

i

Maria Matache

STANDARDIZING LIGHTWEIGHT
CRYPTOGRAPHY

Faculty of Information Technology and Communication Sciences
Bachelor of Science Thesis

April 2020

ii

ABSTRACT

Maria Matache: Standardizing Lightweight Cryptography
Bachelor of Science Thesis
Tampere University
International Degree Programme in Science and Engineering, BSc (Tech)
Major: Information and Communications Technology
Examiner: Dr. Billy Brumley
April 2020

In this thesis work, we present an overview of the NIST call for lightweight algorithms
and the current trend in cryptography. Moreover, we illustrate a C implementation of
one of the submitted candidates, Gimli-24-Cipher. The algorithm has been computed
in accordance with the provided pseudocode in the Gimli 20190927 [13] official NIST
submission documentation. We outline the algorithm and demonstrate its flexibility and
versatility in the scenario of the C programming language. We analyze its
particularities and we study its hierarchical structure based on a mode of operation
built upon an underlying primitive. We conclude that Gimli-24-cipher is a robust,
universal and strong lightweight algorithm. We therefore motivate the usage of the
algorithm in the context of the future TIE-31106 Cryptography Engineering course
curriculum at Tampere University.

Keywords: thesis, lightweight cryptography, computer science

The originality of this thesis has been checked using the Turnitin Originality Check
services.

iii

Table of Contents

List of Abbreviations .. iv

Section 1: Introduction ... 1

1.1 INTRODUCING LIGHTWEIGHT CRYPTOGRAPHY .. 1
1.2 NIST COMPETITION ... 2

Section 2: Theoretical Background .. 3

2.1 BASIC CONCEPTS.. .3
2.2 UNDERLYING CRYPTOGRAPHIC PRIMITIVE ... 4
 2.2.1 SYMMETRIC-KEY CRYPTOGRAPHY ... 4

 2.2.3 PERMUTATIONS AND SP NETWORKS.. 5
 2.3 HASH FUNCTIONS .. 5
 2.4 AUTHENTICATED ENCRYPTION ... 6
 2.5 MODES OF OPERATION... 7

2.5.1 SPONGE PERMUTATIONS – THE DUPLEX CONSTRUCTION 7

Section 3: NIST Overview ... 9

Section 4: Implementation of Gimli-24-cipher in C ... 10

4.1 OVERVIEW OF GIMLI-24-CIPHER .. 10
4.1.1 GIMLI PERMUTATION .. .10

 4.1.2 GIMLI DUPLEX CONSTRUCT AND AEAD MODE OF OPERATION12
4.1.3 GIMLI C IMPLEMENTATION STEP BY STEP14

4.1.3.1 GIMLI-24 PERMUTATION 14
4.1.3.2 THE NON-LINEAR LAYER .. .14
4.1.3.3 THE LINEAR LAYER .. .14
4.1.3.4 THE ADD CONSTANT LAYER.. .15
4.1.3.5 THE TYPE CONVERSION IN C 16
4.1.3.6 THE AEAD AND DUPLEX CONSTRUCT IN C 16

4.2 TEST VECTORS AND RESULTS .. .19
 4.3 GIMLI’S PARTICULARITIES .. .20

4.3.1 VECTORIZATION AND PARALLELIZATION20
4.3.2 DUPLEX CONSTRUCT20
4.3.3 UNIVERSALITY OF GIMLI-24-CIPHER .. .20

Section 5: Conclusions... 21

REFERENCES .. 22

iv

List of Abbreviations

NIST National Institute of Standards and

Technology, U.S. Department of
Commerce

AES Advanced encryption standard
DES Data encryption standard
AEAD Authenticated Encryption with

Associated Data
SP Networks Substitution Permutation

Networks
AD Associated Data
uint32 unsigned integer with 32 bits
uint8 unsigned integer with 8 bits

1

Section 1: Introduction

1.1 Introducing Lightweight Cryptography

Cryptography is the art and science of secret communication. Being one of the oldest
scientific disciplines, it was presumably introduced in the ancient Egypt more than
4000 years ago with the purpose of providing secrecy of private information. All along
history, ciphers enabled protection of undisclosed data and modern cryptography
developed out of the necessity of digital confidentiality.

Today we are witnessing a rapid development of new technologies prone to cyber-
attacks. The past decade offered many new communication devices that have unique
requirements and limitations when it comes to securing private data stored on them.

Modern computing environments such as IoT, sensor networks or new medical
devices have something in common. Due to their special hardware design these
technologies only use a small part of their processing power for security purposes.
The current standard cryptographic encryptions such as AES or DES are unable to
provide protection for these constrained platforms.

Innovative cryptographic methods are intensively researched in order to overcome
these newly emerged limitations. A recent branch of cryptography, called “Lightweight
Cryptography (LWC)”, arose out of the need of algorithms, designed for latest
technological developments, that consume little power of the device they secure.

However, these algorithms differ in many ways and as opposed to their classical
counterparts, no standard has yet been chosen. Further in this thesis I will investigate
the latest trends of lightweight cryptography and I will discuss in detail an encryption
technique that has been proposed as a suitable standard lightweight algorithm.

Moreover, as part of the “Cryptography Engineering” course at Tampere University,
students have to implement two assignments in the C language. These are structured
such that there is a low-level primitive and a mode of operation on top of it. The
purpose of my study is to search for such a suitable project assignment for the next
year’s cryptography course, that is in line with this requirement and is up to date to
modern security trends, thus spiking students’ interest in this fascinating relatively
young discipline.

2

1.2 NIST competition

In order to standardize lightweight cryptography, the U.S. National Institute of
Standards and Technology (NIST) has launched on August 27, 2018 a competition for
everyone to propose suitable lightweight algorithms. They listed a document,
Submission Requirements and Evaluation Criteria for the Lightweight Cryptography
Standardization Process [12], regarding the requirements and the criteria for
assessing the submissions. The competition is currently in the second selection phase
and 32 out of the initially 57 candidates were considered for further participation in the
next round. In this paper I will present, analyze and implement one of them in detail.
The candidate I chose for deeper examination is Gimli-24-cipher, an AEAD built on
top of a permutation of 24 iterations.

Gimli is an authenticated encryption family based on a 384-bits permutation, which
was designed to fit a wide range of computing environments, including classical CPUs
as well as smaller constrained devices. Being accessible, high performant and
universal, Gimli would be a suitable choice as a project assignment of the future
cryptography course. Later in this paper I will go through the design characteristics of
this encryption and I will present its implementation in the programming language C.

In this thesis I am investigating the properties of lightweight cryptography, specifically
the peculiarity of Gimli. In particular, this thesis intends to demonstrate Gimli’s
functionality, as well as the potential it has as a standard lightweight authenticated
encryption scheme. Second section outlines the essential theory behind cryptography
basics, authenticated encryption, as well as the sponge and duplex constructs and
other cryptographic concepts. Third section does an overview of the NIST competition
and the fourth chapter goes into the details of Gimli’s family of algorithms and its
features, as well as the description of the C implementation and its results. The thesis
is then concluded in Section 5.

3

Section 2: Theoretical Background

Let us begin by discussing the theory behind the cryptographic basics of the concepts
presented in the next chapters.

For the past decades through the incredibly fast developing technology and
telecommunications industry we were given instant access to large amounts of
information. As a consequence of this, the process of copying and altering data
became inevitably easy. Cryptography is the collection of techniques crucial in the
digital world to ensure originality, security and integrity of information. That is why this
discipline has eventually four main goals: confidentiality, data integrity, authentication
and non-repudiation.

Confidentiality refers to secrecy of information against all who are not authorized to
possess it. This is achieved through mathematical models which mask the content.
Data integrity means guaranteeing that a piece of information was not altered and that
it preserved its original form. Authentication enables a sender and a receiver to
validate the identity of one another. Lastly, non-repudiation prevents one from
erroneously negating involvement in an illicit digital action one partook in.

These basic principles combined are the ultimate goal of cryptography and all theory
of this discipline was developed to address these criteria. All NIST candidates that
participated in the call for lightweight algorithms are ciphers that try to meet these
targets. I will further describe the theoretical background to get a better understanding
of the later portrayed encryption algorithm. This thesis describes a lightweight primitive
that provides security and prevents malicious digital activity in resource constrained
devices, for which well-established classical cryptographic standards are not suitable.

2.1 Basic concepts

Encryption functions are a method of converting a plaintext 𝑃, usually consisting of
binary strings into an apparently random ciphertext 𝐶, that loses connection to the
initial plaintext message. This encryption function 𝐸 is a bijection and thus has an
inverse, the decryption process 𝐷, that reverts a ciphertext back into its original

message format. The elements of the key set 𝐾 are the parameters of the encryption
transformations which determine the output ciphertext.

The purpose of having key elements and not just simple algorithmic encodings, is that
the encryption and decryption elements should be public information. This way it is not
needed to rewrite the whole functions every time a new ciphertext is desired. Instead,
there is a so-called flowing key schedule that changes with every new bit of information
and thus produces distinctive ciphertexts while keeping the same algorithmic
approach. Generally, all security protocols can be divided into unkeyed encryptions,
symmetric key encryptions and public key encryptions. This division is based on the
nature of the used key to encrypt, since it can be non-existent, public or private.

4

The goal of encrypting messages is to give a sender the opportunity to transmit secret
information to someone else that is authorized to possess that knowledge. The sender
and receiver usually share a secret or a public key used for encryption and decryption
purposes. Moreover, the sender and the receiver want to protect the integrity of the
message, which means they want to secure the data and not let it be altered by
external malicious activity. For this reason, there are authentication methods to
prevent prohibited interventions and criminal digital attacks. AEAD signalizes
erroneous message transmission and rejects the ciphertext before it is decrypted.

The NIST lightweight algorithmic candidates are built upon either symmetric key or
unkeyed encryptions that use authenticated methods to safeguard the validity of the
enciphered message, as well as the origin of the sender, determined by a given tag
input parameter to the decryption function.

Figure 2.1: Security primitives diagram

All candidates of the NIST competition are based on an underlying security primitive
and a mode of operation on top of it. Further concepts and notions used in the later
discussed cipher are outlined in the following subsections.

2.2 Underlying cryptographic primitive

There exist several low-level function types that undertake the role of the foundation
of a more complex cryptographic scheme. The purpose of this thesis is to find a
suitable project assignment that is structured as follows: a low-level building block that
is part of a larger mode of operation. From this point of view, all NIST candidates have
this design rationale. One requirement of the NIST competition is that the mode of
operation used should be an authenticated encryption scheme. Let us discuss the
further notions that lay at the core of the lightweight cryptography AEAD schemes.
There are several types of low-level primitives used by the candidates and this thesis
focuses on permutations.

2.2.1 Symmetric-key cryptography

Symmetric-key encryption is a cryptographic primitive that has the property of having
a secret key as tool to both encrypt and decrypt a message. Mathematically we can

5

describe 𝑒, 𝑑 𝜖 𝐾 as two keys that are usually equal for both 𝐸 as well as 𝐷 functions,
thus they are called “symmetric”. The encryption algorithm itself can be public and as
long as the key is kept secret, the encrypted message should not be susceptible to
any type of external attack. The sender needs to privately share the secret key with
the receiver, in order for the latter to decrypt the sent message without the risk of a
third party intercepting their communication.

2.2.2 Permutations and SP networks

Permutations are mathematical bijective functions commonly used in cryptography.
They are usually mappings from a domain to a codomain set and in this case the
codomain is the set itself. Permutations are so to say arrangements of order in linear
manner within a given data set. Defined as:

𝑝: 𝑆 → 𝑆, (2.3) [3]

permutations are the core of most cryptographic constructs.

A substitution-permutation network, short SPN, is a sequence of mathematical
procedures, in which a block of binary data is taken, and several substitutions and
permutations are performed on it for many rounds and through several layers, with the
scope of achieving diffusion and confusion. Moreover, SP-boxes (substitution
permutation boxes) are part of many primitive ciphers, since they tend to achieve a
high level of security by performing operations in many iterations.

The S-boxes and P-boxes work in a bitwise manner and are designed such that the
operations they use, offer an efficient method to perform fast calculations at hardware
level. Such common bitwise operations are also found in the SP-box of Gimli. These
are XOR, AND and shifting. SP-boxes are hence particularly useful in lightweight
cryptography, since they use little power consumption and are computationally very
efficient.

2.3 Hash functions

Hash functions are cryptographic primitives of significant importance related to data
origin authentication and identification. Hash functions map binary variables of
arbitrary length to strings of fixed length called hash values. These functions are
frequently called one-way functions, since it is almost impossible to find their inverse
in a short amount of time.

One of the most common applications of hash functions is the data authentication of
the received ciphertext. The way it works is very straightforward. The sender encrypts
a message with a construct that uses a hash function. The obtained output signed tag
is then sent along the ciphertext to the receiver. The receiver has access to the secret
valid tag which is then compared to the obtained hash value from executing the
decryption. If they coincide then the message is identified and validated, otherwise it
means it was altered and it will be disregarded.

6

2.4 Authenticated Encryption

Authenticated Encryption is a cryptographic technique that guarantees confidentiality
and authenticity of the encoded data. Moreover, authenticated encryption with
associated data (AEAD), is a variation of AE that enables the receiver to check the
integrity in both plaintexts as well as ciphertexts. AEAD uses associated data as
parameter inside the function and thus blends the AD into the ciphertext. The achieved
result is that the apparently correct but invalid ciphertexts can be detected by the
AEAD decryption function and rejected. If an attacker tries to break the cipher by
sending apparently accurate ciphertexts but does not know the tag that resulted from
processing the data associated with it, the AEAD scheme will ignore it and reject it.

In order for AEAD to ensure confidentiality and integrity, the encryption scheme it uses
has four input parameters: a secret key, a nonce, the associated data and the plaintext
message. It can be mathematically described as:

𝐸(𝐾, 𝑁, 𝐴𝐷, 𝑃,) → 𝐶, 𝑇, (2.4)

where the four inputs are the key 𝐾, the nonce 𝑁, the associated data 𝐴𝐷 and the
plaintext 𝐷. As output the function returns the ciphertext 𝐶 and the authentication tag

𝑇, that is used in the decryption process to verify integrity of the ciphertext. Since we
are talking about bijective functions, the decryption is the inverse mapping of the
encryption and can be mathematically modelled as:

𝐷(𝐶, 𝑇) → 𝑃 𝑜𝑟 𝑒𝑟𝑟𝑜𝑟, (2.5)

In the decryption process there is one output, the plaintext 𝑃 or an error if the
verification of the tag did not succeed.

Figure 2.2: A diagram of the encryption and decryption process of AEAD

7

2.5 Modes of operation

A mode of operation is the higher-level algorithm that lies above a lower-level
cryptographic primitive.

There are many different modes of operation that can be combined with all types of
cryptographic primitives. In this thesis we focus on permutations as underlying
operation. One interesting and important mode of operation for this primitive is the
duplex construct of sponge functions.

2.5.1 Sponge functions – the duplex construction

A sponge function is a family of cryptographic techniques that takes an input of
arbitrary n-bit length and returns an output variable of another arbitrary length. This
type of construction usually has some kind of primitive underneath, in our case a
permutation algorithm, that operates on a fixed number of bits of the initial input
parameter. A sponge function works on a state of 𝑏 = 𝑟 + 𝑐 [15] bits, where 𝑟 is the
size of each block in which the plaintext is split and on which the permutation operates.
The 𝑐 bits are not impacted by the block operations and they only show the level of
security that is achievable by the sponge construction. The idea is to divide the
message to be encrypted (or the associated data) into r-bits blocks and then continue
to the next two phases:

1. The “absorption” step takes each block of size 𝑟 and adds them to the first r-

bits of the state and then performs a lower level primitive on the whole state,
for example a permutation.

2. The “squeezing” part happens after all blocks have been processed and it
returns an arbitrary number of output blocks of r-bits size.

Figure 2.3: The sponge construction [6]

The duplex construction is a variation of the sponge functionality. It also can use a
permutation as underlying primitive, but unlike the sponge construct it also does extra

8

steps between its calls. Using the previous mentioned definitions, the duplex construct
works as follows:

1. The first step, same as the absorption, takes each block of size 𝑟 (depicted in

the figure below as σ) and adds them to the first r-bits of the state and then
performs a lower level primitive on the whole state, for example a
permutation.

2. Next it takes the first r-bits of the state and outputs them as a block 𝑍 that is

dependent on all the previous returned outputs.

Figure 2.4: The duplex construction [6]

The duplexing construct is an intermediary mode of use that has an underlying
primitive and a higher-level mode of operation, such as authenticated encryption with
associated data. The way the parameter inputs, the r-bits blocks, and the outputs, the
𝑍 blocks, of the duplexing function correlate to the AEAD inputs (key, nonce, AD and

message) and the AEAD returned values (ciphertext, tag) is determined by the AEAD
scheme used on top of the duplexing construct.

9

Section 3: NIST overview

NIST published a document [12] with the requirements for the participation in the
competition for a lightweight cryptographic standard. In order for a candidate to qualify
for submission, the algorithm must be a family of authenticated encryption schemes.
Hash functions may be submitted as well. The AEAD schemes must follow certain
rules in order to be considered valid for the competition:

• The key must be fixed sixed and of minimum 128 bits long

• The nonce must be fixed sixed and of minimum 96 bits long

• The plaintext, AD and the ciphertext have variable sizes

• The tag must be of minimum 64 bits long

Regarding the security of the authenticated encryption schemes submitted, the
algorithms must provide secrecy, reliability and integrity of the plaintext and the
ciphertext.

Three main types of primitives have been chosen by the second round NIST
candidates in their submissions and these are permutations, stream ciphers and block
ciphers. Around half of all the candidates used permutation schemes as underlying
primitive. ACE, Ascon, DryGASCON, Gimli-24-Cipher, ISAP, KNOT, ORANGE,
Oribatida, PHOTON-Beetle, SPRAKLE, Xoodyak, SPIX, SpoC, Subterranean 2.0 and
WAGE are all constructed on top of a permutation function.

The next preferred primitive was the block cipher. SUNDAE-GIFT and GIFT-COFB
both are based on one of the most performant lightweight cryptographic protocols, the
block cipher GIFT-128. The least popular choice was the tweakable block cipher as in
ForkAE, SKINNY-AEAD and Lotus-AEAD.

All in all, permutations are dominant in the choice of the candidates. Furthermore,
Gimli-24-Cipher promises to be a standard for all sorts of devices. This makes it an
attractive option for situations when complex communication systems with elements
of different power consumption need to be safeguarded from digital attackers. I chose
to implement and discuss Gimli-24-cipher using the programming language C. The
following section focuses on Gimli’s algorithm family.

10

Section 4: Implementation of Gimli-24-cipher in
C

4.1 Overview of Gimli-24-Cipher

Gimli-24-cipher is an AEAD scheme based on a 384-bits permutation that aims at
becoming a standard suitable for many types of computing platforms, that include both
resource-constrained devices as well as powerful computers. The purpose is to have
one algorithm that works well in the context of several environments and
interconnected computational systems.

Gimli NIST candidate is a family of authenticated encryptions that consists of a cipher
with 256-bits key, 128-bits nonce and 128-bits tag. The Gimli family also includes a
hash function that is the foundation behind the AEAD cipher. These two are
constructed upon an underlying 384-bits permutation. Further we will analyze the
design rationale of the algorithm and then we will go deeper into the particularities of
the code in the C language.

4.1.1 Gimli permutation

The underlying primitive of the Gimli-24-cipher is a sequence of 24 rounds of
permutations, substitutions and bitwise operations. The permutation algorithm can be
divided into three main layers, the non-linear, the linear and the constant addition.

First of all, we can visualize the 384-bits state as an array of type uint32 with 12 words.
The state can be seen as both a 3×4 2D uint32 array as well as a 1D uint32 array with
12 sequential elements. In the official description of the Gimli permutation there is a
representation of the state as a double array of size 3×4, with 3 rows and 4 columns.

The given representation follows by denoting the first row with words of type 𝑥𝑖 with
𝑖 → 0,1,2,3, the second row with 𝑦𝑖 with 𝑖 → 0,1,2,3, and the third row with 𝑧𝑖 with 𝑖 →
0,1,2,3. In total we have 12 words of each 4 bytes and if we think about how the 384-
bits state is divided, we can say that each of the three rows is a sequence of four 4-
byte words.

The permutation’s non-linear layer, the SP-box, is applied to 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 respectively,
which in terms of a 2D array means that the permutations are performed column-wise.
This creates a natural vectorization of the bitwise operations.

In the following figure there is a representation of how I stored the state in the form of
an array of type unsigned integer of 32 bits, since the 12 words each have 4 bytes.
The reason why I firstly stored the four 𝑥′𝑠 and then four 𝑦′𝑠 and then the last four 𝑧′𝑠
is because of how the authenticated cipher initializes the state. The first row of the
state as a double array is represented by four words of type 𝑥 and is initialized with

the 16 bytes of the nonce 𝑁. The second row of the state is illustrated by four words
of type 𝑦 and it takes the value of the first 16 bytes of the key 𝐾. Lastly, the third row
of the double array is represented by words of type 𝑧 and is initialized with the next 16

remaining bytes of the key 𝐾.

11

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒚𝟎 𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑

Table 4.1: A visualization of the 1D uint32 state[12] storing elements as 4-bytes words
sequentially.

As we can notice in the table below each row represents a sequence of four 4-bytes
words. The 1D array of 12 words is thus the concatenation of the three rows of the
below illustrated 2D array, one after the other.

𝒙𝟎..𝟑 𝑠0,0 = 𝑁0 … 𝑁3 𝑠0,1 = 𝑁4 … 𝑁7 𝑠0,2 = 𝑁8 … 𝑁11 𝑠0,3 = 𝑁12 … 𝑁15

𝒚𝟎..𝟑 𝑠1,0 = 𝐾0 … 𝐾3 𝑠1,,1 = 𝐾4 … 𝐾7 𝑠1,2 = 𝐾8 … 𝐾11 𝑠1,3 = 𝐾12 … 𝐾15

𝒛𝟎..𝟑
𝑠2,0 = 𝐾16 … 𝐾19 𝑠2,1 = 𝐾20 … 𝐾23 𝑠2,2 = 𝐾24 … 𝐾27 𝑠2,3 = 𝐾28 … 𝐾31

Table 4.2: A visualization of the 2D uint32 array s[12] that stores twelve 4-bytes words
into 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 with 𝑖 → 0,1,2,3. The state is initialized with the first 16 bytes of the nonce
N and with the following 32 bytes of the key K.

The Gimli permutation takes as parameter a strict 48-byte input and executes the non-
linear layer, the SP-box, sequentially column by column. Each column represents a
triple of 4-byte words 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 with 𝑖 → 0,1,2,3. The SP-box transforms them and then
Gimli moves on to the next phase, the linear level, where the first row of words is
permuted depending on the round number.

The Gimli permutation processes at linear level four words at a time, by interchanging
their position. The first four 4-bytes words of the state are transformed by two
functions, the Small Swap and the Big Swap. The linear layer permutes these words
as shown below:

𝑠0,0 𝑠0,1 𝑠0,2 𝑠0,3

Table 4.3: The linear layer of Small Swap and Big Swap

With each of the 24 Gimli rounds, the algorithm interchanges the order of the first four
words depending on the round number respectively. Small Swap happens every four
rounds starting from the first one and big swap occurs every four rounds starting from
the third iteration.

Big Swap Small Swap

12

4.1.2 Gimli duplex construct and AEAD mode of operation

Gimli-24-cipher is a lightweight algorithm that is hierarchically structured. The lowest
level is an underlying permutation, followed by a duplex construct and lastly wrapped
under an AEAD scheme.

The duplexing in Gimli’s case happens as follows: The 384-bits/48-bytes state is
initialized according to Table 4.2. Next, the AEAD divides the associated data into
blocks of 128 bits or 16 bytes. Following the duplexing construction concept, the next
phase is the absorption of the 128-bits block into the first 128-bits/16-bytes of the state.
Afterwards, the Gimli permutation is called on the whole state. The output block is then
fed to the next duplexing call until all 128-bits blocks have been absorbed. The AEAD
continues by processing the last AD block of n-bits, 𝑛 ≤ 16 by XORing some values in
the new state and calling the permutation one more time.

The subsequent step is the handling of the message plaintext. This is done in a similar
fashion to the procedure done to the AD. Lastly, the squeezing phase of the duplex
construct occurs, and the last duplexing function returns the last 16-byte output block
that is copied as the first 16 bytes of the ciphertext. This stands as the authenticating
tag used by the decryption function to validate integrity of the ciphertext.

The AEAD encryption scheme executes its procedures on 1-byte words, byte by byte,
arranged in blocks of 16 bytes. The absorption function is XORing the first 16 bytes of
the state with 16-bytes blocks of the AD and of the message. The Gimli permutation,
however, computes on 4-byte words. Because of this, I defined Gimli in C to have as
input an array of uint32 type with 12 words, but the AEAD construct to work on an
array of uint8 type with 48 words. In order to call the permutation on the uint8 type
array we need some functionality to do a type conversion between the two array types.

Based on the aforementioned things, the AEAD happens as follows: We take the first
16-bytes stored in the uint8 state, we XOR each element byte-by-byte with the block
of 16-bytes of the message/AD and then we use a function that transfers the uint8
state into an uint32 state. In other words, to do the Gimli permutation on the uint8 state
we are concatenating its 1-byte elements into 4-byte words. Afterwards we revert the
output of the permutation back to the uint8 type by splitting all 4-bytes words into 1-
byte elements and we feed the new uint8 array to the next duplexing call.

Figure 4.1: This figure illustrates the concept behind the absorption function of the first
four 4-byte words of the state array uint32 s[12].

13

Figure 4.2: This figure illustrates the concept behind the conversion of the uint32 s[12]
into an array of type uint8 state[48].

Figure 4.3: Pseudocode of the Gimli AEAD [10].

14

4.1.3 Gimli C implementation step by step

4.1.3.1 Gimli-24 permutation

Let us begin by looking under the hood of the Gimli permutation algorithm in C. First
of all, as mentioned before, Gimli takes as input a 32-bits unsigned integer type array,
with 12 words stored sequentially as presented in Table 4.1. The NIST submission of
Gimli uses a permutation primitive with 24 rounds. According to the presented
pseudocode, we start iterating at 𝑖 = 24, since the number of the round is relevant for

the operations performed in that round.

4.1.3.2 The non-linear layer

The first thing done by Gimli is extracting the 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 for each column from 0 to 3.
Each 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 pack of the 1D array goes through an SP-box. 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 with column

numbers 𝑖 → 0,1,2,3 are stored in my code in the uint32 word_array32 [12] at positions

𝑖, 𝑖 + 4, 𝑖 + 8 such as highlighted in the table below.

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒚𝟎 𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒛𝟎 𝒛𝟏 𝒛𝟐 𝒛𝟑

Table 4.4: 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 extracted by the SP-box

𝑥 and 𝑦 are given the values of the first two words of the respective column index of
the uint32 word_array32 [12], and are afterwards rotated by 24 and 9 bits respectively.
The last word of the processed column, 𝑧, is initialized as simply the last word of the
state’s column. I wrote an uint32 leftRotate() function that takes as parameters a 4-
byte word and an integer number that represents the number of bits by which the word
should to be rotated. This function returns the new shifted value. It follows the common
approach of cyclic rotations, (word << n)|(word >> (32 - n)), where word is a 4-byte word
from the state array and n is the number of bits by which the word is rotated.

Next, after the initial setting, the SP-box moves to the following step that does bitwise
operations of XOR, shifting, AND and swapping between 𝑥, 𝑦, 𝑧 and then updates the
values of the words in the state array accordingly to the given pseudocode presented
in Gimli 20190927 [13].

4.1.3.3 The linear layer

The linear part of the Gimli permutation consists of two operations, the small and the
big swap. The small swap happens every four rounds starting from the first round. If
𝑟𝑜𝑢𝑛𝑑 𝑚𝑜𝑑 4 is 0, the small swap occurs. The big swap occurs every four rounds but

starting from round number 3, thus 𝑟𝑜𝑢𝑛𝑑 𝑚𝑜𝑑 4 must be 2. The first operation swaps
the first and the second word and then the third and the fourth. The latter operation
swaps the first and the third and then the second and the fourth.

15

4.1.3.4 The add constant layer

If the round is a multiple of 4 then we XOR the constant 0x9e377900 with round
number and the first word of the state. In the following listing I present the C code
version of the above explained algorithm.

16

 4.1.3.5 The type conversion in C

As defined before, the Gimli-24-cipher is an authenticated encryption that is built upon
a duplex mode of operation. The AEAD scheme initializes an array of 48 bytes, uint8
word_array, and each of its 4 bytes sequentially represents a 32-bits word of the uint32
word_array32. Thus, before being able to apply the Gimli-24 permutation, we need to
have the initial state converted into an uint32 type array. This in fact means that we
want to concatenate each byte of the uint8 word_array into 4-byte words. In the
specification of Gimli-24-cipher it is mentioned that we encode the words in little endian
form. To encode the array in little endian format we use left shifting and OR for
concatenation as presented in the code below:

The same thing needs to be done in reverse mode, e.g. we need to split the 4-byte
elements of the uint32 array into four 1-byte words. Using the same logic as before,
the code below splits the words:

4.1.3.6 The AEAD and duplex construct in C

Finally, let us examine the authenticated encryption with associated data of the Gimli
cipher. The AEAD scheme is the mode of operation that has an underlying permutation
primitive.

When initializing the uint8 state array in the beginning of the authenticated encryption
we do it so accordingly to Table 4.2. We can make use of the C language function
memcpy(), that takes a destination pointer, a source pointer and the number of bytes

17

to be copied inside the destination variable. In this case we want as mentioned before,
the first 16 bytes of the nonce and the next 32 of the key.

The next step in this lightweight algorithm, is the processing of associated data.
According to the notions presented in the theoretical background section, the AD is a
necessary part in authenticating the integrity of both the plaintext as well as the
ciphertext. The absorption of the duplexing construct happens as follows: The AD is
XORed into the first four words of the state in blocks of 16 bytes and then Gimli
permutation is called, with the help of the type conversion functions. Since the
associate data is handled in divisions of each 16 bytes, the last remaining n-bit block
will be equal or smaller to 16, 𝑛 ≤ 16. This last block is XORed into the first n bytes of

the word array. Last two operations represent the XORing of 1 at index of the length
of the AD and at position 47. Following that, Gimli is called one more time.

After the processing of the associated data, the Gimli AEAD scheme moves on to the
processing of the message plaintext and the construction of the ciphertext. The
message encryption procedure is similar to the previously explained AD code. The
technique includes now the creation of the ciphertext by XORing the state words with
the message 16-bytes block and calling the Gimli permutation after each block was
XORed. The last block is managed similarly to the last AD block.

18

Lastly, the ciphertext takes the first 16-bytes of the resulted word array. This
represents the squeezing phase of the duplex construct. It is also the returned tag that
will be checked by the decryption algorithm to prove the validity of a ciphertext and
identify the sender. In the formation of the ciphertext, implicitly the tag, all four
parameters, the AD, the message, the key, the nonce play a crucial role. This makes
the ciphertext secured and both confidentiality as well as data integrity are preserved.

19

4.2 Test vectors and results

In this section we can see some test vectors of the Gimli-24-cipher algorithm in
different cases and their produced ciphertexts.

Figure 4.2.1: Encrypted ciphertext CT after applying Gimli-24-cipher with given key,
nonce but no plaintext nor AD

Figure 4.2.2: Encrypted ciphertext CT after applying Gimli-24-cipher with given key,
nonce, AD but no plaintext

Figure 4.2.3: Encrypted ciphertext CT after applying Gimli-24-cipher with given key,
nonce, plaintext but no AD

Figure 4.2.3: Encrypted ciphertext CT after applying Gimli-24-cipher with given key,
nonce, plaintext and AD

20

4.3 Gimli’s particularities

4.3.1 Vectorization and parallelization

We can say that an algorithm is parallelizable if it is possible to execute multiple
computations simultaneously. Gimli’s duplexed AEAD requires the output of previous
iterations, which makes the mode of operation unparallelizable. However, the Gimli
primitive permutation performs the operations of the non-linear layer, the SP-box, in
parallel, since the nonlinear functions never require the result of the previous
computations. This makes Gimli’s permutation performant and creates fast diffusion.

Vectorization makes the hardware implementation more efficient and is extremely
useful in resource-constrained environments. Since Gimli’s SP-box works in a column-
wise direction, the permutation itself vectorizes the operations.

4.3.2 Duplex construct

One characteristic of Gimli-24-cipher is that it is built upon an unkeyed primitive, a
permutation, and on top of that there is a mode of operation, hierarchically structured.
This AEAD scheme takes advantage of the duplex construct by using operations that
work as the sponge functionalities of absorption and squeezing. This approach is very
beneficial in securing the underlying permutation. The purpose of duplexing is in fact
a higher level of security of the encrypted data. Since the permutation is an unkeyed
encryption in order for it to be safe to be used as underlying function for the
authenticated encryption, the duplex construct is used. This makes Gimli-24-cipher a
performant lightweight permutation-based algorithm that provides high security of the
encrypted data.

4.3.3 Universality of Gimli-24-cipher

What makes Gimli special, is its compactness and high security in lightweight
platforms. However, Gimli was designed to be a good fit for many types of hardware.
The idea was to create one universal, standard encryption that can be used by
lightweight, powerful and hybrid computational systems. This bridges the gap between
classical standards and lightweight algorithms, since only this single cipher can be
used in complex systems and their communication channels.

21

5. Conclusions

The field of lightweight cryptography is rich with theories worthy of scientific
investigation. The digital world we live in right now is more than ever prone to
cyberattacks. Technology is developing at a very high pace and information security
is the only source of protection of data stored in modern tech environments. Classical
standard ciphers are not appropriate for many devices that have limited power
consumption and other resource limitations. NIST launched a call for algorithms
competition with the hope to establish one standard algorithm for lightweight platforms.

In this thesis, we have scratched the surface of this new emerging discipline. Utilizing
the basic principles of cryptography we have analyzed and implemented the NIST
candidate Gimli-24-cipher, a versatile computational lightweight framework suitable for
encrypting data in a wide range of computational systems including resource-
constrained devices.

In order to demonstrate the functionality incorporated in Gimli, we have analyzed its
algorithmic particularities and we have implemented the C version of the underlying
primitive, Gimli permutation, and of the mode of operation, an AEAD scheme built
upon a duplex construct.

The main purpose of the thesis was to show the potential of the Gimli-24-cipher as an
appropriate project assignment for the Cryptography Engineering course at Tampere
University. Gimli is a lightweight modern cryptographic algorithm that is designed to
follow the structure of a high-level mode of operation built upon an underlying low-
level primitive. The compactness, the symmetry and its universality make Gimli a
strong candidate among lightweight encryptions. This makes it suitable to be utilized
as part of the course future arrangements.

22

REFERENCES

[1] H. Delfs and H. Knebl, “Symmetric-key cryptography,” in Information Security and
Cryptography, 2015.

2] J. Ikbal, “An introduction to cryptography,” in Information Security Management
Handbook, Sixth Edition, 2007.

3] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied
cryptography. 1996.

[4] J. Katz and Y. Lindell, Introduction to Modern Cryptography. 2014.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “On the security of the
keyed sponge construction,” SKEW, 2011.

[6] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Duplexing the sponge:
Single-pass authenticated encryption and other applications,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2012, doi: 10.1007/978-3-642-28496-0_19.

[7] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2000, doi: 10.1007/3-540-44448-3_41.

[8] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Sponge Functions,”
ECRYPT hash Work., 2007.

[9] J. Balasch et al., “Compact implementation and performance evaluation of hash
functions in attiny devices,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, doi:
10.1007/978-3-642-37288-9_11.

[10] D. J. Bernstein et al., “GIMLI: A cross-platform permutation,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2017, doi: 10.1007/978-3-319-66787-4_15.

[11] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varici, and I. Verbauwhede,
“SPONGENT: The design space of lightweight cryptographic hashing,” IEEE Trans.
Comput., 2013, doi: 10.1109/TC.2012.196.

[12] National Institute of Standards and Technology. "Submission requirements and
eval- uation criteria for the lightweight cryptography standardization process", August
2018.https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/final-lwc-submission-requirements-august2018.pdf.

[13] Daniel J. Bernstein, Stefan Kolbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, Fran ́cois-Xavier
Standaert, Yosuke Todo, and Benoˆıt Viguier. "Gimli 20190927", Submission to NIST
Lightweight Cryptography competition, 2019

[14] Eline Bovy. Bachelor's Thesis. Comparison of the second-round candidates of the
NIST lightweight cryptography competition, 2020

23

[15] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, "Cryptographic sponge
functions", 2011

