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ABSTRACT 
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Plastic deformation processes can be modelled with computationally exhaustive simulations, 
but utilizing new machine learning techniques can reduce the workload and simultaneously pro-
vide new insight on the processes by revealing previously unknown dependencies between phys-
ical properties. In this work, one-dimensional periodic models of edge dislocation pileups inter-
acting with fixed pinning landscapes are studied. Using information about the pinning landscape 
and about the initial dislocation state, predictive models such as linear regression, simple neural 
networks and convolutional neural networks are used to test how predictable the stress-strain 
curves obtained by simulations are. Predictability of avalanches, the critical events within the 
stress-strain curves, is tested separately as well. 

Introductions to some of the physical background, statistical methods and machine learning 
techniques are given. A geometrical interpretation is shown for the correlation coefficient, which 
is important in this work since it is used to measure how well predicted estimates match with the 
desired targets. Predictive models are described as consecutive sets of operations that are thor-
oughly explained. 

Choices made for simulations and predictive model training processes are discussed in detail. 
Notably, the L1-regularization technique is found useful and is utilized whenever possible. For 
non-convolutional predictive models, quantile representations of distributions derived from the 
pinning landscape and from the initial dislocation state are used as the input features. The basic 
structure of the convolutional neural network models is specially customized for the purposes of 
this work’s periodic systems, providing the prediction results full expected independence from any 
spatial shift on the model input. 

Statistical analysis is performed on the simulation results before continuing to the assessment 
of predictability. Training of convolutional network models turns out more problematic and much 
slower than the simple regression models, but in turn, convolutional models give the best predict-
ability results. Simple regression models train and estimate much faster but can still provide nearly 
as good predictions of the stress-strain curves as the convolutional models. 

A prediction problem for predicting avalanches alone is defined. Neural network models can 
vaguely predict the appearance of avalanches when their size and the stress at which they occur 
are specific. Predictability of avalanches is found worse than predictability of stresses of stress-
strain curves, although it should be noted that the prediction problems are defined quite differently. 
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Plastisia deformaatioprosesseja voidaan mallintaa laskennallisesti raskailla simulaatioilla, 
mutta uusien koneoppimismenetelmien avulla on mahdollista ennustaa simulaatioiden tuloksia 
tehokkaasti. Samalla voi oppia ymmärtämään prosesseja paremmin, kun paljastuu aiemmin tun-
temattomia yhteyksiä materiaalien sisältämien eri ominaisuuksien välillä. Tässä työssä tutkitaan 
paikallaan olevan pinnausmaiseman (epäpuhtaus-/kidevirhemaiseman) kanssa vuorovaikuttavia 
särmädislokaatiokasaumia kuvaavia yksiulotteisia, periodisia malleja. Simulaatioiden tuottamien 
jännitysvoima-venymä—käyrien ennustettavuutta, tiedettäessä pinnausmaisema ja dislokaatioi-
den alkutila, testataan käyttämällä erilaisia ennustusmalleja, kuten lineaarista regressiota, yksin-
kertaisia neuroverkkoja ja konvoluutioneuroverkkoja. Myös jännitysvoima-venymä—käyrien sisäl-
tämien vyöryjen ennustettavuutta testataan erikseen. 

Työssä pohjustetaan tuloksia esittelemällä työn kannalta merkityksellistä materiaalifysiikan 
taustateoriaa, tilastomatematiikan analysointikeinoja ja koneoppimismalleja. Korrelaatiokerrointa 
käytetään tässä työssä mittarina sille, kuinka hyvin ennustukset sopivat yhteen todellisten tavoi-
tekohteiden kanssa, joten korrelaatiokertoimelle on valittu esitettäväksi geometrinen, mahdolli-
simman ymmärrettävä tulkinta. Samoin koneoppimismallien toimintaperiaatteet on pyritty selittä-
mään ymmärrettävästi käyttämällä merkintätapana operaatioiden sarjoja. 

Simulaatioita ja koneoppimisprosesseja varten tehdyt valinnat käydään yksikohtaisesti läpi. 
Koneoppimisen yhteydessä käytettävä L1-regularisointitapa osoittautuu hyödylliseksi, ja sitä käy-
tetäänkin tässä työssä aina kun mahdollista. Muiden kuin konvoluutioneuroverkkojen tapauk-
sessa ennustusmallit käyttävät ennustamiseen kvantiileja, jotka kuvaavat pinnausmaisemasta ja 
dislokaatioiden alkutilasta johdettuja jakaumia. Konvoluutioneuroverkkojen rakenne on suunni-
teltu sopivaksi tätä työtä varten, jossa käsitellään periodisia systeemejä, joiden ominaisuuksien 
tiedetään jo ennalta olevan riippumattomia siitä, mistä kohdasta systeemiä tarkastellaan. 

Ennen kuin edetään varsinaisiin ennustettavuusmittauksiin, työssä tehdään ensin tilastollisia 
havaintoja. Ennustettavuuden tutkiminen aloitetaan yksinkertaisilla ennustusmalleilla, jotka toimi-
vat nopeasti ja luotettavasti. Konvoluutioneuroverkkojen tapauksessa huomataan, että ne ovat 
selvästi hitaampia ja hankalampia opettaa, mutta toisaalta toimiessaan tuottavat parhaimmat en-
nustustulokset. Yksinkertaisemmatkin mallit pystyvät ennustamaan jännitysvoima-venymä—käy-
riä melko tarkasti, eivätkä häviä konvoluutioneuroverkkomalleille kovin paljon. 

Lopuksi määritellään ongelma, jossa ennustetaan pelkkiä vyöryjä. Neuroverkot kykenevät en-
nustamaan vain suurpiirteisesti joidenkin vyöryjen esiintymistiheyttä, kun vyöryn koko ja vyöryn 
käynnistävän jännitysvoiman taso ovat sopivat. Vyöryjen ennustettavuus näyttää tulosten perus-
teella heikommalta kuin jännitysvoima-venymä—käyrien ennustettavuus, vaikkakin ennustuson-
gelmat on määritelty eri tavoilla. 
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ABBREVIATIONS AND SYMBOLS 

𝑎 a general scalar 

A activation operator 
𝑏 Burgers vector magnitude 

�⃗⃗�  Burgers vector 
𝒃 bias vector 

𝑏𝑘 bias (element of a bias vector) 
B bias operator (translation operator) 
𝑐 correlation coefficient 

C convolution operator 
Conv convolutional (neural) network 
𝑑 depth (data array dimension) 
𝑑𝑝 𝑝th pinning point’s energy depth 

D differential operator 
𝑒 the Euler’s number ≈ 2.718 

𝐸 pinning energy field 
𝑓𝑝 𝑝th pinning point’s force field 

𝑓𝑅𝑒𝐿𝑈 rectified linear unit (ReLU) function 
𝐹 pinning force field 
ℎ height (data array dimension) 

𝑖 a general iterative index 
𝑗 an iterative index over each dislocation 

𝐽 artificial density field of relaxed dislocations 
𝑘 a general iterative index, running from 1 to 𝐾 

𝐾 a positive integer (multipurpose) 
𝐿 periodic loop length (expressed in the distance units of the unitless 

system) 
L1 (Lebesgue) 1-norm 
L2 (Lebesgue) 2-norm (Eucledian norm) 
L linear regression operator (affine operator) 
Lasso L1-regularized linear regression model (LASSO; Linear Absolute 

Shrinkage and Selection Operator) 
𝑚𝑘𝑛 weight (element of a learnable matrix) 

𝑀 learnable matrix 
M matrix operator (linear operator) 

𝑛 a general iterative index, running from 1 to 𝑁 
𝑁 a positive integer (multipurpose) 
𝑁𝑗 number of dislocations 

𝑁𝑝 number of pinning points 

N neural network unit operator (nonlinear regression operator) 
NN (simple artificial) neural network 
O a general operator 
𝑝 an iterative index over each pinning point 

P pooling operator 
𝑞 cumulated probability, defining a 𝑞-quantile 

𝑟 distance 
R rearranging operator (reshaping operator) 

ℝ the space of real numbers 

ℝ𝑁 the space of real vectors containing 𝑁 elements 
ReLU rectified linear unit 
𝑠 standard deviation 



 

 

𝑠𝑝 𝑝th pinning point’s energy standard deviation 

𝑆 predictability score 

𝑡 time 
𝑢 a general axis 

�̂� a general unit vector 
𝑣 variance (when with one index) or covariance (with two indices) 

𝒗 a general vector 
𝑤 width (data array dimension) 

𝑥 position, or a general variable 
𝑥𝑗 (relaxed) dislocation positions generally 

𝑋𝑝 pinning point positions generally 

𝒙 a general vector 

𝑦 a general variable 
𝒚 a general vector 

𝒛 a general, statistically normalized vector (standardized vector) 
Δ difference 

𝜀 strain (𝜖 in some images) 
𝜇 mean 

𝜇∗ shear modulus 
𝜋 the mathematical pi ≈ 3.142 
𝜎 stress (external stress, applied stress) 

𝜎𝑓𝑙𝑜𝑤 flow stress (yield stress, yield strength) 

𝜒 effective viscosity 
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1. INTRODUCTION 

Novel machine learning methods have been spreading like a virus through many re-

search fields during the past decade, providing new kinds of solutions to difficult prob-

lems involving estimation and dependency search. The field of material physics is re-

searching if the properties of materials, such as plastic deformation processes, are pre-

dictable by simpler methods than through extensive simulations or experiments. At the 

same time, the deformation processes become better understood, since new dependen-

cies between quantities are revealed. 

This work focuses on studying the predictability of dislocation systems that by assump-

tions can be modelled as one-dimensional systems. The dislocations interact with each 

other through a long-range harmonic interaction force and are also affected by a fixed 

force landscape generated by attractive pinning points. One-dimensional systems are 

efficient to simulate and to describe, which is useful for predictability research that usually 

requires generation of large datasets that are used to train the predictive models. 

Theoretical background will be discussed in chapter 2. Some important terms related to 

material physics will be explained. The one-dimensional equation of motion derived by 

Moretti et al. [1] and shown in 2.1.2 is the source of the simulation results that are ana-

lyzed in this work. Some important mathematical tools for statistical analysis are intro-

duced. The correlation coefficient is used as the measure of predictability in this work; 

its properties and suitability for measuring predictability are explained while giving an 

understandable geometrical interpretation. Introduction to the used machine learning 

methods is given in a mathematical style using operator notation with the aim of high 

understandability and independence from the choice of how the methods are chosen to 

be applied in practice. 

Chapter 3 explains some of the practical problems and choices made related to simula-

tion and analysis. Simulations produce stress-strain curves that contain the main quan-

tities to be predicted. Parameter choices are explained so that the results obtained for 

this work become evaluable and reproducible. Predictive model training processes are 

explained, noting some of the encountered problems and solutions to them. 

Statistics and prediction results are then shown in chapter 4. The predictive models at-

tempt to predict the variations of the stress-strain curves between realizations. Before 
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this, the variations and other relevant properties are studied statistically. Tests are per-

formed to study the dependency of the stress-strain curve on the initial state and how 

the flow stress is affected by perturbations in the pinning configuration. Different predic-

tion methods, including linear regression, simple neural network and convolutional neural 

network models, are compared when assessing the predictability of the stress-strain 

curves. Additionally, statistics and predictability of the critical events, avalanches, found 

within the stress-strain curves are studied. An artificial continuous quantity consisting of 

avalanche densities within a two-dimensional space is derived from the discrete ava-

lanche events and used as the prediction target. 
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2. THEORY 

This chapter explains theoretical background relevant to this work. It is divided into a 

physics section 2.1 about the origins of the problem to be studied, a mathematics section 

2.2 related to statistical analysis, and a machine learning section 2.3 explaining the pre-

dictive models used when studying predictability of the simulated physical systems. 

2.1 Physics of Material Deformation 

First, 2.1.1 motivates and explains some of the terminology used in this work. Also, ex-

amples of recent research articles related to the topic are mentioned. Then, 2.1.2 shows 

the equation of motion that is used to produce the simulation results of this work. 

2.1.1 Background and Motivation 
When exposed to external stress, plastic deformation of many solid materials is caused 

by the movement of dislocations, defects (displacements) within the crystalline structure. 

A dislocation is formed when the bonds between atoms/ions rearrange so that the perfect 

crystal structure is broken. The defects (lattice distortions) typically form a three-dimen-

sional line consisting of a string of neighboring defects, which collectively are called a 

dislocation. Plastic deformation phenomena related to dislocations are found mostly in 

crystalline materials, particularly metals, which bond with relatively weak ionic bonds. 

A defect has a direction, which can be expressed with a Burgers vector (see Figure 1). 

A dislocation can be said to have a Burgers vector when viewing an intersection, alt-

hough the vector may not be consistent along the dislocation line when the line is not 

straight. Dislocations with opposing Burgers vectors can annihilate each other, locally 

restoring the original, perfect structure. Dislocations with non-opposing Burgers vectors 

can form pileups (dislocation assemblies), which are the places where events like sliding 

(gliding) or fracture can occur. Dislocations move easiest along the Burgers vector’s axis. 

Dislocations can be classified in many ways. For example, they can be divided into im-

mobile and mobile dislocations. Mobile dislocations can be divided into edge and screw 

dislocations, based on the orientation of the Burgers vector relative to the dislocation line 

(Figure 1). Again, edge dislocation pileups can be classified based on how they are 

stacked relative to the Burgers vectors [1]. One case is the low-angle grain boundary 

(sometimes small-angle grain boundary), shown in Figure 2, where the Burgers vector 

is perpendicular to the dislocation array. Another case is where the Burgers vector is 

parallel to the stacking dimension of the dislocations; this is the case studied in this work. 
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Figure 1. Schematic pictures of an edge dislocation (left) and a screw dislocation 

(right) within a cubic crystal lattice. Vectors �⃗⃗�  are the corresponding Burgers vectors, 
defined as the difference in a reference loop (yellow arrows) between the deformed 

and a perfect structure. Dislocation lines are the strings of points where the displace-
ments initiate, and in this example, continue perpendicular to the yellow (front) face. 

(An image from [12].) 

In this work, a simplified model of an edge dislocation pileup is studied. The model is 

derived by Moretti et al. [1]. Dislocations are assumed to be straight lines, which in a 

pileup form a planar dislocation array that can be effectively modelled as a one-dimen-

sional system, considering only the dimension where the dislocations are stacked. The 

phenomenon to be studied is the sliding of a pileup as a response to external stress, 

given a fixed pinning landscape (generated by pinning points, which represent lattice 

impurities or other, immobile dislocations) that prevents movement to some extent, like 

friction. More specifically, this work studies how predictable the response to the external 

stress is, given that the pinning landscape and the initial state of the dislocation pileup 

are known. 

The dislocations move individually while interacting with each other as well as with the 

pinning points. External stress can trigger critical events (avalanches, also called slip 

events), where one or more dislocations move past pinning obstacles. Eventually, when 

enough stress is applied, all dislocations of the model start moving collectively, and the 

material starts to yield. This event is considered (by Moretti et al. [1] and Pun et al. [6]) 

to be a second-order phase transition (continuous phase transition), and the correspond-

ing theory suggests certain things, such as a scaling law (power law decay) for the oc-

currence probability of avalanche sizes near the transition threshold, and that the events 

(avalanches) near phase transition should be unpredictable by nature [6]. 
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Figure 2. One case of an edge dislocation array. (a) Low-angle (small-angle) grain 
boundary in atomic scale. (b) Alternative visualization by connecting vertical planes. (c) 
An edge dislocation schematic as a remainder. The T-symbol is sometimes used [4] as 
a marker for dislocations, with orientation containing information about the Burgers vec-

tor. (An image from [12].) 

As mentioned, this work revolves around studying the one-dimensional system defined 

by Moretti et al. [1]. As for other work related on the theory of dislocations, Leoni and 

Zapperi [2] study similar one-dimensional dislocation systems but with mobile, instead of 

fixed, pinning points (impurities). Sethna et al. [3] review the general theory behind re-

lated systems where similar critical events, such as earthquakes, occur, causing crack-

ling noise, and try to explain the frequently encountered power law decay of the proba-

bility density of critical event sizes. 

In some works, machine learning is applied on predicting properties of systems closely 

related to the system studied in this work. Salmenjoki et al. [4] study the predictability of 

simulated two-dimensional dislocation systems with two kinds of dislocations (opposing 

Burgers vectors) without a pinning landscape, applying a simple artificial neural network 

for predicting stress-strain curves. Miyazawa et al. [5] predict the cyclic stress-strain re-

sponse (hysteresis) of steels (simulated and experimental), comparing both linear re-

gression and machine learning methods. Pun et al. [6] apply a convolutional neural net-

work to predict critical event sizes in a certain related system (earthquake model). 

There are also recent works involving realistic three-dimensional models and experi-

ments where machine learning has been applied, although not always with neural net-

work methods that are used in this work. Steinberger et al. [7] find relations, using ma-

chine learning techniques, between microscopic dislocation features (local densities) 

and the macroscopic structures formed by a large number of dislocations. Pagan et al. 
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[8] use a certain learning method to predict plastic deformation processes using both 

experimental and simulated data. 

2.1.2 The One-Dimensional Dislocation Model 
Moretti et al. [1] derive, after considering general cases in two- and three dimensions, 

the one-dimensional equation of motion 

 
𝜒
𝑑𝑥𝑖
𝑑𝑡
= 𝜇∗𝑏2∑

1

𝑥𝑖 − 𝑥𝑗
+ 𝑏𝜎 +∑𝑓𝑝(𝑥𝑖)

𝑝𝑗≠𝑖

 
(1) 

where 𝜒 is effective viscosity, 𝑥𝑖  is the position of the 𝑖th dislocation, 𝑡 time, 𝜇∗ shear 

modulus, 𝑏 Burgers vector’s magnitude, 𝜎 (external, applied) stress, 𝑓𝑝 the 𝑝th pinning 

point’s force field, chosen to be an attractive Gaussian derivative 

 
𝑓𝑝(𝑥) = −𝑑𝑝

𝑥 − 𝑋𝑝

𝑠𝑝
2 𝑒

−
1
2
(
𝑥−𝑋𝑝
𝑠𝑝

)
2

, 
(2) 

where 𝑒 ≈ 2.718 is Euler’s number, 𝑋𝑝 is the 𝑝th pinning point’s position, 𝑑𝑝 pinning en-

ergy depth and 𝑠𝑝 the standard deviation of the Gaussian. (Notice the unnecessary ab-

solute value brackets when viewing the equation corresponding to (1), equation 29, in 

[1]. Also, equation (2) has been chosen here to be shown slightly differently from the 

source, matching the parameters with the usual Gaussian parameters.) 

The equation (1) is that of a viscous (overdamped) system, where force causes velocity 

instead of acceleration as in inertial systems. Lacombe et al. [9] study a closely related 

system as the one in this work, but with a different, short-range interaction that doesn’t 

extend past immediate neighbor beads (representations of dislocations), but in [1] it is 

explained that a model without long-range interactions is insufficient when describing the 

movement of dislocations. 

For simulations, the expressions are simplified by choosing an unitless system where 𝜒 

= 𝜇∗ = 𝑏 = 1 and 𝑑𝑝 = 𝑠𝑝
2 = 0.5. Also, the infinite sums must be finitized. The sum over a 

dislocation’s periodic copies has a finite expression for periodic length 𝐿: 

 
∑

1

𝑥 + 𝑘𝐿
=

𝜋

𝐿 tan(𝜋𝑥 𝐿⁄ )
 

∞

𝑘=−∞

 , 
(3) 

where 𝜋 ≈ 3.142 is the mathematical pi. The sum over pinning points is truncated in such 

a way that only the pinning points that are closer than some cut-off radius 𝑅 (in this work, 

𝑅 = 8) are included, taking advantage of the quick decay of Gaussian functions. All in all, 
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after slight reorganization and adding brackets for readability, the expression of (1) sim-

plifies to 

 
𝑑𝑥𝑖
𝑑𝑡
= { ∑   

𝜋

𝐿 tan [
𝜋(𝑥𝑖 − 𝑥𝑗)

𝐿 ]

𝑁𝑗

𝑗=1,   𝑗≠𝑖

} + ( ∑ −𝑟𝑖𝑝𝑒
−𝑟𝑖𝑝
2

 

   𝑝;   |𝑟𝑖𝑝|<𝑅

)+ 𝜎 

(4) 

where 𝑁𝑗 is the number of dislocations within a unit period and 𝑟𝑖𝑝 = 𝑥𝑖 − 𝑋𝑝. Moreover, 

the average spacing between dislocations is set to 𝐷�̅� = 16 and between pinning points 

to 𝐷𝑝̅̅̅̅  = 2. With these, setting 𝑁𝑗 is enough to define the periodic system size uniquely: 

periodic loop length 𝐿 = 𝑁𝑗𝐷�̅�, and the number of pinning points 𝑁𝑝 = 𝐿 𝐷𝑝̅̅̅̅⁄ . 

One main product of the simulations are the stress-strain curves. Strain 𝜀 is defined as 

the average displacement of the dislocations: 

 

𝜀(𝑡) ∶=
1

𝑁𝑗
∑𝜀𝑗(𝑡)

𝑁𝑗

𝑗=1

, 𝜀𝑗(𝑡) = 𝑥𝑗(𝑡) − 𝑥𝑗(0) . 

(5) 

Simulations are carried out in two phases: a relaxation phase and a main phase. Relax-

ation phase lets dislocation settle to a (meta)stable configuration without external stress. 

The stress-strain curve is obtained in the second phase, as the response of the strain to 

the applied stress. In (5), time is considered 0 at the beginning of the phase in consider-

ation; strain in stress-strain curves is the strain relative to the beginning (relaxed state) 

of the main phase. 

2.2 Mathematics of Statistics 

Statistics mostly revolve around distributions. Subchapter 2.2.1 explains the terms re-

lated to distributions that are relevant to this work. The correlation coefficient is widely 

used in this work, most notably to measure predictability (how well a predictive model 

works). A way to interpret correlation is introduced in 2.2.2. It is also shown how the 

correlation coefficient is related to an alternative measure of predictability. 

2.2.1 Distributions 
Distributions in general are defined as generalized functions, but the main use in this 

work is for distributions that describe how probability spreads over different possible out-

comes of a random variable. These distributions are called probability density func-

tions/distributions (for a continuous variable) or probability mass functions/distributions 

(for a discrete variable). Probability mass functions have values that represent probability 
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by themselves, but probability density functions must be integrated to obtain the proba-

bility over the integrated interval. 

One commonly encountered distribution is a normal (Gaussian) distribution, which has 

a probability density function 

 
𝑝(𝑥) =

1

𝑠√2𝜋
𝑒
−
1
2
(
𝑥−𝜇
𝑠
)
2

 , 
(6) 

where 𝑝(𝑥) is the probability density at 𝑥 , 𝜇  the mean, 𝑠 the standard deviation, 𝜋 ≈ 

3.142 is the mathematical pi, and 𝑒 ≈ 2.718 is Euler’s number. For a vector 𝒙 ∈ ℝ𝑁 of 𝑁 

realizations (samples) from any distribution, the sample mean 

 
�̅� =

1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

=
1

𝑁
(𝑥1 + 𝑥2 +⋯+ 𝑥𝑁) 

(7) 

where 𝑥𝑖 are the elements of 𝒙. Sample mean is an estimate of the original mean µ. 

Standard deviation is a measure of how much the distribution spreads around the mean. 

A related term, variance, refers to squared standard deviation. The sample standard de-

viation for the vector 𝒙 ∈ ℝ𝑁 is 

 

𝑠𝒙 = √
1

𝑁∗
∑(𝑥𝑖 − �̅�)

2

𝑁

𝑖=1

 , 𝑁∗ = 𝑁 − 1 . 

(8) 

𝑁* can alternatively be equal to 𝑁, but only when the true mean 𝜇 is known and replaces 

the sample mean �̅� in the equation. The standard deviation of the sample mean (7) is 

called the standard error of the mean and can be calculated as 

 𝑠�̅� =
𝑠

√𝑁
≈
𝑠𝒙

√𝑁
 (9) 

where 𝑠 is the true standard deviation, 𝑠𝒙 is the sample standard deviation of (8), and 𝑁 

is the number of samples. The standard error of the mean is used to estimate the accu-

racy of a sample mean, or for evaluating how many samples are needed for reaching 

enough accuracy. 

The integral function of a probability density function, with integration starting from −∞ 

or from the lowest possible outcome value, is called a cumulative distribution function. A 

quantile is the outcome at which the cumulative distribution function reaches a certain 

value; a quantile function is an inverse function of a cumulative distribution function 

(which is always invertible, at least piecewise). In this work, a 𝑞-quantile refers to the 

value of the cumulative distribution function at 𝑞, where 𝑞 is the cumulated probability, 
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expressed either within the interval [0, 1] or as a percentage within [0%, 100%]. Note 

that outside this work, there may be other practices for naming quantiles. 

Statistical normalization (standardization) of a vector 𝒙 is the process where the two sta-

tistical properties (mean and standard deviation) are standardized while preserving the 

relative shape of the signal. In informational sense, often the essential information of a 

vector is encoded in the relative, order-dependent fluctuation of the vector element val-

ues and not in the order-independent properties, such as the mean and scale, of the 

vector. The statistically normalized version of 𝒙 is 

 
𝒛 =

𝒙 − �̅�

𝑠𝒙
 

(10) 

where �̅� is the sample mean (7) and 𝑠𝒙 the sample standard deviation (8). Note that nor-

malization as a term is used for different purposes in different contexts. In the context of 

mathematical analysis, it usually refers to division by a norm (for example, normalization 

of a count histogram into a probability density/mass distribution). 

2.2.2 Correlation 
Two ways to calculate and interpret the correlation coefficient are presented. The (Pear-

son) correlation coefficient for vectors 𝒙 and 𝒚 is 

 𝑐𝒙,𝒚 =
𝑣𝒙,𝒚

𝑠𝒙𝑠𝒚
 

(11) 

where 𝑠𝒙 and 𝑠𝒚 are the sample standard deviations of 𝒙 and 𝒚 respectively, and 

 
𝑣𝒙,𝒚 =

1

𝑁∗
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑁

𝑖=1

 , 𝑁∗ = 𝑁 − 1 
(12) 

is the sample covariance of 𝒙 and 𝒚. This is the definition often used in the context of 

statistics. Another way to define the correlation coefficient is to use a functional analysis 

route, where correlation has a more intuitional geometrical interpretation. This definition 

requires an inner-product and a norm. For real vectors 𝒙 and 𝒚, an inner product 〈𝒙, 𝒚〉 

can be defined as the dot product 𝒙 ∙ 𝒚; 

 〈𝒙, 𝒚〉 ∶= 𝒙 ∙ 𝒚 =∑ 𝑥𝑖𝑦𝑖
𝑖

 , when  𝒙, 𝒚 ∈ ℝ𝑁, (13) 

which induces the so-called L2-norm 

 
‖𝒙‖ = √〈𝒙, 𝒙〉 ∶= √∑ 𝑥𝑖

2

𝑖
   (= ‖𝒙‖2), when  𝒙 ∈ ℝ𝑁. 

(14) 
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Assuming 𝒙 and 𝒚 are both zero-mean vectors, the correlation coefficient can be calcu-

lated as the inner product of the unit vectors of 𝒙 and 𝒚: 

 
𝑐(𝒙, 𝒚) = 〈�̂�, �̂�〉 = 〈

𝒙

‖𝒙‖
,
𝒚

‖𝒚‖
〉 =

〈𝒙, 𝒚〉

‖𝒙‖‖𝒚‖
 , when  �̅� = �̅� = 0 

(15) 

with the last form analogous with the statistical definition (12), showing that these are the 

same property. The trick here is that the inner product of any vector 𝒗 with any unit vector 

�̂� gives the coordinate 𝑣∥𝑢 along the axis 𝑢 defined by the unit vector �̂� (given any or-

thonormal basis (coordinate system) that includes such axis); 𝑣∥𝑢 = 〈𝒗, �̂�〉. This is visu-

alized in Figure 3. Another property of the correlation coefficient is that the correlation 

between random, or independent, vectors is expected to be 0, and the expected devia-

tion from 0 becomes smaller the more elements the vectors have. 

 

Figure 3. Illustration of example unit vectors �̂� and �̂� along the unit circle, and of 

the division of �̂� into orthogonal components along (∥) and perpendicular to (⊥) the axis 
defined by �̂�. The original vectors 𝒙 and 𝒚 can have any number of elements; the illus-

tration is just within the two-dimensional subspace where the vectors 𝒙 and 𝒚 reside. If 
the condition �̅� = �̅� = 0 holds in the original basis for vectors 𝒙 and 𝒚, then the correla-
tion coefficient 𝑐(𝒙, 𝒚) = 〈�̂�, �̂�〉 = 𝑥∥𝑦. Note that mean is a property that depends on the 

choice of basis. Also note that when 𝒙, 𝒚 ∈ ℝ𝑵, 𝑐(𝒙, 𝒚) = 𝑐(𝒚, 𝒙). 

In this work, the correlation coefficient 𝑐 is used as a measure of how much two vectors 

resemble each other. There are also other ways to measure similarity between vectors. 

In [4], a score 

 
𝑆(𝒙, 𝒚) = 1 −

∑ (𝑥𝑖 − 𝑦𝑖)
2

𝑖

∑ (𝑥𝑖 − �̅�)
2

𝑖
   
�̅�=0
⇒     𝑆(𝒙, 𝒚) = 1 − (

‖𝒙 − 𝒚‖

‖𝒙‖
)

2

 
(16) 
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is used as such measure, where 𝒚 is interpreted as the estimate of 𝒙. The error vector 

𝒙 − 𝒚 normalized by ‖𝒙‖ would in Figure 3 be a vector from some point along the positive 

side of axis 𝑦 (defined by �̂�) to the tip of �̂�, with the location of the point on the axis 𝑦 

depending on the relative scale between 𝒙 and 𝒚 (the ratio between ‖𝒙‖ and ‖𝒚‖). If the 

scale of 𝒚 relative to 𝒙 is optimized so that the error ‖𝒙 − 𝒚‖ is minimized, then must be 

(𝒙 − 𝒚) ⊥ 𝒚 , and 
‖𝒙−𝒚‖

‖𝒙‖
 equal to 𝑥⊥𝑦  (Figure 3). Then, by the Pythagorean theorem, 

𝑆 =̃ 1 − 𝑥⊥𝑦
2 = 𝑥∥𝑦

2 = 𝑐2, where the first equality holds when the previously mentioned 

condition of optimal scale applies. Also, generally applies that 𝑆 ≤ 𝑐2. If the optimizer 

that produces 𝒚 is assumed to work well enough, then it can also be assumed that 𝑆 ≈

𝑐2. The two measures are therefore comparable, although they are not the exact same 

property. 

2.3 Machine Learning 

With advancements in machine learning research, useful machine learning techniques 

have recently emerged. There are also plenty of terms, such as artificial intelligence and 

deep learning, some with varying interpretations. In short, the task which machine learn-

ing generally tries to achieve is nonlinear analysis; to learn a nonlinear mapping from 

some input to some desired output. The tool to achieve this is an optimization method 

that minimizes difference (measured with loss) between model output and desired out-

put. Optimization methods, however, require many conditions to be fulfilled before they 

can be expected to work desirably, such as convexity. Learning a general mapping that 

would work for inputs outside the learning set usually demands regularization techniques 

which reduce overlearning (overfitting). In this work, the so-called L1-regularization 

method is used, which penalizes for using unnecessary features (input elements) and 

conversely rewarding for concentrating on the most important features (sparsity) by add-

ing (scaled) absolute values of learned model parameter values (weights) to the loss 

during optimization. 

Modern artificial neural networks form three main branches: simple artificial neural net-

works, which perform nonlinear regression; convolutional neural networks, mainly used 

for image analysis; and recurrent neural networks that recreate a memory effect and are 

mainly used for audio analysis. More generally, networks from these branches can be 

used as building blocks to create combined models for solving problems that, for exam-

ple, involve many types of input data. The first two kinds of artificial neural network mod-

els are found useful for this work and are introduced in more detail. Input data array 
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dimensionality depends on the used model, but output arrays, in this work, are always 

vectors with one or more elements. 

For notational purposes, models and their components are presented as mathematical 

operators. Operators operate here from left to right: O𝑥 ∶= O(𝑥) and O2O1𝑥 ∶= O2(O1𝑥). 

This choice has the advantage of having some analogy with the current way of program-

ming neural network models: stacking layers. Note that as with other confusing terms, 

layer may refer to different things depending on the context: it can refer to an operation 

(convolutional layer, activation layer), to an intermediate result (input layer, hidden layer, 

output layer) or to both simultaneously. 

2.3.1 Simple Artificial Neural Network  
These networks are also called fully connected networks. A single sample input array 

has one dimension: feature dimension. This type of a model is used [4][5] as an alterna-

tive to linear regression models (linear fits). Opposed to linear regression, a neural net-

work model has theoretical capability to learn any continuous function (given enough 

neurons (hidden units); big enough intermediate result vector), not just linear. In practice, 

convergence to more complicated than linear shapes is not guaranteed, and some non-

linearity learning power is reduced as a side-effect of regularization techniques while 

preventing overlearning. 

First to be defined is the matrix-multiplication (linear) operator M: 

 
M𝒙 ∶=𝑴𝒙 = [

𝑚11 … 𝑚1𝑁
⋮ ⋱ ⋮
𝑚𝐾1 ⋯ 𝑚𝐾𝑁

] [

𝑥1
⋮
𝑥𝑁
] , 

(17) 

where 𝑚𝑘𝑛, elements of the matrix 𝑴, are learnable model parameters (weights) and 𝑥𝑛 

are elements (features or descriptors) of the vector 𝒙, which is the model input or an 

intermediate result vector. The biasing (translation) operator B is defined with 

 
B𝒙 ∶= 𝒙 + 𝒃 = [

𝑥1
⋮
𝑥𝐾
] + [

𝑏1
⋮
𝑏𝐾

] , 
(18) 

where 𝑏𝑘 are learnable. Combined, these operators form a linear regression (affine) op-

erator L: 

 L ∶= BM , (19) 

which is the mapping model that a linear regression algorithm optimizes. 
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Moving to artificial neural networks, there is the addition of a nonlinearity, called activa-

tion, motivated by the working principle of true neural cells. For this purpose, the biasing 

operator B is replaced by an activation operator A: 

 A𝒙 ∶= 𝑓(𝒙 + 𝒃) , (20) 

where 𝑓 is some function that performs an ℝ → ℝ operation element-wise, and 𝒃 con-

tains learnable biases. Choices for 𝑓 include the identity function (making A effectively 

B), smooth versions of the step function (such as sigmoid; used at the end of some mod-

els to suppress output values to a specific range) and the rectified linear unit (ReLU), 

 𝑓𝑅𝑒𝐿𝑈(𝑥) = {
𝑥,   𝑥 > 0
0,   𝑥 ≤ 0

 , (21) 

which is commonly [4][5][6][10][11] used at intermediate stages of networks. Now, com-

bining A with M produces the neural network unit operator 

 N ∶= AM . (22) 

The operator N itself does not have enough expressive power to recreate any possible 

continuous function. Operator M can learn to combine input features and scale the re-

sulting combination, and A can apply the nonlinearity with learnable bias. Together, they 

can recreate functions that resemble the selected nonlinearity function. To obtain full 

expressive power, two N operators are stacked: 

 N𝑖
2 ∶= N2N1 = A2M2A1M1 . (23) 

The last nonlinearity in the activation A2 is usually an identity function (regression prob-

lems) or a sigmoid-like function (classification problems), depending on the type of the 

desired output. If the final activation function is the identity function, the model of (23) 

can be expressed as LN. 

Figure 4 illustrates how this model can theoretically approximate any continuous func-

tion. The example of Figure 4 is for a mapping from one input feature to one target fea-

ture, but the idea works generally by interpreting that the horizontal axis represents any 

one-dimensional subspace from the input feature space, and the vertical axis represents 

one output feature, picked from possibly many. 
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Figure 4. A handmade example of a target function vs. estimated function, approxi-
mated using a simple artificial neural network model, LN = BM2AM1, with 3 hidden 

units. Each hidden unit produces a ReLU part, which are combined with the final bias 
to produce the final estimate. A ReLU part is the intermediate result after the multiply-

ing stage but before the summation stage of the M2 operator (M1 contains a 3×1 

weight matrix, M2 a 1×3). 

2.3.2 Convolutional Network 
Convolutional neural networks operate on data arrays that have spatial dimensions along 

with a feature dimension: a sample input array has one or more spatial dimensions and 

one feature dimension. For example, (raw) digital images are ℎ × 𝑤 × 𝑑 -arrays with 2 

spatial dimensions (vertical height and horizontal width) and 1 feature dimension (depth) 

that usually has 3 color channels and optionally a transparency channel. 

Most of the research of convolutional neural networks is performed with images. Krizhev-

sky et al. [10] study applying a convolutional neural network for classifying image con-

tents in the frequently cited article. Noh et al. [11] show how to apply a convolutional 

neural network variant for semantic segmentation (producing images showing the areas 

that each object cover). 

As the name suggests, a convolutional network model utilizes convolution operations as 

a part of the model. The convolutional operator C takes some close environment around 

a pixel (spatial element) and performs 𝑁𝑜𝑢𝑡 linear combinations on all [6][11] (or some-

times [10] a part of) the feature channels of the environment’s pixels to create a new 

intermediate result pixel with 𝑁𝑜𝑢𝑡 features. If the input array has 𝑁𝑖𝑛 feature channels 

and the convolutional window width is 𝑊 for all 𝑆 spatial dimensions, then C effectively 

performs a matrix multiplication with a learnable matrix of size 𝑁𝑜𝑢𝑡 × 𝑁𝑖𝑛𝑊
𝑆 on a size 
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𝑁𝑖𝑛𝑊
𝑆 vector containing the aforementioned convolutional environment. C performs this 

matrix multiplication process for every input pixel using the same matrix, leaving spatial 

dimension sizes unchanged after the operation (unless boundary conditions omit pixels 

that don’t have a fully defined environment). This is computationally heavy but, on the 

other hand, parallelizable. Typically, the convolutional environment is chosen to be small 

(for example, in this work 𝑊 = 3; convolutional environment consists only of the center 

pixel and its neighbors). 

Following C in a convolutional network is the activation operator A, defined in (20), which 

adds a bias for each feature channel before applying the nonlinear function, which is 

usually ReLU (21). Then, a pooling operator P which, after dividing the input array spa-

tially into batches (pools), performs some single-valued function on each of the pools, 

reducing the size of spatial array dimensions. P acts on each feature channel individually 

but in the same way. Typically [6][10][11], P selects the maximum value from non-over-

lapping, size 2𝑆 pools (using batching stride 2 for all 𝑆 spatial dimensions), halving each 

spatial dimension. In this case, P itself doesn’t contain any learnable parameters. In [10], 

a similar pooling choice, but with slightly overlapping pools, is used. 

After P1A1C1, a new set of operators, P2A2C2 with their own learnable parameters, oper-

ates on the intermediate result. This cycle is repeated 𝐾 times; P𝑘A𝑘C𝑘, is followed with  

P𝑘+1A𝑘+1C𝑘+1, until operators P𝐾A𝐾C𝐾 have operated. Spatial dimension sizes decay ex-

ponentially due to the pooling operators P (although sometimes [10][11] not every AC is 

followed by a functioning P but a P that is chosen to be an identity operator). It is possible 

to reduce the array to only one pixel; for example, with convolution window width 3 and 

pooling stride 2, and without identity P operators, when the original input array has for all 

spatial dimensions the same size 2𝐾 (if convolutional environment is defined for bound-

ary pixels) or 3 ∗ 2𝐾 − 2 (if omitting boundary pixels during convolution). 

In the case where there is only a single pixel left, the features within the leftover pixel are 

then linearly combined, biased and possibly nonlinearly activated (if needed for a specific 

output type) using N, defined in (22), for the final output vector from the convolutional 

network. More generally, a rearranging operator R may be needed before the final N op-

eration. If the intermediate result array after P𝐾A𝐾C𝐾 still has more than one pixel, R per-

forms some operation that results in a vector suitable as input for N. In the simplest case, 

R simply rearranges the array elements into a vector and doesn’t contain learnable pa-

rameters. In practice, R might be technically required even for the single pixel case to 

remove singular dimensions if they cause technical problems. 

All in all, the convolutional network can be described with the stacked operators 
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 NR(P𝑖A𝑖C𝑖)
𝐾 = NRP𝐾A𝐾C𝐾⋯P2A2C2P1A1C1 (24) 

where C, P and R are described above, A defined in (20), N in (22), 𝐾 is an integer and 𝑖 

a recursive index. The working principle of the network could be interpreted so that a 

convolutional operator C seeks spatial patterns, activation A interprets the convolution 

results (0 for no and a positive value for yes with value indicating how big yes), and 

pooling P condenses the information while forgetting details about exact position. Fractal 

repetition scans through different spatial scales giving intolerance to the initial choice of 

spatial resolution. The collective effect of pooling operators P results in partial or full shift 

tolerance, where the output depends only on the relative spatial positions of the array 

elements (how they are located relative to each other) and not on the absolute spatial 

positions (the choice of where the indexing of the pixels starts/ends). In this work, the 

studied systems are periodic, and it is known beforehand that circularly shifting an input 

array in the spatial dimension does not change the results. 
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3. METHODS 

Here, most of the technical details behind the results of this work are explained. In 3.1, 

details about the simulations that produce the stress-strain curve datasets are explained. 

Details about the statistical analysis of the simulation results and about the training of 

the predictive models are described in 3.2. More details are presented later in this work 

alongside the results in chapter 4. Throughout the work, an unitless unit system (ex-

plained in 2.1.2) is used. 

3.1 Simulation 

Datasets of 10 000 realizations each (differing by the randomly generated pinning con-

figurations) are created using the differential equation (4) for periodic system sizes of 𝑁𝑗 

= 4, 8, 16, 32, 64 and 128 dislocations. Simulations are performed using MATLAB-soft-

ware with varying versions (2018a, 2018b, 2019a). Smaller systems’ datasets are calcu-

lated with a normal desktop computer, while datasets for some larger systems are cal-

culated using a computer cluster service. 

A simulation consists of two parts. In the first part (relaxation), the dislocations are first 

placed uniformly with interval 𝐷�̅� = 16, starting from position 𝑥 = 0 (whether the choice of 

the starting positions matter is studied in 4.2.1), and then simulated for a fixed time of 

4 000 time units. Figure 5 shows relaxation time distribution percentiles. This relaxation 

part is technically solved using MATLAB’s ode15s-solver, which has a highly adaptive 

time step. It is found to be very efficient, since it can detect when the system freezes at 

the end stage of relaxation and increase the time step so as not to spend any more 

computational resources than necessary. It is important to set a low enough relative tol-

erance parameter for all MATLAB’s differential equation solvers; the parameter value is 

set to 1∗10-8 for the simulations of this work. 
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Figure 5. Relaxation time distribution percentiles (quantiles corresponding to per-
centages) for different periodic system sizes, calculated from datasets of 1 000 realiza-
tions (with varying pinning positions). Relaxation time is the last time point of the relax-
ation stage where the avalanche condition (to be explained along with equation (25)) is 
satisfied. In this work, relaxation stage is chosen to end at the fixed time of 4 000 time 

units. 

An example pinning force and energy (negative integral of the force) are shown in Figure 

6. The energy part of Figure 6 also shows relaxed dislocation positions, which are seen 

to settle at local pinning energy minimums. This is not a general rule however, since the 

dislocations interact with each other as well, but the interaction effect is small when the 

dislocations do not get too close to each other as in the case of Figure 6. 

As explained in 2.1.2, pinning point positions are derived from a one-dimensional uniform 

distribution, and all pinning points generate a force function with the same shape, height 

and width. When looking at the pinning force distribution of Figure 7, which can be cal-

culated from the histogram of the discrete force points (dot markers in Figure 6) of the 

discretized force landscapes, some force values clearly stand out by forming peaks. The 

peak at 𝐹 = 0 is caused by flat regions without nearby pinning points (such as around 𝑥 

= 30 in Figure 6). Other peaks are formed at 𝐹 ≈ ±0.43, which are the maximum and 

minimum of a single pinning point’s force function. Values near the limits are accentuated 

in the force distribution since the basic force shape has blunt extrema, producing near-

extrema values more frequently than intermediate values. Later in this work, in 4.1, it will 

be seen that many curves and distributions are affected by the force distribution peaks 

at 𝐹 ≈ ±0.43. 
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Figure 6. Example pinning energy (above) and pinning force (below) curves de-
pending on location (periodic system size of 4 dislocations). Pinning points that gener-
ate the curves are shown with the circular markers. The top image also shows the dis-
location positions after the relaxation stage. (This example is actually the one corre-

sponding to the highest flow stress of the dataset.) 

The second part of the simulation (after relaxation) is the main part where the stress-

strain curve is calculated. For a fixed time of 30 000 time units, external stress 𝜎 is grad-

ually increased with slope 𝑑𝜎 𝑑𝑡⁄  depending on the average dislocation velocity 𝑣�̅� by the 

(Fermi-Dirac) relation 

 𝑑𝜎

𝑑𝑡
=

𝑚𝜎

𝑒
𝑟[𝑣𝑗̅̅ ̅(𝑡)−𝑣𝐿]

𝑣𝐿 + 1

 , 
(25) 

where 𝑚𝜎 = 1∗10-4 is the maximum limit of the slope, 𝑣𝐿 = 2∗10-4 is a cut-off velocity 

value and 𝑟 = 100 is a shape parameter. This function is a used as a smoother version 

of a step function; effectively, 𝑑𝜎 𝑑𝑡⁄  ≈ 𝑚𝜎  when 𝑣�̅� < 𝑣𝐿 , and 𝑑𝜎 𝑑𝑡⁄  ≈ 0 when 𝑣�̅� > 𝑣𝐿 . 

The choice of using (25) is not intended to affect the resulting stress-strain curves but to 

add stability for some differential equation solver algorithms that might have trouble with 

infinitely fast changes in values due to adaptive time steps. Alternatively, the rate of 

stress could be chosen to depend on the maximum dislocation velocity instead of the 

average velocity, but the latter choice is used in this work. 
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Figure 7. Pinning force probability density distribution calculated from the dataset of 
the periodic system size of 64 dislocations, with linear (above) and logarithmic (below) 

vertical axis choices. 

The differential equation of (25) is provided to the solver along with the actual equation 

of motion (4). This second simulation part is technically solved with MATLAB’s ode113-

solver with relative tolerance parameter set to 1∗10-8. This solver is found to be more 

efficient, but not with big margin, than other non-stiff problem solvers such as ode45, 

while the stiff solvers, such as ode15s, are found to be clearly less efficient. Simulation 

results are saved with a fixed time step ∆𝑡 = 20 (not with the adaptive time step used by 

the differential equation solver). 

Examples of stress-strain curves are shown in Figure 8 for different system sizes. Figure 

9 shows the individual movement of each dislocation for an example system. The stress-

strain curves are monotonically increasing functions typically consisting of two kinds of 

pieces: nearly vertical sections, where the dislocations stay almost put and external 

stress 𝜎 is increased, and horizontal sections (avalanches), where the dislocations move 

while the external stress 𝜎  is held still until the avalanche ends. Dislocations move 

slightly outside avalanches; this is called elastic deformation, while avalanches corre-

spond to plastic deformation. Note that depending on the studied system, the stress-
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strain curve may be better visualized with either linear or logarithmic axis choice. In this 

work, strain axes are chosen to be logarithmic. 

 

Figure 8. Example stress-strain curves from different systems with different peri-
odic sizes. Horizontal sections (avalanches) get smaller and their numbers increase as 
the system size is increased. Here, the curves have an end point since simulation time 

is finite; other Figures in this work show only such strain intervals where all stress-
strain curves of the dataset have data within. 

 

Figure 9. Time evolution of the position of each unique dislocation of an example 
periodic system of 16 dislocations. The color corresponds to velocity of the dislocation. 
All dislocations have an infinite amount of periodic copies with intervals 𝐿 = 256, but for 

simplicity, the copies are not shown. Around 𝑡 ≈ 9 000, the system reaches flow stress. 
Dislocation movements before the flow state correspond to avalanches. 
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Avalanches are technically defined as the streaks of saved points where ∆𝜎 ∆𝑡⁄  < 𝑚𝜎 2⁄ , 

that is, where (25) is considered to still the stress. Time resolution (∆𝑡 = 20) sets the 

resolution limit for the avalanche statistics. More specifically, avalanches that have a 

stress difference ∆𝜎 ≥ ∆𝑡 ∗ 𝑚𝜎 2⁄  = 1∗10-3 can be detected as separate avalanches. This 

accuracy is just about enough for the systems studied in this work, but it should be noted 

that the time resolution should be increased if studying even larger periodic systems. 

With high enough stress, an eternal avalanche occurs, and the (smallest) stress at which 

this happens is the so-called flow stress 𝜎𝑓𝑙𝑜𝑤 (also called yield stress or yield strength). 

Figure 10 shows distributions of when the flow stress is reached for each system size. 

Technically, the time is the starting time of the last avalanche if the simulation ends dur-

ing an avalanche, or the time 𝑡 = 30 000 (simulation end time) if the simulation doesn’t 

end during an avalanche. As seen in Figure 10, larger systems require longer simulation 

time for reaching the flow stress. This is due to increasing number of avalanches; an 

increasing amount of simulation time is spent at avalanches. If datasets were to be cal-

culated for even larger systems than 𝑁𝑗  = 128, the simulation time may not be long 

enough, but as shown in Figure 10, the chosen time of 30 000 time units is enough for 

the system sizes studied in this work. 

 

Figure 10. Probability density distributions of the time at which flow stress is 
reached for periodic system sizes of 4…128 dislocations. Each distribution is calcu-
lated from a dataset of 10 000 realizations. (This result depends on the choice of pa-

rameters for equation (25).) 
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3.2 Analysis 

Analysis of the simulation results is divided to statistical and predictive. Statistical analy-

sis includes estimating probability density distributions of the stress-strain curves, flow 

stresses and avalanches, finding how changing the periodic system size affects the sim-

ulation results and estimating the robustness of the system to certain changes in the 

initial conditions. 

Simulation results are trivially completely predictable since the simulation algorithm is 

deterministic. The idea in this work is to research whether the results follow some simpler 

patterns that don’t require the use of the simulation algorithm, but could be estimated 

from the essential system parameters (locations of the pinning points, or fields which 

they generate) and from the initial state (positions of the relaxed dislocations, or pinning 

field values at the dislocation positions). This work tests two prediction methods: predict-

ing from selected features without explicit spatial information, using either a (regularized) 

linear regression model Lasso or a simple artificial neural network model (2.3.1), and 

predicting from spatially defined fields, using a convolutional neural network (2.3.2). 

While most analysis is carried out with the Matlab software, the training of the predictive 

models is performed using the Keras library/interface on Python programming language. 

Datasets, each consisting of 10 000 samples, are divided randomly into a training set 

(80% of the data) and a testing set (the remaining 20%, not used for the training). All 

prediction results are results on the testing sets, averaged over 5 training instances, each 

with different division into training and testing sets (and the training algorithms them-

selves are not deterministic but stochastic since they involve the use of random num-

bers). 

The training of a model is in practice an optimization process where a property called 

loss is minimized. Loss is a measure of the error, typically intensive (error per element, 

when predicting multiple targets), with the addition of a possible penalty/reward from a 

regularization method. In this work, all models, except most of the convolutional network 

models, utilize the L1-regularization method, which adds the absolute values of the learn-

able weights (multiplicative matrix parameters, not additive bias parameters) to the loss 

as a penalty with a user-defined parameter (coefficient). Programmatically, this is done 

with the kernel regularizer option. In future, it could be possible to obtain the optimal 

parameter choice automatically, but this is not the case yet, so the user has to choose 

the parameter values. 

Well-working regularization both prevents overlearning and improves predictability; Fig-

ure 11 illustrates the effects of regularization on the loss curves. L1-regularization also 
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provides sparsity, enabling a straightforward weight analysis (a learned weight will have 

magnitude depending on the importance of the corresponding feature). Other regulari-

zation methods exist as well; one common [6][10] method for convolutional networks is 

the dropout method (not used in this work nor in [11]), but the working principle is quite 

different from, if not opposite to, that of the L1-regularization. 

 

Figure 11. Example losses of training and testing sets when predicting stress-strain 
curves of the 64 dislocation system dataset with a simple neural network of 64 hidden 
units (intermediate result features), using a high (above) or low (below) L1 penalty pa-

rameter. Without enough regularization, overlearning can occur, where the model 
learns too complicated, non-generally applicable relations, and the training loss di-

verges from the testing loss. 

Figure 12 shows how the loss curves have a different shape in some cases when training 

a convolutional network model, causing problems when using a penalty regularization. 

In this work, convolutional networks don’t utilize L1-regularization, apart from one case, 

where only flow stress is predicted. However, overlearning is not found to be too big of 

an issue. This could be because the convolutional window is chosen to be very small (3 

pixels; center and its neighbors), preventing overly complicated mappings, and because 

of the large amount of samples in the datasets. 
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Figure 12. Example loss curves when predicting stress-strain curves of the 16 dis-
location dataset with a convolutional network, focusing on all strain points at once 

(above), or focusing only on the flow stress (below). The above loss curve has stair-like 
delays where the optimizer does not immediately find the direction where the loss can 
be quickly decreased. This prevents the use of penalty regularization methods, since 
when the loss does not decrease quickly enough, the penalty becomes dominant and 
suppresses the learnable weights to 0. In the case of focusing only on the flow stress 

and with the typical exponential decay loss curve shape, L1 penalty can be used (set to 
5∗10-4). Loss curves of single-point predictions of non-flow stresses vary between the 

two cases. 

Defining the predictive models involves making parameter- and other choices which are 

shortly explained here. The Lasso model includes a built-in optimizer, while the other 

models require user-defined optimizer and parameter choices. The optimizer is chosen 

to be Adam with varying learning rate and rate decay. Learning rate is mainly 1∗10-3 

(training for 50 or 100 epochs) but sometimes, when the choice does not cause draw-

backs, 1∗10-2 (training for 10 epochs). Learning rate decay is either 0 or, in the case of 

convolutional networks, 1∗10-5. Loss is defined to be the mean squared error (with the 

addition of a possible regularization penalty). Regularization parameter values and the 

numbers of hidden units (features within intermediate results) for the models predicting 

from selected features are listed in Table 1. For operators N, the activation function is 

always chosen to be ReLU of equation (21). 
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Model input and output data is normalized (standardized) individually for each feature 

channel using equation (10); mean and standard deviation are taken over the samples 

of a dataset (realization dimension of the dataset array) and, in the case of the convolu-

tional network model inputs, over the spatial dimensions as well (so as not change the 

relative shape of the spatial fields), producing mean and standard deviation vectors with 

the number of elements equal to the number of feature channels. If a model fails to learn 

anything, the result will be the mean, having 0 (or undefined) correlation with the target. 

Dividing each output (target) feature channel individually by the corresponding standard 

deviation ensures that, when predicting multiple target features simultaneously, the 

model focuses on them evenly, not just on the target features with the largest scale var-

iations. 

Table 1. Description of models used for prediction from selected features. The number of hid-

den units is the number of features (here elements, generally channels) in the intermediate re-

sult (change in dimensionality is a consequence of matrix operators Mi). The fifth model has 3 

intermediate results (hidden layers) having 64 hidden units each. Column 2 shows the equiva-

lent model operator using notation from 2.3.1. Columns 3-6 show the L1 penalty parameter ap-

plied to each weight matrix of the models. 

Model Operator L1 (M1) L1 (M2) L1 (M3) L1 (M4) 

Lasso L = BM 1∗10-2 - - - 

Neural Network 
(16 hidden units) 

LN = BM2AM1 1∗10-2 1∗10-5 - - 

Neural Network 
(64 hidden units) 

LN 1∗10-2 1∗10-5 - - 

Neural Network 
(64 hidden units) v2 

LN 1∗10-3 1∗10-5 - - 

Neural Network 
(3∗64 hidden units) 

LN3N2N1  1∗10-2 1∗10-5 1∗10-5 1∗10-5 

 

Inputs for the convolutional network models are discretized versions of continuous func-

tions with discretization step of 0.25 length units of the unitless system (see the dot mark-

ers in Figure 6 for a reference). A special feature, 𝐽, indicates the relaxed dislocation 

locations with a function formed by the summation of normal distributions (each repre-

senting one dislocation) that, for each dislocation, have mean at the dislocation position 

and standard deviation of 1 unit of the unitless system. 
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Using operator notation, all the convolutional models used in this work are equivalent to 

(24), with a note that the last activation function is the identity function, making the last 

operator N (22) effectively L (19), just like in the case of the regression models. Convo-

lutional window width is chosen to be 3 pixels, as mentioned before. All pooling operators 

P are chosen to perform a max-pooling operation with non-overlapping pools of size 2. 

All convolutional network model intermediate results (hidden layers) have 16 feature 

channels (hidden units). The number of PAC-cycles, 𝐾, is chosen so that the model be-

comes completely shift-independent. This is done by using the method of reduction to a 

single pixel that is explained in 2.3.2. In the case of the studied 16 dislocation system, 

the original inputs have 210 spatial elements, so 𝐾 is chosen to be 10. 

Since the systems studied in this work are periodic, the convolutional operators C should 

use periodic boundary conditions. In practice, a periodic boundary condition is not yet a 

built-in option within Keras, so the input data is instead circularly copied to almost triple 

the data size of the original, and the valid boundary condition is used that omits boundary 

elements during convolution. Operator R is simply a flatten operation which doesn’t do 

anything in mathematical sense but resolves a programmatical problem related to array 

dimensionality. 

In the case of avalanche prediction, the outputs (targets) form two-dimensional maps, 

predicted with a simple artificial neural network of 64 hidden units. In practice, a map is 

provided to the predictive model as a vector of pixels that are interpreted as individual 

target features. Normalization is therefore carried out individually for each element of the 

output vector; there are no special spatial dimensions, like in the case of convolutional 

model inputs, that would be treated in a different way than the usual feature dimension 

is. Also, maybe due to the large number of model outputs, too high regularization param-

eters are found not to work so well as in the stress prediction cases, so the L1-regulari-

zation parameter is set to 1∗10-5 for both weight matrices in the avalanche prediction 

case. 
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4. RESULTS 

In this chapter are presented the statistics of the simulated stress-strain curves (4.1) and 

of the avalanches they contain (4.5). Two tests (4.2) show how much the stress-strain 

curves depend on the dislocation initial state (4.2.1), and to what extent the pinning 

points can be repositioned without affecting flow stress (4.2.2). Prediction of the stress-

strain curves in 4.4 is carried out either from hand-picked features by simple regression 

models (4.4.1) or from discretized, spatially defined functions by convolutional neural 

network models (4.4.2). The hand-picked features end up being quantiles, as explained 

in 4.3. Lastly, the same hand-picked features are used to predict avalanche locations in 

a bivariate map, predicting stress and avalanche size simultaneously (4.6). An unitless 

unit system is used throughout the work, as explained in 2.1.2. 

4.1 Stress-Strain Curve Statistics 

Figure 13 shows distributions formed by sets of 10 000 stress-strain curves each for 

periodic systems having 8, 16, 32 or 64 dislocations. There is a noticeable bend after 

stress 𝜎 ≈ 0.4, most likely caused by the peaks in the pinning force distribution (Figure 

7). Flow stress seems normal distributed, as seen in Figure 14, but this does not apply 

generally for the stress distributions at non-flowing states. 

More statistics related to Figure 13 and Figure 14 are presented in Figure 15. As the 

periodic size increases, the average stress-strain curve converges to a characteristic 

shape. Reaching flow stress requires higher strain the larger the system size is. The 

hypothetical stress-strain curve of an infinite system may never reach flow stress but 

instead saturate towards some limit stress value. 

Flow stress distributions have a roughly constant mean that slightly decreases with in-

creasing system size. The standard deviation decays with relation 𝑠𝜎𝑓𝑙𝑜𝑤~1/√𝑁𝑗, where 

𝑁𝑗 is the number of dislocations. This is the same relation as for the standard error of 

mean in equation (9) and therefore quite expectable. 
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Figure 13. Stress-strain curve histograms for periodic system sizes of 8, 16, 32 and 
64 dislocations, size indicated by the white number at the corner of each image. Dash-

dotted lines show the average stress-strain curves.  

 

Figure 14. Probability density distribution of flow stress, obtained as the normalized 
histogram of the 64 dislocation dataset using bin width 0.005, and the corresponding 

normal distribution fit, made using the sample mean and sample standard deviation of 
the flow stresses. 
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Figure 15. (Top-left:) Average stress-strain curves for periodic system sizes of 
4…128 dislocations. (Top-right:) Flow stress probability density distributions for the dif-
ferent system sizes. (Bottom row:) Flow stress distribution sample mean (left) and sam-

ple standard deviation (right) depending on the periodic system size. 

Whether there is a connection between flow stress and the rest of a stress-strain curve 

(does a high/low flow stress indicate high/low stress values in general), Figure 16 tries 

to answer this by showing the correlation of stress-strain curves with the corresponding 

flow stresses. At high strains, stress values contain some indication of the scale of the 

upcoming flow stress, and the correlation increases with strain. The beginning of the 

stress-strain curve (below strain 𝜀 = 1 = 100) seems to be independent of the relative flow 

stress level, apart from the very smallest systems. An explanation for the smallest sys-

tems could be that they produce flow stresses with larger standard deviation (Figure 15), 

and the beginning of a stress-strain curve may slightly correlate with the flow stress if the 

flow stress is small enough. This effect then disappears in larger systems where the 

minimum limit of flow stress increases. 
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Figure 16. Correlation between flow stress and stresses at given strains for peri-
odic system sizes of 4…128 dislocations. 

4.2 Tests of Robustness 

Two tests are performed to test how much a stress-strain curve depends on the initial 

dislocation configuration (4.2.1) and how flow stress changes when pinning points are 

slightly moved from a reference configuration (4.2.2). In both cases, system size is fixed 

to 64 dislocations. The test datasets again consist of 10 000 realizations each but are 

specially tailored for the individual purposes of each test. Simulation time (after relaxa-

tion) is 20 000 time units for these two tests, since it is found to be enough for the system 

size of 64 dislocations (see Figure 10). 

4.2.1 Initial State Perturbation Test 
First to be studied are effects caused by using different initial dislocation positions with 

fixed pinning positions. A set of 100 different pinning configurations is generated. For 

each pinning configuration, 100 random shifts within the range [0, 16) (because initially, 

distance between neighboring dislocations is 16) are drawn from a uniform distribution. 

The shift is added to all the default (𝑥𝑗 = 0, 16, 32, …) initial dislocation positions (which 

remain uniformly spaced before the relaxation stage). Combinations of a pinning config-

uration with a shift for the initial dislocations create a dataset of size 100x100=10 000 in 

total. 

For each stride, containing the 100 different initial conditions for a fixed pinning configu-

ration, the standard deviation of the stress-strain curves at given strains are calculated. 
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Taking the mean over all 100 strides (pinning configurations) of those standard devia-

tions produces the curves seen in Figure 17 (left side). The resulting deviations can fur-

ther be compared to the mean stress at each strain, giving a sense of the relative scale 

(Figure 17, right side). 

 

Figure 17. (Left:) Sample mean over strides (pinning configurations) of sample 
standard deviations of stress as a function of strain. (Right:) A relative version, ob-
tained by dividing the curve on the left by the mean stress (dash-dotted line at the 

lower-right in Figure 13). Top row shows each curve with a linear vertical axis, and the 
bottom row with a logarithmic vertical axis. 

While the choice of initial dislocation positions affects the initial parts of the stress-strain 

curve quite much, flow stress seems to be very tolerant to such choice. Systems with 

different initial dislocation configurations but with same pinning configurations produce 

flow stress sets with no notable deviation. The test suggests that flow stress depends 

solely on the pinning configuration, not on the initial state of the dislocations. 

4.2.2 Pinning Point Perturbation Test 
For the second test, the initial dislocation positions are fixed while the pinning positions 

are perturbed. Like in the previous test, 100 pinning configurations are first generated. 

These are used as reference configurations which are to be perturbated. For each refer-

ence configuration, 100 values of standard deviations each define a zero-mean normal 
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distribution from which random shifts are drawn for each pinning position separately. One 

case in each stride has standard deviation 0 (no shifts), acting as the reference case, to 

which the remaining 99 cases are compared. 

The chosen standard deviations can be interpreted as predetermined standard errors of 

pinning positions. In Figure 18 are shown the effects of pinning position perturbation on 

flow stress. The top part shows the error (deviation from reference) of flow stress relative 

to the theoretical saturation value, which is obtained from the standard deviation of the 

flow stress (~0.025, as seen in Figure 15, bottom-right) by multiplying it with √2. This is 

done since the error between two uncorrelated random variables is a random number 

from a distribution with variance that is the sum of the component variables’ variances. 

 

Figure 18. (Above:) Standard error between perturbed system flow stress and the 
reference system flow stress, divided by the theoretical saturation value of the error. 

Here, 1 (= 100) on vertical axis suggests full uncorrelation. (Below:) Correlation coeffi-
cient of perturbed system flow stress with the counterpart of the reference case. 

The results show steady increase of error in the flow stress before reaching saturation 

level at high perturbations. The drop in correlation coefficient can be used to determine 

how accurately the pinning positions need to be measured or given to a predictor if a 

given accuracy is wanted for the evaluation of the flow stress from the pinning positions. 
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4.3 Features for Prediction 

The predictability research section starts with finding suitable features from which to pre-

dict. A simple artificial neural network model (and a linear regression model) requires 

features expressible with a single scalar number, while the convolutional network model 

handles feature channels with spatial variation. The predictive value of a feature can be 

estimated with the correlation coefficient (2.2.2), calculated between the feature and the 

target to be predicted. 

Starting with prediction of flow stress, it could be assumed to depend on the pinning 

obstacles the dislocations have to overcome. These can be numerically expressed by, 

for example, finding the location where the pinning force opposing the applied stress is 

the strongest. It turns out that the system does not depend solely on a single pinning 

field value, unlike it could be expected for a simpler system without interactions between 

dislocations. For example, the second most negative pinning force (taken from a discre-

tized pinning force) field gives higher correlation magnitude with the flow stress than the 

most negative pinning force. Carrying on with the next values from the sorted list of the 

pinning forces (or other fields) and switching sorting indices (ranks) to relative values 

between 0 (lowest value) and 1 (highest value) leads to the quantiles, explained in 2.2.1. 

 

Figure 19. Correlation between flow stress and quantiles of pinning potential en-
ergy (negative integral of pinning force) E, pinning force F, force derivative DF and 

force second derivative D2F distributions for a periodic system of 64 dislocations. Dot-
ted lines show the absolute value of the correlation for easier comparison of magni-

tudes. 

Figure 19 shows the correlation coefficient between various quantiles and the flow 

stresses from the dataset of the 64 dislocation system. The 5%-quantile of the pinning 
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force seems to give the highest (anti)correlation magnitude, around (-)0.80. Figure 20 

shows how the force quantile curve depends (not) on the periodic system size. 

 

Figure 20. Flow stress correlation with pinning force quantiles for different periodic-
ity sizes, varying from 4 to 128 dislocations. On the left is the whole curve, on the right 
a close-up from the drawn rectangle. The curve seems to be independent of size, ex-
cept for the onset at 0-quantile (global minimum force) and for some wrinkles at quan-

tiles 0.12, 0.50 and 0.88. 

The idea of using the predictive models is to find an optimal mapping (a linear combina-

tion in the simplest case) from the features to the targets. In the case of the quantiles, a 

feature that has by itself a small correlation with the target might turn out to be useful for 

the prediction if it contains new information that the other features don’t have. For exam-

ple, two very nearby quantile values contain much overlapping information since they 

are highly linearly dependent (correlated), leaving little room for predictability improve-

ment when linearly combining them. In this work, from each chosen feature category, 

(usually 64) quantile features are chosen uniformly from the whole interval [0,1] as inputs 

for the predictive models. 

In addition to the 4 pinning feature categories of Figure 19, the initial dislocation state is 

described with the values of the 4 fields (pinning energy, force, force derivative and force 

second derivative) at the initial, relaxed dislocation positions (𝑥𝑗), presented as a sorted 

list that naturally contains the same number of quantiles as there are dislocations within 

the periodic loop. With these, another 4, experimental feature categories are used: the 

first three are derived from the local extrema of the pinning energy and force fields, and 

the fourth from the distances between relaxed dislocations. These last features are made 

with the intention to provide some information of how the field values or dislocations are 
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spatially related to each other, since this information is not directly contained within the 

first 8 feature categories (although derivative distributions tell something about local field 

shapes). 

It is not certain whether the chosen features are the best. There could be other ap-

proaches that can provide features with better predictive power. The same predictive 

power could also be achieved with a different choice of features. There are some more 

feature choices tested on this work’s datasets than just the presented ones, but there is 

no remarkable improvement in predictability when using those features. Some simple 

alternatives to quantiles, such as using only mean and standard deviation, are found to 

be insufficient when comparing the predictive power. Since the L1-regularization method 

is used, the predictive models learn to only use important input features, and weight 

analysis (to be shown in Figure 23) can be used to see which feature categories are 

important and which not. It turns out that only a few of the presented 12 feature catego-

ries provide most of the predictive power. 

4.4 Stress-Strain Curve Prediction 

Stress-strain curves are first predicted from hand-picked features using a regularized 

linear regression model and variants of simple artificial neural networks (4.4.1), focusing 

on the 64 dislocation system. Weight analysis is performed on the linear regression 

model, showing the regularization penalty (assumed to correlate with contribution to pre-

diction) of the chosen feature sets. Predictability obtained using the linear regression 

model is shown for different system sizes. 

For the system of 16 dislocations, linear regression model results are compared with 

results of varying convolutional neural network models that mainly vary on the amount 

of input or output features (4.4.2). Convolutional networks are found to be challenging to 

use; penalty-type regularization causes the training to fail in most cases, and there is a 

clear performance difference when predicting the whole stress-strain curve instead of a 

stress at a single strain. 

4.4.1 Stress Prediction Using Selected Features 
Figure 21 shows the average correlation between true and predicted stresses over 5 

training instances for the 64 dislocation system dataset using the models described in 

Table 1 and the 12 feature categories described in 4.3 as input (will be listed again in 

Figure 23). All models give roughly the same level of predictability: starting with almost 

perfect correlation at the lowest strains, ending with around 0.84 ± 0.01 correlation for 

the flow stress predictions. Some models occasionally have trouble at the lowest 
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stresses so that sometimes the model finds the perfect solution and sometimes a much 

worse solution. This is reflected in the standard deviation of the correlation, shown in the 

same Figure 21. 

 

Figure 21. Predictability of stresses at given strains (64 dislocation system), meas-
ured using the correlation between testing set target stresses and predicted stresses. 
The shown result (above) is a sample mean over 5 trained models, each using their 
own random division into training and testing sets. Also shown (below) is the sample 
standard deviation of the 5 correlation realizations at each strain. Different line colors 
indicate different types of models which are described more deliberately in Table 1. 

The neural network models have varying amounts of hidden units and regularization. 

One of the models has multiple hidden layers. As explained in 2.3.1, using more than 

one hidden layer in a simple neural network is not supposed to change the result, since 

a model with one intermediate result has full theoretical capability to produce any non-

linear relation, given enough hidden units. However, this type of a model is sometimes 

used in other works [4][5], so it was decided to test it here in practice as well. 

Since the best working model seems to be the L1-regularized linear regression model 

Lasso, it seems that there are no notable non-linear relations between the chosen fea-

tures and the targets, but the dependency appears to be just linear (mathematically af-

fine). Figure 22 shows examples of some of the testing set target stress-strain curves 

with the predictions from the Lasso model, both original and normalized versions. 
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Figure 22. Example stress-strain curves (64 dislocation system) with Lasso predic-
tions (above), and corresponding normalized versions (below). These examples are 

from the testing set (not used in the training). 

Since the models utilize heavy L1-regularization, analysis of the learned weights be-

comes straightforward. Features that contribute to predictability are allowed to have high 

regularization penalty (in exchange for improving predictability by decreasing loss), and 

vice versa for the unimportant features. Figure 23 shows how much penalty is generated 

by the weights corresponding to each feature category. At the start, the pinning force 

derivative at the relaxed dislocation positions, D𝐹(𝑥𝑗), is the most active feature, but also 

the pinning energy at the dislocation positions, 𝐸(𝑥𝑗), is used. This is expectable, since 

using the force derivatives corresponds to a linear estimation of how the simulation would 

begin. Use of the initial pinning energies at the middle strains is a bit less intuitive but 

seems to work to some extent. The middle section of the studied strain interval also 

includes transition zones where mixes of many features are used for the prediction. Flow 

stress prediction is done mainly with the quantiles from the pinning force (𝐹) categories, 

both the original and the alternative with only the local extrema points. 

All the previous results are for the system with 64 dislocations. Figure 24 shows how the 

predictability curve depends on the system size, expressed with the number of disloca-

tions. 
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Figure 23. Weight (category) analysis of the trained Lasso model for the 64 disloca-
tion system. Color indicates the total L1 penalty from each feature category’s weights 
(each category contains 64 quantiles uniformly from the range [0,1]) as a function of 
strain, averaged over 5 training instances. Categories 1-4 (starting from the upmost) 

contain quantiles of the pinning energy, force, force derivative and force second deriva-
tive distributions. Categories 5-8 are quantiles of distributions of the same quantities as 

1-4 but evaluated only at the relaxed dislocation positions (at the beginning of the 
stress-strain curve simulation). Categories 9-11 are quantiles from distributions derived 
from local extrema of the pinning fields, and category 12 contains the quantiles of the 
distances between neighboring relaxed dislocations. The symbol xj refers to the re-

laxed dislocation positions in general. 

 

Figure 24. Predictability of the stress-strain curve for different system sizes (Lasso 
model; mean correlation over 5 training instances). 
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4.4.2 Stress Prediction Using A Convolutional Neural Network 
The convolutional network model can find relations between spatial shapes of spatially 

defined features (channels) and the targets to be predicted. It can also be made shift-

independent, like in the case of this work, where the studied systems are periodic. Figure 

25 shows predictability curves from Lasso and various convolutional models for the sys-

tem size of 16 dislocations. As explained in 3.2, using the convolutional network model 

poses some challenges not encountered when using the simpler models of 4.4.1. Pre-

dicting the whole stress-strain curve at once produces notably worse results than when 

training a model for each strain point individually. Using the L1-regularization method 

improves predictability, but only when predicting flow stress alone. In other cases, using 

penalty-type regularization is found to halt the training, suppressing weights to 0. 

 

Figure 25. Sample mean (above) and sample standard deviation (below) of correla-
tion between the stresses and 5 prediction realizations of the stresses for each predic-
tive model. The results are for the 16 dislocation system dataset. The first model is the 

Lasso from Figure 24, and the rest are variating convolutional models. Second and 
third model are otherwise the same but trained for a different number of input fields (all 
means E, F, DF, D2F and J; J is the dislocation position indicating feature explained in 
3.2, the rest are pinning fields). The fourth set of points is the result from a collection of 
models, where a separate model is trained for each strain point individually (using all 
the input feature channels, as the second model uses). The fifth set, a single point, is 
the result when predicting only flow stress using only the pinning force field F as input 
and with L1-regularization penalty parameter 5∗10-4 for all the convolutional weights 

(the other convolutional models are not regularized). 



41 
 

 

The tested convolutional models all have the same structure, but they vary by the number 

of inputs and outputs, and by regularization in the one case. The first two convolutional 

models (red and yellow solid lines) in Figure 25 show that there is not much difference 

when giving the derivatives/integrals of the force field as an additional input, since a 

convolutional network has capability to calculate them from the force alone (for example, 

a convolutional operator C with a size 1×3 convolutional kernel [-𝑎 𝑎 0], for some 𝑎 ∈ ℝ, 

effectively differentiates a single-channel input field). 

The best prediction result for the whole stress-strain curves is the line of connected cir-

cles in Figure 25, consisting of results from 160 separate models; each of the 32 circles 

represents an average over 5 training instances. As a small note, the convolutional net-

works have a small chance to fail. Two of the original 160 models fail to train (producing 

correlation near zero) near strain 𝜀 ≈ 10-1, but the failed instances are replaced by addi-

tional instances (161st and 162nd) to obtain the curve of connected circles in Figure 25. 

The best flow stress prediction, with around 0.89 correlation, is from the regularized con-

volutional model focusing only on flow stress. The convolutional network method clearly 

has potential to exceed the linear regression model results, which is not unexpectable, 

since the convolutional model can process spatial information that is unavailable to the 

regression models. The chosen hand-picked features, given as input to the simpler mod-

els, don’t contain much spatial information, at least not directly. Theoretically it should be 

possible to figure out features matching the relations the convolutional model learns, but 

the relations may be far from obvious. 

With optimal choices of the training parameters and regularization, predictability might 

be improved further. The convolutional network model is however somewhat tricky to 

optimize, and it is computationally much heavier than the models of 4.4.1, unless parallel 

computing resources, such as specialized graphics processing units, GPUs, are availa-

ble. Hopefully there is more automatization involved in future versions of machine learn-

ing interfaces, without leaving the parameter optimization work to every user, and maybe 

the training process could be optimized by somehow reducing unnecessary computa-

tional work so that models would learn more efficiently. 

4.5 Avalanche Statistics 

Avalanches (horizontal phases of the stress-strain curves, excluding the eternal flow 

stress avalanche) form their own statistics, which are visualized in the following Figures. 

First, Figure 26 shows the relation between system size and the average total number 

of avalanches. The relation between system size and the number of avalanches starts 
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off linear; a large system seems to contain approximately the avalanches that its smaller 

subsystems would have if it were to be divided. At larger systems, the relation starts to 

bend towards lower values than the linear relation would suggest. The bending could be 

caused by an effect where hypothetical subsystem avalanches at nearby stresses are 

joined, forming a single avalanche; a lower stress avalanche can trigger a hypothetical 

higher stress avalanche at the lower stress since dislocations can push each other for-

ward. Even if some dislocations are far apart, they can push each other due to the long-

range harmonic interaction between dislocations (see 2.1.2) that extends past immediate 

neighbors. 

 

Figure 26. Sample mean (left) and sample standard deviation (right) of the number 
of avalanches per a stress-strain curve realization as a function of the periodic system 

size. 

Figure 27 shows how avalanches distribute over stress, strain or avalanche size. The 

first one is computed as usual, while the other two are log10-densities, meaning density 

over log10-strain and log10-size (in analogy with the definition of the log-normal distribu-

tion). This means that during normalization, each histogram bin is divided by the loga-

rithmic bin width instead of the linear width. This choice produces clearer distributions 

from the visual point of view. 

Distributions over stress and (log10-)strain seem to have a limit shape towards which the 

distributions converge as system size is increased. They also have peaks at low stress 

and strain, which could be caused by metastability after relaxation, where even a small 

push would be enough to trigger movement. The separation of multiple peaks at small 

strains could be due to numerical accuracy (see technical details of how avalanches are 
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detected in 3.2). Local maxima at the centers of the stress and (log10-)strain distributions 

are most probably a consequence of the peaks in the force distribution (Figure 7). 

Distribution over (log10-)size has a quite clear cut-off at the size of 16 strain units, which 

is the average distance between neighboring dislocations. When dislocations move more 

than this much, they could be considered to have replaced their neighbors, and therefore 

there is a high chance that a flow state has been reached. However, there is some leak 

(avalanches larger than 16 strain units), especially in larger systems. After moving 16 

strain units on average, dislocations don’t necessarily settle in the original configuration 

that would then cause a periodic cycle (flow state) to begin. Instead, the dislocations 

could go through new configurations where they have a chance to get stuck, explaining 

the leak effect in large systems. 

 

Figure 27. Probability density distributions of the occurrence of an avalanche de-
pending on stress (top), log10-strain (left) and log10-size (right) for periodic system sizes 

of 4…128 dislocations. 

Next, Figure 28 shows a bivariate avalanche distribution over stress and log10-size for 

the system of 64 dislocations. There is a leaf-shaped pattern which shows that the max-

imum avalanche size depends heavily on the stress. The monotonic relation is broken at 

special stress values, probably again caused by the oddities in the force distribution of 
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Figure 7. Minimum avalanche size doesn’t seem to depend much on the stress, but cer-

tain avalanche sizes occur more often at certain stresses. 

Theories suggest [1][3][6] that the probability of an avalanche decays as a function of 

size with a power law relation when near phase transition point (near flow stress) within 

some size range. (Probability over log10-size would also then have a power law, but not 

necessary with a negative power.) It has also been claimed [6] that critical events (such 

as avalanches) in general are difficult to predict, or even unpredictable. The first claim 

about power laws is not studied extensively in this work, but it is mentionable that the 

avalanche distributions derived from this work’s datasets are not conflicting with the 

claim. The next subchapter attempts to test the claim about predictability. 

 

Figure 28. Bivariate histogram of the avalanche count (color) depending on ava-
lanche size and stress, from the dataset of the 64 dislocation system. The tiny square 

pixels are the histogram bins. Black areas don’t contain any avalanches. 

4.6 Avalanche Prediction 

Avalanche prediction starts with defining some property as the prediction target. The 

number of avalanches within a stress-strain curve is not constant, and there might not 

even be any avalanches (some such cases are found from the dataset of the 4 disloca-

tion system). Predicting avalanches depending on strain could be troublesome, since a 
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strain value is mainly an integration (sum) over the past avalanche events, so failing to 

predict a low strain avalanche affects the prediction at higher strains. In this work, prob-

ability of avalanche occurrence (probability density), depending on stress and on the size 

of the avalanche, is chosen as the prediction target. Figure 29 shows three examples of 

the avalanche maps, and the generation of these maps is explained next. 

 

Figure 29. Three example target avalanche maps, original (left) and normalized 
(right). A map is obtained by having a count histogram (like in Figure 28, but for a sin-

gle realization) and blurring it with a normal distribution (standard deviation is chosen to 
be 3 pixels in both directions; one pixel has height of 0.01 stress units and width of 0.05 

log10-size units). 

Since avalanches are discrete events, they don’t form any unique continuous density 

distribution, but instead the density needs to be defined artificially. If there were a large 

number of avalanches covering the whole studied range of stresses and sizes, a histo-

gram would do, but the avalanches of a single stress-strain curve turn out to be quite 
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sparse within the size-stress space for the system sizes studied in this work. The target 

avalanche maps in this work are formed by generating a normal distribution at the ava-

lanche points (residing in the size-stress space), and the avalanche map is the resulting 

sum. The same grid of stress and avalanche size bins are used as in Figure 28, but the 

definition is independent of the grid choice when using the same standard deviation pa-

rameters for the normal distributions. Note the use of logarithmic avalanche size. As an 

additional detail, areas where no avalanches occur (black regions of Figure 28) are left 

unaffected by the normal distribution blurring. 

In practice, a map is presented to a predictive model as a vector of target features, with 

each feature corresponding to a bin of the two-dimensional grid. Prediction is done from 

the same input features as in stress prediction, explained in 4.3 (and listed compactly in 

Figure 23). Simple neural networks (64 hidden units) produce the predictability result of 

Figure 30, averaged over 5 training instances. The beak-like pattern has the highest 

predictability regions near the largest avalanches of each stress, especially at the lowest 

stresses, and also at a wide size range at the highest stresses. 

 

Figure 30. Predictability of avalanche maps, measured with the mean testing set 
correlation (color) over 5 training instances. The model is a simple neural network (op-
erator LN) of 64 hidden units trained with L1 penalty parameter 1∗10-5 for both weight 

matrices, predicting from the same features as in 4.4.1. 
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The correlation is only about 0.65 at most, so the predictions are still far from perfect. 

Predicted maps of Figure 31, corresponding to the examples of Figure 29, show that the 

model can vaguely estimate the areas where avalanches are likely to appear more or 

less densely than in the average case. It can also be observed that the high stress ava-

lanches of a wide size range may often appear as a bunch, covering a wide size region. 

 

Figure 31. Example predicted avalanche maps (corresponding to the targets of Fig-
ure 29). These examples are from the testing set (not used during the training). The 
predictive models always try to predict the normalized versions (shown at the right 

side). 

The area with low stresses but large avalanche sizes is quite highly predictable, probably 

due to the input features describing the initial state. Appearance of avalanches at the 

highest stress areas could be expected to correlate with the flow stress (which is required 

to be high enough if avalanches were to appear at the very top of the map), so the ability 
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to predict flow stress should help when predicting the top regions of the avalanche maps. 

In the middle however, there are regions with no predictability. 

The convolutional network model could be powerful for this problem since avalanches 

depend heavily on the spatial details of the pinning fields. It could be expected that since 

predicting a flow stress corresponds to prediction of the eternal flow state avalanche, 

predictability of flow stress would indicate some upper limit for the predictability of non-

flow avalanches as well. The studied avalanche prediction problem involves a large 

amount of targets to be predicted, and with the remarks of 4.4.2 about efficiency, con-

vergence and optimization problems encountered with the convolutional models, it is 

decided to leave this direction (of studying convolutional network capability on this prob-

lem) outside the scope of this work. 
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5. CONCLUSION 

Simulated stress-strain curves of the one-dimensional dislocation models are found to 

be quite predictable with simple regression models and convolutional networks, given 

that the initial dislocation states and the pinning landscapes are known. Predictions are 

not accurate enough that they would contain clear descriptions of individual avalanches, 

which is a similar result as in [4]. The avalanche prediction problem, where avalanche 

density maps are predicted, turns out to be difficult for the simple neural network model. 

Even so, it is found that some parts of the avalanche maps are predictable with relatively 

small but still noticeable correlation coefficient. 

A convolutional network model can read spatially defined input channels but is compu-

tationally heavy and difficult to optimize through regularization. Simple regression mod-

els learn quickly and work well with L1-regularization but require expressing the input 

quantities without direct spatial information. Quantiles are found to be efficient de-

scriptors of the pinning fields, and the 5%-quantile of the pinning force field alone is found 

to have around 0.80 correlation with the flow stress, without dependence on the size of 

the periodic system. The simple regression models improve the flow stress predictability 

to about 0.84 by combining the information within the chosen input features. Simple neu-

ral networks are found not to improve the result of the regularized linear regression 

model. A convolutional network model can harness the spatial information lacking from 

the quantile description used by the simpler models to produce flow stress predictions 

with close to 0.89 correlation. Flow stress is therefore found to be quite, but not entirely, 

predictable using the studied predictive models. Also, flow stress is found to be very 

independent of the initial state of the dislocations. 

Stress-strain curves contain phases that have varying degrees of predictability. As in a 

previous study about the predictability of a related system [4], the beginning of the stress-

strain curve turns out nearly fully predictable. Stresses at the middle sections of the stud-

ied (log-)strain intervals have high differences in predictability between the predictive 

models and some differences between periodic system sizes. Weight analysis shows 

that the linear regression model learns to use different sets of input features depending 

on the phase of the stress-strain curve. Overall, the convolutional neural network model 

is found to be the most effective for predicting the stress-strain curves. 

Avalanches, claimed to be unpredictable by nature [6], are found to be difficult to predict 

from the chosen features with a simple neural network model. Only certain avalanches 
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with a specific size at a given stress turn out to be slightly predictable. Totally unpredict-

able size-stress regions appear when the stress is high enough. The study could be 

continued by using convolutional neural networks to find out if the avalanche predictabil-

ity could be improved, or if some avalanches are so unpredictable that even convolu-

tional networks will not work. The avalanche prediction problem could also be defined 

alternatively in many different ways. 

The obtained prediction results could be improved with more advanced learning tech-

niques or through better optimized parameter choices. Maybe some of the remaining 

correlation is too difficult for the predictive models to achieve. It could be a consequence 

of the theory behind dislocation movement and avalanches, which could be studied fur-

ther. Predictability research could be continued by studying other systems, such as more 

realistic ones with less assumptions. Predictability results from resembling systems, such 

as from the two-dimensional dislocation model studied in [4], from the earthquake model 

of [6], or from other possibly studied systems listed in [3], could be reviewed together to 

find similarities and differences. 
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