
1

Boosting Answer Set Optimization with
Weighted Comparator Networks

JORI BOMANSON 1 and TOMI JANHUNEN 1,2
1)Department of Computer Science, Aalto University

P.O. Box 15400, FI-00076 AALTO, Finland
(e-mail: Jori.Bomanson@aalto.fi, Tomi.Janhunen@aalto.fi)

2)Information Technology and Communication Sciences, Tampere University
FI-33014 TAMPERE UNIVERSITY, Finland

(e-mail: Tomi.Janhunen@tuni.fi)

Abstract

Answer set programming (ASP) is a paradigm for modeling knowledge intensive domains and solving
challenging reasoning problems. In ASP solving, a typical strategy is to preprocess problem instances by
rewriting complex rules into simpler ones. Normalization is a rewriting process that removes extended rule
types altogether in favor of normal rules. Recently, such techniques led to optimization rewriting in ASP,
where the goal is to boost answer set optimization by refactoring the optimization criteria of interest. In this
paper, we present a novel, general, and effective technique for optimization rewriting based on comparator
networks, which are specific kinds of circuits for reordering the elements of vectors. The idea is to connect
an ASP encoding of a comparator network to the literals being optimized and to redistribute the weights of
these literals over the structure of the network. The encoding captures information about the weight of an
answer set in auxiliary atoms in a structured way that is proven to yield exponential improvements during
branch-and-bound optimization on an infinite family of example programs. The used comparator network
can be tuned freely, e.g., to find the best size for a given benchmark class. Experiments show accelerated
optimization performance on several benchmark problems.

KEYWORDS: answer set programming, comparator network, normalization, optimization rewriting, trans-
lation

1 Introduction

Answer set programming (ASP) (Brewka et al. 2011; Janhunen and Niemelä 2016) is a declara-
tive programming paradigm that offers rich rule-based languages for modeling and solving chal-
lenging reasoning problems in knowledge intensive domains. In ASP, various reasoning tasks
reduce to the computation of answer sets for a given input program and, typically, the program
is instantiated into a variable-free ground program in order to simplify the computation of an-
swer sets. Moreover, the actual search for answer sets may generally rely on preprocessing steps
where more complex ground rules are rewritten in terms of simpler ones either to gain better
performance or to accommodate back-end solvers with limited language support. Such prepro-
cessing includes the process of normalization, which produces only normal rules (Bomanson and
Janhunen 2013; Bomanson et al. 2014; Bomanson 2017).

This is the accepted manuscript of the article, which has been published in Theory
and Practice of Logic Programming , 2020.

https://doi.org/10.1017/S147106842000006X

2 J. Bomanson and T. Janhunen

More recently, similar rewriting techniques were developed for refactoring optimization state-
ments (Bomanson et al. 2016), giving rise to the concept of optimization rewriting in ASP with
the goal of boosting search performance in answer set optimization. Several of the explored de-
signs for normalization and rewriting rely on rule-based encodings of gadgets such as binary de-
cision diagrams (BDDs) or sorting networks (Batcher 1968). Sorting networks form extensively
studied classes of circuits with applications to sorting on parallel computers and encoding car-
dinality constraints or other pseudo-Boolean constraints in logical formalisms such as Boolean
satisfiability (SAT) and ASP. They are used to sort vectors of elements by performing predeter-
mined series of compare-exchange operations on pairs of input elements by elementary circuits
known as comparators. More generally, networks with such structure are known as comparator
networks whether they guarantee to produce sorted output or not. It is convenient to represent
comparator networks as Knuth diagrams, as illustrated in Figure 1. The input is fed to the left
end of the circuit and it proceeds through the network along the vertical lines representing the
wires of the network. Individual comparators are marked with bullets connected by lines and
eventually they produce the output at the right end of the circuit.

In this paper, we concentrate on rewriting optimization statements used in ASP into modified
optimization statements involving auxiliary atoms defined in terms of newly introduced normal
rules. The motivation behind the introduction of new atoms is to offer modern answer set solvers
additional branching points as well as further concepts to learn about. There are theoretical proof
complexity results–given in the context of ASP by Lifschitz and Razborov (2006), Anger et
al. (2006), and Gebser and Schaub (2013)—illustrating the promise behind new auxiliary atoms,
potentially leading to exponentially smaller search spaces.

SAT encodings of sorting networks, among others, are specifically known to cut down other-
wise exponential numbers of clauses generated by a SAT Modulo Theories solver (SMT) when
used to express particularly troublesome sets of cardinality constraints (Abı́o et al. 2013). The
novel rewriting scheme presented in this paper exploits comparator networks as the underlying
design, but in contrast to previous work by Bomanson et al. (2016) treats the weights of an opti-
mization statement in a different way. To formulate the essential idea of this paper independently
of ASP, we generalize comparators to accept weighted input signals and introduce the resulting
notion of weighted comparator networks. We exploit these networks in deriving meaningful iden-
tities on linear combinations of weights and signals. The main technique redistributes weights
associated with the input signals of a comparator network over the structure of the network. The
net effect of the redistribution is that weights get smaller and their number increases while the
sum of weights stays invariant. These weights are distributed such that, in general, they become
increasingly uniform towards the end of the network. At the very end, given a sufficiently deep
and well connected network, the outputs of the comparator network will be weighted by the min-
imum m of all initial input weights. In this way, the sorted output atoms form a kind of a sliding
switch using which the solver may make assumptions on the weight of answer sets being sought
for. In recursive designs, such as sorting networks based on mergers (Batcher 1968), the same
line of reasoning can be applied recursively at particular inner levels of the network.

The idea discussed above gives rise to a rewriting scheme for optimization statements in ASP.
We analyze the scheme formally and prove that it enables an exponential improvement in branch-
and-bound solving performance on an example family of ASP optimization programs. Moreover,
the optimization rewriting scheme is realized in a new tool called PBTRANSLATE. We present an
experimental study on the performance effect of the tool when used as a preprocessor for the

Boosting Answer Set Optimization with Weighted Comparator Networks 3

i = 1

i = 2

i = 3

i = 4

2

3

4

1

l = 1

2

3

1

4

l = 2

1

3

2

4

l = 3

1

2

3

4

0

1

1

0

0

1

0

1

0

1

0

1

0

0

1

1

x10

x20

x30

x40

x11

x21

x31

x41

x12

x22

x32

x42

x13

x23

x33

x43

Fig. 1. An example sorting network on four wires i having three layers of comparators at levels l. On
the left, the network is shown operating on the input numbers [2, 3, 4, 1] and in the middle, on the binary
sequence [0, 1, 1, 0]. Each of the comparators takes the two values from its left and places them on its right
in ascending order. For example, the comparator in the upper left corner keeps [2, 3] as [2, 3] whereas the
one below it turns [4, 1] to [1, 4]. By the properties of sorting networks, these and any other input sequences
become sorted in the end. The rightmost diagram illustrates the indexing convention used in this paper for
values associated with wires.

state-of-the-art answer set solver CLASP. Our results identify a number of benchmark problems
where the search for optimal answer sets is accelerated.

The rest of this article is organized as follows. In Section 2, we give the basic definitions
and notations related with comparator and sorting networks. Furthermore, we review the basic
notions of answer set programming to the extent needed in this paper. The process of weight
propagation over comparator networks is explained in Section 3 and shown to preserve the cor-
rect interpretation of pseudo-Boolean expressions in general. Section 4 concentrates on applying
weight propagation to rewriting ASP optimization statements. In this context, a theorem is pre-
sented on the correctness of such rewritings, when the underlying comparator networks are en-
coded with rules and weights are propagated over the network according to a general scheme. A
formal analysis of the performance improving potential behind the rewritings is also presented for
an example family of answer set optimization programs. This analysis is experimentally verified
to be relevant to actual answer set solvers on the family of programs. Moreover, the rewritings
are also evaluated in extensive experiments over a range of relevant benchmarks from, e.g., an-
swer set programming competitions. An account of related work is provided Section 5. Finally,
the paper is concluded in Section 6 with a summary and a sketch of future work.

2 Preliminaries

In this section, we review the basic definitions of ASP as well as comparator networks which also
cover sorting networks as their special case. To reach the goals of this paper, it is also essential
to translate comparator networks into ASP and to establish that the resulting negation-free logic
programs faithfully capture the compare-exchange operations performed by networks.

2.1 Answer Set Programs and Nogoods

Below, we present (ground) answer set programs as sets consisting of normal rules, which are
typical primitives for modeling search problems (Janhunen and Niemelä 2016), and nogoods,
which are typical primitives for modeling search procedures (Gebser et al. 2012). To this end, we
first define concepts related to the latter. In particular, an assignment A is a set of signed literals
σ of the form Tx or Fx, each of which expresses the assignment of an atom x to true or false,
respectively. Intuitively, an assignment is a three-valued interpretation that may leave any atoms
as undefined. A nogood δ is syntactically identical to an assignment, but a nogood carries the

4 J. Bomanson and T. Janhunen

meaning that all partial assignments A ⊇ δ are forbidden. A constraint Γ is a set of nogoods δ.
An assignment A is in conflict with a nogood δ if δ ⊆ A, and with a set of nogoods Γ if it is in
conflict with any σ′ ∈ Γ. Formally, an answer set program P is a set of normal rules of the form
(1), shown below, and nogoods δ. Each program is assumed to be associated with a predefined
signature At(P) that is a superset of the atoms occurring in the program. Intuitively, the head
atom a of a normal rule is to be derived, if the other rules in P can be used to derive all atoms
b1, . . . , bk in the positive body and no atoms c1, . . . , cm in the negative body of the rule. The
set of all head atoms a of rules in P is denoted by head(P). A default literal l is either an atom
a or its negation not a, expressing success or failure to prove a, respectively. An optimization
program O is a pair 〈P, e〉 where P is an answer set program and e is an objective function in the
form of a pseudo-Boolean expression w1l1 + · · · + wnln with weights w1, . . . , wn and literals
l1, . . . , ln. The objective function e can be written as a set of weak constraints of the form (2) in
the ASP-Core-2 input language (Calimeri et al. 2013) or as a single optimization statement (3).
For convenience, we consider certain further extensions to answer set programs: namely choice
rules of the form (4) and cardinality constraints of the form (5). Intuitively, a choice rule differs
from a normal rule in that it justifies the derivation of any subset of its head atoms a1, . . . , am if
its body conditions are satisfied, and that subset is allowed to be empty. A cardinality constraint
forbids the pseudo-Boolean expression 1l1 + · · · + 1ln from taking a value less than k. That is,
it requires at least k of the literals l1, . . . , ln to be true.

a :- b1, . . ., bk,not c1, . . ., not cm. (1)

:˜ l1. [w1, 1] . . . :˜ ln. [wn,n] (2)

#minimize{w1, 1: l1;...;wn,n: ln}. (3)

{a1, . . . , am} :- l1, . . ., ln. (4)

:- #count{l1; . . . ; ln} < k (5)

An interpretation I ⊆ At(P) of a program P is an assignment that is complete in that it leaves
no atom a ∈ At(P) undefined, and which is here represented as the set of atoms assigned true.
An interpretation I ⊆ At(P) satisfies a nogood δ if there is any Ta ∈ δ such that a 6∈ I or any
Fa ∈ δ such that a ∈ I; it satisfies a rule (1) if it satisfies the nogood {Fa, Tb1, . . . , Tbk, Fc1,
. . . , Fcm}; and it satisfies the answer set program P if it satisfies all nogoods and rules in P . The
reduct P I of P with respect to I contains the rule a :- b1, . . ., bk for each rule (1) in P with
{c1, . . . , cm}∩ I = ∅. The set AS(P) of answer sets of a program P is the set of interpretations
I ⊆ At(P) that satisfy P and are ⊆-minimal among the interpretations J that satisfy all rules
in P I and the condition J \ head(P) = I \ head(P). This last condition is an extension to the
usual definition of answer sets (Brewka et al. 2011) that supports the convenient use of monotone
constructs in the form of nogoods and non-monotone constructs in the form of normal rules in
a single answer set program. In particular, for programs with nogoods, the defined answer sets
coincide with the standard ones and for programs with only nogoods, they coincide with the
classical models of the program. Regarding optimization, given a pseudo-Boolean expression
e = w1l1 + · · ·+wnln, the value e(I) of e in an interpretation I ⊆ At(P) is the sum of weights
wi for literals li satisfied by I . An answer set I of a program P is optimal for the optimization
program 〈P, e〉 iff e(I) equals min{e(J) | J ∈ AS(P)}. In general, an answer set program P

has a set of e-optimal answer sets, which can be enumerated by modern ASP solvers such as
CLASP (Gebser et al. 2015).

Regarding the semantics of choice rules and cardinality constraints, we treat both as syntactic

Boosting Answer Set Optimization with Weighted Comparator Networks 5

shortcuts. To this end, a choice rule (4) stands for the set of normal rules

{d :- l1, . . ., ln.} ∪ {ai :- not a′i, d. a′i :- not ai. | 1 ≤ i ≤ m},

where atoms d and a′i for 1 ≤ i ≤ m are new auxiliary atoms not appearing elsewhere in the
program. On the other hand, a cardinality constraint (5) stands for the set of nogoods

{{Fa | atom a ∈ X} ∪ {Ta | not a ∈ X} | X ⊆ {l1, . . . , ln}, |X| = n− k + 1},

which individually forbids each (n−k+1) subset of the literals {l1, . . . , ln} from being falsified.
This ensures that at least k of the literals may be satisfied.

In addition to the answer sets of a program, we consider a superset of them, namely the set
of supported models of the program (Apt et al. 1987). These are important in answer set solving
due to this superset relation: answer sets can be characterized as supported models that satisfy
additional conditions. This is the approach behind, e.g., the ASP solver CLASP (Gebser et al.
2012). Formally, the set Supp(P) of supported models of a program P is the set of interpretations
I ⊆ At(P) that satisfy the program P and the condition that for every atom a ∈ I , there is some
rule (1) in P with a as the head and with {b1, . . . , bk} ⊆ I and {c1, . . . , cm} ∩ I = ∅. In order
to capture this semantics in the form of a constraint, we define the supported model constraint
Γsupp(P) of an answer set program P to be the set of nogoods

{{Ta | a ∈ I} ∪ {Fa | a ∈ At(P) \ I} | I ⊆ At(P), I 6∈ Supp(P)}

that is satisfied exactly by the supported models of P . The constraint Γsupp(P) defined here is
naive and generally huge. However, it is used only for theoretical considerations in this paper, and
it is therefore sufficient. In actual implementations (Gebser et al. 2012), it is better to approach
supported models via Clark’s completion (Clark 1978).

The role of nogoods in the definition of an answer set in this paper is to reject unwanted answer
sets. In accordance with this, the addition of nogoods to an answer set program has a monotone
impact on the answer sets of the program when the nogoods involve no new atoms. In particular,
the set AS(P ∪ Γ) of answer sets of the union of an answer set program P and a constraint Γ

on the atoms in At(P) can be obtained as AS(P ∪ Γ) = {M ∈ AS(P) |M satisfies Γ}. This is
in contrast with the generally non-monotone behavior of answer set semantics, due to which the
addition of a rule, such as a fact, may not only decrease, but also increase the number of answer
sets.

We define two programs P and Q over the same signature D to be classically equivalent,
denoted by P ≡c Q, if each interpretation I ⊆ D satisfies either both P and Q or neither P
nor Q. Observe that this equivalence concept is preserved under the addition of nogoods in the
following way. Given any constraint Λ, if two programs P and Q are classically equivalent, then
so are P ∪ Λ and Q ∪ Λ. In other words, ≡c is a congruence relation for ∪.

2.2 Comparator/Sorting Networks

Intuitively, a comparator checks whether a predetermined pair of input elements is ordered and,
if not, changes their order. Formally, we define a comparator to be a tuple 〈i, j, l〉 consisting of
wires 1 ≤ i < j and a level l ≥ 1. In this notation, the comparators of the network in Figure 1 are
〈1, 2, 1〉, 〈3, 4, 1〉, 〈1, 3, 2〉, 〈2, 4, 2〉, 〈2, 3, 3〉. We consider two comparators compatible if their
sets {i, j} of wires are disjoint or their levels l distinct. A (comparator) network N is a set of
mutually compatible comparators. The independence of the comparators from the input beyond

6 J. Bomanson and T. Janhunen

the input size makes comparator networks data oblivious. This facilitates their implementation in
hardware and representation in logical formalisms. We say that a networkN is confined to a set I
of wires and an interval E of levels if every comparator 〈i, j, l〉 ∈ N satisfies {i, j} ⊆ I and l ∈
E. Unless stated otherwise, we assume that each network N is confined to both I = {1, . . . , n}
and E = {1, . . . , d} where n and d give the width and the depth parameters of the network
N , respectively. A layer L is a network of comparators confined to a single level. Accordingly,
the wires of comparators of a layer must be distinct. The layer L of a network N at level l is
L = {〈i, j, l〉 ∈ N}.

Given an input vector ~x consisting of n comparable values, a layer L of comparators permutes
them by swapping every wrongly-ordered pair xi > xj occurring on the wires i, j of any single
comparator 〈i, j, l〉 ∈ L, while leaving all other values intact. Furthermore, the output of a net-
work N of depth d is fd(· · · (f1(~x)) · · ·) where each function fl gives the output of the layer at
level l. Consequently, as the output of a single layer is always some permutation of its inputs,
so is the output of the entire network. Put otherwise, the output is identical to the input when
regarded as a multiset of values. Given an input vector ~x, we define a network N of depth d to
yield a two-dimensional array of wire values WVN (~x) = (xil) indexed by wire i ∈ {1, . . . , n}
and level l ∈ {0, . . . , d}, such that the column of values at level l is the output of the network of
layers up to l, i.e., the network {〈i, j, l′〉 ∈ N | l′ ≤ l}. We illustrate wire values superimposed
over networks as in Figure 1.

A sorting network N is a comparator network that sorts every input ~x into a respective output
~y such that y1≤ . . .≤ yn. A confined network C is a tuple C = 〈N, I,E〉 where N is a network
confined to the sets of wires I and levels E. Confined networks 〈N1, I1, E1〉 and 〈N2, I2, E2〉
are compatible if I1∩I2 = ∅ orE1∩E2 = ∅. A decompositionD = {S1, . . . , Sm} of a network
N is a set of mutually compatible confined networks Si = 〈Ni, Ii, Ei〉 such that

⋃m
i=1Ni = N .

2.3 Capturing Comparator Networks with ASP

A comparator network N for Boolean input vectors ~x can be translated into ASP as follows. We
introduce an atom xil to capture the wire value xil for each wire i and level l so that xil is to be
true iff xil = 1 in the matrix WVN (~x) = (xil). The effect of a comparator 〈i, j, l〉 ∈ N can be
captured in terms of the following rules (Bomanson et al. 2016) for 0 < l ≤ n:

xil :- xi(l−1),xj(l−1). xjl :- xi(l−1). xjl :- xj(l−1).

In addition, if a wire i at level l is not incident with any comparator, a rule of inertia is introduced:

xil :- xi(l−1).

We write ASP(N) for the ASP translation of N in this way and state the following result:

Lemma 1
Let N be a comparator network of width n and depth d and ASP(N) its translation into a
negation-free answer set program. Also, let ~x be any Boolean input vector for N , WVN (~x) =

(xil) the resulting matrix of wire values, and InF(~x) = {xi0 | xi0 = 1} an encoding of the input
vector ~x as facts. Then ASP(N)∪ InF(~x) has a unique answer set X ⊆ At(ASP(N)) such that
for all wires 1 ≤ i ≤ n and for all levels 0 ≤ l ≤ d, the atom xil ∈ X iff the wire value xil = 1.

Boosting Answer Set Optimization with Weighted Comparator Networks 7

Proof
For the base case l = 0, we note that xi0 ∈ X ⇐⇒ xi0 ∈ InF(~x) ⇐⇒ xi0 = 1, since xi0 is
defined by a fact or no rule in InF(~x) and by no rule in ASP(N), andX is⊆-minimal. Induction
step 0 < l ≤ d follows.

If i and j are wires incident with a comparator 〈i, j, l〉 at level l, then the rules of ASP(N) and
the ⊆-minimality of X guarantee that (i) xil ∈ X ⇐⇒ xi(l−1) ∈ X and xj(l−1) ∈ X ⇐⇒
xi(l−1) = 1 and xj(l−1) = 1 (by inductive hypothesis) ⇐⇒ xil = min{xi(l−1), xj(l−1)} ⇐⇒
xil = 1; and (ii) xjl ∈ X ⇐⇒ xi(l−1) ∈ X or xj(l−1) ∈ X ⇐⇒ xi(l−1) = 1 or xj(l−1) = 1

(by inductive hypothesis) ⇐⇒ xjl = max{xi(l−1), xj(l−1)} ⇐⇒ xjl = 1.
If a wire i is not incident with comparators, it follows by the inertia rule and⊆-minimality that

xil ∈ X ⇐⇒ xi(l−1) ∈ X ⇐⇒ xi(l−1) = 1 (by inductive hypothesis) ⇐⇒ xil = 1.

3 Propagating Weights Over Comparator Networks

In this section, we consider contexts where comparator networks are supplemented by weight
information. Namely, we wish to model comparator networks with fixed multipliers, or weights,
applied to their input wires. Such input can be extracted from, e.g., pseudo-Boolean constraints or
optimization statements that are the targets of optimization rewriting techniques, to be discussed
in Section 4. Our goal is to explore the performance implications of moving these weights along
the network using propagation operations that we define in this section.

We begin by introducing the concept of wire weights for a network on n wires and d layers.
They are non-negative numbers aij indexed by wires 1 ≤ i ≤ n and levels 0 ≤ j ≤ d in the
same way as wire values. A network with wire weights relates to a linear function as follows.

Definition 1
For a comparator network N with wire weights A = (aij), the weight function wN,A is defined
on input ~x yielding the wire values WVN (~x) = (xij) by

wN,A(~x) =

n∑
i=1

d∑
j=0

aijxij . (6)

Example 1
In the following, we have a network with wire weights, wire values based on an input vector
~x = [1, 2, 0], and a calculation that yields the respective weight function value 130. This is an
example on how a network combined with wire weights relates to a linear function on input
vectors such as ~x. Here and in the sequel, we emphasize wire weights with a distinct font.

0

10

0

0

0

20

30

40

40

1
2
0

1
2
0

1
0
2

0 · 1 + 0 · 1 + 30 · 1
+10 · 2 + 0 · 2 + 40 · 0
+ 0 · 0 + 20 · 0 + 40 · 2 = 130

�

As can be seen, the nonzero wire weights in Example 1 are already scattered around the com-
parator network, occupying all the layers. This state represents the goal that we want to achieve
from a starting point, where only the leftmost input weights of comparators are nonzero. Indeed,
given a comparator network N and wire weights A, we are interested in modifying the weights

8 J. Bomanson and T. Janhunen

by propagating as much of them as deep inside the network as possible. To this end, we develop
a propagation function P that produces new weights U = P(A) so that the respective weight
function stays the same, i.e., wN,A(~x) = wN,U(~x) for all input vectors ~x. To obtain an idea of
how this can be achieved in practice, let us study a simple example.

Example 2
Consider a network N = {〈1, 2, 1〉} with a single comparator. Ex-

ample initial and propagated weights A and U for N , respectively, are
shown on the right. The difference between these weights is that at first,
all weight is on the input, whereas afterwards, a weight amount of 40

has been propagated from the input to the output on both wires. By
comparing the weights, we may observe that the weights A yield the

40

50
0

0

0

10

40

40

Propagation over a
single comparator

weight function wN,A(~x) = 40x1 + 50x2, whereas the weights U yield the weight func-
tion wN,U(~x) = 10x2 + 40(min{x1, x2} + max{x1, x2}) = 10x2 + 40(x1 + x2). Namely,
wN,A(~x) = wN,U(~x) for every input ~x. Therefore, the change of weights from A to U pre-
serves the semantics of the network as a linear function. �

The idea behind the preceding example generalizes to larger networks. The result is a weight
propagation function that can be applied to wire weights of comparator networks without alter-
ing the values of any weight functions associated with them. Namely, considering an arbitrary
comparator network as a black-box, one may move a constant amount of weight from each of
its inputs to each of its outputs, while keeping all other weights inside the network intact. The
propagated weight will contribute the same total weight to the value of the weight function (6)
before and after the move on any input ~x. Therefore, the move preserves the semantics of the
network as a linear function, in the same way as the propagation step in Example 2 does. To see
this, one may consider that if the input to a single comparator is known, then the function of the
comparator can be represented as a permutation. Either the permutation swaps the input pair, or
keeps it as it is. Furthermore, this inductively holds for any comparator network: given any input,
the output is a permutation of it, although the permutation is generally more complex. Conse-
quently, the cardinality of Boolean input and output pairs are always equal. This preservation of
cardinality guarantees the preservation of weight functions under this propagation step. As for
the choice of the constant amount of weight that is moved, one can pick the minimum of the
input weights. This will maximize the moved weight without producing any negative weights. In
the following, the resulting weight propagation function is defined formally, its weight function
preservation property is captured in a theorem, and a proof for the theorem is provided following
the strategy sketched above.

Definition 2
Given wire weights A = (aij) for a comparator network N on n wires and d layers, and c =

min{ai0 | 1 ≤ i ≤ n}, the weight propagation function P maps A to the wire weights P(A) =

U = (uij) of N where

uij =

aij − c, if j = 0,

aij , if 0 < j < d,

aij + c, if j = d.

Boosting Answer Set Optimization with Weighted Comparator Networks 9

Theorem 1
Given wire weights A and U = P(A) for a comparator network N , for any input vector ~x, it
holds that wN,A(~x) = wN,U(~x).

Proof
Let A = (aij), c = min{ai0 | 1 ≤ i ≤ n}, and U = (uij) = P(A). For any input vector ~x,

wN,A(~x)− wN,U(~x) =
n∑
i=1

d∑
j=0

(aij − uij)xij

=
n∑
i=1

[
(ai0 − ui0)xi0 +

d−1∑
j=1

(aij − uij)xij + (aid − uid)xid
]

= c
n∑
i=1

xi0 − c
n∑
i=1

xid.

(7)

Let σ be the permutation capturing the effect of N on the input vector ~x (cf. Section 2.2). Then,
we have xi0 = xσ(i)d for every 1 ≤ i ≤ n. Since σ is a permutation, we thus obtain

∑n
i=1 xi0 =∑n

i=1 xσ(i)d =
∑n
i=1 xid and therefore (7) evaluates to 0.

As a special case, Definition 2 and Theorem 1 are applicable to a network consisting of a
single comparator. In fact, the preceding example, Example 2, illustrates this case, since the
weights there are chosen so that that U = P(A). Next, we show a larger example.

Example 3
The weight propagation function P for the weights of any network N is rather humble. Yet, it
manages to push all the weight to the output in the special case that only the initial input weights
are nonzero and they are all equal. Therefore, in this case of uniform input weights, P is optimal
in terms of moving weights forward. The following sorting network on five wires with initial and
final weights shown on the left and right, respectively, illustrates this case. Weights kept intact
are shown in gray.

10
10
10
10
10

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

10
10
10
10
10

These kinds of wire weights arise in practice in the context of ASP optimization statements with
uniform weights. We will address the connection between weight propagation and ASP more
thoroughly in Section 4, however, we note here that our focus therein lies particularly in handling
optimization statements with non-uniform weights. To this end, in the following we extend the
usefulness of weight propagation to settings with more varied input weights. �

To improve upon the lacking granularity in the discussed weight propagation technique, we
wish to propagate weights in smaller steps, spanning parts of networks at a time. We formulate
these steps by constructing a weight propagation function PD parameterized by a decompo-
sition D of the comparator network N at hand. The role of the decomposition parameter D
is to determine components over which weight propagation can be carried out gradually. The
intended design of the function PD is such that for example, given a decomposition D =

10 J. Bomanson and T. Janhunen

{〈N, {1, . . . , n}, {1, . . . , d}〉} of N where the entire network is treated as a single compo-
nent, we replicate the black-box behavior of P . For another example, given a decomposition
D = {S1, . . . , Sm} in which every comparator Ck = 〈i, j, l〉 ∈ N is placed in a separate com-
ponent Sk = 〈Ck, {i, j}, {l}〉, the function will propagate a maximal amount of weight forward
over individual comparators at a time. We call these two types of decompositions trivial and
refer to the end of this section for more complex, non-trivial ones that represent intermediate
decompositions between them. However, before stating the formal definition of PD, we lay out
an example of its intended outcome based on a trivial, fine-grained decomposition D.

Example 4
The following illustrates weight propagation steps over the comparators of a sorting network N
on four wires starting with the initial wire weights A on the very left and ending in the fully
propagated wire weights P(A) on the very right. In each transition between a pair of diagrams,
the comparators of a single layer are used independently as the basis of propagation.

40

50

90

70

0

0

0

0

0

0

0

0

0

0

0

0

0

10

20

0

40

40

70

70

0

0

0

0

0

0

0

0

0

10

0

20

0

0
30

30

40

40

40

40

0

0

0

0

0

10

0

20

0

0
30

30

0

0

0

0

40

40

40

40

To understand the above, let us focus on the comparator on the top left with input weights 40

and 50 at the beginning. Going from the first to the second diagram, an amount of 40 is extracted
from both of these weights and pushed over the comparator to its immediate output. In fact, this
is precisely the same step as carried out in isolation in Example 2. Moreover, the entire weight
propagation process depicted here consists of repetitions of similar steps performed separately.
In this way, the network is taken as a white box with structure that guides the weight propagation
process in fine detail. This is in contrast to the black-box treatment of the network in Example 3.

�

To ease the formal definition of the weight propagation functionPD for decompositionsD, we
first define a version, PC , for confined networks C, in order to express individual propagations.

Definition 3
Given wire weights A = (aij) for a network N on n wires and d layers, a confined comparator
networkC = 〈N, I,E〉, and c = min{aij | 1 ≤ i ≤ n, j = minE − 1}, the weight propagation
function PC maps A to the wire weights PC(A) = U = (uij) for N defined by

uij =

aij − c, if i ∈ I and j = minE − 1,

aij , if 〈i, j〉 ∈ ({1, . . . , n} × {1, . . . , d}) \ (I × {minE − 1,maxE}),

aij + c, if i ∈ I and j = maxE.

Lemma 2
Given wire weights A and U = PC(A) for a network N of a confined comparator network C,
for any input vector ~x, it holds that wN,A(~x) = wN,U(~x).

The proof of Lemma 2 is analogous to the proof of Theorem 1 and is thus omitted. One may
think of PC as the function P affecting only the inputs and outputs of a particular component C.

Boosting Answer Set Optimization with Weighted Comparator Networks 11

Example 5
Consider a weight propagation step over a confined network C = 〈N, I,E〉 where the allowed
wires are I = {1, 3, 4, 5} and levels E = {2, 3}. The gray numbers indicate weights out of the
scope of C. Only the leftmost and rightmost weights are modified, the middle ones stay intact.
The specific comparators in the network do not matter, as long as they are confined to I and E.

80
20
0

70
30

90
40

10
20
50

50

0
90
90

80

60
50

0
10
30

30
70

20
50

20

80
20
0

70
30

80
40

0
10
40

50

0
90
90

80

70
50

10
20
40

30
70

20
50

20

�

We want to order confined networks in such a way that when propagating weights over them,
each propagation step picks up from where the previous step left off, pushing weights forward
naturally. To this end, we write C ≤ C ′ for pairs of mutually compatible confined networks
C = 〈N, I,E〉 and C ′ = 〈N ′, I ′, E′〉 that satisfy minE ≤ maxE′. The intuition behind C ≤
C ′ is that C cannot possibly depend on the output of C ′ and can thus be propagated over first.
The weight propagation function PD for decompositions D based on compatible components
is defined in the following, where we follow the convention for function composition by which
(f ◦ g)(x) = f(g(x)).

Definition 4
Given a decomposition D consisting of confined networks S1 ≤ · · · ≤ Sm, the weight propaga-
tion function PD is defined as PD = PSm

◦ · · · ◦ PS1
.

Theorem 2
Given wire weights A and U = PD(A) for a comparator network N and a decomposition D of
N , for any input vector ~x, it holds that wN,A(~x) = wN,U(~x).

Proof
Let S1 ≤ · · · ≤ Sm be the confined networks in D and write Ui = P{S1, ..., Si}(A) for every
1 ≤ i ≤ m so that U0 = A, Ui = P{Si}(Ui−1) and Um = U. Lemma 2 proves each of the
equalities wN,U0(~x) = · · · = wN,Um(~x) and thus wN,A(~x) = wN,U0(~x) = wN,Um(~x).

We end this section by detailing a family of sparse decompositions Dk(N) for use with any
network N and the weight propagation function PDk(N). The decompositions are parameterized
by a sparseness factor k, which controls the rough fraction 1/k of nonzero weights remaining af-
ter weight propagation. These decompositions represent hybrids between the trivial ones in terms
of numbers of nonzero weights remaining after propagation. In this way, they enable to experi-
ment with the effectiveness of weight propagation in more detail, which we do later in Section 4.
For context, recall the trivial decompositions in which all comparators are either placed in a sin-
gle component or separate components. Propagation based on these decompositions results in
either minimally or maximally many weights being propagated. In particular, in the expected
setting where the initial weights are zero for all but the input, this difference is reflected in the
numbers of nonzero weights that remain after propagation as follows. When all comparators are
in a single component, the number of remaining nonzero weights is at most 2n, and when all
comparators are in separate components, it is at most (0.5n + 1) × d. As an alternative, the
decomposition can be designed to provide a balance between these two extremes.

12 J. Bomanson and T. Janhunen

The sparseness factor k is a positive integer that reduces the number of weights remaining
after propagation by roughly a factor of k. This is done by placing propagated weights only on
levels that are multiples of k, in addition to the last level. We first define it formally and then
show examples of how to create and use it. To form the decomposition, the comparators in N are
first partitioned based on which of the following ranges their levels l fall into: E1 = {1, . . . , k},
E2 = {k + 1, . . . , 2k}, . . . , Ep = {kp+ 1, . . . , d} where p = bd/kc. That is, the first k lay-
ers are in one component, the next k layers in another, and so on. Then the components are
refined individually. More specifically, for each 1 ≤ j ≤ p, the wires {1, . . . , n} are partitioned
into a number nj of minimal sets I1j , . . . , Injj such that for each comparator associated with
Ej , its two wires fall into the same set. Moreover, any wires not adjacent to those compara-
tors, if any, form one of the sets. This amounts to a partition of the comparators into connected
components described indirectly in terms of wires. The final decomposition is then obtained as
Dk(N) = {〈Nij , Iij , {l ∈ Ej | l ≤ d}〉 | 1 ≤ j ≤ p, 1 ≤ i ≤ nj} where each network Nij is
Nij = {〈i′, j′, l〉 ∈ N | i′, j′ ∈ Iij , l ∈ Ej}. One may observe that this construction places all
comparators in separate components when k = 1, and in the same component when k ≥ d

and the network is connected. Therefore, for connected networks, Dk(N) generalizes the trivial
decompositions.

Example 6
The decomposition D2(N) can be formed in two steps for the network N on 10 wires shown
below on the left. First, the layers of the network are partitioned and then the wires within those
partitions are further partitioned by identifying connected components.

The transition from the first to the second diagram illustrates the partition of layer levels into
the sets E1 = {1, 2}, E2 = {3, 4}, and E3 = {5, 6}. In the second transition, these parts
are further refined by partitioning wires in the context of E1 to I11 = {1, 2, 3}, I21 = {4, 5},
I31 = {6, . . . , 10}, in the context of E2 to I12 = {1, 2, 4}, I22 = {3, 5}, I32 = {6, . . . , 10},
and in the context of E3 to I13 = {1, 2}, I23 = {3, 4, 7, 8}, I33 = {9, 10}. Note that the parts
I12 and I22 are indeed distinct, despite their seeming overlap in the diagram. �

Example 7
The following shows propagation over a network N taken from the top left of the network in
Example 6. The network is decomposed into the four confined networks in D2(N) highlighted
with thick lines and distinct markers. The separation to circles and squares stems from levels, and
to black and white from wires. The transitions illustrate propagation over the two components
with circles in any order, followed by the two components with squares in any order of colors.
Observe that all nonzero weights are on levels 0, 2 and 4 in the end. The fact that these are
multiples of two stems from the choice of k = 2 in Dk(N).

Boosting Answer Set Optimization with Weighted Comparator Networks 13

20
90

80
30
70

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
70

60
0

40

0
0
0
0
0

20
20
20
30
30

0
0
0
0
0

0
0
0
0
0

0
70

60
0

40

0
0
0
0
0

0
0
0

10
10

0
0
0
0
0

20
20
20
20
20

�

4 Application of Weights and Sorting Networks to Answer Set Programming

In this section, we focus on the application of comparator networks and propagated weights
to solving optimization problems expressed in ASP. Specifically, we present a novel approach
to optimization rewriting and prove the correctness of the approach in Section 4.1. Then, we
give formal and experimental results proving the potential for exponential improvements in time
consumption when solving an example family of programs in Section 4.2. These promising per-
formance indicators are complemented in Section 4.3 with a discussion on potential drawbacks
of the approach concerning the impact of weight propagation on unit propagation. Finally, a thor-
ough experimental evaluation is given in Section 4.4 in order to asses practical performance on
an extensive set of benchmarks stemming from prior ASP competitions. The benchmarks are
augmented with some newly generated instances to better match the state-of-the-art performance
level of contemporary ASP optimization.

4.1 Optimization Rewriting using Sorting Networks

As demonstrated in Section 2.3, a comparator networkN can be translated into an answer set pro-
gram ASP(N) that captures the wire values of N when the input is encoded in atoms. This can
be used to translate any given optimization program 〈P, e〉 into another one 〈P ∪ASP(N), e′〉
that yields the same answer sets with some added atoms and unchanged optimization values.
The key observation relevant to this paper is that this presents an opportunity to craft the new
pseudo-Boolean expression e′ in terms of atoms and weights that express the wire values and
wire weights of an appropriately chosen network N . The techniques from Section 3 are appli-
cable to determining those wire weights: we may calculate them by propagating weights taken
from the original pseudo-Boolean expression e across the networkN . A key benefit of this is that
the fresh atoms in ASP(N) can help tremendously in branch-and-bound optimization. Namely,
as will be demonstrated formally in Section 4.2, optimization rewriting using specifically sort-
ing networks can yield even exponential savings in terms of the numbers of learned nogoods
that stem from optimization statements. Moreover, sorting networks can be generated efficiently
with well-known schemes, such as Batcher’s odd-even merge sorting networks (Batcher 1968).
Hence, sorting networks are a good starting point for N . However, currently known practically
feasible sorting networks are O(n(log n)2) in size, which is a problem when rewriting large op-
timization statements. Thus it can pay off to sacrifice some of the benefits of the fresh atoms by
using smaller networks that sort only some input sequences or only some subsequences of inputs.
This question of which network to use is further addressed in experiments on various networks
in Section 4.4.

Before formal results, we recall the splitting set theorem (Lifschitz and Turner 1994) formu-
lated for the respective bottom and top programs B and T such that the rule bodies of T may
refer to atoms defined by the rule heads of B, but not vice versa:

14 J. Bomanson and T. Janhunen

Proposition 1
An interpretation I ⊆ At(B ∪ T) is an answer set of B ∪ T iff (i) IB = I ∩At(B) is an answer
set of B and (ii) IT = I ∩At(T) is an answer set of T ∪ {a | a ∈ IB ∩At(T)}.

Now we are ready to present the main formal result of this paper. The result ensures that
the answer sets of a program and the respective optimization values are principally unchanged
when its optimization statement is rewritten based on a network whose translation is added to the
answer set program. The rewritten optimization statement contains the atoms of the translation
weighted by the original weights after propagating them over the network. For convenience,
we consider cases where the original pseudo-Boolean expression e being minimized is given in
terms of literally the same atoms xi0 that are used to encode the input vector in the translation
ASP(N).

Theorem 3
Let N be a comparator network on n wires, D a decomposition of N , A = (aij) and U =

(uij) = PD(A) wire weights forN where aij = 0 for every level j > 0, ASP(N) the translation
of N into an answer set program, P an answer set program such that j = 0 for every xij ∈
At(P), and e =

∑n
i=1 ai0xi0 and e′ =

∑n
i=1

∑d
j=0 uijxij pseudo-Boolean expressions. Then

there is a bijection f : AS(P) → AS(P ∪ ASP(N)) such that e(M) = e′(f(M)) for every
M ∈ AS(P).

Proof
For an interpretation M ⊆ At(P), define a vector ~xM that has at index 1 ≤ i ≤ n value 1, if
xi0 ∈ M , and 0, otherwise. Let XM be the set XM = {xij | xij = 1} where xij refer to the
wire values WVN (~xM) of the network N given the input ~xM . In the following, we prove that
f(M) = M∪XM defined forM ⊆ At(P) provides the bijection of interest. First, let us establish
that f maps an answer set M ∈ AS(P) to an answer set f(M) ∈ AS(P ∪ASP(N)). This holds
because M ∪XM ∈ AS(P ∪ASP(N)), which follows from the “if” direction of Proposition 1.
The first requirement in the proposition is satisfied by the assumption M ∈ AS(P), and the
second by the fact that XM ∈ AS(ASP(N)∪ {xi0 | xi0 ∈M}), which follows from Lemma 1.

Second, the function f is an injection, i.e., it maps all inputs M ∈ AS(P) to distinct outputs
f(M). This holds because the inputM can be recovered from the output f(M). Namely, f(M)∩
At(P) = (M ∪XM) ∩At(P) = M , since XM ∩At(P) = {xi0 ∈ XM} ⊆M .

Third, the function f is a surjection, i.e., for every output I ∈ AS(P ∪ ASP(N)) there is an
inputM ∈ AS(P) such that f(M) = I . Indeed, by the “only if” direction of Proposition 1, every
answer set I ∈ AS(P ∪ ASP(N)) can be split into the answer sets M = I ∩ At(P) ∈ AS(P)

and X = I ∩ At(ASP(N)) ∈ AS(ASP(N) ∪ {xi0 | xi0 ∈M}). By Lemma 1, the latter must
be X = XM . Therefore, it follows that I = M ∪ X = M ∪ XM = f(M). Finally, for every
input M ∈ AS(P), we have e′(f(M)) = e′(XM) =

∑
xij∈X uij =

∑n
i=1

∑d
j=0 uijxij =

wN,U(~xM) = wN,A(~xM) =
∑n
i=1 ai0xi0 =

∑
xi0∈X ai0 = e(X) = e(M). The third and the

third to last equalities are due to Lemma 1 while the fifth is due to Lemma 2.

It immediately follows that optimal answer sets of the program are preserved.

Corollary 1
Let N , n, D, A, U, ASP(N), e, and e′ be defined as in Theorem 3. Then there is a bijection
f : AS(P) → AS(P ∪ ASP(N)) such that each M ∈ AS(P) is optimal for 〈P, e〉 iff f(M) is
optimal for 〈P ∪ASP(N), e′〉.

Boosting Answer Set Optimization with Weighted Comparator Networks 15

4.2 Formal Performance Analysis

In this section, we formally analyze the rewriting techniques from Section 4.1. Our focus is
on the performance of an optimizing ASP solver without and with optimization rewriting. We
obtain a result showcasing an exponential improvement in favor of optimization rewriting based
on sorting networks and weight propagation on an example family of optimization programs.
The programs in the family are designed to select subsets of size at least k atoms from among n
atoms and to minimize the number of picked atoms. The subsets with precisely k atoms are then
optimal, and the role of optimization is to rule out all the subsets larger than that.

The result applies in principle to any ASP solver that performs optimization via branch-and-
bound search on the optimization value and operates with nogoods and propagators in a manner
we detail in the analysis. These background assumptions reflect existing conflict driven nogood
learning (CDNL) solving techniques on a simplified level and with the additional assumption
that learned nogoods are kept in memory indefinitely without deleting them.

We begin the rest of this section by briefly discussing the relevant mechanics of optimizing
ASP solvers and necessary formal preliminaries. Then we prove statements concerning solv-
ing difficulty without and with optimization rewriting. Finally, we investigate the behavior of
actual ASP solvers on sample programs from the family. These experimental results likewise
show a significant improvement in favor of optimization rewriting. This confirmation is mean-
ingful since actual “black-box” ASP solvers generally carry intricate features beyond those of
any formal model of a solver. These experiments that are linked with the formal analysis are
later complemented in Section 4.4 by a broader evaluation on an extensive set of heterogeneous
benchmarks of greater practical relevance.

Regarding ASP optimization, as discussed above, we concentrate on minimization using the
branch-and-bound optimization strategy. A solver employing this strategy on an optimization
program 〈P, e〉 implements a recursive procedure in which it

1. takes as input a range of integers known to contain the optimal value of the pseudo-Boolean
expression e, and which is initially huge,

2. partitions the range into two nonempty ranges by some heuristic procedure, or returns a
value in the range if the range contains only a single value,

3. searches for an answer set M of P with a value e(M) within the lower range, and
4. recursively calls the procedure on either the lower range adjusted to end in e(M) or the

upper range, depending on whether an answer set was found or not, respectively.

Given an optimization program with at least some answer set, this procedure will eventually find
one of the e-optimal ones. The requirement of bounding e(M) to a low range can be represented
as a set of nogoods, i.e., a constraint. However, because such a set of nogoods is generally pro-
hibitively large, it is typically represented indirectly by a propagator. A propagator is essentially
a procedure for determining whether an assignment conflicts with a specific constraint, or is close
to conflicting with it, and which can explain such conflicts in terms of nogoods. Propagators fit
into a solving process that implements lazy generation of constraints as follows. To begin with,
an input answer set program is split into two parts: a regular part and a part with constraints that
are initially abstracted away from the solver. Then, the solver begins a search for an answer set
of the regular part only. In order to adhere to the abstracted constraints, the solver consults prop-
agators specific to the constraints at various points in the search process on whether the current
assignment satisfies all of them. As long as all constraints are satisfied, the solver proceeds as

16 J. Bomanson and T. Janhunen

usual. However, in the event that a propagator reports a conflict between its current assignment
and a constraint, the solver learns the nogoods given by the respective propagator as an explana-
tion for the conflict. The solver then resolves the conflict, which is now reflected in the nogoods
that the solver is aware of, and continues the search.

This optimization process has the following key properties that we make use of. The first key
property is that exactly one of the searches in Step 3 discovers an answer set M with an optimal
value v for e(M), and another one of the searches imposes a bound v−1 for e, and which proves
the optimality of v by yielding no answer sets. In a hypothetical, ideal scenario, the search for
M proceeds without conflicts and no searches beyond these two need to be done. Even in such
a best-case scenario, the challenge in the optimization task includes the inescapable difficulty of
proving the optimality of v. That difficulty, however, can be considerable even in the best-case
scenario. In our analysis, we focus on this case for simplicity of analysis, and due to its computa-
tionally challenging and integral role in the optimization task. That is, we consider the difficulty
of searching with a bound v − 1 right below the optimal value v. The second key property is
that the described lazy generation of constraints brings a variable fraction of nogoods from con-
straints to the knowledge of the solver during search. This fraction can range from zero to one,
even in practice. In some searches, an answer set is found before a constraint leads to a signifi-
cant number of conflicts, in which case the fraction is low. In some other searches, a constraint
is central in rejecting a large number of candidate answer sets, and perhaps all otherwise fea-
sible answer sets, in which case the fraction can be high. The family of optimization programs
we present represents an extreme case, with a fraction of exactly one. The family builds on cer-
tain “bottle-neck” constraints that have been used to illustrate differences between SMT decision
solvers that use either propagators or encodings (Abı́o et al. 2013). The analysis required here is
complicated by both a shift to the context of ASP from SMT and particularly the consideration of
optimization instances instead of decision instances. The ASP optimization programs considered
here are parameterized by non-negative integers n ≤ k, they have

(
n
k

)
optimal answer sets, and

we accordingly name them binomial optimization programs. The answer sets of these programs
consist of all subsets of at least k atoms selected from x1, . . . ,xn. From those answer sets, the
ones with precisely k atoms are optimal.

Definition 5
The binomial program Pnk consists of the rules {x1; . . . ;xn} and :-#count{x1; . . . ;xn} <
k.

Definition 6
The binomial optimization program Onk is the optimization program 〈Pnk , 1x1 + · · ·+ 1xn〉.
The optimal value for the objective function 1x1+· · ·+1xn is k. Therefore, applying branch-and-
bound optimization to Onk entails, as per the earlier discussion on optimization, for the binomial
program Pnk to be solved once under the constraint that the objective function 1x1 + · · · +

1xn takes a value less than k. Observe that this constraint is impossible to satisfy, and that it
can be represented by the set of nogoods {{Tx | x ∈ X} | X ⊆ {x1, . . . ,xn}, |X| = k}. This
infeasible decision problem is the target of our subsequent analysis.

We model propagators as simple functions that, in the event of a conflict, designate a single
violated nogood to be the explanation reported back to the solver. This is a streamlined defi-
nition in comparison to, e.g., the definition given by Drescher and Walsh (2012) according to
which propagators take as arguments partial assignments that may or may not conflict with the
constraint and return sets of nogoods including at least one violated nogood on conflicts.

Boosting Answer Set Optimization with Weighted Comparator Networks 17

Definition 7
A propagator π for a constraint Γ is a function from partial assignments A in conflict with Γ to
nogoods δ′ ∈ Γ in conflict with A. The constraint Γ of a propagator π is denoted by Γπ .

In order to reason about the set of nogoods accumulated by calling a propagator during search, we
below formulate the concept of a history of partial assignments provided as input to a propagator.
Based on such a history, the propagator generates explanatory nogoods.

Definition 8
A propagator call history (PCH) for an answer set program P and a propagator π is a sequence
A1, . . . , Am of partial assignments such that for all 1 ≤ i ≤ m, the partial assignment Ai
satisfies Γsupp(P), π(A1), . . . , π(Ai−1) and conflicts with Γπ .

Intuitively, a PCH is a record of all the calls a solver makes to a propagator before the first an-
swer set is found, or before the search space is exhausted while searching for one. This definition
reflects a number of assumptions we make in modeling the ASP solving process. For one, we
assume that propagator-produced nogoods are never deleted and that propagators are called only
on partial assignments that satisfy all nogoods known to the solver, including the nogoods pre-
viously generated by the propagators themselves. This assumption is behind the requirement in
the definition for each assignment Ai to satisfy all nogoods generated in response to the earlier
partial assignments A1, . . . , Ai−1. This makes our formal analysis feasible, but technically de-
mands an ASP solver with infinite memory. In reality, ASP solvers manage memory by deleting
some nogoods periodically and possibly re-learning them later (Gebser et al. 2012), and this in-
cludes propagator-produced nogoods (Drescher and Walsh 2012). The requirement that Ai also
satisfies Γsupp(P) reflects another assumption: the solver makes sure that partial assignments are
viable supported model candidates of P before calling propagators on them. Enforcing consis-
tency with the supported model semantics like here is a well established method in ASP solving
(Gebser et al. 2012; Alviano et al. 2015), and therefore this assumption maintains practical rele-
vance of our results.

As mentioned, we take interest in programs that have no answer sets, since they are important
in optimality proofs. When solving such answer set programs, any used propagators will need to
be queried sufficiently many times, so that the answer set program that is revealed to the solver
has no answer sets either. We formalize this condition as a property of a PCH.

Definition 9
Let P be an answer set program and π a propagator such that P ∪Γπ has no answer sets. A PCH
A1, . . . , Am for P and π is complete if P ∪ {π(A1), . . . , π(Am)} has no answer sets.

Given these notions, we are equipped to present a proposition on the significant difficulty of
solving a binomial program combined with a constraint that rejects all of its answer sets. Here
we use the length of a PCH as an abstract measure of that solving difficulty, and in particular, the
difficulty due to nogoods generated by a propagator in order to represent the added constraint.
The length turns out to be exponential even in this simple case. The result concerns a situation
where no optimization rewriting takes place. The proposition essentially states that a propagator
that is responsible for the optimization statement of a binomial optimization program has to gen-
erate an exponential number of nogoods for the final unsatisfiability proof stage. Afterwards, we
give a result that instead concerns the case where sorting network based optimization rewriting
is used. An exponential difference in outcomes will be apparent between these two results.

18 J. Bomanson and T. Janhunen

Proposition 2
Let n and k be non-negative integers such that k ≤ n, π a propagator for the constraint

{{Tx | x ∈ X} | X ⊆ {x1, . . . ,xn}, |X| = k},

and let A1, . . . , Am be a complete PCH for the answer set program Pnk and π. Then m =
(
n
k

)
.

Proof
Let ∆ = π(A1) ∪ · · · ∪ π(Am) be the set of nogoods produced by the propagator π in response
to the PCH A1, . . . , Am. On the one hand, each nogood δ ∈ Γπ corresponds to an answer set
{x | Tx ∈ δ} of the answer set program Pnk that also satisfies all the other nogoods, i.e., those
in Γπ \ {δ}. On the other hand, the clear unsatisfiability of Pnk ∪ Γπ and the completeness of
A1, . . . , Am imply unsatisfiability of P ∪∆. No δ ∈ Γπ can be excluded from ∆ without giving
up the unsatisfiability of P ∪ ∆, and therefore we must have Γπ ⊆ ∆. Hence m ≥

(
n
k

)
. Also,

certainly m = |∆| ≤
(
n
k

)
, and therefore m =

(
n
k

)
.

The following lemma is integral in proving our next result. The lemma states that all nonempty
nogoods over the output atoms of a sorting network can be simplified into singleton nogoods.

Lemma 3
Let n, k, and d be non-negative integers such that k ≤ n, N a sorting network of width n and
depth d, ASP(N) the translation of N into an answer set program, Λ = Γsupp(ASP(N) ∪
{{x10, . . . ,xn0}}) the supported model constraint of that translation combined with a choice
rule on the input atoms of the network, and δ a nonempty nogood of positive signed literals over
x1d, . . . ,xnd. Then Λ ∪ {δ} ≡c Λ ∪ {{Txid}} where i = min{j | Txjd ∈ δ}.

Proof
Let n, k, d, N , ASP(N), Λ, δ, and i be as above. Using similar reasoning as in the proof of
Lemma 1, it can be shown that in each supported model M |= Γsupp(ASP(N)), the outputs
x1d, . . . ,xnd are sorted such that false precedes true. That is, for each 1 ≤ j < k ≤ n, if
xjd ∈M then xkd ∈M . We will use this to prove the lemma one supported model at a time. To
this end, let us consider any supported model M |= Λ of the translation of the network. On the
one hand, if xid ∈M , then the mentioned sortedness property guarantees that also xjd ∈M for
each j ∈ {i, . . . , n}, which particularly includes each j such that xjd ∈ δ, and therefore δ ⊆M .
On the other hand, if xid 6∈M , then δ 6⊆M . Hence, M satisfies {Txid} iff it satisfies δ. As this
holds for any M |= Λ, we obtain the consequent of the lemma.

Now it can be shown that the addition of a sorting network to the setting considered in Proposi-
tion 2 yields an improvement in solving difficulty, as measured by PCH length, from exponential
to linear. This reduction stems from the fact that after the addition of the sorting network, the
constraint that bounds the optimization value can be stated in terms of the output atoms of the
network. The benefit of this is that, in the context of that network, there is only a linear number
of logically distinct nogoods over its output atoms. Therefore, any propagator for the constraint
may only produce up to a linear number of nogoods.

Proposition 3
Let n, k, and d be non-negative integers such that k ≤ n, N a sorting network of width n and

Boosting Answer Set Optimization with Weighted Comparator Networks 19

depth d, ASP(N) the translation of N into an answer set program, Pnk a binomial program on
atoms x10, . . . ,xn0, π a propagator for the constraint

{{Tx | x ∈ X} | X ⊆ {x1d, . . . ,xnd}, |X| = k},

and let A1, . . . , Am be a complete PCH for ASP(N) ∪ Pnk and π. Then m ≤ n− k + 1.

Proof
Let n, k, d,N , ASP(N), Pnk , π, andA1, . . . , Am be as above, and define Λ = Γsupp(ASP(N)∪
{{x10, . . . ,xn0}}). By Lemma 3, for each 1 ≤ i ≤ m, we have Λ ∪ {π(Ai)} ≡c Λ ∪ {{σi}}
where σi is the signed literal Txjd with j = min{k | xkd ∈ π(Ai)}. Also, let ∼ be the equiva-
lence relation that holds for nogoods σ and σ′ if ∆∪σ ≡c ∆∪σ′ where ∆ = Γsupp(ASP(N)∪
Pnk). Observe that ∆ = Λ ∪ δ where δ is the constraint :-#count{x10; . . . ;xn0} < k. Be-
cause ≡c is a congruence relation with respect to addition of constraints, this implies π(Ai) ∼
{σi}. Based on the definitions of a propagator and a PCH, we can prove that the relation ∼
holds for no pair of nogoods from π(A1), . . . , π(Am). From the transitivity of the equivalence
relation ∼ it follows that no two of σ1, . . . , σm are identical and therefore |{σ1, . . . , σm}| =

m. Given that σi is the first signed literal in the nogood π(Ai), which forbids a k-subset of
the output atoms of N , the signed literal σi must be one of Tx1d, . . . ,Tx(n−k+1)(d). Hence,
{σ1, . . . , σm} ⊆ {Tx1d, . . . ,Tx(n−k+1)(d)} and thus, m ≤ n− k + 1.

In order to study the impact of optimization rewriting on binomial optimization programs Onk
in practice as well we ran experiments using the preprocessing tool PBTRANSLATE1 and the
state-of-the-art ASP solver CLASP (v. 3.3.3) (Gebser et al. 2015). A part of the goal in these ex-
periments is to investigate the difference between an actual, off-the-shelf ASP solver and the sim-
plified, abstract ASP solver considered in our preceding analysis. In particular, these experiments
verify that improvements of high magnitude as in the analysis can also be witnessed in practice.
To keep the results as relevant to practical ASP solving as possible, the solver CLASP was ran
without disabling any of its sophisticated solving techniques. Moreover, the entire optimization
problem was solved, as opposed to only the final unsatisfiability proofs that were considered in
the analysis. To keep the results consistent between runs and manageable to interpret, a single
solving configuration was fixed, namely “tweety”, so that CLASP would not automatically pick
different solving configurations between runs.

The results are shown in Table 1 in the form of numbers of conflicts reported by CLASP for
increasing program size parameters n. These conflicts are of particular interest in relation to
the preceding analysis. This is because the number of conflicts reported by the solver gives
an upper bound on the number of conflicts due to a nogood produced by a propagator for the
optimization statement. That number, in turn, corresponds to the PCH length considered in the
analysis. Regarding the bound parameter k of the binomial programs, only the case k = bn/2c
was studied to simplify parameterization. This choice of k maximizes the number of optimal
answer sets for any given n. That maximum number is given by the central binomial coefficient(

n
bn/2c

)
. These numbers are shown for reference in the Table 1, since they also give the complete

PCH lengths predicted in Proposition 2.
The experiments were repeated with a number of solving pipelines, obtained by composing

1 Available at https://github.com/jbomanson/pbtranslate .

20 J. Bomanson and T. Janhunen

Table 1. Numbers of conflicts reported by CLASP after solving binomial optimization programs
Onbn/2c with varying numbers of atoms n.

n 5 6 7 8 9 10 15 20 25

norm+tweety 7 12 19 36 65 134 3.66k 248k 16.2M
norm+rw+tweety 5 9 9 18 19 42 167 1.72k 23.6k

norm+tweety+usc 6 14 16 42 42 172 1.26k 11.3k 84.8k
tweety 4 10 15 35 56 126 3.21k 263k 17.2M
rw+tweety 5 10 15 32 48 124 3.27k 234k 12.6M
tweety+usc 5 14 18 53 80 197 4.81k 1.09M 60.5M(

n
bn/2c

)
10 20 35 70 126 252 6.44k 185k 5.20M

Table 2. CPU times in seconds to complement the numbers of conflicts shown in Table 1.
n 8 9 10 15 20 25

norm+tweety 0.0159 0.0127 0.0154 0.048 4.09 928.7
norm+rw+tweety 0.0151 0.0125 0.0125 0.0126 0.0352 0.513

norm+tweety+usc 0.0157 0.0137 0.0173 0.0235 0.19 1.29
tweety 0.0121 0.00908 0.00621 0.0205 2.87 219.8
rw+tweety 0.0035 0.00586 0.00384 0.0377 4.42 790.0
tweety+usc 0.00934 0.0103 0.0106 0.0529 14.1 2248.6

different preprocessing and solving options into various combinations. Initial preprocessing con-
sisted either of sorting network based normalization of the cardinality constraints in the instances
(norm) or of keeping them as is so that CLASP can handle them with its internal propagators.
Optimization was implemented by default by CLASP via the branch-and-bound strategy and op-
tionally via branch-and-bound after optimization rewriting (rw) or via (unsatisfiable) core-guided
optimization (usc). This amounts to the 2× 3 systems shown in the table, of which the pipelines
norm+tweety and norm+rw+tweety are the most relevant to the preceding analysis. In partic-
ular, pipeline norm+tweety is most representative of the setting in Proposition 2 and pipeline
norm+rw+tweety of Proposition 3. These pipelines are actual, complex analogues of the abstract,
simplified solving settings considered in the propositions. Results for the remaining pipelines are
provided for reference so that the significance of the different components in the above pipelines
can be evaluated in a useful context. These reference pipelines contain the core-guided pipelines
as well as pipelines without normalization. The reason for why we regard pipelines with normal-
ization more relevant to the preceding analysis is that normalization reduces the number of con-
flicts due to cardinality constraints. Therefore, the numbers of conflicts reported for the pipelines
with normalization are more closely reflective of the numbers of conflicts due to optimization
statements, although still not exact.

The results show that sorting network based optimization rewriting brings the numbers of con-
flicts down to minuscule fractions of the original numbers in pipelines that include normalization,
i.e., in norm+rw+tweety and norm+tweety. This improvement in conflicts is more significant
than what is obtained with core-guided optimization in norm+tweety+usc, although both do yield
improvements of comparable magnitude. Regarding normalization, it improves each pipeline to
which it is applied and it is a strong factor in achieving best results in this comparison. That
is, it improves the performance of pipelines whether they use branch-and-bound or core-guided

Boosting Answer Set Optimization with Weighted Comparator Networks 21

optimization strategies and whether or not they use optimization rewriting or not. Moreover,
the improvements due to optimization rewriting and normalization are of similar magnitudes.
To see this, one may consider the changes obtained when adding optimization rewriting (rw) to
pipelines with or without normalization, and then contrasting them with the changes obtained
when adding normalization (norm) to pipelines with or without optimization rewriting. Specif-
ically, going from pipeline tweety to rw+tweety yields a mild improvement, and from pipeline
norm+tweety to norm+rw+tweety a huge improvement. Likewise, going from pipeline tweety to
norm+tweety yields a mild improvement, and from pipeline rw+tweety to norm+rw+tweety a
huge improvement.

Regarding the relation between this experimental evaluation and the preceding formal analysis,
both do highlight improvements due to optimization rewriting, yet none of the statistics obtained
in this evaluation precisely match the ones predicted in the abstract formal analysis. For example,
Proposition 2 predicts an exponential number of propagator related conflicts to occur during
an unsatisfiability proof when no optimization rewriting is being used. The precise predicted
numbers are given by the central binomial coefficients in Table 1. However, this coefficient does
not provide a consistent lower bound for any of the pipelines. Specifically, looking at the numbers
of conflicts for pipeline tweety, which is the pipeline closest to the setting in the proposition,
the central binomial coefficient provides a lower bound for it only starting at n = 20. This
is an indication that CLASP internally improves upon the abstract solver model we consider,
and that these improvements make a difference at least for modest program sizes n < 20. On
the other hand, Proposition 3 predicts at most a linear number of propagator related conflicts
to occur during an unsatisfiability proof when optimization rewriting is being used. That is,
it predicts the optimization related propagator to produce an insignificant number of conflicts
during the final unsatisfiability proof. Nevertheless, the numbers of conflicts for all of the tested
systems run into the thousands and higher when n = 25. This has several potential reasons:
the experiments measure conflicts over the entire optimization process and not only the final
unsatisfiability proof, all conflicts are measured as opposed to only propagator related conflicts,
and that solving techniques such as nogood deletion are used so that individual propagator related
conflicts may occur more than once. A tighter comparison between the experiments and the
analysis could be obtained by extending the solver to separately count the numbers of nogoods
generated by different propagators. Such a comparison is outside the scope of this experimental
evaluation, however.

The CPU times required by these experiments are shown in Table 2. In light of these CPU
times, the picture is primarily similar as before: pipeline norm+rw+tweety is the overall winner
and together with norm+tweety+usc they are in a class of their own above the rest. There is one
main difference, however, which is that pipeline tweety fares relatively better than before, and
at n = 25 it overtakes the pipelines norm+tweety and rw+tweety, which add normalization or
optimization rewriting only, respectively. This is in line with the fact that both normalization and
optimization rewriting increase the program size, which generally increases the amount of work
per conflict done by the solver.

4.3 Challenges Due to Heterogeneous Weights

In this section, we describe challenges in optimization rewriting that come with having heteroge-
neous and possibly large weights in optimization functions. This is to contrast with the positive
formal results of Section 4.2 that concern optimization functions with only unit weights or gen-

22 J. Bomanson and T. Janhunen

erally uniform weights. The extent to which the benefits of sorting network based optimization
rewriting survive these challenges in practice is later studied experimentally in Section 4.4.

Weight propagation makes it harder to identify certain opportunities for inference. For illustra-
tion, suppose we have a branch-and-bound solver that has already found an answer set of value
70 for an optimization program 〈P, e〉 with the objective function e = 40x10 +70x20. As per the
discussion on branch-and-bound solving in Section 4.2, the solver will search for more optimal
answer sets by enforcing the upper bound e < 70. From this point onward, it is reasonable to
expect the solver to infer the atom x20 to be false given that its weight alone surpasses this bound.
However, this immediate inference becomes less immediately obvious once optimization rewrit-
ing is applied based on sorting networks and weight propagation. To see this, consider rewriting
the objective function e using a network N with a single comparator. The variables and rules of
the ASP translation ASP(N) of N are:

x10

x20

x11

x21

x11 :- x10,x20.
x21 :- x10.
x21 :- x20.

In this case, any non-trivial weight propagation turns the objective function e into e′. These
expressions are shown below as weights over N and as equations:

40

70
0

0 e = 40x10 + 70x20

0
30

40

40 e′ = 30x20 + 40x11 + 40x21

After this rewriting, it is computationally straightforward again to infer that x20 is false. However,
the inference now requires the solver to either perform lookahead based on the encoding of the
sorting network or to rely on a previously learned nogood that captures the inference. Lookahead
is an inference technique in which an atom without a truth value is temporarily and heuristically
assigned one, and the logical consequences of the assignment are explored via propagation. In
the case of x20, if it is assigned true, then unit propagation finds x21 to be true as well by one of
the rules in ASP(N). As the total weight of x20 and x21 exceeds the upper bound, x20 can be
inferred to be false.

In summary, and in the terminology of constraint programming and SAT, unit propagation
(UP) on rewritten optimization statements involving non-unit weights does not maintain gener-
alized arc consistency (GAC). Regarding this terminology, given a constraint and an assignment,
GAC stands for the desirable condition that every assignment of an individual atom that follows
as their logical consequence is included in the assignment, as in (Abı́o et al. 2013). Furthermore,
for an encoding of a constraint to maintain GAC by UP, it is required that repeated iteration of
UP over the encoding always reaches a state that satisfies GAC. When an optimization statement
is interpreted as a type of dynamic constraint, and optimization rewriting is taken to produce
an encoding of it, the above discussed example indicates that there are inferences that are not
captured by UP after rewriting. This is a drawback of the presented approach. The significance
of it is unclear, however. Indeed, GAC has been routinely studied for SAT encodings of pseudo-
Boolean constraints and the studies have found both encodings that do and do not maintain GAC

Boosting Answer Set Optimization with Weighted Comparator Networks 23

to perform well in practice (Abı́o et al. 2012; Zhou and Kjellerstrand 2016). Hence, even though
GAC is a positive feature, maximum pursuit of it has not always proven fruitful, particularly
when it has demanded larger encodings. Nevertheless, the current lack of GAC-maintenance in
optimization rewriting leaves potential room for finding ways to recuperate the lost propagations
and to benefit even further from optimization rewriting in possible future work.

4.4 Experimental Evaluation

Next we continue the evaluation of the optimization rewriting approach from Section 4.1 by pre-
senting extensive experimental evaluations. The approach is implemented in the tool PBTRANS-
LATE2 in the form of translations between answer set programs encoded in ASP Intermediate
Format (aspif; Gebser et al. 2016b). To evaluate the novel techniques presented in this paper, we
composed solving pipelines that preprocess with rewriting techniques and then search with the
state-of-the-art ASP solver CLASP (v. 3.3.3) (Gebser et al. 2015). These pipelines are contrasted
with reference pipelines that involve no rewriting. The purpose of the experiments is to measure
the general efficiency of the approach as well as the impact of the types of used comparator net-
works and weight propagation strategies. A scheme of sorting networks N of depth O(log2 n)

and sizeO(n log2 n) is taken as a basis for the comparator networks in light of the formal support
for sorting networks established in Section 4.2. The networks are constructed recursively from
small fixed-size sorting networks and Batcher’s odd-even merge sorters (Batcher 1968). These
networks are varied by creating copies Ld limited to depths d. This is motivated by the following
factors. For one, even the modest-appearing size growth O(n log2 n) is large enough to be prob-
lematic on many optimization statements considered in these experiments. Indeed, as discussed
further later, even 80-fold instance-size blowup factors are seen. Second, even the depth-limited
networks sort many input sequences and bring other sequences closer to sorted states. Hence, it
is reasonable to expect depth-limited networks to retain a part of the benefits of sorting networks
while providing easily manageable rewriting sizes.

The pipelines generally operate as described below unless otherwise noted. First, the pipelines
perform optimization rewriting using sorting networks N . The rewriting techniques rely on
weight propagation based on decompositions D1(N) that lead to maximally fine grained weight
propagation. Finally, CLASP is ran with the branch and bound optimization strategy. Based on
these processing steps, we formed individual solving pipelines of which reference pipeline clasp
skips rewriting; reference pipeline usc skips rewriting and uses the core-guided optimization
strategy with disjoint core preprocessing; pipeline F includes rewriting; pipelines Ld rewrite
using networks limited to a depth of d; and pipelines Wk rewrite using sparse decomposi-
tions Dk(N); pipeline W– rewrites using sorting networks without weight propagation. That is,
pipeline W– extends the original program with an encoding of a sorting network without altering
the optimization statement. For clarity, here and in the sequel, different fonts are used to distin-
guish the system CLASP and the pipeline clasp. The sparseness factor k in the decomposition
Dk(N) controls the rough fraction 1/k of nonzero weights produced by the weight propagation
function PDk(N). In these pipeline labels, an infinite subscript∞ stands for a very large number
which causes pipeline L∞ to essentially apply no depth limit and pipeline W∞ to place weights
on only the input layer and the last layer.

2 Available at https://github.com/jbomanson/pbtranslate together with benchmarks at https://
research.ics.aalto.fi/software/asp/bench/ .

24 J. Bomanson and T. Janhunen

For benchmarks, we picked a number of instance sets, each involving non-unit weights. Ta-
ble 3 includes the results for Bayesian Network Learning (Cussens 2011; Jaakkola et al. 2010)
with samples from three data sets. In abstract terms, the task here is to construct an acyclic graph
from certain building blocks specified in the instance, and to optimize a sum of scores associated
with them. Also included is Markov Network Learning (Janhunen et al. 2017), where the pur-
pose is to construct a chordal graph under certain conditions while again optimizing a sum of
scores. Moreover, in MaxSAT from the Sixth ASP Competition (Gebser et al. 2015), the Maxi-
mum Satisfiability problem is encoded in ASP and solved for a set of industrial instances from
the 2014 MaxSAT Evaluation (MaxSAT-Comp 2014). Then there is Curriculum-based Course
Timetabling (Banbara et al. 2013; Bonutti et al. 2012), where the goal is to assign resources in
the form of time slots and rooms to lectures while satisfying and minimizing additional criteria.
Furthermore, Table 4 includes Fastfood and Traveling Salesperson (TSP) from the Second ASP
Competition (Denecker et al. 2009) with newly generated instance sets that are harder and easier
than in the competition, respectively. In Fastfood, the task is to essentially pick a subset of nodes
from a one dimensional line in order to minimize the sum of distances from each node to the
closest node in the subset. In the well-known TSP problem, the task is to pick a subset of edges
that form a path and minimize the sum of weights associated with the chosen edges.

These benchmarks contain only optimization statements with truly heterogeneous weights,
as opposed to optimization statements with only one or a few distinct weights. The reason
for focusing on heterogeneous weights is that, as discussed in Section 4.3, the case with non-
uniform weights is particularly challenging. Moreover, in the complementary case with few dis-
tinct weights, weight propagation is straightforward in the way that most if not all input weights
are simply moved directly onto output wires. Weight propagation that moves all weights like this
can be very effective. Namely, with appropriate choices of low depth odd-even sorting networks,
this special case of weight propagation coincides to a large degree with an optimization rewriting
technique introduced and experimentally evaluated by Bomanson et al. (2016) under the label
“64”. The number 64 refers to a value for a parameter used therein. The closest counterpart to
this parameter in the terminology and parameterization of this paper would be the use of roughly
depth-21 sorting networks and maximally coarse grained weight propagation. The relevant re-
sults therein are already strongly positive. In view that, the challenge posed by uniform weights
has been addressed to a larger extent than the case of non-uniform weights, which therefore
remains as a further, greater challenge that is focused on here.

Tables 3 and 4 show the results. After running each pipeline-instance combination with a 10
minute time limit and a 3GB memory limit on Linux machines with Intel Xeon CPU E5-2680 v3
2.50GHz processors, each run was classified as (O) finished and solved with a confirmed opti-
mal solution, (S) unfinished, but with some solutions found, (T) unfinished without any solutions
found in time, or (M) aborted due to memory excess. In the table, rows represent pipelines and
columns represent disjoint sets of instances with mutually identical run classifications. The col-
umn numbers give the counts of instances in these sets. Generally, the better a pipeline is, the
higher is the sum of instance counts related to its “O” entries. Moreover, if a pipeline has an “O”
entry in a column where another pipeline does not, then it solves optimally at least some instances
the other one does not. If this holds mutually for a pair of rows, then the respective pipelines are
complementary in the sense that a virtual best solver (VBS) combining them would perform bet-
ter than either one alone. In order to complement this thorough view of the classification results,
the tables additionally show solution quality scores S1 following a scheme from the Mancoosi

Boosting Answer Set Optimization with Weighted Comparator Networks 25

Table 3. Solving performance of CLASP using core-guided optimization (usc), branch-and-
bound (clasp), and branch-and-bound after optimization rewriting. The rows correspond to
pipelines, the numbered columns n to subsets of instances, and the letters O,S,M, and T to a
classification of results. In addition, S1 indicates solution quality scores computed with the same
formula as in the Seventh ASP Competition as well as the Mancoosi International Solver Com-
petition. Note however, that the S1 score of a single solver depends on its performance relative
to the other pipelines in the comparison, and therefore the scores here are not directly com-
parable to those in the competitions. Best pipelines per benchmark are highlighted in view of
both classifications and S1 scores. Moreover, the “cons” columns give the average base 10 log-
arithms of the numbers of constraints remaining after rewriting. Rewriting is based on either
(Ld) depth d comparator networks, (F) full sorting networks, (Wk) full sorting networks and
decompositions Dk with sparseness factors k that limit numbers of weights produced by weight
propagation roughly to fractions 1/k, or (W–) full sorting networks without weight propagation.
The pipelines clasp and L0 coincide, as do the pipelines F , L∞, and W1.

Bayes Alarm
4 5 1 1 1 2 23 cons S1

clasp usc 1 O S S S S S S 4.4 22.4
clasp/L0 O O O S O S S 4.4 87.5

L4 O O O O S S S 4.8 77.2
L8 O O O O O O S 4.9 80.1
L16 O O O O O O S 5.1 81.7
L32 O O O O O O S 5.4 84.7

F/L∞/W1 O O O O O O S 5.8 66.4
W4 O O O O O O S 5.8 56.6
W8 O O O O O O S 5.8 64.1
W16 O O O O S O S 5.8 59.7
W32 O O S S S S S 5.8 44.2
W∞ O O S S S S S 5.8 44.8
W– O O S S S S S 5.8 59.8

Bayes Hailfinder
4 12 1 2 1 1 3 1 1 1 2 2 2 1 2 1 1 18 cons S1

O S S S S S S S S S S S S S S S S S 4.1 21.6
O O O O O O O O O O O O O O O S S S 4.1 93.0
O O O O O O O O O O O O O O O O S S 4.6 94.6
O O O O O O O O O O O O O O O O S S 4.8 91.8
O O O O O O O O O O O O O O O O S S 5.0 89.7
O O O O O O O O O O O O O O O O O S 5.2 92.2
O O O O O O O O O O O O S S S S S S 5.6 68.5
O O O O O S O O O O O S S O S S S S 5.6 65.6
O O O O O O O O S O S S S S S S S S 5.6 60.6
O O O O S O O S O S S S S S S S S S 5.6 57.5
O O O S O S S S O S S S S S S S S S 5.6 47.6
O O S O O O S O S S S S S S S S S S 5.6 60.6
O O O O S O O O O S O O O S S S S S 5.6 81.6

Bayes Water
4 12 1 2 1 2 1 1 8 cons S1

clasp usc 1 O S S S S S S S S 2.9 19.6
clasp/L0 O O S S S S S S S 2.9 63.8

L4 O O O O O O S S S 3.9 83.9
L8 O O O O O O O S S 4.1 90.8
L16 O O O O O O O S S 4.3 93.1
L32 O O O O O O O O S 4.6 95.3

F/L∞/W1 O O O O O O O S S 4.8 91.3
W4 O O O O O O S S S 4.8 87.9
W8 O O O O O O O S S 4.8 85.3
W16 O O O O O S S S S 4.8 75.7
W32 O O O O S S S S S 4.8 73.7
W∞ O O O S S S S S S 4.8 68.1
W– O O O O S S S S S 4.8 75.0

Markov Network
13 2 1 1 2 51 2 cons S1

S S S S S S T 4.4 6.94
O O S S S S S 4.4 81.9
O O O O O S S 4.7 70.5
O O O O O S S 4.8 70.9
O O O O O S S 4.9 70.3
O O O O S S S 5.1 68.3
O O O O S S S 5.5 65.1
O O O O S S S 5.5 68.0
O O O O S S S 5.5 67.5
O O O O S S S 5.5 63.8
O O O S S S S 5.5 66.8
O S S S S S S 5.5 67.4
O S S S S S S 5.5 65.3

MaxSAT
3 1 2 1 1 1 1 5 1 4 cons S1

clasp usc 1 O S O O O O O O O S 5.2 82.1
clasp/L0 O O S S O O O S S S 5.2 73.2

L4 O O O S O O O S S S 5.3 76.8
L8 O O O O O O O S S S 5.3 76.4
L16 O O O O O O O S S S 5.4 75.4
L32 O O O O O S S S S S 5.6 59.6

F/L∞/W1 O O O O S S S S S S 5.9 66.8
W4 O O O O S S S S S S 5.9 68.2
W8 O O O O S S S S S S 5.9 67.5
W16 O O O O S S S S S S 5.9 64.3
W32 O O O O S S S S S S 5.9 68.6
W∞ O O O O S S S S S S 5.9 71.8
W– O O S S O O S S M S 5.9 56.8

Timetabling
2 1 6 4 2 4 3 2 2 1 2 7 1 11 2 1 2 4 cons S1

O O O O O O O O O O O O O S T S T T 5.2 74.9
O O O O O S O O S S S S S S S S S S 5.2 80.2
O O O O O O O S S O S S S S S S S M 5.5 70.7
O O O O O O O O O O S S S S S S S M 5.6 78.1
O O O O O O O O O O O S S S S S S M 5.8 81.1
O O O O S O S S O S O S S S S S S M 6.0 74.2
O O S S S S M S S S S S M S S M M M 6.6 25.8
O O S S S S M S S S S S M S S M M M 6.6 24.3
O S S S S S M S S S S S M S S M M M 6.6 24.2
O S S S S S M S S S S S M S S M M M 6.6 19.8
O S S S S S M S S S S S M S S M M M 6.6 20.8
O O S S S S M S S S S S M S S M M M 6.6 34.8
O O O S S S M S S S S S M S S M M M 6.6 49.4

26 J. Bomanson and T. Janhunen

Table 4. Further results in the same form as in Table 3.
Fastfood
12 1 1 4 1 3 1 7 cons S1

clasp usc 1 S S S S S S S S 4.7 7.14
clasp/L0 O O O S S S S S 4.7 76.0

L4 O O O S S S S S 5.0 71.0
L8 O O O O S S S S 5.1 82.4
L16 O O O O O O O S 5.2 95.2
L32 O O O O O O O S 5.5 96.0

F/L∞/W1 O O O O O O S S 5.8 96.7
W4 O O O O O S S S 5.8 91.2
W8 O O O O S S S S 5.8 85.5
W16 O O S S S S S S 5.8 62.6
W32 O S S S S S S S 5.8 51.7
W∞ O S S S S S S S 5.8 52.1
W– O O S S S S S S 5.8 68.1

TSP
22 1 1 1 2 1 1 1 1 1 1 3 2 1 1 1 1 1 14 cons S1

S S S S S S S S S S S S S S S S S S S 3.2 7.14
O S O O O O O O S S S S S S S S S S S 3.2 75.4
O O O O O O O O O O O S S S S S S S S 3.5 81.3
O O O O O O O O O O O O S O S S S S S 3.6 89.5
O O O O O O O O O O O O O S S S S O S 3.8 87.7
O O O O O O O O O O O O O O O O O S S 4.0 91.4
O O O O O O O O O O O O O O O O S S S 4.0 92.1
O O O O O S O O O O S S S S O S S S S 4.0 82.5
O O O O O O O S S O S S S S S S S S S 4.0 71.4
O O O S S S S S O S O S S S S S S S S 4.0 66.5
O O S S S S S S S S S S S S S S S S S 4.0 63.2
O O S O S S S S S S S S S S S S S S S 4.0 64.8
O O O O O O S O O S S S S S S S S S S 4.0 73.2

International Solver Competition3 also used in the Sixth (Gebser et al. 2015) and Seventh ASP
Competitions (Gebser et al. 2017). The score for a pipeline S among M pipelines over a domain
D with N benchmark instances is computed as S1 = 100

MN

∑
I∈DMS(I), where MS(I) is 0,

if S did not find a single solution; or otherwise the number of pipelines that found no solutions
of higher quality, where a confirmed optimal solution is preferred over an unconfirmed one. The
Seventh ASP Competition ranks solvers also based on an alternative score, which awards points
based on only the number of confirmed optimal solutions, and the scores are scaled to a range
of 0-100 per benchmark. These scores are not presented in the tables, but the corresponding
unscaled scores can be found out by computing the weighted sums of “O” letters in each row.
Hence, the winners by this alternative score coincide with the winners by the “O” letters that are
highlighted.

The results for the pipelines Ld illustrate the impact of tuning the depth limit d. Of these
pipelines,L0 and L∞ correspond to clasp and F , which use no rewriting and full depth rewriting,
respectively. The results for these extremes are mixed, so that pipeline F improves performance
over clasp on some benchmarks and deteriorates performance on others. On the contrary, the
intermediate depth limits d = 8 and d = 16 yield robust performance. Namely, both of the
respective pipelines L8 and L16 solve optimally all the instances that clasp and F do, and more,
and this holds over all the benchmarks. The benefit of depth limits is strong enough so that on
multiple benchmarks, namely Bayes Hailfinder, MaxSAT, and Timetabling, rewriting with depth
limits as in L8 and L16 accelerates solving, even though the use of full depth rewriting in pipeline
F decelerates it. The benefit of depth limits appears strongest on Bayes Alarm, Bayes Hailfinder
and Timetabling. The instances in these benchmarks are on the larger end among the considered
benchmarks in terms of optimization statement sizes after rewriting, shown in Table 5. Especially
Timetabling stands out in this respect, and indeed the impact of depth limits is greatest on it as
well. Overall, the use of these depth limits mitigates the size increase caused by rewriting by
up to an order of magnitude, as measured by logarithmic numbers of constraints shown in the
rightmost columns in the tables. As regards pipelines with other depth limits, L32 is sometimes
better and sometimes worse than the pipelines Ld with lower depth limits d < 32.

In light of these observations, the significance of depth limits is likely due to their strong
and direct connection to how much optimization rewriting increases instance size. Namely, net-
work depth is a factor of network size and therefore also of the size of the corresponding ASP

3 http://www.mancoosi.org/misc/

Boosting Answer Set Optimization with Weighted Comparator Networks 27

translations. On the other hand, the choice of weight propagation does not affect translation size.
Regarding the magnitude of the depth factor, with full rewriting as in F that is based on odd-even
merge sorters, the depth isO(log2 n) in the length n of an optimization statement. In practice, the
implementation in PBTRANSLATE employs some micro optimizations and manages to produce
networks with depths in the range 9, . . . , 105 for n ∈ {10, . . . , 10 000}. These ranges are rele-
vant since the size of the most substantial optimization statements in the considered benchmarks
are in the thousands, except on Timetabling where they range from hundreds up to over a million,
and on TSP where they range between one and two hundred. Therefore, even though the size of
full depth optimization rewriting is only polynomial, the increase is considerable in practice. In-
deed, the tables indicate instance size increases from 0.7 to 1.9 orders of magnitude on different
benchmarks with an average of around 1.2. The range corresponds to a 5 to 80 fold increase.
One may obtain these numbers by deducting the logarithmic-scale numbers of constraints shown
in the “cons” column for pipeline F from those for clasp. A more manageable size growth is
achieved via the use of depth limits d in pipelines Ld, which yield linearly growing network
sizes. This is reflected in the “cons” values of the respective rows, which lie in between those for
the extreme cases of clasp and F . Based on the results, these more modest instance sizes appear
to yield generally fruitful tradeoffs between the benefits and costs of optimization rewriting.

The results for the pipelines Wk illustrate the impact of tuning weight propagation from fine
to coarse grained propagation. At one end, W1 propagates weights as much as possible, produc-
ing a high number of generally low weights to be optimized. At the other end, W∞ propagates
weights as little as possible, producing weights only on the first and last layers. The results indi-
cate a clear gradual trend in favor of fine grained propagation among the different Bayes classes,
Markov Network, Fastfood, and TSP classes. Interestingly, these classes are separated from the
remaining MaxSAT and Timetabling classes in having more heterogeneous weights in their opti-
mization statements, which may have a connection with the trend. The heterogeneity of weights
can be quantified by measuring the proportional increase in atoms being optimized caused by
rewriting, shown in Table 5, as this is an indication of how many nonzero weights remain after
weight propagation, which is strongly dependent on the heterogeneity of weights. The observed
trend makes intuitive sense, since as the ratio approaches 1, the different pipelines Wk converge,
so any differences ought to manifest with higher ratios. Formally analyzing the differences in the
performance impact of different weight propagation methods on a finer level is challenging. In
contrast to the formal analysis carried out in Section 4.2, such an investigation would be most
meaningful in the context of heterogeneous weights. Moreover, the abstraction level would have
to be detailed enough to capture differences specifically due to the representation of the optimiza-
tion statement as opposed to the encoding of the network, as the latter is independent of weight
propagation. Hence such an analysis would be involved, and given the lack of experimental evi-
dence in favor of sparseness factors other than k = 1, also weakly motivated at present. Thus it
is left for potential future work.

Furthermore, we note that the performance of core-guided optimization is clearly different
from the branch-and-bound based strategy used in the other pipelines. On the different Bayes
classes, Markov Network, Fastfood, and TSP classes, core-guided optimization falls behind. On
the remaining benchmarks, MaxSAT and Timetabling, the situation is different and in fact the
core-guided pipeline constitutes a VBS on its own if we overlook a single MaxSAT instance.
However, on these classes, the most highly performing rewriting pipelines improve on branch-
and-bound clasp and almost halve the performance gap that separates it from core-guided opti-
mization.

28 J. Bomanson and T. Janhunen

Table 5. Average numbers of atoms of atoms in optimization statements before and after full
rewriting, and the average ratios of the latter over the former.

atoms before atoms after ratio

Bayes Alarm 3,016.1 20,783.1 6.0
Bayes Hailfinder 2,102.6 13,605.1 6.1
Bayes Water 470.2 2,342.2 4.5
Markov Networks 1,559.9 8,060.1 4.6
MaxSAT 3,531.1 10,570.3 2.3
Timetabling 29,314.5 123,178.1 3.8
Fastfood 3,147.3 16,393.4 5.2
TSP 115.6 499.6 4.3

Finally, the S1 scores that measure solution quality in a more sensitive manner give a similar
picture overall with a few specific differences. Namely, clasp fares better in this light on some of
the benchmarks. This means that within the scope of those benchmarks, clasp manages to find
higher quality solutions than the rewriting pipelines in cases where neither reach an optimality
proof. Hence, it appears that some of the strength of the rewriting pipelines lies in their ability to
provide optimality proofs, which would be in accordance with the formal analysis in Section 4.2,
and that when those proofs are nevertheless out of reach, this strength is weakened. Moreover,
in the results on Timetabling, the S1 score penalizes core-guided solving, as it runs into several
timeouts on this class.

It is naturally difficult to predict the impact of optimization rewriting based on the syntactic
properties and structure of the instances and their optimization statements when dealing with
heterogeneous application problems. On the practical level, an investigation of such connections
is best left for dedicated work such as that behind the portfolio solver ME-ASP (Maratea et al.
2015). ME-ASP is equipped with a number of black-box solvers and it uses machine learning
to decide which one to apply to each given instance based on various problem features. Never-
theless, some expectations for performance can be set here. To this end, recall the setting from
the formal analysis in Section 4.2 where (i) there is a large number of non-optimal answer sets
that need to be rejected, (ii) the rejection necessitates a large number of nogoods on the original
atoms, and (iii) the rejection is possible with a small number of nogoods on the output atoms of
a sorting network. Benefits similar to those witnessed in the analysis may occur if all three of
these items apply to a given problem. Moreover, the increase in instance size must be reasonable
so as not to outweight these benefits. Even for diverse application problems, Item (i) represents
the typical case and it indeed holds for all of the benchmarks considered here. However, Items
(ii-iii) are not as easily satisfied and may be hard to detect from syntactic features. Moreover,
the number of nogoods required to reject non-optimal answer sets can depend entirely on the en-
coding of a problem. For example, it is possible to apply encoding techniques that are analogous
to optimization rewriting, in which case any benefit from subsequent optimization rewriting is
reduced and potentially even nullified. To understand the practical scenarios where Items (ii-iii)
might apply, let us consider the task of formulating an optimization statement from two angles.
From a declarative angle, the task is to declare the intent to optimize some desired criteria and
the formulation is successful if it correctly declares ones intent. From a number system angle, the
task is to design a weighted number system in which to represent the optimization value by refer-
ring to the atoms of the program. In this case, a formulation is successful if it satisfies properties
such as lack of ambiguity and ease of comparability. Regarding these properties, in case of ASP

Boosting Answer Set Optimization with Weighted Comparator Networks 29

optimization, an ideal representation enables to impose any single bound on the optimization
statement with a single nogood. For example, the rewritten optimization statements analyzed in
the formal analysis in Section 4.2 embody a unary number system that enables this. Moreover, a
number system such as the binary number system would be unambiguous, but would not allow
the expression of bounds with a single nogood. An encoding may be written from either of these
two perspectives and the declarative angle is likely leave more room for improvement due to op-
timization rewriting since in contrast the number system angle is likely to lead to more efficient
encodings for optimization, and thus also to reduce the improvement potential accessible via
optimization rewriting. In the considered benchmarks, the used ASP encodings fall more on the
declarative side, and in this respect, all of the benchmarks appear to be potentially fruitful targets
for optimization rewriting. In summary, all of the considered benchmarks show basic promise for
optimization rewriting. The remaining question is then whether that promise realizes in benefits
that outweight the increase in instance size. Unfortunately, this is hard to predict based on the
structure of the instances.

Figure 2 shows cactus plots of solving time over optimally solved instances and optimiza-
tion values over the same benchmark classes considered earlier in Tables 3 and 4. The included
pipelines are the same as before with one added pipeline described shortly, L8W–. The pipelines
are grouped into three partially overlapping categories: one with pipelines Ld, one with pipelines
Wk, and one with selected few representatives of these and other pipelines. The solving times,
which are shown in the three plots on the left column, form a picture that is in line with the results
described previously. In more detail, at the top left, pipelines L8 and L16 emerge as the overall
best performing ones among those using depth limits. In the middle left, pipelines using finer
grained weight propagation consistently outperform those using coarser grained propagation. At
the bottom left, rewriting pipelines with depth limits lead in overall performance, followed by
CLASP with branch-and-bound optimization but without rewriting (clasp), and finally, by CLASP

using core-guided optimization (usc). This bottom left plot also includes the one rewriting based
pipeline not present in the prior results, L8W–, which uses depth 8 networks without weight
propagation so that all weights are kept on the input layer. This pipeline L8W– is included here
in order to gauge whether a combination of the techniques behind Ld and W– improves upon the
individual pipelines. A single parameter value d = 8 was fixed for simplicity. No such improve-
ment is seen, however, as L8W– fares significantly worse than L8.

The respective plots of optimization values on the right have been normalized to a range from 0
to 1 corresponding to the best and worst values achieved by the pipelines. Regarding differences
between pipelines, the pipelinesWk perform similarly with different sparseness factors k, except
with k = ∞, which stands out and gives the best results. Moreover, as seen in the bottom right
plot, clasp without rewriting yields overall lowest optimization values. This reveals that although
clasp without rewriting does not achieve the greatest numbers of optimally solved instances, it
is exceptionally often close in optimization values to whichever pipeline solves each instance
at hand most optimally. In comparison, the best pipelines with rewriting solve more instance
optimally, but fall behind slightly more clearly on the other instances.

In the process of these experiments, additional preliminary screening was performed on vari-
ous aspects of the benchmark setting. The results are only briefly described here due to lacking
significance in the outcomes. For one, a significantly extended timeout of one hour had little
impact on the relative standing of the pipelines. Likewise, use of a stratification heuristic for
handling weights in CLASP when employing core-guided optimization made little difference.

30 J. Bomanson and T. Janhunen

0 50 100 150 200 250 300 350
0

200

400

600

Optimally solved instances

Ti
m
e
in

se
co
nd

s

L4

L8

L16

L32

F/L∞/W1

0 50 100 150 200 250 300 350

0.2

0.4

0.6

0.8

1

Instances

O
pt
im

iz
at
io
n
va
lu
e

0 50 100 150 200 250 300 350
0

200

400

600

Optimally solved instances

Ti
m
e
in

se
co
nd

s

F/L∞/W1

W4

W8

W16

W32

W∞
W–

0 50 100 150 200 250 300 350

0.2

0.4

0.6

0.8

1

Instances

O
pt
im

iz
at
io
n
va
lu
e

0 50 100 150 200 250 300 350
0

200

400

600

Optimally solved instances

Ti
m
e
in

se
co
nd

s

usc
clasp
L8

L8W–

F/L∞/W1

W∞

0 50 100 150 200 250 300 350

0.2

0.4

0.6

0.8

1

Instances

O
pt
im

iz
at
io
n
va
lu
e

Fig. 2. Cactus plots of time and optimization value for runs in Tables 3 and 4. Closeness to the bottom right
is better in both cases. For each instance, the best final optimization value reported by a system is mapped
to 0 and the worst to 1. From top to bottom, the horizontal pairs of plots concern systems Ld using rewriting
with depth d networks, systems Wk using rewriting with weights on every kth layer, and a selection of these
systems together with CLASP using core-guided optimization (usc) and branch-and-bound (clasp).

Moreover, the combination of rewriting and core-guided optimization performed otherwise sim-
ilarly to plain core-guided optimization, but resulted in more timeouts.

Further benchmark classes were also screened for an impact due to optimization rewriting.
To this end, Steiner Tree, Valves Location, and Video Streaming from the ASP Competitions
were considered, but none showed clear signs of improvements to report. These benchmarks are

Boosting Answer Set Optimization with Weighted Comparator Networks 31

generally large, and have geometric averages 5.7, 5.5, and 4.5 of constraints on a logarithmic
scale before rewriting, respectively. On Valves Location, the results were neutral and on the
other two, performance was reduced. On Valves Location, the explanation may be in that the
optimization statements are minuscule relative to the entire instances, which may reflect their
significance as sources of nogoods. On Video Streaming, the performance reduction is minor.
On Steiner Tree, the reduction is greater, and the reason may simply be that the size blowup is
particularly costly given the exceptionally large size of the instances already before rewriting. In
general, an exceptionally large input size for a solvable instance is a sign of the instance being
“large but easy” rather than “small but hard”, and it is likely that its difficulty does not stem as
heavily from a combinatorial explosion as with smaller instances. This may hinder the usefulness
of the proposed optimization rewriting since based on the formal analysis, optimization rewriting
yields benefits in cases where the task of optimization presents a clear combinatorial challenge.

In summary, our experiments provide support in favor of different solving pipelines on differ-
ent benchmark classes. Thus, an ideal portfolio solver incorporating the proposed optimization
rewriting techniques and native optimization approaches would surpass either approach stand-
ing alone. In particular, our optimization rewriting pipelines improve in several cases over plain
CLASP as well as CLASP with core-guided optimization. Based on the results, we recommend
considering optimization rewriting based on depth limited comparator networks as in Ld where
d is ideally tuned based on the benchmark set at hand or fixed to a modest value such as d = 8,
which yielded robust performance in these experiments. Limiting network depth limits rewriting
size while compromising some of the benefits of rewriting and generally, although not always,
this tradeoff is worthwhile. Moreover, due to differences in the result statuses and the S1 scores,
we hypothesize that the proposed optimization rewriting techniques are particularly suitable for
solving instances all the way to optimality.

5 Related Work

The odd-even merge sort scheme (Batcher 1968) is a widely used scheme for generating practical
and useful sorting networks. Sorting networks have existing applications in, e.g., SAT encodings
of pseudo-Boolean constraints (Eén and Sörensson 2006). These SAT encodings simulate sum-
mation in a binary system with digits encoded in a unary number system. The number of sorting
networks used is proportional to the maximum bit width of the weights in the pseudo-Boolean
constraint being encoded. Moreover, the number of inputs to each sorting network is propor-
tional to the number of inputs to the constraint. We have carried these techniques over to ASP in
our previous work on the normalization of cardinality rules (Bomanson and Janhunen 2013) and
weight rules (Bomanson et al. 2014). For weight rules, a set of structurally shared sorters is used
to compensate for a bit-width induced blowup factor originating from sorting network based SAT
encodings (Eén and Sörensson 2006). This line of research led to optimization rewriting (Boman-
son et al. 2016), which is also the focus of Section 4. In contrast to normalization, where special
constraints are compiled away altogether, the goal of rewriting is more relaxed and concerns the
reformulation of optimization statements received as input with the help of additional atoms and
rules. Section 4 furnishes the weight propagation concept introduced in this paper to provide a
novel optimization rewriting technique. The technique is distinguished by the fact that it always
requires only a single comparator network regardless of the bit width of input weights. More-
over, the network needs to be only a comparator network, as opposed to a sorting network. These

32 J. Bomanson and T. Janhunen

properties make it easier to find a network that meets any desired depth and size parameters,
which can be chosen to maximize performance on a given class of problems.

In the context of optimization, sorting networks have also been used to express sets of mu-
tually similar cardinality constraints generated during solving by the (unsatisfiable) core-guided
Maximum Satisfiability (MaxSAT) solver MSCG (Morgado et al. 2014). MaxSAT is closely
related to ASP optimization, witnessed by the fact that the mentioned solver builds on the al-
gorithm OLL originally devised for ASP optimization (Andres et al. 2012) in the ASP solver
CLASP. Core-guided optimization methods such as these start from the unfeasible region of the
search space, solving progressively relaxed, unsatisfiable subproblems until a solution is found.
In this solving process, reasons for unsatisfiability are characterized by so-called unsatisfiable
cores that form the basis of analysis in the OLL algorithm, which yields cardinality constraints
used to guide the relaxation steps. In the more traditional, model-guided optimization strategy,
such as branch-and-bound, search begins from the feasible region of the search space, as models
of successively improved value are sought until no improvement is possible (Alviano et al. 2015).
In experimental evaluations presented in Section 4.4, optimization rewriting and model-guided
optimization are compared against core-guided optimization, and the techniques are found to ex-
cel at different benchmarks. However, in contrast to core-guided methods, optimization rewriting
works in principle with any solving approach by virtue of being a preprocessing technique. This
includes model-guided optimization, to which it contributes the benefits of comparator network
encodings.

Another recent development (Saikko et al. 2018) in ASP optimization is to isolate all arith-
metic reasoning into a separate implicit hitting set (IHS) problem (Moreno-Centeno and Karp
2013). The approach stems from MaxSAT (Davies and Bacchus 2011), and can be seen as a vari-
ation of core-guided optimization where the relaxation steps are performed differently in order to
cope better with non-unit weights. Namely, each core is encoded together with the optimization
criteria in an IHS problem that can be solved via integer linear programming (ILP). The solution
to the IHS problem is used in relaxing the problem in a way that requires no added rules. The use
of an ILP solver for this task results in a hybrid approach for ASP optimization that alternates
between ASP decision solving for core extraction and IHS solving via ILP for problem relaxation
(Saikko et al. 2018). The specific avoidance of new rules and atoms, and the outsourcing of arith-
metic computations to an external solver are in stark contrast with this work and indicate that the
approach seeks performance benefits via a highly orthogonal manner. Indeed, the approach does
not empower the ASP computation with the potential benefits of new auxiliary atoms discussed
in Section 4. Moreover, a combination of the approaches is possible and may prove fruitful, but
such a study is left out of the scope of this work.

There is existing work on formally analyzing abstract solvers for SAT and ASP. The anal-
ysis in Section 4.2 is distinguished from existing work that we are aware of in that it shows
an exponential improvement in propagator based solving of optimization problems in answer set
programming. Regarding the related work, Anger et al. (2006) demonstrated that simple program
transformations that add structure to an answer set program can exponentially reduce the search
space explored by a state-of-the-art answer set solver of the time. The added structure was in the
form of new intermediate atoms and rules used to explicitly express rule bodies. A formal proof
system was provided by Gebser and Schaub (2013) and used to prove exponentially different
best-case computation lengths between different ASP algorithms. The proof system was a form
of tableaux calculi. It was extended by Jarvisalo and Oikarinen (2008) to form Extended ASP
Tableaux, which further defines an extension rule based on the addition of redundant structure in

Boosting Answer Set Optimization with Weighted Comparator Networks 33

the form of added rules. This addition of redundant structure was proven to enable polynomial
length proofs on a family of normal logic programs on which proofs in the original proof system
were of exponential length at minimum. In the field of SAT and SMT, an abstract framework
was put forth by Jarvisalo and Oikarinen (2006) for describing standard search procedures for
SAT. In the framework, graphs are used to capture the behavior of solving algorithms. In the
graphs, nodes represent solver states and directed edges represent various actions that the algo-
rithms may perform to move between states. The graphs facilitate formally precise description of
algorithms as well as analysis of their properties. Based on this framework for SAT and SMT, a
similar framework was developed for describing, analyzing and comparing various ASP solving
algorithms (Lierler 2011). More recently, a framework was developed for integrating multiple
reasoning formalisms, such as SAT and ASP, together as equal standing components (Lierler and
Truszczynski 2016). The framework is able to incorporate the semantics of both propositional
theories and logic programs, and moreover SMT can be translated into it.

6 Conclusion

In this paper, we present a novel technique for rewriting pseudo-Boolean expressions deployed
as objective functions in ASP and other constraint-based paradigms. The technique is based on
the novel idea of connecting an encoding of a comparator network to the literals of an objective
function and redistributing the coefficients of the objective function systematically over the struc-
ture of the network as weights. When translated into a target formalism, such as ASP, auxiliary
atoms used to express the structure of the network offer the underlying back-end solver additional
branching points and concepts to learn about. In this paper, we formally analyzed and experimen-
tally evaluated the idea in the context of ASP. As part of this, we provide a formal analysis that
highlights an exponential separation in solving performance on an example family of answer set
programs. We implemented the approach in a tool called PBTRANSLATE, which we evaluated in
computational experiments. In the experiments, we obtained positive experimental results using
PBTRANSLATE for rewriting optimization statements and CLASP (v. 3.3.3) as the back-end ASP
solver. We found several benchmark problems where the search for an optimal answer set is sig-
nificantly accelerated using designs based on sorting networks. This holds in comparison to both
branch-and-bound and core-guided optimization strategies of CLASP. Although rewritten opti-
mization statements have an increased size, the introduction of useful auxiliary variables and the
redistribution of weights more than compensates for this cost on these benchmark problems. The
idea is moreover completely general and we anticipate further applications of this technique in
neighboring paradigms in addition to ASP. As regards future work, we believe it is worthwhile to
consider similar techniques using more general types of networks, such as permutation networks
(Waksman 1968).

Acknowledgements

We would like to thank the anonymous reviewers and Dr. Martin Gebser for valuable comments
and suggestions. This work has been supported in part by the Finnish centre of excellence in
Computational Inference Research (COIN) (Academy of Finland, project #251170). Moreover,
Jori Bomanson has been supported by Helsinki Doctoral Network in Information and Commu-
nication Technology (HICT) and Tomi Janhunen partially by the Academy of Finland project
Ethical AI for the Governance of Society (ETAIROS, grant #327352).

34 J. Bomanson and T. Janhunen

References

ABÍO, I., NIEUWENHUIS, R., OLIVERAS, A., RODRÍGUEZ-CARBONELL, E., AND MAYER-
EICHBERGER, V. 2012. A new look at bdds for pseudo-boolean constraints. Journal of Artificial In-
telligence Research 45, 443–480.

ABÍO, I., NIEUWENHUIS, R., OLIVERAS, A., RODRÍGUEZ-CARBONELL, E., AND STUCKEY, P. J. 2013.
To encode or to propagate? The best choice for each constraint in SAT. In Proceedings of CP 2013,
C. Schulte, Ed. LNCS, vol. 8124. Springer, 97–106.

ALVIANO, M., DODARO, C., LEONE, N., AND RICCA, F. 2015. Advances in WASP. In Proceedings of
LPNMR 2015, F. Calimeri, G. Ianni, and M. Truszczynski, Eds. LNCS, vol. 9345. Springer, 40–54.

ALVIANO, M., DODARO, C., MARQUES-SILVA, J., AND RICCA, F. 2015. Optimum stable model search:
algorithms and implementation. Journal of Logic and Computation.

ANDRES, B., KAUFMANN, B., MATHEIS, O., AND SCHAUB, T. 2012. Unsatisfiability-based optimization
in clasp. See Dovier and Santos Costa (2012), 212–221.

ANGER, C., GEBSER, M., JANHUNEN, T., AND SCHAUB, T. 2006. What’s a head without a body? In
Proceedings of ECAI 2006. IOS Press, 769–770.

APT, K., BLAIR, H., AND WALKER, A. 1987. Towards a theory of declarative knowledge. In Founda-
tions of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan Kaufmann Publishers,
Chapter 2, 89–148.

BALDUCCINI, M. AND JANHUNEN, T., Eds. 2017. Proceedings of LPNMR 2017. LNCS, vol. 10377.
Springer.

BANBARA, M., SOH, T., TAMURA, N., INOUE, K., AND SCHAUB, T. 2013. Answer set programming as a
modeling language for course timetabling. Theory and Practice of Logic Programming 13, 4-5, 783–798.

BATCHER, K. E. 1968. Sorting networks and their applications. In AFIPS Spring joint computer confer-
ence. ACM, Thomson Book Company, 307–314.

BOMANSON, J. 2017. lp2normal - A normalization tool for extended logic programs. See Balduccini and
Janhunen (2017), 222–228.

BOMANSON, J., GEBSER, M., AND JANHUNEN, T. 2014. Improving the normalization of weight rules in
answer set programs. In Proceedings of JELIA 2014. LNCS, vol. 8761. Springer, 166–180.

BOMANSON, J., GEBSER, M., AND JANHUNEN, T. 2016. Rewriting optimization statements in answer-
set programs. In Technical Communications of ICLP 2016. OASIcs, vol. 52. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 5:1–5:15. Article 5.

BOMANSON, J. AND JANHUNEN, T. 2013. Normalizing cardinality rules using merging and sorting con-
structions. In Proceedings of LPNMR 2013. LNCS, vol. 8148. Springer, 187–199.

BONUTTI, A., DE CESCO, F., DI GASPERO, L., AND SCHAERF, A. 2012. Benchmarking curriculum-
based course timetabling: Formulations, data formats, instances, validation, visualization, and results.
Annals of Operations Research 194, 1, 59–70.

BREWKA, G., EITER, T., AND TRUSZCZYŃSKI, M. 2011. Answer set programming at a glance. Commu-
nications of the ACM 54, 12, 92–103.

CALIMERI, F., FABER, W., GEBSER, M., IANNI, G., KAMINSKI, R., KRENNWALLNER, T., LEONE,
N., RICCA, F., AND SCHAUB, T. 2013. ASP-Core-2: 4th ASP Competition official input language
format. Available as http://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.
01c.pdf.

CALIMERI, F., IANNI, G., AND TRUSZCZYNSKI, M., Eds. 2015. Proceedings of LPNMR 2015. LNCS,
vol. 9345. Springer.

CLARK, K. 1978. Negation as failure. In Logic and Data Bases. Plenum Press, 293–322.
CUSSENS, J. 2011. Bayesian network learning with cutting planes. In Proceedings of UAI 2011, F. Cozman

and A. Pfeffer, Eds. AUAI Press, 153–160.
DAVIES, J. AND BACCHUS, F. 2011. Solving MAXSAT by solving a sequence of simpler SAT instances.

In Proceedings of CP 2011, J. H. Lee, Ed. LNCS, vol. 6876. Springer, 225–239.

Boosting Answer Set Optimization with Weighted Comparator Networks 35

DENECKER, M., VENNEKENS, J., BOND, S., GEBSER, M., AND TRUSZCZYŃSKI, M. 2009. The second
answer set programming competition. In Proceedings of LPNMR 2009, E. Erdem, F. Lin, and T. Schaub,
Eds. LNAI, vol. 5753. Springer, 637–654.

DOVIER, A. AND SANTOS COSTA, V., Eds. 2012. Technical Communications of ICLP 2012. Vol. 17.
Leibniz International Proceedings in Informatics (LIPIcs).

DRESCHER, C. AND WALSH, T. 2012. Answer set solving with lazy nogood generation. See Dovier and
Santos Costa (2012), 188–200.

EÉN, N. AND SÖRENSSON, N. 2006. Translating Pseudo-Boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation 2, 1–4, 1–26.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., ROMERO, J., AND SCHAUB, T. 2015. Progress in clasp
series 3. See Calimeri et al. (2015), 368–383.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012. Conflict-driven answer set solving: From theory
to practice. Artificial Intelligence 187, 52–89.

GEBSER, M., MARATEA, M., AND RICCA, F. 2015. The design of the sixth answer set programming
competition. See Calimeri et al. (2015), 531–544.

GEBSER, M., MARATEA, M., AND RICCA, F. 2017. The design of the seventh answer set programming
competition. See Balduccini and Janhunen (2017), 3–9.

GEBSER, M. AND SCHAUB, T. 2013. Tableau calculi for logic programs under answer set semantics. ACM
Transactions on Computational Logic 14, 2, 15:1–15:40.

JAAKKOLA, T., SONTAG, D., GLOBERSON, A., AND MEILA, M. 2010. Learning Bayesian network
structure using LP relaxations. In Proceedings of AISTATS 2010. JMLR Proceedings, vol. 9. JMLR,
358–365.

JANHUNEN, T., GEBSER, M., RINTANEN, J., NYMAN, H., PENSAR, J., AND CORANDER, J. 2017. Learn-
ing discrete decomposable graphical models via constraint optimization. Statistics and Computing 27, 1,
115–130.

JANHUNEN, T. AND NIEMELÄ, I. 2016. The answer set programming paradigm. AI Magazine 37, 3,
13–24.

JÄRVISALO, M. AND OIKARINEN, E. 2008. Extended ASP tableaux and rule redundancy in normal logic
programs. Theory and Practice of Logic Programming 8, 5-6, 691–716.

LIERLER, Y. 2011. Abstract answer set solvers with backjumping and learning. Theory and Practice of
Logic Programming 11, 2-3, 135–169.

LIERLER, Y. AND TRUSZCZYNSKI, M. 2016. On abstract modular inference systems and solvers. Artificial
Intelligence 236, 65–89.

LIFSCHITZ, V. AND RAZBOROV, A. A. 2006. Why are there so many loop formulas? ACM Transactions
on Computational Logic 7, 2, 261–268.

LIFSCHITZ, V. AND TURNER, H. 1994. Splitting a logic program. In Proceedings of ICLP 1994. MIT
Press, 23–37.

MARATEA, M., PULINA, L., AND RICCA, F. 2015. Multi-level algorithm selection for ASP. See Calimeri
et al. (2015), 439–445.

MAXSAT-COMP. 2014. Ninth Max-SAT evaluation. Available as http://www.maxsat.udl.cat/
14/.

MORENO-CENTENO, E. AND KARP, R. M. 2013. The implicit hitting set approach to solve combinatorial
optimization problems with an application to multigenome alignment. Operations Research 61, 2, 453–
468.

MORGADO, A., DODARO, C., AND MARQUES-SILVA, J. 2014. Core-guided maxsat with soft cardinality
constraints. In Proceedings of CP 2014, B. O’Sullivan, Ed. LNCS, vol. 8656. Springer, 564–573.

NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2006. Solving SAT and SAT modulo theories: From
an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM 53, 6, 937–
977.

36 J. Bomanson and T. Janhunen

SAIKKO, P., DODARO, C., ALVIANO, M., AND JÄRVISALO, M. 2018. A hybrid approach to optimization
in answer set programming. In Proceedings of KR 2018, M. Thielscher, F. Toni, and F. Wolter, Eds.
AAAI Press, 32–41.

WAKSMAN, A. 1968. A permutation network. Journal of the ACM 15, 1, 159–163.
ZHOU, N. AND KJELLERSTRAND, H. 2016. The picat-sat compiler. In Proceedings of PADL 2016,

M. Gavanelli and J. H. Reppy, Eds. LNCS, vol. 9585. Springer, 48–62.

