

Jere Miettinen

HIGH-LEVEL SYNTHESIS IMPLEMENTA-
TION OF HEVC MOTION ESTIMATION

ON FPGA

Master of Science Thesis
Information Technology and

Communication Sciences
Ass. Prof. Jarno Vanne

Postdoc. Alexandre Mercat
April 2020

i

ABSTRACT

Jere Miettinen: High-Level Synthesis Implementation of HEVC Motion Estimation
on FPGA
Master of Science Thesis
Tampere University
Master’s Degree Programme in Electrical Engineering
April 2020

The need for transmitting high quality videos fast and effectively has increased in the

recent years. Main reason for that is the increase in resolutions and frame rates, and the

growing use of mobile devices and streaming. High Efficiency Video Coding (HEVC) is

the latest video coding standard designed to respond those needs. HEVC achieves better

compression compared to previous standards without compromising the video quality.

High-Level Synthesis (HLS) tools bring automation to the complex design processes and

the designer can focus more on the algorithm functionality. The HLS design flow is on a

higher abstraction layer compared to the traditional hardware design flows. Programming

language such as C can be used instead of one of the hardware description languages

(HDL) such as VHDL or Verilog. HLS was chosen for this Thesis, instead of traditional

register transfer level (RTL) design, for faster and easier development.

Kvazaar is an open source HEVC video encoder developed at Tampere University. The

encoding is done by removing temporal or spatial data redundancy. Motion estimation

(ME) aims to reduce the temporal data redundancy. ME can be done using one of the

various block matching algorithms (BMA), such as full search (FS) or hexagon-based

search (HEXBS). The main goal of this Thesis was to evaluate Kvazaar’s ME algorithms

and then implement a ME accelerator on hardware using HLS. The accelerator was aimed

for a Field Programmable Gate Array (FPGA) circuit.

ME is one of the most complex parts of the encoding and takes a significant amount of

time of the whole encoding process and it is a good candidate for HW acceleration. FS

algorithm was chosen for hardware acceleration in this Thesis and the hardware imple-

mentation was done using Catapult-C HLS tool. The accelerated algorithm was synthe-

sized to Arria 10 FPGA platform and integrated as a part of Kvazaar’s encoding process.

The synthesized Accelerator works on 150 MHz frequency and takes 18% of the available

logic resources on Arria 10. It uses 6% of the available M20K memory elements and 6%

of the platform’s registers. The Accelerator achieved ×66.26 speedup compared to the

software only algorithm. Once integrated to the Kvazaar’s encoding process the speedup

was still ×1.94. The drop in the speedup can be explained with the throughput limitations

of the PCIe bus used in the communication between Kvazaar and the Arria 10 platform.

Keywords: High Efficiency Video Coding (HEVC), motion estimation (ME), High-Level

Synthesis (HLS), Kvazaar, Field Programmable Gate Array (FPGA)

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Jere Miettinen: HEVC-videokoodekin liikkeentunnistuksen toteutus FPGA-piirille C-kielestä
syntetisoimalla

Diplomityö
Tampereen yliopisto
Sähkötekniikan diplomi-insinöörin tutkinto-ohjelma
Huhtikuu 2020

Tarve siirtää hyvälaatuista videokuvaa nopeasti ja tehokkaasti on lisääntynyt viime vuo-

sina. Suurimmat syyt tähän ovat kasvaneet resoluutiot ja kuvataajuudet sekä lisääntynyt

mobiililaitteiden käyttö ja striimauksen tarve. High Efficiency Video Coding (HEVC) on

viimeisin videonpakkausstandardi, joka on suunniteltu vastaamaan edellä mainittuihin

tarpeisiin. HEVC vähentää pakkauskompleksisuutta verrattuna aiempiin standardeihin

tinkimättä kuitenkaan laadusta.

High-Level Synthesis (HLS) työkalut tuovat automaatiota monimutkaiseen suunnittelu-

prosessiin ja suunnittelija voi keskittyä paremmin algoritmin toiminnallisuuteen. HLS

suunnitteluvuo on korkeammalla tasolla verrattuna perinteiseen RTL (register transfer le-

vel) suunnitteluun. Korkeamman tason ohjelmointikieltä, kuten C:tä, voidaan käyttää lait-

teistoläheisten kielten, kuten VHDL:n ja Verilogin, sijaan. Tässä työssä käytetään HLS

työkaluja RTL työkalujen sijaan nopeamman ja helpomman kehityksen vuoksi.

Kvazaar on avoimen lähdekoodin HEVC videokoodekki, joka on kehitetty Tampereen

Yliopistossa. Videon pakkaaminen perustuu joko ajallisen tai spatiaalisen dataylimäärän

vähentämiseen. Liikkeenestimointi on ajallinen menetelmä ja sitä tehdään käyttämällä

yhtä monista block matching algoritmeista (BMA), kuten full search (FS) tai hexagon-

based search (HEXBS). Tämän työn päätavoitteena oli valita liikkeenestimointialgoritmi

kiihdytettäväksi ja suunnitella ja toteuttaa kiihdytin ohjelmoitavalle logiikka piirille

(FPGA) käyttäen HLS työkaluja.

Liikkeenestimointi on yksi pakkauksen laskennallisesti työläimmistä osista ja vie huo-

mattavan osan koko pakkausajasta ja siksi se vaatii kiihdyttämistä. Kiihdytettäväksi al-

goritmiksi valittiin FS ja se toteutettiin käyttäen Catapult-C HLS työkalua. Kiihdytetty

algoritmi syntetisoitiin Arria 10 piirille ja liitettiin osaksi Kvazaarin pakkausprosessia.

Syntetisoitu kiihdytin toimii 150 MHz taajuudella ja vie 18% käytettävissä olevasta lo-

giikasta Arria 10 piirillä. Se käyttää 6% M20K muistilohkoista ja 6% käytettävissä ole-

vista rekistereistä. Kiihdytin saavutti 66.26 kertaisen suhteellisen nopeuden verrattuna

puhtaasti CPU (central processing unit) pohjaiseen algoritmiin. Kun kiihdytin oli liitetty

Kvazaariin, suhteellinen nopeutus oli edelleen 1.94 kertainen. Pudotusta suhteellisessa

nopeutuksessa selittää Kvazaarin ja kiihdyttimen kommunikointiin käytetyn PCIe väylän

suorituskykyrajoitukset.

Avainsanat: High Efficiency Video Coding (HEVC), liikkeenestimointi, High-Level Synthesis

(HLS), Kvazaar, Field Programmable Gate Array (FPGA)

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

This Master of Science Thesis was written as a part of research in the Faculty of Infor-

mation Technology and Communication Sciences at Tampere University.

I would like to thank my examiners, Jarno Vanne and Alexandre Mercat for their input

and guidance to write this Thesis. I want also to thank Panu Sjövall and my other co-

workers who helped me during my work.

Finally, I would like to thank my family and Sabrina for their endless support during my

work and writing.

Tampere, 27th April 2020

Jere Miettinen

iv

CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND .. 2

2.1 High-Level Synthesis (HLS) .. 2

2.1.1 HLS design flow with Catapult-C .. 3

2.1.2 Field Programmable Gate Arrays (FPGAs) 6

2.1.3 Arria 10 FPGA platform .. 7

2.2 High efficiency video coding (HEVC)... 9

2.2.1 Kvazaar HEVC Encoder .. 9

2.2.2 FPGA Acceleration of Kvazaar Intra Encoder 12

2.3 Related work .. 12

3. INTER PICTURE PREDICTION IN HEVC ... 14

3.1 Block partitioning ... 14

3.2 Motion estimation and compensation .. 16

3.3 Block matching algorithms (BMA).. 17

3.3.1 Full search (FS) .. 18

3.3.2 Fast block matching algorithms ... 19

3.4 Inter picture prediction modes.. 21

4. METHODOLOGY .. 23

4.1 Coding efficiency ... 23

4.2 Test materials ... 25

4.3 Design method.. 26

5. HARDWARE SPECIFICATION ... 28

5.1 Algorithm selection for hardware acceleration .. 28

5.2 Algorithm limiting.. 28

5.3 Design limitations .. 29

5.4 Memory limitations .. 30

6. ACCELERATOR DESIGN .. 32

6.1 Architecture overview .. 32

6.2 Read and write blocks .. 33

6.3 Calculation block.. 36

6.4 Memory indexer ... 38

7. PERFORMANCE ... 40

7.1 Implementation results ... 40

7.1.1 Catapult-C .. 40

7.1.2 Synthesis on Quartus .. 42

7.1.3 Encoding speedup .. 43

7.2 Comparison with related work ... 44

7.3 Discussion .. 45

8. CONCLUSION ... 47

v

LIST OF SYMBOLS AND ABBREVIATIONS

AI All Intra

ALM Adaptive Logic Module

Avalon-MM Avalon Memory-Mapped

AVC Advanced Video Coding

BD-BR Bjøntegaard-Delta Bit Rate

BMA Block Matching Algorithm

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CTCs Common Test Conditions

CTU Coding Tree Unit

CU Coding Unit

DMA Direct Memory Access

DSP Digital Signal Processing

EPROM Erasable Programmable Read Only Memory

FIFO First-In-First-Out

FME Fractional Motion Estimation

FPGA Field Programmable Gate Array

FPS Frames Per Second

FS Full Search

full HD full High Definition

HDL Hardware Description Language

HEVC High Efficiency Video Coding

HEXBS Hexagon-Based Search

HDR High Dynamic Range

HLS High-Level Synthesis

HM HEVC test Model

HSSI High-Speed Serial Interface

II Initiation Interval

IME Integer Motion Estimation

JCT-VC Joint Collaborative Team on Video Coding

LAB Logic Array Block

LUT Lookup Table

MAD Mean Absolute Difference

MC Motion Compensation

ME Motion Estimation

MPEG Moving Picture Experts Group

MSE Mean Square Error

MV Motion Vector

PCIe Peripheral Component Interconnect express

PLL Phased Locked Loop

PU Prediction Unit

RAM Random Access Memory

SAD Sum of Absolute Differences

SoC System-on-Chip

SRAM Static Random Access Memory

TZ Test Zone

VCEG Video Coding Experts Group

VHDL VHSIC Hardware Description Language

vi

VHSIC Very High Speed Integrated Circuit

1

1. INTRODUCTION

The amount of video in the global networking has been growing fast in the recent years

and will take approximately 82% of the whole traffic by the end of 2021 [1]. This is

mainly because of the increased resolutions and frame rates, the growth of mobile users,

the increased use of high dynamic range (HDR) and 360˚ videos. The streaming has be-

come popular and video calls are established as a part of everyday life. This generates

need for transmitting videos as effectively as possible without compromising on the qual-

ity.

High Efficiency Video Coding (HEVC) is the newest video coding standard [2] and is

designed to address those needs. HEVC encoders are complex and thus considerable can-

didates for hardware acceleration. Kvazaar is an open source HEVC video encoder de-

veloped as a part of the research in Ultra Video Group at Tampere University [3]. The

encoding is done reducing either temporal or spatial data redundancy. Motion estimation

(ME) aims to reduce the temporal redundancy. It is one of the most computationally heavy

parts of Kvazaar encoder and it stands as a starting point for the Field Programmable

Gate Array (FPGA) acceleration in this Thesis.

High-Level Synthesis (HLS) is an alternative to the traditional hardware design. It brings

automation to the hardware design flow. The design process is done on a higher abstrac-

tion level and the implementation and verification times can be greatly reduced compared

to the traditional register transfer level (RTL) design. HLS is used in this Thesis to im-

plement a ME accelerator for Kvazaar. The main goals of this Thesis are to choose a

suitable ME algorithm to accelerate, design an FPGA accelerator using HLS tools for the

chosen algorithm and finally integrate the designed accelerator as a part of Kvazaar’s

encoding process.

The Thesis is organized as follows: HLS, FPGAs, HEVC, Kvazaar, and related work are

introduced in Chapter 2. In Chapter 3, the inter picture prediction and ME in HEVC are

discussed. Chapter 4 presents the methodology, such as evaluating tools and design

method. Also test materials are discussed. Chapters 5 and 6 are reserved for the hardware

specification and implementation, respectively. The results are presented and discussed

in Chapter 7. Chapter 8 concludes the Thesis.

2

2. BACKGROUND

This chapter introduces the main topics of this Thesis. Basic background information of

High-Level Synthesis (HLS) and its tools, Field Programmable Gate Array (FPGA) cir-

cuits, Kvazaar High Efficiency Video Coding (HEVC) encoder and its accelerated intra

encoder are given. Related work is also discussed.

2.1 High-Level Synthesis (HLS)

The concept of High-Level Synthesis (HLS) brings more automation to hardware design

flow. The main purpose is to generate functioning register transfer level (RTL) descrip-

tion from higher abstraction programming languages [4]. HLS synthesis tools generate

synthesizable hardware description language (HDL), such as Very High Speed Inte-

grated Circuit (VHSIC) Hardware Description Language (VHDL) [5] or Verilog, that

allows hardware designers to focus on the functionality of the design.

As hardware systems and applications grow bigger and more complex, the design and

verification times increase significantly. The cost of using standard RTL development

tools becomes too high. HLS promises to reduce design and verification times by needing

less detail for the design specifics, e.g. the need for specifying a clock, and automized

generation of RTL structures based on the targeted technology [4]. Using HLS, the de-

signs are more generic because of the higher abstraction level. This means that the same

algorithm could be easier used on different platforms as HLS takes care of the platform

specific design constraints.

An important thing to consider when using HLS is bit accurate data types. This becomes

important when modeling hardware directly from C or C++, as they only offer data types

with limited widths [4]. Mentor Graphics has developed their own standardized bit accu-

rate data type, which is called Algorithmic-C data types. Another option for the bit accu-

rate data types is SystemC types. However, it has various limitations compared to Algo-

rithmic-C data types, such as slow execution times. Therefore, the Algorithmic-C data

types are used in this Thesis.

The most commonly used Algorithmic-C data types are signed and unsigned integers [4].

They allow the designer to model bit vectors with a constant bit width and a sign. Algo-

rithmic-C allows also the use of fixed-point arithmetic with its fixed-point data type. This

is something what cannot be done automatically with regular RTL design methods and is

a big advantage of HLS. All the basic logical and arithmetical operators are included in

the Algorithmic-C standard. The Algorithmic-C offers also a set of built-in methods, such

3

as slice read, and slice write. These are used to get access to a specific set of bits within

a variable. In addition, the bitwise operators are designed so that there is no loss of preci-

sion.

The first step of HLS is the analysis of the written algorithm [4]. This step forms the

dependencies within the algorithm, and in which order the operations must be executed.

The results are illustrated as data flow graphs. The next step is resource allocation where

the operators are mapped to the hardware components of the targeted platform. Already

at this point, the required area and latency are known. The timing of the designed system

is determined in the final step called scheduling. During scheduling, the exact timing of

the system is decided. This means deciding which operation to execute in what clock

cycle. In practice this means that the HLS tool adds registers to the design between pro-

cesses according to the assigned clock frequency. The operations are assigned to a spe-

cific clock cycle based on the critical path of the design and registers are put in between

to reduce delay when needed.

HLS introduces also the concept of loop optimization, which brings parallelism to the

design. There are two ways of implementing it, loop pipelining and loop unrolling. Loop

pipelining means that a new iteration of a loop can be started before the previous one has

finished. Loop pipelining is controlled with Initiation Interval (II), which determines how

many clock cycles are waited before the next cycle is started. Loop unrolling, on the other

hand, means how many parallel duplications there are for the loop. The loops can be fully

or partially unrolled. Partial loop unrolling means, that specified number of iterations are

started at once and full loop unrolling means that all iterations are started at once.

2.1.1 HLS design flow with Catapult-C

Catapult-C is an HLS platform offered by Mentor Graphics. It makes possible to get RTL

logic description automatically from industry-standard C/C++ and SystemC languages

[6]. The key features for Catapult-C are functioning RTL, fast verification time and power

optimization. It promises 80% less code writing, easier debugging and 80% less verifica-

tion cost compared to the traditional RTL design. The output from Catapult-C is VHDL

and/or Verilog code.

The HLS design flow with Catapult-C is simpler than with traditional RTL design tools.

Figure 2.1 illustrates the design flow with Catapult-C tool from the specification of the

system to the synthesized hardware on FPGA. The flow is simpler and faster to execute

4

than with traditional hardware design flow. The same results as with the traditional hard-

ware design flow can be achieved with HLS in a matter of hours instead of days or weeks.

The flow starts from the specification of the algorithm and its functionality. The untimed

algorithm is then written with the chosen high abstraction level programming language.

At this stage there are no specifications for clocks and reset signals. The functionality of

the design is tested with a test bench, which is written in the same language as the algo-

rithm. Once the functionality is tested, the RTL is generated.

Catapult-C also offers automation for RTL verification [6]. The same test bench used for

functionality testing is used also for generating the stimulus and testing the RTL. During

the RTL simulation, the RTL functionality is verified against the untimed algorithm. After

the verified RTL description is obtained, the VHDL or Verilog code is transferred to the

platform specific synthesis tool, i.e. Intel Quartus, and synthesized to the target platform.

Figure 2.1 HLS design flow.

5

2

4

6

8

void accumulator(ac_int<32, true> input[4], ac_int<32, true> &output)
{
 ac_int<32, true> accumulate = 0;
 for(ac_int<32, true> i = 0; i < 4; i++){
 accumulate += input[i];
 }
 output = accumulate;
}

Listing 2.1 Accumulator example.

Listing 2.1 shows an example of hardware design using Catapult-C. It accumulates the

values from the input table and assigns the result to the output variable. The example does

not contain control signals, such as clocks or resets, as Catapult-C adds them during the

workflow.

Catapult-C also offers tools to manipulate the memories used in the design [4]. There are

three important parameters which are used to simplify the memory architecture, and in

the best case, greatly decrease the needed memory accesses. These parameters are word

width, block size, and interleave.

Word width sets the width of each memory location, allowing data to be stored in parallel

to the memories [4]. The parameter allows Catapult-C to automatically combine multiple

reads or writes to the memory, without any manual coding. Left image on Figure 2.2

illustrates the block size parameter, which determines the number of blocks the memory

is divided into. In the example, the block size is set three, which then divides the nine

memory locations into three smaller memories, with three memory locations in each.

Right side of Figure 2.2 demonstrates how memory interleaving works. The same

memory is now interleaved with three. The memory elements are stored again into three

different memories, but this time the order is changed so that every third element is stored

into the same memory. Memory interleaving and block size changing gives the designer

Figure 2.2 Block size and interleaving.

6

possibility to modify easily the designs memory interface. With these tools, parallel

memory architectures are possible to implement in reasonable amount of time.

2.1.2 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) are programmable silicon circuits. They are

used as a part of various kind of systems and applications because of their flexibility,

configurability and rather cheap prize [7]. FPGA based systems have also very short de-

velopment times. These are the main advantages compared to Application Specific Inte-

grated Circuits (ASICs). However, re-programmability brings also disadvantages.

FPGAs have usually more delay and their power consumption is higher as well as re-

source usage.

Modern FPGAs are based on three basic programming technologies. These are static ran-

dom access memory (SRAM), anti-fuse and flash [8]. Programming an anti-fuse-based

FPGA is done by applying current and high voltage pulse to the device. The biggest dis-

advantage with anti-fuse technology is that it cannot be reprogrammed but the FPGAs

using that technology have usually lower power consumption and are faster.

SRAM technology, on the other hand, uses static memory cells to store the data [7]. How-

ever, the data is lost from them when the FPGA is powered down. Another drawback is

the needed size of the SRAM cell. One SRAM cell can require up to six transistors while

no transistors are needed to use anti-fuse technology and only one transistor is required

for flash technology.

Flash technology is relatively new and tries to overcome the problems of the SRAM tech-

nology. It is based on erasable programmable read-only memories (EPROM). Its biggest

advantages compared to the SRAM are the resource usage and that the data is not lost

once powered down.

The most widely used programming technology is the SRAM mainly because of the re-

programmability and that it uses the standard Complementary Metal Oxide Semiconduc-

tor (CMOS) manufacturing process [7]. Thus, there is no need for special development

regarding to the programming as it would be the case with flash technology. The major

FPGS producers, such as Intel, use SRAM based technologies in most of their FPGAs.

The FPGA circuits are built from logic blocks. These blocks are used for implementing

the logical operations, routing, storage and off-chip connections [7]. The architecture of

FPGAs is based on a lookup table (LUT) or a multiplexer. Each vendor has their proper

names and definitions for their technologies, but the basic principle stays the same.

7

2.1.3 Arria 10 FPGA platform

The FPGA platform used in this Thesis is from Intel’s Arria 10 device family. The FPGA

device consists of Logic Array Blocks (LABs), which are its basic building blocks,

memory blocks and various digital signal processing (DSP) blocks [9]. The LAB blocks

are formed with several Adaptive Logic Modules (ALM) which perform logical functions

and calculations. Fundamentally ALMs are based on LUTs. In addition, up to the quarter

of the LAB blocks can be used as a memory (MLAB). The external communication with

PC is done via Peripheral Component Interconnect express (PCIe) [10] bus.

Table 2.1 Arria 10 FPGA overview.

Device Arria 10

ALMs 427200

DSP 1518

LAB 42720

M20K 2713

PCie Gen2:x8

PLL 144

The specific board used in this Thesis is the Arria 10 GX FPGA Development Kit. Table

2.1 lists the main characteristics of the platform. Arria 10 is Intel’s midrange FPGA plat-

form and has a large amount of ALMs LABs and DSPs in use. It supports the 1st, 2nd and

3rd generation PCIe busses. The characteristics make the platform suitable for heavy cal-

culations which are needed to design an accelerator.

The Arria 10 platform in this Thesis is configured to use Gen 2 PCIe bus with 8 lanes for

data transfer between FPGA and the central processing unit (CPU) of the computer. The

Intel PCIe IP on the FPGA runs at 250 MHz and uses a 128-bit Avalon bus as its interface.

The theoretical maximum throughput for the PCIe bus with the presented settings is 32

Gbit/s.

The FPGA platforms have two types of Random Access Memories (RAM), single port

and dual port. This applies also to Arria 10 platform. The memories in the platform sup-

port bit width up to 1024 bits for each memory location which is equal to 128 bytes. The

memories in Arria 10 are represented as M20K blocks.

Direct Memory Access (DMA) blocks are used to transfer data between CPU and FPGA

as independently as possible. The idea is that CPU writes data to an allocated table from

where DMA reads it and stores to FPGA memories. Meanwhile CPU can occupy with

other tasks as no more information is needed once the data is written to the table. DMA

blocks are used also in this Thesis to transfer data between CPU and the FPGA platform.

8

The simplified system architecture overview is illustrated in Figure 2.3. The PCie bus

utilizes Avalon Memory-Mapped (Avalon-MM) interface to access the FPGA memories

with or without utilizing DMAs. The Avalon-MM interface is a connection based on ad-

dresses and suitable for read/write operations [11]. The interface can be used for mas-

ter/slave type connection, which is also used in this Thesis. The DMAs and the RAMs

form the memory interface between the Accelerator and the CPU. Figure 2.4 illustrates

Figure 2.4 FPGA (red) connected to the CPU via PCIe (blue).

Figure 2.3 Accelerator system architecture overview.

9

the physical platform which is used in this Thesis. From there it can be seen how the Arria

10 FPGA platform is connected to CPU via PCIe bus.

2.2 High efficiency video coding (HEVC)

The concept of video coding consists of reducing the amount of data used to represent a

digital video signal. Video coding is based on the trade-off of visual degradation and

compression. High Efficiency Video Coding (HEVC) is the latest video coding standard

[12]. ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts

Group (VCEG) forming the Joint Collaborative Team on Video Coding (JCT-VC) pro-

duce the standard in collaboration. The standard follows the same principles as the previ-

ous standard H.264/MPEG-4 Advanced Video Coding (AVC), done by the same collab-

oration.

HEVC standard is developed for the growing need for encoding the higher resolutions

[12]. The standard is used in various application ranging from TV broadcasting to stream-

ing and video conferencing. HEVC promises to improve the coding efficiency by 50%

compared to AVC. This, however, increases the complexity of the encoders which leads

to the need of software or hardware acceleration of the encoders.

In addition, the increased need for efficient encoding for mobile devices and video on

demand services are motivations of HEVC standard. Thus, focus of the HEVC standard

is on parallel processing and increased video resolutions. JCT-VC also introduces the

reference encoder, called HEVC test Model (HM), which is used as a base for encoding

tools development. The main working principle of HEVC is discussed in the next chapter

from the point of view of practical HEVC encoder, Kvazaar.

2.2.1 Kvazaar HEVC Encoder

Kvazaar is an academic open source HEVC encoder developed as a part of research in

Ultra Video Group in the Computing Sciences Unit at Tampere University [13]. The en-

coder is designed from scratch using C and Assembly and is available in GitHub [3]. The

main design goals for Kvazaar are to get the coding efficiency close to the HEVC refer-

ence encoder and to achieve real time coding speed [13]. Other goals are to optimize the

computation and the memory usage and to be easily portable to other platforms. Kvazaar

is also used as a part of education at Tampere University.

Kvazaar, as HEVC encoder, is composed of several encoding tools, some of which can

be enabled or disabled. Figure 2.5 shows an overview of Kvazaar HEVC encoder. The

encoding process starts with input video signal entering to the encoder [12]. Each frame

of the video signal is split into smaller blocks. Then the prediction mode is decided. Each

block is encoded using either intra or inter prediction. Intra picture predictions aims to

10

reduce spatial data redundancy. Intra prediction predicts the pixels of a current block ac-

cording to the neighboring blocks of the same frame. On the other hand, inter picture

prediction is a temporal method and uses one or more of the previous frames as a refer-

ence for the prediction of the current block. This Thesis focuses only on inter picture

prediction, as it is the part of the encoder needed to be accelerated. Inter prediction is

discussed in more detail on Chapter 3. The first frame is always encoded using intra pre-

diction because there are not yet available reference frames to perform inter search. The

remaining frames are then encoded mostly using inter prediction.

Once the prediction is done, a residual signal is calculated which is the difference between

predicted block and the original [12]. The residual goes through a spatial transformation

forming prediction coefficients. These coefficients go through scaling and quantization

before they are sent to the decoder which performs inverse scaling and transformation.

The inverse transform also duplicates the decoded approximation of the residual because

it is needed to be the same in the encoder and in the decoder. After that, the residual is

summed with the prediction. At this point, some in-loop filters such as deblocking and

sample adaptive offset might be used to remove some errors from the previous processing.

Finally, the decoded picture is stored into a buffer for further use.

11

Figure 2.5 Block diagram of Kvazaar HEVC encoder.

12

2.2.2 FPGA Acceleration of Kvazaar Intra Encoder

Ultra Video Group at Tampere University has already developed an accelerator on Sys-

tem-on-Chip (SoC)-FPGA platform for the intra picture prediction of Kvazaar using HLS

[14]. The accelerator uses Kvazaar’s All Intra (AI) configuration, meaning that only intra

prediction is used. The intra accelerator is designed for live video streaming. The first

accelerator uses Intel Cyclone V on Terasic’s VEEK development board and the later

Arria V and Arria 10 development boards. The design was modeled with untimed and

timed SystemC models before implementing on SoC-FPGA platform, also platform mod-

eling and performance estimation was done.

One of the main design approaches is to use HLS instead of traditional RTL design prin-

ciples to boost the design process and to keep up with Kvazaar’s fast development process

[14]. Catapult-C implementation was derived from the SystemC model making necessary

changes to the coding style.

The intra accelerator on Arria 10 is the starting point for the accelerator interface in this

Thesis. The basic communication between FPGA and CPU were already done and only

minor modifications are needed to implement an accelerator for ME. Memory architec-

tures need to be changed to respond the MEs needs as well as configuration data.

2.3 Related work

There are not many academic HLS implementations of ME [15]. Most of the other works

that were found were either implemented using traditional hardware development meth-

ods such as VHDL [16], [17] or implemented on ASIC VLSI [18], not on FPGA. Related

work research was limited to the academic publications.

A field report [15] presents a HLS based ME design implemented on FPGA. This field

report is a case study that focuses on a predictive block-based ME implemented with HLS

tools on Xilinx Virtex-7 FPGA board. Authors use parallel predictive block matching as

a motion estimator in their case study. The focus of the report is more on the implemen-

tation tools and the comparison between HLS and traditional hardware design methods

rather than the performance. The conclusion of the field report is that complex algorithms

can be implemented on hardware with HLS in low amount of time compared to the tradi-

tional hardware design methods.

Other solutions, without HLS tools, focus on parallelizing the ME block to a very high

extent. Authors in [17] propose a highly parallel Sum of Absolute Differences (SAD) ar-

chitecture implemented with VHDL also to Xilinx Virtex-7 FPGA board. Authors devel-

oped a fast SAD calculation block to obtain 30 frames per second (FPS) real time encod-

ing for 2K videos. The approach was to parallelize the design and the proposed block has

13

64 processing units to perform the calculations. Authors were able to develop a system

that calculates 64 × 64 block size’s SAD values in 16 clock cycles at 458 MHz clock

frequency.

Authors in [18] have continued the work presented previously and designed ASIC accel-

erator for full search (FS) algorithm. They use 65nm TSMC CMOS technology and were

able to achieve 30 FPS encoding for full high definition (full HD) (1920 × 1080) se-

quences using 720 MHz frequency.

Authors in [16] present a variable block size ME using FPGA. Their approach is also

highly parallelized, including up to 16 SAD calculation units. Authors synthesized the

design on Xilinx Virtex-5 FPGA board, and they were able to reach real time 31 FPS

encoding for DVD frames and claim that with more hardware resources full HD frames

are also possible.

Only the authors of the field report [15] used HLS tools for their design, but their focus

was not on the performance. The rest of related works used traditional hardware design

methods. None of them had any application such as video encoder presented with their

works, but the architectures worked independently on the FPGAs. The hardware imple-

mentation in this Thesis uses HLS tools and is integrated as a part of real-life video en-

coder.

14

3. INTER PICTURE PREDICTION IN HEVC

This chapter goes through the principles of HEVC inter picture prediction. That includes

block partitioning, motion compensation (MC), motion estimation (ME), calculation of

sum of absolute differences (SAD) and block matching algorithms (BMA) including full

search (FS) and fast BMAs. Prediction modes in inter picture prediction are also dis-

cussed.

The main idea of inter picture prediction in the HEVC standard is to reduce the content

redundancy of the subsequent frames [19]. The content redundancy of the successive

frames is notable particularly when the frame rate of the input video is high. Thus, HEVC

presents an idea of temporal prediction meaning that prediction is based on the consecu-

tive frames.

The prediction of the current frame is done from the previous frame or frames. This is

known as forward motion prediction [20]. The other option is to use the following frame

or frames as a reference leading to backward motion prediction. If the average of forward

and backward prediction is used the resulting frame is known as bi-predicted frame. The

reference frames must have been already coded to perform the prediction and they can be

either intra or inter coded.

3.1 Block partitioning

In HEVC, the input frame is partitioned into smaller blocks to perform the encoding pro-

cess. In this standard, the basic calculation block is called coding tree unit (CTU) [12].

This block contains L × L amount of luminance samples and according chroma samples.

The HEVC standard allows CTU size L to be 16, 32 or 64. Kvazaar uses only 64 × 64

sized CTUs so the same size is used in this Thesis also.

CTU is then divided into coding units (CU) following recursive quadtree structure [21].

The CTU is divided following a treelike structure into four same sized square blocks on

each level until the smallest supported block size, 8 × 8, is reached. Figure 3.1 illustrates

an example of block partitioning of one CTU in HEVC. The coding order of the CUs,

called Z-scan is also illustrated in Figure 3.1. The CTU decomposition into CUs depends

on CTU’s pixels. The same structure is illustrated in Figure 3.2 as a coding tree structure.

If the pixels of CTU are homogenous it is not needed to partition until the smallest avail-

able block size. This can greatly improve the coding efficiency. However, the smaller

CUs are still needed as the bigger ones are not specific enough to spot all the movements

in the video signal. Kvazaar supports the CTU partitioning up to 8 × 8 sized CU blocks.

15

Figure 3.2 Coding tree structure of HEVC.

At the CU level is also decided whether the block is encoded using intra or inter prediction

[12]. The CUs are divided into prediction units (PU). Each CU is split into one, two or

four PUs. For inter prediction there are four symmetric and four asymmetric PU splitting

types.

Figure 3.1 Block partitioning example in HEVC.

16

Figure 3.3 PU splitting in HEVC, modified from [21].

All the symmetric and asymmetric PU splitting modes are illustrated in Figure 3.3. The

symmetric partition modes for PUs are 2N × 2N, N × N, N × 2N and 2N × N. Similarly,

for the asymmetric modes the partitions are 2N × nU, 2N × nD, nL × 2N and nR × 2N.

Only the symmetric 2N × 2N mode is used in this Thesis because of its uniformity.

3.2 Motion estimation and compensation

Motion estimation (ME) is used to determine the movement of the objects between the

current frame and reference frames and therefore to reduce the residual needed to encode

[20]. The result of the ME is called a motion vector (MV) which is then used in motion

compensation (MC) to encode the current frame. MC is the main technique to reduce the

coding cost of the inter coded frames in HEVC standard. It is especially effective when

there are only small changes in the successive frames in the input video stream. Using

MC leads easily to high compression ratio.

To achieve the MVs, ME is needed which is the first thing to perform in inter picture

prediction. ME is usually the part of the encoder which requires the most calculations as

the most of the frames are usually encoded using inter picture prediction [12]. ME is

performed using one of the various BMAs [20]. To perform a BMA, the current frame is

divided into non-overlapping PUs which are compared to the reference frame.

The resulting frame from MC is known as motion compensated prediction [20]. MC uses

one or various reference frames. When the number of reference frames is increased also

the complexity of the encoder increases significantly as well as the need for more memory

17

to store all the reference data until the prediction is done. MC produces two outputs, one

being residual prediction error which is the difference between the motion compensated

prediction and the current frame and the second is the already calculated MVs.

ME consists of integer motion estimation (IME) and fractional motion estimation (FME).

IME focuses only on integer pixels and FME divides the pixels still into smaller parts.

FME is used to get even more precise results within the pixel. The following BMAs are

used for IME. FME uses different methods to adjust the results from IME. Only IME is

discussed in detail in this Thesis as it forms its own complete entity. Introducing also the

FME would make the Thesis too large. However, FME is an important part of the whole

ME process from the quality and performance point of view and is considered in the fu-

ture work.

3.3 Block matching algorithms (BMA)

As described previously, the current frame is divided into PUs according to the luminance

samples. In addition, the reference frame is also divided into blocks called search area.

The size of the search area is defined by search range. The search range defines the

amount of pixels a PU expands from its corners to form the search area. Kvazaar supports

the search range of 8, 16, 32 and 64 pixels. The chosen block matching algorithm (BMA)

is executed within that search area [20].

The basic idea of the block matching is to find the best PU from the reference frame’s

search area corresponding to the current PU of the frame to be predicted [20]. When the

best PU is found from the reference frame’s search area, the displacement between the

current PU and the reference PU is determined to achieve the MV. MVs have two com-

ponents, vertical and horizontal representing the displacement in the frame on Y-axis and

X-axis respectively.

Block distortion measures are used to determine the best matching PU from the reference

frame. The most commonly used distortion measures are sum of absolute differences

(SAD), mean absolute difference (MAD) and mean square error (MSE) [20]. Kvazaar

uses mostly SAD for block distortion measure in inter prediction and therefore it is in-

vestigated in more detail.

Calculating SAD means calculating the absolute difference of each pixel’s luminance

sample within the PU and adding them together [20]. The same process is repeated for

each search location within the search area. All the calculated SAD values are then com-

pared, and the smallest SAD determines the best matching block. The following formula

is used to calculate SAD for one N × N sized PU:

𝑆𝐴𝐷 = ∑ ∑ |𝐶(𝑖, 𝑗) − 𝑅(𝑖 + 𝑣𝑥, 𝑗 + 𝑣𝑦)|𝑁
𝑗=1

𝑁
𝑖=1 (3.1)

18

where N is the width and the height of the macroblock. C(i, j) is the value of the luminance

sample of the pixel at the location (i, j) of the current frame. R(i + vx, j + vy) is the lumi-

nance value of the reference block at the location (i + vx, j + vy) and vx and vy are the MV

coordinates [20]. Figure 3.4 illustrates an example of block matching. The best matching

PU’s location is illustrated in the reference frame’s search area and the displacement from

the original location in the current frame is the MV.

There are various BMAs to find the best matching PU from the reference frame within

the search area [20]. The most straightforward is FS, also known as exhaustive search.

Other, less computationally heavy, algorithms are for example hexagon-based search and

test zone search. They are commonly known as fast BMAs.

3.3.1 Full search (FS)

Full search (FS) algorithm calculates SAD in each possible PU location within the search

area and determines where the SAD value is lowest. Calculating SAD and MV in FS for

search range of [-p, p] is done as follows:

𝑆𝐴𝐷(𝑚, 𝑛) = ∑ ∑ |𝑐(𝑖, 𝑗) − 𝑠(𝑖 + 𝑚, 𝑗 + 𝑛)| ; −𝑝 ≤ 𝑚, 𝑛 ≤ 𝑝 𝑁
𝑗=1

𝑁
𝑖=1 (3.2)

𝑀𝑉 = {(𝑢, 𝑣)| 𝑆𝐴𝐷(𝑢, 𝑣) ≤ 𝑆𝐴𝐷(𝑚, 𝑛); −𝑝 ≤ 𝑚, 𝑛 ≤ 𝑝} (3.3)

Figure 3.4 Block matching example.

19

where SAD (m, n) is the current PU distortion at the location (m, n), c (i, j) is the current

PU data at the location (i, j) and s(i + m, j + n) is the reference PU data at the location

(i + m, j + n). MV is the motion vector where the SAD value is the lowest within the

search range [-p, p] [20].

The complexity of the FS algorithm can be estimated by calculating all the possible

unique search locations needed to determine the lowest SAD within the search range. The

following equation gives the number of locations tested in a search range of [-p, p] [20].

𝐿𝑂𝐶 = (2𝑝 + 1)2 (3.4)

Table 3.1 shows the amount of search locations with different search ranges. As the search

locations correlate directly to the amount of calculations needed to perform the FS for

one whole full HD video frame, it can be seen how computationally heavy the algorithm

is.

3.3.2 Fast block matching algorithms

Several solutions, called fast BMAs, have been proposed to accelerate the FS algorithm

[20], [22], [23]. The fast BMAs introduce encoding degradation compared to the FS al-

gorithm as the whole search area is not utilized for the search. This is also the reason why

they execute faster than FS. The most popular fast BMAs are test zone (TZ) search [23]

and hexagon-based search (HEXBS) [22]. The fast BMAs allow to adjust the trade-off

between computational complexity and encoding degradation. They contain more com-

plex data access patterns compared to very straightforward FS.

TZ search consists of four steps to execute the MV search [23]. First step is to set up the

centre of the search which is done using the MV from the previous frame [24]. The pre-

viously predicted MV is used as the starting point for the TZ search. Once the starting

point is chosen, square or diamond search, illustrated in Figure 3.5 and Figure 3.6, re-

spectively, is performed within the chosen search range. This part is generally called zonal

search. The third step of the TZ search is called raster search. This is done only if the

result from the current MV search is far from the search centre. Raster search means a

small FS around the obtained result from the previous step. The fourth and the last step

Table 3.1 The amount of search locations with different search ranges.

Search range Amount of search locations

8 289

16 1 089

32 4 225

64 16 641

20

of the TZ search is called refinement. On this step, the diamond search pattern is used to

adjust the results from the previous steps.

Even though the TZ search can be as much as 60% faster than FS, it still has optimization

issues and it does not reach the efficiency of the other fast algorithms [24]. The TZ search

can have also bad video compression efficiency as IME has only limited search range,

which can lead to the best match being out of scope.

HEXBS has improved search efficiency and performance compared to the TZ search [23].

The first step of HEXBS is the same as on TZ search. Then large hexagon pattern is used

to perform the search [22]. Traditional hexagon pattern, illustrated in Figure 3.7, includes

Figure 3.5 Square search pattern.

Figure 3.6 Diamond search pattern.

21

six checking points around the centre. As the search continues, the new centre for the

search is determined from the previous best match. When the best result is found in the

centre of the pattern, small pattern is used. Small pattern, illustrated on the left side of

Figure 3.8, has only four search points. However, small pattern excludes the corners so

refinement, on the right side of Figure 3.8, is often used instead.

From these fast BMAs, HEXBS is often consider the fastest and the most effective. This

is because it uses fewer search points as the others without having differences in the dis-

tortion performance [22].

3.4 Inter picture prediction modes

In HEVC standard, the ME is done using one of the three prediction modes [25]. The

modes are advanced motion vector prediction (AMVP) (sometimes called inter mode),

merge mode and skip mode. One of these prediction modes is used every time a MV is

predicted.

Figure 3.7 Hexagon-based search.

Figure 3.8 Small pattern of HEXBS.

22

In the AMVP, a specific candidate list of MVs is checked to obtain the best MV candidate

[12]. The candidates are divided to temporal and spatial candidates and are illustrated in

Figure 3.9. They illustrate the possible starting locations for defining the best MV. The

HEVC standard defines the spatial candidates that are a1, b1, b0, a0 and b2 and they are

also checked in that order. The temporal candidates are c0 and c1. The spatial candidates

are located on the top or on the left side because those are already processed and available

as they are within the current frame. Temporal candidates use the information from the

reference frame and therefore the PUs on the right and below are also available. In addi-

tion to those, the candidates can include also generated candidates. In Kvazaar, these are

called extra candidates.

The candidate list is evaluated in the specified order and up to two best candidate loca-

tions are used to obtain the best MV. The MV location can be unavailable if for example

the PU in the location is not coded yet or if it is outside the frame.

HEVC standard introduces also a merge mode that can inherit the motion information

from temporally or spatially neighbouring blocks [25]. This means that the MV does not

need to be calculated but the information is copied directly from the candidate location.

The merge candidate positions are the same as in the AMVP. Finally, the skip mode is a

special case of the merge mode. If the skip mode is used, all the candidates equal to zero

and only the index of the candidate is transmitted.

Figure 3.9 Temporal and spatial MV candidates.

23

4. METHODOLOGY

This chapter introduces the design method for designing an accelerator. The complete

hardware design flow is discussed as well as tools for defining video coding efficiency.

Test materials for testing Kvazaar are also provided.

4.1 Coding efficiency

The most common way to measure video quality degradation is to measure its distortion

with peak signal-to-noise ratio (PSNR) [26]. It is an objective quality evaluation and

compares the maximum power of the signal of the original image to the power of the

compressed signal. PSNR is based on mean square error (MSE) of the decoded image.

The MSE is defined by following equation:

𝑀𝑆𝐸 =
∑ ∑ (𝐼(𝑖,𝑗) −𝐼𝑑(𝑖,𝑗))2𝑁−1

𝑗=0
𝑀−1
𝑖=0

𝑀∙𝑁
, (4.1)

where N and M are dimensions of the current block which is to be calculated and I is the

original image component and Id is the decoded image component. Then PSNR is calcu-

lated from the MSE using the following equation:

𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔
(2𝐵−1)2

𝑀𝑆𝐸
, (4.2)

where B represents the bit depth. This gives PSNR value for one of the three color com-

ponents (luminance and two chrominance) of one block. Weighted average is calculated

using all the three components or only PSNR from luminance sample. Weighted average

for 4:2:0 sampling is calculated as follows.

𝑃𝑆𝑁𝑅𝑊 =
6∙ 𝑃𝑆𝑁𝑅𝑌+𝑃𝑆𝑁𝑅𝐶𝐵

+ 𝑃𝑆𝑁𝑅𝐶𝑅

8
, (4.3)

where 𝑃𝑆𝑁𝑅𝑌, 𝑃𝑆𝑁𝑅𝐶𝐵
and 𝑃𝑆𝑁𝑅𝐶𝑅

are the three different PSNR values from the color

components.

In addition to the PSNR, bit rate of the encoder is used to estimate coding efficiency. It

means the total amount of bits the encoder produces. To compare and evaluate the per-

formance of encoders and encoding tools, the most widely used metrics is the Bjønte-

gaard-delta bit rate (BD-BR). It makes the comparison of the coding efficiency of two

encoders possible [27]. Generally, the BD-BR reports the average bit rate difference per-

cent for two encodings at the same quality level measured with PSNR. When determining

the BD-BR, the bit rate is usually represented in a logarithmic scale because on the linear

24

scale the higher bit rates would be dominating. The curve in the bit rate-PSNR graph is

based on four measure points. Those points are the different Quantization Parameter

(QP) values, 22, 27, 32, 37, defined on the JCT-VCs common test conditions (CTCs) [28].

The interpolation is done drawing a third order polynomial on the graph [27]. Then the

BD-BR is obtained integrating the both curves and calculating the difference in the area

between them.

The QP values control the ratio between compression and visual quality degradation of

the encoding process. As the QP represents the quantization levels, on lower QP values

there is less distortion and the encoding is slower. Vice versa, using higher QP, quantiza-

tion levels are less, encoding is faster and there is more distortion on the bit stream.

A common way to measure encoding speed is to determine the frame rate of the encoder.

Frame rate is measured in frames per second (FPS). FPS is defined as the inverse of en-

coding time as described by the following equation

𝐹𝑃𝑆 =
1

𝑡
 , (4.4)

where t is the time needed to process one frame. Variable t is obtained as

𝑡 =
𝑐

𝑓
 , (4.5)

where c is the throughput cycles of an accelerator to process one frame and f is the oper-

ating frequency where an accelerator is designed to work. Combining equations (4.4) and

(4.5) the FPS calculation is expressed as:

𝐹𝑃𝑆 =
𝑓

𝑐
. (4.6)

On the other hand, the maximum amount of throughput cycles to achieve certain FPS is

further derived from the equation (4.6) as

𝑐 =
𝑓

𝐹𝑃𝑆
. (4.7)

The throughput cycles for the whole frame are approximated as

𝑐 ≈ 𝑐𝑠 ∙ 𝑥, (4.8)

where cs is the throughput cycles for one PU and x is the total amount of PUs in one

frame. Combining the equations (4.7) and (4.8), the maximum throughput cycles to cal-

culate one frame is obtained the as

𝑐𝑠 ≈
𝑓

𝑥∙𝐹𝑃𝑆
. (4.9)

25

4.2 Test materials

As mentioned, JCT-VC has specified CTCs for testing HEVC encoders. Table 4.1 lists

the test materials used for testing Kvazaar. The test sequences are separated to different

classes, A – E, according to the resolution. Classes F and X defined in the CTCs are

omitted from the tests as their sequences do not contain natural motion and the results

would be misrepresented.

The tests are automated with a testing tool developed as a part of Ultra Video Group’s

research, called Venctester. Each sequence is tested with the four earlier mentioned QP

values defined in the CTCs: 22, 27, 32, 37. Venctester compares encoders or encoder

versions by calculating the BD-BR and encoding speedup. On the tests run for this Thesis,

the anchor is the Kvazaar v1.3.0 using HEXBS algorithm for ME. Kvazaar is set to use

its ultrafast preset which is the fastest one in terms of encoding speeds.

Table 4.1 Test sequences.

Class Sequence Resolution Frame rate (Hz) Length (s)

A PeopleOnStreet 2560 × 1600 30 5

 Traffic 2560 × 1600 30 5

B BasketballDrive 1920 × 1080 50 10

 BQTerrace 1920 × 1080 60 10

 Cactus 1920 × 1080 50 10

 Kimono 1920 × 1080 24 10

 ParkScene 1920 × 1080 24 10

C BasketballDrill 832 × 480 50 10

 BQMall 832 × 480 60 10

 PartyScene 832 × 480 50 10

 RaceHorces 832 × 480 30 10

D BasketballPass 416 × 240 50 10

 BlowingBubbles 416 × 240 50 10

 BQSquare 416 × 240 60 10

 RaceHorces 416 × 240 30 10

E FourPeople 1280 × 720 60 10

 Johnny 1280 × 720 60 10

 KristenAndSara 1280 × 720 60 10

26

4.3 Design method

The whole accelerator design process is illustrated in the flowchart in Figure 4.1. The

design flow starts from inspecting Kvazaar’s C source code and writing a modified, un-

timed version of the algorithm for the hardware platform. This means the variable sizes

must be considered as well as the use of the operators such as division and modulus. Next

step is to create a test bench for the Catapult-C source code and verify the functionality

of the untimed algorithm.

Once the untimed algorithm works correctly, the hardware specific design constraints are

specified. In this phase, the used FPGA platform and the operating frequency are chosen.

In addition, the RTL synthesis tool is chosen. Next, the architecture specific design con-

straints are set up. These include how the arrays and look-up tables are mapped to mem-

ories and whether memory partitioning or interleaving is used. Arrays could also be

mapped to registers, if needed.

In the same phase, the loop unrolling, and pipelining are decided. Once the design con-

straints are set up, the RTL description of the design is created. Practically, Catapult-C

generates Verilog and VHDL files that contain the RTL description of the algorithm. RTL

functionality is verified with Modelsim simulation tool. When launched directly from

Catapult-C the same test bench is used to verify the functionality of the created RTL

hardware.

In this point, architecture constraint exploration is done if the results are not satisfying or

there are timing violations. The targeted frequency and pipelining and loop unrolling set-

tings are changed if needed as well as the memory mappings to fulfill the requirements.

Then, the RTL description is generated again, and the functionality verified with Mod-

elsim.

When the design works correctly, the generated Verilog (or VHDL) file is moved to Intel

Quartus Prime Standard Edition design tool and integrated there to the top-level module

of the hardware system. The top-level module is implemented in Verilog and the PCIe

interface with possible memory connections is implemented in Intel Qsys Platform De-

signer. The whole design is compiled, and the FPGA chip is programmed using the

Quartus Programmer.

27

Figure 4.1 Flowchart of the accelerator design process.

28

5. HARDWARE SPECIFICATION

This chapter focuses on the study to choose and limit the ME algorithm for hardware

acceleration. The main goal was to find a hardware friendly ME algorithm to accelerate

and limit it to be suitable for transferring to the FPGA. Maximum cycle requirements and

memory limitations are also discussed.

5.1 Algorithm selection for hardware acceleration

The goal of this Thesis is to accelerate one of the BMAs of ME. The main problem when

accelerating the fast BMAs is the complex non-linear memory accesses and the commu-

nication between the CPU and the hardware platform. Transferring them to the FPGA

platform, would most likely only give very minimal boost to the performance, if any. In

addition, the performance boost gained accelerating the fast BMAs might be lost due to

the communication as they are already well optimized and fast on CPU.

One advantage for implementing the fast BMAs on software is the use of CPU’s threads.

They are used to add parallelism to the calculations and that way speed up the encoding.

Fast mode decisions are also often used with fast BMAs, which greatly reduces their

computational complexity without a major impact on the quality. In conclusion fast

BMAs are CPU friendly and they benefit more when executed on software.

On the other hand, the data access in the FS algorithm is straightforward and there are not

a lot of dependencies within the algorithm. Also, FS is computationally heavy and exe-

cutes slower than the fast BMAs on CPU making it ideal for acceleration. FS has also

good coding efficiency. In conclusion, FS algorithm is very hardware friendly compared

to the fast BMAs. FS algorithm is therefore chosen for hardware acceleration in this The-

sis.

5.2 Algorithm limiting

By default, Kvazaar uses all the available PU sizes for ME. To simplify the hardware

design process, the algorithm is limited to use only one size. The smallest PU size, 8 × 8,

is used because it results to the best coding efficiency. The bigger the PUs used for ME

are, the harder it is to detect motion from the sequence. Other limitation comes from the

search range. Kvazaar supports search ranges 8, 16, 32 and 64 and one of them must be

selected for the hardware design also.

29

Table 5.1 Test results comparing FS and HEBS.

 normal FS no spatial candidates

Range BD-BR (%) BD-BR (%) Amount of PUs

8 -1.04 1.40 289

16 -1.12 -0.96 1089

32 -1.08 -1.09 4225

64 -1.00 -1.01 16641

Extensive tests are run to software only Kvazaar to find out the best trade-off between the

coding efficiency and coding complexity. The focus of this experiment is to compare FS

algorithm with different search ranges to HEXBS using the BD-BR. HEXBS works as an

anchor where the different FS settings are compared to. The HEXBS algorithm is chosen

because it is well optimized in Kvazaar and has good coding efficiency. The aim is to find

out whether the search range can be reduced from the default search range and is it nec-

essary to use the spatial candidates as described in Chapter 3.4.

The test results comparing normal FS to the HEXBS are shown in the first column of

Table 5.1. Results show that the FS algorithm is superior to HEXBS algorithm in terms

of coding efficiency no matter which search range is set. Thus, according to the results

the search range could be reduced to 8.

However, the first comparison is with complete FS, meaning that the search is done also

around the spatial candidates. Searching around them makes the algorithm more complex

because they are not part of the regular search area which generates extra data to be sent

to the FPGA. The same tests are run to see how omitting the spatial candidates and search-

ing only around the temporal candidate c1 affects to the coding efficiency.

The middle column of Table 5.1 presents the test results without searching the spatial

candidates. The average BD-BR using the search range of 16 for FS is slightly better

compared to HEXBS algorithm. The amount of PUs, seen in the right column of Table

5.1, is roughly ¼ compared to the default search range 32. According to the results, the

search range 16 searching only around the temporal candidate c1 is chosen for the Accel-

erator. It is a good choice also because of its simplicity for the memory architecture as

the needed memory access is straightforward and just one search area needs to be trans-

mitted to the FPGA for each PU. Implementing complicated memory structures to the

hardware is both inefficient and time consuming.

5.3 Design limitations

To get a general idea how fast the designed Accelerator should be, maximum throughput

cycles to achieve 30 FPS encoding is calculated. The theoretical maximum throughput

30

cycles with different frequencies for full HD and 4k resolutions are presented in Table

5.2.

The maximum amount of throughput cycles to process one PU is calculated from (4.9)

knowing the targeted frequency, wanted FPS and the total amount of PUs in one frame.

Each full HD frame consists of (1 920 / 8) × (1 080 / 8) = 32 400 PUs and 4k frame

(3 840 / 8) × (2 160 / 8) = 129 600 PUs. The results are used as a guideline to achieve the

targeted 30 FPS encoding. The numbers do not include the communication delay between

CPU and FPGA and are purely limitations for the Accelerator.

Kvazaar uses also an encoding tool called early skip. The purpose is to reduce bit stream

and make the encoding faster skipping PUs if the lowest SAD would be almost the same

as before. In practice, this means that some of the PUs, depending on the sequence, are

not processed. This is not considered on the calculations in Table 5.2 and the required

cycles represent the situation when every PU of the frame is encoded, leading to the

worst-case scenario.

5.4 Memory limitations

The type of memory architecture is important to consider when designing a computation-

ally heavy algorithm. These algorithms require a lot of data to be read from on-chip

RAMs. When using one RAM block, only two memory reads, or writes can be done in

parallel. This is a huge restriction when trying to add more parallelism to the architecture.

Each pixel is composed of 8 bits. In this case, it would not be efficient to save each pixel

to a separate memory location. The memories in Arria 10 support different bit widths.

Utilizing this, one memory location could hold more than one pixel. This already reduces

the required reads significantly as various pixels are read in parallel from one memory

location.

One PU has 1 089 unique search locations within the search area when using the search

range of 16. Considering 8 × 8 PUs and supposing each pixel and reference pixel is stored

in one separate memory location, for each search locations 64 memory reads are needed.

This leads to a total of 1 089 × 64 + 64 = 69 760 memory reads to calculate the SAD val-

ues for the whole search area. The extra 64 reads are to get the current PU, which needs

to be read just once as it stays the same for each search location.

Table 5.2 Maximum throughput cycles to achieve 30 FPS.

 125 MHz 150 MHz 175 MHz 200 MHz

full HD 128 154 180 205

4k 32 38 45 51

31

As one full HD frame consists of 32 400 PUs, accessing the needed pixels to process one

whole frame uses 32 400 × 69 760 = 2.26 × 109 reads from the on-chip memories. This

example aims to demonstrate that to perform FS for one full HD frame in reasonable

amount of time an optimized memory structure is needed.

32

6. ACCELERATOR DESIGN

This chapter presents the complete practical design flow of using HLS to create an FPGA

based ME Accelerator for Kvazaar. The design process follows the flow presented in

Chapter 4 and the hardware specifications from the previous chapter are also considered.

6.1 Architecture overview

Figure 6.1 illustrates the block diagram of the Accelerator design. It is divided into Ac-

celerator core, for calculations, and the Accelerator which works as an interface for con-

necting Kvazaar to the CPU. The Accelerator is connected to the CPU via PCIe bus,

which is used for sending the current PUs luminance pixels and the according search

area’s luminance pixels to the FPGA. Once calculations are done, the results can be read

from the on-chip memories also via PCIe bus. A Linux driver is created to handle the

communication between Kvazaar and PCIe device. The Accelerator and the Accelerator

core designs are generic and can be multiplied on the FPGA platform. All the designed

blocks are discussed in greater detail as well as the required memory architecture in the

following sections.

The current PU and the according search area are transferred to the FPGA memory using

a DMA block, a first-in-first-out (FIFO) component and a memory indexer block. The

memory indexer saves the calculation data to the memories from where it is read to be

processed. The DMA block is capable of processing data independently from the proces-

sor, so when the needed data is sent to the DMA buffer, the processor can occupy with

other tasks meanwhile. The DMA writes the data to the FIFO memory which forwards it

to the memory indexer. The reason to use a FIFO between the DMA and the memory

indexer is to have a temporal place for the data as the DMA block processes the whole

data at once when started.

The Accelerator core is separated into three different blocks named write, read and cal-

culation. The write block gets the calculation data from the on-chip memories and writes

it to the calculation block. The calculation block determines the SAD values and the

according MVs from the data. Finally, the read block gets the calculated results and stores

them to the on-chip memory.

Keeping in mind the cycle limitations and the memory access limitations, the calculations

must be pipelined and parallelized. Easiest way to reduce the required cycles is to reduce

the amount of data sent to the calculation block and then reuse it. This already reduces

33

the memory access greatly. To make the reuse easier, the search area is divided, and the

calculation is done in smaller parts. In addition, the calculation block can be reused.

6.2 Read and write blocks

Read and write blocks are needed for getting the data for calculation and storing the re-

sults to the on-chip memories. The write block is responsible of writing the correct pixels

to the calculation block and read block reads the results from there. Figure 6.2 illustrates

search area division into smaller search windows. It shows the computed part of one cal-

culation block call. Figure 6.2 shows the first five search windows. The search area is

divided into a total of 16 search windows, reflecting also to the amount of times the cal-

culation block is called.

Figure 6.1 Accelerator block diagram.

34

The grey area shows the first part of the calculation, 16 × 16 = 256 pixels, that are sent to

calculation block. The right half of the grey marked pixels, 128 pixels in total, are reused

for the second time the calculation block is called, illustrated as black dashed line. This

means that only the right half of the black dashed line pixels must be read from the

memory. The same happens again for the third and fourth search windows, marked with

blue and green dashed lines respectively. When the search window row changes, illus-

trated with red dashed line, within the search area, the reuse is not used. Instead, all the

pixels are read from the memory and registers and the reuse cycle is started over.

One way to gain access to the new 128 pixels from the search area is to access 64 bits (8

pixels) from 16 different memories. Though, the current 40 × 40 search area cannot be

divided easily into 16 equal sized memories. The problem is overcome by duplicating

some parts of the search area. That way the Catapult-C’s design constraints can be used

effectively, and pixels are read always from the same index from each of the memories.

The duplication is shown in Figure 6.3(a). When starting the new search window row,

illustrated as red dashed line, the upper part of the pixels is duplicated. This leads to total

of 3 × 8 × 40 = 960 duplicated pixels. With the duplication the total amount of search area

memory is increased to 1 600 B + 960 B = 2 560 B. The numbers 1 – 4 in Figure 6.3(a)

illustrate the separated search window rows.

Assuming the pixels are duplicated, the memory interface of the write block is reor-

ganized using the Catapult-C’s design constraints. The memory width in Catapult-C is set

Figure 6.2 Search area partition into search windows.

35

to 64 bits meaning that one memory location contains eight pixels. The block size is set

to 20 which leads to the wanted 16 separate memories, illustrated in Figure 6.3(b). Eight

new pixels are read from each one of the 16 memories granting access to the wanted 128

new pixels each clock cycle. As the duplicated search area is stored evenly on the on-chip

memories, each of them contains 2 560B / 16 = 160 B. The memory indexer block takes

care of the duplication and is discussed into greater detail later.

The write block sets up constant registers reading the first part (4 × 16 × 8 = 512 pixels)

of each row and the PU pixels. Then, the write block reads 8 × 16 = 128 pixels each clock

cycle from the search area memories and stores them into registers. Each time the calcu-

lation block is called, the corresponding search window data is created combining the

newly read data and the data stored into the registers. That way the same pixels do not

need to be read twice from the on-chip memories.

The main data write loop is illustrated as a simplified Catapult-C code on the Listing 6.1.

The writing loop is pipelined with II = 1 so that the pixels are written to the data channel

of calculation block every clock cycle. The allData variable contains the PU pixels and

the search window pixels. The swSliceFirst contains each search window rows first pix-

els. The two inner loops are designed to recycle the pixels and the minimum amount of

them is read from searchArea memory each cycle. The pixels are moved to and from the

registers swSliceBig and swSliceRowBack using slc and set_slc methods respectively,

Figure 6.3 Memory organization.

36

provided by Algorithmic-C. The inner loops are fully unrolled. The main loop in the read

block is similar, but it does not contain the two most inner loops and instead of writing

the pixels the results are read from the channel.

Once the calculation block is ready, the read block gets the results from it and stores them

into registers. When the whole search area is calculated, the read block iterates each value

of the register where the results are stored, chooses the best SAD and MV pair from there,

and stores it to the result memory. Then the results data is transferred back to CPU via

PCIe bus.

6.3 Calculation block

The calculation block is composed of the SAD value and corresponding motion vector

computations. The idea was to parallelize as much as possible to achieve lowest through-

put possible even though it means using more resources on the FPGA. The calculation

block is connected to the write and read blocks using the Catapult-C’s channels. The

current PU pixels and its 16 × 16 sized search window is transmitted through the input

channel.

The calculation block is entirely register based and therefore notably the biggest part of

the Accelerator. Listing 6.2 shows the main calculation loop as a simplified Catapult-C

code, where the SAD values are calculated and how the new calculation data is obtained.

2

4

6

8

10

12

14

16

18

20

22

24

#pragma hls_pipeline_init_interval 1
for(memLoc = 0; memLoc < 160; memLoc+=40){
 for(widthLoc = 0; widthLoc < 32; widthLoc+=8){
 #pragma hls_unroll yes
 for(row = 0; row < 16; row++){
 if(widthLoc != 0){
 swSliceBig.set_slc(row*128,
 swSliceBig.slc<64>((row*128)+64));
 }
 else{
 swSliceBig.set_slc(row*128,
 swSliceFirst.slc<64>((((heightLoc*2)*64)+(row*64))));
 }
 #pragma hls_unroll yes
 for(pix = 0; pix < 8; pix++){
 swSliceRowBack.set_slc(pix*8,
 searchArea[row*160+(memLoc+widthLoc+pix+8)]);
 }
 swSliceBig.set_slc((row*128)+64 ,swSliceRowBack);
 }
 allData.set_slc(512, swSliceBig);
 write(allData);
 }
 heightLoc+=8;
}

Listing 6.1 Data write loop as a simplified Catapult-C code.

37

Before the SAD calculations, the PU and search window pixels are read from the channel

and stored to registers. The first reference PU is also separated to its own register from

the search window outside the main calculation loop.

The SAD value for one search location is calculated recursively. The calculation is sepa-

rated on its own function called calcSAD on Listing 6.2. As shown in row 7, the calcSAD

function is called which takes two 64 B array registers, pu and refpu, as an argument.

Those registers contain the current PUs pixels and the corresponding reference pixels

from the search window, respectively. The function iterates through the registers recur-

sively, subtracts the pixel values and determines its absolute value. Then, each absolute

value is added together resulting to a SAD value for one search location. All the loops are

fully unrolled resulting to the maximum parallelization. Also, the whole calculation block

is pipelined with II=1 leading to effective data flow.

Once the SAD value is determined for one register pair, it is stored to costTable register

and the search window location is stored into mvXtable and mvYtable registers represent-

ing the x and y components of the MV. Then, the pixels inside refpu register are shifted

according to Figure 6.4. The vertical pixels on the left side are discarded and the rest are

moved vertically to start from the beginning without changing the order. Finally, eight

2

4

6

8

10

12

14

16

18

20

22

24

26

#pragma hls_unroll yes
for(row = 0; row < 8+1; row++){
 #pragma hls_unroll yes
 for(pix = 0; pix < 16; pix++){
 // Locations 0-8 on a row, calculate SAD
 if(pix < 8+1){
 cost = calcSAD(pu, refpu);
 costTable[costLoc] = cost;
 mvXtable[costLoc] = pix;
 mvYtable[costLoc] = row;
 costLoc++;
 cost = 0;
 }
 // Move the pixels in refpu and get 8 new pixels from searchWindow
 #pragma hls_unroll yes
 for(loc = 0; loc < 8; loc++){
 refpu[loc*8+0] = refpu[loc*8+1];
 refpu[loc*8+1] = refpu[loc*8+2];
 refpu[loc*8+2] = refpu[loc*8+3];
 refpu[loc*8+3] = refpu[loc*8+4];
 refpu[loc*8+4] = refpu[loc*8+5];
 refpu[loc*8+5] = refpu[loc*8+6];
 refpu[loc*8+6] = refpu[loc*8+7];
 refpu[loc*8+7] = searchWindow[row+loc][8+pix];
 }
 }
}

Listing 6.2 The main calculation loop as simplified Catapult-C code.

38

new pixels, illustrated with dashed line in Figure 6.4, are obtained from the searchWin-

dow register. The pixels are stored to the last vertical position of the refpu register and

the calculations for the next location start.

The SAD and MVs are calculated for all the unique locations on the first row of the search

window. To get the right pixels to the refpu when changing the row, the shifting loop is

executed eight times. In practice, this means reading eight new pixels from the search-

Window register and shifting them each time the shifting loop is executed. Finally, after

executing the loop eight times the refpu register has the correct pixels to start the calcu-

lation again. The same process is repeated for the whole search window and the SAD and

MV pairs are stored to the according registers. Finally, the smallest SAD is determined

using a recursive function and it is written to an output channel with the corresponding

MV.

6.4 Memory indexer

The memory indexer performs the pixel organization to the on-chip memories. The pixels

organization requirement is led by the write block which needs to access them in a spe-

cific way to be pipelined and parallelized effectively. It will not be beneficial to separate

the pixels to 16 separate memories directly from Kvazaar. That is why the whole search

area and the PU pixels are sent at the same time through the DMA and FIFO to the

memory indexer which takes care of storing the pixels to the correct memories in correct

order.

Figure 6.4 Pixel shifting in refpu register.

39

The total amount of search area pixels needed to calculate the whole PU is

(16 + 8 + 16)2 = 1 600. In addition, the 64 PU pixels must be transferred leading to total

of 1 664 pixels. Those pixels are obtained from Kvazaar and sent to the DMA block which

writes them to the FIFO. The memory indexer is connected to the FIFO with Catapult-C

channel. It obtains 64 pixels at the time from the FIFO and stores them into the on-chip

memories. This results to 1 664 / 64 = 26 reads from the FIFO. The memory indexer also

duplicates the necessary pixels while storing them.

Figure 6.5 illustrates how the search window pixels are divided and duplicated into 16

on-chip memories. Each smaller memory SW0 – SW15 has 20 memory locations, each

holding 8 pixels. This solution leads to store 160 pixels to each smaller memory. The

colors in Figure 6.5 show which part of the pixels are the same in the memories. For

example, the memory SW0 has the same pixels in the location 5 – 9 as the memory SW8

in the locations 0 – 4. The main disadvantage of this approach is that the search window

memories have quite a lot of overlapping pixels.

Figure 6.5 Memory structure of the Accelerator.

40

7. PERFORMANCE

This chapter focuses on the performance analysis of the designed Accelerator. The per-

formance of the Accelerator is analyzed from different points of view. HLS results are

presented, and theoretical maximum FPS is calculated. Another aspect is to observe the

used resources in the Arria 10 FPGA platform. Moreover, a relative speedup is calculated

compared to the pure software implementations. The results are finally compared to the

existing hardware ME implementations.

7.1 Implementation results

The implementation results are presented in the same order as the design flow goes. First

the HLS results from Catapult-C, then the synthesis results from Quartus and finally the

results of the whole Accelerator ran with Kvazaar. Version v1.3.0 of Kvazaar is run using

the fastest preset, known as ultrafast. In addition, Kvazaar is limited to use only 8 × 8 PUs

and the ME algorithm is chosen to be FS with the search range of 16. HEXBS algorithm

is also run on software for comparison purposes.

Table 7.1 Test PC setup.

Test PC

CPU Intel E5-2680 v3, 2.50 GHz

Memory 32 GB DIMM, 2.1 GHz

Storage 3 TB SATA HDD

OS Ubuntu 18.4.1

FPGA Arria 10

Encoder Kvazaar v1.3.0

The test PC setup is listed on Table 7.1. The Accelerator is synthesized on Arria 10 FPGA

and Kvazaar is running on Intel E5-2680 v3 Xeon CPU at 2.50 GHz. In addition to the

CPU, the Test PC consists of 32 GB DIMM RAM running at 2.1 GHz and 3 TB hard disk

drive. The operating system is Ubuntu 18.4.1.

7.1.1 Catapult-C

After going through the HLS flow, Catapult-C outputs the latency and the throughput of

the design in cycles. Catapult-C also outputs estimations for the required logic usage on

the FPGA. However, it is not presented in this chapter because it usually does not corre-

spond to the real logic usage after the synthesis.

41

Table 7.2 shows the latency and the throughput cycles for the designed blocks for pro-

cessing one PU. They do not include data transfer from CPU to the FPGA. The results

are separated to the read, write, calculation and memory indexer blocks and the total

amount of the cycles of the whole Accelerator is calculated. Results of Table 7.2 show

that the Accelerator core, including write, read, and calculation, has the total throughput

of 46 cycles and the latency of 54 cycles. These results represent the total amount of

cycles required for calculating the SAD and MVs because the memory indexer is needed

only for data organization before the calculations and is not directly part of the FS algo-

rithm. The actual throughput of the calculation block is 1, but it is executed 16 times as

16 iterations are needed to calculate the whole search area for one PU. This results to the

throughput of 16. Storing the pixels to the FPGA memory with memory indexer takes 28

cycles. Therefore, the total amount of throughput cycles and latency cycles of the whole

Accelerator is 74 and 80 respectively.

From the presented results, the theoretical maximum FPS of the proposed Accelerator

core is calculated. The Accelerator is tested with various full HD sequences provided by

Ultra Video Group [29]. First, the average amount PUs in a frame is calculated by running

Kvazaar and calculating how many PUs are processed in one encoding run. Then it is

Table 7.3 Theoretical maximum FPS and speedup.

Sequence Amount of

PUs per

frame

FS speed

on SW

(FPS)

Accelera-

tor core

(FPS)

Speedup

Beauty 25 530 1.93 127.73 66.23

Bosphorus 25 104 1.96 129.90 66.14

HoneyBee 29 951 1.64 108.87 66.36

Jockey 24 944 1.97 130.73 66.22

ReadySetGo 26 308 1.87 123.95 66.27

ShakeNDry 31 117 1.58 104.79 66.25

YachtRide 25 308 1.94 128.85 66.36

Average 26 894 1.84 122.12 66.26

Table 7.2 Catapult-C results.

Design unit Latency Throughput

Accelerator core 54 46

 Write and read 48 30

 Calculation 6 16

Memory indexer 26 28

Accelerator total 80 74

42

divided with the number of processed frames. Then, from the required cycles to process

one PU and the used FPGA frequency, 150 MHz, the maximum theoretical FPS for the

Accelerator core is calculated. Also, the software only FS algorithm FPS is calculated

determining the time used in the algorithm only, excluding the rest of the encoding pro-

cess.

The theoretical results are listed in Table 7.3. The Accelerator core is on average theoret-

ically ×66 times faster than the software only FS algorithm. The amount of processed PUs

correlates directly to the achieved FPS. With less PUs to process, the FPS is higher and

vice versa. Therefore, there is a big gap between the smallest and highest achieved FPS.

7.1.2 Synthesis on Quartus

The Accelerator is synthesized using Intel’s Quartus Prime to the Arria 10 FPGA. Ta-

ble 7.4 presents the synthesis results. A bit less than a fifth of the available ALMs are

used, most of them as registers. The design does not use any DPS blocks as there is no

need for multiplications. The High-Speed Serial Interface (HSSI) channels as well as 9

Phase Locked Loops (PLLs) are used for PCIe communication. The last PLL is used in

the Accelerator. The Accelerator functionality was verified with 150 MHz FPGA fre-

quency and according to the synthesis 151.42 MHz maximum FPGA frequency is

achieved.

Table 7.5 shows the synthesis results for each designed block. The calculation block is

by far the largest part of the whole Accelerator. It takes 85% of the used ALMs. This is

Table 7.4 Synthesis results.

Synthesis summary

Quartus Prime Version 17.1.1 Internal Build 593 SJ Standard Edition

Family Arria 10

Device 10AX115S2F45I1SG

Logic utilization (total ALMs) 76871 / 427 200 (18%)

Total registers 54 849 / 854 400 (6%)

Total pins 35 / 960 (4%)

Total block memory bits 126 528 / 55 562 240 (< 1%)

Total DSP blocks 0 / 1 518 (0%)

Total HSSI RX channels 8 / 72 (11%)

Total HSSI TX channels 8 / 72 (11%)

Total PLLs 10 / 144 (7%)

Total M20K blocks 158 / 2 713 (6%)

ALMs used for memory 200

Fmax 100 ˚C 151.42 MHz

Fmax -40 ˚C 147.47 MHz

43

mainly because it is entirely register based. Read, write, memory indexer and PCIe control

blocks share the rest of the resources almost evenly. The memory usage is shared between

search area memories, PU memory, FIFO and DMA blocks and the PCIe control.

7.1.3 Encoding speedup

The Accelerator is tested with different full HD sequences and the test results are listed

on Table 7.6. The relative speedup is calculated from the test results and compared to the

software only FS and fast HEXBS algorithm ran on the PC.

The encoding with the Accelerator is on average two times faster than the software only

FS encoding. On the other hand, the Accelerator does not reach the speed of the optimized

HEXBS algorithm on software.

Table 7.6 Speedup comparison with Kvazaar.

Sequence fs

(FPS)

HEXBS

(FPS)

Accelerator

(FPS)

Speedup

(fs)

Speedup

(HEXBS)

Beauty 1.39 5.22 2.65 1.91 0.51

Bosphorus 1.50 6.00 2.97 1.98 0.50

HoneyBee 1.29 5.79 2.61 2.02 0.45

Jockey 1.47 5.50 2.81 1.91 0.51

ReadySetGo 1.43 5.62 2.77 1.94 0.49

ShakeNDry 1.22 4.92 2.32 1.90 0.47

YachtRide 1.45 5.22 2.80 1.93 0.54

Average 1.39 5.47 2.70 1.94 0.50

Table 7.5 Block level synthesis results.

 ALMs Registers Memory

bits

M20K

Total 76 871 54 849 126 528 158

Accelerator core 68 546 46 146 0 0

 Read and write 3 430 11 857 0 0

 Calculation 65 116 34 289 0 0

Search area memory 0 0 20 480 112

PU memory 0 0 512 7

Results memory 0 0 128 2

Memory indexer 5 223 3 477 0 0

FIFO 19 64 16 384 13

DMA 324 1 039 16 384 4

PCIe control 2 759 4 123 72 640 20

44

The variation on the performance between the different sequences is caused by the dif-

ferent amount of motion and processed PUs. The tests are done without any software

parallelization to measure the performance of the Accelerator compared to the software

only algorithm.

7.2 Comparison with related work

Table 7.7 presents the comparison to the related work presented in Chapter 2.3. Only one

HLS implementation was found in the literature, and the rest were designed using tradi-

tional hardware design tools.

The comparison with [15] is difficult as there are no clear results in their paper for the

whole design but for the smaller parts separately. Their focus is more on comparing the

HLS to the traditional RTL design with implementation time and code length and reada-

bility. The other related works did not use HLS tools for their designs nor are they inte-

grated into the overall encoding process.

Authors in [16], [17] and [18] achieved encodings at 30 FPS with different settings and

architectures. The Accelerator core proposed in this Thesis is four times faster than de-

signs in related works. Though, when using it as a part of real encoding process the speed

drops down to 2.70 FPS. Also, the proposed Accelerator uses only 8 × 8 block sizes mak-

ing it less versatile.

However, all of designs in the related works use higher operating frequencies than the

Accelerator proposed in this Thesis. They all also have wider search range compared to

the proposed Accelerator. Further comparison with [18] is not meaningful as they use

ASIC instead of FPGA as their platform. The area comparison is also difficult as the

designs in the related works used Xilinx FPGAs and they have announced their areas in

LUTs.

Table 7.7 Comparison with related work.

Architecture Technology Search range Frequency Area Performance

Schewior et al. [15] Virtex-7 - - - -

Asano et al. [16] Virtex-5 ±32 269.3 MHz 66.4 kLUTs 1080@30 fps

Medhat et al. [17] Virtex-7 ±20 458 MHz 25 kLUTs 1080@30 fps

Medhat et al. [18] 65nm CMOS ±27 720 MHz 434 kgates 1080@30 fps

Software only CPU ±16 - - 1080@1.39 fps

Proposed Accelerator

core
Arria 10 ±16 150 MHz 76 871 ALMs

1080@122.12

fps

Proposed Accelerator
Arria 10 +

CPU
±16 150 MHz 76 871 ALMs

1080@2.70 fps

45

In conclusion, the Accelerator core proposed in this Thesis is the fastest compared to the

related work. It is also the only one to reach 30 FPS encoding with only 150 MHz oper-

ating frequency.

7.3 Discussion

The designed Accelerator core is capable of 122 FPS encoding for full HD sequences

when tested without Kvazaar encoder. Its integration into the software encoding process

makes it slower due to the communication limitations between the CPU and the FPGA.

PCIe bus it not able to handle the high amount of data transfers needed to keep the Ac-

celerator core at the Kvazaar’s software encoding speed. This is mainly due to the number

of pixels overlapping in the search area which is sent multiple times. Integrating the Ac-

celerator to Kvazaar is complex as a lot of data must be transferred between the CPU and

the FPGA.

As the designed Accelerator supports only 8 × 8 PUs, comparing it to the software opti-

mized HEXBS algorithm using the same sized PUs is not fair. Using SAD reuse method

to calculate the rest PU sizes in the Accelerator could give a significant speedup because

most of the calculated SAD values could be reused. That is not possible with the HEXBS

algorithm, and all the different PU sizes must be calculated separately. Implementing the

rest of the PU sizes is one development path for the future work.

The basic idea of SAD reuse is to calculate all the SAD values for the smallest PUs and

then combine them to achieve the SADs for the bigger PUs. For example, 64 × 64 PU can

be divided into 64 small 8 × 8 PUs. Once all the 8 × 8 PUs are calculated and the values

stored, they are used to compute the SAD values for the 16 × 16, 32 × 32 and 64 × 64

PUs recursively. However, with the current solution, implementing SAD reuse is not di-

rectly possible. The SAD values are not calculated in the same order as originally in

Kvazaar and the SAD and the MVs are not stored to on-chip memories. There are various

approaches how to implement SAD reuse mechanism. One way would be delaying or

storing the calculated SAD values until they are needed for the bigger block. Another

method would be calculating just the SAD values for the smaller blocks and storing them

to a memory. Then going through all the stored SAD values and determining the best

SAD and the MV for each required block size.

The communication bottleneck can be reduced designing an effective search area reuse

method. Currently, many pixels are overlapping in the search area shared by adjacent

PUs. Those pixels could be reused instead of sending them again when PU changes. One

way of doing this is to send the biggest PU, 64 × 64, at once to the FPGA and distribute

the needed pixels there for the smaller PU calculation. Combining effective search area

46

reuse with SAD reuse could significantly improve the Accelerator performance once in-

tegrated to Kvazaar.

Currently, the Accelerator takes less than 1/5 of the whole available logic of the used

Arria 10 FPGA. As the Accelerator design is generic, up to 5 Accelerators fit to the FPGA.

In theory, by duplicating the Accelerators in the FPGA, the performance should also be-

come fivefold. However, the communication issue remains. With the current implemen-

tation, only IME part of ME is accelerated, and this makes the relative communication

overhead between the platforms more significant. When implementing for example the

FME stage of the ME process on the FPGA, the communication overhead reduces as most

of the data already sent to the FPGA can be used again.

The Accelerator design process is not limited to this Thesis and the development contin-

ues in Ultra Video Group. The main goals in the future are to optimize the data transfer

to the FPGA and modify the Accelerator to support all Kvazaar’s PU sizes instead of only

one.

47

8. CONCLUSION

In this Thesis a ME algorithm was chosen for hardware acceleration. Software explora-

tion was done to Kvazaar to find the best settings for the ME algorithm. Then, an FPGA

based accelerator was designed for the chosen FS algorithm using Catapult-C HLS design

tool. HLS tools were used instead of traditional RTL tools because they offer more auto-

mation to the design process and make it faster, also verification is faster using HLS.

The Accelerator was synthesized on Arria 10 FPGA platform. The designed Accelerator

was integrated to Kvazaar HEVC encoder. The Accelerator’s memory architecture was

also discussed in detail.

The designed Accelerator core was able to reach 122 FPS encoding speed for full HD

video sequences before it was integrated as a part of Kvazaar’s encoding process. The

performance represents 66 times fold speedup compared to software only FS. Once inte-

grated to Kvazaar the speedup was still almost two times fold. Compared to the literature

solutions for hardware ME, the proposed Accelerator core is the fastest and works on the

lowest frequency.

To reduce the role of communication, other ME tools, such as FME should be imple-

mented also on hardware. Also, the search area reuse is an important feature to consider.

In addition, to make the Accelerator more versatile, compatibility for the rest of the PU

sizes should be implemented. These are the current development paths for the future work

which continues in the Ultra Video Group.

48

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2016-2021, Jun

6, 2017.

[2] ITU-T and ISO/IEC, High Efficiency Video Coding, Rec. ITU-T H.265 and ISO/IEC

23008-2 (HEVC), 2019.

[3] Kvazaar HEVC encoder, Available: https://github.com/ultravideo/kvazaar.

[4] M. Fingeroff, High-Level Synthesis Blue Book. Xlibris Corporation, 2010.

[5] Vhdl, in A Dictionary of Computer Science, 7th ed., A. Butterfield and E. N. Gerard,

Eds. Oxford University Press, 2016.

[6] Mentor Graphics, Catapult High-Level Synthesis datasheet, pp. 4, 2017.

[7] I. Kuon, R. Tessier and J. Rose, FPGA Architecture. 2008, Available: http://ebook-

central.proquest.com/lib/tut/detail.action?docID=3383629.

[8] C. M. Maxfield, Chapter 1 - The Fundamentals, FPGAs: Instant Access, pp. 1-12,

2008. Available: http://www.sciencedirect.com/science/arti-

cle/pii/B9780750689748000016.

[9] Intel, Intel® Arria® 10 Core Fabric and General Purpose I/Os Handbook, 2019.

[10] Pci, in A Dictionary of Computer Science, 7th ed., A. Butterfield and E. N. Gerard,

Eds. Oxford University Press, 2016.

[11] Intel, Avalon® Interface Specifications, MNL-AVABUSREF, 2019.

[12] G. J. Sullivan et al, Overview of the High Efficiency Video Coding (HEVC) Stand-

ard, IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, pp.

1649-1668, 2012.

[13] M. Viitanen et al, Kvazaar: Open-Source HEVC/H.265 Encoder, Proceedings of

the 24th ACM International Conference on Multimedia, pp. 1179-1182, 2016.

[14] P. Sjövall et al, High-level synthesis design flow for HEVC intra encoder on SoC-

FPGA, in 2015, pp. 49-56.

[15] G. Schewior et al, HLS-based FPGA implementation of a predictive block-based

motion estimation algorithm — A field report, Proceedings of the 2014 Conference on

Design and Architectures for Signal and Image Processing, pp. 1-8, 2014.

[16] S. Asano, Z. Z. Shun and T. Maruyama, An FPGA implementation of full-search

variable block size motion estimation, 2010 International Conference on Field-Program-

mable Technology, pp. 399-402, 2010.

49

[17] A. Medhat et al, A highly parallel SAD architecture for motion estimation in

HEVC encoder, 2014 IEEE Asia Pacific Conference on Circuits and Systems (APC-

CAS), pp. 280-283, 2014.

[18] A. Medhat, A. Shalaby and M. S. Sayed, High-throughput hardware implementa-

tion for motion estimation in HEVC encoder, 2015 IEEE 58th International Midwest

Symposium on Circuits and Systems (MWSCAS), pp. 1-4, 2015.

[19] B. Bross et al, Inter-picture prediction in HEVC, in High Efficiency Video Coding

(HEVC): Algorithms and Architectures, V. Sze, M. Budagavi and G. J. Sullivan, Eds.

2014.

[20] A. J. Hussain and Z. Ahmed, A Survey on Video Compression Fast Block Matching

Algorithms, Neurocomputing, 2018. Available: http://www.sciencedirect.com/sci-

ence/article/pii/S092523121831261X.

[21] I. Kim et al, Block Partitioning Structure in the HEVC Standard, IEEE Transac-

tions on Circuits and Systems for Video Technology, vol. 22, pp. 1697-1706, 2012.

[22] Ce Zhu, Xiao Lin and Lap-Pui Chau, Hexagon-based search pattern for fast block

motion estimation, IEEE Transactions on Circuits and Systems for Video Technology,

vol. 12, pp. 349-355, 2002.

[23] X. Li et al, Fast motion estimation methods for HEVC, 2014 IEEE International

Symposium on Broadband Multimedia Systems and Broadcasting, pp. 1-4, 2014.

[24] N. Doan et al, A hardware-oriented concurrent TZ search algorithm for High-Effi-

ciency Video Coding, EURASIP Journal on Advances in Signal Processing, vol. 2017,

(1), pp. 78, 2017.

[25] J. Lin et al, Motion Vector Coding in the HEVC Standard, IEEE Journal of Se-

lected Topics in Signal Processing, vol. 7, pp. 957-968, 2013.

[26] T. K. Tan et al, Video Quality Evaluation Methodology and Verification Testing of

HEVC Compression Performance, IEEE Transactions on Circuits and Systems for

Video Technology, vol. 26, pp. 76-90, 2016.

[27] G. Bjontegaard, Calculation of average PSNR differences between RD-curves, Apr

2-4, 2001.

[28] F. Bossen, Common test conditions and software reference configurations, Jctvc-

L1100, 2013.

[29] A. Mercat, M. Viitanen and J. Vanne, UVG dataset: 50/120fps 4K sequences for

video codec analysis and development, ACM Multimedia Systems Conference, 2020.

