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Abstract—Patient-specific induced pluripotent stem cell-der-
ived cardiomyocytes (iPSC-CMs) offer an attractive exper-
imental platform to investigate cardiac diseases and
therapeutic outcome. In this study, iPSC-CMs were utilized
to study their calcium transient signals and drug effects by
means of machine learning, a central part of artificial
intelligence. Drug effects were assessed in six iPSC-lines
carrying different mutations causing catecholaminergic poly-
morphic ventricular tachycardia (CPVT), a highly malignant
inherited arrhythmogenic disorder. The antiarrhythmic effect
of dantrolene, an inhibitor of sarcoplasmic calcium release,
was studied in iPSC-CMs after adrenaline, an adrenergic
agonist, stimulation by machine learning analysis of calcium
transient signals. First, beats of transient signals were
identified with our peak recognition algorithm previously
developed. Then 12 peak variables were computed for every
identified peak of a signal and by means of this data signals
were classified into different classes corresponding to those
affected by adrenaline or, thereafter, affected by a drug,
dantrolene. The best classification accuracy was approxi-
mately 79% indicating that machine learning methods can be
utilized in analysis of iPSC-CM drug effects. In the future,
data analysis of iPSC-CM drug effects together with machine
learning methods can create a very valuable and efficient
platform to individualize medication in addition to drug
screening and cardiotoxicity studies.

Keywords—Drug effect, Induced pluripotent cardiomyocyte,

Calcium transient signal, Machine learning, Classification.

INTRODUCTION

Induced pluripotent stem cell-derived cardiomy-
ocytes (iPSC-CM) have been utilized to investigate
several cardiac diseases.16 Function of calcium cycling
is essential in the excitation–contraction coupling of
cardiomyocytes and calcium cycling studies of iPSC-
CMs can give new insight of disease pathology, pre-
vention and treatment. Different studies have shown
that calcium transient analysis of iPSC-CMs can be
utilized for assessing compounds on cardiac contrac-
tility and evaluating drug responses.17,18

Machine learning together with calcium transient
signals of iPSC-CMs can also be utilized in the context
of drug research for cardiac diseases. It has been used
for the analysis of mechanistic action of drugs in car-
diology12 and also for electrophysiological influence of
chronotropic drugs.5 However, thus far, the use of
machine learning to analyze and model large sets of
calcium transient signals originating from iPSC-CMs
seems to be still rare. Previously, we have studied the
use of machine learning for the differentiation of
normally and abnormally cycling calcium transient
profiles or signals of iPSC-CMs on the basis of the
recognized and classified peaks in those transient sig-
nals.7 Cardiomyocytes with normal calcium transients
were more frequent (85-90%) for cardiomyocytes of
control, healthy individuals (wildtype, WT), but both
normal and abnormal calcium transients were roughly
equally frequent for diseased cardiomyocytes.7–9 In
addition, we found that it is possible to separate dif-
ferent genetic cardiac diseases from each other and
from healthy controls by applying these transient sig-
nals: transient signals of one cardiac disease differed
from those of another disease or controls.8,9
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In the current research, we applied machine learning
for peaks identified from our calcium transient signal
data of our previously published drug study of cate-
cholaminergic polymorphic ventricular tachycardia
(CPVT)-specific iPSC-CMs.14 CPVT is an inherited
arrhythmogenic disorder, which is caused by genetic
mutations affecting proteins, e.g. cardiac ryanodine
receptor (RyR2), that regulate the calcium cycling in
cardiomyocytes.11,15 Here the peaks identified from
CPVT specific cardiomyocyte calcium transient signals
formed our data input to various machine learning
methods in order to study the effect of adrenaline, an
adrenergic agonist and dantrolene, an inhibitor of
sarcoplasmic calcium release having antiarrhythmic
effects.14 We ran machine learning methods for iPSC-
CM calcium transient data gained from three types of
measurement conditions: (1) baseline condition
reflecting the spontaneous beating of cardiomyocytes,
(2) adrenaline condition, where cardiomyocytes were
exposed to adrenergic agonist to increase their beating
rhythm and (3) dantrolene condition, where car-
diomyocytes, which showed calcium transient abnor-
malities during adrenaline perfusion were exposed to
dantrolene together with adrenaline.

MATERIAL

Generation of hIPSC-CMs and Their Characterization

This study was approved by the Ethics Committee
of Pirkanmaa Hospital District regarding culturing
and differentiating of human iPSC lines (R08070). All
experimental methods related to hiPSC-CMs have
been described earlier.14 Briefly, studied iPSC cell lines
included six CPVT lines generated from CPVT patients
carrying RyR2 mutations including exon 3 deletion,
and point mutations P2328S, T2538R, L4115F,
Q4201R and V4653F. The iPSCs were differentiated
into spontaneously beating CMs using the END2 dif-
ferentiation method13 and dissociated to single-cell le-
vel for calcium imaging studies, which were conducted
with spontaneously beating Fura-2 AM (Invitrogen,
Molecular Probes) loaded CMs. Calcium transient
signals were measured with inverted IX70 microscope
with a UApo/340 x20 air objective (Olympus Corpo-
ration, Hamburg, Germany) with an ANDOR iXon
885 CCD camera (Andor Technology, Belfast,
Northern Ireland) and a Polychrome V light source by
a real time DSP control unit and TILLvisION or Live
Acquisition (TILL Photonics, Munich, Germany)
softwares. Calcium signals were acquired as the ratio
of the emissions at 340/380 nm wavelengths, and
background noise was subtracted before further pro-
cessing. For drug studies, the changes in calcium were

recorded during spontaneous baseline beating, spon-
taneous beating after exposure to 1 lM adrenaline and
spontaneous beating after exposure to 1 lM adrena-
line together with 10 lM dantrolene (Sigma). If cal-
cium transient abnormalities were detected after
exposure to adrenaline, cells were exposed to dan-
trolene to see the potential antiarrhythmic response.

Data Computed from Calcium Transient Signals

We have designed and implemented a computa-
tional method to recognize beats or peaks of calcium
transient signals originating from iPSC-derived car-
diomyocytes.7–9 The recognition of peaks was based on
the computation of first derivative using successive
short segments of a few samples from the beginning of
a transient signal to its end. When first derivative
values increased from roughly zero values rapidly to
positive values the beginning of a peak was met, then
decreasing first derivative values back close to zero its
maximum was found and finally after rapid change to
negative values again close to zero the end of the peak
was observed. Very small peaks containing smaller
amplitudes approximately less than 8% compared with
those of the large amplitude peaks in the signal were
left out as potential noise.

A biotechnology expert determined whether an
iPSC-derived cardiomyocyte had generated normally
or abnormally beating cycles. This was also mainly
applied in the present study, since this is our first case
to apply machine learning methods to drug research
with calcium transient signals and we wanted to be as
sure as possible with regard to decisions to which type
each transient signal should be labelled being central
for creating highly qualified training sets for machine
learning tests.

We used the data computed from six CPVT cell
lines altogether containing 128 calcium transient sig-
nals for each of the baseline, adrenaline and dantrolene
conditions. The biotechnology expert labelled the sig-
nals affected by dantrolene to three classes called
responder, semi-responder and non-responder. In a
responder signal dantrolene abolished all the calcium
cycling abnormalities, which therefore included only
normal calcium peaks. In a semi-responder signal
dantrolene reduced abnormalities by more than 50%
causing the signal to comprise of some abnormally
shaped calcium peaks. In a non-responder signal
dantrolene reduced abnormalities by less than 50%
causing the signal to consist of clearly abnormally
shaped calcium peaks. Figures 1 and 2 show example
transient signal segments. Table 1 presents their num-
bers for six CPVT cell lines. In Table 1, cardiomy-
ocytes were first treated with adrenaline and then the
effect of dantrolene was analyzed. Only those car-
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diomyocytes with adrenaline-induced arrhythmias
were studied. Cell lines 1, 2 and 4 were mainly
responders and most arrhythmias were abolished with
dantrolene. Cell lines 5 and 6 were mostly non-re-
sponders and dantrolene did not abolish the arrhyth-
mias. Cell line 3 had equal amount of responders, semi-
responders and non-responders.

Data Computed from Peaks of Calcium Transient
Signals

In our data there were baseline signals, adrenaline
signals and dantrolene (responder, semi-responder or
non-responder) signals, 128 of them in each of three
sets. In order to enable an analysis subject to their
relations, we first computed variable values from all
their valid peaks recognized in the preceding phase.
Their computation had been presented in detail pre-
viously.7–9 They are illustrated in Fig. 3. We applied 12
different peak variables9: amplitudes Al and Ar of peak
left and right sides, their durations Dl and Dr, their
maximum max(s’) (from peak left side) and absolute
minimum |min(s’)| (from peak right side) for the first
derivative s’, maximum max(s’’) and absolute mini-
mum |min(s’’)| of the second derivative s’’ from the
peak right side, peak surface R area between the peak
curve and the line between the peak beginning and end,
duration D from the peak maximum back to that of the
preceding peak or, if this non-existent, back to the
beginning of the signal, duration dl from the peak
beginning to the location of the first derivative maxi-
mum (inside the left peak side), and duration dr from
the location of the peak maximum to the location of
the first derivative absolute minimum (inside the peak
right side).

In Table 2 the means of the results differ in most
cases if we compare variable by variable between all
possible pairs of baseline, adrenaline and dantrolene
response, semi-response and non-response. Neverthe-
less, there are also some such pairs in which differences
are small. Frequently standard deviations are relatively
great compared to the means in the same cells. All 12
variables are used jointly in actual machine learning
analysis Thus, the differences of the means and stan-
dard deviations of the single variables do not predict
inevitably how effectively four classes of adrenaline vs.
dantrolene response, semi-response and non-response
could be separated from each other. The machine
learning analysis is considered in the following section.

Classification Methods Applied to Separation of Signal
Classes

Generally speaking, in machine learning there are
three issues that often are the most critical ones related
to the success of applying machine learning methods to
real world problems. These issues are selecting the
right variables, constructing training and test sets
properly for the machine learning methods and finding
the right hyperparameter values for the algorithms.
When these issues are solved with respect to the
problem handled, in many cases the results are good or
satisfactory at least. For the separation of the transient
signal classes we used all the 12 variables consistently
with all classification algorithms.

The classification or separation among five different
calcium signal classes (baseline, adrenaline, responder,
semi-responder and non-responder) is based on several
machine learning algorithms. Testing of several clas-
sification algorithms is necessary in practice in order to
obtain as wide empirical evidence as possible which
algorithm would be the most suitable for the applica-
tion considered. However, we need to remember that
the application examined in this paper includes several
research lines, which are covered in the following sec-
tion in a more detailed way. Since the machine learning
research in this paper is application oriented by nature,
each one of the research lines requires a separate and
detailed analysis and the analysis consists of in this
case the selection of the most suitable classification
algorithm and hyperparameter values, if necessary.
Because all research lines have their own special
characteristics such as different dataset and/or class
distribution between each other, we cannot guarantee
that there is only one classification algorithm, which
would outperform other methods tested in all possible
research lines. Machine learning is in practice tailoring
algorithms to work in a specific domain. The best re-
sults presented in the next section are directional for
researchers and/or practitioners who work with the
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FIGURE 1. A baseline calcium transient signal segment of
around 10 s measured from an iPSC-derived cardiomyocyte in
association with CPVT disease. The peaks were detected by
the signal recognition algorithm evaluating all of them to be
rather normally shaped calcium peaks close the similar size.
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same kind of research problem as described in this
paper. The results give perspective which methods
would be the best ones for the similar research prob-
lems what one is examining. Fine-tuning of an algo-
rithm like selecting the optimal hyperparameter values
are always data and problem dependent so there is not
any clear guidelines how to select the values optimally.

The methods tested are the same as in our earlier
studies.8,9 K-nearest neighbor nearest searching
(KNN) was applied with Chebychev metric, with
cityblock (Manhattan) metric, with correlation mea-

sure, with cosine measure, with Euclidean metric, with
Mahalanobis measure, with standardized Euclidean
metric and with Spearman measure. All of them were
tested with equal, inverse or squared inverse weighting,
naturally, and all the measure and weighting combi-
nations were tested with odd K values from 1 to 37
(number of nearest neighbors searched). The selection
of odd K values is justified on the basis of tie exclusion
that may happen if even K value is used.

Besides KNN algorithm, linear, quadratic and
Mahalanobis discriminant analysis were examined as
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FIGURE 2. (a) An adrenaline exposure signal segment and (b) its dantrolene responder signal including regular peaks of a
roughly similar size, (c) an adrenaline exposure signal segment and (d) its semi-responder containing slight irregularity, and (e) an
adrenaline exposure signal segment and (f) its non-responder containing rather similar irregularity as before dantrolene.
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well as decision trees (CART), multinomial logistic
regression (logistic regression in binary case), Naı̈ve
Bayes with normal distribution, Naı̈ve Bayes with
kernel density estimation and with the normal, box,
Epanechnikov and triangle kernels were examined.
Random forests were also investigated and the number
of trees tested in a forest ranged from 1 to 100 with
step size of 1. When a random forest has only one tree
in a forest, the tree structure differs from the tree
structure given by the CART algorithm. Furthermore,
least squares support vector machines (LS-SVMs) were
used with the linear, quadratic, cubic, and radial basis
function (RBF) kernels. Test set-ups included both
binary and multi-class classification schemes and,

hence, with LS-SVMs also a multi-class extension of
LS-SVM was required. In this study a hierarchical
approach of LS-SVM was used that was similar to a
method applied in Ref. 6 More specifically, Fig. 4
represents the hierarchical LS-SVM used in this study.
With LS-SVMs boxconstraint (C) and r parameter
(encountered in RBF kernel) had the same parameter
value space of {2212, 2211,…, 217}.

In other words, the polynomial kernels were tested
with 30 different values of C and RBF kernel with 900
(C,r) combinations.

Now the variables and tested hyperparameter values
are explained from the three essential issues with re-
spect to machine learning algorithms. In this paper we
used leave-one-out (LOO) method in a signal level for
classification. Here, in each LOO round the data from
one signal is left for test set and the rest of the data
forms a training set. We must also notice that the data
of one signal is a collection of data derived from the
peaks within the signal. Hence, every row in a test set
corresponds to a data gained from one peak within a
signal. Since we are dealing with signal classification,
we need to separate signal level and peak level infor-
mation from each other. A classification algorithm
forms a model based on peak level information and
gives prediction for each row (peak) in a test set.
However, the transformation from peak level predic-
tion into signal level prediction needs to be made in
order to achieve the signal level classification result.
This transformation is made based on majority voting
method. In other words, we take the mode of test set
predictions (test set consists of only data from one
signal) to gain the signal level classification. Since
mode can be unambiguously determined (for example,
test set includes 10 rows of data and 5 rows obtains
class A as predicted class label and the rest 5 rows
obtains class B as a predicted class label), a strategy for
ties must be developed. In this paper we used the same
strategy as in Refs. 7 and 9 to solve the ties, so a reader
can find the detailed description about the tie solving

TABLE 1. Numbers of responder, semi-responder and non-responder signals after affecting by dantrolene when 15, 30, 17, 31, 22
and 13 transient signals were measured from six CPVT cell lines, and numbers of recognized peaks.

Cell line (mutation)

Responder transient signals Semi-responder transient signals Non-responder transient signals

Number of signals Number of peaks Number of signals Number of peaks Number of signals Number of peaks

1 (exon 3 del) 12 61 0 0 3 22

2 (P2328S) 21 271 8 116 1 14

3 (T2538R) 6 59 4 42 7 69

4 (L4115F) 16 183 10 138 5 77

5 (Q4201R) 3 32 4 31 15 175

6 (V4653F) 1 9 2 16 10 120

Sum 59 615 28 343 41 477
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FIGURE 3. Peak amplitudes Al and Ar, durations Dl and Dr,
approximate location L1 for the computation of max(s’) (first
derivative), approximate location L2 for |min(s¢)|, approximate
location L3 for |min(s¢¢)| (second derivative) and approximate
location L4 for max(s¢¢), surface area R, duration D from the
preceding peak, duration dl from the peak beginning to L1,
and duration dr from the peak maximum to L2.

BIOMEDICAL
ENGINEERING 
SOCIETY

Analysis of Drug Effects on iPSC Cardiomyocytes with Machine Learning



strategy from the given references. After LOO proce-
dure, we have obtained a signal level prediction for
each signal in a dataset. Hence, we can compare the
predicted class labels to ground truth class labels and
define a confusion matrix. From the confusion matrix
we evaluate accuracy (trace of confusion matrix di-
vided by the sum of elements in a confusion matrix)
and other evaluation measures (true positive, TP).
When a classification algorithm required parameter
tuning, we performed LOO procedure with all
parameter values tested and selected parameter value
that gained the highest accuracy. The reason behind

the use of LOO is the lack of data. Machine learning
algorithms usually require a lot of data to work well
and to produce a reliable model for prediction. With
the use of LOO we maximized the size of training data.
Before any classification, we applied z-score stan-
dardization to the whole dataset in order to obtain all
variables equally important.

Classification Results

In the following, only the best classification method
is mentioned for every test set-up. The performance
was evaluated by applying true positive, false positive
and negative in confusion matrices, and classification
accuracy as usual. First, we classified among three
dantrolene transient signal classes to study how well
these can be separated from each other. Table 3 where
correctly classified are presented along the diagonal
presents the best results generated by random forests
with 14 trees and giving classification accuracy of
65.6% and sensitivities (true positive rates) of 79.7%
for responders, 35.7% for semi-responders and 65.9%
for non-responders.

According to Table 3 semi-responders were classi-
fied worse than the other two. The results in Table 3
denote that the two classes of responders and semi-
responders may resemble somewhat each other, be-
cause more semi-responders (12 signals) were incor-
rectly classified into the class of responders than
correctly to semi-responders (10 signals). Furthermore,
on the basis of Table 1 the number 28 of semi-re-
sponder signals being the minority class here is less
than 59 and 41 of responders and non-responders. The
poor results of semi-responders may partly be caused
by their characteristics of being between the responders
and non-responders as Fig. 2 showed.

TABLE 2. Means and standard deviations of peak variables for baseline, adrenaline and dantrolene signals (responder, semi-
responder and non-responder): amplitudes Al and Ar, durations Dl and Dr, maximum and absolute minimum of s¢, maximum and
absolute minimum of s¢¢, peak area R, time difference, and durations dl and dr. Note that before the peak recognition the amplitude

values in all signals were multiplied by 1000 compared with those in Figs. 1 and 2.

Variables Baseline Adrenaline Responder Semi-responder Non-responder

Al 277 ± 181 252 ± 171 236 ± 168 257 ± 174 163 ± 133

Ar 279 ± 184 253 ± 171 239 ± 170 260 ± 172 165 ± 134

Dl [s] 0.212 ± 0.109 0.213 ± 0.107 0.247 ± 0.097 0.243 ± 0.099 0.228 ± 0.106

Dr [s] 0.438 ± 0.303 0.397 ± 0.247 0.424 ± 0.229 0.413 ± 0.136 0.347 ± 0.219

max(s’) 1731 ± 1124 1653 ± 1243 1451 ± 1037 1374 ± 1035 1231 ± 1284

|min(s¢)| 1005 ± 592 967 ± 633 848 ± 485 820 ± 465 730 ± 703

max(s¢¢) 3852 ± 3098 3983 ± 3887 3405 ± 2657 2606 ± 2030 3665 ± 4807

|min(s¢¢)| 2883 ± 3450 2973 ± 3752 2483 ± 2802 1758 ± 2081 2463 ± 3133

R 89.1 ± 76.2 76.7 ± 64.9 82.7 ± 102.4 100.0 ± 76.2 49.8 ± 45.9

D [s] 1.038 ± 0.603 0.672 ± 0.440 1.082 ± 0.443 1.017 ± 0.267 0.674 ± 0.421

dl [s] 0.128 ± 0.086 0.132 ± 0.084 0.160 ± 0.085 0.143 ± 0.083 0.145 ± 0.088

dr [s] 0.098 ± 0.075 0.096 ± 0.071 0.103 ± 0.066 0.125 ± 0.087 0.092 ± 0.069

FIGURE 4. Hierarchical LS-SVM structure used to separate
non-responder (NR), responder (R) and semi-responder (SR).
Each inner node in the structure consists of a binary LS-SVM
classifier.
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We united the responders and semi-responders
(RSR) and then computed results given in Table 4.
Accuracy is now 78.9%, when sensitivities are 90.8%
for RSR and 53.7% for NR produced by random
forests with 36 trees. Here the quite poor sensitivity of
the non-responders might be inflicted by their minority
in the data, 32% of all.

Next we studied classification when the semi-re-
sponder and non-responder signals are merged. In
Table 5 their results are shown producing the accuracy
of 73.4% with sensitivities of 69.5% for responders (R)
and 76.8% merged semi-responders and non-respon-
ders (SNR) by K-nearest neighbor searching algorithm
with city block metric and equal, inverse or squared
inverse weighting, K equal to 1 for all these three.

Because the accuracy of the test se-up for Table 4 is
higher than that for Table 5, in other words, there are
less incorrect predictions (19 + 8) in Table 4 than
those (16 + 18) in Table 5, we continued to apply the
fusion of responders and semi-responders. Note that
the number of these signals was rather limited, thus,
not the very best starting point for machine learning
tasks.

We continued by classifying adrenaline vs. merged
responders and semi-responders (RSR). Their results
in Table 6 produced the accuracy of 71.2% and sen-
sitivities of 70.3% for adrenaline (A) and 72.4% for
RSR computed with least-squares support vector
machines with the radial basis kernel with parameters
C = 210 and r = 22.

Next we computed adrenaline against non-respon-
ders shown in Table 7. This achieved the accuracy of
78.1% and sensitivities of 90.6% for adrenaline (A)
and only 39.0% for non-responders (NR) given by
Naı̈ve Bayes with kernel density estimation and with
the triangle kernel. The non-responders might suffer
from the minority of 24% only when the majority of
the adrenaline class was very predominant in classifi-
cation. Nevertheless, the main reason of the low sen-
sitivity of NR is that the non-responders resemble
more or less the adrenaline signals. This is quite nat-
ural, because then dantrolene had not influence, in

other words, it did not correct peak shapes in these NR
signals.

We also computed others such as merging semi-re-
sponders and non-responders and tested with that and
also with three separate dantrolene classes against
adrenaline, but these gave somewhat poorer results
than the presented above.

We still compared the situation between baseline
and adrenaline transient signals. Results are shown in
Table 8 and were computed with least squares support
vector machines with the radial basis kernel with
parameters C = 2210 and r = 22. Accuracy is 54.7%

TABLE 3. Classification of three dantrolene classes:
responders (R), semi-responders (SR) and non-responders

(NR).

True class

Predicted class

R SR NR

R 47 3 9

SR 12 10 6

NR 12 2 27

True positive cases are written in Bold.

TABLE 4. Classification of dantrolene classes: responders
merged with semi-responders (RSR), and non-responders

(NR).

True class

Predicted class

RSR NR

RSR 79 8

NR 19 22

True positive cases are written in Bold.

TABLE 5. Classification of dantrolene classes: responders
(R), and semi-responders merged with non-responders (SNR).

True class

Predicted class

R SNR

R 41 18

SNR 16 53

True positive cases are written in Bold.

TABLE 6. Classification of adrenaline vs. dantrolene signal
classes or responders merged with semi-responders (RSR).

True class

Predicted class

A RSR

A 90 38

RSR 24 63

True positive cases are written in Bold.

TABLE 7. Classification of adrenaline vs. dantrolene class
non-responders (NR).

True class

Predicted class

A NR

A 116 12

NR 25 16

True positive are written in Bold.

BIOMEDICAL
ENGINEERING 
SOCIETY

Analysis of Drug Effects on iPSC Cardiomyocytes with Machine Learning



and sensitivities are 57.0% for adrenaline signals (A)
and 52.3% for baseline signals (B). These are rather
low close to 50% indicating that A and B do not differ
much from each other. This is in line with the result in
our previous publication where we showed that CPVT-
CMs demonstrated marked amount of calcium tran-
sient abnormalities both in baseline and in response to
adrenaline.14

DISCUSSION

In drug development industry, cardiotoxicity is one
of the leading causes of failure for a new therapeutic
molecule.1 Another issue is the efficacy of new poten-
tial molecules.4 Currently, pharmaceutical industry
relies upon animal testing and genetically transformed
non-cardiac cells lines2,3 but iPSC-CMs could offer
more physiological drug testing model mimicking
human myocardium. Machine learning together with
calcium transient signals of iPSC-CMs can provide
more accurate and faster pre-clinical detection method
as well as in-depth details of cell behavior in the con-
text of drug research for cardiac diseases. In recent
years more research has focused on creating new
screening platforms for iPSC-CMs for disease model-
ing and drug responses, even in a high throughput
level.17,18 At some point in the near future this will
result in large multidimensional datasets, which
requires improved automated and comprehensive
analysis methods. For a researcher the analysis of data
often requires some simplifying of the gained data for
example a limited number of analyzed parameters of
complex dataset. With machine learning a dataset can
be handled without losing information in the analysis
process. Therefore, machine learning is an effective
method to be exploited in drug studies, which can even
define and predict drug responses.

Here we showed how machine learning can provide
insights in the detection of drugs affecting calcium
cycling properties of iPSC-CMs. We may assess that
the results obtained are good, but not excellent.
Merging responder and semi-responder dantrolene
signals as made in Table 4 and classifying against non-
responders gave the very good classification accuracy

of 78.9%, but the imbalanced sensitivities of 90.8% for
the merged responders and semi-responders and 53.7%
for the non-responders. Obviously, the minority class
position of the non-responders was slightly unfavor-
able for classification. The results in Table 6 indicated
that responders merged with semi-responder transient
signals can also be separated from those of adrenaline
with the relatively good accuracy of 71.2% with the
balanced sensitivities of classes adrenaline and
responders. Instead, adrenaline against non-respon-
ders was not so successful in Table 7. On one hand,
this showed that often dantrolene changed cardiomy-
ocytes exposed with adrenaline enough classifying
them correctly to belong to the class of responders
merged with semi-responders (Table 6). On the other
hand, the complexity to separate the non-responders
from the adrenaline signals is sensible, since then
dantrolene affected or changed the properties of
adrenaline signals only very little or not at all (Ta-
ble 7). Nevertheless, returning to Fig. 2 the phe-
nomenon is reasonable, when in Fig. 2 adrenaline has
deformed a part of peaks to be abnormal, but next
dantrolene in a responder signal of Fig. 2b has affected
so that all peaks are normal without irregularity. If
dantrolene did not affect this way, the case would be
such as in Fig. 2f. Peaks not affected by dantrolene are
then mostly abnormal, i.e. quite random as to their size
and form.

From the methodological point of view, the results
from different classification cases show that Random
Forests classifier and Least-Squares Support Vector
Machines (binary classifier or tree-based multi-class
extension) have gained top accuracies in majority of
the classification cases. Hence, these two classification
algorithms seem to be suitable for the research prob-
lems considered in this paper. Nevertheless, we need to
remember that this is a preliminary paper and there
exist several other machine learning algorithms which
also could be used for the classification problems.
However, they are left to future research. For example,
deep learning methods such as LSTM networks have
obtained a lot of increasing attention and can be used
to classify calcium signal classes. Deep learning meth-
ods were not used in this paper since the amount of
data is still relatively small and deep learning methods
require generally a large training set in order to form a
reliable predictive model.

It would have been tempting to attempt to classify
signals of each cell lines as performed above for all of
them together. This would have been interesting when
Table 1 showed that the six cell lines contained very
different numbers of three dantrolene classes. Three of
them were responding, two were not and one was in
the middle of these. Unfortunately, the classification of
the cell lines separately was not yet possible, because

TABLE 8. Classification of baseline (B) vs. adrenaline (A)

True class

Predicted class

B A

B 73 55

A 61 67

True positive cases are written in Bold.
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the numbers of signals per a cell line was still so low
meaning they were already at their minima, i.e., 128
adrenaline signals and the same total from three dan-
trolene signal classes, as to the use of machine learning
methods. These cannot learn on the basis of very small
data sets. This means that adding more data in the
future may be promising.

In cardiac field, machine learning has been exploited
when studying the effects of b-drenergic drugs on
iPSC-CMs with voltage sensitive dye method to assess,
classify, and predict membrane depolarization after
drug exposure.5 In addition, machine learning of car-
diac drug effects on contractile force of electrically
paced embryonic stem cell derived cardiomyocytes
have been studied to create classification model to
predict mechanistic actions of an unknown cardioac-
tive drug.11 With calcium signaling data, machine
learning and classifications have been exploited to
evaluate and detect the functional response of calcium
release sites in cardiomyocytes10 and in neuroscience to
predict and classify epileptic seizures.19 However, thus
far, the use of machine learning to analyze and model
drug effects originating particularly from calcium
transient signals of iPSC-CMs is new.

In the future, we will collect more data in order to
enable the use of machine learning more efficiently.
Perhaps, it would be reasonable to utilize only two
classes after the use of dantrolene or other drugs, since
it might be difficult to determine semi-responder sig-
nals even by a human expert as well as by a machine
learning program. In any case, the preliminary out-
comes given by machine learning encourage us to
continue and extend the current research. Machine
learning could make personalized medicine become a
reality while helping to find a suitable drug, where
machine learning could be used for studying the
appropriateness of a drug for the treatment of a genetic
cardiac disease. It could also provide a human-based
platform to study the efficacy of a new molecule as well
as cardiotoxicity.

We have shown here that machine learning of cal-
cium signal data is clearly useful for drug research and
will probably increase its capability in this purpose
when more and more drug response data is gained. In
the long term, standardizations of the machine learn-
ing methods and the evaluation of drug responses from
calcium transient signals are needed. Also, higher
amount of calcium signal data will further improve
statistical reliability of the drug response analysis. In
the future, data analysis of iPSC-CM drug effects to-
gether with machine learning methods can create a
very valuable and efficient platform for pharmaceutical
industry for predicting cardiotoxicity and efficacy and
also to personalize medication.
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