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To increase capital efficiency and flexibility in networking, virtualization methods, following 

the concept of Network Function Virtualization (NFV), can be used. In NFV, network functions 
conventionally implemented on proprietary hardware appliances are migrated to Commercial Off-
The-Shelf (COTS) hardware as software-implemented virtualized functions. This may come at 
the cost of performance, and some performance-critical functions may require the usage of spe-
cialized hardware as hardware accelerators.  

This work is focused around the reconfigurable Field-Programmable Gate Array (FPGA) 
accelerators, and more specifically, FPGA accelerators that are network-attached, as in accessi-
ble directly via network. In this thesis, a data plane programmability language, P4 (Programming 
Protocol-independent Packet Processors), was trialled as a method for implementing packet pro-
cessors in the FPGA ingress and egress paths as networking logic surrounding the core acceler-
ator functionality. This was done to map its usability as an alternative to a Register-Transfer Level 
(RTL) Hardware Description Language (HDL). 

For the study, three design variants were implemented, all providing the same networking 
functionality of Virtual Tunnel Endpoint (VTEP) termination and a five-tuple based firewall. The 
design variants were a software interfaced P4 design, a reference hard-coded VHDL (Very High 
Speed Integrated Circuit Hardware Description Language) design, and finally, a hard-coded P4 
design for more comparable hardware resource utilization metrics. As the P4 language is a plat-
form-independent high-level description language, a third-party back end compiler was used in 
the hardware design.  
 The P4-based implementations were compared against the VHDL-based implementation 
in terms of FPGA resource utilization, performance, as in latency and throughput, and design 
automation, as in lines of source code. From the variants, the VHDL design proved to be superior 
by the lowest resource utilization. Additionally, the VHDL design achieved the lowest latency from 
the variants, being able to process 1kB frames in 0,5µs, whereas the P4 software interfaced and 
hard-coded design variants achieved latencies of 1,1µs and 1,3µs, respectively. However, the P4 
proved to provide a more automated implementation design flow, indicated by the lines of code: 
the VHDL description consisted of 8,1x more lines than the P4 software interfaced variant. 
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Verkkofunktioiden virtualisointikonseptin (engl. Network Function Virtualization, NFV) mu-

kaisia menetelmiä voidaan käyttää tiedonsiirtoverkkojen kustannustehokkuuden ja joustavuuden 
lisäämiseksi. Tämä konsepti tarkoittaa verkkotoimintojen toteutusta virtuaalisina ohjelmistofunkti-
oina. Tällöin perinteisten, erikoiskäyttöisten ja patentoitujen verkkolaitteiden käyttöä voidaan kor-
vata yleiskäyttöisellä ja yleisesti saatavilla olevalla laitteistolla. Ohjelmistototeutuksien käyttö voi 
kuitenkin näkyä suorituskyvyn heikkenemisenä, jolloin vaativimpien toimintojen suorittamisessa 
voidaan käyttää apuna erillisiä laitteistokiihdyttimiä.  

Tämä työ keskittyy verkkoon kytkettyihin uudelleenohjelmoitaviin FPGA-kiihdyttimiin 
(engl. Field-Programmable Gate Array). Työssä koekäytettiin reititystason (engl. data plane) oh-
jelmointiin tarkoitettua P4-kieltä (engl. Programming Protocol-independent Packet Processors) 
FPGA-kiihdyttimen verkkotoiminnallisuuden toteutuksessa. Työn tavoitteena oli kartoittaa P4-kie-
len käytettävyyttä tässä käyttökohteessa vaihtoehtona perinteiselle rekisterisiirtotason (engl. 
Register-Transfer Level, RTL) laitteistokuvauskielelle (engl. Hardware Description Language, 
HDL).  

Tutkimuksessa tuotettiin kolme reititystason toiminnallisuudeltaan vastaavaa toteutusta, 
jotka toteuttivat virtuaalitunnelin päätepisteen  (engl. Virtual Tunnel Endpoint, VTEP) terminnoin, 
sekä protokollikenttien avulla muodostettuun monikkoon pohjautuvan palomuurin. Toteutuksina 
olivat ohjelmistorajapinnallinen P4-totetutus, vertailukohtana toimiva kovakoodattu VHDL-toteu-
tus (engl. Very High Speed Integrated Circuit Hardware Description Language), sekä tarkemman 
resurssien käyttöasteen vertailun mahdollistava kovakoodattu P4-toteutus. P4-kielen kuvaukset 
käännettiin käyttäen kolmannen osapuolen kääntäjää.  

P4-toteutuksia vertailtiin VHDL-toteutukseen käyttäen vertailukohtina FPGA:n resurssien 
käyttöastetta, suorituskykyä, sekä suunnitteluvuon automaatiota lähdekoodiriveissä mitattuna. 
VHDL-toteutuksen resurssien käyttöaste osoittautui matalimmaksi. VHDL-toteutus kykeni myös 
matalimpaan käsittelyviiveeseen, joka oli noin 0,5 µs käsiteltävien pakettien ollessa 1 kilotavun 
kokoisia. Täyden ohjelmistorajapinnallisen P4-toteutuksen viive oli 1,4 µs, ja kovakoodatun P4-
toteutuksen viive 1,1 µs. Automaatioltaan, tässä työssä lähdekoodirivien lukumäärässä mitattuna, 
P4-toteutus oli ylivertaisin: VHDL-toteutuksessa käytettyjen koodirivien määrä oli 8,1-kertainen 
P4-toteutukseen nähden.  
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1. INTRODUCTION 

Mobile traffic is increasing, both in volume and variety, due to growing amounts of smart 

phones and other connected devices [1], creating an increasing demand for lower la-

tency and greater capacity in mobile networks [2]. The telecommunications industry is 

pressured for higher data rates by the subscribers [3], and for example with the fifth 

generation (5G) mobile networks, the data rate demand can be up to 100x compared to 

the fourth generation (4G), while the end-to-end latency must be reduced to a fifth [4]. 

The higher capacity requirements force the communications service providers to invest 

in the network, while concurrently finding ways to preserve profitability [1].  

For a telecommunications service provider, the Radio Access Network (RAN) causes a 

major part of capital and operating expenses, respectively up to 80% and 60%. This 

makes RAN a compelling choice for expense reduction [3]. One method to achieve this 

is to utilize the concept of Network Function Virtualization (NFV).  

In the NFV concept, network functions are separated from proprietary hardware devices 

and implemented as software virtual functions, running on Commercial Off-The-Shelf 

(COTS) hardware, for example x86 architecture high volume servers [5]. In the domain 

of a virtualized RAN (vRAN), this means the virtualization of baseband unit functions to 

run on a shared physical infrastructure, separating the baseband units from their dedi-

cated remote radio units [3].  

With the usage of COTS hardware and virtualized, software-implemented functions, the 

NFV concept brings benefits such as capital efficiency and flexibility to the network [6]. 

However, some virtual network functions may require performance not attainable with 

standard servers and require the usage of specialized hardware as hardware accelera-

tors [7].  

One candidate for a hardware accelerator is the Field-Programmable Gate Array 

(FPGA), which is a reconfigurable platform, and due to its hardware structure can offer 

improved performance compared to General-Purpose Processors (GPP). In addition to 

serving as local accelerators for their host server, they can be connected directly to a 

data centre network. As network-attached, the FPGA is additionally enabled for network 

acceleration as well as global acceleration [8]. This work is focused on the networking 

logic on these FPGAs, bringing in the concept of data plane programmability.  
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Software-Defined Networking (SDN) is a networking paradigm which aims to decouple 

the control plane from the data plane and to centralize it. The data plane then forwards 

traffic based on the control plane instructions via a well-defined Application-Program-

ming Interface (API). [9] 

On the data plane level, its programmability can be enabled with different programming 

models and abstractions that are exposed to the control plane. One of the abstractions 

is the match-action abstraction, where the controller configures the packet processing of 

the device by managing entries in flow tables. [10] The target is programmed to match 

values from protocol headers against the values in flow tables and based on the match 

result and the configuration of the table a certain action is executed. A programming 

language using this abstraction is the P4 (Programming Protocol-independent Packet 

Processors).  

P4 is a platform-agnostic, domain specific language for the programming of protocol-

independent packet processors. In a P4 program, the programmer defines the supported 

set of protocols, a protocol parser and control programs. The control programs contain 

the match-action tables and action definitions, which determine how the packets are pro-

cessed. [11]  

The goal of this thesis is to map the feasibility and use cases of using a data plane 

programmability method, the P4 language, in the implementation of networking logic in 

network-attached FPGA accelerators. The thesis was done as a part of a larger in-house 

framework, the CRUN, which presented a cloudified datacentre architecture, where 

FPGAs could be flexibly provided as hardware accelerator resources, accessible both 

locally and via network.  

The feasibility study was done by implementing packet processors, i.e. the networking 

logic surrounding the accelerator on the FPGA, with both the P4 language and VHDL 

(Very High Speed Integrated Circuit Hardware Description Language). The resulting 

hardware designs were compared against each other by performance metrics, latency 

and throughput, utilization, as well as by the degree of automation in the design flows. 

This thesis is structured as follows. Chapter 2 presents the main networking paradigms 

behind this work, the NFV and SDN, focusing on an architectural description. Chapter 3 

presents hardware acceleration with the NFV framework, as well as an introduction to 

FPGA accelerators in this context. Chapter 4 opens the domain of data plane program-

mability, alongside a description of the P4 language as a part of this work. Chapter 5 

describes the methodology, tools, and platforms used in this work. Chapter 6 presents 
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the project framework, implemented top level FPGA design, and the implemented net-

working functionality. Chapter 7 gives a more detailed description of the VHDL and P4 

packet processing designs, and of how they were implemented. Chapter 8 presents the 

utilization, performance and degree of automation results for all design variants, and 

chapter 9 concludes the thesis. 
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2. NETWORKING PARADIGMS 

In conventional networking, the implementation of network functions often includes the 

usage of proprietary hardware appliances. Addition of new features is costly and com-

plex, as it requires the purchase of new devices [12].  A large variety of equipment, such 

as switches and middleboxes, further increases the complexity and slows innovation, as 

these devices often come with closed and proprietary control software and configuration 

interfaces varying across vendors [9]. This chapter presents the networking concepts of 

SDN and NFV, which aim to address these issues.  

2.1 NFV 

Network Function Virtualization is a networking paradigm which aims to bring capital 

efficiency and flexibility to networking by replacing proprietary hardware devices with 

COTS hardware and providing the network functions implemented by them as virtualized 

functions (Virtualized Network Function, VNF) [6]. This is purposed for a more cost-ef-

fective, shareable and homogenous hardware architecture. Additionally, with VNFs flex-

ibly assignable to hardware, functionality is decoupled from location, scalability is in-

creased, and the software-based deployment model enables faster innovation for new 

services. In conclusion, the European Telecommunications Standards Institute (ETSI) 

group specification in [6] summarizes the service provisioning differences in NFV com-

pared to non-virtualized traditional networks as follows: 

• Decoupled software and hardware, enabling independent evolution for both, and 

leading to 

• flexible network function deployment and dynamically scalable operation, adjust-

ing the performance capacity as required by traffic in the network. 

To better understand the NFV framework, it can be divided into 3 main working domains, 

as in [6]: 

• VNFs, software-implemented network functions running on top of the 

• NFV Infrastructure (NFVI), which in turn includes all the physical resources and 

their virtualization methods, and finally the 

• NFV Management and Orchestration (MANO), including the orchestration and 

management of hardware and software resources supporting the virtualization 

and the VNFs. 
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How these domains are connected is depicted in the NFV architectural framework in 

figure 1. The NFVI can be seen as the data plane of the network [13]. It consists of 

hardware resources, which are virtualized as virtual resources by the virtualization layer. 

The computing hardware is realized by general-purpose COTS compute nodes. Storage 

hardware consists of data storage devices divisible into for example shared network at-

tached storage and server-specific storage. Finally, the networking hardware is a com-

bination of switches, routers, and wired or wireless links. [6]  

 
Figure 1.  The architectural framework of NFV. Adopted from [6] 

The virtualization layer decouples the hardware resources from the VNF software. The 

physical resources are abstracted and partitioned as virtual resources for the VNFs to 

use. A typical solution to provide the virtual resources is the usage of hypervisors, which 

in turn provide Virtual Machines (VMs). A VNF can then be implemented on one or sev-

eral VMs. [6] Virtual resources are interconnected with typically software-based virtual 

networking, implemented with for example virtual switches [13]. Techniques such as vir-

tual networks and network overlays, e.g. Virtual Local Area Network (VLAN) or Virtual 

Extensible Local Area Network (VxLAN) can be used to create virtualized paths to inter-

connect VMs and VNFs [6]. 

The VNF domain consists of VNFs and the Element Management System (EMS). The 

VNFs are software-implementations of network functions, providing the same function-

ality and external operational interfaces as physical implementations on dedicated hard-

ware. The implementation of a VNF can be distributed to components (VNF Component, 
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VNFC) on different VMs. The VNFs are managed by Element Managers (EM), which 

together form the EMS. [13] 

In the NFV MANO, the responsibility of the NFV Orchestrator (NFVO) is the management 

and orchestration of the NFVI and its resources, and realizations of the networking ser-

vices in it. The VNF lifecycle from instantiation to termination is managed by VNF man-

agers (VNFM). A VNF is tied to a single VNFM, whereas a VNFM may manage several 

VNFs. Finally, the Virtual Infrastructure Managers (VIM) are responsible for resource 

management and monitoring of the NFVI, including tasks such as VM allocations to hy-

pervisors, resource adjustments to VMs, and fault information collection from the NFVI. 

[6] 

2.2 SDN 

Whereas NFV focused on the separation of software and hardware, Software-Defined 

Networking focuses on the decoupling of the data plane from the control plane [14]. Con-

ventionally, a network consists of separate network devices, which in turn are entities of 

tightly coupled hardware and software, performing both data and control plane functions 

(figure 2 a)). In SDN, the planes are separated by centralizing the control of the network 

onto SDN controllers, which configure the data plane according to rules set by network 

applications in the application plane (Figure 2 b)). [15]   

The SDN survey in [14] describes a software-defined network by an architecture based 

on 4 principles: 

1. Decoupled control and data planes, resulting in network devices becoming sim-

ple forwarding elements. 

2. Forwarding rules are based on flows instead of destinations, i.e. sets of packet 

field values matched for a set of actions. 

3. Control is centralized and moved to the SDN controller, or the network operating 

system (NOS), which is running on server hardware.  

4. The programming of the network is done by applications on top of the NOS.  
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Figure 2.  The architecture of a) a traditional network element and b) SDN. Adopted 
from [15]. 

The centralized control is purposed to maintain a global view of the network, and to pro-

vide a more abstracted model of the underlying hardware, enabling the use of high-level 
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[16], defines the communication protocol between the forwarding elements and the con-
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On the top of the figure is the application plane, also referable as the management plane 

[14]. This plane consists of applications for example routing [15], quality of service  mech-

anisms [15], firewalling [14] and load balancing [14]. These applications use an API, the 

northbound interface, and its functions to generate and deliver rules for network traffic 

treatment to the control plane [14].   
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3. HARDWARE ACCELERATION IN THE NFV 

CONTEXT 

In NFV, networks gain flexibility, scalability and capital efficiency by replacing the propri-

etary hardware middleboxes with COTS hardware. However, this comes with a trade-

off: using software virtualizations to run network functions in place of specially tailored 

ASICs (Application-Specific Integrated Circuit) can have a negative impact in throughput 

and latency [17]. To improve performance, whether the goal is in relation to e.g. cost, 

power, area, or to reach the sheer maximum, acceleration techniques can be introduced 

into the NFVI. The usage of specialized hardware to gain this performance improvement, 

is called hardware acceleration. [7]  

Hardware accelerators can be such as custom ASICs, FPGAs, NPUs (Network Pro-

cessing Unit) or GPUs (Graphics Processing Unit). A further classification for VNF hard-

ware accelerators can be done by their type, and according to [18] these types can gen-

erally be divided in the following categories:  

• in-line accelerators, which process packets in-line with software [7], as they trav-

erse to or from the network, i.e. on the fly [18].  

• look aside accelerators, which typically operate on data and commands submit-

ted by software. Based on the command, the accelerator processes the data and 

sends a response. [7] 

Look aside accelerators are typically associated with compute-intensive algorithmic ac-

celeration, such as crypto or compression [7].  Compute-intensive functions characterize 

with the complexity and dynamism being in the calculations, while the processed data is 

more static, in relation to network-intensive functions. Network-intensive functions, e.g. 

network address translation and load balancing, have high throughput constraints and 

the data is dynamic, while the processing code itself can be relatively small. [19] Due to 

the data being mediated by a Central Processing Unit (CPU), look-aside acceleration 

can introduce higher latencies and more limited throughput by the CPU I/O in comparison 

to in-line acceleration [18]. 

Additional taxonomy for the hardware accelerators can be brought by their housing. The 

ETSI group specification for NFV acceleration [7] lists accelerator housings as 

• integrated CPU, as in the accelerator (e.g. ASIC, GPU, FPGA) is implemented 

as a hardware function in the CPU socket 
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• iNICs (intelligent Network Interface Controller) or smartNICs, which are program-

mable and can be based around CPU or NPU cores (multicore system-on-chip-

based, or an FPGA (FPGA-based). Additionally, the programmable cores on a 

SmartNIC can be accompanied by custom hardware blocks as acceleration en-

gines. [4] 

• bus attached, or 

• network-attached, where the accessing is done over the network. 

All of the above housings support both inline and look-aside acceleration, excluding the 

network-attached housing model, which is tied to only in-line acceleration in the group 

specification.  

For the location of the accelerators, as in deployment models, generally two options for 

data centres can be identified [20] as in having the accelerators deployed in clusters, in 

centralized pools, or each server is coupled with acceleration hardware. Pooling of the 

accelerator hardware is a way of retaining uniformity in the core server infrastructure. On 

the other hand, from the perspective of the complete data centre, the homogeneity of the 

infrastructure is reduced. Whether to deploy the accelerators with each server, or in a 

subset of servers with the downside of more complex management and configuration is 

essentially a matter of cost-effectiveness. [20] 

3.1 FPGA accelerators 

An FPGA is a reprogrammable silicon device used to implement hardware circuitry. It 

consists of a certain amount of basic circuit elements, which are used and interconnected 

according to an architecture definition. Generally, the programmer writes this definition 

using an HDL, such as VHDL or Verilog. With automated tools, the hardware design is 

translated into a binary file, a bitstream, which, once loaded onto the FPGA, implements 

the circuit. As computational data paths are customisable and parallelization can be ex-

ploited, an FPGA can offer considerable performance gain in comparison to software 

implementations running on GPPs. [21] 

The reconfigurability of an FPGA is a crucial feature in an accelerator, as cloudified en-

vironments come with a large variety of workloads changing in a fast pace. [20] With 

FPGAs, as opposed to ASICs, there is no manufacturing process as the functionality can 

be changed with a binary file, enabling more rapid design changes. [21] In comparison 

to another commonly used [20, 21] accelerator, the GPU, FPGAs are less demanding 

on size and power [20]. Besides, even though well-suited for their original purpose of 
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video and image processing offloading, the GPU-provided performance gain in domains 

such as signal processing and ciphering is neglectable [22].  

A common way of bringing FPGA accelerators to data centres is by tightly-coupling them 

with a host CPU in a co-processor manner [23] (figure 3 a)), most commonly on by using 

a daughter-card with a point-to-point connector such as PCIe (Peripheral Component 

Interconnect Express) [24]. A tighter coupling could be achieved by integrating the CPU 

and the FPGA on the same board for latency and memory access benefits [25], but the 

approach breaks server compute module homogeneity, power and size limits for a server 

board could be exceeded, and a fault on the CPU would lead to the waste of the FPGA 

resource  [24]. The tightly-coupled option in general can be effective on local compute 

acceleration [8], but without network connectivity, the accelerators are more prone to 

under- or overutilization by their host CPUs [23]. 

By making the FPGA network-attached as in figure 3 b), it can be used as a standalone 

appliance essentially a peer processor in the network with CPUs [24]. Additionally, for 

more efficient hardware and software co-processing, the FPGA can be made both tightly 

coupled and network attached [23], as in figure 3 c). For example in [8], FPGA acceler-

ators are network-attached and PCIe-connected to a server, enabling local compute ac-

celeration via PCIe, as well as network acceleration and global acceleration. In network-

acceleration, the FPGA can function as an in-line, bump-in-a-wire accelerator for tasks 

such as network encryption and deep-packet-inspection. In global acceleration, the 

FPGAs unused by their hosts can function as remote accelerators for large-scale appli-

cations, e.g. machine learning. [8] 

Network-attachment also brings varying amounts of required logic on the FPGA, as some 

functionalities, such as protocol parsing [26], are essential on all network-attached de-

vices. In for example [24], where the FPGA is a stand-alone network appliance, network-

ing layer is done completely on the FPGA itself, removing the need for an external Net-

work Interface Controller (NIC) and enabling the implementation of a protocols as de-

manded by the network environment. NIC functionalities, however, utilize resources 

which could be otherwise used for accelerator functionalities [8].  
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Figure 3. FPGA accelerator attachment options: a) a tightly coupled coprocessor 
model, b) a network-attached, network appliance model, c) a tightly coupled 

and network-attached model. Adapted from [23]. 
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4. DATA PLANE PROGRAMMABILITY 

A network device, be it a router, switch or a NIC, may have a varying amount of network 

functions to fulfil. These functions can range from switching and routing to for example 

firewalling, network telemetry, quality of service management and load balancing. [10, 

15] Traditionally, the devices often implement these functions utilizing vendor-specific 

protocols, algorithms and interfaces, [15] in a way leaving the devices black boxes for 

the network operators [27]. Because of this, the operators dependent on the device ven-

dor when it comes to device configuration, maintenance and re-deployment [15, 27]. 

Additionally, as compatibility between devices in larger networks needs to be ensured, 

the requirement of interface and protocol standardization can be seen as an obstacle for 

innovation, driving development time up alongside the cost [15].  

At the same time as the operators are depending on the vendors, the network device 

vendors are facing the burden of implementing and supporting new functionalities on top 

of pre-existing ones, as per requests from the operators. New protocols and functions, 

such as new encapsulation methods in datacentre networks [28], are following the re-

quirements set by evolving trends in for example 5G, machine learning and cloud com-

puting [10]. With a rigid data plane, as in one implemented with dedicated hardware, 

adding these new features requires continuous development and manufacturing of new 

and increasingly complex devices. Additionally, an overly extensive supported feature 

set on a device might lead into unnecessary hardware resource utilization or perfor-

mance degradation, should a specific deployment of the device not require it in its en-

tirety [10].  

Bringing programmability to the network devices to address these issues is not exactly 

a novel idea, as research on active networks  was started in the 1990’s. Active network 

research was based on the idea of bringing the analogy of a programmable computer to 

networking, with usage of smart packets to program the network device for wanted func-

tionality. [29] More recently, in the 2000s, the architecture standardization for SDN began 

with the Forwarding and Control Element Separation (ForCES) specification [30] by In-

ternet Engineering Task Force and with OpenFlow [15, 16] . Both ForCES and OpenFlow 

stated, that the programmability in the network devices requires the decoupling of the 

control and forwarding planes, with an open, standardized API in between. For this in-

terface in SDN, OpenFlow has gained the most traction [27].  
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With SDN, the OpenFlow provides a standard API to give the network control plane a 

possibility for configuring the data plane [16]. However, OpenFlow and the switches uti-

lizing it are limited by a predefined set of supported protocols, and the programmability 

of the forwarding device is limited to flow-rule setting with a predefined set of actions 

[28].  

4.1 Programmability to the forwarding plane: How? 

One fundamental factor to the programmability and flexibility of the data plane is the 

choice of hardware platform in the network devices. SDN is targeted to utilize general-

purpose hardware in the network for programmability [31], but at the same time, from the 

network parts, the data plane is the most heavily constrained by performance require-

ments [10].  

The highest programmability comes with software switches implemented on CPUs, or 

GPPs. High abstraction levels in programming languages and design tools provide flex-

ibility and speed in the implementation, at the cost of limited performance due to the 

general-purposed nature of the hardware architecture. [31]  

Network processing units or Network Flow Processors (NFPs), similarly as GPPs, are 

hardware platforms for software switches. Unlike GPPs, these platforms are specifically 

designed with network processing in mind, e.g. by using dedicated accelerator units [32] 

and an architecture enabling processing parallelization. Utilization of this architecture, on 

the other hand, requires more specific programming than with GPPs, at the cost of flex-

ibility. [31]  

Moving to the domain of hardware switches, programmable logic devices, such as 

FPGAs, offer the highest flexibility [31]. These reconfigurable hardware devices enable 

parallel and pipelined processing with wanted functionality. As a downside, the available 

logic is limited per-chip, and compared to ASICs, these chips consume more power, 

come with a higher per-chip-cost, and are more limited in performance due to the gen-

eral-purpose architecture.  

Application-Specific Standardized Products (ASSP) are designed to implement functions 

commonly used or targeted for high-volume products. ASSP use cases can be for ex-

ample physical and data link layer products [31] and switching fabric implementations 

[33] in network devices. Performance for the targeted function come with the downside 

of functionality configuration limitations. [31] 

Performance-wise, the Application-Specific Integrated Circuits (ASICs) reside at the top 

of the curve. These devices are custom made for a certain purpose, designed for the 
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applications where either the required features are outside the scope of standard prod-

ucts, or the performance requirements are too strict for programmable platforms [31]. 

Consequence from the custom application-specification, the ASICs have the poorest re-

configurability from the platform choices.  

In reality, forwarding element devices are not strictly limited to a one certain platform, 

and the optimal trade-off between performance, cost and programmability can be also 

reached with hybrid platforms [10, 31]. A hardware switch appliance can for example use 

a CPU for functions less demanding on performance, and vice versa, a software switch 

could use external hardware components for efficiency. [10] 

As seen in survey [10], one classification criteria for data plane programmability methods 

is the abstraction model of the data plane exposed to the control plane. These abstrac-

tions provide language constructs for an architectural model and means to configure the 

programmable target with. The survey identifies three common abstractions for the data 

plane:  

• The data flow graph abstraction, 

• the match-action pipeline abstraction, and finally, 

• the hybrid-switch abstraction. 

Data flow graph abstractions are based on division of processing logic into smaller enti-

ties, nodes, which are connected by edges. This abstraction model lets the programmer 

choose and connect the processing functions modularly, in the wanted order. An exam-

ple of a data flow graph software switch architecture is Click [34]. Click implements the 

processing nodes of a software switch, called elements, as C++ objects, which are inter-

connected with pointers, called connectors.  

The match-action pipeline abstraction, as used in for example OpenFlow [16], P4 [28], 

Protocol-Oblivious Forwarding [27] and Domino [35], describes the packet processing 

logic with lookup tables containing flow rules. The lookup keys, based on the processed 

packets’ protocol headers, are matched for values in these flow tables. These values are 

stored together with corresponding actions, which determine the following processing 

steps, such as additional lookups on another flow tables or dropping of the packet. Thus, 

the configuration of the packet processing functionality is done by managing the entries 

in the lookup tables.  
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The last of the abstractions presented in the survey is the hybrid-switch abstraction, used 

by architectures combining features from both data flow graph and match-action abstrac-

tions [10]. One presented example application falling into this category is the disaggre-

gated Reconfigurable Match-Action Table [36].  

4.2 P4 brought into focus 

P4, a high-level programming language, receiving its name from its intended use of Pro-

gramming Protocol-independent Packet Processors, is defined to describe the data 

plane packet processing logic of a forwarding element [11]. As stated in the original P4 

paper [28], it is designed around three main goals: 

• Reconfigurability of the packet parsing and processing logic, post-deployment, in 

the field. 

• Protocol independence through a protocol header stack defined by the control 

plane, alongside the parser extracting these headers, and the set of match-action 

tables to process them.  

• Target independence by a high-level functionality description, leaving the gener-

ation of a target-dependant program for compilers. 

P4 is a domain-specific language, and provides the match-action pipeline abstraction of 

the data plane of a forwarding element with programs containing the following main ele-

ments [11, 28]: 

• Header definitions, 

• parsers, 

• match-action tables, 

• actions, 

• control programs. 

All of the protocol headers accessed in the program are defined with their set, order, and 

bit widths of fields. How these headers can be sequenced, and how the sequences are 

identified, is defined in the parser. The parser also defines which of these headers are 

extracted from the packets. [11, 28]  

Program 1 presents a simple example snippet of a parser state machine definition, based 

on the P4 programs used in this work and written according to the P4 specification [11]. 

Keywords reserved by P4 are bolded. The parser declaration with its interface starts on 
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line 1, where the input is a P4 core library extern object packet_in [11], and the output is 

a user-defined struct of headers. Lines 3 to 10 describe the initial state, where, in this 

example, the Ethernet header is extracted from the packet and based on the value of the 

type-field of the header the next state is chosen. On line 8, the default transition is defined 

to be accept, which results into ending the parsing in the initial state for unmatched pack-

ets. Functionality of other states on lines 11 to 17 are abstracted away from the snippet. 

The match-action unit abstraction is provided by the tables and the actions tied to these 

tables.  The tables are defined with lookup keys, which can be header fields or other 

values calculated in the P4 program, and actions which are executed based on the 

matches in the table. The actions are functions, which may have optional input parame-

ters from the table. Tables and actions are contained inside control programs, which 

determine the order of execution of the match-action units. Additionally, the re-assem-

bling of the packet, deparsing, can be defined in a control program. [11] 
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parser MyParser(packet_in pkt, out hdrs_s hdr) { 
 
  state start { 
    pkt.extract(hdr.ethernet); 
    transition select(hdr.ethernet.type) { 
      0x0800  : parse_ipv4; 
      0x8100  : parse_vlan; 
      default : accept; 
    } 
  } 
  state parse_ipv4 { 
    … // state transition rules 
  } 
  state parse_vlan { 
    … // state transition rules 
  } 
  … 
} 

  

Program 1. Example program of parser declaration in P4. 

Program 2 presents an example snippet from a control program including a match-action 

unit, again based on the P4 programs used in this work, written according to the specifi-

cation [11]. Line numbers 9 to 16 define the lookup table. Lookup key is set as a source-

field from an Ethernet field, which in turn belongs to a user defined header struct (hdr). 

Matching method is chosen as exact match, but P4 core library additionally supports 

longest prefix and ternary matching with “don’t care” bits [11].  Actions tied to each table 

value are declared on lines 11 to 14. Each value in the table will trigger either of the two 

actions, “Forward_pkt” or “Drop_pkt”, with the latter one being also declared as a default 



18 

 

action on line 16. The default action is triggered if the lookup results in no match. Maxi-

mum amount of entries in the table is defined on line 15 with the “size” parameter being 

set to 1024.  
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action Forward_pkt (bit<4> route_id) { 
  md.route_ID = route_id; 
} 
 
action Drop_pkt () { 
  md.route_ID = DROP_ID; //constant 
} 
 
table Eth_match { 
  key     = { hdr.ethernet.src : exact; } 
  actions = {  
        Forward_pkt; 
        Drop_pkt; 
  }   
  size = 1024; 
  default_action = Drop_pkt;   
} 

  

Program 2. Example of a match-action unit declaration in P4. 

Actions definitions are on lines 1 to 7. The action “Forward_pkt” has been defined with 

an input parameter, which is received from the table, set by control plane. This received 

parameter is set as the value of a user-defined metadata (md) field “route_ID”. Action 

“Drop_pkt” similarly sets the value of the metadata field, in this case to a value 

“DROP_ID” depicting a user-defined constant. 

4.2.1 P4 targets and compilers 

 

As a domain-specific and target-independent language, P4 is designed to be targetable 

for both software switches and hardware platforms such as NICs, FPGAs and ASICs. 

[11] To produce an actual target-specific data plane configuration and a control plane 

API, an implementation framework, architecture definition and a target-specific P4 com-

piler is required from the target manufacturer [11]. An open-source reference compiler is 

available in [37], designed as modular to provide a standard front end compiler to be 

combined with a platform-specific back end compiler. 

An example of a software switch target for P4 is PISCES [38]. It is based on the Open-

Flow-enabled Open vSwitch (OVS) [39]. OVS has gained wide use in data centres, run-

ning inside a hypervisor and switching traffic among virtual and physical interfaces. PI-

SCES prototype brings protocol-independency to the OVS by three main modifications, 
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possibly required by a P4 program, and a P4-to-OVS compiler. The modifications are 

the addition of arbitrary encapsulation and decapsulation with new header adding and 

removal primitives, conditional action executions, and checksum optimizations. The PI-

SCES compiler compiles a P4 program into OVS C code, with the parse, match and 

action codes replaced according to the P4. This modified OVS can then be compiled with 

a C compiler into switch binary. [38]  

P4-programmable smartNICs can be found from Netronome. Their Agilio class Smart-

NICs are based around Netronome NPUs. [40]  The compilation process uses the open-

source P4 front end compiler together with a Netronome back end compiler for a target-

specific C implementation of the data path. Finally, firmware for the SmartNIC is gener-

ated from these C files and downloaded to the device. [32] 

On the FPGA side, several P4 compilers and projects exist [41-44]. SDNet is a design 

environment from Xilinx, which, supported with a P4 back end compiler, compiles P4 

descriptions into packet processor IPs for Xilinx FPGAs. In addition to the IP, the tool 

generates a testbench for simulations.[41]  

P4FPGA is an open source compiler and runtime, presented in [42]. Similarly as SDNet, 

it is targeted for generating HDL code for FPGAs from P4. P4FPGA uses the P4 front 

end compiler for an intermediate representation, which is then compiled with the 

P4FPGA compiler into a Bluespec SystemVerilog (BSV) representation. The P4FPGA 

BSV-based runtime includes support for external IPs and management units for trans-

ceivers and host communication, enabling FPGA-targets from multiple vendors. Addi-

tionally, the P4FPGA generates a C++ based API for table management and debugging. 

[42] 

Examples of ASIC targets for P4 programming are the switching ASIC Barefoot Tofino 

[45] and RMT [46]. Leveraging the common abstractions in the chip, a P4 compiler tar-

geting the latter is presented in [47]. 
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5. METHODOLOGY 

This work evaluates the feasibility of data plane programmability in network-attached 

FPGA accelerators. More precisely, the evaluation is fixed on evaluating the usability of 

P4 language in the design of protocol processing blocks on an accelerator FPGA, in 

comparison to implementing such functionality directly in RTL. Surrounding the actual 

accelerator Intellectual Property (IP) on the FPGA, these blocks are responsible for net-

working related tasks, such as protocol parsing and header modifications. 

For the evaluation, an accelerator shell design was implemented on the FPGA. The top 

level in the design hierarchy consists of an accelerator wrapper for the acceleration func-

tions, and the shell design providing connectivity, packet processing, and routing func-

tionalities. Three variants of the shell were implemented, each having a different imple-

mentation of the packet processors, yet providing the same data plane functionality. 

These different implementations were 

1) a P4 implementation with a software interface for dynamic table updates,  

2) a hard coded VHDL implementation without a software interface, and finally, for 

more accurate comparison with the VHDL variant,  

3) a hard coded P4 implementation without a software interface.  

The shell designs with P4 implementations were compared against the shell design with 

the VHDL implementation in terms of utilization of FPGA resources, performance, and 

degree of automation in the design flow.  

The FPGA has a fixed amount of programmable logic and on-chip memory, and therefore 

the utilization of resources by the shell dictates the resources available for the main ac-

celeration functionality. To maximize the logic available for the accelerator, the shell de-

sign should be aimed to provide the wanted functionality with the lowest utilization per-

cent possible. The utilization is measured as the use of Lookup Tables (LUTs), Flip-Flops 

(FFs), random-access memories (RAMs) implemented with LUTs (LUTRAMs), and on-

chip block RAM memory tiles (BRAMs).  

The performance is measured with two parameters, latency and throughput. Latency is 

measured as time between the moment the chosen test data is sent out from a traffic 

generator and the moment it has been processed by the Device Under Test (DUT) and 

is received back at the traffic generator. More specifically, latency is measured as cut-

through latency, meaning the measurement begins when the first bit of data is sent out 
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and ends as the first bit is received back. While latency of a network-attached device is 

generally desired to be as minimal as possible, throughput, on the other hand, is most 

feasible as maximal. Throughput is the amount of data the DUT can process in a time 

unit, measured by bits per second in this work.  

While being a less quantitative parameter, the degree of automation in the design flow 

still provides a valuable insight to the feasibility of an implementation method. As the 

design flows differ between the three implementations, the degree of automation can be 

measured by comparing which of the intermediate steps between a design specification 

and an implemented design in each variant is automated, and by how much, in terms of 

lines of code required. 

5.1 Hardware design methodology 

The VHDL-implemented packet processors developed in this work were manually writ-

ten, and verified with an in-house developed Universal Verification Methodology (UVM) 

[48] testbench. For the P4 implementations, the packet processor design and verification 

steps were done with the Xilinx SDNet [41], which is a design environment providing a 

back end compiler for P4 designs targeting Xilinx FPGAs. Additionally, the tool provides 

a flow for RTL simulations with user-provided stimuli, and therefore no user-made 

testbenches were required. For more reference on the tool, newer SDNet documentation 

is available by contacting Xilinx. 

Packet data leveraged in the verification of all packet processor variants was generated 

and captured with a traffic generator, TRex version 2.45, from Cisco [49].  

The integration of the packet processor components to the top-level FPGA design, and 

the synthesis, implementation, and generation of bitstreams, was done by using the Vi-

vado Design Suite [50].  

5.2 Test and measurement setup 

The system used in the FPGA design comparisons and measurements (figure 9) con-

sists of three main hardware components: the FPGA, the host CPU, and the traffic gen-

erator.  

The FPGA used in this work was a Xilinx VU9P Virtex Ultrascale+, attached to a Xilinx 

VCU1525 PCIe development board. More detailed description of the board can be found 

in [51]. The FPGA has three interfaces in use: an Ethernet interface for packet data, a 
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JTAG (Joint Test Action Group) interface used for programming and resetting the FPGA, 

and a PCIe interface for runtime dynamic configurations from the host CPU. 

The test data traffic was generated by an IXIA NOVUS-r100GE8Q28 load module. A 

single port from the traffic generator was connected to one of the VCU1525 board trans-

ceivers with the configured link speed of 10 Gbps and the IXIA software used for test 

configurations was IxNetwork. 

The host CPU has a 64-bit x86 architecture and is running a release 7.4.1708 CentOS 

Linux operating system. With the software interfaced P4 design variant, a C language 

program code was compiled into an executable user application, which uses a Xilinx 

PCIe driver for PCIe access to the FPGA. These PCIe accesses are table initializations 

and updates.  

A Lab Edition of Vivado Design Suite was used on the host CPU for programming the 

FPGA with JTAG connection. The JTAG was converted from an USB connection by the 

USB to JTAG converter of the VCU1525 board. Vivado was additionally used for con-

trolling the system reset on the design with a Virtual I/O [52], and monitoring ILA (Inte-

grated Logic Analyzer) debug cores [53] in the testing phase. The ILA cores were re-

moved before the utilization measurements.  

 

Figure 4. Testing and measurement system description. 

Two different base traffic items, originally generated with TRex,. were used in the testing:  

1) a packet with a maximum supported header stack of outer Ethernet, outer VLAN, 

outer IPv4, outer UDP, VXLAN, inner Ethernet, inner VLAN, inner IPv4 and inner 

UDP, and  

2) a packet with the minimum supported header stack of inner Ethernet, inner IPv4, 

and inner UDP.  
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These two different packet types were chosen to expose possible performance differ-

ences between design variants caused by the varied set of headers parsed and encap-

sulation and de-encapsulation processes. 

The performance measurement method used was an implementation of the RFC 2544 

Throughput/Latency test [54] by IXIA, with frame sizes of 74, 512, 1024 and 1522 bytes 

with the minimal header stack, and 136, 512, 1024 and 1522 bytes with the maximal 

header stack. IXIA requires a certain amount of payload for measurement-related tag-

ging of the packet, hence the difference in the smallest possible frame sizes with different 

header stacks. The latency was measured as average, minimum and maximum cut-

through latency, and maximal throughput was tested by incrementing the transmission 

rate from 10% of the maximum line rate of 10Gbps, until a frame loss threshold of 0 was 

crossed. Test duration for each transmission rate was 20 seconds.  
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6. SYSTEM DESCRIPTION 

This work was done as a part of a larger in-house developed CRUN project. The project 

was based around a concept of a cloud architecture with virtual overlay networks on top 

of a physical network, consisting of server nodes interconnected by switches. These 

server nodes were attached with virtualizable hardware accelerator FPGAs. This chapter 

describes the CRUN architecture, the top level of the FPGA design architecture used as 

the evaluation framework, and the specific use-case the packet processors in the design 

are designed for. 

6.1 CRUN framework 

This section briefly presents the CRUN in a top-down manner, starting from the network 

architecture and then the server architecture, presenting the framework for the FPGA 

design, which is the main subject of this thesis. The layered networking scheme of the 

framework is presented in figure 4. The two main layers depicted are 

• the physical underlay network, consisting of the hardware components building 

the cloud infrastructure, and  

• the overlay network, a virtual network consisting of virtual machines and acceler-

ators, interconnected in VxLAN segments.  

Virtualized network functions are provided by VMs, accelerators and their combinations. 

These VMs and accelerators are physically located on hardware server nodes, but virtu-

ally contained and connected in overlaying virtual networks. For example, a VM on a 

server node 1 might operate together in the same virtual network with an FPGA acceler-

ator unit on a server node 2, together providing a VNF. Their connection is established 

over a virtual tunnel, with the virtual tunnel endpoints residing on the server node 1 hy-

pervisor and the FPGA networking logic on server node 2. In the underlay network, the 

server nodes are connected to switches via NIC and FPGA Ethernet transceivers, form-

ing a physical cloud infrastructure connection. 

Figure 5 presents the CRUN server architecture, depicting its most relevant components. 

The main hardware components are the host GPP, the PCIe-attached NIC, and the op-

tional PCIe attached FPGA accelerator.   
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Figure 5. Network architecture in CRUN. 

 

Figure 6. Server architecture in CRUN. 

The host GPP is running a hypervisor and management and orchestration client appli-

cation on top of a host Operating System (OS).  The hypervisor creates and manages 

VMs and utilizes SR-IOV (Single Root Input/Output Virtualization) to provide the VMs 

virtual functions to access the PCIe physical functions. The hypervisor is in turn managed 

by the MANO client application. 

The MANO client is managing the host OS, the hypervisor and the FPGA, and is a part 

of a larger centralized management application. A more detailed description of the man-

agement and orchestration software used in CRUN is given in [55].  

The FPGA, attached to the host GPP via PCIe, is an optional hardware accelerator com-
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an additional possibility of Direct Memory Access (DMA) to and from VMs on the host 

server via PCIe. The main purpose of the PCIe connection, and the only purpose, in the 

scope of this work, is to provide a control plane interface for flow control of the networking 

logic on the FPGA. The FPGA itself is functioning as a network-attached hardware ac-

celerator. 

The CRUN project also set performance requirements for the FPGA accelerators: 

• The FPGA networking logic cannot limit the throughput of the accelerator and it 

must operate at line rate. 

• The FPGA networking logic latency must be in the scale of microseconds, with 

the maximum of 8µs. 

The maximum latency for the networking logic originates from a neural network inference 

acceleration trial done with CRUN, presented in [56]. A goal in the trial was to achieve 

an ultra-low latency of 20µs to 40µs in the software level. In the trial, this set the require-

ment for the latency on the FPGA hardware between 10µs and 30µs. The largest latency 

on the FPGA came with the baseline implementation of the neural network, itself causing 

a latency of roughly 22µs. This left the networking logic with 8µs to meet the maximum 

limit of 30µs hardware latency. 

6.2 Top level FPGA design 

The top level of the FPGA design used in this work is depicted in the figure 6. The im-

plementation, excluding the accelerator, is designed to operate at line rate and with min-

imal latency. Throughout this thesis, the design excluding the accelerator is generally 

referred to as the shell design. In figure 6, the blocks independent of the shell design 

variant are coloured as orange. The software interface (SW IF) section, consisting of the 

PCIe DMA IP and the AXI4-Lite interconnection (AXI4-Lite XBAR) and its related AXI4-

Lite interfaces are present only in the full P4 implementation with the software interface, 

whereas the packet processor blocks (PKT PROC. INGRESS and PKT PROC. 

EGRESS) coloured with blue are present in each variant, but with different 

implementations.  

The data plane interface in and out of the FPGA is implemented with a Xilinx Ethernet 

Subsystem (Eth-SS) IP [57] for receive (RX) and transmit (TX) operations. On the RX 

side, the IP converts the incoming physical layer (PHY) traffic into AXI4-Stream (AXI4-

S) protocol. The IP is configured for the speed of 10 Gigabits per second, with the clock 

frequency of 161MHz, and a data bus width of 64 bits. This bus width is used in the AXI4-
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S interfaces throughout the design, and the majority of the design operates in the same 

clock domain, with only the SW IF segment functioning within a clock domain dictated 

by the PCIe DMA IP. 

The ingress packet processor parses the incoming packets’ headers and does possible 

lookup operations and header modifications before forwarding the data to the packet 

router (PKT RTR) as AXI4-Stream traffic, alongside a metadata bus carrying possible 

packet-specific information for following blocks, as well as a route identifier (ID).  

 

Figure 7. Top level accelerator shell design implementation on the FPGA. 

The packet router connects the AXI4-Stream interface to either the router buffer (RTR 

BUF) or drops the packet, based on the received route ID. The RTR BUF component is 

a BRAM FIFO (First In, First Out) buffer generated with the Vivado FIFO Generator IP 

[58], and is purposed for migitating backpressure from the accelerator, ensuring that only 

complete packets are forwarded. 

The accelerator wrapper, in this work, does not contain any acceleration logic, and its 

entity consists of direct connections from its inputs to outputs, as the evaluation is 

focused on the shell design. 

The egress packet processor does use-case dependent protocol parsing and header 

modifications, and forwards the packet to the output packet router. This packet router 

and the buffer component connected to it are instances of the same IPs as the packet 

router and the FIFO buffer described earlier.  

Finally, following the buffer, the outoing packet is converted from AXI4-Stream into PHY 

by ETH-SS IP TX, and sent out from the FPGA. 

For the control plane, the FPGA is connected to software via PCIe, with the Xilinx DMA 

(XDMA) IP [59] converting the PCIe procotol into AXI4-Lite protocol. The AXI4-Lite 

interfaces are operating in a clock domain of 125MHz. The XDMA AXI4-Lite interface is 
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connected to the ingress and egress packet processors with an AXI4-interconnect IP 

[60], which maps certain address segments into separate AXI4-Lite interfaces. This 

design segment is only present in the P4 implementation with the software interface, and 

is used there for dynamic table updates for the lookup engines in the packet processors.  

6.3 Use case description 

The chosen application for the packet processors is VTEP termination, meaning VxLAN 

decapsulation in the ingress, and VxLAN encapsulation in egress. In addition to this, the 

packet processors are inspecting and modifying the protocol headers underlaying the 

VxLAN encapsulation. This depicts the accelerator to function in VM, or VNF context, 

while the broader system is operating in cloud infrastructure context. More about VxLAN 

can be found in [61]. 

 
Figure 8. Protocol stack supported by the packet processors. Fixed header lengths 

in bytes (B). 

The set of networking protocol headers supported and processed by the packet proces-

sors are visible in the figure 7. For the data (payload in figure 7) to reach the accelerator 

in the design, it must be included in a User Datagram Protocol (UDP) packet. This UDP 

packet must in turn be encapsulated in an Internet Protocol version 4 (IPv4) packet and 

contained inside an Ethernet frame with an optional VLAN tag. In figure 7, the headers 

of these protocols are shown as the inner headers. In case of VxLAN encapsulation 

being present in the input packet, these inner headers are further encapsulated by a 

VxLAN header, an outer UDP header, an outer IPv4 header and an outer Ethernet 

header with an optional VLAN tag. In the following sections, the operations of the packet 

processors are divided into two contexts: The Cloud Infrastructure (Cloud-infra) context, 

which includes the operations related to the VxLAN encapsulation headers, and the VNF 

(or VM) context, which includes the operations related to the inner headers.  

The processing flow of the packet processors is described in the figure 8, where the 

figure 8 a) describes the ingress operations, and 8 b) the operations in the egress packet 

processor.  

The ingress side operation begins with protocol parsing, starting from the outer headers. 

Once the parsing reaches the UDP header, the destination port field is checked. If the 
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field holds the value 4789, the parsing continues to VxLAN and inner headers. If the 

VxLAN and inner headers are parsed successfully, the processing starts in the cloud 

infrastructure context. If the outer UDP destination port value differs from 4789, the pars-

ing ends and the processing starts directly in the VNF context.  

In cloud infrastructure context, the VxLAN header field Virtual Network Identifier (VNI) is 

matched for VNI values in the on-chip memory. If a match is found, the processing moves 

to VNF context, and if not, the packet is dropped.  

In VNF context, a five-tuple lookup operation determines whether the packet is forwarded 

or dropped. This five-tuple value consists of the values of the following header fields in 

the innermost headers: IPv4 protocol, IPv4 source and destination addresses, and UDP 

source and destination ports. If the lookup operation returns a match, and the five-tuple 

value is found in the on-chip memory, the packet is forwarded. If the packet reached the 

VNF context through the cloud infrastructure context, the VxLAN encapsulation headers 

are removed, and a metadata signal is sent out with the packet, indicating that the origi-

nal packet is to be VxLAN encapsulated in the egress.  

The egress processing, similarly to ingress processing, begins with protocol parsing. If 

the parsing of the inner headers is successful, the processing checks the metadata for 

information if the original packet in ingress had VxLAN encapsulation. If the inner head-

ers are not parsed successfully, the packet is dropped. 

If the metadata indicates that VxLAN encapsulation was indeed present in the original 

packet received in ingress, a lookup operation is initiated with the source address of the 

Ethernet header. These source addresses are saved as keys in the on-chip memory as 

key-value pairs where the return value is a set of outer headers (Ethernet, VLAN, IPv4, 

UDP and VxLAN). If the lookup results in a match, these returned headers are used to 

re-encapsulate the packet. If the on-chip memory is missing a configuration for a partic-

ular Ethernet source address, and a match is not found, the packet is dropped. 

Finally, if the packet has not been set to be dropped, the innermost headers are modified 

with a swap operation. This operation swaps the Ethernet source and destination ad-

dresses, IPv4 source and destination addresses, and the UDP source and destination 

ports. 
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Figure 9.  Packet processing flow diagram for a) ingress and b) egress packet pro-
cessors. 

Parse

Eth:IPv4:UDP:VxLAN

:Eth:IPv4:UDP

Cloud Infra 

Context:

Lookup on 

VxLAN ID

VNF Context:

Lookup on inner 5-tuple

(IP src & IP dst & IP 

proto & UDP sport & 

UDP dport)

DROP_PKT:

Steer to drop with 

metadata

DECAPSULATE:

Remove outer 

headers, if present, 

and steer with 

metadata to 

accelerator

Parse

Eth:IPv4:UDP

Lookup on inner 

Eth.src

DROP_PKT:

Steer to drop with 

metadata

ENCAPSULATE:

Add fetched 

outer headers

Eth & IPv4 & UDP valid

No VxLAN

VxLAN valid

VxLAN

 matched

5-tuple

 matched

No match

No match

Match found for

 Eth. outer &

 IPv4 outer &

 UDP outer &

 VxLAN

Outer headers not 

found from memory

Eth & IPv4 & UDP 

invalidCheck if 

VxLAN 

present

VxLAN enabled

Swap src & dst, sport 

& dport of inner 

headers, steer with 

metadata to ETH TX

Eth & IPv4 & UDP valid

Check if VxLAN 

enabled from 

metadata

VxLAN disabled

a) b)



31 

 

7. IMPLEMENTATION 

This chapter describes the hardware design steps from specification to testing which 

were gone through in this work and presents the design architectures which were created 

to implement the functionality based on the use case description in chapter 8.2. Figure 

10 pictures the design steps on a generic level to apply to all three design variants. 

 
Figure 10. Generic flow graph of the design process for all packet processor 

variants. 

The specification step roughly translates into the process of specifying the use case, 

describing the main functionality, parse trees and IP interfaces. The following steps, pro-

duction of RTL and verification, are executed with different methods, depending on 

whether the design is implemented with P4 or VHDL. These steps are described in the 

subchapters 9.1, 9.2 and 9.3 for VHDL, P4 with the software interface, and hard-coded 

P4 implementations respectively. A common sub-step for all design variants in verifica-

tion was packet stimulus generation. All three implementations were using packet cap-

ture (pcap) files as test stimulus.  

The integration step execution is similar between all design variants. The packet proces-

sors were integrated to the surrounding shell architecture by connecting interfaces in a 

VHDL top level entity.  

As the design includes multiple Xilinx IPs, and the target platform was a Xilinx FPGA, 

the synthesis, implementation and bitstream generation were done using Vivado Design 

suite [50] from Xilinx. In the Vivado tool flow, the implementation step essentially means 

mapping the synthesized design into actual hardware resources available on the FPGA, 

and then placing and routing the design. Vivado was also used to insert ILA debug cores 
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into the design. These debug cores could then be connected to probe certain signals, 

and thereby further verify correct functionality on the top level of the design in the testing 

phase.  

In the testing phase, the target FPGA was programmed with the generated bitstream. 

With the software interfaced P4 design variant, a C code was prepared and compiled 

into an executable for hardware register access for table population. The design was 

then tested with the IXIA traffic generator by transmitting varying types of packets to the 

FPGA. The rebound packets were then inspected to verify the wanted functionality. Error 

cases were investigated with the hardware debuggers and resolved on the RTL. The 

hardware debuggers were removed after the design was deemed functional for more 

exact utilization reports.  

7.1 VHDL implementation 

In the VHDL implementation, the production of the RTL description was manual. This 

made the hardware design process lengthier, but at the same time more accurate in 

comparison to a higher-level P4 language implementation. As the RTL description was 

written, it was frequently simulated with a UVM testbench. The test stimulus was gener-

ated from pcap files, and the DUT output was checked against another pcap file present-

ing the wanted output. Three different premade pcap files were used: 

• one representing the input data for ingress packet processing received from ETH 

RX, 

• one representing the data at the output of the ingress packet processor, and  

• one representing the output data at the output of the egress packet processor.  

This enabled automated verification of the DUT output against the reference pcap files 

in three different stages of the design:  

1) complete functionality of the ingress packet processor implemented, 

2) complete functionality of the egress packet processor implemented, 

3) complete functionality of both packet processors implemented. 

The intermediate stages of the design were simulated and verified only visually from 

simulation waveforms. 

Figure 11 describes the implemented ingress packet processing architecture. The design 

functions in line rate and handles back-pressure by back-propagating it. The parser is 

designed to function in a pass-through manner, i.e. it is inspecting and extracting header 
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fields while passing through the input packet stream without registering the data stream. 

It handles the defined parse-tree with Finite State Machine (FSM) structure, with devia-

tions from the expected protocols causing a parsing error signal passed in the metadata 

along the packet stream. A successful parse results in a tuple valid pulse, which is 

passed along the extracted header fields and a VxLAN-valid signal to the lookup emula-

tor.  

 
Figure 11. Design architecture of the VHDL-implemented ingress packet pro-

cessor. 

The pipeline valve functions as an intermediate buffer to prevent the packet stream en-

tering further until either a successful parse or a parse error. The valve opens only after 

receiving a tuple valid or a parse error signal, staying open until the last beat of the 

packet, during which the metadata buffer is read for the parsing status of the next packet. 

The packet pipeline functions as a delay to buffer the stream until a lookup result is read. 

It has a similar valve structure to prevent the packet stream, as in the pipeline valve. In 

the case of a parse error, the packet is streamed through directly, with metadata indicat-

ing the latter block to stream through and route the packet for dropping. If the parse error 

signal is zero, the valve opens only after receiving a lookup result. The lookup result is 

passed on as metadata, alongside the stream to the two final pipeline stages. 

The stream shifter is polling for valid beats from the two final pipeline stages on the 

packet pipeline. In the case of the metadata indicating a drop, resulting from a parse 

error or a no-hit lookup, the packet is streamed through with metadata guiding it to drop. 

If, instead, the lookup resulted in a hit, the packet is streamed through with the valid as 

zero, until the count of bytes indicated by the metadata has passed. After the discarded 

beats, the valid signal is set to follow the input, and the stream is aligned correctly by left 

shift. The shift amount is read from the input metadata. Alongside the output stream, the 

stream shifter outputs a metadata consisting of route ID, VxLAN enabled, and outer 
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VLAN enabled. This metadata enables the egress packet processor to encapsulate the 

packet correctly. 

Figure 12 describes the egress packet processing architecture, which is similarly oper-

ating in line rate and backpropagating backpressure. The egress side parser has the 

same operation principle as the ingress side, although the parse tree consists of only 

inner headers. It passes a tuple valid pulse to the lookup emulator along with the ethernet 

source address if the inner header stack is parsed successfully. Otherwise, a parse error 

signal is passed to the pipeline valve. Alongside the packet AXI4-stream, a metadata 

bus carries the information of whether VxLAN encapsulation is enabled for the packet, 

and if the outer headers carried a VLAN tag in the original packet received in ingress. 

The lookup emulator has Ethernet source addresses and corresponding outer headers 

saved as constants. Once a valid, extracted Ethernet source address is received from  

the parser, it conducts a lookup operation. If a match occurs, the outer headers are 

streamed to the lookup result buffer in the Stream assembler. If not, the negative result 

is passed in a single transfer.  

 

Figure 12. Design architecture of the VHDL-implemented egress packet pro-
cessor. 
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3) VxLAN encapsulated and forwarded with the outer headers from the lookup result 

buffer.  

In the case of 1), the packet is streamed through without modifications with the metadata 

field route ID set to 0, resulting it to be routed into drop. In case of 2), the packet is 

streamed through while the Ethernet and IP addresses and the UDP port fields are 

swapped.  In the case 3), the outer headers are first streamed from lookup result buffer 

and the rest of the packet stream starting from the inner headers is concatenated into 

this encapsulation header stream. The same swap operations as in case 2) are also 

executed.  

In general, the VHDL implementation was not done with resource optimization in mind, 

and the goal was to attain the wanted functionality with as low as possible latency, re-

gardless of the levels of logic between registers, as long as the timing constraints were 

met.  

7.2 Software interfaced P4 implementation 

In the P4 Software Interfaced design variant, the RTL is generated as IPs from P4 lan-

guage description with a third-party tool. The written P4 code for ingress and egress 

matches closely to the use case description described previously in chapter 8.2. Both P4 

descriptions consist of 3 logical entities: the parser, the match-action pipeline, and the 

deparser, which is the final control block emitting the packet with wanted protocol head-

ers. Both P4 descriptions have the same headers struct defined, consisting of the outer 

and inner headers.  

The ingress parser definition has a parse tree which starts at the outer Ethernet. If a 

VXLAN header is encountered, an indicator from this is passed in a metadata field to the 

match-action pipeline. The lookup-table and action declarations of the ingress match-

action pipeline are presented in program 3. As an initial process, the match-action pipe-

line control section code checks the validity of the VxLAN header. If it is valid, a VNI 

matcher table is applied. As seen in program 3 lines 26 to 31, the matching method of 

the table is exact match, and the key is the VNI-field of VxLAN. Size is defined as two. 

The table is defined to have to two actions: a default action “dropPacket” (lines 10-12), 

which sets the metadata route ID field as 0, and the action “move_to_VNF_cntxt” (lines 

1-3), which sets an internal variable of “vnf_cntxt_enable” as ‘1’. Both actions are defined 

without input parameters. 

If the VxLAN header was not valid, or the “vnf_cntxt_en” is ‘1’ after VNI matcher table 

was applied, the table “five_tuple_matcher” (lines 14-24) is applied. The table uses five-
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tuple as the key, with exact match as the matching method. Size of the table is two. 

Actions tied to the table are “TerminateVT” (lines 5-8), which sets the metadata route ID-

field as 1 and the variable “terminate_enabled” to ‘1’, and the previously explained action 

“dropPacket”.  

Finally, should the “terminate_enabled” be ‘1’ and VxLAN header valid, the outer headers 

are set as invalid and thereby removed from the packet in the deparser. However, if the 

VxLAN is invalid, but terminate_enabled was ‘1’, the packet is not modified but still for-

warded. In any other case the route ID-field value ‘0’ results in the packet to be dropped 

by the external router IP (PKT RTR in figure 6).  

In egress P4 description, the parser starts directly from inner Ethernet and parses 

through the inner header stack.  The match-action section processing begins with an if-

clause conditioning the validity of the complete inner header stack. Should they prove 

valid, a nested if-clause checks the value of the metadata field “VXLAN_ena”. If it is “1”, 

the tables “addEth”, “addIPUDP”, and “addVxlan” are applied. These tables and related 

action declarations are presented in program 2. 

All three tables (lines 17-36) have the same lookup key, which is the Ethernet source 

address, and each table has the exact match lookup method. All the tables have one 

common action, the dropPacket (lines 13-15), which has no input parameter and writes  

the metadata route ID-field as zero, resulting in the packet to be directed for drop. Addi-

tionally, each table has a unique action: action “PushEth” (lines 1-3) for table “addEth”, 

“PushIPUDP” (lines 5-7) for “addIPUDP”, and “PushVxlan” (lines 9-11) for “addVXLAN”. 

Action PushEth has an input parameter of a 144-bit vector consisting of Ethernet and 

optional VLAN headers, PushIPUDP a 224-bit vector consisting of IPv4 and UDP head-

ers, and PushVxlan a 64-bit vector consisting of the VXLAN header. If these actions are 

hit and the input parameters were found in memory, the outer headers are set as valid 

and their values set from the input parameters of the actions. These action functionalities 

are omitted for brevity.  

Finally, if no “dropPacket” actions were hit, or VxLAN encapsulation was not set in the 

metadata, the route ID-value is set as “1”, resulting in the packet being forwarded for 

Ethernet TX. Due to tooling issues at design time, the software interfaced P4 implemen-

tation does not include the inner header swap operations.  
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Program 3. P4 declarations for ingress match-action tables and actions for the soft-
ware interfaced P4 implementation. 

Figure 13 describes the SDNet-generated packet processor IP with its main interfaces. 

The parser, match-action pipeline, deparser, and the interior interfaces represent the P4 

description, and are not actual internal hardware components in the SDNet IP. The 

packet processing IPs in this work are interfaced in data plane by a 64-bit AXI4-Stream 

packet data interfaces and supporting metadata interface, providing once-per-packet 6-

bit sideband data accompanied with a valid signal. The control plane interface is an AXI4-

Lite interface, used for managing the contents of the lookup tables in the memory search 

IP cores of the design.  

The user application for table management is using and compiled together with an API, 

and the compiled executable is using a PCIe driver for access from the host CPU to the 

FPGA. It is essentially responsible for populating the tables with key-value pairs.  
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action move_to_VNF_cntxt() { 
  vnf_cntxt_en = 1; 
} 
 
action TerminateVT() { 
  metadata.ROUTE_ID = 0x1; 
  terminate_enabled = 1;   
}  

     
action dropPacket() { 
  metadata.ROUTE_ID = 0x0;   
} 
 
table five_tuple_matcher { 
  key = { dst   : exact; 
          src   : exact; 
          proto : exact; 
          dport : exact; 
          sport : exact; 

} 
actions        = { TerminateVT; dropPacket; } 
size           = 2; 
default_action = dropPacket; 

} 
 

table vni_matcher { 
  key = { hdr.vxlan.vni : exact; 
  } 

actions        = { move_to_VNF_cntxt; dropPacket; } 
size           = 2; 
default_action = dropPacket; 

} 
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Program 4. P4 declarations for egress match-action tables and actions for the soft-
ware interfaced P4 implementation. 
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action PushEth(bit<144> hdrs_1) {   
  … //Ethernet+VLAN set valid and added 
} 
 
action PushIPUDP(bit<224> hdrs_2) {  
  … //IP+UDP set valid and added 
} 
 
action PushVxlan(bit<64> hdrs_3) {   
  … //VXLAN set valid and added 
} 
 
action dropPacket() {  
  md.ROUTE_ID = 0x0; 
} 

 
table addEth   { 
  key      = { eth_tmp : exact; } 
  actions  = { PushEth; dropPacket; } 
  size            = 4; 
  default_action  = dropPacket; 
} 
 
table addIPUDP  { 
  key      = { eth_tmp : exact; } 
  actions  = { PushIPUDP; dropPacket; } 
  size           = 4; 
  default_action = dropPacket; 
} 
 
table addVxlan    { 
  key      = { eth_tmp : exact; } 
  actions  = { PushVxlan; dropPacket; } 
  size           = 4; 
  default_action = dropPacket; 
} 
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Figure 13. P4-defined packet processor IP. 

7.3 Hard-coded P4 implementation 

The hard-coded P4 implementation of the packet processors has the same implementa-

tion flow as the software interfaced P4 implementation. There are, however, three main 

differences: 

1) The P4 code does not include any table structures, as the match-action structures 

are made with conditional statements. Therefore, 

2) there are no software interfaces in the packet processors and the top level of the 

shell design is coherent with the VHDL implementation. 

3) Without a software interface, no control plane application for table management 

is used. 

The conditional statements replacing the match-actions are presented in programs 5 and 

6, for ingress and egress, respectively. In program 5, the matching of the VNI field is 

done by comparison to constants “const_vni_1” and “const_vni_2” (lines 1-6), which hold 

pre-defined VNI values. Match or no match results in same functionality as in software 

interfaced ingress program. The five-tuple value matching is done (line 8-15) by compar-

ing the input five-tuple value to pre-defined constants “const_fivetpl_1” and 

“const_fivetpl_2”. 

Hard-coded P4 egress match-action declaration is shown in program 6. The Ethernet 

source field of the input packet is compared against 4 pre-defined constants, resulting in 

either header additions with a match, or packet being guided to drop with route ID-field 

as “0”. 

With these code structures the design is to match more closely to the VHDL implemen-

tation, as the software interface and possible related hardware is made unnecessary. 
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Data plane functionality is the same as in the software interfaced variant, as is the sim-

ulation process.  
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if ((hdr.vxlan.vni == const_vni_1) || (hdr.vxlan.vni == const_vni_2)) { 
  vnf_cntxt_en = 1; 
} 
else { 
  vnf_cntxt_en = 0; 
} 
…  
if ((fivetpl == const_fivetpl_1) || (fivetpl = const_fivetpl_2)) { 
  metadata.ROUTE_ID = 0x1; 
  terminate_enabled = 1; 
} 
else { 
  metadata.ROUTE_ID = 0x0; 
  terminate_enabled = 0;   
} 

Program 5. The Conditional statements of the hard-coded P4 ingress implementation, 
which replace the software interfaced match-action table structures. 
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//if VXLAN encapsulation is enabled 
if (hdr.eth.src = const_eth_src_1) { 
  … //Outer headers set valid and added from constants #1 
} 
else if (hdr.eth.src = const_eth_src_2) { 
  … //Outer headers set valid and added from constants #2 
} 
else if (hdr.eth.src = const_eth_src_3) { 
  … //Outer headers set valid and added from constants #3 
} 
else if (hdr.eth.src = const_eth_src_4) { 
  … //Outer headers set valid and added from constants #4 
} 
else { 
  md.ROUTE_ID = 0x0; 
} 

Program 6. Conditional statements of the hard-coded P4 egress implementation, re-
placing the software interfaced match-action table structures. 
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8. RESULTS AND ANALYSIS 

This chapter presents the FPGA resource utilizations, latency, and throughputs of the 

three design variants. 

8.1 Utilization 

The numerical amounts of FPGA resources available in total on the VU9P FPGA are 

presented in table 1. The LUTRAMs are a subset of the LUTs.  

RESOURCE AVAILABLE TOTAL (CT.) 

LUT 1182240 

LUTRAM 591840 

FF 2364480 

BRAM 2160 

Table 2 describes the count of resources used in the VHDL (PP Ing. VHDL), hard-coded 

P4 (PP Ing. P4 HC), and software interfaced P4 (PP Ing. P4 SW IF) implementations of 

the ingress packet processor. For comparison clarity, these numerical values are also 

visualized as percentages of total available resources from table 1 in the figure 14. While 

inspecting the utilization percentage figures, one should bear in mind the actual percent-

ages are platform-dependant, and therefore the key point of the figures is the relations 

of these percentages between implementations. 

As seen from the figure 14, the resource utilization in the software interfaced P4 imple-

mentation is significantly higher the amount used in two other design variants. The gen-

erated RTL is third party IP, and one can only make hypothetical assumptions on the 

cause for this difference. Logical entities in the software interfaced variant, which are 

missing in the other design variants, are the software interfaced lookup tables. They may 

have surrounding logic in forms of e.g. protocol converters, buffers and arbiters. 

 

 

 

 

 

Table 1. Amount of resources available on the VU9P FPGA. 

DESIGN RESOURCE UTILIZATION (CT.) 

VARIANT LUT LUTRAM FF BRAM 

PP ING. VHDL 1110 96 930 0 

PP ING. P4 HC 1239 393 2697 0 

PP ING. P4 SW IF 9656 2284 18403 12 

Table 2. Amount of resources utilized by each ingress packet processor variant. 
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Figure 14. FPGA resource utilization percentages in ingress packet proces-

sors. 

Comparing the VHDL and hard-coded P4 implementations of the ingress packet proces-

sors, one can see that the VHDL implementation has the lower utilization percentage in 

all the selected FPGA resource types, excluding the BRAMs, which are at even 0 in both 

variants. This result could be expected, as the VHDL implementation is written directly 

to fulfil its purpose, without any overhead in performance or functionality. Particularly 

visible is the difference in FF usage: the hard-coded P4 implementation is using 190% 

more flip-flops than the VHDL implementation. This is in-line with the design principle of 

the VHDL design, as it was created to have as-low-as-possible latency, with minimal 

register stages. On the other hand, the VHDL variant is actually using more combinatory 

logic than the hard-coded P4 variant: as seen in table 2, the hard-coded P4 ingress pro-

cessor is utilizing 1239 LUTs, of which 393 are used as LUTRAMs, leaving 846 LUTs 

used as combinatory logic. For the VHDL variant, these numbers are 1110 LUTs, of 

which 96 are used as LUTRAMs, leaving 1014 LUTs used as combinatory logic.  

Finally, the hard-coded P4 ingress variant is using almost fourfold the LUTRAMs com-

paring to the VHDL variant. In the VHDL variant, the memories are used in pipeline FIFOs 

to stall the stream while the lookup is finished and their capacity is minimized. The use-

case of the P4 design variant for the LUTRAMs is unknown.  

Table 3 presents the numerical counts of resources utilized by the VHDL (PP Eg. VHDL), 

hard-coded P4 (PP Eg. P4 HC), and software interfaced P4 (PP Eg. P4 SW IF) imple-

mentations of the egress packet processor. Utilizations as percentages of total available 

resources are depicted in figure 15. The software interfaced P4 variant of the egress 

processor is by far the most resource expensive of the variants, which is again expected 
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as the design includes software interfaced lookup tables. The VHDL variant of the egress 

packet processor has the lowest utilization ratio across all resource types. 

DESIGN RESOURCE UTILIZATION (CT.) 

VARIANT LUT LUTRAM             FF     BRAM 

PP EG. VHDL 2415 104 2054 0 

PP EG. P4 HC 3730 1875 7818 0 

PP EG. P4 SW IF 21148 5999 43236 44 

 

Figure 15. FPGA resource utilization percentages in egress packet processors. 

On the egress side, the most drastic percentual resource utilization difference occurs 

with the LUTRAMs: the hard-coded P4 egress processor is using 1875 LUTRAMs, which 

is roughly 18x the 104 LUTRAMs used by the VHDL variant. These counts leave 1855 

and 2311 LUTs used as combinatory logic for hard-coded P4 and VHDL variants, re-

spectively. For FFs, the difference between hard-coded P4 and VHDL egress processors 

is 5764 units, making the FF utilization of the hard-coded P4 design 3.8x the utilization 

of the VHDL variant.  

Table 4 presents the percentual increase in resource utilization from ingress to egress in 

the VHDL, the hard-coded P4 (P4 HC) and the software interfaced P4 (P4 SW IF) packet 

processor implementations. One should remember that the logical functionality in ingress 

is essentially comparing header values to lookup keys, and possibly remove headers 

and route the packet with metadata. In egress however, the lookup leads into header 

addition operation and modification, apart from the software interfaced P4 variant where 

the header swap operations do not occur. From table 4 one can notice, that the egress 

Table 3. Amount of resources utilized by each egress packet processor variant. 
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side functionality is more demanding on the hardware resources across all three design 

variants. 

DESIGN 

VARIANT 

INCREASE OF UTILIZATION FROM IN-

GRESS TO EGRESS (%) 

 LUT LUTRAM FF BRAM 

VHDL 117,6 8,3 120,9 0 

P4 HC 201,0 377,1 189,9 0 

P4 SW IF 119,0 162,7 134,9 266,7 

 

For P4 SW IF, the usage of on-chip BRAM experienced the most drastic increase. An 

increase is expected, as the stored lookup values are increased from just five-tuple val-

ues and VNIs into Ethernet source addresses and full VxLAN encapsulation headers, 

therefore requiring more memory space. In the VHDL variant, the increase is not directly 

visible in memory resources, i.e. LUTRAMs or BRAMs, but the P4 HC variant egress 

packet processor shows a rather significant growth of 377% in LUTRAM usage compar-

ing to the ingress packet processor. The storage of the VHDL variant is implemented 

with constants mapping to FFs and LUTs, but most of the increase in these resources 

happens in the egress assembler. The assembler holds a shift register buffer for the 

outer header stack stream to be concatenated into the packet stream, plus logic to swap 

the inner header addresses and ports.  

Altogether, the VHDL variant can be deemed as the most resource optimized with the 

least overhead in both the ingress header removal, and the egress header addition and 

modification. Naturally, the comparison of utilizations between the P4 SW IF and other 

variants might not be the most meaningful, as the P4 SW IF variant holds logic not pre-

sent in others. In terms of utilization scaling with different functionalities, on the other 

hand, the VHDL variant is the best across all variants.  

8.2 Performance 

Tables 5 and 6 present the maximal throughputs of shell designs with VHDL (Shell 

VHDL), hard-coded P4 (Shell P4 HC), and software interfaced P4 (Shell P4 SW IF) im-

plementations of packet processors. Table 5 measurements are done with packets hav-

ing only inner headers, whereas table 6 measurements are done with VxLAN encapsu-

lated packets, including also the outer headers. Looking at the throughputs, one can 

notice that the values are the same per frame size across all design variants. It can be 

Table 4. Percentual increases in resource utilization from ingress to egress.  
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assumed that all the packet processors are capable the same throughput. The delta be-

tween the theoretical line rate of 10Gbps and the measured throughputs seems inde-

pendent of the shell design variants and is most likely caused by factors external to the 

packet processors, such as the traffic generator or Ethernet SS IP limitations. Affecting 

factor to the throughput seems to be the frame size, and in a manner that would show 

that more frequent packet boundaries, i.e. smaller frames, cause more delta from the 

maximum throughput. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Latency measurements for each shell variant similarly presented with only inner headers 

in table 7 and figure 16, and with VxLAN encapsulated frames in table 8 and figure 17. 

These results show that the VHDL variant of the shell design has by far the lowest latency 

independent of the case of only inner headers or VxLAN encapsulation present in the 

packet. With only inner headers, the Shell P4 HC has a roughly a twofold latency com-

pared to the VHDL variant. For the Shell P4 SW IF, the latency is roughly 2,5-fold the 

latency of the VHDL variant. It is also notable, that with the smallest tested frames (74 

Bytes), the P4 variants are able to process the packets with around 40 ns (roughly 6,5 

clock cycles with the frequency of 161 MHz) smaller latency than larger packets, whereas 

the latency of the VHDL variant is somewhat constant across all frame sizes.  

The VxLAN encapsulated frames induce larger latencies for all design variants, but the 

lowest latencies are still caused by the VHDL variant. The header removal, addition and 

modification operations cause an average increase of 90 ns (14,5 clock cycles) in latency 

Table 5. Measured throughputs from the shell variants with basic Ethernet frames. 

FRAME SIZE THROUGHPUT (Mbps) 

(BYTES) Shell VHDL Shell P4 HC Shell P4 SW IF 

74 7871,543 7871,543 7871,543 

512 9623,097 9623,097 9623,097 

1024 9807,447 9807,447 9807,447 

1522 9869,311 9869,311 9869,311 

Table 6. Measured throughputs with VxLAN encapsulated Ethernet frames. 

FRAME SIZE THROUGHPUT (Mbps) 

(BYTES) Shell VHDL Shell P4 HC Shell P4 SW IF 

136 8717,076 8717,076 8717,076 

512 9623,097 9623,097 9623,097 

1024 9807,448 9807,447 9807,447 

1522 9869,311 9869,311 9869,311 
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in the VHDL variant comparing to the latencies measured with the frames without VxLAN 

encapsulation. For the P4 variants, the increase in latency with VxLAN capsulation op-

erations is around 40 ns (roughly 6,5 clock cycles). This would indicate that the P4 vari-

ants hold already more overhead in processing time even for packets with only inner 

headers, and the VxLAN encapsulation header processing can be more parallelized with 

other operations than with the VHDL variant. The latency of the VHDL variant is domi-

nantly caused by header removals and additions.  

The latency difference between the two P4 designs is over 250 ns, adding up to roughly 

42 clock cycles. The root cause for this is unknown, given the encrypted nature of the 

designs, but assumptions can be made. As the P4 SW IF variant holds the software 

interfaced lookup table logic, it could be causing additional latency in the packet pro-

cessing match-action pipeline with for example protocol converters (such as AXI-protocol 

to a native memory interface protocol), extended buffering, arbiters, and naturally the 

delay caused by the lookup operation itself. In the case of the VHDL design, the lookup 

latency is one clock cycle, as there are no memory structures and the lookup is essen-

tially a logical bitwise AND-operation between the extracted header fields and the con-

stant values. However, the lookup emulator is specifically designed to be an external 

component, where a lookup engine could be inserted, without affecting the parsing, pipe-

line and deparsing stages of the design.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Measured cut-through latencies with Ethernet frames. 

FRAME SIZE LATENCY (ns) 

(BYTES) Shell VHDL Shell P4 HC Shell P4 SW IF 

74 544 1048 1301 

512 542 1091 1344 

1024 542 1091 1344 

1522 544 1092 1345 

Table 8. Measured cut-through latencies with VXLAN encapsulated Ethernet frames. 

FRAME SIZE LATENCY (ns) 

(BYTES) Shell VHDL Shell P4 HC Shell P4 SW IF 

136 632 1137 1390 

512 632 1135 1389 

1024 632 1135 1388 

1522 633 1137 1390 



47 

 

 

 
Figure 16. Latencies with only inner headers for each design variant per 

frame size. 

 
Figure 17. Latencies with VxLAN encapsulation headers on top of inner head-

ers for each design variant per frame size. 

The minimum size of an Ethernet frame is 64 bytes (512 bits) [62], which with a 64-bit 

data bus-width and back-to-back frames means a new packet every 8 clock cycles. This 

clock cycle count gives a theoretical maximum latency for a packet-specific lookup to not 

affect the throughput of the design. In other words, the throughput of the lookup engine 

itself has to be 1 lookup per 8 clock cycles. For example, the Xilinx BCAM engine (Binary 

Content-Addressable Memory) for SDNet version 2018.1 [63] is reported to have a 

lookup latency of 3 clock cycles. The rest of the design has a buffering capability for a 

lookup latency of 12 clock cycles, which would still leave clock cycles for pipelined arbi-
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tration and protocol conversions. With a 12-clock-cycle lookup latency, the overall la-

tency of the VHDL design variant would be increased by roughly 70 ns (with the clock 

frequency of 161MHz).   

Adding an actual memory search IP to the lookup-emulator remains as possible future 

work. This would naturally introduce added logic to the design, for memory access arbi-

tration between the lookups and table updates, and the resource utilization of the design 

would grow along with some added latency. Also, one should remember that these per-

formance metrics do not consider the runtime table updates, which will cause either 

added latency with buffering, or dropped packets in the case of table updates exceeding 

the clock cycle window for the lookup operations. Nevertheless, in this use case, the 

VHDL variant is superior in terms of latency minimization and should prove to be superior 

even with an added lookup engine, providing lower latency than the P4 designs.  

8.3 Degree of automation  

Figure 10 in chapter 9 depicted the steps of the workflow on a general level, common to 

all design variants. In figure 18, the steps of actual hardware design (as in hardware 

description code writing) and verification are pictured with slightly more detail, but still on 

a very general level, showing what sub-steps they include in VHDL design flow (fig. 18 

a)) and in P4 design flow (fig. 18 b)). Feedback paths from verification steps back to 

hardware design are abstracted from the picture but naturally exist, as the design is fixed 

based on simulation results.  

As figure 18 shows, the main difference in the HW design processes with VHDL and P4 

design flow is production of RTL description of the design, which is written manually (IP-

reuse is not taken into account) in VHDL flow, but generated automatically in the P4 

design flow, based on the P4 description. To give an insight on the degree of automation 

in the P4 flow, table 9 presents the lines of code (LOC) required to develop the combined 

packet processors, the ingress packet processor, and the egress packet processor per 

design flow. Even though in general the LOC-based analysis of code might not be par-

ticularly meaningful due to personal differences and taste in coding styles and code read-

ability levels, it is used in this work to give the reader a sense of the level in abstraction 

and simplicity in P4 compared to VHDL. Empty and commented lines are excluded from 

the LOC counts.  
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Figure 18. Design and verification workflow graphs for a) VHDL and b) P4 de-
sign in this work. 

As seen in the table 9, the combined LOC count of the VHDL ingress and egress packet 

processors is roughly 6,3-fold the LOC count of the P4 HC variant, and 8,1-fold the re-

spective count in the P4 SW IF variant, with a difference of over 3 thousand lines to both. 

As P4 is a higher-level language, this is expected: the P4 code is more of a functional 

description with no clock cycle-accurate operations as in RTL, such as VHDL. For ex-

ample, the highest LOC count for a single IP in the VHDL variant is 446 in the ingress 

parser. This IP implements the parse tree with a sequential process FSM, which alone 

has 40 states and 356 LOC. In comparison, the ingress parse tree definition in P4 takes 

10 states and 71 LOC. 

On the egress side, the dominant IP of the VHDL variant, in terms of LOC, is the stream 

assembler. Supporting different header structures and swapping headers on the fly re-

quires again a large FSM structure. This increase in code length in egress side altogether 

is however mitigated by a shorter parse tree (130 LOC), as there are no VXLAN encap-

sulation headers to parse. In P4 HC variant the LOC count increases due to the if—

clause structure presented in chapter 8.3, and thus the source code in both ingress and 

egress is lengthier than in the P4 SW IF design units. In general, the P4 SW IF variant 

seems to handle scaling better across ingress and egress, and has consistently the 
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smallest count of LOC. At the same time, it is the design variant with the most logic, as 

presented in chapter 9.1, and the most complex design with the added SW IF section. 

DESIGN UNIT LINES OF CODE 

 VHDL P4 HC P4 SW IF 

PP TOTAL 3624 576 446 

PP INGRESS 1836 247 239 

PP EGRESS 1786 329 207 

 

The verification done with this work was not thorough, and as seen in the figure 15, fall 

more under the category of simulation. Tasks included  

1. building the framework of a verification environment, a testbench, such as an 

UVM class hierarchy structure, 

2. defining a set of test cases, the stimuli, and implement the feeding of this stimuli 

to the DUT.  

3. Simulation of the DUT with the testbench and verifying the wanted functionality 

corresponding to the input stimulus 

From these three steps, only the first one is somewhat automated in the P4 flow with 

Xilinx SDNet. The IP developer is left with the task of choosing the stimuli and running 

the simulations, as well as verifying the output. In this work, the UVM testbench structure 

was legacy design and reused. How much of work this kind of a testbench architecture 

requires in terms of LOC or work hours, is dependant for example of the IP, its interfaces, 

requirements on testing, and developer experience. Additionally, in the case of develop-

ing IPs which have the same interface, such as packet processors with different protocol-

specific operations, the testbench architecture would not possibly need much rework in 

principle between implementations, and reuse to some degree should be possible.  

Whereas exactly quantitative analysis on the degree of automation gained from the P4 

design flow cannot be performed, a few conclusions can be made. Even with the simpli-

fied VHDL implementation without memory search IPs, the P4 design with a software 

interface provided a significant advantage in terms of code lines to be written. This is a 

natural consequence of the high-level nature of the P4 language, coming with the disad-

vantage of losing control in clock cycle accurate functionality description. With the sup-

porting simulation test environment provided by SDNet, the P4 language could very well 

lead into a smaller time to testing and prove itself useful in for example Proof of Concept 

(POC) projects, such as [56]. 

Table 9. Counts of lines of code per design unit for each design variant. 
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9. CONCLUSIONS 

In this thesis, a data plane programming language, P4, was trialled as an implementation 

method for networking logic on a network-attached FPGA. The goal was to find out if the 

high-level nature of the language with a current state compiler could prove an efficient 

way to implement packet processing logic without an overly extensive supported feature 

set and sufficiently in-par with a traditional VHDL implementation in terms of performance 

and resource utilization.  

The functionality to be implemented on the FPGA was VTEP termination combined with 

a five-tuple based firewall. Three design variants were implemented: a full P4 implemen-

tation with a software interface for table management, a reference VHDL design provid-

ing the same data plane functionality but without a software interface, and finally, a hard-

coded P4 design without a software interface, purposed for a more exact resource utili-

zation comparison with the VHDL variant.  

The results of this work suggest that the lowest utilization and lowest latencies can be 

reached with VHDL. However, one must consider that overall the trialled designs are 

relatively simple. Even the highest-utilizing design variant, the software interfaced P4 

design, uses only around 2,6% of the LUTs available on the FPGA for the packet pro-

cessing logic. Additionally, the highest latency measured with the same design was 

around 1,4µs, which is well under the 8µs limit for the accelerator shell design latency 

maximum set by the CRUN framework. Combined with the fact that the VHDL design 

took 8.1x the lines of source code in comparison to the software interfaced P4 imple-

mentation, these measurements suggest that there could be use for P4, in for example 

POC projects, where the performance and resource limitations are more relaxed, in com-

parison to commercial products.  

In conclusion, the study was successful, and proved a valuable look into the current state 

of the P4 language with network-attached FPGA accelerator platforms, paving way for 

continued and more thorough research, which remains future work. For a deeper analy-

sis, a full VHDL reference design must be implemented, including a lookup engine, e.g. 

a content-addressable memory component, and a software interface. Additionally, the 

utilization and performance scaling with varying packet processing functionality must be 

tested, as well as reachable performance maximums with higher data rates and clock 

frequencies.  
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