

Shayan Shajarian

THE C++ PROGRAMMING LANGUAGE
IN MODERN COMPUTER SCIENCE

Faculty of Information Technology and Communication Sciences (ITC)
Master of Science Thesis

April 2020

1

ABSTRACT

Shayan Shajarian: The C++ programming language in modern computer science
Master of science thesis
Tampere University
Information Technology
April 2020

This thesis has studied the C++ programming language’s usefulness in modern computer
science both in suitability for developers and education by overviewing its history and main
features and comparing it to its main alternatives. The research was mainly conducted with
literature reviews and methods used for studying the subject where both quantitative in form of
performance analysis and qualitative in the form of analysis of non-numeric attributes. This
thesis has found that the C++ programming language is a very capable programming language
for overall development, but the language’s popularity has shifted towards system-level
programming while the language is losing popularity for higher-level applications. The C++
programming language is also quite complex, making it too difficult to learn for beginners.
Despite the complexity, the C++ programming language remains a very good language in terms
of education for students of computer science because the language gives a good overview of
programming as a whole.

Keywords: C++, computer science, software production, education of programming

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

2

TIIVISTELMÄ

Shayan Shajarian: The C++ programming language in modern computer science
Diplomityö
Tampereen yliopisto
Ohjelmistotuotanto
Huhtikuu 2020

Tämä diplomityö on tutkinut C++-ohjelmointikielen hyödyllisyyttä sekä modernissa
ohjelmistotuotannossa, että työkaluna tietotekniikan ja ohjelmoinnin opetukseen. Tutkimus
suoritettiin tutkimalla C++-ohjelmointikielen historiaa, kielen yleisiä ominaisuuksia ja
vertailemalla sitä muihin ohjelmointikieliin. Tutkimuksen menetelminä käytettiin sekä
kvantitatiivisia menetelmiä kuten suorituskyvyn mittauksia, että kvalitatiivisia menetelmiä, kuten
laadullisten ja ei-numeeristen attribuuttien analysointia. Tutkimuksessa C++-ohjelmointikieli on
todettu hyvin kykeneväksi ohjelmointikieleksi yleiseen ohjelmistotuotantoon, mutta kielen suosio
on siirtynyt korkeamman abstraktiotason tehtävistä alempaan tasoon. Opetuksen kannalta,
tutkimuksessa todettiin, että C++-ohjelmointikieli on liian monimutkainen ja vaikea kieli
aloittelijoille. Ohjelmoinnin opiskelijoille C++-ohjelmointikielen opiskelu on kuitenkin hyvin
hyödyllistä, sillä kielen kattavuus antaa opiskelijalle hyvän kokonaiskuvan ohjelmoinnista.

Avainsanat: C++, tietotekniikka, ohjelmistotuotanto, ohjelmoinnin opiskelu

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

3

PREFACE

Writing this thesis has been an interesting learning experience, required using many of

the skills I had acquired over the years in the university, from writing in English to study-

ing the field itself. The topic for the thesis was chosen out of personal interest of computer

science as a whole and the C++ programming language serving as the “protagonist” for

this journey. Although writing this thesis has given me a valuable insight into the field of

computer science, it feels like learning more about this subject just makes one feel how

expansive the field is and how little actual knowledge I have acquired thus far. Although

this thesis may mark the end of my academic career, in many ways it feels like I am only

beginning to learn.

I would like to thank my instructors for this thesis, professors Matti Rintala and Kari Systä.

With special thanks to professor Kari Systä for helping me throughout the process and

providing feedback and a valuable insight into many of the topics.

Tampere, 29.04.2020

Shayan Shajarian

4

CONTENTS
1. INTRODUCTION .. 9

2. THEORETICAL BACKGROUND... 11

2.1 The C++ programming language.. 11

2.1.1 C++ Compilation ... 13
2.1.2 C++ Type checking ... 16
2.1.3 Memory management in C++ .. 19
2.1.4 Memory exploits in C++ .. 20
2.1.5 The Auto keyword ... 18

2.2 History and development ... 21

2.3 Overview of programming paradigms ... 24

2.3.1 Imperative paradigm ... 24
2.3.2 Procedural paradigm ... 24
2.3.3 Object-oriented paradigm .. 25
2.3.4 Functional programming paradigm .. 25
2.3.5 The programming paradigms of the C++ language 26

2.4 Software development ... 27

2.4.1 A Brief history of software development 27
2.4.2 Productivity in software development .. 30

2.5 Education of programming ... 31

3. RESEARCH METHODOLOGY ... 34

3.1 Quantitative methods ... 34

3.2 Qualitative methods ... 34

3.3 Methods for choosing a programming language 35

4. RESULTS ... 37

4.1 Comparison with other programming languages 37

4.1.1 Comparison with Java ... 38
4.1.2 Comparison with C# .. 42
4.1.3 Comparison with Python ... 46
4.1.4 Comparison with Rust ... 48
4.1.5 Conclusions from the comparisons ... 50

4.2 Choosing a programming language for education 52

4.2.1 Examining the criteria selected for C++ in teaching 53
4.2.2 Examining alternative programming languages 55
4.2.3 Comparing programming languages for education 57

4.3 C++ in modern software development .. 59

4.3.1 What is C++ used for today ... 59
4.3.2 C++ for the waterfall model of development 62
4.3.3 C++ in agile development ... 65
4.3.4 Improving the C++ programming language 67

5. ANALYSIS .. 68

5.1 Analysis of C++ in modern computer science..................................... 68

5.1.1 Analysis of C++ in education ... 68
5.1.2 Analysis of C++ in software development 69

6. CONCLUSION .. 71

5

REFERENCES... 74

6

LIST OF FIGURES

Figure 1. Layers of abstraction in software programming languages [12] 12
Figure 2. The C++ compilation process [15] .. 14
Figure 3. Memory architecture of a C++ program [47] ... 19
Figure 4. Tiobe Index [39] ... 37
Figure 5. Compilation of Java [41] .. 38
Figure 6. Compilation process of Java [42] ... 39
Figure 7. C# Compilation [52] ... 44
Figure 8. Waterfall Model [79] ... 62

7

LIST OF TABLES

Table 1. Productivity levels [98] .. 31
Table 2. C++ and Java performance test [45] ... 41
Table 3. C++ and C# performance test [53] .. 45
Table 4. C++ and Python performance test [60] .. 47
Table 5. C++ and Rust performance test [75] ... 50
Table 6. Insertion sort code comparison [85] .. 56
Table 7. C++ and C performance test [66] .. 61

8

LIST OF SYMBOLS AND ABBREVIATIONS

C++ A multi-paradigm, compiled, system-level programming lan-
guage

Int Integer

Lambda Anonymous function

WORA Write once run anywhere

COCOMO Constructive cost model

IDE Integrated development environment

API Application programming interface

I/O Input / Output

HTML Hypertext markup language

SaaS Software as a service

DevOps Software development Information technology operations

SQL Structured query language

Hard Choice A choice made because of necessity

Soft Choice A choice made because of preference

TIOBE The importance of being earnest

Java A multi-paradigm, platform independent programming lan-
guage

JVM Java virtual machine

Garbage collection A form of automatic memory management system

Bytecode A form of instruction set designed for efficient execution by a
software interpreter

C# A multi-paradigm, programming language developed by Mi-
crosoft.

CLR Common language runtime

Python A multi-paradigm interpreted programming language

Rust A multi-paradigm system-level programming language

Waterfall A sequential software development model

Agile An iterative model for software development

STL Standard template library

SCRUM An agile process framework

9

1. INTRODUCTION

The C++ programming language was developed in 1979 as a general-purpose program-

ming language by a Danish computer scientist by the name of Bjarne Stroustrup. Since

it was first introduced, the C++ programming language has grown to be one of the most

popular, influential and widely adopted programming languages in the world. However,

the field of computer science has changed and evolved both in paradigms of program-

ming and advances made in computer hardware since the era that the C++ programming

language was first introduced. With the current advances and paradigm shifts the ques-

tion is, has the C++ programming language managed to keep up with the times or will it

slowly fade away into obsolescence?

The C++ programming language is still a very prevalent and widely used language in

software development, education and as an overall general-purpose programming lan-

guage. In many cases however, C++ is seen by many as overly complex, difficult to learn

and prone to errors. In addition to many of the C++ programming languages issues, there

are a variety of other programming languages that are perhaps better, or at the least

more suited to what current developers are looking for in a programming language. As a

response, there are many new and more current updates to the C++ programming lan-

guage which have made strides to modernize the language and keep it as current as

possible.

This thesis examines the C++ programming language in modern computer science for

the purposes of determining how useful it is in modern software development, how ef-

fective it is for education and will the language remain relevant in the future or be slowly

relegated in to specific niche roles instead of remaining as a general-purpose program-

ming language. In addition, this thesis attempts to review modern software development

and the place of the C++ programming language within it for the purposes of comparing

it to its main alternatives and suggesting development ideas for the C++ programming

language. The methods used for studying these questions are analysis of the C++ pro-

gramming language’s development history and paradigm shifts as well as studying soft-

ware development and education. Comparisons and reviews are done by both quantita-

tive methods whenever possible as well as qualitative methods to study and analyse the

quality properties of any given attributes.

10

This thesis is structured by first overviewing the theoretical background of the subject.

This is done in the second chapter of this thesis where overall features, programming

paradigms and history of the C++ programming language are overviewed. The theoreti-

cal background also overviews a brief history of software development and discusses

the education of programming. The third chapter is dedicated to explaining the method-

ologies used in this thesis for conducting the study and the analysis done. The fourth

chapter compiles the results found in this thesis. This is done by first briefly overviewing

specifically chosen programming languages and comparing them to C++ and studying

on how the C++ programming language is suited for modern software development and

how well it is suited as a tool for the education of programming for both general engi-

neers and computer science students. The fifth chapter of this thesis is dedicated for

analysing the results found for the sixth chapter where conclusions are drawn from both

the study and the analysis.

11

2. THEORETICAL BACKGROUND

The purpose of this chapter is to define the area of the research and familiarize the reader

with the subject. The chapter gives a brief overview of the background and basic fea-

tures, attributes and programming paradigms of the C++ programming language. Some

of these attributes and features overviewed in the chapter are not inherent to the C++

programming language, but overall concepts in computer science. In addition, the chap-

ter briefly overviews the evolution of software development and discusses effective ideas

for education of programming for university students.

2.1 The C++ programming language

To describe the C++ programming language, it is crucial to understand what program-

ming and perhaps more importantly, what programming languages are. In essence, pro-

gramming is speaking to the computer by means of giving the computer a series of com-

mands to execute. [10] Computers are only capable of understanding very rudimentary

instructions. To bridge the gap between what both a computer processor could interpret

and what a human could understand, the use of programming languages is necessary.

This process can be achieved by turning the user written source code into machine code

for the computer to execute by different means. [11]

To more effectively breach this language barrier and to more accurately give instructions

for a computer on what to do, the development of different programming languages is

imperative. Programming languages themselves can be categorized in a number of dif-

ferent ways by both their purpose, their operation and functional design decisions. One

of such attributes is the abstraction level of the programming language.

12

Figure 1. Layers of abstraction in software programming languages [12]

An abstraction level can be described as the level of detail of a software system by

means of hiding “irrelevant” details from the user. In other words, the lower the abstrac-

tion layer is, the closer the user is to the computer’s hardware and may give more direct

instructions to the computer. Figure 1 features different layers of abstraction as a visual

aid. The level of abstraction in practical terms is how expressive a programming lan-

guage is. The increase of the layer of abstraction allows the user to address more com-

plex problems with fewer lines of code and in theory, fewer programming errors. While a

programming language with a lower level of abstraction will grant the user more direct

access to the computer’s hardware and allow the user more control. Programming lan-

guages can be classified in many different layers of abstraction. These layers can be

described in hierarchical-levels from lower levels of abstraction which require more and

more direct commands to the computer such as registers and memory addresses, to

higher levels of abstraction and even meta-programming, where details of the execution

are less visible to the user. These layers of abstraction can be distinguished from each

other from lower- to higher-levels. The lowest level is the binary code for the processor.

The next level higher from binary code is assembly language or the register layer, where

operations are described on the processor. The step upward in abstraction can be clas-

sified as the algorithm layer where programming languages such as C, pascal or LISP

13

operate. These languages are often procedural and can hide lower level details from the

user such as registers but instead operate on a higher level and focus on the description

of software algorithms to handle data. The next layer of abstraction is the entity layer in

which many popular programming languages such as C++ or Java operate. In this ab-

straction layer, higher level operations such as classes and objects can be utilized, and

the overall focus is on the description of domain entities. The next layer is the composi-

tion layer or scripting layer, where programming languages such as Python operate. In

this level of abstraction, the focus is on writing existing software artefacts into larger

systems. The main concern of programming in this level shifts from data or algorithms to

software components, where the complexity of the programming language is reduced,

and ever larger sections of the code is abstracted away. This in practical terms leads to

decrease of lines of code to the user. The last and highest level of abstraction is the meta

layer, where metamodeling or metaprogramming languages are used to describe com-

ponents and creating code generators. These higher-level languages are based on

higher-level programming such as metaprogramming or generative programming. [12]

With all this in mind, the C++ programming language can be described by the level of

abstraction to be higher than that of assembly languages or the C programming language

but not quite as high as some more modern programming languages. This in practical

terms means that the C++ programming language can be utilized to manipulate data and

memory directly, but the language also has the benefit of operating on higher levels of

abstraction with abilities such as object orientation and classes. However, the C++ pro-

gramming language does not operate quite on the same level of abstraction as many

newer programming languages. This in practical terms means that the code written in

C++ requires the user to describe more details than in that written in a language which

has a higher level of abstraction and as a result a program written in C++ can be longer

in length and more prone to user made errors while also giving the user more direct

control.

2.1.1 C++ Compilation
Another defining feature for a programming language is how the user written code is

turned into the form in which the computer can understand it. This process of turning the

code of a higher-level programming language into the form which can be executed often

is a defining feature and a clear distinction of certain programming languages. In the

interest of brevity, the two main distinction discussed in this thesis are the differences

between compiled languages and interpreted languages.

14

The C++ programming language is a “compiled” programming language. This in short,

means that the user written source code is directly turned into operating system specific

and computer processor specific machine code. [13] This process is done by taking each

C++ source file and compiling it into an object file. The result of this compiling creates

object files which are then linked together to create either an executable program or a

library. [14]

Figure 2. The C++ compilation process [15]

15

In more detail, the process of turning the user written code into what the computer is

capable of executing is done in four distinct stages which are shown in figure 2. These

stages are pre-processing, compiling, assembling and linking. In the first stage, or pre-

processing stage the pre-processor directives are handled. This in practical terms in the

C++ programming language means that any directive with the “#” sign such as #include

or #define are handled. In the first stage or pre-processing stage, the user written source

files are run through a special text processing program called a pre-processor. The pre-

processor will then perform one or more of the following actions. Including the files con-

taining the #include definition by searching for the specified identifier and including them

into the source file. The conversion of values which are specified by the #define state-

ments into constants and the conversion of the macro definitions into the corresponding

code. Conditionally including or excluding parts of the code which with the #if, #elif or

#endif directives. The output of this pre-processor is the C++ code in its final form which

will then be passed to the next stage. [16] In the pre-processing the source code is tem-

porarily expanded to prepare for the compilation stage and the file has a greater number

of lines than the original source code. The pre-processor can also add markers to the

code to aid the compiler for producing error messages for the user.

The next stage is compilation. In this stage, the compiler takes every output from the pre-

processor and constructs an object file. This process is done by converting the pure C++

code, meaning the code without the pre-processor statements, into assembly code. Dur-

ing this process, the compiler can also optimize the source code and can point out failed

overload resolution errors, syntactical errors or other compiler errors at this stage. The

third stage is assembly. In this step of the process, the assembler goes over the assem-

bly code and line by line converts it into bit code. The output of this process is a binary

file typically in formats such as COFF.

The final stage of the process is linking. In this step, the linker produces either a dynamic

library, a shared library or an executable file. Static libraries are created when object files

are archived. These object files can then be used without the need to recompile them.

Dynamic libraries are modules which contain data and functions which can then be used

by another application. [17] In the linking process, the collection of object files created in

the compiling stage are linked together by forming the resulting program memory map

section out of individual contributions. In addition, the linker must resolve all the refer-

ences. [16] In short, the linking process results in the creation of a single executable file

from multiple object files. Once this process is complete, the executable file is created

and the program can be run.

16

2.1.2 C++ Type checking
Another defining feature of a programming language is the type system that it uses. A

type system is the component in a programming language that associates each expres-

sion of the language with a data type. These expressions are things such as variables,

functions and operations just to name a few. A type system is a component of program-

ming languages which associates each expression of the language with a data type. This

component itself consists of a collection of types and type constructors which coupled

with type rules determine the consistency of an expression with a given type. A common

error in many programming languages is a type error. This error occurs when a violation

of a type rule is detected, often by a program that specifically tests for type errors. This

is known as type checking. [18]

In more practical terms, a type system refers to the rules that different variables in pro-

gramming languages must adhere to. These type systems can also be more specifically

defined in different attributes which more accurately describe them. These attributes can

be described in the following ways. A type strength, expression, checking and safety.

The type strength is often described as either weak or strong, the latter referring to a

system which places restrictions on how different types of variables can be converted to

each other without any converting statements. A weak typing system on the other hand,

would attempt to find another way to make the type cast function. [19] In other words, a

programming language has strong typing if a variable cannot be used in a way inappro-

priate for its type. As an example, attempting to add and integer value to a string in

certain strongly typed languages would lead to a type error, while in a programming lan-

guage with weak typing, this may both compile and execute. [90]

The next type system attribute is the type expression, which is an attribute which deals

with how the interpreter or compiler of a programming language infers the types of vari-

ables. Type expressions can be either manifest of inferred. A manifest typing system

requires the variable types to be explicitly defined whereas an inferred typing system will

infer the type of the variables used based on context in which they are used in. The next

attribute is the type checking which can be either static or dynamic. [19]

Statically typed programming languages have their types checked by either the compiler

or interpreted before the program is ran or compiled. In a dynamically checked language,

the type checking is done during the runtime of the program. The final attribute is the

type safety which refers to the degree to which the programming language will prohibit

operations on typed variables which may lead to either errors or undefined behaviour. A

type safety can be either safe or unsafe and the differences between the two can be

described by the degree in which the programming language will interfere with the type

17

safety. An unsafe language relies on the user to handle the type safety while languages

with safe types will do more to ensure that type conversions or problematic operations

do not occur. [19] In other words, in a type safe language attempts to misinterpret data

is caught at compile time or a well-specified error is generated at runtime. [91] A non-

type-safe language can fail to catch this issue due to the search mechanism lacking the

strict type information which would often be available for the compiler. This is how a type-

safe and strong typed languages differ, because a strongly typed language type rules

are automatically enforced by the compiler. [92]

The C++ programming language is strongly and statically typed, meaning that every ob-

ject or variable has a type and that type will never change. In practical terms, when a

variable is declared, the type of that variable must be explicitly specified to instruct the

compiler. For instance, if a user wants to store the value of an integer, the type of this

specific variable must be defined as “int” and the type of this specified variable cannot

be changed later. Meaning that if a user stores “int x = 5” the value of x cannot then be

changed to a value other than another integer. In addition, whenever a function is de-

clared, the type of each argument and return value must be explicitly specified or void if

there is no value to be returned. After a variable is declared, the type of that variable

cannot be changed later. Type conversions are however possible in the C++ program-

ming language, in the form of copying a variable’s value or a function’s return value into

another variable of a different type.

The C++ programming language does not have a universal base type from which all

other types are derived. Instead, the C++ programming language features a variety of

types one of which are the fundamental or built-in types. These fundamental types in-

clude the very basic types featured in the programming language and include types var-

ying byte sizes such as int, double, long bool and char. Many of the fundamental types

also include an unsigned version, which modifies the range of the value of that variable.

As an example of this, a typical integer or int can store values from -2 147 483 648 to

2 147 483 648, whereas an unsigned int can store values from 0 to 4 294 967 295. The

size of both integer and unsigned integer are 32-bit. [20]

In addition to the fundamental types, the C++ programming language features other

types such as the void type. The void type is unusual because a type cannot be declared

as void, however a pointer to void can be declared as a variable. This feature can be

used to allocate raw or un-typed memory. The use of this feature is however discouraged

in modern C++ due to it not being type-safe. A more common and acceptable use of the

void is in function declaration where a void return value is assigned to a function which

does not return a value. [20]

18

Other types include in the C++ programming language include types such as the string

types. The commonly used string is a standardized library type found with the inclusion

of string (#include <string>) in the form of std::string. This 8-bit string is char-type char-

acter of strings.

The C++ programming language also has included user-defined types. These types are

constructed whenever a class, struct, union or enumeration (enum) is defined. These

user-defined types are treated by the language much in the same way as fundamental

types. They have a known size in memory, and they adhere to certain rules for compile-

time checking and the runtime of the program. There are two main differences between

fundamental- and user-defined types. The first is function overloading. And the second

is that the compiler has no built-in knowledge of a user-defined type and the compiler

must learn the type when the definition is first encountered in the compilation process.

The C++ programming language also features the pointer type. The pointer type allows

the user to declare a variable of a pointer by using the asterisk (*). Instead of a typical

variable, the pointer type stores the memory address where the actual data value is

stored. The pointer type is denoted by an asterisk and is also known as a raw pointer.

This pointer is accessed through the special operators which are the asterisk “*” or “->”.

This operation is known as dereferencing. The use of raw pointer is however discouraged

in modern C++ because the memory allocated is not automatically deallocated and can

lead to memory leaks. For this reason, the use of smart pointers is encouraged. Smart

pointers are another pointer type, featured in the C++ programming language. Smart

pointers are used to assist in ensuring that programs are free of memory and resource

leaks and are exception- safe. This is done by them deallocating the memory automati-

cally when its destructor is invoked.

The types used in the C++ programming language can also be qualified by the const

type qualifier. This feature allows user-defined types or functions to be qualified and even

overloaded with the const keyword. The purpose of this feature is to ensure that the value

of a const type cannot be modified after it is initialized. [20]

2.1.3 The Auto keyword
With the addition of newer standards, the C++ programming language has gained certain

abilities which are more customary for dynamically typed programming languages. One

of these features is the “auto” keyword which was introduced in the C++11 standard.

Prior to the introduction of the auto keyword, the user had to explicitly specify the type of

variable used or initialized. Since the auto keyword was introduced, the type of variable

or even the type of function since C++14, can be assigned as auto. The auto keyword is

19

then used to tell the compiler to deduce the actual type of variable being declared or

initialized. [28] The auto keyword can in certain cases give the C++ programming lan-

guage the luxuries of dynamically typed programming languages. It must however be

noted, that even with the auto keyword, the C++ programming language is still statically

typed, and with the use of the auto keyword the type of the variable is deduced at compile

time in a process known as type inference. [29]

2.1.4 Memory management in C++
The basic memory architecture used in any C++ program is divided into four different

segments. These segments which are showcased in figure 3. These segments are the

heap, stack, data segment and code segment. The code segment houses the compiled

program with executive instructions. This segment is read only, a fixed size and is kept

under the heap or stack segments to avoid overriding them as heap or stack segments

can grow or shrink in size. In more practical terms, the code segment contains the code

that needs to be executed by the processor.

Figure 3. Memory architecture of a C++ program [47]

The data segment houses the global and static variables. The data segment can both

read from and written into. The stack segment is typically pre-allocated memory space.

The stack is also structured in the “last in first out” or LIFO type of data structure where

each new variable is pushed into the stack and they are the first to be handled. The

stack’s memory management functions by the scope of the program. Once a variable

goes out of the scope of the program’s execution, the memory then becomes available

for allocation again. In practical terms, in C++ code if a local (not created with the new-

keyword or a pointer) variable is declared within a scope, for instance a function, once

the execution of that function is completed, the space for that variable may be reallocated

and used for something else. The stack can grow and shrink as functions push and pop

20

local variables from it. The stack houses local data, return addresses, arguments passed

to functions and current status of the memory. The heap segment is memory allocated

during the execution of the program. This space in memory is allocated by using the

new-keyword and the deallocation of memory must be done manually by the user. The

deletion is handled by using the delete operator. [47]

2.1.5 Memory exploits in C++
The C++ programming language allows the user to access the memory but the language

itself does very little in preventing the possibilities for problems or exploits. Therefore,

the user is responsible for memory management and preventing vulnerabilities. Due to

this direct access to memory the C++ programming language provides and the lan-

guage’s lack of certain features such as checking if memory indexes are exceeded, there

are certain possibilities for exploits. One of the more common exploits is the buffer over-

flow. The buffer overflow exploits in the case of the C++ programming language can be

broadly categorized in two distinct categories which are named after the region in

memory where these exploits can occur. These two buffer exploits are the stack-based

buffer exploit and the heap-based buffer overflow. It is also important to note, that these

exploits may also occur in the data segment.

The stack-based buffer overflow occurs, when memory is allocated on the stack for an

array and the data is written beyond what has been reserved for a specific memory space

to an adjacent memory space. The adjacent memory space can contain certain crucial

pieces of information or instruction for example the address to resume execution. This

address can be overwritten by an attacker and the execution of the program can be

derailed as a result. Note that this type of buffer overflow may also occur in other memory

spaces.

The heap-based buffer overflow is quite similar to the stack-based vulnerability. Heap

memory is allocated dynamically at run-time by the application. This exploit also relies

on overwriting memory to gain access to the execution flow of the program. This is done

by overwriting the heap-stored function pointers which are located after the buffer which

is being overflown. Another way is to overwrite the heap-allocated object’s virtual function

pointer and pointing it to an attack-generated virtual function table, which upon execution

of one of these virtual methods, will execute the code to which the attacker-controlled

pointer refers.

Another memory exploit which can occur in the C++ programming language is the dan-

gling pointers vulnerability. This vulnerability occurs when a pointer to a memory location

21

is deallocated and the dereferencing of this pointer is unchecked. This space in memory

can then be overflown to overwrite other pointers. [48]

2.2 History and development

The history of the C++ programming language begins in 1979 with a Danish computer

scientist by the name of Bjarne Stroustrup [1]. The original idea of C++ was to provide

the user with the efficiency and flexibility of the C programming language with the facili-

ties of program organization of the Stimula programming language. The concept of the

class structures found in Stimula where an essential part for what came to be the pre-

cursor of the C++ programming language known as “C with classes”. [2] In the early

iterations of the C++ programming language, the object-oriented programming para-

digms that came with adding classes was a major differentiating factor between the C

and C++ programming languages.

The work on the original “C with classes” programming language began in 1979 and the

initial set of features added where classes and derived classes and with them the control

of public and private access to classes, constructors and destructors and finally function

declarations with argument checking. These features added gave the language the ob-

ject-oriented programming paradigms. In addition, the first library added to the language

had support for non-pre-emptive concurrent tasks and random number generators. [2]

In 1983 the nomenclature C++ was adopted, renaming the “C with classes” programming

language. In addition to the new name, the language received many new additions such

as virtual functions, perform overloading, single-line comments and references with the

const keyword. [3] It wasn’t until the year 1985 that C++ was implemented as an official

commercial product but even still, the C++ was not officially standardized. During this

year however, the language gained many new features such as in-lining, function and

operator overloading, references and virtual functions. The virtual functions granted the

language support for run-time polymorphism. [2] Through the late 1980s and 1990s the

C++ programming language saw many new updates and developments. Most notably in

1989 the language was updated to include protected and static members and inheritance

from several classes. In the year 1998, the C++ standards committee published the first

international standard for the C++ programming language which is informally known as

C++98. [4] This nomenclature has remained as a standard for newer standards of the

C++ programming language where the name of the language is proceeded with the year

of the adopted standard.

22

The subsequent additions or improvements to the C++ programming language where

usually added with new standards to the language with the first ISO standardized version

being the C++98. The next official standard named C++03 was adopted in 2003 and

most notably with it, in addition to many bug fixes and improvements to the previous

standard, came a feature for introduction of value initialization. [3]

The subsequent standard, named C++11 and adopted in the year 2011, was a major

leap forward for the C++ programming language. This new standard fundamentally

changed the way the language could be used. This was done in attempt to make the

C++ programming language a more easily accessible and teachable language as well

as a better language for system programming and library building. [5] The features added

with the C++11 standard are numerous but some of the more important additions where

nullptr, range-based for loops, override and final, strongly-typed enumeration, smart

pointers and perhaps in practical terms, arguably the two most notable changes which

where the auto keyword and lambdas. C++11 was the first standard to introduce the

paradigms of functional programming to the C++ programming language in the form of

lambda expressions. Lambdas or anonymous functions are commonly found in func-

tional programming languages and with their addition, the C++ programming language

gained the ability to use higher order functions. The auto keyword is also a very notable

change. The auto keyword allows the programmer to not specify the type of a variable,

but instead let the compiler deduce it. [6]

The changes after C++11 have been more subdued and more frequent. The next stand-

ard was released only three years later in the form of C++14. The new standard did not

alter the paradigms of programming or implement any noticeable practical change, but

instead the new standard can be seen as another evolutionary step for the language.

The new standard even removed some features, such as gets() which was an unsafe

input or output function from the C library and discouraged the use of rand() in lieu of the

<random> library. The new features to the C++ programming language added with the

C++14 standard are quite numerous. Some examples of the more notable changes are

to the functional programming capabilities of the language. Added features are polymor-

phic lambdas which allows lambda expression to define function templates and general-

ized lambda captures which allows lambda captures to be initialized. In addition, the

C++14 standard also had many other additions, such as a shared mutex, quoted strings,

digit separators, variable templates and user-defined literals among many other addi-

tions. [7]

23

At the time of writing this thesis, the most current officially released standard for the C++

programming language is the C++17 standard released in 2017. This standard also re-

moved or deprecated certain features of the language for instance the register keyword,

trigraphs and certain types of dynamic exception specifications among many other fea-

tures. The language also received four globally applicable new features to the core of

the language, note that these features may happen to the user without their consent or

even knowledge. These four new features are as follows. Exception specification as part

of the type system.

Guaranteeing compiler optimization techniques such as copy elision which eliminate un-

necessary copying of objects. The problems that this feature would solve is that without

guaranteed copy elision, elision might not occur meaning that you cannot get rid of the

move and copy constructors.[93] Guaranteed copy elision also allows the user to define

functions with return types with guaranteed copy elision even for types that are not copy-

able or movable. Dynamic allocation of over aligned types and finally stricter order of

expression evaluation which evaluates function arguments in an indeterminate order. In

addition to the global features, the C++17 standard also includes new core language

features with local applicability. These new features include fold expressions, which are

for applying a binary operator iteratively to parameter packs, inline variables and among

many other features, additions to the language’s functional capabilities in the form of

better features for lambdas. In addition to the languages core features, the C++17 stand-

ard also includes new library features. These features include new algorithms, features

to parallelism and filesystems. [8]

The most current proposed standard for the C++ programming language will be the

C++20 standard which as of writing this thesis, has not yet been adopted. Most of the

features are however now either decided or being decided. In a talk with the C++ pro-

gramming languages creator Bjarne Stroustrup described the C++20 standard as the

best approximation of the C++ programming languages ideals with many useful new

features such as modules, coroutines and better compile-time programming support

among many other features. [9] For the sake of brevity and uncertainty at the time of

writing this thesis, these new features will not be further discussed or showcased due to

the fact that they may be subjected to change or modification.

24

2.3 Overview of programming paradigms

To better understand a specific programming language and what design decisions gov-

ern the choices for the language’s different attributes, the understanding of the underly-

ing programming paradigms is necessary. The definition of a programming paradigm is

often considered a very vague and broad term but in essence, a programming paradigm

is the specific style or general approach to writing code. [21] The term programming

paradigm can be more accurately described as a model of programming based on a

distinct set of concepts which shape the way a program is designed and organized. To

gain a more comprehensive knowledge about programming paradigms for both the idea

itself and to better understand programming languages, a few different programming

paradigms and their attributes are listed.

2.3.1 Imperative paradigm
In an imperative programming paradigm functions are implicitly programmed in every

step needed for solving a problem. This paradigm uses statements which alter the pro-

gram’s state for a certain goal to be achieved. In other words, every operation is pro-

grammed and the program itself specifies the solution for the problem. This also means

that pre-programmed models are not called upon, meaning that every operation is coded

and the code itself specifies how the problems is solved. In imperative programming,

instead of relying on models to solve a problem, it requires the understanding of the

necessary problem-solving functions to solve the problem. This means the focus of im-

perative programming is “how” a problem should be solved. This requires a step by step

guide for the computer to follow, because the program performs functions instead of

models. [22]

2.3.2 Procedural paradigm
A procedural programming paradigm is a subset of imperative programming and is an

example of an early approach to programming which was utilized in the beginning of

computing. In procedural programming, the program is comprised from a set of instruc-

tion for the computer to execute directly in the order in which they appear, unless other-

wise instructed. Things which can change the control flow of the program are known as

flow control structures, for instance if statements and for and while loops. The main dif-

ference between procedural- and imperative- programming paradigms is that in impera-

tive programming commands are executed in the order they are given. Procedural pro-

gramming, being a subset of imperative programming, does this as well but allows split-

ting these instructions into procedures or functions. Many of the early programming lan-

guages are based on the procedural programming paradigm. Programming languages

25

such as Assembly, FORTRAN and C are an example of procedural languages. Code

written with the approach of procedural programming paradigms are often easy to read

and simple, when the program is short, however large programs written in this approach

can be difficult to read, manage or debug. [23]

2.3.3 Object-oriented paradigm
An object-oriented programming paradigm is a model which is structured around objects

rather than actions and the focus is on data rather than logic. In object-oriented program-

ming, objects are regarded as separate entities with their own state which is altered only

by specific built in procedures which are known as “methods”. Methods are in many ways

just like functions, but instead of them using values of given parameters, they function

on objects. Objects operate independently so they are encapsulated in modules which

is why they contain both local environments and methods. Communicating with object is

done by message passing. Structuring for objects is done by ordering them into classes,

from where they can inherit equivalent variables and methods. One of the many benefits

of the object-oriented programming paradigm is that code can be reused. This can be

done by deriving a new class or a sub class from existing classes by a system known as

inheritance. In this system, the derived class inherits all the features of the base class.

[24]

2.3.4 Functional programming paradigm
The paradigm of functional programming is very different than the ones of procedural or

imperative programming. In functional programming, functions are treated as first class

objects. In the paradigm of functional programming, all subprograms are viewed as func-

tions or to be more precise, mathematical functions. In this paradigm, arguments are

taken, and a distinct solution is returned, just like in mathematical functions. The solution

returned is informed only by the input given and is not affected by the time at which the

function is called upon. The computational model of functional programming is one of

function application and reduction. The paradigm of functional programming can give a

programming language some distinct advantages. The first advantage is the higher level

of abstraction. This allows the user to let the computer worry about many levels of details

of programming and remove the opportunities of many classes of errors. In addition, the

higher level of abstraction can also make the written code of the program significantly

shorter. Other benefits of functional programming include attributes such as deficiency

of dependence on assignment operations. This allows programs to be valued in many

different orders which is a very useful attribute in parallel computing. In addition, the lack

26

of assignment operations aids in the responsiveness for mathematical proof and analy-

sis. Functional programming can also have certain disadvantages, mainly the complexity

of the paradigm itself. This complexity and the deviation of norms can be a point of con-

tention for many who are used to the more conventional paradigms of computing. In

addition, functional programming can be less efficient in certain applications. [24]

2.3.5 The programming paradigms of the C++ language
The creator of the C++ programming language Bjarne Stroustrup describes the C++pro-

gramming language as having four main features that are most directly supported. These

“features” as he describes them but referred to as “programming paradigms” in this the-

sis, are procedural programming, data abstraction, object-oriented programming and ge-

neric programming. The idea for the paradigms of the C++ programming language, as

described by the creator, is to facilitate an elegant combination of different programming

styles and a support for a wide variety of programming techniques.

The support for procedural programming paradigms in C++ is focused on processing

and designing suitable data structures. This paradigm in many ways, gives C++ the over-

all structure of the language, in terms of the way the instructions are given, the control

flow is changed with loops and the functions that are used. This feature manifests itself

in the C++ programming language in the form of built-in types, operators, statements

functions, structs, unions and other such features.

The Data abstraction in C++ is focused on the design of interfaces. In general, this means

hiding certain implementation details. The C++ programming language also supports

both concrete and abstract classes for which there is an ability for class definition with

private implementation details and both class constructors and destructors with the direct

support of associated operations. In addition, there is direct support for abstract classes

which have the ability for providing complete data hiding.

The paradigms of object-oriented programming in C++ are focused on designing, imple-

menting and using class hierarchies. Class hierarchies can also provide run-time poly-

morphism and encapsulation of code.

Generic programming focuses on the design, implementation and the use of general

algorithms. The word general in this context refers to the type of algorithm which can be

designed to accept a variety of types as long as they meet the requirements dictated by

the algorithm’s arguments. In the C++ programming language, templates are the main

examples of generic programming. Templates can provide compile-time parametric pol-

ymorphism. [25]

27

Since the C++11 standard, the C++ programming language has also adopted the para-

digms of functional programming. The most concrete example of functional programming

in the C++ programming language is the addition of lambda expressions. Lambda’s are

a convenient way of defining anonymous function objects also known as closures, pre-

cisely at the location where it is invoked or passed as an argument to a function. [26]

This gives the C++ programming language a method to use higher order functions.

Higher order functions in this context are referred to as a pervasive abstraction which

encapsulate common programming patterns by calling other functions provided as input

arguments [27]. This means that functions have the ability to take in other functions as

parameters and also return functions as return values.

2.4 Software development

This section briefly overviews the history of software development and how it has

changed and evolved over the years. In addition, this section goes over the productivity

measurements and ideas used in software development.

2.4.1 A Brief history of software development
The world’s very first piece of software was written by a computer scientist by the name

of Tom Kilburn in the year 1948. This software was programmed to perform mathematical

calculations by using machine code instructions. This first program took 52 minutes to

compute the greatest divisor of 2 to the power of 18 (262 144). Computers where pro-

grammed with punch cards in which the holes denoted specific instructions in machine

code. The word “software” was first used in the year 1958, one year after Fortran, one of

the first higher level programming language was created. [30] In the following decades,

the following programming languages and other milestones where reached in computer

science. In 1962 Cobol, 1973 C and the Unix operating system, 1985 C++, 1990 Haskell,

1991 Python, 1995 Java and 2000 C#. Many of the listed programming languages where

quite influential for computer science. [31]

For the interest of brevity, it is perhaps best to describe the evolution of software devel-

opment in terms of different eras. In the beginning, computers and software development

was mainly done by and for governments or large organizations purely as means of

crunching numbers more quickly and reliably. This first era encapsulates everything from

the early mechanical computing machines to more sophisticated and more modern com-

puters capable of running software.

28

This era is then followed by the era of personal computing, during which the price of

computers was significantly reduced to the point where they became commercially avail-

able products for not just governments and companies, but individuals as well. This Era

started in the 1970s and has continued onward and is exemplified by the Unix operating

system being developed in 1973 and the release of the first interactive PC, the Xerox

PARC in 1975. [31] It is important to note, that during these times, computers where

individual and independent systems and they did not interact with other computers and

the software development of the times obviously reflected this. In addition, the perfor-

mance of these machines was nothing compared to modern computers, meaning that

the software driving them had to be as efficient and as fast as possible.

The 1990s onward marks the era of the internet or at least when the internet gained more

mainstream popularity and adoption. During this time, computers where no longer just

separate machines, but end-devices which where a part of an interconnected network.

The rise of the internet also led into the demand for international information display and

e-mails on the World Wide Web. Programs during this new era were required to handle

illustrations, maps, photographs and other images in addition to simple animations. The

growth of browser usage and the HTML language which it was running on changed the

way information was displayed, retrieved and organized. These new avenues for using

computers drastically changed and added to the way software was developed.

From the year 2000 onwards, the trends and ideas of computing have once again

changed with lightweight methodologies and agile development becoming more popular

and standardized in the software development industry. This new era was driven by the

expanding demand for software in many smaller organizations which required inexpen-

sive software solutions, and this led to the development of simpler and faster develop-

ment methodologies. In addition, the use of rapid-prototyping, evolved into lightweight

methodologies which attempted to simplify many areas of software engineering which

include things such as requirement gathering and reliability testing. [33]

Modern day software development has further changed with new ideas to suit modern

models of business. Many more modern pieces of software have changed from software

bought and ran on a machine, to things such as cloud computing and software as a

service rather than a product. This is a drastic shift both in terms of business models and

software produced. Cloud computing means delivering different services such as data

storage, tools or applications through the internet rather than keeping the data or pro-

grams on a device’s local storage. [76] Cloud computing is an example of this new soft-

ware distribution model known as SaaS or software as a service. The software as a

service model typically functions by hosting applications and making them available to

29

customers over the internet. This model allows the service to be updated automatically

with flexible payments and the ability to scale the demanded service quite easily. [77] In

addition to these more recent models of computing and business models, the develop-

ment ideas of software have also evolved. DevOps is one example of these newer ideas

of development. The idea of DevOps is to apply agile approaches to operations work by

collaboration of the staff of development and operations. This model has emerged largely

as a response to service-oriented software and is meant to add to traditional agile meth-

ods. [78]

Programming languages such as C, Python and Java give an understanding of the era

and requirements of the era that they were developed for. And through this, the under-

standing of why and how certain programming languages gained popularity can be better

understood. This thesis focuses mainly on the more mainstream general-purpose pro-

gramming languages and not more purpose specific languages such as Javascript.

The C programming language, which was created between 1967 and 1973, is still very

popular and used quite extensively even to this day. The C++ programming language

was in essence an extension of the C programming language. C++ was however in many

ways a next-generation language with features such as object-oriented programming.

These features where at the time considered phenomenal when compared to the more

structural C programming language.

Some of the more recent programming languages popularized certain features. Java is

one of such languages. Java is one of the most popular and successful programming

languages of many decades. The Java programming language was created with a mis-

sion WORA or “Write Once Run Anywhere”. This in practical terms means that Java was

designed to be a programming language with the ability to be ran on any platform. Or to

be more precise, the same code can be run on any platform.

With faster hardware and with cases where the need to access the computer’s hardware

became less frequent, more expressive languages also became viable. One of such lan-

guages is the now very popular Python programming language. Python was designed to

be an easy to read and learn with fewer unnecessary symbols and very clear English

names in its syntax. Python also has a very high emphasis on productivity, meaning the

language is meant to produce more functionality with less development time. [94] The

main goals of the Python programming language is therefore to be a higher-level gen-

eral-purpose programming language with an emphasis on code readability in the syntax.

Python has gained quite a lot of popularity because of its simplicity and is used exten-

sively in web application development. [32]

30

With the development history of software and the programming languages emerging dur-

ing the different eras, the requirements for a programming language in any given time

can be better understood. From the early sequential logic required for basic computation

to the modern agile software developed for mobile devices.

2.4.2 Productivity in software development
Software has become an integral part of the infrastructure of industries, commerce and

governments. From creating programs for savings accounts, insurance or even manu-

facturing cars, software has become an integral part of many entities. Therefore, the

efficient development of software is crucial for the modern world. [95]

Productivity is a very important part of any industry or venture, due to it being a driving

factor for production cost. Productivity can be defined as the output divided by the effort

required to produce said output. Measuring productivity for the purpose of improving it

and therefore minimizing costs is very important. [95]

Measuring the productivity of software is however quite challenging due to the nature of

software being abstract and seemingly trivial attributes such as size being challenging to

measure. Many metrics have been developed and used for measuring the size of soft-

ware. Things such as lines of code or function points. Lines of code are strictly the count

of lines of code of a project and are from the developer’s perspective, while function

points are based on the functionality of the software as seen by the user. These metrics

can however have certain drawbacks. Analysing the lines of code of a project is depend-

ent on many factors such as what programming language is used and how much of the

code is from reused materials and program generators. Function points can also have

certain difficulties such as how functions are calculated and certain applications may give

a misleading view of progress such as applications with high algorithmic complexity.

These challenges have led to ever more sophisticated ideas of measuring software

productivity and one of which is the COCOMO. [95]

The constructive cost model or COCOMO is a procedural cost estimate model which is

based on the number of lines of code. This model is used to estimate the cost of software

projects and it accounts for parameters such as size, efforts, cost, time and quality. [96]

There are two separate COCOMO models which are COCOMO 1 and COCOMO 2. The

COCOMO 2 model is a revisited version. The two different models are useful for two

different styles of software development. COCOMO 1 is useful for traditional models of

software development such as the waterfall model and it is measure in terms of size of

software in lines of code. COCOMO 2 is useful in non-sequential models of software

31

development with rapid development and reuse models of software with the size of soft-

ware stated in terms of object points, function points and lines of code. [97]

Table 1. Productivity levels [98]

In terms of productivity, programmers who use high-level programming languages

achieve better productivity and quality than those who work with lower-level program-

ming languages. This is due to the higher-level of abstraction which allows the program-

mer to achieve more functionality with the same effort. This level of productivity can be

expressed numerically, and table 1 showcases the typical ratios of source statements of

several languages when compared to the equivalent C code. The ratios depicted in the

table state how much more the listed language accomplishes when compared then each

line of code does in C. [98]

2.5 Education of programming

The purpose of this section is to view different programming languages and their under-

lying mechanics and attributes for the purpose of effective education. In other words,

what types of programming languages are good for education and why. What underlying

mechanics and types of choices made in the programming language contribute for ef-

fective learning and can more complicated programming languages give a better under-

standing of programming while being more difficult to adopt initially? To attempt to find

an answer to these questions and more, this thesis examines different programming lan-

guages and reviews other such works to better understand the issue and attempts to

draw conclusions from them.

There are many attributes that make for effective learning of anything. Programming at

its core, is expression and problem solving. These attributes give programming and the

32

learning of programming a certain set of skills necessary for effective learning regardless

of the specific programming language used.

Learning programming requires the understanding of many different things such basic

problem-solving skills, effective strategies and planning for the design of the program

and implementation in addition to the programming tools and languages. Programming

is a part of computer science and understanding the scientific method plays a major role

in the learning of programming. General intelligence and mathematical skill seem to di-

rectly correlate with the learning of programming skills. [86]

The ability to break down obstacles and projects down to basic solvable problems is the

very essence of programming. Other skills which directly contribute to the effective learn-

ing of programming are things such as the ability to understand and apply logic, abstract

thinking and understanding patterns. Logical thinking obviously has a major role in the

development of software. The ability to take basic tools and building blocks and use them

to construct something is a common practice in coding. Understanding patterns is an-

other major skill for programming. Computers are in many ways quite stupid and will

mindlessly execute any and all commands precisely as they are given. This lack of any

independent or creative thought creates many problems because of the disconnect be-

tween the man and the machine when it comes to giving instruction. Many of the greatest

achievements in programming where done by the clever use of creative algorithms to

make computers function in more independent, brilliant and efficient ways. Some exam-

ples of this are things such as sorting algorithms and even artificial intelligence. [34]

Choosing the correct language to teach programming to computer science students is

difficult because there are many different programming languages, many with very dif-

ferent purposes and methods of operation. For the student to have a basic understanding

of programming, choosing a niche programming language such as SQL or a program-

ming language with a very specific set of paradigms and functions such as purely func-

tional programming languages is perhaps unwise. Therefore, it is a good idea to initially

teach a student a more general-purpose programming language.

There are however more than 300 programming languages and choosing a suitable one

for students is challenging. In addition, programming languages are not typically de-

signed for teaching programming to a student but instead to fill a role in software devel-

opment. Learning a “throw-away” language just to learn programming is perhaps not a

good idea but instead choose a suitable language with actual application. The goals for

33

a good introductory programming language should be to teach the student basic pro-

gramming skills, support logical thinking and further develop the student’s problem solv-

ing abilities. [87]

To objectively and consistently compare different programming languages, some basic

criteria are needed. In this thesis, the following criteria are selected as a benchmark of

evaluation for any given programming language.

Simplicity: Simplicity of the language is very important, especially for a beginner and

also quite desirable for anyone. In addition, simplicity could be interpreted as how close

the programming language is to typical human languages.

Writability: The writability of the programming language is another important attribute

for both novice and professional users. A good programming language should provide

constructs and APIs (Application programming interface). This will greatly aid the user in

creating both specific and general programs. In addition, a good programming language

should provide support for a variety of data types. This feature would give the language

significant choice in the method a problem is solved. [35] In other words, writability

means how easily a language can be used to create programs for a chosen problem

domain.

Reliability and fault tolerance: Needless to say, reliability of the language is important

but also the ability to recover from possible errors or even preventing them equally so.

Features such as support for assertions, error checking and exception handling are quite

important for a programming language. [35]

Market demand, community support and over all availability: These are all attribut-

ers which are required. Availability in terms of both development tools, compilers or in-

terpreters and IDEs (Integrated development environment) should be available and pref-

erably free and easy to find. Support for a programming language is very important for

finding help and solving problems. Market demand is crucial because the language

needs to have a practical application in the senses of commercially available employ-

ment for the student investing time or other resources in education. [35]

Coverage and extensions: Coverage in this context, refers to the programming lan-

guages concepts and abilities to be applied in as many applications as possible. Cover-

age in terms of concepts includes topics such as object-orientation, abilities for multi-

threading, I/O (input and output), support for mobile applications, support for databases,

system level programming etc. Extensions are also important for a programming lan-

guage, so the user does not need to “re-invent the wheel” for every application, but in-

stead use an available library, a driver for hardware interface etc. [35]

34

3. RESEARCH METHODOLOGY

The purpose of this chapter is to discuss the methodologies used in this thesis. This

chapter also discusses the methodologies chosen and perhaps more importantly, why

they are chosen for each individual section.

This thesis will focus mainly on examining existing data such as literary works on books

and articles and reviewing existing figures in lieu of measurement or conducting inde-

pendent researches. The conclusions or thoughts drawn in this thesis are derived by

logical deductions and thinking supported by existing works. The generic methods em-

ployed in this thesis can be categorized in two general categories which are quantitative

and qualitative methods.

3.1 Quantitative methods

Quantitative methods are a method of research that rely solely on the measurement of

variables using numerical systems and analysing these measurements using any variety

of models and reporting the relationships and associations of the studied variables [36].

In other words, the section of the research which focuses on measurable and quantifiable

attributes.

The quantitative research methods in thesis are mainly focused on directly measurable

aspects such as performance tests and popularity figures. The comparing and con-

trasting of these results can be done quite objectively relying for the most part on the

numbers reported while bearing in mind certain aspects. These aspects can be things

such as the efficiency of the different codes tested and the validity and sample size of

the numbers collected. This thesis will focus on reported tests and studies for the pur-

poses of drawing meaningful conclusions from them. This thesis will not independently

run performance tests or collect independently sourced numerical data due to time con-

straints.

3.2 Qualitative methods

Qualitative research methods focus more on the quality aspects of the research area

instead of just quantifiable things such as directly comparable numbers or statistics. This

allows the research of selected issues in-depth and detail without being constrained by

pre-determined categories of analysis. While quantitative research can be conducted

35

with accurate and more scientific methods such as comparing figures or statistics, qual-

itative methods are much more difficult to judge and draw objective conclusions form. To

attempt to make the results derived from qualitative research methods valid and objec-

tive, the following key aspects of the study must be focused on rigorously.

Context: Findings derived from quantitative research are very dependent on their con-

text. Referencing the situation and the environment in which the findings where derived

from is therefore very important.

Credibility and intellectual integrity: The research done by qualitative methods must re-

main as objective as possible. Anything that may affect the methods used, data collec-

tion, analysis, interpretation and conclusions drawn must be reported and explained.

Confirmability: In qualitative research it is vital to show how the study has come to the

reported conclusions. This is done to showcase the inner workings of the research, so

the trail of thought and the logical connections are understandable. [37]

The qualitative research methods employed in this thesis focus on certain aspects that

cannot be numerically compared or contrasted, while still being able to be objectively

delineated. Examples of these can be for instance the readability or simplicity of different

programming languages or user friendliness.

3.3 Methods for choosing a programming language

In addition to very generic methodologies such as the quantitative and qualitative meth-

ods, some more specific methods can also be used for certain comparisons. These

methods are more purpose specific and may include both quantitative and qualitative

methodologies. For the purpose of choosing a programming language, a less generic

comparing method can be advantageous.

Choosing a suitable programming language can be challenging. Some choices are quite

obvious or in certain cases, there can only be a single programming language capable

of the specific task in hand leaving no room for choice at all. In many cases, external

factors can also affect the choice to use a certain programming language. To give these

differing methods of choosing some more structure, this thesis factors the choices in two

distinct categories. These two categories are hard choices and soft choices. [38]

Hard Choices: Certain projects can have very serious restrictions or limitations, which

would necessitate the use of a certain programming language. Hard choices are choices

which leave the user little room for choosing and a programming language is chosen

because it is either the only or from a very select few applicable for the task.

36

Soft Choices: Soft choices give the user more freedom in terms of applicable program-

ming languages to choose for the project but introduces other attributes for the decision-

making process. These attributes are things such as productivity, environment, support,

user friendliness and other such features. [38]

Measuring the real-world performance differences of programming languages is quite

challenging. In addition to the difficulty of obtaining identical programs written on many

different programming languages, there are many other factors which will affect the re-

sults such as how well the program is written or optimized. For the sake of brevity, this

thesis focuses mainly on very basic benchmarks to give a rough estimate on how any

given programming language is expected to perform when running basic short tasks.

The performance measurements of this thesis where mainly sourced from a website ti-

tled “The computer language Benchmark Game”. This website catalogues an ever-

changing user written set of ten different small programs which can be easily compared

with one and other. The tables depicting the performance measurements catalogue the

runtime in seconds denoted as “secs”, the memory consumption of the program denoted

as “mem”, the size of the source code denoted as “gz”, busy and computer processor

load percentage depicted as “cpu load”. More information on this specific testing meth-

odology can be found at the following web address. https://benchmarksgame-team.pa-

ges.debian.net/benchmarksgame/how-programs-are-measured.html [44]

https://benchmarksgame-team.pages.debian.net/benchmarksgame/how-programs-are-measured.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/how-programs-are-measured.html

37

4. RESULTS

The purpose of this chapter is to catalogue and showcase the results found in this thesis.

The results of the study will be further reflected upon in the following chapter.

4.1 Comparison with other programming languages

The purpose of this section is to compare the C++ programming language to its main

alternatives in terms of general use and popularity depicted in figure 4. Figure 4 is an

image from the TIOBE index which is a programming community index indicating the

popularity of programming languages. The ratings of this index are based on the number

of search engine results with the name of the programming language from many of pop-

ular sites such as Wikipedia, Google, YouTube etc. [39] This section briefly overviews a

selection of programming languages and then compares their generic relevant features

to C++. Certain features of C++ or other more specific programming languages may also

be compared in certain specific situations for context. Purpose specific programming

languages such as SQL or Matlab are not included in the comparison.

Figure 4. Tiobe Index [39]

There are many different reasons which contribute to the decision-making process when

choosing a programming language for any given task. Many features and attributes both

38

in and surrounding the programming language can affect this choice. For this compari-

son, a few programming languages and their differing attributes when comparing them

to the C++ programming language are selected. The more detailed description of the

testing methodologies where discussed in chapter 3 of this thesis.

4.1.1 Comparison with Java
The first programming language selected for this comparison is the Java programming

language. Java was selected for this comparison because of the language’s popularity

and because of the relevant differences between it and C++. Discussing the minute de-

tails and intricacies of each programming language are very difficult. For the interest of

brevity, this thesis will mainly focus on the more generic differences between the Java

and C++ programming languages.

The Java programming language was originally developed by James Gosling and re-

leased in 1995. Java derives many of its syntactic features from the C++ programming

language while having fewer low-level facilities as either of them. [40] The Java program-

ming language can be generically described as a general-purpose programming lan-

guage which features the object-orientated-, imperative- and functional- programming

paradigms and is statically typed. In terms of both paradigms of programming and syn-

tax, Java and C++ are quite similar in many ways. The main practical differences be-

tween the two languages are Java’s memory management and garbage collection and

the compilation process of the language.

Figure 5. Compilation of Java [41]

The compilation and execution of Java and C++ differ greatly and is a very delineating

factor between the two programming languages. To briefly explain this difference, the

C++ programming language is compiled into platform and operating system specific ma-

chine code. This differs greatly from the Java programming language, which is compiled

into bytecode. This bytecode is then run on Java’s runtime environment for instance the

39

Java virtual machine which is commonly abbreviated to JVM. The diagram in figure 5

gives some visual aid for this process. In practical terms, this makes the Java program-

ming language platform independent. Meaning that code written on Java can be ran on

any environment where there is an existing runtime environment which supports Java.

[41]

To achieve this feature of platform independence, the Java programming language does

not work on a single step compilation. Instead, this process involves the execution of two

steps, the first of which is an operating system independent compiler and the second is

the Java virtual machine. This process is depicted in figure 6 for visual aid.

Figure 6. Compilation process of Java [42]

 In the compilation stage, the Java source code contained in the .java file, is passed

through the compiler, which encodes the source code into a machine independent en-

coding, also commonly known as bytecode. The source code also contains classes and

the content of these classes is then stored in a separate .class file. The process of con-

verting the source code into bytecode is done in the following seven steps. The first step

is parsing, where a set of java source files are read, and the resulting tokens are mapped

into nodes on an abstract syntax tree. The second step enters the symbols for the defi-

nitions into the symbol table. The third processes the annotations found in the specified

compilation units if requested. The fourth step attributes the syntax trees which includes

40

name resolution, type checking and constant folding. In the fifth step, dataflow analysis

are performed on the syntax trees from the previous step. This process also checks for

assignments and reachability. In the sixth step the abstract syntax tree is rewritten, and

syntactic sugar is translated away. The seventh and final step, generates the .class files.

In the execution stage, the class files generated by the compiler are independent from

the operating system or the machine. This allows them to be run on any system where

the main class file is passed to the Java virtual machine. To execute the final machine

code, three stages have to be gone through. The first stage is the class loader where the

main class is loaded into the memory by passing its .class file to the Java virtual machine.

In addition, all other classes referenced in the program are loaded through the class

loader. The next stage is the bytecode verifier where the instructions are checked so

they do not contain any damaging actions. The final stage is the Just-In-Time Compiler

where the loaded bytecode is converted into machine code. [42]

The second major difference between C++ and Java is how the two languages handle

memory allocation and deallocation. In the C++ programming language, the user is re-

sponsible for both creating and destroying objects and certain variables which are cre-

ated by using the “new” keyword. If these allocated objects or variables are then not

manually deallocated by the user, there can be certain problems such as memory leaks

or other problems which may lead to the entire program crashing as a result. Though

this can be mitigated in C++ by the use of newer features such as smart pointers. This

process of deallocating memory is done automatically in the Java programming language

by the use of the Garbage collector. The Garbage collector is responsible for deallocating

memory allocated on the heap by automatically destroying unreachable objects. Un-

reachable objects are objects which do not contain any references to them. [43]

The Java programming language also offers the user many run-time features which can

greatly aid in both error detection and prevention when compared to the C++ program-

ming language. Run-time features and the ability to function platform independently how-

ever come at a cost to performance as seen in table 2. In addition to the execution of all

the programs being slower than C++, table 2 also shows that the memory usage of Java

is far greater in all but one of the benchmarks. The tables depicting the performance

measurements catalogue the runtime in seconds denoted as “secs”, the memory con-

sumption of the program denoted as “mem”, the size of the source code denoted as “gz”,

busy and computer processor load percentage depicted as “cpu load”.

41

Table 2. C++ and Java performance test [45]

Comparing the generic features and attributes of the Java and C++ programming lan-

guages can give a rough idea on what the two different languages are more suited to

and do well in. Due to the popularity of the Java programming language, support and

libraries found for the Java programming language are in many cases more numerous

than what can be readily found for C++. However, due to the two languages having many

different target-uses, there will be differences in support for certain applications. Java

also has run-time features which allows for a variety of different attributes such as run-

time error detections and better memory safety due to the garbage collection. The

memory management in the Java programming language is handled by the system and

the language does not use pointers. Java does have support for threads and interfaces.

The object-oriented features in C++ extend further then Java’s. The C++ programming

language provides both single and multiple inheritance while Java only supports single

inheritance for its classes. Multiple inheritance can be used in the Java programming

language through interfaces which can be used to extend multiple interfaces. Program

handling is also somewhat different between the two languages. In the C++ programming

42

language, methods of objects and data can reside outside of classes and there are con-

cepts of global file, namespaces and scopes available. This differs greatly from the Java

programming language where methods and data reside within the class itself. Platform

independence and portability are also a very strong feature that Java processes. The

ability to write code which can be ran on any platform is a feature that the C++ program-

ming language does not poses as the source code has to be recompiled for different

platforms. [46] Because of the lower abstraction layer and lack for a need for a virtual

machine, the C++ programming language manages to achieve the higher performance.

In addition, the C++ programming language is more suited to be utilized in much more

restricted environments such as embedded systems although the Java programming

language can certainly be used in such applications and even offers tool for such use.

The C++ programming language also gives the user more freedom in the approach of

solving problems by means of allowing the programmer better access to the memory.

While the ability to directly access the computer’s hardware with few safeguards gives

the user more freedom and perhaps a better avenue for solving certain problems, it can

lead to other problems such as memory leaks and other exploits. The Java programming

language can mitigate many of these issues by both restricting access to the memory

and by run-time features. The memory security in the Java programming language is

done by the Garbage collection where memory can be implicitly allocated but not freed.

The type safety is done by strict type checking of instruction operands and there is no

pointer arithmetic. There are also run-time checks for array accesses and casts. Despite

all this, Java is by no means immune from security risks and some common attacks can

be carried out by type confusion, class spoofing and bald implementation of system clas-

ses. [49]

4.1.2 Comparison with C#
The C# which is pronounced “C sharp” is selected for this comparison because of the

popularity of the language and because it can be seen in some ways as an evolution or

a modern version of C++ just as C++ was a modernized C at the time it was developed.

The C# programming language also has many similarities with Java and is a more mod-

ern programming language. The C# programming language was developed by Microsoft

and launched in 2001. [50] In terms of its underlying features, the C# programming lan-

guage is a general-purpose programming language with strong typing and it is also type

safe. In terms of programming paradigms, the C# programming language encompasses

the paradigms of imperative-, declarative-, object-oriented- and functional- programming

43

paradigms. [51] In terms of syntax, the C# programming language is very similar to C++

but with many simplifications. The syntax of the C# language was designed to do away

with many of the complexities of C++ while still providing many of the features that it

provides which the Java programming language does not provide. The C# programming

language provides many powerful features such as nullable value types, enumeration,

delegates, lambda expressions and even direct access to memory, which Java does not

provide. In addition, the C# programming language supports generic methods and types

which can provide both increased type safety and increased performance. Unlike C++

but much like Java, the C# programming language features an automatic memory man-

agement system in the form of the Garbage collector. The object-oriented features and

abilities of the C# language are similar to the C++ language in terms that C# supports

the concepts of encapsulation, inheritance and polymorphism however, C# is only capa-

ble of single inheritance.

The compilation and execution process of the C# language is different from C++ or Java

but has many similar elements to both of them. This process is depicted in figure 7 and

is quite similar to how Java functions. A program written on C# is run on the .NET frame-

work. The .NET framework is an integral component of Windows and it includes a virtual

execution system which is called the common language runtime or CLR and a unified

set of class libraries. The source code written in C# is compiled into an intermediate

language which conforms to the specifications of the common language infrastructure.

The intermediate language’s code and resources, such as bitmaps and strings, are

stored on the disk in an executable file known as the assembly file. This assembly file

contains a manifest which provides information about the assembly’s types, versions,

culture and security requirements.

44

Figure 7. C# Compilation [52]

The execution of a program written on the C# programming language starts by loading

the assembled file into the common language runtime, which based upon the information

in the manifest, may take different actions. After this process and if the security require-

ments are met, the common language runtime performs just in time compilation to con-

vert the intermediate language code to native machine instructions. In addition, the com-

mon language runtime provides other services related to the automatic Garbage collec-

tion, exception handling and resource management. [52]

45

Table 3. C++ and C# performance test [53]

Describing the generic differences between the C#- and the C++ -programming lan-

guages gives an idea on how they differ from one and other on an overall level. The C#

programming language is almost a hybrid of the C++ and Java programming languages

in the sense that it encompasses many of the ideas and the syntax of C++ while having

many of the more modern features of Java, for instance the Garbage collection system

and run-time features. There are however many crucial differences between C# and

C++. Starting with some of the practical differences, the C# programming language does

not feature global functions, header files and pointers are not applicable. Because of

many of these features, the C# programming language is considered to be a higher-level

programming language and less difficult. [53] The portability of the C# programming lan-

guage is also quite strange as it is mainly targeted (although not limited) for the Windows

environment while C++ can be compiled for any platform. The C# programming language

itself is platform independent however, the .NET platform and the associated libraries

may not always be. There are many major differences in the performance between the

C#- and the C++ -programming languages as depicted in table 3. In terms of runtime,

the C# programming language manages to beat C++ in only one of the ten tests shown,

46

while consuming considerably more memory in every test. The C++ programming lan-

guage can also work in more restricted environments because it does not need a sec-

ondary environment to run on. In addition, the C++ programming language can give the

user more freedom in terms of selecting different ways of solving problems and is overall

less restrictive. The C# programming language does however have tighter security and

run-time features which can both prevent and aid assisting in error cases. Buffer over-

flows are however possible even in the C# programming language by for instance, using

the “unsafe” keyword for allocating pointers.

4.1.3 Comparison with Python
The Python programming language was selected for this comparison because it has

recently overtaken the C++ programming language in popularity according to the Tiobe

index. In addition, the Python programming language has many interesting differences

to C++.

The Python programming language is a high-level general-purpose programming lan-

guage, created by Guido Van Rossum and released in 1991. Python features many high-

level features such as a dynamic type system, automatic memory management in the

form of a Garbage collector and many other run-time features. In terms of programming

paradigms, the Python programming language supports imperative-, procedural-, object-

oriented- and functional- programming paradigms. [55] Dynamic typing in Python is the

opposite of static typing found in languages such as C++ and this is a large practical

difference between Python and C++. The definition of dynamic typing is that a program-

ming language which is dynamically typed does not enforce or check type-safety at com-

pile-time but instead defers them at run time. In practical terms, this means that the type

of for instance a variable, does not need to be explicitly defined but instead the deduction

of the variable type is done automatically. [56]

The programming languages discussed thus far, have all been compiled languages but

Python is an interpreted programming language. An interpreted programming language

is directly executed, rather than being first converted into a basic form such as machine

code for execution as is the case with a compiled programming language [57]. In more

practical terms, the source code written in Python is converted into an intermediate lan-

guage which is then translated into the native language or machine language for the

target platform. The code written in Python is first compiled into python bytecode, this

bytecode compilation is done internally and is a step for the translation as the bytecode

functions as a representation of a lower-level code which is platform independent. The

compilation phase creates a .pyc file which is then executed on a virtual machine. The

47

virtual machine is the runtime engine for the Python programming language, and it is the

actual program which runs the Python scrips. [58] This process works by loading the byte

code into the Python runtime and then interpreted by the Python Virtual Machine which

then reads each instruction in the byte code and executes the operations as instructed.

In addition, each time the interpreter program is run, the interpreter must convert the

source code into machine code and pull in runtime libraries. [59] The Python program-

ming language is a very portable language and can be run on any platform with the

appropriate interpreter.

Table 4. C++ and Python performance test [60]

Even the generic differences between the Python- and C++- programming languages

are quite numerous and well defined. The obvious practical difference between the two

languages probably most evident to the user will be the syntactic difference between the

two languages. The syntax of Python programming language closely resembles the Eng-

lish language in many of its operations. As an example, the print function in Python is

just denoted as “Print” and instead of separators such as semicolons, Python code is

delineated by the use of indentations. In addition, the overall code written in Python,

48

when compared to C++, is much shorter and easier to understand. The Python program-

ming language is therefore much more expressive and a higher-level programming lan-

guage then C++. This also makes Python far less prone to lower-level programming er-

rors or memory exploits when compared to the C++ programming language. Most of this

is done by the run-time features featured in the Python programming language such as

the Garbage collector.

The higher abstraction level and automation of many lower level features however come

at a cost to performance which is depicted in table 4. As noted in table 4, the C++ pro-

gramming language beats Python in every performance test and in some tests the C++

programming language is faster by more than 100 times. In addition to the slower run

times, the Python programming language requires far more memory. This difference in

performance and the requirement for the interpreter, rules the Python programming lan-

guage out of many use cases where run-time performance is imperative or restricted

environments. Overall, the C++- and Python- programming language differ quite a lot

and this is apparent in the use-cases of the two languages. Comparing the two lan-

guages directly is therefore perhaps not very applicable to many cases except the edu-

cation of programming.

4.1.4 Comparison with Rust
The Rust programming language was chosen for this comparison because it in many

ways appears to be a proposed direct alternative to the C++ programming language. The

Rust programming language is less in the mainstream of programming languages and

therefore the comparison with Rust is only relegated to this section of the thesis and will

be less examined for the subsequent sections.

The Rust programming language was created by Mozilla research and released in 2015.

In terms of programming paradigms, the Rust programming language is functional, ob-

ject-oriented and concurrent. [72] Rust is also directly compiled into machine code just

like the C++ programming language and does not feature a garbage collection system.

The syntax of Rust is meant to closely resemble the that of the C and C++ programming

languages but there are many differences. The original aim of Rust was to be a systems

language for high performance applications which are typically written in C or C++ but

Rust was also meant to prevent certain types of problems such as invalid memory access

which may occur in the C or C++ languages.

The Rust programming language was directly targeted as an alternative to C and C++

as a system programming language. Rust was meant to be safer than C and C++ with

49

lesser likelihood of crashing, better memory safety and easier for concurrency. The de-

veloper of rust even went as far to state that the Rust programming language was meant

as a safer and easier alternative to C++ in systems-level projects where performance

and deployment characteristics are similar. [73]

Despite being developed for a very similar purpose as C++, there are certain key differ-

ences between the two programming languages. The first and one of the more deliber-

ately made difference is the more secure memory usage of Rust. In Rust, there is a

dedicated check for free variables usage and dangling pointers. In addition, there are

tools which can find raw pointers used inside unsafe sections. This differs from C++

where the user must manually review the code and keep track of raw pointers. The C++

programming language does however feature smart pointers. Another feature in Rust for

using the memory more securely is the check for null dereferencing errors. In the Rust

programming language, option types can emulate null references and they need to be

explicitly checked before use. In addition, raw pointers can be set to null only when they

are used inside unsafe blocks. This differs from C++, because even with smart pointers

null dereferencing is possible, and compilers will not catch this type of warning or possi-

ble error. The possibility of errors caused by buffer overflow in Rust is mitigated by en-

forcing automatic range checks on all slice types at runtime. In C++, range checks can

only be the used inside of a wrapper class. [74]

Another key difference between Rust and C++ is how they handle concurrency and data

races between threads. Rust checks for possible inconsistencies with the possibly un-

safe modification of concurrent data and can trace them with the Rust reference model

and a built-in borrow checker at compile time. In addition, unsafe misuse of mutexes can

be made impossible by locking API unsafely. This differs from C++, where most of the

responsibilities of concurrency fall on the shoulders of the user. [74] Obviously, there are

many other major and minor differences between the two languages such as the way

they handle compile-time polymorphism and pattern matching just to name a couple. But

overall, the two programming languages are attempting to fill the same purpose in pro-

gramming.

50

Table 5. C++ and Rust performance test [75]

In terms of performance, Rust and C++ perform very similarly. Table 5 showcases some

performance tests and in terms of run-times, Rust manages to beat C++ in four of the

ten tests. Runtimes are quite similar throughout the table however. In terms of memory

usage or the size of the projects featured in the tests of table 5, there does not appear

to be a clear winner in these regards and the two languages seem to be very similar.

Overall, the Rust programming language is meant to fill the same role of system-level

programming as C++ does but with many proposed improvements. Although the Rust

programming language has gained some adoption, it still has not really made its way to

the mainstream at least yet.

4.1.5 Conclusions from the comparisons
Comparing the C++ programming language to its main alternatives gives a basic under-

standing of the different programming languages each with their own attributes. The term

“general-purpose programming language” can be used to describe all of the featured

51

languages, but despite all of the languages falling under this term, they are used in very

different applications.

Despite their similarities, there are a number of crucial differences between all of the

languages even in general terms. The Python programming language is perhaps more

different than the rest due to it being an interpreted and dynamically typed language.

This makes Python more of a scripting language and it is notably higher in the level of

abstraction. This in practical terms can make Python easier and more productive for cer-

tain applications such as scripting. However, the performance of Python both in terms of

runtimes and resource usage is far higher than the other languages meaning that it rules

the use of this language out completely in applications where runtimes are imperative or

the platform has certain restrictions. The comparison with Python and C++ is therefore

not very applicable in many cases due to the languages being designed and used for

very different applications. The comparison is however useful when comparing the two

language’s merits for things such as education.

Java and C# are in many ways quite similar and comparing the general differences be-

tween the two languages is very nuanced. With both languages having many similar

ideas and filling similar roles. Comparing C# and Java with C++ however, is not quite as

difficult. In general terms, the compilation, memory management and runtime features

are some of the more practical differences when comparing C++ with Java and C#. Both

Java and C# have a higher level of abstraction. While this can make C# and Java easier

to work with in certain applications it also means that their ability to access the computer’s

hardware or memory is more restricted. In addition, in terms of raw performance in the

benchmarks neither can match the runtimes or low memory usage of C++.

Despite their similarities, the C#, Java and Python programming languages are all suited

to more higher-level development and this shows in their overall features such as higher-

level of expression which can give them better productivity, runtime features and platform

independence. Whereas the C++ programming language is more suited to applications

where performance is imperative and lower-level applications where the application ne-

cessitates features such as direct access to the computer’s hardware or the environment

has certain restrictions. The C++ programming language therefore has more coverage,

because it still can be utilized in higher-level applications whereas the Python Java or

C# may not be able to function in the same capacity in the lower-level applications. While

the C++ programming language can be utilized in the same applications as its newer

alternatives, the data in figure 4 suggest that most developers are choosing other alter-

natives.

52

4.2 Choosing a programming language for education

The purpose of this section is to compare different programming languages for effective

education of computer science. In the last section, the general differences between dif-

ferent programming languages were discussed. This section focuses on the attributes of

different programming languages and they are compared with one and other to attempt

to find out how will they contribute for the education of computer science.

In education of programming, it is important to bear in mind for whom this education is

targeted both in terms of age and level of academia. This thesis will focus mainly on

education for general engineers and computer science students. The divide between

general engineers and computer science students is done because computer science

students will undoubtably learn many programming languages but in the case of general

engineers it is less likely that they will continue beyond the first language [87]. In addition,

general engineers will most likely have less time and interest for programming.

Attributes for the education of programming where discussed in section 2.5 of this thesis.

The attributes discussed where simplicity, writability, reliability and fault tolerance, mar-

ket demand, coverage and extensions. To apply these criteria to the different program-

ming languages showcased, the programming languages must be evaluated with these

criteria in mind.

In addition, the mentioned criteria, the requirements for a first programming language

can be further specified with more distinct attributes. Choosing an effective first program-

ming language for both general engineers and computer science students is challenging

and has many difficulties for the student. There are many difficulties for learning the first

programming language and the syntax and structure of the programming language are

some of the more distinct factors. The rigid rules in the computer language’s syntax with

all the precise rules which must be followed can be overwhelming for students and

choosing a simpler or at least syntactically more familiar language would aid the learning

process. The structure of programming languages is another unfamiliar attribute for

many and is quite unlike other fields of study. [88] Therefore it is beneficial for a program-

ming language to have simplicity in attributes such as functions and parameter passing.

Many of these required attributes for a fist programming language can be described in

the following metrics. Directness or linearity, meaning that the user may begin to code

without the need for terms and structures which maybe unclear to the user at the begin-

ning. Transparency, which in this context refers to the readability of the code even for

someone not familiar with programming. Resistance to errors and ease of recovering

53

and fixing them. The level of abstraction must be suitable for the students. The devel-

opment environment in terms of both availability and the complexity of setting it up and

using it. [62]

4.2.1 Examining the criteria selected for C++ in teaching
The C++ programming language has been and is a popular programming language when

it comes to teaching. Evaluating the C++ programming language on the criteria men-

tioned gives some context on how well the programming language is suited for this pur-

pose. This section will first examine the C++ programming language with the attributes

discussed in section 2.5 for a general understanding on how well suited the C++ pro-

gramming language is for education.

The first criteria is simplicity and the C++ programming language is not very simple and

can be quite overwhelming especially for a beginner. The syntax of the C++ is not very

understandable for someone unfamiliar with programming and does not very closely re-

semble any spoken language. This is the case despite many of the commands used are

abbreviations from the English language. The C++ programming language is also quite

comprehensive, and although this can be a positive attribute, it can also be quite difficult

for a beginner. C++ has seen many updates over the years and the language has grown

to a very large size in terms of different practices and operations. With the updates and

modernizations however, the older and perhaps outdated operations have not been re-

moved which also is a contributing factor in the language’s complexity and reading older

C++ code can be challenging even for an experienced user. The static typing of the

language is both a good and a bad thing for beginners, because it makes the user be

aware of the types being used at a glance, however constructing generic functions can

be more challenging with static typing.

The parameter passing is also a point of contention for many beginners in C++. Param-

eters can be passed in a number of different methods such as value or reference etc.

and depending on the method used, will drastically change the actual operation done.

This feature is useful in many use cases but can be difficult to grasp for a beginner.

The second attribute is writability and the C++ programming language does very well

in terms of different methods which can be used to solve problems. The data types of-

fered in C++ are quite various and with the standard template library or STL, many com-

plicated data structures are made accessible and easy to use.

Reliability and fault tolerance are points which continue to get better in C++ by many

of the new updates focusing on making compile-time checks and overall attempting to

54

make the language more robust. The C++ programming language also provides excep-

tion handling and is able to both handle and recover from exceptions. Unfortunately, the

C++ programming language does have many possibilities for problems due to the lower

abstraction level and the freedom in grants to the user such as accessing the memory.

This allows for many exploits such as memory exploits which the user must take into

account. To make matters worse, the C++ programming language does not feature run-

time features such as a Garbage collector, meaning that a user must deallocate memory

manually. These attributes contribute to the performance of the programming language,

but for a beginner, they can be problematic. The programming language’s performance

is not a very useful feature for teaching. In addition, badly written code will not be efficient

high performing or in some cases even functional. Although updates to the C++ program-

ming language have made strides to improve these aspects with features such as smart

pointers.

For market demand, community support and overall availability, the C++ program-

ming language does quite well in all of these. The market demand for C++ is usually

quite high due to the widespread use of the language. In addition, many older programs

have been written on it so there will be a need to maintain or update legacy code. There

are many books and reference material about the C++ programming language and be-

cause of the language’s long history and wide range of uses, community support and

overall guides and references are often easy to find. In addition, tools and integrated

development environments for the C++ programming language are free and easily avail-

able and many environments have large companies such as Microsoft behind them in

the case of programs such as Microsoft Visual Studio. All of these attributes are good for

education because the student can find the tools necessary easily and for free and find

material or support to aid the learning process.

Coverage and extensions are the last criteria discussed in section 2.5 and for both of

these criteria, the C++ programming language does very well. Coverage for the C++

programming language is excellent, because it can be utilized in a very broad range of

applications, although more modern languages are perhaps more suited for some of

them, for instance web applications. The C++ programming language is a multi-paradigm

language and it incorporates many programming styles. This grants the user many free-

doms to approach each problem in different ways. With this criteria, the C++ program-

ming language does especially well compared to even more modern equivalents. Exten-

sions for the C++ programming language is decent and there are many libraries and

other material available for it.

55

4.2.2 Examining alternative programming languages
This thesis will mainly focus on the C++ programming language. For the interest of brev-

ity, the subsequent programming languages will be examined more briefly.

In terms of simplicity, the Java-, C#- and Python -programming languages are all sim-

pler than C++. Java and C# are simpler due to their fewer operations and restrictions to

certain abilities when compared to C++. This can be exemplified on how readable the

code written on different programming languages is. For instance, Java only has around

50 keywords. The C++ programming language has around 84 keywords which are less

like spoken languages and more difficult to understand for someone not familiar with the

language. Languages such as Java also have a very consistent conventions when deal-

ing with certain aspects such as exceptions, importing libraries and variable scopes.

While C++ often has few rules, but several exceptions to these rules. As an example,

the C++ programming language has many ambiguous symbols which may cause confu-

sion to many such as the asterisk symbol *, which may denote multiplication, pointer

declaration or an indirection. The Python programming language is however far simpler

even than Java or C# and it contains only about 35 keywords. [89] While the syntax of

Java and C# both quite closely resemble that of C++, Python manages to be quite dif-

ferent. Table 6 showcases the difference in a rudimentary insertion sort program written

in C++, Java and Python. The comparison is meant to showcase the syntactic differ-

ences between the different languages both in terms of commands and other symbols

used. While C++ and Java use symbols such as semicolons and brackets, Python uses

indentations. While there can be differing opinions on how effective or unequivocal the

language’s syntax is, the Python programming language with its syntax resembles tradi-

tional languages more closely and in this particular example, the code written in Python

is far shorter.

56

Table 6. Insertion sort code comparison [85]

A beginner may not be familiar with typical instructions of programming languages, but

instead understands typical spoken languages. This would make giving instructions in

for instance English far more familiar and easy to grasp for a novice. This can give a

beginner an easier avenue into programming because both the higher level of abstrac-

tion and the more familiar syntax will let the student start writing functioning code, instead

of struggling with unfamiliar commands and symbols. The syntax of Python resembles

the English language quite closely to the point where even a non-programmer could quite

easily understand what is broadly being done in the code just by understanding English.

57

In terms of writability, meaning how easy it is to create programs for a chosen problem

domain with the programming language, the comparison becomes challenging. The cov-

erage of the C++ programming language is and the freedom it grants to the user, gives

the user many avenues for solving problems and a greater amount of use cases when

compared to the other programming languages featured in this comparison. However, in

terms of how easy it is to work with, the C++ programming language can be more com-

plex and challenging with fewer safeguards such as runtime features aiding the process.

The same problems which were discussed when examining the languages simplicity are

all valid in terms of writability as well. In general, the C++ programming language is more

challenging to use but also offers the user more avenues for problem solving.

Reliability and fault tolerance are attributes where the newer programming languages

start to really outclass the C++ programming language. Because of the higher level of

abstraction and run-time features such as the Garbage collection, the Java-, C#- and

Python- programming languages are much more capable of avoiding errors and dealing

with them if they should occur. In addition, all three are also capable of exception han-

dling.

For market demand, community support and overall availability, all of the program-

ming languages featured are quite popular. Java is the most popular programming lan-

guage featured and development environments are free and readily available for it. Com-

munity support and market demand are also high for the Java programming language

because of the language’s popularity, wide-spread use and wide variety of applications

it can be used for. The C#- and Python- programming languages are very popular in

mobile- and web- applications. All of the newer programming languages are well suited

for web-applications and with web development being one of the original purposes of the

Java programming language and Python including many web frameworks such as

Django.[89] And with increasing expansion and demand in these fields, it is safe to as-

sume, these programming languages will only grow in popularity. There are free devel-

opment environments easily available and free for both of them and market demand and

community support is excellent for both of them. In addition, there are many libraries and

ready-made structures available for all of the programming languages.

4.2.3 Comparing programming languages for education
Now that the main broad points and attributes of both the C++ programming language

and some of its alternatives have been overviewed, some additional analysis can be

done to look at the overall picture. Evaluated on the criteria discussed in section 2.5, the

58

C++ programming language does do quite well on many of the mentioned criteria for

educational purposes. However, some of the mentioned criteria showcase many of the

drawbacks of C++ and the age of the language does start to show when comparing it to

its more modern alternatives. In section 4.2 some additional criteria were discussed in

choosing a first programming language.

The C++ programming language can now also be further analysed as a first program-

ming language with the additional criteria. These criteria are directness or linearity, trans-

parency and resistance to errors and ease of recovering and fixing them.

In terms of directness and linearity, the C++ programming language when comparing

it to languages such as Python does not do all that well. This is due a number of different

attributes. The C++ programming requires the user to write some code to set up basic

functionality, which for a novice may prove to be confusing. In addition, the overall com-

plexity with understanding things such as different types of parameter passing, static

typing and an overall more challenging syntax, can be overwhelming for a beginner.

Transparency, meaning how well a code can be read by someone not familiar with pro-

gramming, is another point where languages such as Python are easier for a novice.

This is due to the more simplistic syntax both in terms of symbols and the wording of the

commands used. In addition, the length of the code written in C++ is often longer.

Resistance to errors and recovering from them, is where the C++ programming lan-

guage has many issues, especially for beginners. Although the C++ programming lan-

guages features mechanics such as exception handling and is capable of recovering

from errors, this is an area where all of the other programming languages do better than

C++. This is in part due to the higher level of abstraction and runtime features, which

aids in automatically dealing or preventing certain possible errors such as memory leaks.

Analysing the C++ programming language as a first programming language for computer

science students and perhaps the only programming language for general engineers

using these criteria can give a somewhat different picture. In terms of readability or un-

derstanding the code for a non-programmer, the C++ programming language does not

do well compared to other programming languages featured in the comparison. For a

beginner, the Python programming language is perhaps the simplest and easiest to un-

derstand, but both Java and C# are still in certain ways simpler than C++. In addition, to

get any code running on C++, there are many lines of code necessary to complete even

the most rudimentary program. This can further hurt the C++ programming language

when compared to programming languages with a higher level of abstraction, for in-

stance Python. Resistance to errors and recovering from them is also more troublesome

59

for C++. In addition to possible low-level memory exploits, the user must keep track other

factors, such as sizes of integers and other mathematical errors such as not dividing with

0. In addition, the lack of run-time features necessitates the user to be much more aware

and responsible for finding and handling errors. This analysis will be further explored in

chapter 5 of this thesis.

4.3 C++ in software development

The purpose of this section is to see how the C++ programming language fits in modern

software development. What applications is C++ suited for and how well does it fit in

more modern software development ideas such as agile development.

Bearing in mind the history of software development discussed in section 2.4 of this the-

sis, it is easy to understand why C++ became such an influential, widely adopted and

popular programming language. In an era where computers where not connected to the

world wide web and performance of the hardware necessitated extreme levels of effi-

ciency, the C++ programming language stands as an excellent compromise. With the

performance of lower level programming languages such as C and a language with

enough expressivity and richness of features to rival even modern programming lan-

guages. These attributes made C++ a very appealing choice for developers. But with

paradigm shifts in computing from both performance of hardware, rapid development

and prototyping, is C++ still and will it be in the foreseeable future a relevant program-

ming language or will it be replaced with more modern alternatives?

4.3.1 What is C++ used for today
In addition to education, the C++ programming language is heavily utilized today in many

applications. Because of the C++ programming language’s high performance, relatively

low level of abstraction and the ability to be compiled for virtually any platform, the C++

programming language is ideal for many use cases. Because the C++ programming lan-

guage is a general-purpose programming language, it can be utilized in virtually any-

thing. The following are some examples where it has and continues to be used in soft-

ware development. [63]

Applications such as operating systems which require the user to access the computer’s

hardware and allow for manipulation of memory. All of the major operating systems such

as Linux, Microsoft Windows or MacOS rely heavily on C++. In addition, many of Mi-

crosoft’s major programs have been written nearly entirely on C++ such as Internet ex-

plorer, Visual studio or Office. [64]

60

Game engines are another major application for C++. Game engines such as the Source

engine from Valve, Unity (the game engine itself is written in C++, but Unity Scripting API

is C#), Frostbite engine from Dice, The Unreal Engine and many others are all written in

C++. Some of the reasons the C++ programming language is very popular in game en-

gines and game making in general is that the language allows direct control of hardware

and the ability to optimize performance.

Another very prevalent application of the C++ programming language is its use in em-

bedded systems. Typically, lower level programming languages such as C or even as-

sembly languages have been used for embedded systems programming, but with the

price of 32-bit microcontrollers being under a dollar, the C++ programming language is

now a viable option for this application. A common school of thought is that the lower the

abstraction layer of a language, the higher performance and lower overhead it has. [65]

This is true to a certain extent, but if examined the contents of table 7, we can see how

this is not always the case. From these particular set of tests catalogued in table 7, we

can determine that in terms of both runtime performance and the size of the programs

denoted as “gz” in the table, there is very little difference. Memory usage is quite similar

as well apart from the n-body test. The performance is remarkably similar and in two test

cases being exactly the same. In addition, it is noteworthy that in some cases the C++

programming language managed to run even faster than C.

61

Table 7. C++ and C performance test [66]

While the performance difference between the C and C++ programming languages are

negligible, in many ways this makes the C++ programming language a much more pow-

erful tool when compared to C because of the higher level of abstraction and added

features with C++. In addition, the C++ programming language is almost exactly a su-

perset of C, meaning many pieces of code written in C can be directly compiled into C++

[65].

There are many concerns when writing programs for embedded systems such as the

following. Reliability, because failure can be very expensive. Limited resources, because

of the limitations of embedded systems, there is often a very limited supply of memory,

network connections or file handles to name a few. Requirements for real-time response.

In addition, embedded systems have often very little downtime, concurrency and may

need to run reliably for a very long time. [67] The C++ programming language manages

to work very well in this application because it has provisions to deal with all of the men-

tioned attributes.

62

In addition to the mentioned specific uses, the C++ programming language is utilized

quite heavily in applications where performance is imperative and there is a need to

access the computer’s hardware directly. Some general examples of these applications

are high frequency finance, 3D animation software and modelling and rendering, web

browsers such as Google Chrome and Mozilla Firefox have been written in C++, data-

base access programs such as MySQL. In addition, because of the C++ programming

language’s age and long-lasting popularity, another very frequent use of C++ comes

from updating and maintaining existing software written in C++. [68]

4.3.2 C++ for the waterfall model of development

A very common and traditional software development process is commonly known as

the “waterfall” model for software development. This model is depicted in figure 8 for

visual aid. The waterfall model is a linear and sequential model for software develop-

ment, meaning that each stage must be completed before the next one may begin. In

addition, each stage of the project is reviewed to ensure that they meet the specified

requirements. The stages of this process are requirement gathering and analysis, sys-

tem design, implementation, testing and development of system and maintenance. [79]

Figure 8. Waterfall Model [79]

This model is meant to be simple, easy to understand and use with clearly defined stages

and well-defined milestones. In addition, this process facilitates easy task arrangement

63

and good documentation. This process however can have certain drawbacks. Due to the

rigid and well-defined delineation between the structures, this process cannot accommo-

date changing requirements. Adjusting of the projects scope during the process can also

be troublesome. The sequential nature of the model only produces working software at

the very end of the process and overall, this model is not ideal for complex or long pro-

jects due to difficulties in measuring progress within each stage. [79]

It is important to note, that a development process can be used with any programming

language. This section is meant to examine in theory, how well the C++ programming

language facilitates a given system of development and how well it is suited to it.

Examining how well the C++ programming language would work with the waterfall model

for software development requires analysis of each section of the model. This is done to

examine how well this model works with C++. Due to the segmented nature of this model,

each section can be examined separately and then the entire model can be analysed as

a whole. For the requirement gathering and analysis stage, the overall requirements of

the software are made and requirement specification documents are written. The pro-

gramming language does not affect the process in this stage.

For the system design stage, the system design is prepared. This is done to specify the

hardware- and system- requirements and the overall system architecture is defined. This

works well with the C++ programming language. This is due to the language’s large

scope and coverage, meaning there are many alternative ways of achieving the required

functionality and the best approaches can be selected to fit each project. In addition, if

the project scope and platform is known, the appropriate frameworks, libraries and com-

pilers can be selected. [84]

The implementation stage segments the program into small sections which are created

and tested. With the C++ programming language’s coverage, overall features and avail-

able support, this process is easily facilitated. With unit testing having many readily avail-

able frameworks. In addition, with the proper documentation and testing, the complexity

and possible vulnerabilities of the C++ programming language can be dealt with.

In the integration and testing stage, the smaller pieces of the software are integrated to

construct the project. During this stage, the entire software is then tested as a whole

instead of just unit tests. This stage can be problematic with the C++ programming lan-

guage if the size of the project is large. There are many reasons which contribute to this

and some are due to the language’s complexity. With multiple people working on the

project, the integration of the separate source codes can have certain incompatibilities

and linking errors. However, this can be advantageous, because certain errors can then

64

be found and dealt with at the linking stage. This problem can be more troublesome with

interpreted languages, where compatibility issues are discovered at runtime instead of

the linking stage. These possible challenges can be mitigated with appropriate compilers

but the issues with code dependencies due to the compiler’s optimizations can be trou-

blesome. [80] The C++ programming language is also an object-oriented language. Ob-

ject orientation is another point where problems may arise. This is in part to do with the

potential number of control flow paths with object-oriented systems which may grow ex-

ceedingly large and difficult to manage or test. [81]

For system testing, projects done on the C++ programming language may also prove to

be quite difficult and there are certain attributes of C++ which makes system level testing

challenging. The build speeds of projects done on C++ can be quite slow, especially on

larger projects. This is due to the necessity of building and linking the entire project com-

prising of static project libraries and third-party libraries into a single large structure to

create an executable. In addition, the dependencies may once again have issues. There

are other features of the C++ programming language which may also hinder system

testing such as the weak type system which allows any pointer to be cast to any other

pointer. In addition, C++ is a compiled language and compiled languages can have cer-

tain tendencies for errors. With compiler optimized code also having the possibility of

creating troublesome errors. [82]

The deployment stage is when the product is deployed in the customer’s environment or

released into the market. Deploying a project done on C++ is different depending on the

platform and environment used. For instance, deployment with the Visual C++ requires

the application and the required library files on the target system. This system enables

three different types of deployment, which are central deployment where the files are

located into the windows directory, local deployment where the files are located in the

application and static linking where the library code is bound to the application. [83] De-

ployment with the C++ programming language as long as the platform is known ahead

of time, should be relatively simple with different choices to help suit each situation.

The final phase is maintaining the software. The beginning of the maintenance phase is

to fix issues which may arise once the project has been deployed in the client’s environ-

ment. This stage for a project done on the C++ programming language differs with the

deployment method used. With central deployment and with the library files being located

in the Windows directory, Windows update service can update them automatically. With

local deployment the libraries must be redeployed if they are updated. With static linking,

the application must be recompiled and redeployed. [83]

65

Developing software with the C++ programming language while utilizing the waterfall

software development model should in theory work quite well. This structured model has

many attributes which play into the C++ programming language’s strong sides while tak-

ing into account certain possible draw backs. This is likely at least in part due to the fact

that during the time the waterfall model for software development was prominently used,

the C or C++ programming languages where at the height of their popularity.

4.3.3 C++ in agile development

Section 2.4 of this thesis showcased a brief history of software development and the rise

of agile methods in the early 2000s. Agile methods are very popular in modern software

development and for a programming language to have as much reach as possible, it is

important to be suited for a modern development environment. The purpose of this sub

section is to examine how well the C++ programming language fairs in agile software

development.

The manifesto for agile development favours individuals and interactions over processes

and tools, working software over comprehensive documentation, collaborating with the

customer over contract negotiation and responding to change over following a plan [69].

In addition, the agile manifesto contains twelve principles to support this process. For

the sake of brevity, these twelve principles are not listed in this thesis but the main idea

of them is to support the process of software development through interaction with the

customer, iterations and rapid adaptiveness to change. There are many different vari-

ants of agile methods such as SCRUM, Test-Driven Development, Extreme Program-

ming and many others, but the main principles behind them are to adhere to the methods

and ideas of the agile way of software development.

It is also important to note, that agile development in many ways is not dependent on a

programming language, but a set of ideas for software development. If a project neces-

sitates the use of a specific programming language, the agile process can be utilized,

whatever this language may be. The purpose of this section is to merely examine how

well do the general features of C++ enable the facilitation of agile methods and how well

it does in a general sense for this purpose.

In a general sense, the C++ programming language can certainly be utilized in an agile

development process. Because of the language’s large coverage and the ability to used

in just about any purpose, the suitability for any given purpose has to be further analysed.

66

Section 3.3 of this thesis overviewed certain ideas on how to choose programming lan-

guages and the idea of hard- and soft- choices was used. This section will focus mainly

on the soft choices, meaning that a language is chosen because of preference and not

due to constraints or mandates. Section 3.2 of this thesis also went over criteria for stud-

ying such aspects as they fall under the qualitative research methods and these criteria

are context, credibility and confirmability. With these parameters in mind, the general

comparison of C++ with other programming languages for agile development can be

done.

Section 2.4.2 of this thesis overviewed the productivity of software development. There

are many different factors which contribute for the actual productivity of software such

as the skill of the programmers, the tools used, team cohesion and many other factors

which models such as the COCOMO and COCOMO 2 take into account. This thesis

however will focus solely on the programming language used and treat all other factors

as constants.

The C++ programming language can function very well as an alternative to many lower-

level programming languages. For agile development, using the C++ programming lan-

guage as an alternative for lower-level languages such as C, Cobol or even in some

cases assembly languages, can be far better because of the flexibility and the expres-

siveness when compared to those languages. Table 1 showcases that C++ could be up

to 2.5 times more productive when compared to C. This would give the C++ programming

language an advantage for both creating working software quicker and having far better

adaptiveness to change. In addition, aspects such as the object orientation of C++ sup-

ports reuse of code which may also improve productivity. Platform dependencies can be

more challenging for C++, however in overall use the higher level of expression can

alone make C++ a favourable choice for many. In addition, higher level programming

languages often offer better support for testing. Writing testable code especially in more

modern C++ is facilitated with many modern tools and easy to find practices such as

Microsoft’s .NET frameworks for unit testing [70].

Comparing the C++ programming language to higher-level languages however, makes

the decision far more difficult. Some newer programming languages, such as Java offer

the user the luxury of platform independence, making them more flexible. This can be

achieved with C++, but the process takes more effort and a started project has to be

partially re-done if the platform requirements were to change, hindering the C++ pro-

gramming language’s agility in this regard. The lower layer of abstraction will also be a

hinderance with C++, because the user must write more code to achieve the same func-

tionality when compared to certain newer programming languages such as Python. This

67

is showcased in table 1 where C++ is 2.5 times more productive then C while Python is

6, making Python more than twice as productive than C++. The build speeds of projects

done on C++ can be quite slow, especially on larger projects and this would make itera-

tive development troublesome with C++.[82] In addition, because of the lower level of

abstraction of the C++ programming language, there is a possibility with memory leaks

or other lower level errors which the user must take into account. [71] This makes testing

an imperative process for C++ whereas many of the lower-level testing can be subsided

with newer memory-safe programming languages.

4.3.4 Improving the C++ programming language

The beginning of this thesis overviewed the development history of the C++ program-

ming language. Even the brief overview of the improvements showcased that the C++

programming language has grown to be a very feature-rich programming language with

many updates and upgrades to make the language more robust and easier to work with.

In some ways, even in practical use, modern C++ is nearly an entirely different program-

ming language to its original version. In addition, the C++ programming language is well

supported and new standards are meant to be released every third year.

The C++ programming language has many benefits but unfortunately the language also

has many problems as well. Some of these problems are the ability for the user to allo-

cate memory on the heap, older or outdated features which may have vulnerabilities and

the overall complexity of the language.

The obvious solution for this would be to fix the problematic attributes. Trying to improve

the C++ programming language is however perhaps more difficult than improving most

other programming languages. This is in part to do with the language’s coverage. As an

example, the C++ programming language lacks run-time features and many safeguards

when it comes to accessing memory. The easy solution for this would be to limit the

user’s access to the memory and add run-time features. This however would create a lot

of problems, because although higher-level applications could greatly benefit from many

of the said features, the language’s usage for lower-level applications would then be-

come difficult or even impossible. Many of these additions would also add to the lan-

guage’s overhead which would decrease the performance and compromise the minimal

memory requirements of the language. Improving the C++ programming language is very

delicate, because any changes could render the programming language worse in some

other crucial application.

68

5. ANALYSIS

The purpose of this chapter is to analyse the study done and results found in this thesis.

The results are analysed in separate sections following the study done in the previous

chapters.

5.1 Analysis of C++ in modern computer science

In this section, the different applications and attributes of the C++ programming language

are analysed to further realize how well it is suited for each individual purpose. This is

done for the purposes of drawing conclusions to the study and perhaps suggest improve-

ments or alternatives to the C++ programming language.

5.1.1 Analysis of C++ in education

Section 4.2 of this thesis studied programming languages for the purpose of education

for both computer science students and general students of engineering. The study con-

ducted showcased many positive and negative attributes of C++ as a programming lan-

guage for education. Upon further analysis of the C++ programming language for edu-

cation it can be stated that C++ is not perhaps the best first programming language for

general engineering students because of the language’s complexity and lower level of

abstraction. The C++ programming language requires a moderate amount of code to set

up general functionality and this may prove counter-productive to those who perhaps

may not have any knowledge of what computer programming is. In addition, the com-

plexity and the overall features of C++ can be overwhelming for even a seasoned pro-

grammer let alone a beginner. Newer and more higher-level programming languages

such as Python are much easier and more forgiving for a beginner.

For students of computer science however, there are many benefits of still learning C++.

Because of the complexity and the overall features, the C++ programming language can

easily bridge the gap between lower- and higher-level programming languages. The

complexity and the overall features can work in the C++ programming language’s favour

in this regard. Because of the complexity and the lower level of abstraction in C++, a

student who can learn this language will be more familiar with the internal workings of

programming languages with regards to things such as memory addresses, different

forms of parameter passing and type systems just to name a few. In addition, if a student

learns a programming language with more complexity and a lower level of abstraction, it

69

is then far easier to transition to a higher-level programming language rather than doing

this process the other way around. The coverage of C++ can also give a student a good

overall understanding of programming in general.

In conclusion, it is better for both general engineers and computer science students to

first work with an easier language such as Python. In addition to being an easier lan-

guage, Python is very prevalently utilized as a scripting language for web applications

and even many scientific purposes such as mathematics or artificial intelligence. This

would perhaps give general engineers many practical uses for the language other than

just as a tool for learning programming. For students of computer science, the Python

programming language would be a great starting point, however learning a more com-

prehensive system-level programming language such as C++ would certainly give the

student a much more thorough understanding of programming.

5.1.2 Analysis of C++ in software development

The C++ programming language has in many ways cemented itself in software develop-

ment. This is in-part to do with existing code and traditions. Due to many existing pro-

grams being made in C or C++, the maintenance and update of these codes will be a

very common practice for the foreseeable future. In addition, the sheer amount of existing

support and knowledge of the C++ programming language will ensure its usefulness.

The C++ programming language is also ever changing and evolving. With many new

updates which have made the language more expressive, secure and easy to work with.

There are however certain drawbacks to the C++ programming language for software

development. Section 3.3 of this thesis discussed a set of ideas for choosing program-

ming languages and the decision-making process was broken down into soft- and hard-

choices. With this in mind the hard choices, meaning a choice which is made out of

necessity, favour the C++ programming language quite heavily in many modern software

development projects. This is often the case with many applications where runtimes and

memory usage are crucial or there is a necessity for a lower-level programming lan-

guage. Applications such as embedded systems, operating systems or game engines

are an example of such applications where performance is imperative and there are re-

quirements for accessing hardware directly.

However, in the case of soft choices, meaning choices made from preference, there are

many reasons to choose other programming languages instead of C++. Because of the

lower level of abstraction of the C++ programming language, many newer languages can

achieve the same functionality with far fewer lines of code and with far less risk for certain

types of errors such as memory leaks. This can put C++ in more of a niche role for

70

modern software development. Because if a language is only used out of necessity ra-

ther than preference it can be just relegated into very certain and specific roles and lose

popularity from mainstream development. With embedded systems and many lower level

hardware becoming more powerful, the C++ programming language is becoming ever

more useful for these types of cases. In terms of popularity, higher level programming

languages are becoming more favourable in projects where performance is not quite so

imperative but for performance centric applications, the C++ programming language is

gaining popularity in lieu of lower level languages such as C or Assembly languages.

Section 2.4 of this thesis overviewed a brief history of software development and how

both the hardware and development practices have changed. The C++ programming

language emerging in 1979 is very much a product of its time and fit the needs of devel-

opers at that period of time. Looking at figure 4 from section 4.1 of this thesis which

showcased the popularity of certain programming languages, we can see that the C++

programming language is losing overall popularity and newer and more expressive pro-

gramming languages are gaining it. Losing overall popularity however is perhaps not so

important because the entire industry of software development has grown. In addition,

the C++ programming language is still a very popular language overall instead of some

programming languages from the same era such as Fortran or Cobol which disappeared

entirely from the mainstream. The focus of the language is however changing from more

overall use to system level programming, where its popularity is growing. On system

level programming, the C++ programming language is a very compelling option but in

recent years, certain newer programming languages such as Rust are also becoming

valid alternatives.

71

6. CONCLUSION

This thesis has overviewed the main attributes and development history of the C++ pro-

gramming language and examined its usefulness in both modern software development

and education for the purposes of finding out how suitable it is in modern software de-

velopment, education and for the future. With newer standards and overall development,

the C++ programming language has grown to be a very feature rich and capable pro-

gramming language incorporating even the paradigm of functional programming. Over-

all, the C++ programming language is more modern and robust than ever while still main-

taining fast runtimes and minimal overhead. The C++ programming language is however

quite complex, with new additions incorporating older and perhaps outdated features as

well, meaning that the language has expanded greatly. In addition, the level of abstrac-

tion of the C++ programming language is quite low when compared to many more mod-

ern languages. This makes the C++ programming language less favourable in certain

applications.

For educational purposes, this thesis concludes with stating that the C++ programming

language is not a very good first programming language for general engineers or perhaps

even students of software engineering. With the C++ programming language’s low level

of abstraction and difficult syntax hindering the student’s ability to learn. Newer more

expressive and more forgiving programming languages such as Python are better suited

for this purpose. For software engineers however, learning the C++ programming lan-

guage will give a valuable insight into programming languages. The overall features of

the C++ programming language and both the freedom it grants and the responsibilities

it requires from the user are all very useful tools for learning. It is therefore preferable to

start the learning process with a more simple scripting language and then move to a

more comprehensive system-level programming language.

The C++ programming language has historically been a very influential programming

language dating back more than four decades. In many ways however, the C++ pro-

gramming language is also a product of its time and lacks many of the features and

attributes found in more modern programming languages. Attributes and features such

as the Java programming language’s platform independence or run-time features such

as the garbage collector found in many more modern languages such as Java or C#. In

addition, the level of abstraction, complexity and possibility for certain exploits have

made the C++ programming language less favourable for many purposes in higher-level

software development. Language’s such as C#, Java or Python are more expressive,

72

more easily portable and often do not need as much testing for lower-level exploits. As

a result, many modern developers favour newer programming languages for higher-level

applications over C++ where there is room for choice. Advances in computing and

changes in development however are not just happening on the higher-level applications,

but lower cost processors in embedded systems are also becoming more powerful. This

has made the C++ programming language a candidate for replacing lower-level lan-

guages such as C or even assembly languages. In system-level applications and appli-

cations where performance is imperative, the C++ programming language stands well

above both lower level programming languages in terms if features and expressivity as

well as above the mentioned newer programming languages in terms of performance.

It is perhaps unwise to study a programming language’s popularity and focus more on

how useful a language is or can be. In many ways the need for a “general-purpose”

programming language can be over-estimated and even looking at overall popularity fig-

ures is perhaps not useful. The field of software development has expanded and with

this expansion the requirement to find a suitable tool for different use cases has also

grown. The choice of which programming language is used is more often than not a

compromise which is often driven by external factors such as existing knowledge and

frameworks instead of just the merits of the programming language itself.

In terms of software development, the popularity of the C++ programming language has

shifted more towards the system-level applications where it is the most popular program-

ming language and the tool of choice to a very large segment of the development indus-

try. There are however attempts to make new and more user-friendly programming lan-

guages for this very area such as Rust which may at some point become a valid alterna-

tive to C++. Although the overall popularity of the C++ programming language may have

decreased, the language is unlikely to fade into obsolescence like Cobol or Fortran due

to the language’s overall qualities, frequent updates and improvements, existing

knowledge, traditions and maintaining older software.

Writing this thesis to me personally has given an overview and a valuable insight into not

only the C++ programming language, but the field of computer science. With many of

the sections of the thesis requiring overviewing many subjects such as history of software

development, attributes for education of programming and in-depth analysis of a pro-

gramming language’s internal workings among other things. The overall focus of the

work however was to examine how well the C++ programming language fits in modern

computer science as a general-purpose programming language and how suited it is for

developers and education. This however, turned out to be quite a muddled subject with

73

difficulties finding usable data for internal decision-making processes of choosing pro-

gramming languages within industries and what attributes contribute for effective learn-

ing of programming. In addition, the realisation that requiring a single programming lan-

guage to be viable in most applications is not perhaps the best idea. This changed the

focus of the thesis. With the expansion of the field of computer science, the tools neces-

sary to deal with each application or situation necessitates more compromises and using

different programming languages. The overall focus of the thesis has become more of

an overview of existing knowledge and analysis of known attributes instead of focusing

on a single subject.

For future work, many of the overviewed fields can be further expanded and studied.

Some more interesting ideas such as further improving the C++ programming language

to suit more modern development both in terms of embedded systems and higher-level

development. The field of education of programming could also be far more thoroughly

studied with actual testing and proper result analysis. In addition, the effectiveness of

newer programming languages with less support and fewer users such as Rust in mod-

ern development as an alternative to C++ could be an interesting subject.

74

REFERENCES

[1] CHM. Bjarne Stroustrup. 2015 Cited 09.10.2019 Available: https://www.com-
puterhistory.org/fellowawards/hall/bjarne-stroustrup/

[2] Stroustrup B. Tour of C++. Pearson Education; 2013

[3] S Pramanick. History of C++. Cited 09.10.2019. Available https://www.geeksfor-
geeks.org/history-of-c/

[4] Fendadis John. History of C++ language. 15.02.2018 Cited 10.10.2019. Availa-
ble https://www.tutorialspoint.com/History-of-Cplusplus-language

[5] Sroustrup B. C++11- the new ISO C++ Standard, Modified 19.08.2016. Availa-
bla http://www.stroustrup.com/C++11FAQ.html Cited 13.10.2019

[6] Bancila M. Tan C++11 Features Every C++ Developer Should Use 02.04.2013.
Available https://www.codeproject.com/Articles/570638/Ten-Cplusplus11-Fea-
tures-Every-Cplusplus-Developer#lambdas Cited 13.10.2019

[7] Köppe T. Changes between C++11 and C++14. 08.10.2018 Available:
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1319r0.html Cited
14.10.2019

[8] Köppe T. Changes between C++14 and C++17 DIS. 02.04.2017 Available:
https://isocpp.org/files/papers/p0636r0.html Cited 17.10.2019

[9] Stroustrup B. C++20: C++ at 40 17.09.2019

[10] McCandless K. What is Computer Programming? 13.06.2018 Available:
https://news.codecademy.com/what-is-computer-programming/ Cited
21.10.2019

[11] Bolton, David What Is computer Programming? 03.07.2019 Available:
https://www.thoughtco.com/what-is-programming-958331 Cited 21.10.2019

[12] Damasevicius, Robertas. 2006. On the quantitative estimation of abstraction
level increase in metaprograms. Comput. Sci. Inf. Syst.. 3. 53-64.
10.2298/CSIS0601053D.

[13] freeCodeCamp Available: https://guide.freecodecamp.org/computer-sci-
ence/compiled-versus-interpreted-languages/ Cited 27.10.2019

[14] D. Munoz Trejo. How C++ Works: Understanding Compilation. Available
https://www.toptal.com/c-plus-plus/c-plus-plus-understanding-compilation Cited
27.10.2019

[15] The C++ compilation process http://fac-
ulty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html

[16] Stevanovic M. and I. Books24x7, Advanced C and C++ Compiling. 2014.

https://www.computerhistory.org/fellowawards/hall/bjarne-stroustrup/
https://www.computerhistory.org/fellowawards/hall/bjarne-stroustrup/
https://www.geeksforgeeks.org/history-of-c/
https://www.geeksforgeeks.org/history-of-c/
https://www.tutorialspoint.com/History-of-Cplusplus-language
http://www.stroustrup.com/C++11FAQ.html
https://www.codeproject.com/Articles/570638/Ten-Cplusplus11-Features-Every-Cplusplus-Developer#lambdas
https://www.codeproject.com/Articles/570638/Ten-Cplusplus11-Features-Every-Cplusplus-Developer#lambdas
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1319r0.html%20Cited%2014.10.2019
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/p1319r0.html%20Cited%2014.10.2019
https://isocpp.org/files/papers/p0636r0.html%20Cited%2017.10.2019
https://news.codecademy.com/what-is-computer-programming/
https://www.thoughtco.com/what-is-programming-958331%20Cited%2021.10.2019
https://guide.freecodecamp.org/computer-science/compiled-versus-interpreted-languages/
https://guide.freecodecamp.org/computer-science/compiled-versus-interpreted-languages/
https://www.toptal.com/c-plus-plus/c-plus-plus-understanding-compilation%20Cited%2027.10.2019
https://www.toptal.com/c-plus-plus/c-plus-plus-understanding-compilation%20Cited%2027.10.2019
http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html
http://faculty.cs.niu.edu/~mcmahon/CS241/Notes/compile.html

75

[17] Karinsky L. How C++ Works: Understanding Compilation 31.08.2017 Available:
https://www.freelancer.com/community/articles/how-c-works-understanding-
compilation# Cited 28.10.2019

[18] Butterfield A, Ngondi GE, Kerr A. A Dictionary of Computer Science [Internet].
Oxford University Press; 2016. Available from: http://www.oxfordrefer-
ence.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975

[19] Albatross. An Overview of Programs and Programming Languages. Available:
http://www.cplusplus.com/info/description/ Cited 06.11.2019

[20] C++ Type System (Modern C++) Available: https://docs.microsoft.com/en-
us/cpp/cpp/cpp-type-system-modern-cpp?view=vs-2019 Cited 08.11.2019

[21] Smyth P. An Introduction to Programming Paradigms. Available: https://digital-
fellows.commons.gc.cuny.edu/2018/03/12/an-introduction-to-programming-par-
adigms/ Cited 13.11.2019

[22] Rouse M. imperative programming. Available: https://whatis.techtarget.com/defi-
nition/imperative-programming Cited: 14.11.2019

[23] Bartoníček J. Programming Language Paradigms & The Main Principles of Ob-
ject-Oriented Programming. CRIS - Bulletin of the Centre for Research and In-
terdisciplinary Study. 2014;2014(1):93-9

[24] Velare P, V. Programming paradigm. 21.08.2017. Available: https://whatis.tech-
target.com/definition/imperative-programming Cited 14.11.2019

[25] Stroustrup B. The C++ Programming language Fourth edition. Pg. 11.

[26] Lambda Expressions in C++. 05.07.2019. Available: https://docs.mi-
crosoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=vs-2019 Cited:
16.11.2019

[27] Richmond D, Althoff A, Kastner R. Synthesizable Higher-Order Functions for
C++. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems. 2018;37(11):2835-44.

[28] Anggoro W. Learning C++ Functional Programming. Packt Publishing; 2017.

[29] Gregoire, M., Solter, N. & Kleper, S., Professional C++, 3nd. Wiley, Hobo-ken,
N.J, 2011. Cited 18.11.2019

[30] Yost M. A Brief History of Software Development 25.01.2018 Available:
https://medium.com/@micahyost/a-brief-history-of-software-development-
f67a6e6ddae0

[31] A Brief History of Software Engineering. Available: https://www.viking-
codeschool.com/software-engineering-basics/a-brief-history-of-software-engi-
neering Cited: 18.11.2019

[32] Javin P. The 10 Most Influential Programming languages of the Last 50 Years
and Their Creators. Available: https://medium.com/better-programming/the-10-
most-influential-programming-languages-of-the-last-50-years-and-their-creators-
6559bb9ce224 Cited 18.11.2019

https://www.freelancer.com/community/articles/how-c-works-understanding-compilation
https://www.freelancer.com/community/articles/how-c-works-understanding-compilation
http://www.cplusplus.com/info/description/
https://docs.microsoft.com/en-us/cpp/cpp/cpp-type-system-modern-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/cpp-type-system-modern-cpp?view=vs-2019
https://digitalfellows.commons.gc.cuny.edu/2018/03/12/an-introduction-to-programming-paradigms/
https://digitalfellows.commons.gc.cuny.edu/2018/03/12/an-introduction-to-programming-paradigms/
https://digitalfellows.commons.gc.cuny.edu/2018/03/12/an-introduction-to-programming-paradigms/
https://whatis.techtarget.com/definition/imperative-programming
https://whatis.techtarget.com/definition/imperative-programming
https://whatis.techtarget.com/definition/imperative-programming%20Cited%2014.11.2019
https://whatis.techtarget.com/definition/imperative-programming%20Cited%2014.11.2019
https://docs.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=vs-2019
https://medium.com/@micahyost/a-brief-history-of-software-development-f67a6e6ddae0
https://medium.com/@micahyost/a-brief-history-of-software-development-f67a6e6ddae0
https://www.vikingcodeschool.com/software-engineering-basics/a-brief-history-of-software-engineering
https://www.vikingcodeschool.com/software-engineering-basics/a-brief-history-of-software-engineering
https://www.vikingcodeschool.com/software-engineering-basics/a-brief-history-of-software-engineering
https://medium.com/better-programming/the-10-most-influential-programming-languages-of-the-last-50-years-and-their-creators-6559bb9ce224
https://medium.com/better-programming/the-10-most-influential-programming-languages-of-the-last-50-years-and-their-creators-6559bb9ce224
https://medium.com/better-programming/the-10-most-influential-programming-languages-of-the-last-50-years-and-their-creators-6559bb9ce224

76

[33] Jared King’s “The History of Software” Available: https://learn.say-
lor.org/mod/page/view.php?id=12353 Cited: 19.11.2019

[34] 10 Skills necessary for coding. Available: https://www.computerscience-
zone.org/10-skills-necessary-coding/ Cited: 24.11.2019

[35] Sheikh, Ghazala & Islam, Noman. 2016. A qualitative study of major program-
ming languages: teaching programming languages to computer science stu-
dents. International Journal of Information and Communication Technology.

[36] Lucas-Alferi D. 2015 Marketing the 21st Century Library: 3 Marketing plan re-
search and assessment

[37] What Is Qualitative Research? Available: https://nursing.utah.edu/research/qual-
itative-research/what-is-qualitative-research.php Cited 28.11.2019

[38] Spinellis, D, Choosing a programming language, IEEE Software, vol. 23, no. 4,
2006, pp. 62–63.

[39] TIOBE Index for November 2019. Available: https://www.tiobe.com/tiobe-index/
Cited: 01.12.2019

[40] Gupta L. What is Java programming language? Available: https://how-
todoinjava.com/java/basics/what-is-java-programming-language/ Cited:
02.12.2019

[41] Features of Java. Available: https://www.studytonight.com/java/features-of-
java.php Cited: 03.12.2019

[42] Compilation and Execution of a Java Program. Available: https://www.geeksfor-
geeks.org/compilation-execution-java-program/ Cited 03.12.2019

[43] Arnolds L, Gosling J, Holems D. 2005. The Java Programming Language,
Fourth Edition.

[44] Gouy, Isaac. The Computer Language Benchmarks Game.Available:
https://benchmarksgame-team.pages.debian.net/benchmarksgame Cited:
04.12.2019

[45] Gouy, Isaac. The Computer Language Benchmarks Game. Available:
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-
java.html Cited: 04.12.2019

[46] C++ vs Java. Available: https://www.educba.com/c-plus-plus-vs-java/ Cited:
05.12.2019

[47] Dynamic Memory Allocation in C++. Available: https://www.studyto-
night.com/cpp/memory-management-in-cpp.php Cited: 07.12.2019

[48] Younan Y, Joosen W, Piessens F. 2004. Code Injection in C and C++ : A Sur-
vey of Vulnerabilities and Countermeasures.

[49] The Last Stage of Delirium Research Group. 2002. Java and Java Virtual Ma-
chine security vulnerabilities and their exploit techniques

https://learn.saylor.org/mod/page/view.php?id=12353
https://learn.saylor.org/mod/page/view.php?id=12353
https://www.computersciencezone.org/10-skills-necessary-coding/
https://www.computersciencezone.org/10-skills-necessary-coding/
https://nursing.utah.edu/research/qualitative-research/what-is-qualitative-research.php
https://nursing.utah.edu/research/qualitative-research/what-is-qualitative-research.php
https://www.tiobe.com/tiobe-index/
https://howtodoinjava.com/java/basics/what-is-java-programming-language/
https://howtodoinjava.com/java/basics/what-is-java-programming-language/
https://www.studytonight.com/java/features-of-java.php
https://www.studytonight.com/java/features-of-java.php
https://www.geeksforgeeks.org/compilation-execution-java-program/
https://www.geeksforgeeks.org/compilation-execution-java-program/
https://benchmarksgame-team.pages.debian.net/benchmarksgame
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-java.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-java.html
https://www.educba.com/c-plus-plus-vs-java/
https://www.studytonight.com/cpp/memory-management-in-cpp.php
https://www.studytonight.com/cpp/memory-management-in-cpp.php

77

[50] Chand M. 08.07.2019. What Is C# and What is C# Used For. Available:
https://www.c-sharpcorner.com/article/what-is-c-sharp/ Cited: 08.12.2019

[51] Kostadinova K. 10.06.2019. Programming paradigms of C#. Available:
https://blog.softuni.org/2019/06/programming-paradigms-of-c-sharp/ Cited
08.12.2019

[52] Introduction to the C# Language and the .NET Framework. 20.07.2015. Availa-
ble: https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-
to-the-csharp-language-and-the-net-framework Cited 08.12.2019

[53] Gouy, Isaac. The Computer Language Benchmarks Game. Available:
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fast-
est/csharpcore-gpp.html Cited: 09.12.2019

[54] Laura. C# vs. C++: Which One Should You Learn? 29.10.2019. Available:
https://www.bitdegree.org/tutorials/c-sharp-vs-c-plus-plus/ Cited 09.12.2019

[55] Python Notes for Professionals book. Available: https://books.goal-
kicker.com/PythonBook/

[56] Tratt L. 13.03.2009. Dynamically Typed Languages

[57] compiled programming language. Oxford Reference. Retrieved 4 Apr. 2020,
from https://www.oxfordreference.com/view/10.1093/oi/author-
ity.20110803095629795

[58] Net-informs.com. How Python is Interpreted? Available: http://net-infor-
mations.com/python/iq/how.htm Cited: 12.12.2019

[59] Net-informs.com. Compiling and Linking in Python. Available: http://net-infor-
mations.com/python/iq/linking.htm Cited: 12.12.2019

[60] Gouy, Isaac. The Computer Language Benchmarks Game.Available:
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/gpp-
python3.html Cited: 04.12.2019

[61] Programming Langugage Comparison. Available: https://program-
ming.dojo.net.nz/resources/programming-language-comparison/index Cited:
14.12.2019

[62] Klimekova E. 2015. Is Python an Appropriate Programming Language for
Teaching Programming in Secondary Schools?

[63] Why C++. Available: https://cppinstitute.org/why-cpp-is-a-good-choice Cited
20.12.2019

[64] Stroustrup B. C++ Applications. 09.04.2019 Available: http://www.strou-
strup.com/applications.html Cited: 20.12.2019

[65] Herity D. Modern C++ in embedded system – Part 1: Myth and Reality. Availa-
ble: https://www.embedded.com/modern-c-in-embedded-systems-part-1-myth-
and-reality/ Cited 22.12.2019

https://www.c-sharpcorner.com/article/what-is-c-sharp/
https://blog.softuni.org/2019/06/programming-paradigms-of-c-sharp/
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/csharpcore-gpp.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/csharpcore-gpp.html
https://www.bitdegree.org/tutorials/c-sharp-vs-c-plus-plus/
https://books.goalkicker.com/PythonBook/
https://books.goalkicker.com/PythonBook/
http://net-informations.com/python/iq/how.htm
http://net-informations.com/python/iq/how.htm
http://net-informations.com/python/iq/linking.htm
http://net-informations.com/python/iq/linking.htm
https://programming.dojo.net.nz/resources/programming-language-comparison/index
https://programming.dojo.net.nz/resources/programming-language-comparison/index
https://cppinstitute.org/why-cpp-is-a-good-choice
http://www.stroustrup.com/applications.html
http://www.stroustrup.com/applications.html
https://www.embedded.com/modern-c-in-embedded-systems-part-1-myth-and-reality/
https://www.embedded.com/modern-c-in-embedded-systems-part-1-myth-and-reality/

78

[66] Gouy, Isaac. The Computer Language Benchmarks Game. Available:
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fast-
est/c.html Cited: 22.12.2019

[67] Hong K. C++ Tutorial – embedded systems programming – 2018. Available:
https://www.bogotobogo.com/cplusplus/embeddedSystemsProgramming.php
Cited: 24.12.2019

[68] Top Uses OF C++. Available: https://www.educba.com/uses-of-c-plus-plus/
Cited 24.12.2019

[69] Beck K. Et al. Manifesto for Agile Software Development. 2001. Available:
http://agilemanifesto.org/ Cited: 27.12.2019

[70] Socha-Leialoha J. 2011. Agile C++ - Agile C++ Development and Testing Visual
Studio and TFS. Available: https://docs.microsoft.com/en-us/archive/msdn-mag-
azine/2011/june/msdn-magazine-agile-c-agile-c-development-and-testing-with-
visual-studio-and-tfs Cited 09.01.2020

[71] Asproni G. et al. 2004. An Experience Report on Implementing a Custom Agile
Methodology on a C++/Python Project Available: https://www.aspro-
tunity.com/resources/articles/ExperienceReportCustomAgileMethodology.pdf
Cited: 09.01.2020

[72] Computer Hope. Rust. Available: https://www.computerhope.com/jar-
gon/r/rust.htm Cited: 11.01.2020

[73] Avram A. InfoQ.com Interview on Rust, a Systems Programming Language De-
veloped by Mozilla. 03.08.2012 Available: https://www.in-
foq.com/news/2012/08/Interview-Rust/ Cited: 11.01.2020

[74] Introduction on RUST vs C++ Available: https://www.educba.com/rust-vs-c/
Cited: 12.01.2020

[75] Gouy, Isaac. The Computer Language Benchmarks Game. Available:
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust-
gpp.html Cited: 12.01.2020

[76] Drankenfield J. 18.03.2019 Cloud Computing. Available: https://www.in-
vestopedia.com/terms/c/cloud-computing.asp Cited 24.01.2020

[77] Rouse M. Software as a Service (SaaS). Available: https://searchcloudcompu-
ting.techtarget.com/definition/Software-as-a-Service Cited 24.01.2020

[78] The agile adming. What Is DevOps? Available: https://theagileadmin.com/what-
is-devops/ Cited: 24.01.2019

[79] SDLC – Waterfall Model. Available: https://www.tutorialspoint.com/sdlc/sdlc_wa-
terfall_model.htm Cited: 30.01.2020

[80] DevOps and Continuous Integration challenges in C/C++ projects 14.03.2017.
Available: https://blog.conan.io/2017/03/14/Devops-and-Continouous-Integra-
tion-Challenges-in-C-C++-Projects.html Cited 31.01.2020

[81] Lakos J. Large-Scale C++ Software Design. Section 0.2

https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/c.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/c.html
https://www.bogotobogo.com/cplusplus/embeddedSystemsProgramming.php
https://www.educba.com/uses-of-c-plus-plus/
http://agilemanifesto.org/
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/june/msdn-magazine-agile-c-agile-c-development-and-testing-with-visual-studio-and-tfs
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/june/msdn-magazine-agile-c-agile-c-development-and-testing-with-visual-studio-and-tfs
https://docs.microsoft.com/en-us/archive/msdn-magazine/2011/june/msdn-magazine-agile-c-agile-c-development-and-testing-with-visual-studio-and-tfs
https://www.asprotunity.com/resources/articles/ExperienceReportCustomAgileMethodology.pdf
https://www.asprotunity.com/resources/articles/ExperienceReportCustomAgileMethodology.pdf
https://www.computerhope.com/jargon/r/rust.htm
https://www.computerhope.com/jargon/r/rust.htm
https://www.infoq.com/news/2012/08/Interview-Rust/
https://www.infoq.com/news/2012/08/Interview-Rust/
https://www.educba.com/rust-vs-c/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust-gpp.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/rust-gpp.html
https://www.investopedia.com/terms/c/cloud-computing.asp
https://www.investopedia.com/terms/c/cloud-computing.asp
https://searchcloudcomputing.techtarget.com/definition/Software-as-a-Service
https://searchcloudcomputing.techtarget.com/definition/Software-as-a-Service
https://theagileadmin.com/what-is-devops/
https://theagileadmin.com/what-is-devops/
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://blog.conan.io/2017/03/14/Devops-and-Continouous-Integration-Challenges-in-C-C++-Projects.html
https://blog.conan.io/2017/03/14/Devops-and-Continouous-Integration-Challenges-in-C-C++-Projects.html

79

[82] Sayfan G. 29.01.2013. Testing Complec C++ Systems. Available:
https://www.drdobbs.com/cpp/testing-complex-c-systems/240147275?pgno=1
Cited 03.02.2020

[83] Deployment in Visual C++ 11.05.2018. Available: https://docs.microsoft.com/en-
us/cpp/windows/deployment-in-visual-cpp?view=vs-2019 Cited 04.02.2020

[84] Verkest, Diederik & Kunkel, Joachim & Schirrmeister, Frank. (2000). System
level design using C++. 74-81.

[85] GeeksforGeeks. Insertion Sort. Available: https://www.geeksforgeeks.org/inser-
tion-sort/ Cited: 08.03.2020

[86] Ala-Mutka, K. Problems in learning and teaching programming -a literature
study for developing visualizations in the Codewitz-Minerva project. Tampere
University of Technology, Finland.

[87] Duffany, J L. Choiuce of Language for an Introduction to Programming Course.
Universidad del Turabo, Gurabo, PR, USA. 2014.

[88] Ali, A., & Smith, D. Teaching an introductory programming language in a gen-
eral education course. Journal of Information Technology Education: Innova-
tions in Practice, 13, 57-67. 2014. Retrieved from http://www.jite.org/docu-
ments/Vol13/JITEv13IIPp057-067Ali0496.pdf

[89] Foster, E. A COMPARITIVE ANALYSIS OF THE C++, JAVA, AND PYTHON
LANGUAGES. 2014

[90] Hobbs Chris. 16.3.7 Enforcement of Strong Typing. In: Embedded Software De-
velopment for Safety-Critical Systems [Internet]. Taylor & Francis; 2016. p. 6–7.

[91] Gries D. Safety and strong versus weak typing 2018

[92] Swan J, Krawiec K, Ghani N, Squillero G. Polytypic Genetic Programming. In
Springer; 2017. p. ications of Evolutionary Computation. LNCS . Springer , Am-
sterdam , pp. 66–81. Available from: http://eprints.whiterose.ac.uk/117964/1/pol-
ytypic_genetic_programming.pdf

[93] Devlieghere J. C++ Guaranteed Copy Elision. 21.11.2016 Available: https://jo-
nasdevlieghere.com/guaranteed-copy-elision/ Cited 19.03.2020

[94] Donaldson T. Python. 2nd ed. Berkeley, Calif: Peachpit Press; 2009.

[95] Maxwell KD. Software Development Productivity. In: Advances In Computers.
Elsevier Science & Technology. 2003

[96] Asija S. Software Engineering | COCOMO model. Available: https://www.geeks-
forgeeks.org/software-engineering-cocomo-model/ Cited: 07.04.2020

[97] Singh S. Difference between COCOMO 1 and COCOMO 2. Available:
https://www.geeksforgeeks.org/difference-between-cocomo-1-and-cocomo-2/
Cited: 07.04.2020

[98] McConnell S. Code complete. 2nd ed. Redmond, WA: Microsoft Press; 2004.

https://www.drdobbs.com/cpp/testing-complex-c-systems/240147275?pgno=1
https://docs.microsoft.com/en-us/cpp/windows/deployment-in-visual-cpp?view=vs-2019
https://docs.microsoft.com/en-us/cpp/windows/deployment-in-visual-cpp?view=vs-2019
https://www.geeksforgeeks.org/insertion-sort/
https://www.geeksforgeeks.org/insertion-sort/
http://www.jite.org/documents/Vol13/JITEv13IIPp057-067Ali0496.pdf
http://www.jite.org/documents/Vol13/JITEv13IIPp057-067Ali0496.pdf
http://eprints.whiterose.ac.uk/117964/1/polytypic_genetic_programming.pdf
http://eprints.whiterose.ac.uk/117964/1/polytypic_genetic_programming.pdf
https://jonasdevlieghere.com/guaranteed-copy-elision/
https://jonasdevlieghere.com/guaranteed-copy-elision/
https://www.geeksforgeeks.org/software-engineering-cocomo-model/
https://www.geeksforgeeks.org/software-engineering-cocomo-model/
https://www.geeksforgeeks.org/difference-between-cocomo-1-and-cocomo-2/

