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Training deep artificial neural networks requires a lot of computational power and time. This is 
partly because of huge number of trained parameters that exists in these networks, and some of 
them are well-known to be redundant after training. Traditionally artificial neural networks have 
very rigid layer structure which does not let information go through network very efficiently. 

Many of our world’s networks are classified as small-world networks, meaning that their nodes 
are connected to each other by tiny distances. This specific connectivity structure enables en-
hanced information flow though network. This study focuses on how small-world topology affects 
artificial neural networks performance on classification tasks. To achieve this, an artificial neural 
network is modeled as graph and connections within the network is rewired to create a small-
world artificial neural network. 

The small-world neural network is compared to regular neural network with zero rewiring. Ex-
periments include total of six different artificial neural networks. One with dropout regularization, 
one with weight regularization, one without any regularization methods and their small-world 
counterparts. Every network has same number of neurons and connections within layers to keep 
results comparable. The results show that small-world networks achieved higher classification 
accuracy and higher convergence speed during training. 
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1. INTRODUCTION 

The artificial neural network is a computational tool vaguely inspired by the biological 

neural networks. It has been shown to be a powerful tool for various learning tasks. Deep 

artificial neural networks require a lot of data and computational power to train due to 

huge number of parameters that needs to be learned. Such networks are also prone to 

overfitting because of their capability to model rare dependencies in the training data.  

A small-world network is a network whom nodes are connected to each other by tiny 

distances. Many of our worlds huge networks have small-world properties, for example 

the neural network of the worm Caenorhabditis [1] elegans or the social network of hu-

mans [2]. Small-world networks have been shown to be more efficient of exchanging 

information over the network [3]. Since the small-world networks have been shown to be 

prevalent in our world and efficient in solving different problem their structure could im-

prove performance of the artificial neural networks. The goal of this research is to study 

how artificial neural networks with small-world topology perform in classification tasks. 

To achieve this total of six different artificial neural networks are designed, one with drop-

out regularization, one with weight regularization, one without any regularization meth-

ods and corresponding networks with small-world topology.  

Chapter 2 covers theory behind the regularization methods and small-world graphs as 

well as related work done in area of small-world artificial neural networks. Chapter 3 

introduces used methods to design a small-world artificial neural network. Chapter 4 

shows experiments and results and chapter 5 contains the conclusion.    



2 
 

2. BACKGROUND AND RELATED WORK 

This chapter contains more information about dropout, weight regularization and graph 

theory and related work about small-world networks and small-world artificial neural net-

works.  

2.1 Dropout 

Dropout is widely used regularization method in many state-of-the-art neural networks. 

It is a technique used to prevent neural networks from overfitting. Dropout simply refers 

to dropping out nodes in a neural network during the training phase. Dropping out means 

ignoring the node and all connections directly related to it as presented in figure 2.1. The 

nodes that are dropped out are chosen randomly with the probability p. 

 

Figure 2.1. Dropout neural network model. In left is a fully connected regular neural 
network. In right is the network after dropout is implemented 

 

Dropping out random units during training leads to more robust network and better gen-

eralization after the training [4]. Dropout only affects the training phase and does not 

have any effect to the networks structure otherwise.  

2.2 Weight regularization 

Weight regularization is another technique that is used to prevent neural networks from 

overfitting. It tackles the problem by keeping weights in the neural network small. Large 

weights in the network might lead in a situation where small changes in the input leads 
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to large changes in the output thus making the network unstable [5]. Weight regulariza-

tion methods add a penalty term to the network’s loss function. 

There are two main approaches to calculate the penalty term: L1 regularization which is 

also known as lasso regularization and L2 regularization which is also known as ridge 

regression. The L1 loss uses the sum of the absolute values of the network’s weights 

and the L2 loss uses the sum of the squared values of the network’s weights. [6] The 

networks loss function is defined as: 

𝐿𝑜𝑠𝑠 =  𝐸𝑟𝑟𝑜𝑟(𝑦, ŷ)                                                                                                                                   (1) 

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟(𝑦, ŷ) +  𝜆 ∑|𝑤|

𝑁

𝑖=1

                                                                                                            (2) 

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟(𝑦, ŷ)   +  𝜆 ∑ 𝑤2

𝑁

𝑖=1

                                                                                                           (3) 

where λ is the regularization parameter which can be manually tuned, w is a weight of 

single connection in the network and error(y, ŷ) describes a loss between true value y 

and predicted value ŷ. Equation 1 defines a loss function with no regularization, equation 

2 describes a loss function with L1 regularization and equation 2 describes a loss func-

tion with L2 regularization. In equations 1 and 2 the later term is penalty that is added by 

regularization method. The main difference between L1 loss and L2 loss is that L1 loss 

tends to shrink the less important feature’s coefficients to zero resulting to more weights 

with 0.0 value.  

2.3 Graph theory 

A graph is a mathematical structure that is used to model relations between objects. It 

consists a set of nodes and a set of edges. The nodes represent objects and the edges 

describes the relations between a pair of nodes. A directed graph is a special type of 

graph where every edge has an orientation. The edges in a directed graph are one-way 

and the direction is described with an arrow. [7] A directed graph with five nodes and six 

edges is presented in figure 2.2.  
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Figure 2.2. A directed graph with five nodes and six edges 

 

The neighborhood of a node j in graph is a set of nodes that are connected to node j and 

a set of edges between those nodes. In a directed graph node have in-neighbors which 

include nodes that have edge to the node and out-neighbors which include nodes that 

have edge from the node. [7] For example, in figure 2.2 node k have in-neighbor j and 

out-neighbors z and e.  

2.4 Small-world networks 

The idea of small-world networks originated from a research paper from Watts and 

Strogatz [1] where they observed several complex networks such as the neural network 

of the worm Caenorhabditis elegans and the power grid of the western United States. 

Connection topology of these networks could not be classified as a completely random 

nor a completely regular so Watts and Strogatz introduced a new category called a small-

world network. Since then small-world networks have been widely studied and it has 

been shown that small-world networks have enhanced signal propagation speed, syn-

chronization, and information-flow though the network [3][2][8]. 

Small-world networks have two structural properties: high clustering coefficient and low 

average path length. Clustering coefficient measures the amount of highly connected 

cliques in a network and average path length measures the average path length within 

network’s nodes. [1] In other words clustering coefficient measures local connectivity in 
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a network and average pathlength measures global connectivity in a network. Nodes 

among a small-world network are both locally and globally densely connected.   

Small-world network can be generated from a regular network by following so called 

Watts-Strogatz model [1]. The idea of the Watts-Strogatz model is to take a regular net-

work and add randomness to its connections. The Watts-Strogatz model is presented in 

figure 2.3. 

 

Figure 2.3. Watts-Strogatz model 

 

The algorithm to produce Watts-Strogatz graph starts with regular N-dimensional ring 

lattice where every node is connected to its K-neighbors. Then a random subset (p%) of 

all connections are rewired to another random edges.  

2.5 Small-world artificial neural networks 

There is limited number of studies in the literature of the effects of a small-world network 

topology in artificial neural networks. 

Simard et al. [10] compared a small-world artificial neural network to a regular feed for-

ward artificial neural network (FFANN). The authors trained the networks with random 

binary input and output patterns and performed multiple experiments. They found out 

that in six out of seven of those experiments a small-world network topology reduced 

learning error and made learning faster. 

Erkaymaz et al. [11] studied how a small-world network topology impacts performance 

of FFANN in real life problems. They implemented two experiments, estimating the ther-

mal performances of solar air collectors, and predicting modulus of rupture values of 

oriented strand board. In both problems FFANN with a small-world topology was able to 

outperform conventional FFANN. This was followed with publications by Erkaymaz and 
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Mahmut [12] and by Erkaymaz et al. [13] where the authors explored the effects of small-

world network topology and different methods of constructing small-world artificial neural 

networks in the area of diabetes diagnosis. They were able to show that a small-world 

FFANN reached better classification accuracy than equivalent traditional FFANN.  

Javaheripi et al. [14] studied impact of small-world topology in a convolutional neural 

network. They trained convolutional neural networks for two different image classification 

tasks and compared results between small-world convolutional network, DenseNet [15] 

and ResNet [16]. The small-world solution achieved substantially faster convergence 

speed during training than two other networks.  

Gray et al. [17] investigated a small-world network structure with the long short term 

memory (LSTM) networks. Their results show that deep small-world LSTMs are more 

efficient during training than fully connected dense LSTMs. 

All in all, studies in literature show that small-world topology in neural networks can im-

prove training and testing performance compared to dense networks with equal number 

of parameters.  
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3.  METHODS 

This chapter describes how to define small-world network and presents the algorithm 

used to make small-world networks.  

3.1 Measurements for small-world network 

In the original small-world network paper [1] Watts and Strogatz proposed that networks 

‘small-worldness’ could be determined with two properties: clustering coefficient (C) and 

average path length (L). However, since FFANNs have unconnected neurons within the 

same layer neither clustering coefficient nor average path length can be calculated.  

Authors in [3] proposed that ‘small-worldness’ of the network could be determined by 

how efficiently it transports information. They introduced two parameters: the local effi-

ciency (DLocal) and the global efficiency (DGlobal), which corresponds to 1/C and L respec-

tively. Thus, the network exhibits a small-world property when both parameters DGlobal 

and DLocal are small meaning that small-world networks are very efficient in global and 

local communication. 

The global efficiency of a network is defined as:  

𝐷𝐺𝑙𝑜𝑏𝑎𝑙 =
1

1
𝑁(𝑁 − 1)

∑
1

𝑑𝑖𝑗
𝑖≠𝑗∈𝑁

                                                                                                              (4) 

where N is the number of nodes in the network and dij
 is shortest path length between 

two nodes i and j. The local efficiency of a network is defined as: 

𝐷𝑙𝑜𝑐𝑎𝑙 =
1

1
𝑁

∑ 𝐸(𝐺𝑥)𝑥∈𝑁

                                                                                                                            (5) 

𝐸(𝐺𝑥) =
1

𝑁𝑥(𝑁𝑥 − 1)
∑

1

𝑑𝑚𝑛
𝑚≠𝑛∈𝑁

                                                                                                          (6) 

where Nx is the number of out-neighbors and in-neighbors for node x, and dmn is the 

shortest path between nodes n and m after node x is removed from the network. [10][11] 
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3.2 Model 

3.2.1 Rewiring algorithm 

There are numerous ways to construct a small-world networks. The Watts-Strogatz re-

wiring algorithm presented in chapter two is used in this study. The algorithm starts with 

regular FFANN modeled as a graph, where each node is connected to all nodes within 

the next layer. The rewiring is performed by visiting each of the edges in the network 

once and rewiring the connection with probability p. Rewiring is done by removing the 

original connection between neurons (i, j) and randomly finding a new goal node (k). 

Neuron k is selected such as it is not an in-neighbor or out-neighbor to node i and there 

are no duplicated connections between nodes. Then connection is formed between 

nodes i and k. Figure 3.1 demonstrates the rewiring policy.  

 

Figure 3.1. Rewiring policy 

 

The rewiring process does not change the number of connections in the network thus it 

does not affect at the number of parameters in the FFANN.  

3.2.2 Architecture for small-world neural network 

In order to generate a small-world network from given artificial neural network the net-

work is first modeled as a directed graph representation. Then the connections within 

graph are rewired with different probabilities p ∈ [0,1] and efficiencies DGlobal and DLocal 

are computed for each generated graph. Figure 3.2 represents the efficiency values ver-

sus different rewiring probability in the network that consists 6 hidden layers with 64 

neurons on each hidden layer and output layer with 11 neurons.  
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Figure 3.2. Network efficiency values with different rewiring probabilities 
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4. EXPERIMENTS 

This chapter presents the datasets that are used to perform experiments and results of 

three classification problems.  

4.1 Datasets 

Experiments are conducted on three different classification tasks taken from UCI ma-

chine learning repository [18]: Dataset for Sensorless drive diagnosis, Avila dataset and 

letter recognition dataset. Sensorless drive diagnosis dataset consists measurements of 

electric current drive signals. There are 11 different classes and total of 48 different at-

tributes are used to predict state of the motor. 

Avila dataset attributes has been extracted from pictures of the Avila bible. The classifi-

cation task is to associate each pattern to a copyist. Total of 10 attributes are used to 

predict a class and the dataset consist 12 classes.  

Letter recognition dataset comprise statistical information about different letters. The ob-

jective is to identify a capital letter this information is gathered from. 16 different attributes 

are extracted from the letters and there are 26 different classes in the dataset. 

4.2 Performance measurements 

In order to compare the performance of a small-world neural network to a regular fully 

connected neural network and how different regularization methods affect performance 

total of six networks are trained: a fully connected neural network, a fully connected neu-

ral network with dropout regularization, a fully connected neural network with weight reg-

ularization, a small-world neural network, a small-world neural network with dropout reg-

ularization and a small-world neural network with weight regularization. Each of these 

networks have same number of layers and connections within neurons to keep results 

comparable. To eliminate effect of randomness, each network is trained 10 times and 

the plots show an estimate of the central tendency and error bands showing a confidence 

interval. 

4.2.1 Sensorless drive diagnosis dataset 

For sensorless drive diagnosis data neural networks used consists of seven layers. The 

layers are an input layer with 48 neurons, five hidden layers with 64 neurons each and 
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an output layer with 11 neurons. In the dropout networks dropout percentage is 0.3 after 

the input layer and 0.1 after each hidden layer. Both L1 and L2 regularizations are used 

in the weight regularization networks with values 10-7 and 10-6 respectively. ReLU acti-

vation function is used in the hidden layers and softmax in the output layer. The learning 

rate is set at 0.01 for the weight regularization networks, 0.001 for the dropout networks 

and 0.0001 for the networks without any regularization methods. All networks are trained 

with Adam optimizer [19] and small-world models are created by using rewiring proba-

bility of 0.7. Neural networks are trained with 1755 samples and evaluation is performed 

with 1000 samples. 

 

Figure 4.1. Testing accuracy for sensorless drive diagnosis dataset 

 

Figure 4.1 represents the accuracy of different networks during training. Accuracy is 

measured from the test samples that network has not seen during training. Each network 

is trained with batch size of 128. As can be seen, small-world topology improves net-

works classification accuracy if regularization methods are not used. Small-world topol-

ogy does not have big effect in accuracy when either dropout or weight regularization is 

used. However small-world topology seems to improve every networks convergence 

speed thus making networks learn faster. 
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4.2.2 Letter recognition dataset 

For letter recognition task neural networks used consists of seven layers. An input layer 

with 16 neurons, 5 hidden layers with 16 neurons in each and an output layer with 26 

neurons. Dropout percentage is set at 0.1 after input layer and every hidden layer. L1 

and L2 regularizations are used with values 10-6 and 10-7 respectively. ReLU activation 

function is used for the hidden layers and softmax for the output layer. Learning rate is 

set at 0.01 in the weight regularization networks, 0.001 in the dropout networks and 

0.0001 in the networks without any regularization methods. The Adam optimizer is used 

for training. The networks are trained with 2000 samples and evaluated with 1000 sam-

ples. Figure 4.2 presents training history for this dataset.  

 

Figure 4.2. Testing accuracy for letter recognition dataset 

   

In this experiment small-world topology improves final classification accuracy for all mod-

els. Although difference between models without regularization is barely noticeable. 

Small-world topology also improves convergence speed in the dropout and the weight 

regularization models. Small-world topology does not seem to have effect in conver-

gence speed in the network with no regularization.  
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4.2.3 Avila dataset 

For Avila dataset networks used consists of 7 layers. An input layer with 10 neurons, 5 

hidden layers with 16 neurons and an output layer with 12 neurons. Dropout percentage 

is set on 0.1 after the input layer and all the hidden layers. L1 and L2 regularizations are 

used with values 10-6 and 10.7. ReLU activation function is used for the hidden layers 

and softmax for the output layer. Learning rate is set at 0.01 in the weight regularization 

networks, 0.001 in the dropout networks and 0.0001 in the networks without any regu-

larization methods. Adam optimizer is used for the training. The Networks are trained 

with 2085 samples and evaluated with 1000 samples. Figure 4.3 presents training history 

for Avila dataset.  

 

Figure 4.3. Testing accuracy for Avila dataset 

 

Similarly, to letter recognition experiment a small-world topology improves classification 

accuracy in all models. Small-world topology also improves the convergence speed of 

all models in this experiment.  
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5. CONCLUSION 

The goal of this thesis was to study how small-world topology affects performance of an 

artificial neural network. The proposed approach is based on previous studies within the 

field of small-world networks. A small-world artificial network is constructed from a regu-

lar artificial network by rewiring the connections within neurons. Rewiring is based on 

Watts-Strogatz model [1] and the goal is to find the optimal network structure. After re-

wiring the final network is both locally and globally efficient. 

Networks are evaluated with three different classification tasks. The experiments show 

that small-world topology improves convergence speed of all networks in all three exper-

iments. In two out of three experiments small-world topology also consistently improved 

networks classification accuracy. To sum it up, small-world topology consistently im-

proved networks performance in classification tasks.  
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