes of a software switch, called elements, as C++ objects, which are inter-

connected with pointers, called connectors.

The match-action pipeline abstraction, as used in for example OpenFlow [16], P4 [28],

Protocol-Oblivious Forwarding [27] and Domino [35], describes the packet processing

logic with lookup tables containing flow rules. The lookup keys, based on the processed

packets’ protocol headers, are matched for values in these flow tables. These values are

stored together with corresponding actions, which determine the following processing

steps, such as additional lookups on another flow tables or dropping of the packet. Thus,

the configuration of the packet processing functionality is done by managing the entries

in the lookup tables.

16

The last of the abstractions presented in the survey is the hybrid-switch abstraction, used

by architectures combining features from both data flow graph and match-action abstrac-

tions [10]. One presented example application falling into this category is the disaggre-

gated Reconfigurable Match-Action Table [36].

4.2 P4 brought into focus

P4, a high-level programming language, receiving its name from its intended use of Pro-

gramming Protocol-independent Packet Processors, is defined to describe the data

plane packet processing logic of a forwarding element [11]. As stated in the original P4

paper [28], it is designed around three main goals:

• Reconfigurability of the packet parsing and processing logic, post-deployment, in

the field.

• Protocol independence through a protocol header stack defined by the control

plane, alongside the parser extracting these headers, and the set of match-action

tables to process them.

• Target independence by a high-level functionality description, leaving the gener-

ation of a target-dependant program for compilers.

P4 is a domain-specific language, and provides the match-action pipeline abstraction of

the data plane of a forwarding element with programs containing the following main ele-

ments [11, 28]:

• Header definitions,

• parsers,

• match-action tables,

• actions,

• control programs.

All of the protocol headers accessed in the program are defined with their set, order, and

bit widths of fields. How these headers can be sequenced, and how the sequences are

identified, is defined in the parser. The parser also defines which of these headers are

extracted from the packets. [11, 28]

Program 1 presents a simple example snippet of a parser state machine definition, based

on the P4 programs used in this work and written according to the P4 specification [11].

Keywords reserved by P4 are bolded. The parser declaration with its interface starts on

17

line 1, where the input is a P4 core library extern object packet_in [11], and the output is

a user-defined struct of headers. Lines 3 to 10 describe the initial state, where, in this

example, the Ethernet header is extracted from the packet and based on the value of the

type-field of the header the next state is chosen. On line 8, the default transition is defined

to be accept, which results into ending the parsing in the initial state for unmatched pack-

ets. Functionality of other states on lines 11 to 17 are abstracted away from the snippet.

The match-action unit abstraction is provided by the tables and the actions tied to these

tables. The tables are defined with lookup keys, which can be header fields or other

values calculated in the P4 program, and actions which are executed based on the

matches in the table. The actions are functions, which may have optional input parame-

ters from the table. Tables and actions are contained inside control programs, which

determine the order of execution of the match-action units. Additionally, the re-assem-

bling of the packet, deparsing, can be defined in a control program. [11]

2

4

6

8

10

12

14

16

18

parser MyParser(packet_in pkt, out hdrs_s hdr) {

 state start {
 pkt.extract(hdr.ethernet);
 transition select(hdr.ethernet.type) {
 0x0800 : parse_ipv4;
 0x8100 : parse_vlan;
 default : accept;
 }
 }
 state parse_ipv4 {
 … // state transition rules
 }
 state parse_vlan {
 … // state transition rules
 }
 …
}

Program 1. Example program of parser declaration in P4.

Program 2 presents an example snippet from a control program including a match-action

unit, again based on the P4 programs used in this work, written according to the specifi-

cation [11]. Line numbers 9 to 16 define the lookup table. Lookup key is set as a source-

field from an Ethernet field, which in turn belongs to a user defined header struct (hdr).

Matching method is chosen as exact match, but P4 core library additionally supports

longest prefix and ternary matching with “don’t care” bits [11]. Actions tied to each table

value are declared on lines 11 to 14. Each value in the table will trigger either of the two

actions, “Forward_pkt” or “Drop_pkt”, with the latter one being also declared as a default

18

action on line 16. The default action is triggered if the lookup results in no match. Maxi-

mum amount of entries in the table is defined on line 15 with the “size” parameter being

set to 1024.

2

4

6

8

10

12

14

16

action Forward_pkt (bit<4> route_id) {
 md.route_ID = route_id;
}

action Drop_pkt () {
 md.route_ID = DROP_ID; //constant
}

table Eth_match {
 key = { hdr.ethernet.src : exact; }
 actions = {
 Forward_pkt;
 Drop_pkt;
 }
 size = 1024;
 default_action = Drop_pkt;
}

Program 2. Example of a match-action unit declaration in P4.

Actions definitions are on lines 1 to 7. The action “Forward_pkt” has been defined with

an input parameter, which is received from the table, set by control plane. This received

parameter is set as the value of a user-defined metadata (md) field “route_ID”. Action

“Drop_pkt” similarly sets the value of the metadata field, in this case to a value

“DROP_ID” depicting a user-defined constant.

4.2.1 P4 targets and compilers

As a domain-specific and target-independent language, P4 is designed to be targetable

for both software switches and hardware platforms such as NICs, FPGAs and ASICs.

[11] To produce an actual target-specific data plane configuration and a control plane

API, an implementation framework, architecture definition and a target-specific P4 com-

piler is required from the target manufacturer [11]. An open-source reference compiler is

available in [37], designed as modular to provide a standard front end compiler to be

combined with a platform-specific back end compiler.

An example of a software switch target for P4 is PISCES [38]. It is based on the Open-

Flow-enabled Open vSwitch (OVS) [39]. OVS has gained wide use in data centres, run-

ning inside a hypervisor and switching traffic among virtual and physical interfaces. PI-

SCES prototype brings protocol-independency to the OVS by three main modifications,

19

possibly required by a P4 program, and a P4-to-OVS compiler. The modifications are

the addition of arbitrary encapsulation and decapsulation with new header adding and

removal primitives, conditional action executions, and checksum optimizations. The PI-

SCES compiler compiles a P4 program into OVS C code, with the parse, match and

action codes replaced according to the P4. This modified OVS can then be compiled with

a C compiler into switch binary. [38]

P4-programmable smartNICs can be found from Netronome. Their Agilio class Smart-

NICs are based around Netronome NPUs. [40] The compilation process uses the open-

source P4 front end compiler together with a Netronome back end compiler for a target-

specific C implementation of the data path. Finally, firmware for the SmartNIC is gener-

ated from these C files and downloaded to the device. [32]

On the FPGA side, several P4 compilers and projects exist [41-44]. SDNet is a design

environment from Xilinx, which, supported with a P4 back end compiler, compiles P4

descriptions into packet processor IPs for Xilinx FPGAs. In addition to the IP, the tool

generates a testbench for simulations.[41]

P4FPGA is an open source compiler and runtime, presented in [42]. Similarly as SDNet,

it is targeted for generating HDL code for FPGAs from P4. P4FPGA uses the P4 front

end compiler for an intermediate representation, which is then compiled with the

P4FPGA compiler into a Bluespec SystemVerilog (BSV) representation. The P4FPGA

BSV-based runtime includes support for external IPs and management units for trans-

ceivers and host communication, enabling FPGA-targets from multiple vendors. Addi-

tionally, the P4FPGA generates a C++ based API for table management and debugging.

[42]

Examples of ASIC targets for P4 programming are the switching ASIC Barefoot Tofino

[45] and RMT [46]. Leveraging the common abstractions in the chip, a P4 compiler tar-

geting the latter is presented in [47].

20

5. METHODOLOGY

This work evaluates the feasibility of data plane programmability in network-attached

FPGA accelerators. More precisely, the evaluation is fixed on evaluating the usability of

P4 language in the design of protocol processing blocks on an accelerator FPGA, in

comparison to implementing such functionality directly in RTL. Surrounding the actual

accelerator Intellectual Property (IP) on the FPGA, these blocks are responsible for net-

working related tasks, such as protocol parsing and header modifications.

For the evaluation, an accelerator shell design was implemented on the FPGA. The top

level in the design hierarchy consists of an accelerator wrapper for the acceleration func-

tions, and the shell design providing connectivity, packet processing, and routing func-

tionalities. Three variants of the shell were implemented, each having a different imple-

mentation of the packet processors, yet providing the same data plane functionality.

These different implementations were

1) a P4 implementation with a software interface for dynamic table updates,

2) a hard coded VHDL implementation without a software interface, and finally, for

more accurate comparison with the VHDL variant,

3) a hard coded P4 implementation without a software interface.

The shell designs with P4 implementations were compared against the shell design with

the VHDL implementation in terms of utilization of FPGA resources, performance, and

degree of automation in the design flow.

The FPGA has a fixed amount of programmable logic and on-chip memory, and therefore

the utilization of resources by the shell dictates the resources available for the main ac-

celeration functionality. To maximize the logic available for the accelerator, the shell de-

sign should be aimed to provide the wanted functionality with the lowest utilization per-

cent possible. The utilization is measured as the use of Lookup Tables (LUTs), Flip-Flops

(FFs), random-access memories (RAMs) implemented with LUTs (LUTRAMs), and on-

chip block RAM memory tiles (BRAMs).

The performance is measured with two parameters, latency and throughput. Latency is

measured as time between the moment the chosen test data is sent out from a traffic

generator and the moment it has been processed by the Device Under Test (DUT) and

is received back at the traffic generator. More specifically, latency is measured as cut-

through latency, meaning the measurement begins when the first bit of data is sent out

21

and ends as the first bit is received back. While latency of a network-attached device is

generally desired to be as minimal as possible, throughput, on the other hand, is most

feasible as maximal. Throughput is the amount of data the DUT can process in a time

unit, measured by bits per second in this work.

While being a less quantitative parameter, the degree of automation in the design flow

still provides a valuable insight to the feasibility of an implementation method. As the

design flows differ between the three implementations, the degree of automation can be

measured by comparing which of the intermediate steps between a design specification

and an implemented design in each variant is automated, and by how much, in terms of

lines of code required.

5.1 Hardware design methodology

The VHDL-implemented packet processors developed in this work were manually writ-

ten, and verified with an in-house developed Universal Verification Methodology (UVM)

[48] testbench. For the P4 implementations, the packet processor design and verification

steps were done with the Xilinx SDNet [41], which is a design environment providing a

back end compiler for P4 designs targeting Xilinx FPGAs. Additionally, the tool provides

a flow for RTL simulations with user-provided stimuli, and therefore no user-made

testbenches were required. For more reference on the tool, newer SDNet documentation

is available by contacting Xilinx.

Packet data leveraged in the verification of all packet processor variants was generated

and captured with a traffic generator, TRex version 2.45, from Cisco [49].

The integration of the packet processor components to the top-level FPGA design, and

the synthesis, implementation, and generation of bitstreams, was done by using the Vi-

vado Design Suite [50].

5.2 Test and measurement setup

The system used in the FPGA design comparisons and measurements (figure 9) con-

sists of three main hardware components: the FPGA, the host CPU, and the traffic gen-

erator.

The FPGA used in this work was a Xilinx VU9P Virtex Ultrascale+, attached to a Xilinx

VCU1525 PCIe development board. More detailed description of the board can be found

in [51]. The FPGA has three interfaces in use: an Ethernet interface for packet data, a

22

JTAG (Joint Test Action Group) interface used for programming and resetting the FPGA,

and a PCIe interface for runtime dynamic configurations from the host CPU.

The test data traffic was generated by an IXIA NOVUS-r100GE8Q28 load module. A

single port from the traffic generator was connected to one of the VCU1525 board trans-

ceivers with the configured link speed of 10 Gbps and the IXIA software used for test

configurations was IxNetwork.

The host CPU has a 64-bit x86 architecture and is running a release 7.4.1708 CentOS

Linux operating system. With the software interfaced P4 design variant, a C language

program code was compiled into an executable user application, which uses a Xilinx

PCIe driver for PCIe access to the FPGA. These PCIe accesses are table initializations

and updates.

A Lab Edition of Vivado Design Suite was used on the host CPU for programming the

FPGA with JTAG connection. The JTAG was converted from an USB connection by the

USB to JTAG converter of the VCU1525 board. Vivado was additionally used for con-

trolling the system reset on the design with a Virtual I/O [52], and monitoring ILA (Inte-

grated Logic Analyzer) debug cores [53] in the testing phase. The ILA cores were re-

moved before the utilization measurements.

Figure 4. Testing and measurement system description.

Two different base traffic items, originally generated with TRex,. were used in the testing:

1) a packet with a maximum supported header stack of outer Ethernet, outer VLAN,

outer IPv4, outer UDP, VXLAN, inner Ethernet, inner VLAN, inner IPv4 and inner

UDP, and

2) a packet with the minimum supported header stack of inner Ethernet, inner IPv4,

and inner UDP.

FPGA

IXIA

Traffic

Generator

HOST CPU

Vivado User App.

E

T

H

JTAG PCIe

PCIeUSB

E

T

H

23

These two different packet types were chosen to expose possible performance differ-

ences between design variants caused by the varied set of headers parsed and encap-

sulation and de-encapsulation processes.

The performance measurement method used was an implementation of the RFC 2544

Throughput/Latency test [54] by IXIA, with frame sizes of 74, 512, 1024 and 1522 bytes

with the minimal header stack, and 136, 512, 1024 and 1522 bytes with the maximal

header stack. IXIA requires a certain amount of payload for measurement-related tag-

ging of the packet, hence the difference in the smallest possible frame sizes with different

header stacks. The latency was measured as average, minimum and maximum cut-

through latency, and maximal throughput was tested by incrementing the transmission

rate from 10% of the maximum line rate of 10Gbps, until a frame loss threshold of 0 was

crossed. Test duration for each transmission rate was 20 seconds.

24

6. SYSTEM DESCRIPTION

This work was done as a part of a larger in-house developed CRUN project. The project

was based around a concept of a cloud architecture with virtual overlay networks on top

of a physical network, consisting of server nodes interconnected by switches. These

server nodes were attached with virtualizable hardware accelerator FPGAs. This chapter

describes the CRUN architecture, the top level of the FPGA design architecture used as

the evaluation framework, and the specific use-case the packet processors in the design

are designed for.

6.1 CRUN framework

This section briefly presents the CRUN in a top-down manner, starting from the network

architecture and then the server architecture, presenting the framework for the FPGA

design, which is the main subject of this thesis. The layered networking scheme of the

framework is presented in figure 4. The two main layers depicted are

• the physical underlay network, consisting of the hardware components building

the cloud infrastructure, and

• the overlay network, a virtual network consisting of virtual machines and acceler-

ators, interconnected in VxLAN segments.

Virtualized network functions are provided by VMs, accelerators and their combinations.

These VMs and accelerators are physically located on hardware server nodes, but virtu-

ally contained and connected in overlaying virtual networks. For example, a VM on a

server node 1 might operate together in the same virtual network with an FPGA acceler-

ator unit on a server node 2, together providing a VNF. Their connection is established

over a virtual tunnel, with the virtual tunnel endpoints residing on the server node 1 hy-

pervisor and the FPGA networking logic on server node 2. In the underlay network, the

server nodes are connected to switches via NIC and FPGA Ethernet transceivers, form-

ing a physical cloud infrastructure connection.

Figure 5 presents the CRUN server architecture, depicting its most relevant components.

The main hardware components are the host GPP, the PCIe-attached NIC, and the op-

tional PCIe attached FPGA accelerator.

25

Figure 5. Network architecture in CRUN.

Figure 6. Server architecture in CRUN.

The host GPP is running a hypervisor and management and orchestration client appli-

cation on top of a host Operating System (OS). The hypervisor creates and manages

VMs and utilizes SR-IOV (Single Root Input/Output Virtualization) to provide the VMs

virtual functions to access the PCIe physical functions. The hypervisor is in turn managed

by the MANO client application.

The MANO client is managing the host OS, the hypervisor and the FPGA, and is a part

of a larger centralized management application. A more detailed description of the man-

agement and orchestration software used in CRUN is given in [55].

The FPGA, attached to the host GPP via PCIe, is an optional hardware accelerator com-

ponent. Its main data plane interface is the Ethernet network interface, but CRUN defines

Virtual overlay networks,

 VxLAN segments

Physical

underlay

network

Server node 1 Server node 2 Server node n

VMVM VM
FPGA

acc.
VM

FPGA

acc.
VM

Switch Switch SwitchSwitch

HOST SERVER GPP

VM0 VMn

NIC FPGA

MANO

CLIENT
HYPERVISOR

FPGA DMA

PF DRIVER
NIC PF

DRIVER FPGA CTRL

PF DRIVER

PCIe

Eth Eth

NIC VF0

DRIVER

FPGA DMA

VF0 DRIVER

NIC VFn

DRIVER

FPGA DMA

VFn DRIVER

PCIe

26

an additional possibility of Direct Memory Access (DMA) to and from VMs on the host

server via PCIe. The main purpose of the PCIe connection, and the only purpose, in the

scope of this work, is to provide a control plane interface for flow control of the networking

logic on the FPGA. The FPGA itself is functioning as a network-attached hardware ac-

celerator.

The CRUN project also set performance requirements for the FPGA accelerators:

• The FPGA networking logic cannot limit the throughput of the accelerator and it

must operate at line rate.

• The FPGA networking logic latency must be in the scale of microseconds, with

the maximum of 8µs.

The maximum latency for the networking logic originates from a neural network inference

acceleration trial done with CRUN, presented in [56]. A goal in the trial was to achieve

an ultra-low latency of 20µs to 40µs in the software level. In the trial, this set the require-

ment for the latency on the FPGA hardware between 10µs and 30µs. The largest latency

on the FPGA came with the baseline implementation of the neural network, itself causing

a latency of roughly 22µs. This left the networking logic with 8µs to meet the maximum

limit of 30µs hardware latency.

6.2 Top level FPGA design

The top level of the FPGA design used in this work is depicted in the figure 6. The im-

plementation, excluding the accelerator, is designed to operate at line rate and with min-

imal latency. Throughout this thesis, the design excluding the accelerator is generally

referred to as the shell design. In figure 6, the blocks independent of the shell design

variant are coloured as orange. The software interface (SW IF) section, consisting of the

PCIe DMA IP and the AXI4-Lite interconnection (AXI4-Lite XBAR) and its related AXI4-

Lite interfaces are present only in the full P4 implementation with the software interface,

whereas the packet processor blocks (PKT PROC. INGRESS and PKT PROC.

EGRESS) coloured with blue are present in each variant, but with different

implementations.

The data plane interface in and out of the FPGA is implemented with a Xilinx Ethernet

Subsystem (Eth-SS) IP [57] for receive (RX) and transmit (TX) operations. On the RX

side, the IP converts the incoming physical layer (PHY) traffic into AXI4-Stream (AXI4-

S) protocol. The IP is configured for the speed of 10 Gigabits per second, with the clock

frequency of 161MHz, and a data bus width of 64 bits. This bus width is used in the AXI4-

27

S interfaces throughout the design, and the majority of the design operates in the same

clock domain, with only the SW IF segment functioning within a clock domain dictated

by the PCIe DMA IP.

The ingress packet processor parses the incoming packets’ headers and does possible

lookup operations and header modifications before forwarding the data to the packet

router (PKT RTR) as AXI4-Stream traffic, alongside a metadata bus carrying possible

packet-specific information for following blocks, as well as a route identifier (ID).

Figure 7. Top level accelerator shell design implementation on the FPGA.

The packet router connects the AXI4-Stream interface to either the router buffer (RTR

BUF) or drops the packet, based on the received route ID. The RTR BUF component is

a BRAM FIFO (First In, First Out) buffer generated with the Vivado FIFO Generator IP

[58], and is purposed for migitating backpressure from the accelerator, ensuring that only

complete packets are forwarded.

The accelerator wrapper, in this work, does not contain any acceleration logic, and its

entity consists of direct connections from its inputs to outputs, as the evaluation is

focused on the shell design.

The egress packet processor does use-case dependent protocol parsing and header

modifications, and forwards the packet to the output packet router. This packet router

and the buffer component connected to it are instances of the same IPs as the packet

router and the FIFO buffer described earlier.

Finally, following the buffer, the outoing packet is converted from AXI4-Stream into PHY

by ETH-SS IP TX, and sent out from the FPGA.

For the control plane, the FPGA is connected to software via PCIe, with the Xilinx DMA

(XDMA) IP [59] converting the PCIe procotol into AXI4-Lite protocol. The AXI4-Lite

interfaces are operating in a clock domain of 125MHz. The XDMA AXI4-Lite interface is

FPGA

SW IF

Eth-SS

IP

RX

AXI4-

Stream
PKT PROC.

INGRESS

ACC.

WRAPPER

PKT

RTR

PCIe DMA IP

Eth-SS

IP

TX

PKT PROC.

EGRESS

PKT

RTR

DROP DROP

AXI4-

Stream

AXI4-

Stream
AXI4-

Stream

AXI4-

Stream
AXI4-

Stream

AXI4-Lite XBAR

A
X

I4
-

L
it
e

A
X

I4
-

L
it
e

A
X

I4
-

L
ite

RTR

BUF

AXI4-

Stream
TX

BUF

AXI4-

Stream

28

connected to the ingress and egress packet processors with an AXI4-interconnect IP

[60], which maps certain address segments into separate AXI4-Lite interfaces. This

design segment is only present in the P4 implementation with the software interface, and

is used there for dynamic table updates for the lookup engines in the packet processors.

6.3 Use case description

The chosen application for the packet processors is VTEP termination, meaning VxLAN

decapsulation in the ingress, and VxLAN encapsulation in egress. In addition to this, the

packet processors are inspecting and modifying the protocol headers underlaying the

VxLAN encapsulation. This depicts the accelerator to function in VM, or VNF context,

while the broader system is operating in cloud infrastructure context. More about VxLAN

can be found in [61].

Figure 8. Protocol stack supported by the packet processors. Fixed header lengths

in bytes (B).

The set of networking protocol headers supported and processed by the packet proces-

sors are visible in the figure 7. For the data (payload in figure 7) to reach the accelerator

in the design, it must be included in a User Datagram Protocol (UDP) packet. This UDP

packet must in turn be encapsulated in an Internet Protocol version 4 (IPv4) packet and

contained inside an Ethernet frame with an optional VLAN tag. In figure 7, the headers

of these protocols are shown as the inner headers. In case of VxLAN encapsulation

being present in the input packet, these inner headers are further encapsulated by a

VxLAN header, an outer UDP header, an outer IPv4 header and an outer Ethernet

header with an optional VLAN tag. In the following sections, the operations of the packet

processors are divided into two contexts: The Cloud Infrastructure (Cloud-infra) context,

which includes the operations related to the VxLAN encapsulation headers, and the VNF

(or VM) context, which includes the operations related to the inner headers.

The processing flow of the packet processors is described in the figure 8, where the

figure 8 a) describes the ingress operations, and 8 b) the operations in the egress packet

processor.

The ingress side operation begins with protocol parsing, starting from the outer headers.

Once the parsing reaches the UDP header, the destination port field is checked. If the

4 B

Outer

VLAN

20 B

Outer

IPv4

8 B

Outer

UDP

8 B

VxLAN

14 B

Inner

Ethernet

4 B

Inner

VLAN

20 B

Inner

IPv4

8 B

Inner

UDP

14 B

Outer

Ethernet

N B
Payload

VxLAN encapsulation headers:

 Cloud-infra context
Inner headers:

VNF/VM context

29

field holds the value 4789, the parsing continues to VxLAN and inner headers. If the

VxLAN and inner headers are parsed successfully, the processing starts in the cloud

infrastructure context. If the outer UDP destination port value differs from 4789, the pars-

ing ends and the processing starts directly in the VNF context.

In cloud infrastructure context, the VxLAN header field Virtual Network Identifier (VNI) is

matched for VNI values in the on-chip memory. If a match is found, the processing moves

to VNF context, and if not, the packet is dropped.

In VNF context, a five-tuple lookup operation determines whether the packet is forwarded

or dropped. This five-tuple value consists of the values of the following header fields in

the innermost headers: IPv4 protocol, IPv4 source and destination addresses, and UDP

source and destination ports. If the lookup operation returns a match, and the five-tuple

value is found in the on-chip memory, the packet is forwarded. If the packet reached the

VNF context through the cloud infrastructure context, the VxLAN encapsulation headers

are removed, and a metadata signal is sent out with the packet, indicating that the origi-

nal packet is to be VxLAN encapsulated in the egress.

The egress processing, similarly to ingress processing, begins with protocol parsing. If

the parsing of the inner headers is successful, the processing checks the metadata for

information if the original packet in ingress had VxLAN encapsulation. If the inner head-

ers are not parsed successfully, the packet is dropped.

If the metadata indicates that VxLAN encapsulation was indeed present in the original

packet received in ingress, a lookup operation is initiated with the source address of the

Ethernet header. These source addresses are saved as keys in the on-chip memory as

key-value pairs where the return value is a set of outer headers (Ethernet, VLAN, IPv4,

UDP and VxLAN). If the lookup results in a match, these returned headers are used to

re-encapsulate the packet. If the on-chip memory is missing a configuration for a partic-

ular Ethernet source address, and a match is not found, the packet is dropped.

Finally, if the packet has not been set to be dropped, the innermost headers are modified

with a swap operation. This operation swaps the Ethernet source and destination ad-

dresses, IPv4 source and destination addresses, and the UDP source and destination

ports.

30

Figure 9. Packet processing flow diagram for a) ingress and b) egress packet pro-
cessors.

Parse

Eth:IPv4:UDP:VxLAN

:Eth:IPv4:UDP

Cloud Infra

Context:

Lookup on

VxLAN ID

VNF Context:

Lookup on inner 5-tuple

(IP src & IP dst & IP

proto & UDP sport &

UDP dport)

DROP_PKT:

Steer to drop with

metadata

DECAPSULATE:

Remove outer

headers, if present,

and steer with

metadata to

accelerator

Parse

Eth:IPv4:UDP

Lookup on inner

Eth.src

DROP_PKT:

Steer to drop with

metadata

ENCAPSULATE:

Add fetched

outer headers

Eth & IPv4 & UDP valid

No VxLAN

VxLAN valid

VxLAN

 matched

5-tuple

 matched

No match

No match

Match found for

 Eth. outer &

 IPv4 outer &

 UDP outer &

 VxLAN

Outer headers not

found from memory

Eth & IPv4 & UDP

invalidCheck if

VxLAN

present

VxLAN enabled

Swap src & dst, sport

& dport of inner

headers, steer with

metadata to ETH TX

Eth & IPv4 & UDP valid

Check if VxLAN

enabled from

metadata

VxLAN disabled

a) b)

31

7. IMPLEMENTATION

This chapter describes the hardware design steps from specification to testing which

were gone through in this work and presents the design architectures which were created

to implement the functionality based on the use case description in chapter 8.2. Figure

10 pictures the design steps on a generic level to apply to all three design variants.

Figure 10. Generic flow graph of the design process for all packet processor

variants.

The specification step roughly translates into the process of specifying the use case,

describing the main functionality, parse trees and IP interfaces. The following steps, pro-

duction of RTL and verification, are executed with different methods, depending on

whether the design is implemented with P4 or VHDL. These steps are described in the

subchapters 9.1, 9.2 and 9.3 for VHDL, P4 with the software interface, and hard-coded

P4 implementations respectively. A common sub-step for all design variants in verifica-

tion was packet stimulus generation. All three implementations were using packet cap-

ture (pcap) files as test stimulus.

The integration step execution is similar between all design variants. The packet proces-

sors were integrated to the surrounding shell architecture by connecting interfaces in a

VHDL top level entity.

As the design includes multiple Xilinx IPs, and the target platform was a Xilinx FPGA,

the synthesis, implementation and bitstream generation were done using Vivado Design

suite [50] from Xilinx. In the Vivado tool flow, the implementation step essentially means

mapping the synthesized design into actual hardware resources available on the FPGA,

and then placing and routing the design. Vivado was also used to insert ILA debug cores

Specification Hardware design
Verification

Integration
Synthesis

Implementation

Bitstream

Testing

32

into the design. These debug cores could then be connected to probe certain signals,

and thereby further verify correct functionality on the top level of the design in the testing

phase.

In the testing phase, the target FPGA was programmed with the generated bitstream.

With the software interfaced P4 design variant, a C code was prepared and compiled

into an executable for hardware register access for table population. The design was

then tested with the IXIA traffic generator by transmitting varying types of packets to the

FPGA. The rebound packets were then inspected to verify the wanted functionality. Error

cases were investigated with the hardware debuggers and resolved on the RTL. The

hardware debuggers were removed after the design was deemed functional for more

exact utilization reports.

7.1 VHDL implementation

In the VHDL implementation, the production of the RTL description was manual. This

made the hardware design process lengthier, but at the same time more accurate in

comparison to a higher-level P4 language implementation. As the RTL description was

written, it was frequently simulated with a UVM testbench. The test stimulus was gener-

ated from pcap files, and the DUT output was checked against another pcap file present-

ing the wanted output. Three different premade pcap files were used:

• one representing the input data for ingress packet processing received from ETH

RX,

• one representing the data at the output of the ingress packet processor, and

• one representing the output data at the output of the egress packet processor.

This enabled automated verification of the DUT output against the reference pcap files

in three different stages of the design:

1) complete functionality of the ingress packet processor implemented,

2) complete functionality of the egress packet processor implemented,

3) complete functionality of both packet processors implemented.

The intermediate stages of the design were simulated and verified only visually from

simulation waveforms.

Figure 11 describes the implemented ingress packet processing architecture. The design

functions in line rate and handles back-pressure by back-propagating it. The parser is

designed to function in a pass-through manner, i.e. it is inspecting and extracting header

33

fields while passing through the input packet stream without registering the data stream.

It handles the defined parse-tree with Finite State Machine (FSM) structure, with devia-

tions from the expected protocols causing a parsing error signal passed in the metadata

along the packet stream. A successful parse results in a tuple valid pulse, which is

passed along the extracted header fields and a VxLAN-valid signal to the lookup emula-

tor.

Figure 11. Design architecture of the VHDL-implemented ingress packet pro-

cessor.

The pipeline valve functions as an intermediate buffer to prevent the packet stream en-

tering further until either a successful parse or a parse error. The valve opens only after

receiving a tuple valid or a parse error signal, staying open until the last beat of the

packet, during which the metadata buffer is read for the parsing status of the next packet.

The packet pipeline functions as a delay to buffer the stream until a lookup result is read.

It has a similar valve structure to prevent the packet stream, as in the pipeline valve. In

the case of a parse error, the packet is streamed through directly, with metadata indicat-

ing the latter block to stream through and route the packet for dropping. If the parse error

signal is zero, the valve opens only after receiving a lookup result. The lookup result is

passed on as metadata, alongside the stream to the two final pipeline stages.

The stream shifter is polling for valid beats from the two final pipeline stages on the

packet pipeline. In the case of the metadata indicating a drop, resulting from a parse

error or a no-hit lookup, the packet is streamed through with metadata guiding it to drop.

If, instead, the lookup resulted in a hit, the packet is streamed through with the valid as

zero, until the count of bytes indicated by the metadata has passed. After the discarded

beats, the valid signal is set to follow the input, and the stream is aligned correctly by left

shift. The shift amount is read from the input metadata. Alongside the output stream, the

stream shifter outputs a metadata consisting of route ID, VxLAN enabled, and outer

Ingress
Top

Pipeline

 valve

Packet pipeline

Stream

shifter

Lookup emulator

STRM

BUF

MD

BUF

LOOKUP
RES BUF

PIPELINE

BUF

Packet

Input

Packet

Output

Parser

Extracted

header

fields

Lookup
Result

MetadataMetadataMetadata

Metadata

34

VLAN enabled. This metadata enables the egress packet processor to encapsulate the

packet correctly.

Figure 12 describes the egress packet processing architecture, which is similarly oper-

ating in line rate and backpropagating backpressure. The egress side parser has the

same operation principle as the ingress side, although the parse tree consists of only

inner headers. It passes a tuple valid pulse to the lookup emulator along with the ethernet

source address if the inner header stack is parsed successfully. Otherwise, a parse error

signal is passed to the pipeline valve. Alongside the packet AXI4-stream, a metadata

bus carries the information of whether VxLAN encapsulation is enabled for the packet,

and if the outer headers carried a VLAN tag in the original packet received in ingress.

The lookup emulator has Ethernet source addresses and corresponding outer headers

saved as constants. Once a valid, extracted Ethernet source address is received from

the parser, it conducts a lookup operation. If a match occurs, the outer headers are

streamed to the lookup result buffer in the Stream assembler. If not, the negative result

is passed in a single transfer.

Figure 12. Design architecture of the VHDL-implemented egress packet pro-
cessor.

The pipeline valve and packet pipeline components in egress are similar with those in

ingress, with the slight differences in metadata handling. In packet pipeline, the lookup

results are polled from the lookup result buffer, if the packet is enabled for VxLAN en-

capsulation. If the packet is not due to encapsulation or a parse error has occurred, it is

directly passed through to stream assembler. The stream assembler polls for valid

metadata from the packet pipeline. The metadata indicates if the incoming packet is

1) directed to drop because of a parse error or a failed lookup,

2) streamed through without encapsulation,

Egress

 top

Pipeline

 valve

Packet

 pipeline

Stream

Assembler

Lookup emulator

STRM

BUF

MD

BUF

PIPELINE

BUF

Packet

Input

Packet

Output

Parser

Extracted

header

fields

Lookup Result /

Encapsulation

header stream

MetadataMetadataMetadata

Metadata
LOOKUP

RES BUF

Metadata

35

3) VxLAN encapsulated and forwarded with the outer headers from the lookup result

buffer.

In the case of 1), the packet is streamed through without modifications with the metadata

field route ID set to 0, resulting it to be routed into drop. In case of 2), the packet is

streamed through while the Ethernet and IP addresses and the UDP port fields are

swapped. In the case 3), the outer headers are first streamed from lookup result buffer

and the rest of the packet stream starting from the inner headers is concatenated into

this encapsulation header stream. The same swap operations as in case 2) are also

executed.

In general, the VHDL implementation was not done with resource optimization in mind,

and the goal was to attain the wanted functionality with as low as possible latency, re-

gardless of the levels of logic between registers, as long as the timing constraints were

met.

7.2 Software interfaced P4 implementation

In the P4 Software Interfaced design variant, the RTL is generated as IPs from P4 lan-

guage description with a third-party tool. The written P4 code for ingress and egress

matches closely to the use case description described previously in chapter 8.2. Both P4

descriptions consist of 3 logical entities: the parser, the match-action pipeline, and the

deparser, which is the final control block emitting the packet with wanted protocol head-

ers. Both P4 descriptions have the same headers struct defined, consisting of the outer

and inner headers.

The ingress parser definition has a parse tree which starts at the outer Ethernet. If a

VXLAN header is encountered, an indicator from this is passed in a metadata field to the

match-action pipeline. The lookup-table and action declarations of the ingress match-

action pipeline are presented in program 3. As an initial process, the match-action pipe-

line control section code checks the validity of the VxLAN header. If it is valid, a VNI

matcher table is applied. As seen in program 3 lines 26 to 31, the matching method of

the table is exact match, and the key is the VNI-field of VxLAN. Size is defined as two.

The table is defined to have to two actions: a default action “dropPacket” (lines 10-12),

which sets the metadata route ID field as 0, and the action “move_to_VNF_cntxt” (lines

1-3), which sets an internal variable of “vnf_cntxt_enable” as ‘1’. Both actions are defined

without input parameters.

If the VxLAN header was not valid, or the “vnf_cntxt_en” is ‘1’ after VNI matcher table

was applied, the table “five_tuple_matcher” (lines 14-24) is applied. The table uses five-

36

tuple as the key, with exact match as the matching method. Size of the table is two.

Actions tied to the table are “TerminateVT” (lines 5-8), which sets the metadata route ID-

field as 1 and the variable “terminate_enabled” to ‘1’, and the previously explained action

“dropPacket”.

Finally, should the “terminate_enabled” be ‘1’ and VxLAN header valid, the outer headers

are set as invalid and thereby removed from the packet in the deparser. However, if the

VxLAN is invalid, but terminate_enabled was ‘1’, the packet is not modified but still for-

warded. In any other case the route ID-field value ‘0’ results in the packet to be dropped

by the external router IP (PKT RTR in figure 6).

In egress P4 description, the parser starts directly from inner Ethernet and parses

through the inner header stack. The match-action section processing begins with an if-

clause conditioning the validity of the complete inner header stack. Should they prove

valid, a nested if-clause checks the value of the metadata field “VXLAN_ena”. If it is “1”,

the tables “addEth”, “addIPUDP”, and “addVxlan” are applied. These tables and related

action declarations are presented in program 2.

All three tables (lines 17-36) have the same lookup key, which is the Ethernet source

address, and each table has the exact match lookup method. All the tables have one

common action, the dropPacket (lines 13-15), which has no input parameter and writes

the metadata route ID-field as zero, resulting in the packet to be directed for drop. Addi-

tionally, each table has a unique action: action “PushEth” (lines 1-3) for table “addEth”,

“PushIPUDP” (lines 5-7) for “addIPUDP”, and “PushVxlan” (lines 9-11) for “addVXLAN”.

Action PushEth has an input parameter of a 144-bit vector consisting of Ethernet and

optional VLAN headers, PushIPUDP a 224-bit vector consisting of IPv4 and UDP head-

ers, and PushVxlan a 64-bit vector consisting of the VXLAN header. If these actions are

hit and the input parameters were found in memory, the outer headers are set as valid

and their values set from the input parameters of the actions. These action functionalities

are omitted for brevity.

Finally, if no “dropPacket” actions were hit, or VxLAN encapsulation was not set in the

metadata, the route ID-value is set as “1”, resulting in the packet being forwarded for

Ethernet TX. Due to tooling issues at design time, the software interfaced P4 implemen-

tation does not include the inner header swap operations.

37

Program 3. P4 declarations for ingress match-action tables and actions for the soft-
ware interfaced P4 implementation.

Figure 13 describes the SDNet-generated packet processor IP with its main interfaces.

The parser, match-action pipeline, deparser, and the interior interfaces represent the P4

description, and are not actual internal hardware components in the SDNet IP. The

packet processing IPs in this work are interfaced in data plane by a 64-bit AXI4-Stream

packet data interfaces and supporting metadata interface, providing once-per-packet 6-

bit sideband data accompanied with a valid signal. The control plane interface is an AXI4-

Lite interface, used for managing the contents of the lookup tables in the memory search

IP cores of the design.

The user application for table management is using and compiled together with an API,

and the compiled executable is using a PCIe driver for access from the host CPU to the

FPGA. It is essentially responsible for populating the tables with key-value pairs.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

action move_to_VNF_cntxt() {
 vnf_cntxt_en = 1;
}

action TerminateVT() {
 metadata.ROUTE_ID = 0x1;
 terminate_enabled = 1;
}

action dropPacket() {
 metadata.ROUTE_ID = 0x0;
}

table five_tuple_matcher {
 key = { dst : exact;
 src : exact;
 proto : exact;
 dport : exact;
 sport : exact;

}
actions = { TerminateVT; dropPacket; }
size = 2;
default_action = dropPacket;

}

table vni_matcher {
 key = { hdr.vxlan.vni : exact;
 }

actions = { move_to_VNF_cntxt; dropPacket; }
size = 2;
default_action = dropPacket;

}

38

Program 4. P4 declarations for egress match-action tables and actions for the soft-
ware interfaced P4 implementation.

2

4

6

8

10

 12

14

16

18

20

22

24

26

28

30

32

34

36

action PushEth(bit<144> hdrs_1) {
 … //Ethernet+VLAN set valid and added
}

action PushIPUDP(bit<224> hdrs_2) {
 … //IP+UDP set valid and added
}

action PushVxlan(bit<64> hdrs_3) {
 … //VXLAN set valid and added
}

action dropPacket() {
 md.ROUTE_ID = 0x0;
}

table addEth {
 key = { eth_tmp : exact; }
 actions = { PushEth; dropPacket; }
 size = 4;
 default_action = dropPacket;
}

table addIPUDP {
 key = { eth_tmp : exact; }
 actions = { PushIPUDP; dropPacket; }
 size = 4;
 default_action = dropPacket;
}

table addVxlan {
 key = { eth_tmp : exact; }
 actions = { PushVxlan; dropPacket; }
 size = 4;
 default_action = dropPacket;
}

39

Figure 13. P4-defined packet processor IP.

7.3 Hard-coded P4 implementation

The hard-coded P4 implementation of the packet processors has the same implementa-

tion flow as the software interfaced P4 implementation. There are, however, three main

differences:

1) The P4 code does not include any table structures, as the match-action structures

are made with conditional statements. Therefore,

2) there are no software interfaces in the packet processors and the top level of the

shell design is coherent with the VHDL implementation.

3) Without a software interface, no control plane application for table management

is used.

The conditional statements replacing the match-actions are presented in programs 5 and

6, for ingress and egress, respectively. In program 5, the matching of the VNI field is

done by comparison to constants “const_vni_1” and “const_vni_2” (lines 1-6), which hold

pre-defined VNI values. Match or no match results in same functionality as in software

interfaced ingress program. The five-tuple value matching is done (line 8-15) by compar-

ing the input five-tuple value to pre-defined constants “const_fivetpl_1” and

“const_fivetpl_2”.

Hard-coded P4 egress match-action declaration is shown in program 6. The Ethernet

source field of the input packet is compared against 4 pre-defined constants, resulting in

either header additions with a match, or packet being guided to drop with route ID-field

as “0”.

With these code structures the design is to match more closely to the VHDL implemen-

tation, as the software interface and possible related hardware is made unnecessary.

P4 PP

Parser
Match-Action

 Pipeline Deparser

Metadata

Headers

Metadata

Headers

Metadata

Headers

Metadata

Packet AXI4-S

AXI4-Lite (Table Mgmt.)

Metadata

Packet AXI4-S

Control Program Control Program

40

Data plane functionality is the same as in the software interfaced variant, as is the sim-

ulation process.

2

4

6

8

10

12

14

if ((hdr.vxlan.vni == const_vni_1) || (hdr.vxlan.vni == const_vni_2)) {
 vnf_cntxt_en = 1;
}
else {
 vnf_cntxt_en = 0;
}
…
if ((fivetpl == const_fivetpl_1) || (fivetpl = const_fivetpl_2)) {
 metadata.ROUTE_ID = 0x1;
 terminate_enabled = 1;
}
else {
 metadata.ROUTE_ID = 0x0;
 terminate_enabled = 0;
}

Program 5. The Conditional statements of the hard-coded P4 ingress implementation,
which replace the software interfaced match-action table structures.

2

4

6

8

10

12

14

16

//if VXLAN encapsulation is enabled
if (hdr.eth.src = const_eth_src_1) {
 … //Outer headers set valid and added from constants #1
}
else if (hdr.eth.src = const_eth_src_2) {
 … //Outer headers set valid and added from constants #2
}
else if (hdr.eth.src = const_eth_src_3) {
 … //Outer headers set valid and added from constants #3
}
else if (hdr.eth.src = const_eth_src_4) {
 … //Outer headers set valid and added from constants #4
}
else {
 md.ROUTE_ID = 0x0;
}

Program 6. Conditional statements of the hard-coded P4 egress implementation, re-
placing the software interfaced match-action table structures.

41

8. RESULTS AND ANALYSIS

This chapter presents the FPGA resource utilizations, latency, and throughputs of the

three design variants.

8.1 Utilization

The numerical amounts of FPGA resources available in total on the VU9P FPGA are

presented in table 1. The LUTRAMs are a subset of the LUTs.

RESOURCE AVAILABLE TOTAL (CT.)

LUT 1182240

LUTRAM 591840

FF 2364480

BRAM 2160

Table 2 describes the count of resources used in the VHDL (PP Ing. VHDL), hard-coded

P4 (PP Ing. P4 HC), and software interfaced P4 (PP Ing. P4 SW IF) implementations of

the ingress packet processor. For comparison clarity, these numerical values are also

visualized as percentages of total available resources from table 1 in the figure 14. While

inspecting the utilization percentage figures, one should bear in mind the actual percent-

ages are platform-dependant, and therefore the key point of the figures is the relations

of these percentages between implementations.

As seen from the figure 14, the resource utilization in the software interfaced P4 imple-

mentation is significantly higher the amount used in two other design variants. The gen-

erated RTL is third party IP, and one can only make hypothetical assumptions on the

cause for this difference. Logical entities in the software interfaced variant, which are

missing in the other design variants, are the software interfaced lookup tables. They may

have surrounding logic in forms of e.g. protocol converters, buffers and arbiters.

Table 1. Amount of resources available on the VU9P FPGA.

DESIGN RESOURCE UTILIZATION (CT.)

VARIANT LUT LUTRAM FF BRAM

PP ING. VHDL 1110 96 930 0

PP ING. P4 HC 1239 393 2697 0

PP ING. P4 SW IF 9656 2284 18403 12

Table 2. Amount of resources utilized by each ingress packet processor variant.

42

Figure 14. FPGA resource utilization percentages in ingress packet proces-

sors.

Comparing the VHDL and hard-coded P4 implementations of the ingress packet proces-

sors, one can see that the VHDL implementation has the lower utilization percentage in

all the selected FPGA resource types, excluding the BRAMs, which are at even 0 in both

variants. This result could be expected, as the VHDL implementation is written directly

to fulfil its purpose, without any overhead in performance or functionality. Particularly

visible is the difference in FF usage: the hard-coded P4 implementation is using 190%

more flip-flops than the VHDL implementation. This is in-line with the design principle of

the VHDL design, as it was created to have as-low-as-possible latency, with minimal

register stages. On the other hand, the VHDL variant is actually using more combinatory

logic than the hard-coded P4 variant: as seen in table 2, the hard-coded P4 ingress pro-

cessor is utilizing 1239 LUTs, of which 393 are used as LUTRAMs, leaving 846 LUTs

used as combinatory logic. For the VHDL variant, these numbers are 1110 LUTs, of

which 96 are used as LUTRAMs, leaving 1014 LUTs used as combinatory logic.

Finally, the hard-coded P4 ingress variant is using almost fourfold the LUTRAMs com-

paring to the VHDL variant. In the VHDL variant, the memories are used in pipeline FIFOs

to stall the stream while the lookup is finished and their capacity is minimized. The use-

case of the P4 design variant for the LUTRAMs is unknown.

Table 3 presents the numerical counts of resources utilized by the VHDL (PP Eg. VHDL),

hard-coded P4 (PP Eg. P4 HC), and software interfaced P4 (PP Eg. P4 SW IF) imple-

mentations of the egress packet processor. Utilizations as percentages of total available

resources are depicted in figure 15. The software interfaced P4 variant of the egress

processor is by far the most resource expensive of the variants, which is again expected

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LUT LUTRAM FF BRAM

U
ti
liz

a
ti
o
n

 (
%

)

FPGA resource type

PP Ing. VHDL PP Ing. P4 HC PP Ing. P4 SW IF

43

as the design includes software interfaced lookup tables. The VHDL variant of the egress

packet processor has the lowest utilization ratio across all resource types.

DESIGN RESOURCE UTILIZATION (CT.)

VARIANT LUT LUTRAM FF BRAM

PP EG. VHDL 2415 104 2054 0

PP EG. P4 HC 3730 1875 7818 0

PP EG. P4 SW IF 21148 5999 43236 44

Figure 15. FPGA resource utilization percentages in egress packet processors.

On the egress side, the most drastic percentual resource utilization difference occurs

with the LUTRAMs: the hard-coded P4 egress processor is using 1875 LUTRAMs, which

is roughly 18x the 104 LUTRAMs used by the VHDL variant. These counts leave 1855

and 2311 LUTs used as combinatory logic for hard-coded P4 and VHDL variants, re-

spectively. For FFs, the difference between hard-coded P4 and VHDL egress processors

is 5764 units, making the FF utilization of the hard-coded P4 design 3.8x the utilization

of the VHDL variant.

Table 4 presents the percentual increase in resource utilization from ingress to egress in

the VHDL, the hard-coded P4 (P4 HC) and the software interfaced P4 (P4 SW IF) packet

processor implementations. One should remember that the logical functionality in ingress

is essentially comparing header values to lookup keys, and possibly remove headers

and route the packet with metadata. In egress however, the lookup leads into header

addition operation and modification, apart from the software interfaced P4 variant where

the header swap operations do not occur. From table 4 one can notice, that the egress

Table 3. Amount of resources utilized by each egress packet processor variant.

0

0.5

1

1.5

2

2.5

LUT LUTRAM FF BRAM

U
ti
liz

a
ti
o
n

 (
%

)

FPGA resource type

PP Eg. VHDL PP Eg. P4 HC PP Eg. P4 SW IF

44

side functionality is more demanding on the hardware resources across all three design

variants.

DESIGN

VARIANT

INCREASE OF UTILIZATION FROM IN-

GRESS TO EGRESS (%)

 LUT LUTRAM FF BRAM

VHDL 117,6 8,3 120,9 0

P4 HC 201,0 377,1 189,9 0

P4 SW IF 119,0 162,7 134,9 266,7

For P4 SW IF, the usage of on-chip BRAM experienced the most drastic increase. An

increase is expected, as the stored lookup values are increased from just five-tuple val-

ues and VNIs into Ethernet source addresses and full VxLAN encapsulation headers,

therefore requiring more memory space. In the VHDL variant, the increase is not directly

visible in memory resources, i.e. LUTRAMs or BRAMs, but the P4 HC variant egress

packet processor shows a rather significant growth of 377% in LUTRAM usage compar-

ing to the ingress packet processor. The storage of the VHDL variant is implemented

with constants mapping to FFs and LUTs, but most of the increase in these resources

happens in the egress assembler. The assembler holds a shift register buffer for the

outer header stack stream to be concatenated into the packet stream, plus logic to swap

the inner header addresses and ports.

Altogether, the VHDL variant can be deemed as the most resource optimized with the

least overhead in both the ingress header removal, and the egress header addition and

modification. Naturally, the comparison of utilizations between the P4 SW IF and other

variants might not be the most meaningful, as the P4 SW IF variant holds logic not pre-

sent in others. In terms of utilization scaling with different functionalities, on the other

hand, the VHDL variant is the best across all variants.

8.2 Performance

Tables 5 and 6 present the maximal throughputs of shell designs with VHDL (Shell

VHDL), hard-coded P4 (Shell P4 HC), and software interfaced P4 (Shell P4 SW IF) im-

plementations of packet processors. Table 5 measurements are done with packets hav-

ing only inner headers, whereas table 6 measurements are done with VxLAN encapsu-

lated packets, including also the outer headers. Looking at the throughputs, one can

notice that the values are the same per frame size across all design variants. It can be

Table 4. Percentual increases in resource utilization from ingress to egress.

45

assumed that all the packet processors are capable the same throughput. The delta be-

tween the theoretical line rate of 10Gbps and the measured throughputs seems inde-

pendent of the shell design variants and is most likely caused by factors external to the

packet processors, such as the traffic generator or Ethernet SS IP limitations. Affecting

factor to the throughput seems to be the frame size, and in a manner that would show

that more frequent packet boundaries, i.e. smaller frames, cause more delta from the

maximum throughput.

Latency measurements for each shell variant similarly presented with only inner headers

in table 7 and figure 16, and with VxLAN encapsulated frames in table 8 and figure 17.

These results show that the VHDL variant of the shell design has by far the lowest latency

independent of the case of only inner headers or VxLAN encapsulation present in the

packet. With only inner headers, the Shell P4 HC has a roughly a twofold latency com-

pared to the VHDL variant. For the Shell P4 SW IF, the latency is roughly 2,5-fold the

latency of the VHDL variant. It is also notable, that with the smallest tested frames (74

Bytes), the P4 variants are able to process the packets with around 40 ns (roughly 6,5

clock cycles with the frequency of 161 MHz) smaller latency than larger packets, whereas

the latency of the VHDL variant is somewhat constant across all frame sizes.

The VxLAN encapsulated frames induce larger latencies for all design variants, but the

lowest latencies are still caused by the VHDL variant. The header removal, addition and

modification operations cause an average increase of 90 ns (14,5 clock cycles) in latency

Table 5. Measured throughputs from the shell variants with basic Ethernet frames.

FRAME SIZE THROUGHPUT (Mbps)

(BYTES) Shell VHDL Shell P4 HC Shell P4 SW IF

74 7871,543 7871,543 7871,543

512 9623,097 9623,097 9623,097

1024 9807,447 9807,447 9807,447

1522 9869,311 9869,311 9869,311

Table 6. Measured throughputs with VxLAN encapsulated Ethernet frames.

FRAME SIZE THROUGHPUT (Mbps)

(BYTES) Shell VHDL Shell P4 HC Shell P4 SW IF

136 8717,076 8717,076 8717,076

512 9623,097 9623,097 9623,097

1024 9807,448 9807,447 9807,447

1522 9869,311 9869,311 9869,311

46

in the VHDL variant comparing to the latencies measured with the frames without VxLAN

encapsulation. For the P4 variants, the increase in latency with VxLAN capsulation op-

erations is around 40 ns (roughly 6,5 clock cycles). This would indicate that the P4 vari-

ants hold already more overhead in processing time even for packets with only inner

headers, and the VxLAN encapsulation header processing can be more parallelized with

other operations than with the VHDL variant. The latency of the VHDL variant is domi-

nantly caused by header removals and additions.

The latency difference between the two P4 designs is over 250 ns, adding up to roughly

42 clock cycles. The root cause for this is unknown, given the encrypted nature of the

designs, but assumptions can be made. As the P4 SW IF variant holds the software

interfaced lookup table logic, it could be causing additional latency in the packet pro-

cessing match-action pipeline with for example protocol converters (such as AXI-protocol

to a native memory interface protocol), extended buffering, arbiters, and naturally the

delay caused by the lookup operation itself. In the case of the VHDL design, the lookup

latency is one clock cycle, as there are no memory structures and the lookup is essen-

tially a logical bitwise AND-operation between the extracted header fields and the con-

stant values. However, the lookup emulator is specifically designed to be an external

component, where a lookup engine could be inserted, without affecting the parsing, pipe-

line and deparsing stages of the design.

Table 7. Measured cut-through latencies with Ethernet frames.

FRAME SIZE LATENCY (ns)

(BYTES) Shell VHDL Shell P4 HC Shell P4 SW IF

74 544 1048 1301

512 542 1091 1344

1024 542 1091 1344

1522 544 1092 1345

Table 8. Measured cut-through latencies with VXLAN encapsulated Ethernet frames.

FRAME SIZE LATENCY (ns)

(BYTES) Shell VHDL Shell P4 HC Shell P4 SW IF

136 632 1137 1390

512 632 1135 1389

1024 632 1135 1388

1522 633 1137 1390

47

Figure 16. Latencies with only inner headers for each design variant per

frame size.

Figure 17. Latencies with VxLAN encapsulation headers on top of inner head-

ers for each design variant per frame size.

The minimum size of an Ethernet frame is 64 bytes (512 bits) [62], which with a 64-bit

data bus-width and back-to-back frames means a new packet every 8 clock cycles. This

clock cycle count gives a theoretical maximum latency for a packet-specific lookup to not

affect the throughput of the design. In other words, the throughput of the lookup engine

itself has to be 1 lookup per 8 clock cycles. For example, the Xilinx BCAM engine (Binary

Content-Addressable Memory) for SDNet version 2018.1 [63] is reported to have a

lookup latency of 3 clock cycles. The rest of the design has a buffering capability for a

lookup latency of 12 clock cycles, which would still leave clock cycles for pipelined arbi-

0

200

400

600

800

1000

1200

1400

1600

74 512 1024 1522

L
a
te

n
c
y
 (

n
s
)

Frame size (Bytes)

Shell VHDL Shell P4 HC Shell P4 SW IF

0

200

400

600

800

1000

1200

1400

1600

136 512 1024 1522

L
a
te

n
c
y
 (

n
s
)

Frame size (Bytes)

Shell VHDL Shell P4 HC Shell P4 SW IF

48

tration and protocol conversions. With a 12-clock-cycle lookup latency, the overall la-

tency of the VHDL design variant would be increased by roughly 70 ns (with the clock

frequency of 161MHz).

Adding an actual memory search IP to the lookup-emulator remains as possible future

work. This would naturally introduce added logic to the design, for memory access arbi-

tration between the lookups and table updates, and the resource utilization of the design

would grow along with some added latency. Also, one should remember that these per-

formance metrics do not consider the runtime table updates, which will cause either

added latency with buffering, or dropped packets in the case of table updates exceeding

the clock cycle window for the lookup operations. Nevertheless, in this use case, the

VHDL variant is superior in terms of latency minimization and should prove to be superior

even with an added lookup engine, providing lower latency than the P4 designs.

8.3 Degree of automation

Figure 10 in chapter 9 depicted the steps of the workflow on a general level, common to

all design variants. In figure 18, the steps of actual hardware design (as in hardware

description code writing) and verification are pictured with slightly more detail, but still on

a very general level, showing what sub-steps they include in VHDL design flow (fig. 18

a)) and in P4 design flow (fig. 18 b)). Feedback paths from verification steps back to

hardware design are abstracted from the picture but naturally exist, as the design is fixed

based on simulation results.

As figure 18 shows, the main difference in the HW design processes with VHDL and P4

design flow is production of RTL description of the design, which is written manually (IP-

reuse is not taken into account) in VHDL flow, but generated automatically in the P4

design flow, based on the P4 description. To give an insight on the degree of automation

in the P4 flow, table 9 presents the lines of code (LOC) required to develop the combined

packet processors, the ingress packet processor, and the egress packet processor per

design flow. Even though in general the LOC-based analysis of code might not be par-

ticularly meaningful due to personal differences and taste in coding styles and code read-

ability levels, it is used in this work to give the reader a sense of the level in abstraction

and simplicity in P4 compared to VHDL. Empty and commented lines are excluded from

the LOC counts.

49

Figure 18. Design and verification workflow graphs for a) VHDL and b) P4 de-
sign in this work.

As seen in the table 9, the combined LOC count of the VHDL ingress and egress packet

processors is roughly 6,3-fold the LOC count of the P4 HC variant, and 8,1-fold the re-

spective count in the P4 SW IF variant, with a difference of over 3 thousand lines to both.

As P4 is a higher-level language, this is expected: the P4 code is more of a functional

description with no clock cycle-accurate operations as in RTL, such as VHDL. For ex-

ample, the highest LOC count for a single IP in the VHDL variant is 446 in the ingress

parser. This IP implements the parse tree with a sequential process FSM, which alone

has 40 states and 356 LOC. In comparison, the ingress parse tree definition in P4 takes

10 states and 71 LOC.

On the egress side, the dominant IP of the VHDL variant, in terms of LOC, is the stream

assembler. Supporting different header structures and swapping headers on the fly re-

quires again a large FSM structure. This increase in code length in egress side altogether

is however mitigated by a shorter parse tree (130 LOC), as there are no VXLAN encap-

sulation headers to parse. In P4 HC variant the LOC count increases due to the if—

clause structure presented in chapter 8.3, and thus the source code in both ingress and

egress is lengthier than in the P4 SW IF design units. In general, the P4 SW IF variant

seems to handle scaling better across ingress and egress, and has consistently the

Verification

Hardware

design

RTL

autogenerated

P4 description

RTL description

Verification

environment

build-up

Simulation runs Simulation runs

Test-case setup Test-case setup

Verif. env.

autogenerated

a) b)

50

smallest count of LOC. At the same time, it is the design variant with the most logic, as

presented in chapter 9.1, and the most complex design with the added SW IF section.

DESIGN UNIT LINES OF CODE

 VHDL P4 HC P4 SW IF

PP TOTAL 3624 576 446

PP INGRESS 1836 247 239

PP EGRESS 1786 329 207

The verification done with this work was not thorough, and as seen in the figure 15, fall

more under the category of simulation. Tasks included

1. building the framework of a verification environment, a testbench, such as an

UVM class hierarchy structure,

2. defining a set of test cases, the stimuli, and implement the feeding of this stimuli

to the DUT.

3. Simulation of the DUT with the testbench and verifying the wanted functionality

corresponding to the input stimulus

From these three steps, only the first one is somewhat automated in the P4 flow with

Xilinx SDNet. The IP developer is left with the task of choosing the stimuli and running

the simulations, as well as verifying the output. In this work, the UVM testbench structure

was legacy design and reused. How much of work this kind of a testbench architecture

requires in terms of LOC or work hours, is dependant for example of the IP, its interfaces,

requirements on testing, and developer experience. Additionally, in the case of develop-

ing IPs which have the same interface, such as packet processors with different protocol-

specific operations, the testbench architecture would not possibly need much rework in

principle between implementations, and reuse to some degree should be possible.

Whereas exactly quantitative analysis on the degree of automation gained from the P4

design flow cannot be performed, a few conclusions can be made. Even with the simpli-

fied VHDL implementation without memory search IPs, the P4 design with a software

interface provided a significant advantage in terms of code lines to be written. This is a

natural consequence of the high-level nature of the P4 language, coming with the disad-

vantage of losing control in clock cycle accurate functionality description. With the sup-

porting simulation test environment provided by SDNet, the P4 language could very well

lead into a smaller time to testing and prove itself useful in for example Proof of Concept

(POC) projects, such as [56].

Table 9. Counts of lines of code per design unit for each design variant.

51

9. CONCLUSIONS

In this thesis, a data plane programming language, P4, was trialled as an implementation

method for networking logic on a network-attached FPGA. The goal was to find out if the

high-level nature of the language with a current state compiler could prove an efficient

way to implement packet processing logic without an overly extensive supported feature

set and sufficiently in-par with a traditional VHDL implementation in terms of performance

and resource utilization.

The functionality to be implemented on the FPGA was VTEP termination combined with

a five-tuple based firewall. Three design variants were implemented: a full P4 implemen-

tation with a software interface for table management, a reference VHDL design provid-

ing the same data plane functionality but without a software interface, and finally, a hard-

coded P4 design without a software interface, purposed for a more exact resource utili-

zation comparison with the VHDL variant.

The results of this work suggest that the lowest utilization and lowest latencies can be

reached with VHDL. However, one must consider that overall the trialled designs are

relatively simple. Even the highest-utilizing design variant, the software interfaced P4

design, uses only around 2,6% of the LUTs available on the FPGA for the packet pro-

cessing logic. Additionally, the highest latency measured with the same design was

around 1,4µs, which is well under the 8µs limit for the accelerator shell design latency

maximum set by the CRUN framework. Combined with the fact that the VHDL design

took 8.1x the lines of source code in comparison to the software interfaced P4 imple-

mentation, these measurements suggest that there could be use for P4, in for example

POC projects, where the performance and resource limitations are more relaxed, in com-

parison to commercial products.

In conclusion, the study was successful, and proved a valuable look into the current state

of the P4 language with network-attached FPGA accelerator platforms, paving way for

continued and more thorough research, which remains future work. For a deeper analy-

sis, a full VHDL reference design must be implemented, including a lookup engine, e.g.

a content-addressable memory component, and a software interface. Additionally, the

utilization and performance scaling with varying packet processing functionality must be

tested, as well as reachable performance maximums with higher data rates and clock

frequencies.

52

REFERENCES

[1] vRAN: The Next Step in Network Transformation, Wind River Systems, White pa-
per. Available (accessed on 8.5.2020):
https://events.windriver.com/wrcd01/wrcm/2017/10/vRAN-The-Next-Step-in-Network-
Transformation-White-Paper.pdf.

[2] Cloud RAN Architecture for 5G, Telefonica, White paper. Available (accessed on
8.5.2020): http://www.hit.bme.hu/~jakab/edu/litr/5G/WhitePaper_C-RAN_for_5G_-Tele-
fonica_Ericsson.PDF.

[3] R. Mijumbi, J. Serrat, J. Gorricho, J. Rubio-Loyola, S. Davy, Server placement and
assignment in virtualized radio access networks, 2015 11th International Conference
on Network and Service Management (CNSM), 2015, pp. 398-401.

[4] D. Rajan, Achieving High Performance with Virtualized Data Plane Workloads for
5G Networks, 2019 Sixth International Conference on Software Defined Systems
(SDS), 2019, pp. 236-241.

[5] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W. Khan, M. Far-
gano, C. Cui, H. Deng, J. Benitez, U. Michel, H. Damker, K. Ogaki, T. Matsuzaki, M.
Fukui, K. Shimano, D. Delisle, Q. Loudier, C. Kolias, I. Guardini, E. Demaria, R. Mi-
nerva, A. Manzalini, D. López, F.J. Ramón Salguero, F. Ruhl & P. Sen, Network Func-
tions Virtualisation - An Introduction, Benefits, Enablers, Challenges & Call for Action,
White paper. Available (accessed on 8.5.2020): https://por-
tal.etsi.org/NFV/NFV_White_Paper.pdf.

[6] Network Functions Virtualisation (NFV); Architectural Framework, ETSI, White pa-
per. Available (accessed on 11.4.2020): https://www.etsi.org/de-
liver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf.

[7] Network Functions Virtualisation (NFV); Acceleration Technologies; Report on Ac-
celeration Technologies & Use Cases, ETSI, White paper. Available (accessed on
30.4.2020): https://www.etsi.org/deliver/etsi_gs/NFV-
IFA/001_099/001/01.01.01_60/gs_nfv-ifa001v010101p.pdf.

[8] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S.
Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papami-
chael, L. Woods, S. Lanka, D. Chiou, D. Burger, A cloud-scale acceleration architec-
ture, 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2016, pp. 1-13.

[9] N. Feamster, J. Rexford, E. Zegura, The Road to SDN: An Intellectual History of
Programmable Networks, SIGCOMM Comput.Commun.Rev., Vol. 44, Iss. 2, 2014, pp.
87–98. Available (accessed on 7.5.2020): https://doi.org/10.1145/2602204.2602219.

[10] R. Bifulco, G. Rétvári, A Survey on the Programmable Data Plane: Abstractions,
Architectures, and Open Problems, 2018 IEEE 19th International Conference on High
Performance Switching and Routing (HPSR), 2018, pp. 1-7.

53

[11] P416 Language Specification, version 1.2.0, The P4 Language Consortium, Avail-
able (accessed on 26.2.2020): https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf.

[12] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Network
Function Virtualization: State-of-the-Art and Research Challenges, IEEE Communica-
tions Surveys & Tutorials, Vol. 18, Iss. 1, 2016, pp. 236-262.

[13] B. Yi, X. Wang, K. Li, S. Das, M. Huang, A Comprehensive Survey of Network
Function Virtualization, Computer Networks, Vol. 133, 2018,

[14] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, S.
Uhlig, Software-Defined Networking: A Comprehensive Survey, Proceedings of the
IEEE, Vol. 103, Iss. 1, 2015, pp. 14-76.

[15] E. Kaljic, A. Maric, P. Njemcevic, M. Hadzialic, A Survey on Data Plane Flexibility
and Programmability in Software-Defined Networking, IEEE Access, Vol. 7, 2019, pp.
47804-47840.

[16] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, OpenFlow: Enabling Innovation in Campus Networks,
SIGCOMM Comput.Commun.Rev., Vol. 38, Iss. 2, 2008, pp. 69–74. Available (ac-
cessed on 20.2.2020): https://doi.org/10.1145/1355734.1355746.

[17] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner, R. Bifulco,
M. Jarschel, G. Bianchi, Survey of Performance Acceleration Techniques for Network
Function Virtualization, Proceedings of the IEEE, Vol. 107, Iss. 4, 2019, pp. 746-764.

[18] H. Eran, D. Levi, L. Liss, M. Silberstein, NFV acceleration: the role of the NIC,
SFMA'18, 2018,

[19] Z. Bronstein, E. Roch, J. Xia, A. Molkho, Uniform handling and abstraction of NFV
hardware accelerators, IEEE Network, Vol. 29, Iss. 3, 2015, pp. 22-29.

[20] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, D. Firestone, J. Fowers, M.
Haselman, S. Heil, M. Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, D. Burger, Configurable Clouds, IEEE
Micro, Vol. 37, Iss. 3, 2017, pp. 52-61.

[21] S. A. Fahmy, K. Vipin, S. Shreejith, Virtualized FPGA Accelerators for Efficient
Cloud Computing, 2015 IEEE 7th International Conference on Cloud Computing Tech-
nology and Science (CloudCom), 2015, pp. 430-435.

[22] J. Lallet, A. Enrici, A. Saffar, FPGA-Based System for the Acceleration of Cloud
Microservices, 2018 IEEE International Symposium on Broadband Multimedia Systems
and Broadcasting (BMSB), 2018, pp. 1-5.

[23] O. Knodel, P. Lehmann, R. G. Spallek, RC3E: Reconfigurable Accelerators in Data
Centres and Their Provision by Adapted Service Models, 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD), 2016, pp. 19-26.

[24] J. Weerasinghe, F. Abel, C. Hagleitner, A. Herkersdorf, Enabling FPGAs in
Hyperscale Data Centers, 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and
Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and

54

2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associ-
ated Workshops (UIC-ATC-ScalCom), 2015, pp. 1078-1086.

[25] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A.
Hormati, J. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y.
Xiao, D. Burger, A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Ser-
vices, IEEE Micro, Vol. 35, Iss. 3, 2015, pp. 10-22.

[26] G. Gibb, G. Varghese, M. Horowitz, N. McKeown, Design principles for packet
parsers, Architectures for Networking and Communications Systems, 2013, pp. 13-24.

[27] H. Song, Protocol-Oblivious Forwarding: Unleash the Power of SDN through a Fu-
ture-Proof Forwarding Plane, Proceedings of the Second ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, Hong Kong, China, ACM, New York,
NY, USA, pp. 127-132.

[28] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesigner,
D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4: Programming Protocol-Independ-
ent Packet Processors, ACM SIGCOMM Computer Communication Review, Vol. 44,
Iss. 3, 2014. Available (accessed on 26.2.2020): http://www.sigcomm.org/sites/de-
fault/files/ccr/papers/2014/July/0000000-0000004.pdf.

[29] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, G. J. Minden, A
survey of active network research, IEEE Communications Magazine, Vol. 35, Iss. 1,
1997, pp. 80-86.

[30] L. Yang, R. Dantu, T. Anderson, R. Gopal, Forwarding and Control Element Sepa-
ration (ForCES) Framework, RFC 3746, 2004. Available (accessed on 20.2.2020):
https://tools.ietf.org/html/rfc3746.

[31] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan, N.
Viljoen, M. Miller, N. Rao, Are we ready for SDN? Implementation challenges for soft-
ware-defined networks, IEEE Communications Magazine, Vol. 51, Iss. 7, 2013, pp. 36-
43.

[32] H. Harkous, M. Jarschel, M. He, R. Priest, W. Kellerer, Towards Understanding the
Performance of P4 Programmable Hardware, 2019 ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS), 2019, pp. 1-6.

[33] Network Services Switching Platform, NXP Semiconductors, website. Available
(accessed on 28.2.2020): https://www.nxp.com/docs/en/fact-sheet/NETSSFS.pdf.

[34] R. Morris, E. Kohler, J. Jannotti, M.F. Kaashoek, The Click Modular Router, SI-
GOPS Oper.Syst.Rev., Vol. 33, Iss. 5, 1999, pp. 217–231. Available (accessed on
26.2.2020): https://doi.org/10.1145/319344.319166.

[35] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan, G. Var-
ghese, N. McKeown, S. Licking, Packet Transactions: High-Level Programming for
Line-Rate Switches, Florianopolis, Brazil, Association for Computing Machinery, New
York, NY, USA, pp. 15–28.

[36] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger, G. Mendel-
son, M. Alizadeh, S. Chuang, I. Keslassy, DRMT: Disaggregated Programmable

55

Switching, Los Angeles, CA, USA, Association for Computing Machinery, New York,
NY, USA, pp. 1–14.

[37] P4_16 prototype compiler, website. Available (accessed on 26.2.2020):
https://github.com/p4lang/p4c.

[38] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, J. Rexford, PI-
SCES: A Programmable, Protocol-Independent Software Switch, Florianopolis, Brazil,
Association for Computing Machinery, New York, NY, USA, pp. 525–538.

[39] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A.
Wang, J. Stringer, P. Shelar, K. Amidon, M. Casado, The Design and Implementation
of Open vSwitch, may, USENIX Association, Oakland, CA, pp. 117-130.

[40] Netronome smartNIC, Netronome, website. Available (accessed on 3.3.2020):
https://www.netronome.com/products/smartnic/overview/.

[41] SDNet, Xilinx, website. Available (accessed on 9.2.2020): https://www.xil-
inx.com/support/documentation-navigation/development-tools/software-develop-
ment/sdnet.html.

[42] H. Wang, Soul\'e Robert, H.T. Dang, K.S. Lee, V. Shrivastav, N. Foster, H. Weath-
erspoon, P4FPGA: A Rapid Prototyping Framework for P4, Santa Clara, CA, USA,
ACM, New York, NY, USA, pp. 122-135.

[43] P. Benácek, V. Pu, H. Kubátová, P4-to-VHDL: Automatic Generation of 100 Gbps
Packet Parsers, 2016 IEEE 24th Annual International Symposium on Field-Program-
mable Custom Computing Machines (FCCM), pp. 148-155.

[44] J. Santiago da Silva, F.c. Boyer, J.M.P. Langlois, P4-Compatible High-Level Syn-
thesis of Low Latency 100 Gb/s Streaming Packet Parsers in FPGAs, Monterey, CALI-
FORNIA, USA, ACM, New York, NY, USA, pp. 147-152.

[45] Barefoot Tofino, Barefoot Networks, website. Available (accessed on 28.2.2020):
https://www.barefootnetworks.com/products/brief-tofino/.

[46] P. Bosshart, G. Gibb, H. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, M.
Horowitz, Forwarding Metamorphosis: Fast Programmable Match-Action Processing in
Hardware for SDN, Hong Kong, China, Association for Computing Machinery, New
York, NY, USA, pp. 99–110.

[47] L. Jose, L. Yan, G. Varghese, N. McKeown, Compiling Packet Programs to Recon-
figurable Switches, Oakland, CA, USENIX Association, USA, pp. 103–115.

[48] Universal Verification Methodology (UVM) 1.2 User’s Guide, Accellera Systems In-
itiative. Available (accessed on 9.2.2020): https://www.accellera.org/images//down-
loads/standards/uvm/uvm_users_guide_1.2.pdf.

[49] TRex, Cisco, website. Available (accessed on 9.2.2020): https://trex-
tgn.cisco.com/trex/doc/index.html.

[50] Vivado Design Suite, Xilinx, website: Available (accessed on 9.2.2020):
https://www.xilinx.com/products/design-tools/vivado.html#documentation.

56

[51] VCU1525 Reconfigurable Acceleration Platform User Guide, Xilinx. Available (ac-
cessed on 10.1.2020): https://www.xilinx.com/support/documenta-
tion/boards_and_kits/vcu1525/ug1268-vcu1525-reconfig-accel-platform.pdf.

[52] Virtual Input/Output v3.0 LogiCORE IP Product Guide, Xilinx. Available (accessed
on 10.1.2020): https://www.xilinx.com/support/documentation/ip_documenta-
tion/vio/v3_0/pg159-vio.pdf.

[53] Integrated Logic Analyzer v6.2 LogiCORE IP Product Guide, Xilinx. Available (ac-
cessed on 10.1.2020): https://www.xilinx.com/support/documentation/ip_documenta-
tion/ila/v6_2/pg172-ila.pdf.

[54] S. Bradner, J. McQuaid, Benchmarking Methodology for Network Interconnect De-
vices, RFC 2544, 1999. Available (accessed on 9.2.2020):
https://tools.ietf.org/html/rfc2544.

[55] D. Koslopp, CRUN: Distributed Processing in FPGA Accelerated Cloud, Master of
Science thesis, Tampere University of Technology, 2018.

[56] T. T. Carneiro, Distribution of ultra-low latency machine learning algorithm, Master
of Science thesis, Tampere University of Technology, 2018.

[57] 10G/25G High Speed Ethernet Subsystem v3.0, Xilinx. Available (accessed on
3.12.2019): https://www.xilinx.com/support/documentation/ip_documenta-
tion/xxv_ethernet/v3_0/pg210-25g-ethernet.pdf.

[58] FIFO Generator v13.2 LogiCORE IP Product Guide, Xilinx. Available (accessed on
3.12.2019): https://www.xilinx.com/support/documentation/ip_documentation/fifo_gen-
erator/v13_2/pg057-fifo-generator.pdf.

[59] DMA/Bridge Subsystem for PCI Express v4.1 Product Guide, Xilinx. Available (ac-
cessed on 3.12.2019): https://www.xilinx.com/support/documentation/ip_documenta-
tion/xdma/v4_1/pg195-pcie-dma.pdf.

[60] AXI Interconnect v2.1LogiCORE IP Product Guide, Xilinx. Available (accessed on
3.12.2019): https://www.xilinx.com/support/documentation/ip_documentation/axi_inter-
connect/v2_1/pg059-axi-interconnect.pdf.

[61] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
C. Wright, Virtual eXtensible Local Area Network (VXLAN): A Framework
for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks, RFC 7348, 2014.
Available (accessed on 8.2.2020): https://tools.ietf.org/html/rfc7348.

[62] IEEE Standard for Ethernet - Amendment 3: Media Access Control Parameters for
50 Gb/s and Physical Layers and Management Parameters for 50 Gb/s, 100 Gb/s, and
200 Gb/s Operation, in: IEEE Std 802.3cd-2018 (Amendment to IEEE Std 802.3-2018
as amended by IEEE Std 802.3cb-2018 and IEEE Std 802.3bt-2018), 2019, pp. 1-401.

[63] Exact Match Binary CAM Search IP for SDNet SmartCORE IP Product Guide, Xil-
inx. Available (accessed on 9.2.2020): https://www.xilinx.com/support/documenta-
tion/ip_documentation/cam/pg189-cam.pdf.

