

Ossi Kankainen

VISUALIZATION OF SEMANTIC SEG-
MENTATION NETWORKS

Bachelor’s Thesis
Faculty of Engineering and Natural Sciences

Examiner: Prof. Jouni Mattila
April 2020

i

ABSTRACT

Ossi Kankainen: Visualization of Semantic Segmentation Networks
Bachelor’s thesis
Tampere University
Bachelor’s Degree Programme in Engineering Sciences
April 2020

The development of visualization methods for deep convolutional neural networks supports
their design and helps in their adaption also to critical applications. Semantic segmentation has
many such heavily regulated application areas such as medical imaging and autonomous vehi-
cles. Thus, there is a clear need to find visualization methods that can be applied to neural net-
work models used in semantic segmentation.

In this thesis, solutions are sought to this need by studying methods that have been used with
generative models having a similar network structure than semantic segmentation models. Two
different structures, autoencoder and adversarial networks, are commonly used in semantic seg-
mentation models. They both utilize a concept of latent space that is a compact representation of
data. Due to its compactness, the latent space is also useful in visualization of models. Based on
literature can be find five different latent space visualization methods for generative models. In
the experiments of this work those methods are applied to two different semantic segmentation
models to see how they adapt for them.

 Received results show how latent space projections from different dimensionality reduction
techniques can be used to illustrate what features a semantic segmentation model uses when it
forms clusters of data. In addition, the capability of the model to generalize for new data can be
assessed based on the compactness of the projections. Examining the predicted output masks
of the training samples is a good way to get an initial view of the model performance. Also new
samples can be interpolated from the latent space. By observing feature changes in the outputs
that model gives to them, one can obtain a more accurate view of how features change between
different areas in the latent space. However, a problem is that semantic segmentation models do
not force latent variables to be meaningful for data generation like generative networks do. For
this reason, latent space is typically sparser which appeared in the experiments so that the near-
est neighbour was same for many interpolation points. Thus, examining nearest neighbours
turned out not to be a useful visualization method for semantic segmentation models. Also attrib-
ute vector arithmetic cannot be applied directly to semantic segmentation networks since the def-
inition of attribute vector is not straightforward for them.

Keywords: neural networks, semantic segmentation, autoencoder, latent space, visualization

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

I want to thank my instructors Prof. Jouni Mattila and research assistant Eelis Peltola

who offered this topic to me and have given me guidance throughout this project. In

addition, I am also grateful for my family and friends who have supported me during the

writing process.

Tampere, 28 April 2020

Ossi Kankainen

iii

CONTENTS

1. INTRODUCTION... 1

2. NEURAL NETWORK STRUCTURES USED IN SEMANTIC SEGMENTATION ... 2

2.1 Autoencoder... 3

2.2 Adversarial networks .. 4

2.3 Latent space .. 5

3. LATENT SPACE VISUALIZATION .. 7

3.1 Dimensionality reduction techniques .. 7

3.1.1 t-Distributed Stochastic Neighbor Embedding 8

3.1.2 Principal Component Analysis... 9

3.1.3 Uniform Manifold Approximation and Projection 9

3.2 Visualization methods .. 11

4. CODE EXPERIMENTS ... 15

4.1 Setup ... 15

4.2 Results ... 16

4.2.1 Results for SegNet .. 16

4.2.2 Results for DeepLabv3+ ... 19

5. CONCLUSION .. 22

REFERENCES ... 23

APPENDIX A: EXPERIMENT CODES ... 25

1

1. INTRODUCTION

Deep convolutional neural networks that are used in computer vision applications are

complex models with several layers and millions of parameters. Because of this com-

plexity, the understanding of their learning processes is challenging. [1] Nevertheless, it

is very important as it helps in the design of models that has so far been often based on

empirical trial and errors. Another reason why neural networks should be interpreted is

that the lack of transparency is an obstacle to their adaption especially in critical and

heavily regulated applications such as medical imaging or autonomous vehicles. [2]

The development of visualization methods that explain how deep convolutional models

make their decisions has been increasing over the past few years [1]. In this thesis vis-

ualization methods are studied to models that are used in a specific image recognition

problem, semantic segmentation. To these models there are not yet well-established

visualization methods so there is a clear need to study this topic.

Section 2 introduces at first the task of semantic segmentation. After that, sections 2.1

and 2.2 present two neural network structures that are commonly used in semantic seg-

mentation. Then, in section 2.3 a concept of latent space that both of those structures

utilize is defined because turns out that it is very useful in the visualization of semantic

segmentation networks. Section 3.1 goes over three dimensionality reduction techniques

that are needed in some of five latent space visualization methods that are presented in

section 3.2. Those methods are listed based on literature concerning generative models

that have similar structure than commonly used semantic segmentation models. Thus,

section 4 goes over experiments that were made to try how these methods adapt to

segmentation networks. Section 4.1 presents the used experiment setup and section 4.2

shows the experiment results. At last, section 5 concludes the most important observa-

tions about the usability of the experimented methods for the visualization of semantic

segmentation networks.

2

2. NEURAL NETWORK STRUCTURES USED IN
SEMANTIC SEGMENTATION

Neural networks have been used in many image recognition problems, such as classifi-

cation, detection and segmentation. Whole-image classification involves assigning a la-

bel to an image by predicting the presence of object classes in the image. Object detec-

tion expands classification by also locating the objects. The location of an object is shown

by drawing a bounding box around the object. Semantic segmentation is a natural ex-

pansion of detection that involves predicting each pixel of an image either to some object

class or as a background. Thus, semantic segmentation is absolutely more demanding

task than classification or detection. [3] For example, if there is a test image that contains

multiple cars on a road, neural network model that has been trained to classify images

gives a label ‘car’ to the image. For the same test image, an object detection model

draws a bounding box around each car and a semantic segmentation model predicts

each pixel to some object class such as ‘car’ or ‘road’. Another example of a semantic

segmentation can be seen in Figure 1.

Figure 1. An example of a semantic segmentation on road scene images. The top row
shows five test images, the middle row shows manually given ground truth segmenta-
tion masks to them and the bottom row shows masks predicted by a SegNet model.

Adapted from [4].

In Figure 1 there are five test images on the top row. The second row shows manually

given ground truth segmentation masks to these images, and the last row shows masks

predicted by SegNet [4] that is an example of neural network model used in semantic

3

segmentation. From Figure 1 it can be seen that the result image of semantic segmen-

tation has same width and height than the original sample image and that typically each

object class is presented with a unique colour. For example, in these segmentation

masks purple colour corresponds to the road and red colour corresponds to the buildings.

Semantic segmentation has many applications for example in medical imaging [5] and

in autonomous vehicles [4]. The criticality and heavy regulation concerning these and

many other applications, emphasizes the need of understanding the learning process of

neural network models used in semantic segmentation. Thus, there is a clear need for

visualization methods for semantic segmentation networks. However, understanding a

model is not possible without having knowledge about its basic working principles. The

next chapters 2.1 and 2.2 present two neural network structures; autoencoder and ad-

versarial networks that are commonly used in semantic segmentation [4-7]. After that,

the chapter 2.3 discusses in more detail a concept of latent space that both these net-

work structures utilize.

2.1 Autoencoder

The idea of autoencoder was introduced in the 1980s when for example LeCun pre-

sented it in his thesis [8]. An autoencoder consists of two coupled models: an encoder

and a decoder. The encoder is a feature-extracting function 𝑓𝜃 that transforms input data

𝒙 to latent variables and delivers them to the decoder 𝑔𝜃 which produces reconstructions

𝒓 from those variables. The autoencoder can thus be defined with the following equation

 𝒓 = 𝑔𝜃(𝑓𝜃(𝒙)). (1)

The function composition emphasizes how the decoder takes the output of an encoder

as its input. The autoencoder model is trained by minimizing reconstruction error be-

tween the inputs 𝒙 and the reconstructions 𝒓. [9] Models with autoencoder structure have

been used also in supervised learning tasks such as semantic segmentation [4-6], even

though originally autoencoder was designed to unsupervised tasks [9].

One later variation of the autoencoder is a variational autoencoder which was introduced

for the first time by Kingma and Welling in 2013 [10]. It is originally motivated by gener-

ative modeling, meaning that a model is able to not only to reconstruct samples but also

to generate new samples. This is possible because the variational autoencoder regular-

izes the training progress and thus ensures that the representations given by the encoder

are meaningful for data generation. [11] In the meantime, the variational autoencoder

also produces informative latent representations [12] because it learns a joint distribution

4

over all the input variables [11]. The variational autoencoder can be described also with

probabilistic models as can be seen in Figure 2.

Figure 2. A variational autoencoder is a process of probabilistic models that learns
stochastic mappings between a dataset and a latent space. [11]

The encoder is a parametric interference model 𝑞𝜑(𝒛|𝒙) and its parameters 𝜑 are opti-

mized so that the encoder approximates the posterior of the decoder. This means that

 𝑞𝜑(𝒛|𝒙) ≈ 𝑝𝜃(𝒛|𝒙). (2)

The decoder meanwhile learns a joint distribution

 𝑝𝜃(𝒙, 𝒛) = 𝑝𝜃(𝒛)𝑝𝜃(𝒙|𝒛), (3)

where 𝑝𝜃(𝒛) is a prior distribution over the latent space and 𝑝𝜃(𝒙|𝒛) is a stochastic de-

coder. In that way, the variational autoencoder learns stochastic mappings between the

observed data points and the latent space and after that it is able to generate new sam-

ples that look realistic. [11]

2.2 Adversarial networks

Generative adversarial networks was introduced by Goodfellow et al. in 2014. Like vari-

ational autoencoder, it was also originally motivated by generative modeling. [13] How-

ever, it has been applied also to semantic segmentation [7]. Another similarity with the

autoencoder is that the generative adversarial network includes also two coupled mod-

els; a generator and a discriminator. Those models compete against each other. The

5

generator takes a point from a latent space as an input and generates a new sample.

Meanwhile, the discriminator tries to distinguish whether an image is a real sample from

training data, or the fake sample created by the generator. During a training generative

adversarial network learns connections between the latent space points and the output

images and after the training it is able to generate new realistic images. [14]

The training progress of generative adversarial network model can be described with a

value function that the generator 𝐺(𝒛; 𝜃𝑔) tries to minimize and the discriminator 𝐷(𝒙; 𝜃𝑑)

tries to maximize. This value function is

 𝑉(𝐷, 𝐺) = 𝐸𝒙~𝑝𝑑𝑎𝑡𝑎(𝒙)[log (𝐷(𝒙)] + 𝐸𝒛~𝑝𝑧(𝒛)[log (1 − 𝐷(𝐺(𝒛)))] , (4)

where both models D and G are multilayer perceptrons with corresponding variables,

𝑝𝒛(𝒛) is a prior on input variables and 𝐷(𝒙) represents the probability that a sample

comes from the training data. [13]

2.3 Latent space

As it has already been stated before, both variational autoencoder and generative ad-

versarial networks utilize latent space when modeling the data [11,14]. Latent space is a

continuous multi-dimensional vector space that forms a compact representation of data

and has reduced dimensionality compared to the input space. Latent space helps a

model to extract new more general features from the data. [12] An example of an auto-

encoder and a latent space can be seen in Figure 3. The data is compressed from the

wide and thin input space to the narrow and thick latent space that is a bottleneck of the

autoencoder.

Figure 3. A latent space is a bottleneck of an autoencoder that forms a compact rep-
resentation of the input data.

6

When a generative model learns to create new realistic samples it also produces a latent

space representation that contains salient information about the input data [11]. This

representation gives insights into the data and can reveal relationships that are ‘latent’

in the input space. The compactness of the latent space makes it also useful for the

visualization of neural network model. [12] This thesis focuses on how semantic seg-

mentation networks can be interpreted with the latent space visualization methods.

7

3. LATENT SPACE VISUALIZATION

Section 3.2 presents five latent space visualization methods for generative models based

on literature. However, some methods demand that we have a way to plot multi-dimen-

sional latent spaces with two-dimensional graphs. For this reason, at first section 3.1

discusses more about different dimensionality reduction techniques.

3.1 Dimensionality reduction techniques

Dimensionality reduction techniques are used in the visualization of latent space to re-

duce its dimensionality to two dimensions [12]. This is necessary so that visualization

results can be plotted with 2D scatter plots like in Figure 4 that visualizes the latent space

of an autoencoder trained with the MNIST dataset. In order to make visualization possi-

ble, the dimensionality of each latent vector was reduced using Principal Component

Analysis (PCA). [15]

Figure 4. The latent space of an autoencoder trained on the MNIST dataset visual-
ized with 2D scatter plot. In order to visualize the latent space its dimensionality was re-

duced using principal component analysis. [15]

In addition to PCA, two other dimensionality reduction techniques; t-Distributed Stochas-

tic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection

(UMAP) are covered in this thesis. The following sections 3.1.1 – 3.1.3 present the basic

principles of these techniques.

8

3.1.1 t-Distributed Stochastic Neighbor Embedding

Laurens van der Maaten and Geoffrey Hinton presented t-Distributed Stochastic Neigh-

bor Embedding (t-SNE) in 2008 [16]. It is a non-linear dimensionality reduction technique

that models neighbour samples in the original high-dimensional space close to each

other also in the low-dimensional space. Non-linearity means that it is able to highlight

cluster structures in the data, but it cannot preserve linear relationships between the data

points. [12]

The first step of t-SNE algorithm is to calculate conditional probabilities 𝑝𝑗|𝑖 between high-

dimensional data points 𝑥𝑖 and 𝑥𝑗 with the following equation

 𝑝𝑗|𝑖 =

exp(−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎𝑖
2)

∑ exp(−
‖𝑥𝑖−𝑥𝑘‖

2

2𝜎𝑖
2)𝑘≠𝑖

, (5)

where 𝜎𝑖 is the variance of the Gaussian normal distribution centered over 𝑥𝑖. These

probabilities describe how similar data points are with each other. If data points are

nearby, the conditional probability between them is relatively high but for separated data

points it is almost infinitesimal. To prevent problems with outlier samples, joint probabil-

ities 𝑝𝑖𝑗 are defined to be symmetrized conditional probabilities by setting 𝑝𝑖𝑗 =
𝑝𝑗|𝑖+𝑝𝑖|𝑗

2𝑛
 .

Similar joint probabilities 𝑞𝑖𝑗 are calculated also to low-dimensional data points 𝑦𝑖 and 𝑦𝑗

with the following equation

 𝑞𝑖𝑗 =
(1+‖𝑦𝑖−𝑦𝑗‖

2
) −1

∑ (1+‖𝑦𝑘−𝑦𝑙‖2) −1
𝑘≠𝑙

. (6)

After that t-SNE finds out the locations of data points in the low-dimensional space by

minimizing the mismatch between these two joint probability distributions 𝑃 and 𝑄. This

happens by minimizing Kullback-Leibler divergence

 𝐶 = 𝐾𝐿(𝑃‖𝑄) = ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖 (7)

with a gradient

𝛿𝐶

𝛿𝑦𝑖
= 4 ∑ (𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗) (1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)

−1

𝑗 . (8)

During the training, a gradient descent is updated by adding the calculated gradient with

some learning rate coefficient and a relatively large momentum term to the previous

value of gradient descent. [16]

9

3.1.2 Principal Component Analysis

Principal Component Analysis (PCA) is a traditional and commonly used dimensionality

reduction technique. It tries to find new variables, the principal components, that are lin-

ear functions of the original data variables and that minimize loss of information. This

means that those variables should maximize the variance and they should be uncorre-

lated with each other. [17] PCA is a linear technique which means that unlike t-SNE it is

able to preserve linear relations among the data but on the other hand it cannot highlight

cluster structures as well [12].

Finding the principal components reduces to solving an eigenvalue problem. A data ma-

trix 𝑿 has 𝑛 rows and 𝑝 columns. PCA is looking for a linear combination of the columns

of this matrix that maximizes variance. Such linear combination can be described with a

matrix multiplication 𝑿𝒂, where 𝒂 is a 𝑝-dimensional vector of constants. The variance of

this linear combination is defined in the following way

 var(𝑿𝒂) = 𝒂′𝑺𝒂, (9)

where 𝑺 is the covariance matrix related to the dataset and ′ denotes transpose. To find

a well-defined solution for 𝒂 that maximizes the variance, some additional restrictions

are needed. The most common one is to suppose that 𝒂 is a unit-norm vector. Then we

can write the following equation

 𝒂′𝑺𝒂 − 𝜆(𝒂′𝒂 − 1) = 𝟎 ⇔ 𝑺𝒂 − 𝜆𝒂 = 𝟎 ⇔ 𝑺𝒂 = 𝜆𝒂, (10)

where 𝒂 must be an eigenvector of the covariance matrix 𝑺 and 𝜆 is the corresponding

eigenvalue. This shows that the principal components can be found by solving the ei-

genvectors of the covariance matrix. As the covariance matrix is a 𝑝x𝑝-dimensional real

symmetrical matrix, it has exactly 𝑝 eigenvalues. The dimensionality reduction happens

by taking the first 𝑞 principal components with the highest eigenvalue out of the original

amount 𝑝. [17]

3.1.3 Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) is a more recent dimensionality

reduction technique than t-SNE or PCA as it was for the first time introduced by McInnes

et al. in 2018 [18]. It is a manifold learning technique which makes it also non-linear like

t-SNE and thus it highlights cluster structures among the data [12]. However, it is also

able to preserve the global structure of data better than the t-SNE and its better compu-

tational performance reduces running times and allows larger data sets [18].

10

UMAP algorithm consists of two phases. The first phase constructs a particularly

weighted k-neighbour graph and the second phase transforms this graph to a low dimen-

sional layout. At first a set of the 𝑘 nearest neigbours is computed to each data point 𝑥𝑖

in an input dataset 𝑋 = {𝑥1, … , 𝑥𝑛} using some dissimilarity metric 𝑑. A hyper-parameter

𝑘 defines the amount of neighbours. At next, 𝜌𝑖 is defined to each point as follows

 𝜌𝑖 = 𝑚𝑖𝑛 {𝑑 (𝑥𝑖 , 𝑥𝑖𝑗
) | 1 ≤ 𝑗 ≤ 𝑘, 𝑑 (𝑥𝑖 , 𝑥𝑖𝑗

) > 0}, (11)

and 𝜎𝑖 is set to be such value that the following equation

 ∑ exp (
− max(0, 𝑑(𝑥𝑖,𝑥𝑖𝑗

)−𝜌𝑖)

𝜎𝑖
) = log2(𝑘)𝑘

𝑗=1 (12)

is true. After these definitions, it is possible to define a weighted directed graph

�̅� = (𝑉, 𝐸, 𝜔). The vertices �̅� and 𝑉 are simply the input dataset 𝑋, the set of directed

edges is 𝐸 = {(𝑥𝑖 , 𝑥𝑖𝑗
) | 1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑁} and the weight function is

 𝜔 ((𝑥𝑖, 𝑥𝑖𝑗
)) = exp (

− max(0, 𝑑(𝑥𝑖,𝑥𝑖𝑗
)−𝜌𝑖)

𝜎𝑖
). (13)

The symmetric adjacency matrix 𝐵 of UMAP graph 𝐺 can then be described with a for-

mula

 𝐵 = 𝐴 + 𝐴𝑇 − 𝐴 ∘ 𝐴𝑇, (14)

where 𝐴 is the weighted adjacency matrix of �̅� and ∘ is a pointwise product. [18]

To compute a low dimensional layout, UMAP utilizes a force directed graph layout algo-

rithm that applies a set of attractive forces along edges and a set of repulsive forces

along vertices. The attractive force is given by the following equation

−2𝑎𝑏‖𝒚𝒊−𝒚𝑗‖

2

2(𝑏−1)

1+‖𝒚𝒊−𝒚𝑗‖
2

2 𝜔 ((𝑥𝑖, 𝑥𝑗)) (𝒚𝒊 − 𝒚𝒋), (15)

where 𝒚𝒊 and 𝒚𝒋 are coordinates of two vertices and 𝑎 ja 𝑏 are hyper-parameters. The

repulsive force is determined as follows

𝑏

(+‖𝒚𝒊−𝒚𝑗‖
2

2
)(1+‖𝒚𝒊−𝒚𝑗‖

2

2
)

(1 − 𝜔 ((𝑥𝑖 , 𝑥𝑗))) (𝒚𝒊 − 𝒚𝒋), (16)

where 𝜀 is a small number that prevents division by zero. [18]

11

3.2 Visualization methods

Liu et al. have made a literature review of latent space visualization methods as a part

of their article [12]. This section presents five different visualization activities based on

their results and also considers the usability of these activities for semantic segmentation

models. Liu et al. analysed altogether 78 research papers of which 54 concerned gener-

ative modeling. The latent space visualization activities for generative models that they

identified are:

• Viewing reconstructed samples

• Visualizing distributions

• Viewing interpolation results

• Examining the nearest neighbours

• Performing attribute vector arithmetic. [12]

Similar methods have also been represented in other research papers [15,19].

Viewing reconstructed examples is a simple way to see how visually good images a

model is able to produce since the results can be compared to the corresponding original

images. This method cannot be used directly with semantic segmentation models as

they do not try to reconstruct input images. However, similar idea can be applied by

comparing the predicted segmentation masks to the ground truth masks.

Visualizing distributions is also a good way to get initial understanding of the model [15].

Results given by dimensionality reduction techniques can reveal cluster structures and

linear relationships among the latent variables which gives information about the ways

in which the model processes data [12]. Distribution visualizations show also how

sparsely the latent space of the model is populated which effects on its ability to gener-

alize what it has learned [15]. Distribution visualization techniques can be applied directly

also to semantic segmentation models.

Viewing interpolation results and examining the nearest neighbours expand the task of

viewing reconstructed examples by creating new unseen results from the latent space.

These tasks show if a model is able to create images that are indistinguishable from the

training images. They also reveal how smoothly output features change in the latent

space. [12] In principle these methods can be applied to semantic segmentation net-

works but it is not guaranteed that the results are reasonable. This is because non-vari-

ational autoencoders, that are used as segmentation models, do not ensure that the

12

latent space representations are useful for data generation. However, autoencoders

have still given surprisingly good interpolation results. [15]

Latent space interpolation is performed by following a path between two latent points 𝒛𝑎

and 𝒛𝑏 and constructing samples at regular intervals [12]. Often the path is chosen to be

linear since it is easy to understand and implement but also spherical paths are used

especially for high-dimensional latent spaces [19]. Figure 5 shows an example of latent

space interpolation. It includes three interpolations that were performed using spherical

path [19] and they demonstrate how features change smoothly in the latent space.

Figure 5. An example of interpolation in latent space. Each row contains one inter-
polation that is performed with spherical path in a high-dimensional latent space.

Adapted from [19].

Linear interpolation line can be defined using vectors. The latent space is a n-dimen-

sional vector space, so each latent point can be seen as a n-dimensional vector. Figure

6 illustrates how a linear interpolation line between latent space points 𝑨 and 𝑩 is actually

a vector 𝑨𝑩 that can be calculated by subtracting the vector 𝑨 from the vector 𝑩. Any

interpolation point 𝑷 that is 𝑝 percent of the way from 𝑨 to 𝑩 can be presented with the

following equation

 𝑷 = 𝑨 + 𝛼(𝑩 − 𝑨) ⇔ 𝑷 = 𝛼𝑩 + (1 − 𝛼)𝑨, (17)

where 𝛼 is equal to 𝑝/100. This shows that any latent space interpolation point is a linear

combination between the tail and head points of corresponding interpolation line vector.

Typically, interpolation points are taken on regular intervals so that 𝛼 gets evenly spaced

values over its interval [0, 1]. The nearest neighbours of a point 𝑷 can be found simply

by calculating an Euclidean distance between this point and each training data point in

the latent space [20].

13

Figure 6. Any interpolation point P that is located on a linear interpolation line AB

is a linear combination of vectors A and B.

Performing attribute vector arithmetic is a good way to demonstrate that a latent space

is able to produce samples with new attribute combinations [12]. A well-known example

of attribute vector arithmetic with linguistic models shows that if vectors 𝑨, 𝑩 and 𝑪 cor-

respond latent space attributes king, man and woman, then the result vector of calcula-

tion 𝑨 − 𝑩 + 𝑪 should be close to queen [21]. This method has also been applied to

images as can be seen in Figure 7. If the top left image is a source A and the other two

corners are targets B and C, then the result image of operation (B + C) – A can be seen

in the bottom right image [19].

Figure 7. Attribute vector arithmetic applied to images. The top left image is a

source A and the other two corner images are attribute targets B and C. The result of

operation (B + C) – A is shown in the bottom right image. [19]

14

Semantic segmentation networks have same issues with attribute vector arithmetic as

with other generative tasks since their latent space representation is not optimized for

data generation. Another problem is that semantic segmentation outputs have typically

similar features with each other, but the difference comes from the locations of the ob-

jects. For this reason, the definition of attribute vector is not straightforward for semantic

segmentation models and it is not covered in this thesis. Section 4 presents the code

experiments that were made to the other four methods to see how they adapt for non-

variational autoencoder models that are designed for semantic segmentation.

15

4. CODE EXPERIMENTS

The goal of code experiments in this thesis is to examine how latent space visualization

methods that are commonly used with generative models apply to semantic segmenta-

tion models. The experiments focus on autoencoders that have similar structure than

generative variational autoencoder models, but their latent space is not optimized for

data generation [15]. Another difference is that semantic segmentation models use su-

pervised learning, meaning that they learn mappings between the inputs and outputs of

the training data while generative models learn unsupervised a joint distribution over all

the inputs [11].

The previous section presented five different latent space visualization activities of which

four were used in experiments. Latent space distributions were visualized with the results

of two dimensionality reductions techniques, t-SNE and PCA, so that both linear and

non-linear relationships of the latent space came out. The idea of viewing reconstructed

examples was applied by viewing the predicted masks of the input data points. This task

was combined with two other activities by constructing linear interpolations between re-

constructed samples and showing their nearest neighbours from the original dataset.

The following sections discuss the setup used in experiments and the received results in

more detail.

4.1 Setup

Used codes were written in Python programming language because several useful ma-

chine learning libraries and frameworks have been developed for it. The experiment

codes are attached in Appendix 1.

The experiments were made with two models that both have an autoencoder structure.

The first model was SegNet [4] that is implemented in Image Segmentation Keras frame-

work [22]. This model was chosen because it is a well-known network that was originally

developed for road scene applications [4] and thus it should work quite well for the used

dataset that consists of road scene images. The dataset includes 367 train images and

101 test images with corresponding ground truth masks and it can be downloaded from

the model implementation web page [22].

The subject of this thesis is motivated by Eelis Peltola’s ongoing master thesis concern-

ing autonomous rough terrain mobile robotics in which he uses a network based on

DeepLabv3+ [6]. Therefore, this model was chosen to be the second experimented

16

model. DeepLabv3+ has also an existing GitHub implementation [23] that can be used

to build and train the model. The main difference between SegNet and DeepLabv3+ is,

that unlike SegNet which utilizes only the output of encoder and max-pooling indices in

decoding [4], DeepLabv3+ utilizes also the low-level features given by atrous convolution

layers and concatenates them with the corresponding encoder features [6].

When a model is trained, its encoder and decoder parts are saved to different models.

Thus, the encoder can be used to transform input data to latent variables and the de-

coder can be used to create output images from these variables. For the models that

utilize also low-level features in decoding, it is important to define which input variables

are given to the convolutional layers because they have a significant effect on the gen-

erated outputs. In this thesis, input variables were interpolated from the original input

space in a similar way than latent variables were interpolated from the latent space. The

more detailed explanation of interpolation in a vector space can be found from the section

3.2. In a case of DeepLabv3+ actually three different models were saved. The first one

included convolutional layers and it could be used as an input to the encoder and the

decoder.

4.2 Results

Results of the experiments for SegNet and DeepLabv3+ are presented and analysed in

the following sections. The goal is to interpret and compare the results and based on

those interpretations make conclusions about the suitability of these visualization meth-

ods for semantic segmentation networks.

4.2.1 Results for SegNet

Latent space of SegNet model was examined with 367 train images of the dataset. Figure

8 shows a 2D scatter plot of latent space that was obtained by reducing all encoded

latent vectors to two dimensions with t-SNE algorithm. Close up view of one subpart in

Figure 8 shows that all points are annotated with a sequence number corresponding to

the original image. For example, a point number zero in Figure 8 was obtained by en-

coding the first image in the dataset to a latent vector and by reducing it to two dimen-

sions. All the following figures can be zoomed in the electronic version of this thesis so

that they can be examined in more detail.

From Figure 8 it can be seen that the latent variables are clustered so that neighbour

samples in the original image space are close to each other also in the latent space

representation. For example, images 0-61 that are taken from similar locations form a

17

cluster to the lower left corner of the figure. Images 281-366 are also logically on the left

as they are also taken from a road that passes between buildings like images 0-61.

Figure 8. Latent space of SegNet visualized with t-SNE projection.

However, the clusters in Figure 8 are sparse and they are distributed over a large area.

There are many ‘chains’ of points in the t-SNE representation but the distance to the next

point after the chain is often huge. This indicates that the model has learned the map-

pings of the training data but it might not be able to generalize well for unseen data since

there are lot of unknown areas in the latent space [15]. The disjointedness of the latent

space comes out also in Figure 9 that shows a visualization of the same latent variables

with PCA projection.

Figure 9. Latent space of SegNet visualized with PCA projection.

18

The coordinate values of the PCA projection vary in a large range from -236,000 to

254,400 and from -169,000 to 233,000. Thus, the latent space contains inevitably multi-

ple locations where the model does not know how to make a prediction from the point.

This problem should come out also in the next experiments where new samples are

generated from the latent space.

Figure 10 shows interpolation results that are generated from the latent space and the

nearest neighbours from the training data points for those interpolations. The first row

contains interpolation results 1–6 and the second row shows their nearest neighbours.

The third and fourth row show interpolation results 7–12 and their nearest neighbours.

The tail and head points of an interpolation line vector are the data points 138 and 38.

From their predicted masks it can be seen that the model is able to detect some objects

from the images, but the object boundaries are unsharp.

Figure 10. Interpolation results and their nearest neighbours that are generated from
the latent space of SegNet. The top row shows interpolation results 1-6 and the second
row shows their nearest neighbours from the training data points. In a same way, the

third and fourth row contain interpolation results 7-12 and their nearest neighbours. The
tail and head points of interpolation line vector are the data points 138 and 38.

It seems that the model is also able to generate new samples that cannot be distin-

guished from the training images. However, since the latent space is so sparse any other

training samples than the head and the tail point do not appear in the nearest neighbours.

The interpolation results are surprisingly good considering the disjointedness of the la-

tent space. The feature changes are predictable and smooth. For example, the blue area

at the top centre enlarges and the other blue area in the bottom centre changes to black

and finally disappears during the interpolation. This indicates that latent space interpola-

tions could be useful in the visualization of semantic segmentation networks.

19

4.2.2 Results for DeepLabv3+

For comparison, the same visualization methods were also experimented with another

model, DeepLabv3+. Figure 11 shows a t-SNE representation over the latent variables

for this model that was constructed in a similar way than in the previous section.

Figure 11. Latent space of DeepLabv3+ visualized with t-SNE projection.

Similar samples are again clustered near to each other which shows that both models

utilize similarities to model the data. This time the latent space is more compact, and the

latent points are centered around the origin, except the points 0–61 that form a separated

cluster to the bottom left corner. However, the other clusters are even partly overlapping

each other which reduces the amount of unknown areas in the latent space. It seems

that all training images that contain a road passing between buildings are now in the

bottom part of Figure 11. A PCA projection over the latent space is shown in Figure 12.

Figure 12. Latent space of DeepLabv3+ visualized with PCA projection.

20

From Figure 12 it can be seen that compared to the results of t-SNE, the coordinate

values of PCA projection vary in a much smaller range that is now from -9.3 to 10.3 and

from -6.9 to 7.5. This means that there are less areas in the latent space where the model

does not know how to make a prediction. Based on these results, the DeepLabv3+ model

should have better ability to generate new samples than the SegNet model.

Figure 13 shows generated latent space interpolation results and their nearest neigh-

bours from the original image space for the DeepLabv3+ model. Images are organized

in a same way than in Figure 10 so that the first and the third row include interpolation

results and the second and the fourth row their nearest neighbours. The same tail and

head points 138 and 38 than in the previous section are used to define an interpolation

line vector. From the predicted masks of these points that belong to the original data

space, it can be seen that the trained DeepLabv3+ model was able to create sharper

boundaries between different objects than the SegNet model. There is for example a

recognizable shape of tree in some of these constructed masks.

Figure 13. Interpolation results and their nearest neighbours that are generated from
the latent space of DeepLabv3+. Images are organized in a same way than in Figure
10. The top row shows interpolation results 1-6 and the second row shows their near-
est neighbours from the training data points. In a same way, the third and fourth row

contain interpolation results 7-12 and their nearest neighbours. The tail and head
points of interpolation line vector are the data points 138 and 38.

The examination of the nearest neighbours shows that the low-level features have a

large impact on created outputs and thus samples 6–8 stand out of their nearest neigh-

bour that was found outside of the interpolation path. All generated samples look realistic

but even though the latent space is more compact, only three different neighbours are

21

still found for 12 interpolation points. Thus, it seems that the latent space of non-varia-

tional autoencoders is often too sparse so that the analysis of the nearest neighbour

could be used in their visualization similarly than to generative models.

The generated interpolation results are again smooth and predictable. For example, the

top left part changes gradually from green to dark blue and a yellow shred shows up at

the bottom part. However, the interpolations seem to behave in a quite similar way for

both models, which means that the distribution of latent space does not provide com-

pletely reliable information about when an autoencoder model is able to generate new

samples, as based on distribution visualizations, the assumption was that DeepLabv3+

should produce distinctly better results. At least interpolations can probably be useful for

the visualization of feature changes on small local areas of latent space where there are

not large unknown areas. With models that utilize low-level features for decoding, sam-

pling of them should be considered carefully because it has a very significant effect on

the generated outputs.

22

5. CONCLUSION

At this thesis, visualization methods for semantic segmentation networks were sought

by studying methods that have been used with generative models having a similar struc-

ture than semantic segmentation models. All these models utilize a latent space when

modeling data. The latent space is a compact representation of data and due to its com-

pactness, it is suitable also for the visualization of models. Based on literature was found

five different latent space visualization methods for generative models that were exam-

ined with semantic segmentation networks to see how they adapt for them.

Results show that the projections of latent space with reduced dimensionality can reveal

how a model uses clusters to understand data. This information can be used to show

what features the model extracts from an input image so that it is able to segment it. The

distribution visualizations of latent space also show how sparse the latent space of the

model is which effects on its ability to generalize the learned mappings for new inputs.

Examining the output masks of training data points is a good way to get an initial view of

the model performance. Latent space interpolations proved out to be a good way to show

how features change between different areas in latent space. However, semantic seg-

mentation models do not regularize latent space representations to be meaningful for

data generation like generative models do. For this reason, the results are not always

necessarily good, and a problem is that there is not a reliable way to predict the quality

of results as even the disjointedness of the latent space did not seem to always mean

poor results. When generating outputs from new points with models that utilize low-level

features in decoding, it is important to consider also the sampling of those features care-

fully since they have a significant effect on the result. Examining the nearest neighbours

of the generated points did not work well for these semantic segmentation models since

the latent space was so sparse that multiple interpolation points had the same nearest

neighbour. Also, attribute vector arithmetic could not be applied directly to semantic seg-

mentation models since the definition of attribute vector is not straightforward for them.

Both experimented models had an autoencoder structure. This work could be continued

by applying same visualization methods also for models that belong to the other main

semantic segmentation network type, adversarial networks. In a larger framework, it

would be interesting to see what results can be achieved by visualizing other parts of

semantic segmentation networks such as the convolutional layer weights of the encoder.

23

REFERENCES

[1] A. Mahendran, A. Vedaldi, Visualizing Deep Convolutional Neural Networks Us-
ing Natural Pre-images, International Journal of Computer Vision, Vol. 120, No.
3, 2016, pp. 233ؘ–255. Available (Accessed Apr. 23, 2020):
https://arxiv.org/abs/1512.02017.

[2] L.M. Zintgraf, T.S. Cohen, T. Adel, M. Welling, Visualizing Deep Neural Network
Decisions: Prediction Difference Analysis, International Conference on Learning
Representations, 2017. Available (Accessed Apr. 23, 2020):
https://arxiv.org/abs/1702.04595.

[3] M. Everingham, S. Eslami, L. Van Gool, C. Williams, J. Winn, A. Zisserman, The
Pascal Visual Object Classes Challenge: A Retrospective, International Journal
of Computer Vision, Vol. 111, No. 1, 2015, pp. 98–136. Available (Accessed
Feb. 14, 2020): http://host.robots.ox.ac.uk/pascal/VOC/pubs/evering-
ham14_bak.pdf.

[4] V. Badrinarayanan, A. Kendall, R. Cipolla, SegNet: A Deep Convolutional En-
coder-Decoder Architecture for Image Segmentation, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol. 39, No. 12, 2017, pp. 2481–2495.
Available (Accessed Feb. 14, 2020): https://arxiv.org/abs/1511.00561.

[5] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Bio-
medical Image Segmentation, International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, 2015, pp. 234–241. Available (Ac-
cessed Feb. 14, 2020): https://arxiv.org/abs/1505.04597.

[6] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, A. Hartwig, Encoder-Decoder with
Atrous Separable Convolution for Semantic Image Segmentation, European
Conference on Computer Vision, 2018, pp. 833–851. Available (Accessed Feb.
19, 2020): https://arxiv.org/abs/1802.02611.

[7] P. Luc, C. Couprie, S. Chintala, J. Verbeek, Semantic Segmentation using Ad-
versarial Networks, Conference on Neural Information Processing Systems,
2016. Available (Accessed Apr. 20, 2020): https://arxiv.org/abs/1611.08408.

[8] Y. LeCun. Modeles connexionistes de l’apprentissage, Universite P. et M. Curie
(Paris 6), 1987.

[9] Y. Bengio, A. Courville, P. Vincent, Representation Learning: A Review and
New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 35, No. 8, 2013, pp. 1798–1828. Available (Accessed Apr. 20,
2020): https://arxiv.org/abs/1206.5538.

[10] D. Kingma, M. Welling, Auto-Encoding Variational Bayes, International Confer-
ence on Learning Representations, 2013. Available (Accessed Mar. 19, 2020):
https://arxiv.org/abs/1312.6114.

[11] D. Kingma, M. Welling, An Introduction to Variational Autoencoders, Founda-
tions and Trends in Machine Learning, Vol. 12, No. 4, 2019, pp. 307–392. Avail-
able (Accessed Feb. 14, 2020): https://arxiv.org/abs/1906.02691.

24

[12] Y. Liu, E. Jun, Q. Li, J. Heer, Latent Space Cartography: Visual Analysis of Vec-
tor Space Embeddings, Computer Graphics Forum, Vol. 38, No. 3, 2019, pp.
67–78. Available (Accessed Feb. 14, 2020): https://idl.cs.washington.edu/pa-
pers/latent-space-cartography.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, Y. Bengio, Generative Adversarial Networks, Advances in Neural In-
formation Processing Systems, 2014, pp. 2672–2680. Available (Accessed Feb.
21, 2020): https://arxiv.org/abs/1406.2661.

[14] P. Bojanowski, A. Joulin, D. Lopez-Paz, A. Szlam, Optimizing the Latent Space
of Generative Networks, International Conference on Machine Learning, 2017.
Available (Accessed Feb. 21, 2020): https://arxiv.org/abs/1707.05776.

[15] T. Spinner, J. Körner, J. Görtler, O. Deussen, Towards an Interpretable Latent
Space, Visualization for AI Explainability, 2018. Available (Accessed Apr. 21,
2020): https://thilospinner.com/towards-an-interpretable-latent-space/.

[16] L. van Der Maaten, G. Hinton, Visualizing Data using t-SNE, Journal Of Ma-
chine Learning Research, Vol. 9, 2008, pp. 2579–2605. Available (Accessed
Mar. 2, 2020): http://www.jmlr.org/papers/volume9/vandermaaten08a/vander-
maaten08a.pdf.

[17] I. Jolliffe, J. Cadima, Principal component analysis: a review and recent devel-
opments, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, Vol. 374, No. 2065, 2016. Available (Ac-
cessed Mar. 5, 2020): https://www.ncbi.nlm.nih.gov/pubmed/26953178.

[18] L. McInnes, J. Healy, J. Melville, UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction, 2018. Available (Accessed Mar. 5, 2020):
https://arxiv.org/abs/1802.03426.

[19] T. White, Sampling Generative Networks, 2016. Available (Accessed Mar 24,
2020): https://arxiv.org/abs/1609.04468.

[20] G. Poier, D. Schinagl, H. Bischof, Learning Pose Specific Representations by
Predicting Different Views, IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2018. Available (Accessed Apr. 22, 2020):
https://arxiv.org/abs/1804.03390.

[21] T. Mikolov, Y. Wen-tau, G. Zweig, Linguistic Regularities in Continuous Space
Word Representations, Proceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2013, pp. 746–751. Available (Accessed: Mar. 24, 2020):
https://www.aclweb.org/anthology/N13-1090.

[22] D. Gupta, Image Segmentation Keras. Available (Accessed Apr 2, 2020):
https://github.com/divamgupta/image-segmentation-keras.

[23] E. Zakirov, Keras implementation of Deeplabv3+. Available (Accessed Apr 14,
2020): https://github.com/bonlime/keras-deeplab-v3-plus.

https://thilospinner.com/towards-an-interpretable-latent-space/
https://github.com/divamgupta/image-segmentation-keras
https://github.com/bonlime/keras-deeplab-v3-plus

25

APPENDIX A: EXPERIMENT CODES

This appendix includes experiment codes that that were used to get results in section

4.2.

2

4

6

8

This function draws a plot and annotates it
results: 2 dimensional numpy array
def show_plot(results):
 plt.figure()
 plt.scatter(results[:,0], results[:,1])

 for i in range(0, results.shape[0]):
 plt.annotate(i, (results[:,0][i], results[:,1][i]))

 plt.show()

Program 1. Function that is used to show projections with reduced dimensionality.

26

2

4

6

8

10

12

14

16

This function finds the nearest neighbour of a latent space point by
calculating an Euclidean distance between it and each original data point
vec: a vector that represents a point in latent space
latent_variables: latent representations of original data points
def find_NN(vec, latent_variables):
 min_dist = None
 result_vec = None
 index = None
 for i in range(0, latent_variables.shape[0]):
 ref_vec = latent_variables[i,:]
 distance = np.linalg.norm(vec-ref_vec)
 distance = abs(distance)
 if min_dist == None or min_dist > distance:
 min_dist = distance
 result_vec = ref_vec
 index = i
 return result_vec, index

Program 2. Function that is used to find the nearest neighbour of a latent space point.

27

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

This function reads images from a folder, preprocesses them for DeepLabv3+
model and saves them
directory: path to the folder where the images are
type: image 'i' or annotation 'a' depending on the type of images that
folder contains
def read_from_folder_DeepLabv3(directory, type):
 trained_image_width = 384
 mean_subtraction_value = 255

 X = []
 for filename in os.listdir(directory):
 image = np.array(Image.open(os.path.join(directory, filename)))

 w, h, _ = image.shape
 ratio = float(trained_image_width) / np.max([w, h])
 resized_image = np.array(Image.fromarray(image.astype('uint8')).
 resize((int(ratio * h), int(ratio * w))))

 if type == 'i':
 resized_image = resized_image / mean_subtraction_value

 pad_x = int(trained_image_width - resized_image.shape[0])
 pad_y = int(trained_image_width - resized_image.shape[1])
 resized_image = np.pad(resized_image, ((0, pad_x), (0, pad_y),
 (0, 0)), mode='constant')

 X.append(resized_image)

 images = np.vstack([X])
 return images

Program 3. Function that is used to read images from a folder to a numpy array and
preprocess them for DeepLabv3+ model.

28

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

This code trains a SegNet model and saves the whole model, the encoder and
the decoder

Needed imports
from keras_segmentation.models.segnet import vgg_segnet
from keras.layers import Input
from keras.models import Model

Create model using image-segmentation-keras framework
model = vgg_segnet(12, 384, 288)

Train model
model.train(
 train_images = "dataset1/images_prepped_train",
 train_annotations = "dataset1/annotations_prepped_train",
 epochs = 22
)

Save full model, encoder and decoder
model.save("SegNet")

The last 18 layers of model belong to decoder and the rest to encoder
encoder = Model(model.input, model.layers[-19].output)
encoder.save("SegNet_encoder")

Shape of latent space is (24, 18, 512)
encoded_input = Input(shape = (24, 18, 512))
num_decoder_layers = 18
decoder_layer = encoded_input

Go through all decoder layers and add them to model
for i in range(-num_decoder_layers, 0):
 decoder_layer = model.layers[i](decoder_layer)
decoder = Model(encoded_input, decoder_layer)

decoder.save("SegNet_decoder")

Program 4. Code that trains a SegNet model and saves the whole model, the encoder
and the decoder separately.

29

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

This code plots latent space dimensionality reductions received from t-SNE
and PCA algorithms for SegNet

Needed imports
import show_plot
import os
from keras.preprocessing import image
import numpy as np
from keras.models import load_model
from sklearn import manifold
import matplotlib.pyplot as plt
from sklearn import decomposition

This function can be used to read images from a folder to a numpy array
directory: path to the folder where the images are
size: tuple of integers, size to which the image is resized
def read_from_folder(directory, size):
 X = []
 for filename in os.listdir(directory):
 img = image.load_img(os.path.join(directory, filename),
 target_size = size)
 x = image.img_to_array(img)
 X.append(x)

 images = np.vstack([X])
 return images

Load saved encoder
encoder = load_model("SegNet_encoder")

encoder.compile(loss = 'categorical_crossentropy',
 optimizer = 'adadelta',
 metrics = ['accuracy'])

Read train images from a folder to a numpy array
directory = 'dataset1/images_prepped_train/'
target_size = (384, 288)

train_images = read_from_folder(directory, target_size)

Encode inputs to latent variables and save them
latent_var = encoder.predict(train_images)
np.save("latent_variables_SegNet.npy", latent_var)

Latent space has originally 4 dimensions, t-SNE and PCA tools accept
only 2 dimensions so each sample is reshaped to one dimension
latent_var_2D = np.empty((0, latent_var.shape[1]*latent_var.shape[2] \
 *latent_var.shape[3]))
for i in range (0, latent_var.shape[0]):
 a = latent_var[i,:]
 a = a.reshape((-1,))
 latent_var_2D = np.append(latent_var_2D, [a], axis = 0)

Calculate t-SNE and PCA and display results
tsne = manifold.TSNE(n_components = 2, random_state = 0)
tsne_results = tsne.fit_transform(latent_var_2D)
show_plot(tsne_results)

pca = decomposition.PCA(n_components = 2, random_state = 0)
pca_results = pca.fit_transform(latent_var_2D)
show_plot(pca_results)

Program 5. Code that visualizes t-SNE and PCA projections over the latent space of
SegNet model.

30

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

This code creates interpolation results from the latent space of SegNet and
shows their nearest neigbours from the original data points

Needed imports
import find_NN
import numpy as np
from keras.models import load_model
import cv2

This function makes a result image from the output of decoder
prediction: output of the decoder
id: identification number for saving
def show_output(prediction, id):
 # image-keras-segmentation has defined output to be shape (27648, 12) that
 # is reshaped to shape (192, 144, 12)
 prediction = prediction.reshape((192, 144, 12)).argmax(axis = 2)

 # Pixel values are ID numbers so they are changed to corresponding RGB
 # values
 output = np.zeros((prediction.shape[0], prediction.shape[1], 3))
 for c in range(np.amax(prediction)):
 pred_arr_c = prediction[:, :] == c
 output[:, :, 0] += ((pred_arr_c)*(colors[c][0])).astype('uint8')
 output[:, :, 1] += ((pred_arr_c)*(colors[c][1])).astype('uint8')
 output[:, :, 2] += ((pred_arr_c)*(colors[c][2])).astype('uint8')

 # Output is resized back to the image space size and saved to a file
 output = cv2.resize(output, (480, 360))
 cv2.imwrite('sample' + id + '.png', output)

Load encoded latent variables and saved decoder model
latent_var = np.load("latent_variables_SegNet.npy")

decoder = load_model("SegNet_decoder")

decoder.compile(loss = 'categorical_crossentropy',
 optimizer = 'adadelta',
 metrics = ['accuracy'])

Define a color space
colors = [(np.random.randint(0, 255), np.random.randint(
 0, 255), np.random.randint(0, 255)) for _ in range(5000)]

12 points are interpolated between latent points 38 and 138. Predicted masks
of interpolation points and their nearest neighbours are shown
a = np.linspace(0,1,12)
v1 = latent_var[38,:]
v2 = latent_var[138,:]

for i in range (0,12):
 vnew = a[i]*v1 + (1-a[i])*v2
 NN, NN_index = find_NN(vnew, latent_var)

 predicted_interpolation = decoder.predict(np.expand_dims(vnew, axis = 0))
 predicted_neighbour = decoder.predict(np.expand_dims(NN, axis = 0))

 show_output(predicted_interpolation, str(i) + "a")
 show_output(predicted_neighbour, str(i) + "b")

Program 6. Code that constructs new interpolated samples from the latent space of
SegNet and shows their nearest neighbours.

31

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

This code trains and saves DeepLabv3+ model and saves its encoder, decoder
and convolutional layers as separate models

Needed imports. File model.py is cloned from
https://github.com/bonlime/keras-deeplab-v3-plus
from model import Deeplabv3
import read_from_folder_DeepLabv3
import os
import numpy as np
from PIL import Image
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model

Create model
model = Deeplabv3(input_shape = (384, 384, 3), classes = 14,
 activation = 'sigmoid')

Load training images and annotations
images_directory = 'dataset1/images_prepped_train/'
train_images = read_from_folder_DeepLabv3(images_directory, 'i')

annotations_directory = 'dataset1/annotations_prepped_train/'
train_annotations = read_from_folder_DeepLabv3(annotations_directory, 'a')

Fit and save model
model.fit(train_images, train_annotations, batch_size = 6, epochs = 24)
model.save("Deeplabv3+")

All but the last 18 layers belong to the convolutional layers that are saved
to one separate model
convolutional = Model(model.input, model.layers[-19].output)
convolutional.save('Deeplabv3+_convolutional')

Encoder takes output of convolutional layers as input and adds several layers
over it
convolutional_output = Input(shape = (None, None, 320))

x = model.layers[-18](convolutional_output)
x = model.layers[-17](x)
x = model.layers[-16](x)
x = model.layers[-15](x)
x = model.layers[-14](x)
x = model.layers[-12](x)

encoder = Model(convolutional_output, x)
encoder.save('Deeplabv3+_encoder')

Decoder is built of two different layer lines. The first one comes from the
output of convolutional layers and the other from the output of encoder
encoder_output = Input(shape = (1, 1, 256))

x = model.layers[-13](convolutional_output)
x = model.layers[-11](x)
x = model.layers[-9](x)
y = model.layers[-10](encoder_output)
z = model.layers[-8]([y, x])
for i in range(-7, 0):
 z = model.layers[i](z)

decoder = Model([encoder_output, convolutional_output], z)
decoder.save('Deeplabv3+_decoder')

Program 7. Code that trains a DeepLabv3+ model and saves the whole model, the
convolutional layers, the encoder and the decoder separately.

32

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

This code plots latent space dimensionality reductions received from t-SNE
and PCA algorithms for DeepLabv3+

Needed imports
import read_from_folder_DeepLabv3
import show_plot
import os
from PIL import Image
import numpy as np
from keras.models import load_model
from sklearn import manifold
import matplotlib.pyplot as plt
from sklearn import decomposition

Load saved encoder and model that contain convolutional layers
convolutional = load_model("Deeplabv3+_convolutional")
encoder = load_model("Deeplabv3+_encoder")

Read train images from a folder to a numpy array
directory = 'dataset1/images_prepped_train/'
train_images = read_from_folder_DeepLabv3(directory, 'i')

Encode inputs to latent variables and save them
latent_var = encoder.predict(convolutional.predict(train_images))
np.save("latent_variables_DeepLab.npy", latent_var)

Latent space has originally 4 dimensions, t-SNE and PCA tools accept
only 2 dimensions so each sample is reshaped to one dimension
latent_var_2D = np.empty((0, latent_var.shape[1]*latent_var.shape[2] \
 *latent_var.shape[3]))
for i in range (0, latent_var.shape[0]):
 a = latent_var[i,:]
 a = a.reshape((-1,))
 latent_var_2D = np.append(latent_var_2D, [a], axis = 0)

Calculate t-SNE and PCA and display results
tsne = manifold.TSNE(n_components = 2, random_state = 0)
tsne_results = tsne.fit_transform(latent_var_2D)
show_plot(tsne_results)

pca = decomposition.PCA(n_components = 2, random_state = 0)
pca_results = pca.fit_transform(latent_var_2D)
show_plot(pca_results)

Program 8. Code that visualizes t-SNE and PCA projections over the latent space of
DeepLabv3+ model.

33

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

This code creates interpolation results from the latent space of SegNet and
shows their nearest neigbours from the original data points

Needed imports
import read_from_folder_DeepLabv3
import find_NN
import numpy as np
import os
from PIL import Image
from keras.models import load_model
import matplotlib.pyplot as plt

This function makes a result image from the output of decoder
prediction: output of the decoder
def show_output(prediction):
 prediction = np.argmax(prediction.squeeze(), -1)
 prediction = prediction[:-96]
 prediction = np.array(Image.fromarray(prediction.astype('uint8')). \
 resize((480, 360)))
 plt.figure()
 plt.imshow(prediction)

Load encoded latent variables, train images and both convolutional and
decoder model.
latent_var = np.load("latent_variables_DeepLab.npy")

directory = 'dataset1/images_prepped_train/'
train_images = read_from_folder_DeepLabv3(directory, 'i')

convolutional = load_model("Deeplabv3+_convolutional")
decoder = load_model("Deeplabv3+_decoder")

12 points are interpolated between latent points 38 and 138. Predicted masks
of interpolation points and their nearest neighbours are shown. Input images
to convolutional layers are interpolated in similar way than latent points
but in image space
a = np.linspace(0,1,12)
v1 = latent_var[38,:]
image1 = train_images[38,:]
v2 = latent_var[138,:]
image2 = train_images[138,:]

for i in range (0,12):
 vnew = a[i]*v1 + (1-a[i])*v2
 image = a[i]*image1 + (1-a[i])*image2

 NN, NN_index = find_NN(vnew, latent_var)
 NN_image = train_images[NN_index]

 predicted_interpolation = decoder.predict([vnew, convolutional.predict \
 (np.expand_dims(image, 0))])
 predicted_neighbour = decoder.predict([NN, convolutional.predict \
 (np.expand_dims(NN_image,
0))])

 show_output(predicted_interpolation)
 show_output(predicted_neighbour)

Program 9. Code that constructs new interpolated samples from the latent space of
DeepLabv3+ and shows their nearest neighbours.

	1. Introduction
	2. Neural Network Structures Used in Semantic Segmentation
	2.1 Autoencoder
	2.2 Adversarial networks
	2.3 Latent space

	3. Latent Space Visualization
	3.1 Dimensionality reduction techniques
	3.1.1 t-Distributed Stochastic Neighbor Embedding
	3.1.2 Principal Component Analysis
	3.1.3 Uniform Manifold Approximation and Projection

	3.2 Visualization methods

	4. Code Experiments
	4.1 Setup
	4.2 Results
	4.2.1 Results for SegNet
	4.2.2 Results for DeepLabv3+

	5. Conclusion
	References

