

Sheikh Saimul Haque Nazeef Bin Enam

OPTIMIZING THE EFFICIENCY OF THE
DATA ANALYTICS FRAMEWORK USING

MICROSERVICE ARCHITECTURE

Faculty of Information Technology and Communication Sciences
Master of Science Thesis

May 2020

1

ABSTRACT

Sheikh Saimul Haque Nazeef Bin Enam: Optimizing the Efficiency of the Data Analytics

Framework using Microservice Architecture

Master of Science Thesis

Tampere University

Master’s Degree Programme in Information Technology

May 2020

Examiners: Associate Professor Kari Systä, Tampere University and Johanna Kalliomäki,

Chief Operating Officer, Cloubi Ltd.

This thesis describes the backend of the new data analytics framework that has been designed
and developed for the new reporting feature of Cloubi. Cloubi is a web application used for creat-
ing and distributing learning materials. The reporting feature is used by the students and teachers
to check the performance of the students. The new data analytics framework was developed
using microservice architecture and aims to be faster in terms of fetching the students’ data com-
pared to the previous data analytics framework developed using monolithic architecture.

The design of the previous data analytics was kept in mind while designing the new data an-
alytics framework. The implementation included the creation of a microservice consisting of an
application that is used for getting the events from Cloubi via Kafka and filling up the database
used by the microservice. The application can then be used to make queries retrieving the stu-
dents’ data required for the reporting feature.

After the microservice was fully functional and was interacting with Cloubi, a set of integration
tests were implemented to check whether the individual modules were working as supposed to.

At the end of the thesis, a comparison was done between the previous and the new data
analytics framework to prove that the new data analytics framework was better and served the
goal of the thesis in optimizing the performance of the reporting feature using the new framework
compared to the previous one.

Keywords: backend, data analytics framework, architecture, microservice, monolith, report

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

2

PREFACE

Firstly, I would like to thank Cloubi Ltd for giving me an opportunity to work on my thesis.

While working on the thesis I had the scope to learn from experienced people, their

guidelines and daily follow up of my thesis work inspired me to complete the work on due

time. I want to thank my company supervisor Johanna Kalliomäki for her constant sup-

port and encouragement in the thesis work. I am also thankful to Jarno Saarinen, Antti

Hietasaari, and Sami Kuivasaari from the company for their valuable feedback on the

development work done for the thesis.

Next, I would like to express my deepest gratitude towards my thesis supervisor Kari

Systä from Tampere University, for his continuous support and day-to-day feedback on

the thesis writing which helped a lot in shaping up the thesis.

Finally, I would like to thank my family for their love and support from overseas.

Tampere, 03 May 2020

Sheikh Saimul Haque Nazeef Bin Enam

3

CONTENTS

1. INTRODUCTION .. 8

2. THEORETICAL BACKGROUND... 10

2.1 REST ... 10

2.2 GraphQL .. 11

2.3 Microservices ... 12

2.4 MongoDB ... 14

2.5 Apache Kafka... 14

2.6 Spring Boot .. 17

2.7 Docker ... 17

3. CLOUBI AND THE PREVIOUS DATA ANALYTICS FRAMEWORK 19

3.1 What is Cloubi? .. 19

3.2 Architecture of Cloubi ... 20

3.3 Previous Data Analytics Framework ... 21

4. DESIGN AND IMPLEMENTATION ... 25

4.1 Architectural Background ... 25

4.2 Design.. 25

4.3 Kafka Integration .. 32

4.4 MongoDB Repositories .. 33

4.5 API Implementation .. 35

4.6 Dockerization ... 36

4.7 Integration Tests .. 38

4.8 Comparison with Related Work .. 43

5. PERFORMANCE EVALUATION ... 45

5.1 Methodology .. 45

5.1.1 Case 1 (M1, G1) Comparison ... 47
5.1.2 Case 2 (M1, G2) Comparison ... 48
5.1.3 Case 3 (M1, G3) Comparison ... 49
5.1.4 Case 4 (M2, G1) Comparison ... 50
5.1.5 Case 5 (M2, G2) Comparison ... 51
5.1.6 Case 6 (M2, G3) Comparison ... 52

5.2 Graph Representation of Case Comparisons 54

5.3 Reliability of the Evaluation .. 54

5.4 Validity of the Evaluation .. 54

6. CONCLUSION .. 56

REFERENCES... 57

APPENDIX-A: ENDPOINTS OF THE PREVIOUS REPORTING API 59

APPENDIX-B: ENDPOINT OF THE NEW REPORTING API 62

4

APPENDIX-C: SAMPLE TEST CASE FROM THE INTEGRATION TESTS 64

5

LIST OF FIGURES

Figure 1: Concept of Apache Kafka .. 15
Figure 2: Architecture of Cloubi ... 20
Figure 3: Concept of the previous data analytics framework 22
Figure 4: Concept of the new data analytics framework .. 26
Figure 5: Attributes of a document in page collection .. 34
Figure 6: Attributes of a document in task collection ... 34
Figure 7: Attributes of a document in studentMaterial collection 34
Figure 8: Content of the Dockerfile used for containerization of application 36
Figure 9: Content of the Docker-Compose used for creating the microservice 37
Figure 10: Average response time of the endpoint “/o/reporting-api/query-tasks”

for case M1, G1 ... 46
Figure 11: Graph representation of case comparisons .. 54

6

LIST OF TABLES

Table 1: Value of the event - material ... 27
Table 2: Value of the event - page .. 28
Table 3: Value of the event - task ... 29
Table 4: Value of the event - answer ... 30
Table 5: Value of the event - allMaterials .. 30
Table 6: Value of the event - materialDeleted ... 30
Table 7: Value of the event - pageDeleted .. 31
Table 8: Value of the event – seqStart .. 31
Table 9: Value of the event - seqEnd .. 31
Table 10: Total response time of the API used in the previous data analytics

framework (M1, G1) ... 47
Table 11: Total response time of the API used in the new data analytics

framework (M1, G1) ... 47
Table 12: Total response time of the API used in the previous data analytics

framework (M1, G2) ... 48
Table 13: Total response time of the API used in the new data analytics

framework (M1, G2) ... 49
Table 14: Total response time of the API used in the previous data analytics

framework (M1, G3) ... 49
Table 15: Total response time of the API used in the new data analytics

framework (M1, G3) ... 50
Table 16: Total response time of the API used in the previous data analytics

framework (M2, G1) ... 51
Table 17: Total response time of the API used in the new data analytics

framework (M2, G1) ... 51
Table 18: Total response time of the API used in the previous data analytics

framework (M2, G2) ... 52
Table 19: Total response time of the API used in the new data analytics

framework (M2, G2) ... 52
Table 20: Total response time of the API used in the previous data analytics

framework (M2, G3) ... 53
Table 21: Total response time of the API used in the new data analytics

framework (M2, G3) ... 53

7

LIST OF SYMBOLS AND ABBREVIATIONS

LMS Learning Management Systems
CMS Content Management Systems
REST Representational State Transfer
API Application Programming Interface
CRUD Create, Read, Update and Delete
JSON JavaScript Object Notation
XML eXtensible Markup Language
NoSQL Non-Structured Query Language
HTTP HyperText Transfer Protocol
URI Unique Resource Identifier
CLI Command-Line Interface
IP Internet Protocol
JAR Java Archive
SE Standard Error
AWS Amazon Web Services
C1 Cloubi 1
C2 Cloubi 2
M1 Material 1
M2 Material 2
G1 Student Group 1
G2 Student Group 2
G3 Student Group 3

8

1. INTRODUCTION

This thesis describes the backend of the new data analytics framework developed for

Cloubi Ltd. The main product of Cloubi Ltd. is Cloubi [1] which is an e-learning platform

where education publishers can publish their content. Usually, the content is created by

editors and it is then used by teachers and students. Content usually consists of a ma-

terial, e.g. an e-book. Each material has pages and each page can have static or inter-

active content. Each interactive content can have attributes like score, progress, and

time taken, etc. A student interacts with those interactive contents like tasks (exercises

in the material) and their progress is stored or updated into the databases that Cloubi

uses. A teacher can check the progress, scores, and answers for a particular group of

students who have access to the material. A student can check his or her progress. This

feature is called reporting. The scope of this thesis is limited to the reporting feature

which is a small part of Cloubi.

The previous data analytics framework used to serve the purpose of this report genera-

tion. A report is used to get the overall performance of a student or a group of students

in each material. The previous data analytics framework used for generating the reports

was based on a monolithic architecture and was comparatively slow to load since it used

to get data from the databases that Cloubi uses. Due to these performance issues, the

reports used to be static and would not show the realtime progress of the students as

they completed the tasks. Therefore, this resulted in a need for developing a newer ver-

sion of the reporting feature.

This thesis focuses on a proof of concept which includes the design and implementation

of the backend of the new data analytics framework using microservice architecture

which would be much more efficient and at the same time more advanced than the pre-

vious one. The main goal of the new data analytics framework is to create better ways

to utilize the data that is being collected from the students when they are interacting with

Cloubi and is vital for Cloubi Ltd. in the sense that it results in better usability for the

teachers and students. This means reports that update the students’ data fast enough,

in other words, dynamic reporting. The new reporting will also allow publishers to cus-

tomize the report view in each material in whichever way they want to provide better

visualization of the user data.

The limitations of this thesis were initially no one was sure of what kind of data was

needed for the new reporting, no user tests were possible at the time of the development

9

of the backend of the new data analytics framework. During the time of development of

the backend, the frontend development was not even started, no mockups were pre-

pared and so it was assumed that it needed similar data that the previous reporting was

using. This scope of this thesis is limited to the development of the backend of the new

data analytics framework. The previous data analytics framework was developed by

Cloubi and is described to give a brief context of how the previous reporting feature was

implemented and is mainly used for comparison with the new data analytics framework

that has been solely developed by the writer while working for Cloubi.

The research questions that would be answered in this thesis are:

• What is the optimal architecture for the development of the new data analytics

framework?

• What is the performance of the new data analytics framework compared to the

previous one?

In addition to answering these questions, the thesis is structured accordingly. The first

chapter gives a brief introduction to the thesis. The second chapter describes different

web service architectural styles and some of the concepts and technologies with respect

to the thesis work. The third chapter gives a description of what Cloubi is on an architec-

tural level and also describes the previous data analytics framework. Then the fourth

chapter describes the reason for selecting the microservice architecture, followed by the

design and implementation of the new data analytics framework along with a set of inte-

gration tests. At the end of the fourth chapter, the implementation is compared with re-

lated work. The fifth chapter evaluates the performance of the previous and the new data

analytics framework. Finally, to conclude there will be a brief summary of the thesis in

the conclusion chapter.

10

2. THEORETICAL BACKGROUND

This chapter gives a theoretical understanding of some of the web service architectural

styles such as REST and GraphQL. This chapter also gives a brief understanding of

concepts, and technologies such as Microservices, MongoDB, Apache Kafka, Spring

Boot, and Docker.

2.1 REST

REST stands for Representational State Transfer and is an architectural style used for

developing loosely coupled applications over HTTP (HyperText Transfer Protocol) and

is used for creating web services. It defines a set of rules that need to be followed for

developing a RESTful API. An API is the application programming interface that acts as

a communicator between two components of a software. The rules for REST [2][3] are

stated as follows:

1. Client-Server

This rule suggests that the REST Application must follow a client-server architec-

ture. This means that the client and the server are separated and can be devel-

oped independently. The client does not know anything about the business logic

or the data layer. Similarly, the server does not know anything about the frontend

user interface. The client only knows the resource’s Unique Resource Identifiers

(URIs) for making CRUD (Create, Read, Update, and Delete) operations on the

server-side.

2. Stateless

This rule suggests that the server does not store any session data and the com-

munication between the client and the server is stateless. This means that all the

information required for understanding a request is present within the request.

3. Cache

This rule states that responses should be cacheable if possible. This means that

it should be possible to include the data on whether a response can be cacheable

or not. This means that for subsequent requests the client can retrieve response

from the cache and thereby reducing the server load.

11

4. Uniform interface

This rule is self-explanatory by its name, uniform interface acts as a differentiator

between REST APIs and Non-REST APIs. It consists of four key elements [3]:

• Identification of resources - usually done by URIs.

• Manipulation of resources through representations - the client can change

or delete the resources in the server through the representation that the

client has.

• Self-descriptive messages for each request - each request contains mes-

sages on how to handle the request.

• Hypermedia as the engine of application state - this means that the re-

sponse consists of links to other resources that the clients can access.

5. Layered

This rule states that the architecture allows the composition of several layers

where each layer does not have any information on the other layers apart from

its intermediate layer. Therefore, this reduces the complexity that can be intro-

duced in a single layer.

6. Code on demand

This rule is optional. This rule states that along with data, the server can provide

the client with the executable code.

Therefore, the main idea of REST is that everything is a resource that’s identified by a

URI. In its simplest form, a request is made via the resource’s URI and then this fetches

a response or does something in the server according to the type of the request.

2.2 GraphQL

GraphQL is a new and modern architectural style for creating web services and takes a

different and flexible approach than REST. Basically, it is a query language for API that

makes communication between the client and the server easier [4]. The main difference

is that it does not deal with dedicated resources rather everything is considered as a

graph in which everything is assumed to be connected. The request can be tailored to

fetch more than one resource from different entities with a single query from the server.

12

Some features of GraphQL [5] are:

1. Defines a definite shape

GraphQL query response has a similar format to that of the query. This makes it

easier for a developer to shape data according to the need of the application.

2. Hierarchical

GraphQL has a hierarchical nature. This means that the data is usually main-

tained as having a hierarchical relationship similar to that of the graph-data struc-

tures.

3. Strongly typed

Each level of the query describes a particular type and each type consists of a

set of fields. This allows GraphQL to provide descriptive error messages even

before executing the query.

4. Use of existing code

GraphQL API can make use of the existing data and code. Each field of the par-

ticular type of data is provided with a function and GraphQL calls the functions

maintaining optimum performance.

5. Introspective

This is an optional feature. It allows a developer to navigate to the particular type

of data in the server without even executing the query. It allows developers to

add new fields to existing queries since they can see the actual data setup [6].

6. Version free

GraphQL discourages versioning because the client is the one that determines

what fields or values need to be returned in the response.

Despite the features or benefits, this architecture has a major disadvantage, it uses a

single endpoint for every operation without following the HTTP specification for caching

[7]. Caching is often important since it helps to reduce network overload.

2.3 Microservices

The concept microservices emerged from the idea that dealt with the long going issue in

software development in which there was the trend of developing monolithic applications.

These monolithic applications were larger in size and had all the functionalities tied to-

gether in a single application [8]. Any minor code change would have caused the entire

13

application to be re-built and re-deployed, thereby increasing the complexity of the entire

application. Microservices consist of smaller independent applications that traditionally

have one functionality or one purpose [9]. These applications can then be piled up to

form a large application with lots of different functionality.

The term small in microservice refers to as small as possible. A smaller codebase allows

for easy debugging in cases where there might be problems and so those bugs can be

solved independently regardless of the other service. These smaller services can be

developed by a smaller team and so increasing the benefits of putting smaller teams in

the development of each service. If a service is not required it can be easily removed

without hampering the other services or the whole application [9].

Each microservice is autonomous which means that it can be deployed to single or mul-

tiple servers. There should be a limited amount of sharing between the microservices to

avoid too many dependencies amongst themselves. This allows the application to be

scaled up and down as required. Also, each microservice can have its own technology

and database. This results in getting the best performance out of the whole application

allowing developers to choose a technology stack that is best suited for that particular

job. For example, an application can be made with two microservices, where service 1

can be Java application using MongoDB, service 2 can be a Golang application using

GraphDB.

Microservices tend to be resilient, which means that if a service crashes the other can

carry on working without hampering the execution of the other services if there are not

many dependencies. The problem could be isolated then solved individually whereas for

monolith applications if a problem occurs the whole application would stop working. Also

since each microservice has a smaller codebase it can be deployed and built easily

within a very short time [10]. A good thing about testing microservices is that each service

can be tested individually to find bugs. The size of each microservice is small and so

there are few features that need to be tested [11].

Although microservice architecture has many advantages, it also has several disad-

vantages. The communication between the services becomes complicated as more and

more services are produced within an application resulting in a lot of dependency within

the services. Each microservice can have its own resources and so managing the data

transactions and processes can be a bit difficult depending on the size of the data. Since

each service can use different technologies, therefore each service has its own logs

making it difficult to keep track of the logs.

14

2.4 MongoDB

MongoDB is an open-source NoSQL database that is flexible and is easily scalable. Here

NoSQL refers to non-structured query language which means that there are no tables or

schemas for storing the data, like relational databases. Its architecture mainly consists

of collections and documents. The data is stored as key-value pairs within a document

in JSON-like format [12]. A document is similar to rows of a table in an SQL database

but does not necessarily follow the strict data type or column of the tables. Even though

multiple documents might have some common attributes, the data types of those attrib-

utes can be of different type and so giving it a much more flexible structure. Several

documents together form a collection. A collection is similar to a table. There can be

several collections within a single database. There is no need for schema within these

collections.

The data in MongoDB is stored as BSON which is the binary version of JSON. MongoDB

supports horizontal scaling with the help of sharding [13]. With the increase in the amount

of data, a single server might not be enough to hold the data, what sharding does is, it

adds more servers (MongoDB instances) in order to meet the increasing data, which is

then distributed automatically across the multiple servers to balance the load.

If someone wants to look for a particular data then the data is only searched in the par-

ticular shard that holds the data, this reduces the number of operations and the amount

of data that each shard holds. For example, if a database of 500 GB is divided across 4

shards then each shard would hold 125 GB of data [14].

MongoDB replicates the data across multiple servers and so making it immune to hard-

ware failures, hence it can perform instant recovery if required. It also has features like

data aggregation which combines data from multiple documents and performs a partic-

ular operation to return a single result. All the operations in MongoDB occur in real-time

with no downtime. Any of the fields within a document can be indexed. Indexing allows

efficient querying and skips the necessity to go through each and every document.

2.5 Apache Kafka

Apache Kafka is a distributed message queuing system that receives streams of data or

messages from different source systems (producers) and delivers them to different target

destination systems (consumers) [15]. It helps to avoid the coupling between the source

and the destination systems [16]. Kafka is being widely used by companies such as

LinkedIn, Netflix, Uber, and Airbnb. It can be widely used for different transactions of

data.

15

Figure 1 illustrates the concept of Apache Kafka [17], how the data produced by the

producers is assigned to a topic in a Kafka Broker, and later consumed by the consum-

ers.

Figure 1: Concept of Apache Kafka

Kafka has concepts like Kafka Clusters, Topics, Partitions, Offsets, Brokers, Producers,

Consumers, and Zookeeper [18] [19]. A topic is a stream of data that is similar to data-

base tables. Each topic has a unique name. The topics can be split into partitions and

the partitions are ordered. Partitions allow similar topics to be split across multiple bro-

kers - each partition can be mounted on different machines to allow multiple consumers

to read the topic in parallel. The number of partitions in each topic can be defined while

creating the topic. An incremental id otherwise known as an offset is assigned to each

message within a partition. Every offset has a specific meaning for a given partition. The

data cannot be changed once it has been written to a partition. Data is kept only for a

short period of one week, after that it gets removed.

Kafka cluster is made up of one or more brokers. A broker is a server for Kafka that hosts

the topics. A broker can be identified by its id. Each broker includes partitions of certain

topics. Connection to a single broker allows access to the entire cluster. Whenever a

topic is created Kafka automatically distributes the topic partitions across all the brokers.

For example, three brokers and a topic named Topic A is created with three partitions a,

the partitions are automatically assigned to the brokers as following: Broker_1: Topic A

Partition 0, Broker_2: Topic A Partition 1 and Broker_3: Topic A Partition 2. The topics

should have a replication factor greater than 1 so that if a broker is down, the other active

16

brokers are able to serve the data. There is a concept of a leader within a partition, a

single broker can become the leader for a specific partition at one time and it is only the

leader which gets the partition data and serve the data. The remaining brokers sync data

amongst themselves. Hence every partition only has a single leader and multiple repli-

cas.

Producers write data into a particular topic. Producers know automatically which broker

and which partition to write the data. If a broker fails then the producer recovers auto-

matically. Producers can send the message along with a key. A key with the message

ensures that every message goes to the same partition, but if the message is sent with-

out a key then the message goes to the partitions in a round-robin manner as explained

by the example above.

Consumers read data from a particular topic. Consumers have prior knowledge of which

broker to read from. Consumers know how to recover in the event of broker failures.

Inside each partition, the data is read in order. A consumer usually reads data as a group

of consumers. Each consumer reads data from the exclusive partitions within a group.

Kafka needs Zookeeper to work [18]. Zookeeper manages all the brokers and maintains

a broker list. Zookeeper assists in choosing the partition leader. Zookeeper notifies Kafka

if there are changes like new topic creation, broker failure, deleted topics, active broker,

etc. Zookeeper has a leader responsible for the writes and the remaining servers are the

readers.

Benefits of Apache Kafka over other distributed messaging systems

Kafka's queue is persistent, as opposed to most messaging systems. It ensures that data

sent to Kafka will be stored until a certain amount of time has passed or a size limit is

reached. The message remains in the queue until one of the two things happens even

after it is consumed. In Kafka, messages can be repeatedly replayed or consumed, an

important feature that is useful in different scenarios [20].

Other messaging systems such as RabbitMQ stores messages until the application re-

ceiving the message connects to it and receives it. Once it gets the acknowledgment

from the receiver that the message has been received or processed, it deletes the mes-

sage from the queue. Therefore there is no option for replay or keep track once it is gone

from the queue.

17

2.6 Spring Boot

Spring Boot is a lightweight, open-source framework for Java, used for creating micro-

services and is maintained by a company called Pivotal. It provides Java developers to

get started with an auto-configurable Spring production-ready application [21]. With it,

developers can quickly get started without wasting time planning and configuring their

Spring application. Spring Boot is designed on top of the Spring framework. One had to

manually configure all the stuff in the Spring core framework, therefore several configu-

ration files, such as XML descriptors were required [22].

Spring Boot, however, provides features like auto-configuration allowing developers to

configure an application based on the dependencies list [23]. For example, when MySQL

is listed as a dependency in the application, it will automatically configure the Spring

application with the MySQL Connector. Spring Boot is standalone, which means that it

can be simply run with a single command since it has a web server like Tomcat embed-

ded in it. Spring Boot has support for annotations.

Spring Boot also imposes its opinions for which it is known to be opinionated [21]. This

means that Spring Boot determines which configurations are used as default. It also de-

termines which packages are needed to be installed for the dependencies mentioned in

the application. For example, if "JPA" for Spring Boot is added, then the in-memory da-

tabase, the hibernate entity manager, and a simple data source would be configured

automatically. A spring boot application is easily deployable into containers and is ideal

for the usage of microservices.

2.7 Docker

Docker is a containerization technology that bundles an application along with all of its

dependencies together in the form of a container to ensure that the application runs

seamlessly in any environment [24]. A container is a standardized unit of software that

can be created and run easily in a particular environment. It is the runnable instance of

an image, which is a read-only template of instructions for creating the container and

includes information about the code, runtime, libraries, system tools, etc required by the

application [25].

For example, a company develops a Java Application. A developer sets up an environ-

ment with an Apache Tomcat server installed in it. After the application is developed, it

is tested by the tester. The tester sets up the environment again from scratch in order to

test the application. When the application has been tested, it will be deployed to the

production server. The production team also needs to set up the environment again.

18

Therefore, the environment has been set up three times in this procedure. This might

result in some problems like loss of time and there might also be a mismatch in the server

versions that have been set up. The problem can be solved using Docker, the developer

creates a Docker image of the server and publishes it in Docker Hub, which is a service

offered by Docker consisting of container images from different vendors and also allows

developers to find and share own created container images. The same image can then

be used by the tester and the system admin to deploy the application to production [24].

Another important feature provided by Docker is integration. The concept of integration

is such that several instances of different tools, all running in the same container or run-

ning in different containers can communicate with each other by just running a few com-

mands inside Docker Compose, which is a YAML file used for configuring multi-contain-

erized applications [26]. The applications can also be scaled up by creating several con-

tainers inside the Docker Compose. The containers that are defined inside the Docker

Compose can be easily started and run using a single command from a Docker enabled

command-line interface (CLI).

19

3. CLOUBI AND THE PREVIOUS DATA ANALYT-

ICS FRAMEWORK

This chapter describes Cloubi and its architecture and also gives a brief idea of the pre-

vious data analytics framework.

3.1 What is Cloubi?

Cloubi is a web application that is used for creating and distributing learning materials. It

is being widely used by education publishers across Finland and Europe. Learning ma-

terial in this context is a website that contains some interactive elements, questions,

tasks, etc. Cloubi is sometimes compared to LMS or CMS. An LMS is a software that is

used for providing courses or training programs allowing a teacher or a course instructor

the privilege to create a course, enroll students, and grade the assignments. LMS, like

Moodle [27] or Fronter [28], is a system for learning. It usually allows teachers and stu-

dents to collaborate and use learning materials, like those produced with Cloubi. Even

though Cloubi has some features in common with learning management systems, like

reporting, grading, and commenting, Cloubi is not meant to replace an LMS. CMS is a

system for collecting, organizing, and using content. Cloubi has its own CMS (the Li-

brary). Cloubi can use content from other content management systems as well. Cloubi

has two versions, Cloubi 1 (C1) and Cloubi 2 (C2). Both of them are different products

and do not share the same code base. C1 is still used by a few clients of Cloubi Ltd.

whereas C2 is being used by most of the clients. Any relevant information can be fetched

from C1 via C2.

The usage flow of Cloubi goes according to the following steps:

1. One or more user accounts are created for editors. Editors are the ones who

create the learning material.

2. An editor uses Cloubi to create learning material. Multiple editors can edit the

same material.

3. When a material is ready, it is published.

4. Students and teachers can then use the published materials from Cloubi.

20

3.2 Architecture of Cloubi

Cloubi can have one or more learning materials. A learning material in Cloubi consists

of three parts as illustrated by the architecture of Cloubi in Figure 2:

Figure 2: Architecture of Cloubi

1. Structure

Structure is the central part of a learning material. It defines the pages of the

material and how those pages are arranged into a hierarchy. This hierarchy is not

fixed and it may be arbitrarily deep. Some materials might be divided into chap-

ters and then into pages, while other material might be first divided into parts,

parts into chapters, chapters into sections, and finally, sections into pages. In-

deed, even a page can contain pages and subchapters.

2. Content

Some pages in structure have content and some do not. For example, pages that

allow students to navigate to subpages do not have any content. Or, to be more

exact, the content of these navigational pages comes from the structure itself.

21

The pages can have text, images, and tasks which are known as content. These

content come from some sort of content repository.

There are few content repositories available. The most prominent one is Cloubi’s

own library. The library can contain pages, texts, images, video files, audio files,

tasks, and almost any other type of file. When something, like a task, is picked

from the library and placed onto a page, that thing still remains in the library. The

page only has a reference to the task. This way, the same content can be used

in multiple pages and even in multiple learning materials.

3. Theme

The theme is the styling applied to the web application. When the website loads,

it has access to the structure and content. With these, the site can show whatever

navigation it wants and display any page from the structure. If there are any ad-

ditional styling, these will be applied to the pages.

3.3 Previous Data Analytics Framework

The previous data analytics framework was used for the reporting feature in Cloubi. Re-

ports allowed teachers or students to check the students’ performance within a material.

The previous data analytics framework was part of a monolithic architecture. Therefore

if any changes to the data analytics framework were required it would need to be done

and implemented in the main code base of Cloubi. The previous data analytics frame-

work is used for the reporting feature in Cloubi. A report is a separate page that is specific

to the material and is usually found inside the material. The previous reporting required

three attributes for it to work:

1. Student groups

2. Tasks

3. Student answers

The workflow of the previous reporting feature is illustrated in figure 3. The reporting

feature needed to access three endpoints for it to function properly. The reporting feature

works by getting the groups of the students or a single student via the group provider

interface from C2’s MongoDB. Usually, the group has information like the group id and

the list of student ids, etc.

22

The task provider interface is then used to fetch the tasks that reside within a page or list

of pages within a material. A task can be of two types, it can be a task from Cloubi 2 or

Cloubi 1. Cloubi 2 tasks are fetched from the C2 library. Cloubi 1 tasks are fetched from

Cloubi 1 itself. Depending on the type of the task, if it is a C2 task then the task details

like the maximum achievable score from the task is fetched via the C2 library from C2’s

MySQL database. Similarly, if it is a C1 task then the fetching occurs via C1 from C1’s

MySQL database. Task has information like material id, page id, the title of the task,

maximum score that can be achieved from the task, etc.

Finally, the students’ answer data are fetched with the help of the student provider inter-

face. The students’ answer data includes the score achieved in a particular task, the

progress of the student in that task as a percentage, time taken for completing the task,

number of attempts and the time the task was started, etc. This data fetching also de-

pends on whether the task is from Cloubi 2 or Cloubi 1. If it is from Cloubi 2 then the data

is fetched via the C2 library from the C2 MongoDB. Likewise, if it is a C1 task then the

data is fetched via C1 from C1’s MySQL database.

Figure 3: Concept of the previous data analytics framework

23

This approach results in a slow response, for example, if there are 1000 students and

1000 tasks this results in 1000x1000=1000,000 data about the progress of the students

in the tasks which took time since so many queries had to be done in order for the data

to be fetched from the databases used by Cloubi.

The implementation of the API was done with the providers mentioned in figure 3. The

three endpoints of the API are:

1. /o/reporting-api/student-groups

This endpoint is used to get information about the group of students. It works by

making a GET request and fetches the information about the user, whether it is

a teacher or a student, whenever the user id is passed as a query along with the

URL. The portion ‘teacher’ returns true for a teacher or false for a student. If the

user is a teacher then along with the teacher’s information in the ‘self’ portion,

there is also the information about the group of students in the ‘groups’ portion.

If the user is a student then this endpoint returns the information about that stu-

dent in the ‘self’ portion.

2. /o/reporting-api/query-tasks

This endpoint is used for getting the information about the tasks within a page

found inside a material. The endpoint works by making a POST request and con-

sists of a request body. The body of the request consists of a list of query param-

eters, which are material id, page id and if the tasks of the child pages were

needed then it required passing true with the ‘childpages’ attribute or false if it

was not required.

The response would return the count of the total number of tasks in the ‘total’

portion and detailed information of the tasks in the ‘tasks’ portion.

3. /o/reporting-api/query-student-tasks

This endpoint is used to get information about students’ answers to the tasks

within a page found inside a material. It works by making a POST request and it

also consists of a request body. The request body of this endpoint is similar to

that of the ‘query-tasks’ with an additional ‘options’ portion that allows to sort,

limit, and if the response is to be limited then which page should be given prefer-

ence for the limited response.

The response would return the count of the total number of answers to each task

in the ‘total’ portion. It also includes the tasks’ information along with the id of the

24

students and detailed information about the answers provided by the students in

the ‘tasks’ portion.

The details of the API can be found in Appendix A.

25

4. DESIGN AND IMPLEMENTATION

This chapter describes the design and implementation of the new data analytics frame-

work used for the reporting feature of Cloubi along with the reasons for choosing the

microservice architecture. This chapter also includes the integration tests carried out to

check whether the microservice developed for the new data analytics framework was

functioning correctly. At the end of the chapter, a comparison is made with related work.

4.1 Architectural Background

There were two reasons for choosing the microservice architecture for developing the

new data analytics framework. One of the reasons was that the data requirements for

the new reporting were not known in advance. The databases that Cloubi uses were not

optimized for the changing data needs and it was not possible to modify the existing

Cloubi databases to satisfy the needs since all the possible data requirements were not

clear. Therefore using microservices having their own databases that could be optimized

according to the data need was the optimum solution to this problem. For a new data

need, a new microservice having its own database could be created.

Another reason for choosing the architecture was that the database used by the micro-

service gets all the data from Cloubi via a messaging system, so eventually it has all the

data from Cloubi and so a microservice can be scaled up or duplicated as required for

handling increasing network load.

4.2 Design

The new data analytics framework is designed following the microservice architecture as

mentioned earlier. If any changes were required in the framework, it would not affect the

main codebase of Cloubi. Figure 4 illustrates the design of the new reporting feature that

has been implemented for the new data analytics framework of Cloubi for use by the

teachers to see their students’ overall progress throughout a material or it can also be

used by the student themselves to check their own progress.

In the diagram, there are three separate services, which are Kafka, the application, and

the MongoDB database. These three services together form the microservice that is

used for the new data analytics framework. The application is made using Spring Boot.

The MongoDB database is solely used for the purpose of this microservice that is to

26

serve the new reporting API created using the application and is expected to have an

impact on the API’s performance.

Figure 4: Concept of the new data analytics framework

The design illustrates that initially, Cloubi sends events to the application via Kafka. Upon

receiving the data of the events, the database used by the application gets filled up with

the data. Once there is data in the MongoDB used by the application, the API created

can then respond as the request is made. Usually, the request is made by the frontend

of the reporting page of a material in Cloubi. Details about the API is explained in the

topic 4.4.

Kafka acts as a message-passing system connecting the application with Cloubi since

Cloubi and the application are two separate disconnected systems. One of the reasons

for the usage of Kafka is that it is being widely used in the industry and has many prebuilt

libraries, it had plenty of tutorials and guidelines that were easy to follow. The main rea-

son behind the usage of Kafka is that it can retain the data of the events for some time.

Therefore, even if the application is down for any reason, there will not be any loss of the

data. Whenever the application becomes up and running again it would sync the up-to-

date data of events that have already occurred in Cloubi with the help of Kafka. Kafka

can send the events to the application in two ways, one way is whenever an event occurs

in real-time or at the very beginning as the services are started. Initially, the database of

the application does not have any data, this data is filled up using the initial data writer.

The details on Kafka integration into the microservice is explained in the next topic.

27

Whatever happens in Cloubi, from the creation of a material to the creation of a page

and task and a student answering the tasks are sent as events to the microservice.

Therefore events are all the occurrences happening in Cloubi. Events are the only way

to let the microservice know that something has occurred in Cloubi and based on those

events, the database used by the microservice is filled up with all the relevant data

needed for the new reporting API to operate. The events that Cloubi sends to Kafka are

structured in key-value pairs. The key consists of the event name and the value consist

of a JSON object encoded in a string. The JSON object holds the various attributes of

the event. The events along with their name and purpose are listed below:

1. material

This event occurs whenever a new material is created in Cloubi or to inform a

microservice that this material exists in Cloubi. The value of this event is de-

scribed in the table below:

material String Unique identifier for the material.

title String Title of the material.

modified long Timestamp when the material was last modified.

rootPage String Unique identifier of the root page (or front page) of the ma-
terial.

seqId
(optional)

String Unique identifier of the sequence that the event belongs
to. If this event does not belong to any sequence, this at-
tribute is missing. Sequences are started by the seqStart
event and end with the seqEnd event.

time long Timestamp of the event as milliseconds since January 1,
1970, UTC. This value is the same format as returned by
java.lang.System.currentTimeMillis() method in Java. This
is the time when the event originally happened, not when
the event is sent (the current time).

Table 1: Value of the event - material

28

2. page

This event occurs whenever a new page is created within a material in Cloubi or

to inform a microservice that this page exists within a material in Cloubi. The

value of this event is described in the table below:

material String Unique identifier for the material that this page belongs to.

page String Unique identifier for the page. The identifier is only unique
within the material.

title String Title of the page.

modified long Timestamp when the page was last modified.

parent String Unique identifier of the page’s parent page. If this page is
a root page, then this attribute is missing.

children Array
of
Strings

List of the page's child pages. Each item in the list is the
child page’s unique identifier. The pages are in the correct
order in the list. If the page has no child pages then this list
is empty.

breadcrump Array
of
Strings

The page's breadcrump. The breadcrump is a list of page
IDs, starting from the root page and ending with this page.
It shows the page’s all parent pages, not just the direct
parent page.

tasks Array
of
Strings

List of the tasks on this page. The list contains the unique
identifiers of the tasks. The list is in no particular order. If
the page has no tasks, then this list is empty.

seqId
(optional)

String Unique identifier of the sequence the event belongs to.

time long Timestamp of the event as milliseconds since January 1,
1970, UTC.

Table 2: Value of the event - page

29

3. task

This event occurs whenever a new task is created within a page in Cloubi or to

inform a microservice that this task exists within a page in Cloubi. The value of

this event is described in the table below:

task String Unique identifier for the task.

title String Title of the task.

maxScore int The maximum score a student can get from the task. It
can be zero.

tags Array
of
Strings

List of keywords or tags the task has.

seqId
(optional)

String Unique identifier of the sequence the event belongs to.

time long Timestamp of the event as milliseconds since January 1,
1970, UTC.

Table 3: Value of the event - task

4. answer

This event occurs whenever a student has answered a task or updated an an-

swer. This also includes any interactions with a task that a student can perform

and would result in having a different score or progress within the task, for exam-

ple, starting a task and not finishing it. So this event does not actually require

giving an answer to a question. The value of this event is described in the table

below:

task String Unique identifier for the task that this answer is for.

user String Unique identifier for the user who gave the answer

score int User's current score from the task, as a result of answer-
ing the task. The value is between 0 to the maximum
score that can be achieved from the task.

progress int User’s current progress in the task, as a result of answer-
ing the task. The value is between 0 to 100, in terms of
percentage.

30

attempts int Number of times the user has attempted the task at this
point. When the user first starts with the task, the value of
the first attempt is 1. After each time the user restarts the
task, this value increases by one.

seconds int Number of seconds the user has spent in the latest at-
tempt.

secondsTotal int Total number of seconds the user has spent in the task,
including all the attempts.

seqId
(optional)

String Unique identifier of the sequence that the event belongs
to.

time long Timestamp of the event as milliseconds since January 1,
1970, UTC.

Table 4: Value of the event - answer

5. allMaterials

This event occurs whenever all the events are sent and it contains a list of all the

current materials in Cloubi. Listeners can use this list to remove any old materials

they might have. The value of this event is described in the table below:

materials Array
of
Strings

List of the unique identifiers of all the available materials.

time long Timestamp of the event as milliseconds since January 1,
1970, UTC.

Table 5: Value of the event - allMaterials

6. materialDeleted

This event occurs whenever a material is deleted from Cloubi. The material along

with all of its pages gets deleted. The value of this event is described in the table

below:

material String Unique identifier for the material which was deleted.

time long Timestamp of this event as milliseconds since January 1,
1970, UTC.

Table 6: Value of the event - materialDeleted

31

7. pageDeleted

This event occurs whenever a page within a material gets deleted from Cloubi.

This also means that all of the deleted page’s child pages are deleted. The value

of this event is described in the table below:

page String Unique identifier for the page that was deleted.

material String Unique identifier for the material which contains the de-
leted page.

time long Timestamp of the event as milliseconds since January 1,
1970, UTC.

Table 7: Value of the event - pageDeleted

8. seqStart

This event occurs whenever there is a new sequence of events that describes all

content and data stored in Cloubi. Such sequence will always start with this event

and end with the seqEnd event. The value of this event is described in the table

below:

seqId String Unique random identifier for this sequence. All subsequent
events that belong to this same sequence must have this
same identifier.

time long Timestamp of this event as milliseconds since January 1,
1970, UTC.

Table 8: Value of the event – seqStart

9. seqEnd

This event occurs to notify the end of a sequence of events started by the se-

qStart event. The value of this event is described in the table below:

seqId String Unique random identifier for this sequence.

time long Timestamp of this event as milliseconds since January 1,
1970, UTC.

Table 9: Value of the event - seqEnd

32

An example event looks like the following:

event_name: material, value: {"material":"5e562c5c8231b74159152714","modi-
fied":"1585937963769","time":"1588497859839","title":"Phys-
ics","rootPage":"5e562df88231b7415915271e","seqId":"e36ad577-7b33-be8b-4f55-
fb94253b7a7a-1588497859795"}

4.3 Kafka Integration

Cloubi contains the producer which publishes the events as they occur in Cloubi. In order

for the microservice to receive the events, there was a need to implement the consumer

within the microservice that would receive the events from Cloubi as it occurs. This was

done with the help of two consumer classes named FullDataConsumer and

RealTimeConsumer. Cloubi sends the events into two topics. The consumer classes in

the application subscribes to both the topics. FullDataConsumer class handles the topic

“FULL_DATA” and RealTimeConsumer class handles the topic “REALTIME”. FullData-

Consumer serves the purpose of the initial data writer as illustrated by figure 4. Con-

sumer class is the way of consuming the messages produced by Kafka. In Spring Boot

a consumer class is implemented with the help of the “KafkaListener” annotation [29].

The purpose of the topics are described below:

1. FULL_DATA

This topic is responsible for handling initial data of the events or whenever there

is a need to send the full data of the events from Cloubi to the microservice. The

events that are handled within this topic are seqStart, material, page, task, an-

swer, seqEnd, and allMaterials. The microservice after receiving these events

checks whether the seqId that it receives from the seqStart event is the same as

the seqId in the events material, page, task, answer, and seqEnd. The purpose

of this checking is to ensure that all these events are from the same batch and if

they are not then the events will be discarded and the microservice will not do

anything with them.

When the microservice receives the material event, it fills the MongoDB used by

the microservice with the information of the material. Similarly, when the micro-

service receives the page event, it fills in the database with the information about

the page. The same happens with the events' task and answer. The event all-

Materials is used to check whether the database used by the microservice has

all the current materials that are present in Cloubi. If there are any old materials

in the database it is deleted to make sure that the database used by the micro-

service is up to date with Cloubi.

33

2. REALTIME

This topic is responsible for handling data of the events from Cloubi to the micro-

service as they occur in real-time. There are some events that can occur in both

the topics, which include material, page, task, and answer. In this topic, there is

no checking of whether all these events belong to the same batch or not.

The microservice responds to these events as they occur and fills in the database

with relevant information. In addition to these events, this topic also deals with

the events materialDeleted and pageDeleted. Every time a material or a page

gets deleted from Cloubi, the database used by the microservice also needs to

delete the information of the material or the page that has been deleted.

4.4 MongoDB Repositories

The reason for choosing MongoDB over relational databases is that the structure of the

data was too complicated to fit in any relational database and therefore MongoDB was

used since it is the most widely used NoSQL database management system. The Mon-

goDB repositories were designed in such a way so that the documents in each collection

are organized in such a way that would result in efficient queries for the application.

Three collections were used for keeping the information of the materials, pages, tasks,

and answers of the students. As mentioned earlier, these collections were filled with the

data from Cloubi with the help of the events.

The three collections and their structure is described below:

1. Page Collection

Figure 5 illustrates the attributes of a document in the page collection. The _id is

the unique identifier of a document in a collection in MongoDB, here page id is

used as the unique identifier because every page residing in any material in

Cloubi has unique IDs specific to the material. Then there is the material id and

the list of task attributes.

Each task attributes have the task id, the maximum score that can be achieved

from the task, and a list of tags associated with the task. For example, if it was a

math task, it can have tags like geometry, algebra, or calculus depending on the

type of the task.

34

Figure 5: Attributes of a document in page collection

2. Task Collection

Figure 6 illustrates the attributes of a document in the task collection. The task id

is used as the unique identifier of the document in this collection. The document

also consists of a list of pages that has the task. The same task can exist on

multiple pages in a Cloubi material.

Figure 6: Attributes of a document in task collection

3. StudentMaterial Collection

Figure 7 illustrates the attributes of a document in the studentMaterial collection.

Here an auto-generated object id is used as the unique identifier of the document.

The document also consists of the student id, material id, and a list of task attrib-

utes.

The tasks attributes consist of the task id, progress of the student in the task, the

score achieved by the student in the task, the number of attempts made by the

student in the task, the time taken in the latest attempt, the total time taken in all

the attempts and the time of latest update in any tasks completed by the student.

Figure 7: Attributes of a document in studentMaterial collection

35

4.5 API Implementation

The new API of the reporting feature was implemented to keep it as simple and as logical

as possible. Unlike the previous reporting feature’s API, this API is kept as minimalistic

as possible. The previous reporting required three endpoints for the reporting feature to

work but in this new version, it has been brought down to only one making it easy to

access and respond accordingly. The API has been implemented with the help of a Con-

troller Class in a Spring Boot Application that would fetch information from the MongoDB

Repositories as necessary when requested with relevant information. A controller is a

way of handling HTTP requests in the approach used by Spring for creating RESTful

web services. In Spring Boot, a controller class is implemented with the help of the

“RestController” annotation [29]. However, the API does not fully represent REST Archi-

tecture but it follows some of the concepts of REST and has some similarities to

GraphQL. Therefore, it can be called a REST-like API.

The endpoint of the new API is “/o/analytics-framework/report-table”. Initially, a request

is made to the API using a POST request consisting of a request body containing a list

of page ids and a list of student ids for which the response is generated. The page ids

and the student ids are checked to see if they exist in the database and if the page ids

and the student ids are present in the database then only a suitable response would be

generated. The response has two portions, one is “pages” and the other is “students”.

For n number of page ids, there is n number of responses in the “pages” portion. For n

number of page ids and m number of student ids, there will be (m × n) number of re-

sponses in the “students” portion. For generating the response for the “pages” portion,

the total number of tasks on a particular page and the sum of the maximum scores that

can be achieved from the tasks on the page is calculated from the information of the

tasks obtained for that page from the MongoDB repositories.

Similarly for generating the response for the “students” portion, the score obtained by a

student in the tasks on that page is calculated, also the average progress of the student

in the tasks on that page is calculated. Other calculated attributes include the sum of the

time of the latest attempt made by the student in the tasks on the page, the sum of the

total time spent in all the attempts made by the student in the tasks on the page, the total

number of attempts in the tasks on the page, the average number of attempts in the

tasks on the page, the time of latest update made by the student in any of the tasks on

the page, the number of tasks started and completed by the student in the tasks on that

page, the average progress of the tasks started and completed by the student in the

tasks on that page, the score and the maximum score of the tasks started and completed

36

by the student in the tasks on that page. All of these attributes are calculated from the

information of the student’s answers obtained from the MongoDB repositories.

The details of the API is provided in Appendix B.

4.6 Dockerization

After the application was ready it was necessary to containerize the application. This is

done with a Dockerfile that is used for building the Docker image of the application. Fig-

ure 8 illustrates the content of the Dockerfile used for the containerization of application.

Figure 8: Content of the Dockerfile used for containerization of application

Since it is a Spring Boot Application, it required Maven for the packaging of the applica-

tion into a JAR (Java ARchive) file, which enables Java runtimes to deploy the application

efficiently. The application also required Java 8 for it to run. The docker image has two

build stages. The first build stage starts by pulling the official image of Maven using

“FROM maven:3-jdk-8” command. The image was downloaded from the Docker Hub.

Then by using “WORKDIR /data” command, the working directory of the image is spec-

ified to be “/data”. Next, the src directory of the host is copied to the “src” folder in the

image using “COPY src ./src” command. Also, the “pom.xml” which consists of all the

dependencies required by the Spring Boot Application to function properly is copied from

the host to the image’s present location using “COPY pom.xml .” command. Then by

using the “RUN mvn clean package” command, the existing target folder containing the

jar file inside the image is deleted and rebuilt.

The second stage begins by downloading JDK 8 from Docker Hub’s official image using

the “FROM openjdk:8-jre-alpine” command. At runtime, the port 9000 is exposed by the

container using the “EXPOSE 9000” command. This is the port that the application lis-

tens to, so it needs to be exposed for the application to be accessible from outside the

37

container. The application is run inside the container using the command “ENTRYPOINT

["/usr/bin/java", "-jar", "/usr/share/spring-boot/analytics-report-table.jar"]”. Finally, the jar

file of the application is copied from the host to the image using the “COPY --from=0

/data/target/report-table-0.0.1-SNAPSHOT.jar /usr/share/spring-boot/analytics-report-

table.jar” command copying the build artifact from the first stage to the second stage as

indicated by “--from=0” [30].

This is the container that has been created for running the application. But for the micro-

service to operate it requires other containers which are illustrated in figure 9.

Figure 9: Content of the Docker-Compose used for creating the microservice

38

The version of the docker-compose is defined as 3.0. There are three services that are

required for the microservice to function which are the ‘report-table-microservice’, ‘mon-

godb’, and ‘kafka’. But since Apache Kafka does not work without Zookeeper it is in-

cluded as a service named ‘zookeeper’ in this docker-compose file which results in the

total number of services to be four. Initially, the ‘report-table-microservice’ service is built

from the code and named as the ‘analytics-report-table’. The port 9000 of the container

is mapped to the port 9000 of the host. The environment consists of the configuration

required for the service to run. The ‘report-table-microservice’ requires ‘kafka’ and ‘mon-

godb’ services which are provided as the service dependencies.

Similarly, the image for MongoDB is pulled from Docker Hub and port 27017 is exposed

for access by the other containers. Next, the image of Zookeeper is pulled from Docker

Hub, the port of the host 2182 of the container is mapped to the port 2182 of the host.

The environment consisting of the configuration for the ‘zookeeper’ service is set.

Finally, the image for Apache Kafka is pulled from the Docker Hub. The port 9092 of the

container is mapped to 9092 of the host, also the port 9093 is exposed for access by

other containers. The environment consisting of the configuration for running the service

is provided and the only dependency required for the service ‘kafka’ to function is set to

‘zookeeper’ service. All the ports mapped here are the ports that the services listen to,

so they need to be mapped in order for the services to be accessible from outside their

containers. This is how the microservice that is being used for the new data analytics

framework gets created.

One problem was mapping the Kafka listeners configuration to inside and outside the

containers, this was solved by using the IP (Internet Protocol) address and the port num-

bers for communication outside the container.

Once the microservice was ready, a gateway was implemented inside Cloubi which is a

service component that introduces the reporting microservice to Cloubi and handles the

checking of the access rights.

4.7 Integration Tests

After the microservice was functioning it was necessary to perform integration tests to

check that the microservice was generating the correct response whenever a request

was made after receiving certain events. Integration testing is a method for checking how

the individual modules perform when they are integrated together. For the case of the

reporting microservice one module is for consuming the events from Cloubi and filling up

the database, the other module is to extract the data from the database and return the

39

calculated attributes whenever a request is made. The microservice is tested using

Cloubi’s own microservice tester named ‘ms-tester’ that carries out the tests provided in

a JSON file. The test cases were written while the frontend of the new reporting feature

was not even started. A total of nineteen tests are carried out, which are:

1. Empty page list in request

In this test case, the page list in the request is kept empty and checked whether

the microservice returns an empty response in the “pages” and the “students”

portion of the response. If it sends an empty response, then it passes the test.

2. Empty student list in request

In this test case, the student list in the request is kept empty and checked whether

the microservice returns an empty list in the “pages” and the “students” portion of

the response. If it sends an empty response, then it passes the test.

3. Empty page list and student list in request

In this test case, both the page list and the student list are kept empty in the

request and checked whether the microservice returns an empty list in the

“pages” and the “students” portion of the response. If it sends an empty response,

then it passes the test.

4. Single task in single page with single user

In this test case, the request is made with a single student and a single page. The

page consists of a single task and answer to the task by the student. It is then

checked whether the microservice returns the page’s number of tasks and the

maximum score that can be obtained from the page along with the student’s an-

swer to the task on the page. If the response is correct, then it passes the test.

5. Single task in single page with multiple users

In this test case, the request is made with multiple students and a single page.

The page consists of a single task and multiple answers from multiple students.

It is then checked whether the microservice returns the page’s number of tasks

40

and the maximum score that can be obtained from the page along with each

student's answers to the task on the page. If the response is correct, then it

passes the test.

6. Single task in page hierarchy with single user

In this test case, the request is made with a single student and multiple pages.

The multiple pages maintain a hierarchy with the child page consisting of a single

task and a single answer by the student. In such a hierarchical structure the same

task is also allocated to the parent page. It is then checked whether the micro-

service returns all the pages’ number of tasks and the maximum score that can

be obtained from each page along with the student’s answer to the task. If the

response is correct, then it passes the test.

7. Single task in page hierarchy with multiple users

In this test case, the request is made with multiple students and multiple pages.

The multiple pages maintain a hierarchy with the child page consisting of a single

task and multiple answers to the task by each student. In such a hierarchical

structure the same task is allocated to the parent page. It is then checked whether

the microservice returns all the pages’ number of tasks and the maximum score

that can be obtained from each page along with each student’s answers to the

task. If the response is correct, then it passes the test.

8. Multiple tasks in single page with single answer by single user

In this test case, the request is made with a single student and a single page. The

page consists of multiple tasks but a single answer to one of the tasks by the

student. It is then checked whether the microservice returns the page’s number

of tasks and the maximum score that can be obtained from the page along with

the student’s answer to one of the tasks on the page. If the response is correct,

then it passes the test.

9. Multiple tasks in single page with single answer by multiple users

In this test case, the request is made with multiple students and a single page.

The page consists of multiple tasks but a single answer to one of the tasks by

41

each student. It is then checked whether the microservice returns the page’s

number of tasks and the maximum score that can be obtained from the page

along with each student’s answers to one of the tasks on the page. If the response

is correct, then it passes the test.

10. Multiple tasks in single page with multiple answers by single user

In this test case, the request is made with a single student and a single page. The

page consists of multiple tasks and answers to those tasks by the student. It is

then checked whether the microservice returns the page’s number of tasks and

the maximum score that can be obtained from the page along with the student’s

answer to all of the tasks on the page. If the response is correct, then it passes

the test.

11. Multiple tasks in single page with multiple answers by multiple users

In this test case, the request is made with multiple students and a single page.

The page consists of multiple tasks and answers to those tasks by each student.

It is then checked whether the microservice returns the page’s number of tasks

and the maximum score that can be obtained from the page along with each

student’s answers to all of the tasks on the page. If the response is correct, then

it passes the test.

12. Multiple tasks in page hierarchy with single answer by single user

In this test case, the request is made with a single student and multiple pages.

The multiple pages maintain a hierarchy with the child page containing multiple

tasks and a single answer to one of the tasks by the student. In such a hierar-

chical structure the same tasks are allocated to the parent page. It is then

checked whether the microservice returns all the pages’ number of tasks and the

maximum score that can be obtained from each page along with the student’s

answer to one of the tasks. If the response is correct, then it passes the test.

13. Multiple tasks in page hierarchy with single answer by multiple users

In this test case, the request is made with multiple students and multiple pages.

The multiple pages maintain a hierarchy with the child page containing multiple

42

tasks and multiple answers to one of the tasks by each student. In such a hierar-

chical structure the same tasks are allocated to the parent page. It is then

checked whether the microservice returns all the pages’ number of tasks and the

maximum score that can be obtained from each page along with each student’s

answers to one of the tasks. If the response is correct, then it passes the test.

14. Multiple tasks in page hierarchy with multiple answers by single user

In this test case, the request is made with a single student and multiple pages.

The multiple pages maintain a hierarchy with the child page containing multiple

tasks and answers to the tasks by the student. In such a hierarchical structure

the same tasks are allocated to the parent page. It is then checked whether the

microservice returns all the pages’ number of tasks and the maximum score that

can be obtained from each page along with the student’s answers to all of the

tasks. If the response is correct, then it passes the test.

15. Multiple tasks in page hierarchy with multiple answers by multiple users

In this test case, the request is made with multiple students and multiple pages.

The multiple pages maintain a hierarchy with the child page containing multiple

tasks and answers to the tasks by each student. In such a hierarchical structure

the same tasks are allocated to the parent page. It is then checked whether the

microservice returns all the pages’ number of tasks and the maximum score that

can be obtained from each page along with each student’s answers to all of the

tasks. If the response is correct, then it passes the test.

16. Multiple tasks in multiple pages excluding rootPage and single user

In this test case, the request is made with a single student and multiple pages

excluding the root page. The multiple pages contain multiple tasks and answers

to the tasks by the student. It is then checked whether the microservice returns

all the pages’ number of tasks and the maximum score that can be obtained from

each page along with the student’s answers to the tasks on each page. If the

response is correct, then it passes the test.

43

17. Multiple tasks in multiple pages excluding rootPage and multiple users

In this test case, the request is made with multiple students and multiple pages

excluding the root page. The multiple pages contain multiple tasks and answers

to the tasks by each student. It is then checked whether the microservice returns

all the pages’ number of tasks and the maximum score that can be obtained from

each page along with each student’s answers to the tasks on each page. If the

response is correct, then it passes the test.

18. Multiple tasks in multiple pages including rootPage and single user

In this test case, the request is made with a single student and multiple pages

including the root page. The multiple pages contain multiple tasks and answers

to the tasks by the student. It is then checked whether the microservice returns

all the pages’ number of tasks and the maximum score that can be obtained from

each page along with the student’s answers to the tasks on each page. If the

response is correct, then it passes the test.

19. Multiple tasks in multiple pages including rootPage and multiple users

In this test case, the request is made with multiple students and multiple pages

including the root page. The multiple pages contain multiple tasks and answers

to the tasks by the student. It is then checked whether the microservice returns

all the pages’ number of tasks and the maximum score that can be obtained from

each page along with each student’s answers to the tasks on each page. If the

response is correct, then it passes the test.

A sample test case is provided in Appendix-C.

4.8 Comparison with Related Work

There has been a lot of ongoing research on the use of microservice architecture over

monolithic architecture. The use of microservice architecture has several benefits com-

pared to that of monolithic architecture [31]. Microservices are independent and are rel-

atively small in size, therefore allowing easy testing and debugging of the individual ser-

vices. A change in one service does not necessarily affect the other services within the

microservice and so the whole system does not need to be down for maintenance or

code changes. Microservice based applications are easy to scale by adding other ser-

44

vices or duplicating them in order to reduce the network load. Each service can be de-

veloped with different technologies and interact with a common interface. Sadien et al.

developed a mobile location-based crowdsourcing (MBLC) platform named

QRowdsource using microservice architecture [32]. Crowdsourcing refers to a model in

which mass people of indeterminate size would solve a complex problem. QRowdsource

was a crowdsourcing application that was developed as the authors’ first prototype using

the microservice architecture, it allowed users to log in by scanning QR code from sev-

eral locations of the authors’ university campus and solve tasks to get credits. These

credits could then be used in a coin dispenser set up on the campus.

The developers of QRowdsource used a load balancer named PM2 instead of Docker

containers considering the small size of the deployment, for that reason they had to man-

ually scale the services depending on the load. However, in this thesis, Docker contain-

ers have been used for microservice development which provides the advantage of con-

necting the services to each other easily.

QRowdsource was designed in a way that resulted in merging several services together

to a single service for reducing the complexity of the application due to the amount of

interconnectivity across the services. It is most suitable that each service within a micro-

service should serve a single functionality. In this thesis, the service within the micro-

service developed for the new data analytics framework mainly focuses on a single func-

tionality of getting the students’ data from the microservice’s own database and returning

the calculated data that is required for the reporting feature of Cloubi.

QRowdsource has a separate data service for handling all the data related transactions

in the application, more like a monolithic approach. The primary reason for this was to

avoid the problems caused by data migrations. Usually, in a microservice way of ap-

proach, each service has its own database. The microservice developed in this thesis

for the new data analytics framework, has its own database and receives all the data

from Kafka and is only used for the purpose of the new reporting API. Therefore, there

is no need to worry about data loss since the microservice connects to Kafka to sync all

the up-to-date data.

45

5. PERFORMANCE EVALUATION

This chapter gives a comparison between the performance for both the previous and the

new data analytics framework.

5.1 Methodology

The performance of both the previous and the new data analytics framework API has

been measured using Glowroot [33], which is an open-source application performance

management tool for Java Applications used for getting the average API response time

via the web browser.

As mentioned earlier, the previous data analytics framework required three endpoints,

whereas the new data analytics framework requires only a single endpoint for it to oper-

ate. All the endpoints were tested with real Cloubi data from a small server consisting of

two materials, one being relatively larger than the other. The larger material consisted of

49 pages and a total of approximately 960 tasks whereas the smaller material consisted

of 8 pages and a total of approximately 213 tasks. For an easier understanding of the

evaluation results, the larger material is called M1 and the smaller material is called M2.

Three student groups were used for this evaluation, the first student group (G1) had 15

students, the second group (G2) had 5 students and the third group (G3) had only 1

student.

Each endpoint was tested with both the larger material (M1) and the smaller material

(M2) and the request was made with the three student groups. Each test was conducted

several times and the average response time for each case was taken into account. The

standard error (SE) for each endpoint was calculated to get the allowable error for each

endpoint’s response time using the formula mentioned below [34].

𝑆𝐸 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

√𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠
 (1)

The total response time and the total standard error for the endpoints for both the previ-

ous and the new data analytics framework were then compared.

The three endpoints required for the previous data analytics framework to work are:

• “/o/reporting-api/student-groups”

• “/o/reporting-api/query-tasks”

46

• “/o/reporting-api/query-student-tasks”

Whereas the only endpoint required by the new data analytics framework is:

• “/o/analytics-framework/report-table”

It is worth mentioning that the report page makes exactly the same number of calls to

each endpoint for the previous data analytics framework. Therefore the response time

from each endpoint is added to get the total response time for the previous reporting API.

For example, figure 10 illustrates the Glowroot API average response graph of the end-

point “/o/reporting-api/query-tasks” for case 1 (M1, G1) over a period of half an hour. The

same request was made 5 times within an interval of approximately 5 mins with the larger

material (M1) and a group of 15 students (G1). Out of these 5 readings, an average was

then calculated.

Figure 10: Average response time of the endpoint “/o/reporting-api/query-
tasks” for case M1, G1

In some cases, this endpoint stops responding, this might have occurred due to the fact

that Glowroot runs on the server, and what may have happened is that the browser used

to make the requests cached the responses. In this case, the browser receives a re-

sponse from the cache but no actual response is sent by the server, and therefore no

response is visible in the graph.

This same procedure was followed for all the endpoints of the previous and the new data

analytics framework and the comparisons will be elaborated by the following cases:

47

5.1.1 Case 1 (M1, G1) Comparison

This test was performed using the larger material and a group of 15 students.

Table 10 shows the total response time of the API used in the previous data analytics

framework for the case M1, G1 represented in a tabular format based on the data from

the API response graph. The standard error for each endpoint is calculated and summed

up to find the total standard error of the endpoints. It can be seen that the endpoint used

for fetching the student answers takes the most time followed by the endpoint used for

querying the tasks present in the material and the endpoint used for fetching the infor-

mation about the group of students’ answers takes a negligible amount of time. The total

amount of time taken for the three endpoints required for the previous reporting to work

takes a total of 1756.3 milliseconds and the total standard error for the three endpoints

is 49.8 milliseconds.

Previous Data Analyt-
ics Framework

1 2 3 4 5 Avg. SE

/o/reporting-api/student-
groups

5 6 5.5 6 9.1 6.3 ±0.6

/o/reporting-api/query-
tasks

700 730 750 780 880 768 ±27.6

/o/reporting-api/query-
student-tasks

980 1050 1000 980 900 982 ±21.6

Total Time (ms)

1756.3 ±49.8

Table 10: Total response time of the API used in the previous data analytics

framework (M1, G1)

Table 11 shows the total response time of the API used in the new data analytics frame-

work for the case M1, G1 represented in a tabular format based on the data from the API

response graph. The standard error for the endpoint is calculated. It can be seen that

the API used for fetching the information needed for the new reporting to work takes a

total of 359 milliseconds and the total standard error for the endpoint is 34.6 milliseconds.

New Data Analytics
Framework

1 2 3 4 5 Avg. SE

/o/analytics-frame-
work/report-table

450 325 325 250 445 359 ±34.6

Total Time (ms)

359 ±34.6

Table 11: Total response time of the API used in the new data analytics frame-

work (M1, G1)

48

From Table 10 and Table 11, it can be seen that the new data analytics framework seems

to be performing much better than the previous data analytics framework. The response

time of the new data analytics framework is better than the previous data analytics frame-

work by a time of 1397.3 milliseconds for the case M1, G1.

5.1.2 Case 2 (M1, G2) Comparison

This test was performed using the larger material and a group of 5 students.

Table 12 shows the total response time of the API used in the previous data analytics

framework for the case M1, G2 represented in a tabular format based on the data from

the API response graph. The standard error for each endpoint is calculated and summed

up to find the total standard error of the endpoints. It can be seen that the endpoint used

for fetching the student answers takes most of the time followed by the endpoint used

for querying the tasks present in the material and the endpoint used for fetching the

information about the group of students’ answers takes a negligible amount of time. The

total amount of time taken for the three endpoints required for the previous reporting to

work takes a total of 1767.9 milliseconds and the total standard error for the three end-

points is 38.5 milliseconds.

Previous Data Ana-
lytics Framework

1 2 3 4 5 6 Avg. SE

/o/reporting-api/stu-
dent-groups

6 8.5 5 9 8 5 6.9 ±0.7

/o/reporting-
api/query-tasks

795 800 795 840 880 800 818 ±12.9

/o/reporting-
api/query-student-
tasks

980 930 850 920 1050 930 943 ±24.9

Total Time (ms)

1767.9 ±38.5

Table 12: Total response time of the API used in the previous data analytics

framework (M1, G2)

Table 13 shows the total response time of the API used in the new data analytics frame-

work for the case M1, G2 represented in a tabular format based on the data from the API

response graph. The standard error for the endpoint is calculated. It can be seen that

the API used for fetching the information needed for the new reporting to work takes a

total of 278 milliseconds and the total standard error for the endpoint is 16.1 milliseconds.

49

New Data Analytics
Framework

1 2 3 4 5 6 Avg. SE

/o/analytics-frame-
work/report-table

260 250 280 240 360 280 278 ±16.1

Total Time (ms)

278 ±16.1

Table 13: Total response time of the API used in the new data analytics frame-

work (M1, G2)

From Table 12 and Table 13, it can be seen that the new data analytics framework seems

to be performing much better than the previous data analytics framework. The response

time of the new data analytics framework is better than the previous data analytics frame-

work by a time of 1489.9 milliseconds for the case M1, G2.

5.1.3 Case 3 (M1, G3) Comparison

This test was performed using the larger material and a group consisting of a single

student.

Table 14 shows the total response time of the API used in the previous data analytics

framework for the case M1, G3 represented in a tabular format based on the data from

the API response graph. The standard error for each endpoint is calculated and summed

up to find the total standard error of the endpoints. It can be seen that the endpoint used

for fetching the student answers takes most of the time followed by the endpoint used

for querying the tasks present in the material and the endpoint used for fetching the

information about the student’s answers takes a negligible amount of time. The total

amount of time taken for the three endpoints required for the previous reporting to work

takes a total of 671 milliseconds and the total standard error for the three endpoints is

46.4 milliseconds.

Previous Data Analyt-
ics Framework

1 2 3 4 5 Avg. SE

/o/reporting-api/student-
groups

9 12.5 5.3 8.5 6 8.3 ±1.1

/o/reporting-api/query-
tasks

360 380 260 270 250 304 ±24.4

/o/reporting-api/query-
student-tasks

330 450 345 350 320 359 ±20.9

Total Time (ms)

671 ±46.4

Table 14: Total response time of the API used in the previous data analytics

framework (M1, G3)

50

Table 15 shows the total response time of the API used in the new data analytics frame-

work for the case M1, G3 represented in a tabular format based on the data from the API

response graph. The standard error for the endpoint is calculated. It can be seen that

the API used for fetching the information needed for the new reporting to work takes a

total of 239 milliseconds and the total standard error for the endpoint is 5.6 milliseconds.

New Data Analytics
Framework

1 2 3 4 5 6 Avg. SE

/o/analytics-frame-
work/report-table

225 240 235 245 225 265 239 ±5.6

Total Time (ms)

239 ±5.6

Table 15: Total response time of the API used in the new data analytics frame-

work (M1, G3)

From Table 14 and Table 15, it can be seen that the new data analytics framework seems

to be performing better than the previous data analytics framework. The response time

of the new data analytics framework is better than the previous data analytics framework

by a time of 432 milliseconds for the case M1, G3.

5.1.4 Case 4 (M2, G1) Comparison

This test was performed using the smaller material and a group of 15 students.

Table 16 shows the total response time of the API used in the previous data analytics

framework for the case M2, G1 represented in a tabular format based on the data from

the API response graph. The standard error for each endpoint is calculated and summed

up to find the total standard error of the endpoints. It can be seen that the endpoint used

for fetching the student answers takes most of the time. After a certain time, the endpoint

used for querying the tasks present in the material stops responding due to browser

caching, and the endpoint used for fetching the information about the group of students’

answers takes a negligible amount of time. The total amount of time taken for the three

endpoints required for the previous reporting to work takes a total of 340.7 milliseconds

and the total standard error for the three endpoints is 74 milliseconds.

Previous Data Ana-
lytics Framework

1 2 3 4 5 6 Avg. SE

/o/reporting-api/stu-
dent-groups

6.4 6.6 6.2 5.9 5.9 6.3 6.2 ±0.1

/o/reporting-api/query-
tasks

80 265 - - - - 172.5 ±65.4

51

/o/reporting-api/query-
student-tasks

167 161 190 181 128 145 162 ±8.5

Total Time (ms)

340.7 ±74

Table 16: Total response time of the API used in the previous data analytics

framework (M2, G1)

Table 17 shows the total response time of the API used in the new data analytics frame-

work for the case M2, G1 represented in a tabular format based on the data from the API

response graph. The standard error for the endpoint is calculated. It can be seen that

the endpoint used for fetching the information needed for the new reporting to work takes

a total of 95.8 milliseconds and the total standard error for the endpoint is 3 milliseconds.

New Data Analytics
Framework

1 2 3 4 5 6 Avg. SE

/o/analytics-frame-
work/report-table

92 90 105 107 91 90 95.8 ±3

Total Time (ms)

95.8 ±3

Table 17: Total response time of the API used in the new data analytics frame-

work (M2, G1)

From Table 16 and Table 17, it can be seen that the new data analytics framework seems

to be performing better than the previous data analytics framework. The response time

of the new data analytics framework is better than the previous data analytics framework

by a time of 244.9 milliseconds for the case M2, G1.

5.1.5 Case 5 (M2, G2) Comparison

This test was performed using the smaller material and a group of 5 students.

Table 18 shows the total response time of the API used in the previous data analytics

framework for the case M2, G2 represented in a tabular format based on the data from

the API response graph. The standard error for each endpoint is calculated and summed

up to find the total standard error of the endpoints. It can be seen that the endpoint used

for fetching the student answers takes most of the time. The second endpoint used for

querying the tasks present in the material does not have any response. The third end-

point used for fetching the information about the group of students’ answers takes a

negligible amount of time. Despite that, the total amount of time taken for the endpoints

required for the previous reporting to work takes a total of 232.6 milliseconds. The total

standard error for the three endpoints is 55 milliseconds.

52

Previous Data Analyt-
ics Framework

1 2 3 4 5 Avg. SE

/o/reporting-api/student-
groups

7.8 6 7 6.2 6 6.6 ±0.3

/o/reporting-api/query-
tasks

- - - - - - -

/o/reporting-api/query-
student-tasks

455 205 220 102 145 226 ±54.7

Total Time (ms)

232.6 ±55

Table 18: Total response time of the API used in the previous data analytics

framework (M2, G2)

Table 19 shows the total response time of the API used in the new data analytics frame-

work for the case M2, G2 represented in a tabular format based on the data from the API

response graph. The standard error for the endpoint is calculated. It can be seen that

the endpoint used for fetching the information needed for the new reporting to work takes

a total of 75.3 milliseconds and the total standard error for the endpoint is 7.8 millisec-

onds.

New Data Analytics
Framework

1 2 3 4 5 6 Avg. SE

/o/analytics-frame-
work/report-table

70 55 75 90 54 108 75.3 ±7.8

Total Time (ms)

75.3 ±7.8

Table 19: Total response time of the API used in the new data analytics frame-

work (M2, G2)

From Table 18 and Table 19, it can be seen that the new data analytics framework seems

to be performing better than the previous data analytics framework. The response time

of the new data analytics framework is better than the previous data analytics framework

by a time of 157.3 milliseconds for the case M2, G2.

5.1.6 Case 6 (M2, G3) Comparison

This test was performed using the smaller material and a group of a single student.

Table 20 shows the total response time of the API used in the previous data analytics

framework for the case M2, G3 represented in a tabular format based on the data from

the API response graph. The standard error for each endpoint is calculated and summed

up to find the total standard error of the endpoints. It can be seen that the endpoint used

for fetching the student answers takes most of the time. The second endpoint used for

53

querying the tasks present in the material does not have any response. The third end-

point used for fetching the information about student’s answers takes a negligible amount

of time. Despite that, the total amount of time taken for the endpoints required for the

previous reporting to work takes a total of 75.4 milliseconds. The total standard error for

the three endpoints is 6.8 milliseconds.

Previous Data Analyt-
ics Framework

1 2 3 4 5 6 Avg. SE

/o/reporting-api/stu-
dent-groups

6.4 6 6.6 6.2 6 6.2 6.2 ±0.1

/o/reporting-api/query-
tasks

- - - - - - - -

/o/reporting-api/query-
student-tasks

105 65 68 59 59 59 69.2 ±6.7

Total Time (ms)

75.4 ±6.8

Table 20: Total response time of the API used in the previous data analytics

framework (M2, G3)

Table 21 shows the total response time of the API used in the previous data analytics

framework for the case M2, G3 represented in a tabular format based on the data from

the API response graph. The standard error for the endpoint is calculated. It can be seen

that the endpoint used for fetching the information needed for the new reporting to work

takes a total of 45.6 milliseconds and the total standard error for the endpoint is 3.7

milliseconds.

New Data Analytics
Framework

1 2 3 4 5 6 7 Avg. SE

/o/analytics-frame-
work/report-table

36 41 38 65 55 39 45 45.6 ±3.7

Total Time (ms)

45.6 ±3.7

Table 21: Total response time of the API used in the new data analytics frame-

work (M2, G3)

From Table 20 and Table 21, it can be seen that the new data analytics framework seems

to be performing better than the previous data analytics framework. The response time

of the new data analytics framework is better than the previous data analytics framework

by a time of 29.8 milliseconds for the case M2, G3.

54

5.2 Graph Representation of Case Comparisons

Figure 11: Graph representation of case comparisons

Figure 11 illustrates the graph representation of case comparisons for both the previous

and the new data analytics framework consisting of the total response times and the total

standard error.

5.3 Reliability of the Evaluation

The reliability of the evaluation results is determined by calculating the standard error.

Figure 11 shows the total standard error lines for both the previous and the new data

analytics framework for all the cases conducted and it has been calculated by dividing

the standard deviation with the square root of the number of readings for each endpoint.

Therefore, if the performance tests were conducted again with the same setup the allow-

able range of error would lie between the bounds represented by the error lines.

5.4 Validity of the Evaluation

Figure 11 shows that the total response time tends to decrease with the decrease in the

number of students. However, this turned out to be false for the reduction in the number

of students from case 1 (M1, G1) to case 2 (M2, G2) for the previous data analytics

framework. The total response time taken for the endpoints of the previous data analytics

framework for case 1 was 1756.3 milliseconds whereas the total response time taken for

55

the endpoints of the previous data analytics framework for case 2 was 1767.9 millisec-

onds.

It is difficult to determine the exact reason for this increase in response time but the total

standard error should be considered in this case. There might be a couple of reasons

that might have caused a delay in response. When the performance tests were con-

ducted there might have been other users who were using the server. Another reason

could be that the previous data analytics framework uses the databases that Cloubi uses

and when the request was made, the databases had other loads from Cloubi that it had

to deal with. The test was conducted on an AWS (Amazon Web Services) server that

had some limitations due to the type of subscription, for that reason the server could

have temporarily limited its capabilities resulting in the delay. Also, the server runs some

background tasks periodically which might cause delays.

Nevertheless, the main comparison is between the total response time of the previous

and the new data analytics framework which was not affected by this exception. It could

be seen clearly from figure 11 that the new data analytics framework is working better

than the previous data analytics framework in all the cases described above.

56

6. CONCLUSION

In conclusion, it can be said that the proof of concept for the design and development of

the backend of the new data analytics framework is now complete and functional. This

proof of concept was very important since it provided some valuable insights for Cloubi.

The most important learning was that the users of the reporting feature did not know

what they wanted in the new reporting, this resulted in the development of the backend

assuming similar data requirements as the previous data analytics framework which was

not true. It is not suggested to develop the backend without any front end user interface

design. There was a need to sync the microservice with the latest data from Cloubi. For

that reason, the Kafka topics were divided into 2 topics, one for the real-time data fetch-

ing and the other for the initial data writer.

Considering the design and implementation in chapter 4 of this thesis, it can be seen that

an enormous amount of work had to be done to make the backend ready, connecting

each of the modules to make them work and then writing integration tests to check

whether the microservice was working as expected. The biggest challenge was to inte-

grate Kafka to work along with the developed application since there were some difficul-

ties with the Kafka configurations for the listeners inside and outside the containers while

packing it as a microservice. While this was not much of a big problem but the connection

of Cloubi with the microservice was a bit delayed which delayed the development and

testing. However, the development of the proof of concept of the backend was done

ahead of the deadline.

After the development of the backend was complete, it was necessary to conduct the

performance testing of the new reporting API that had been developed with real Cloubi

data. Therefore, a small server with data was set up to compare the performance of the

new data analytics framework with that of the previous data analytics framework. From

the results in chapter 5, it can be seen that the new framework has better performance

in all the cases compared to the previous framework. Consequently, choosing the micro-

service architecture for the new data analytics framework had a positive impact on the

performance since the microservice has a dedicated MongoDB database which serves

solely for the purpose of the new reporting feature. Finally, the use of Kafka was most

suitable for connecting Cloubi and the microservice because in case of disconnections

the events would be stored and retrieved to synchronize the database used by the mi-

croservice with the latest information from Cloubi.

57

REFERENCES

[1] Cloubi, http://www.cloubi.com/ (accessed December 17, 2019).

[2] Kiran R. REST API - REST Constraints,
https://www.youtube.com/watch?v=JYNYv8jJQTE (accessed April 18, 2020).

[3] Wu X, Zhu H. Formalization and analysis of the REST architecture from the pro-
cess algebra perspective. Future Generation Computer Systems 2016; 56: 153–
168.

[4] GraphQL, https://graphql.org/ (accessed April 19, 2020).

[5] Khachatryan G. What is GraphQL?, https://medium.com/devgorilla/what-is-
graphql-f0902a959e4 (accessed April 19, 2020).

[6] Lewis J. What is GraphQL and GraphQL’s advantages over REST Architec-
ture?, https://medium.com/@jeffrey.allen.lewis/2018-beginners-guide-graphql-
its-advantages-over-rest-architecture-972b0ef1dccb (accessed April 19, 2020).

[7] GraphQL vs REST, https://medium.com/@back4apps/graphql-vs-rest-
62a3d6c2021d (accessed April 19, 2020).

[8] Fowler M. Microservices, https://martinfowler.com/articles/microservices.html
(accessed February 2, 2020).

[9] Newman S. Building Microservices. 1st ed. O’Reilly Media, 2015.

[10] Advantages and Disadvantages of Microservices Architecture,
https://cloudacademy.com/blog/microservices-architecture-challenge-ad-
vantage-drawback/ (accessed February 7, 2020).

[11] Ruponen E. The Front-End Architectural Design And Implementation of a Modu-
larized Web Portal, http://urn.fi/URN:NBN:fi:tty-201905311819 (2019).

[12] What is MongoDB?, https://www.mongodb.com/what-is-mongodb (accessed
February 1, 2020).

[13] MongoDB - Sharding, https://www.tutorialspoint.com/mongodb/mongodb_shar-
ding.htm (accessed January 12, 2020).

[14] Replication and Sharding in MongoDB Tutorial, https://www.sim-
plilearn.com/replication-and-sharding-mongodb-tutorial-video (accessed Janu-
ary 12, 2020).

[15] Noac’h P le, Costan A, Boug´e L. A Performance Evaluation of Apache Kafka in
Support of Big Data Streaming Applications. 2017 IEEE International Confer-
ence on Big Data (BIGDATA), 2017.

[16] Apache Kafka, https://kafka.apache.org/intro (accessed January 12, 2020).

58

[17] Todd. Becoming Familiar with Apache Kafka and Message Queues,
https://hackersandslackers.com/apache-kafka/ (accessed April 19, 2020).

[18] Kafka Architecture, http://cloudurable.com/blog/kafka-architecture/index.html
(accessed January 12, 2020).

[19] Maarek S. Udemy Course - Apache Kafka Series - Learn Apache Kafka Series
for Beginners v2, https://www.udemy.com/course/apache-kafka/ (accessed De-
cember 22, 2019).

[20] Johansson L. Which Service: RabbitMQ vs Apache Kafka, https://www.cloudka-
rafka.com/blog/2020-02-02-which-service-rabbitmq-vs-apache-kafka.html (ac-
cessed April 19, 2020).

[21] Mulders M. What is Spring Boot?, https://stackify.com/what-is-spring-boot/ (ac-
cessed March 31, 2020).

[22] Raffai Z. Spring Boot: The Most Notable Features You Should Know,
https://dzone.com/articles/what-is-spring-boot (accessed April 7, 2020).

[23] Spring Boot, https://spring.io/projects/spring-boot (accessed March 31, 2020).

[24] Chaturvedi V. What is Docker and Docker Container? A Deep Dive into Docker!,
https://www.edureka.co/blog/what-is-docker-container (accessed March 31,
2020).

[25] What is a Container?, https://www.docker.com/resources/what-container (ac-
cessed March 31, 2020).

[26] Overview of Docker Compose, Overview of Docker Compose (accessed March
31, 2020).

[27] Moodle, https://en.wikipedia.org/wiki/Moodle (accessed December 17, 2019).

[28] Fronter, https://itslearning.com/global/fronter/fronter-home/ (accessed Decem-
ber 17, 2019).

[29] Building a RESTful Web Service, https://spring.io/guides/gs/rest-service/ (ac-
cessed March 30, 2020).

[30] Use multi-stage builds, https://docs.docker.com/develop/develop-images/multi-
stage-build/ (accessed April 6, 2020).

[31] Dragoni N, Giallorenzo S, Lluch-Lafuente A, et al. Microservices: yesterday, to-
day, and tomorrow. 2016.

[32] Sadien I, Papangelis K, Fleming C, et al. Lessons Learned from Developing a
Microservice Based Mobile Location-Based Crowdsourcing Platform,
http://arxiv.org/abs/1909.03596 (2019).

[33] Glowroot - An open source APM tool for Java, https://me-
dium.com/@gaurav.sharan4u/glowroot-an-open-source-apm-tool-for-java-
7a570cc29378 (accessed April 20, 2020).

[34] Standard Error, https://en.wikipedia.org/wiki/Standard_error (accessed April 30,
2020).

59

APPENDIX-A: ENDPOINTS OF THE PREVIOUS

REPORTING API

Endpoints of the previous reporting API:

1. GET /o/reporting-api/student-groups

Response:

{
 "teacher": true if the user is a teacher, false otherwise,
 "groups": [
 {
 "id": "the group's ID",
 "namespace": "the group's namespace (identifies which in-
 terface the group data came from)",
 "fullId": "namespace:id",
 "title": "the name of the group",
 "schoolTitle": "the name of the school",
 "schoolId": "the identifier of the school",
 "students": [
 {
 "sessionId": "the user session ID of the stu-
 dent",
 "name": "the student's name"
 },...
]
 },...
],
 "self": {
 "id": "self_ + the user's session ID",
 "namespace": "(empty string)",
 "fullId": "self_ + the user's session ID",
 "title": "the user's name",
 "schoolTitle": "(empty string)",
 "schoolId": "(empty string)",
 "students": [
 {
 "sessionId": "the user's session ID (the self group
 only ever has one student, who is the

user making the request)",
 "name": "the user's name"
 }
]
 }
}

2. POST /o/reporting-api/query-tasks

Request:

{
 "query": {

60

 "materialId": the long ID of the material whose tasks are being
 queried,
 "pageId": "the String ID of the page whose tasks are being que-
 ried",
 "childPages": a boolean indicating whether tasks on child pages
 of the specified page should be included in the re-
 sponse
 }
}

Response:

{
 "total": the number of tasks in the response,
 "tasks": [
 {
 "materialId": the ID of the material containing the task,
 "pageId": "the ID of the page containing the task",
 "taskId": "the library file ID of the task",
 "scoreMax": the maximum possible score for the task,
 "title": "the name of the task",
 "difficultyLevel": the difficulty of the task (from 1 to
 5),
 "keywords": [
 "an array of metadata tags associated with the
 task",...
],
 "gradeable": true if a teacher can grade the task,
 "breadcrump": [
 "an array of page IDs indicating where the task is in
 the material structure",...
]
 },...
]
}

3. POST /o/reporting-api/query-tasks

Request:

{
 "options": {
 "sort": "either null, byStarted or byStartedDesc, determines the
 order of results (arbitrary order if null)".
 "limit": limits the number of returned results if present and
 greater than 0,
 "page": which page of results to return when the result count is
 limited
 },
 "query": {
 "materialId": the long ID of the material whose answers are being
 queried,
 "pageId": "the String ID of the page whose answers are being
 queried",
 "sessionId": the user session ID of the user whose answers are
 being queried,

61

 "childPages": a boolean indicating whether tasks on child pages
 of the specified page should be included in the re-
 sponse
 }
}

Response:

{
 "total": the number of task answers in the response,
 "tasks": [
 {
 "materialId": the ID of the material containing the task,
 "pageId": "the ID of the page containing the task",
 "taskId": "the library file ID of the task",
 "scoreMax": the maximum possible score for the task,
 "title": "the name of the task",
 "difficultyLevel": the difficulty of the task (from 1 to
 5),
 "keywords": [
 "an array of metadata tags associated with the
 task",...
],
 "gradeable": true if a teacher can grade the task,
 "breadcrump": [
 "an array of page IDs indicating where the task is in
 the material structure",...
],
 "sessionId": the session ID of the student this answer be-
 longs to,
 "attempts": [
 {
 "score": the score the student received in this
 attempt,
 "progress": how far the student got in the task
 in this attempt on a scale from 0.0
 to 1.0,
 "started": the timestamp when this attempt was
 started,
 "time": how much time the student spent on this
 attempt (in seconds),
 "teacherComment": "the comment the teacher left
 for the student when grading
 the task, if any",
 "teacherCommentUnread": true if the student has
 not yet seen the teach-
 er's comment
 "teacherCommentTimestamp": the time when the
 teacher commented on
 the answer, if any,
 "teacherCommentorName": "the name of the
 teacher who left the
 comment, if any"
 },...
]
 },...
]
}

62

APPENDIX-B: ENDPOINT OF THE NEW

REPORTING API

Endpoint of the new reporting API:

POST /o/analytics-framework/report-table

Request:

{
 pages: list of page ids,
 students: list of student ids

}

Response:

{
 pages: [

 {
 maxScore: maximum score achievable from tasks in the
 page,
 numTasks: number of tasks in the page

 },...
]

students: [
[
 {

 score: sum of scores the student achieved from the
 tasks in the page,

 progress: average of progress the student achieved
 from the tasks in the page,
 time: sum of the number of seconds spent in the
 latest attempt in the tasks in the page,

totalTime: sum of the number of seconds spent in all
 attempts in the tasks in the page,

attemptsTotal: total number of attempts in the tasks
 in the page,

attemptsAvg: average number of attempts in the tasks
 in the page,

lastUpdated: time of latest update in any of the task
 in the page,

tasksStarted: number of tasks started in the page,
progressOfStarted: average progress of started tasks

 in the page,
scoreOfStarted: sum of scores of started tasks in the

 page,
maxScoreOfStarted: sum of maximum scores of started

 tasks in the page,
tasksCompleted: number of tasks completed in the
 page,
progressOfCompleted: average progress of completed

 tasks in the page,

63

scoreOfCompleted: sum of scores of completed tasks in
 the page,
maxScoreOfCompleted: sum of maximum scores of com
 pleted tasks in the page

},...
],...
]

}

64

APPENDIX-C: SAMPLE TEST CASE FROM THE

INTEGRATION TESTS

JSON Format of a test case from the integration tests:

{
"name": "Multiple tasks in single page with multiple answers by single

 user",
 "events": [
 {
 "type": "material",
 "data": {
 "seqId": "1",
 "material": "${material}",
 "title": "Example material",
 "modified": 200,
 "rootPage": "${page}",
 "time": 100
 }
 },
 {
 "type": "page",
 "data": {
 "seqId": "1",
 "material": "${material}",
 "page": "${page}",
 "title": "Example page",
 "time": 101,
 "modified": 200,
 "parent": null,
 "children": [],
 "breadcrump": [
 "${page}"
],
 "tasks": [
 "${task}",
 "${task2}"
]
 }
 },
 {
 "type": "task",
 "data": {
 "seqId": "1",
 "task": "${task}",
 "title": "Example task",
 "maxScore": 3,
 "time": 101,
 "tags": []
 }
 },
 {
 "type": "task",
 "data": {

65

 "seqId": "1",
 "task": "${task2}",
 "title": "Example task 2",
 "maxScore": 3,
 "time": 101,
 "tags": []
 }
 },
 {
 "type": "answer",
 "data": {
 "task": "${task}",
 "user": "${user}",
 "score": 3,
 "progress": 100,
 "attempts": 1,
 "time": 1546300800000,
 "seconds": 40,
 "secondsTotal": 450
 }
 },
 {
 "type": "answer",
 "data": {
 "task": "${task2}",
 "user": "${user}",
 "score": 3,
 "progress": 100,
 "attempts": 1,
 "time": 1546300800000,
 "seconds": 30,
 "secondsTotal": 430
 }
 }
],
 "request": {
 "pages": ["${page}"],
 "students": ["${user}"]
 },
 "response": {
 "pages": [
 {
 "maxScore": 6,
 "numTasks": 2
 }
],
 "students": [
 [
 {
 "score": 6,
 "progress": 100.0,
 "time": 70,
 "totalTime": 880,
 "attemptsTotal": 2,
 "attemptsAvg": 1,
 "lastUpdated": "2019-01-
 01T00:00:00.000Z",
 "tasksStarted": 2,
 "progressOfStarted": 100.0,

66

 "scoreOfStarted": 6,
 "maxScoreOfStarted": 6,
 "tasksCompleted": 2,
 "progressOfCompleted": 100.0,
 "scoreOfCompleted": 6,
 "maxScoreOfCompleted": 6
 }
]
]
 }
}

