

Henna Lehto

FEEDBACK AND USER REVIEW
ANALYZING TOOLS

On the use of app store reviews in software industry

Faculty of Information Technology and Communication Sciences
M. Sc. Thesis

April 2020

ABSTRACT
Henna Lehto: Feedback and user review analyzing tools: On the use of app store reviews in
software industry.
M.Sc. Thesis
Tampere University
Master’s Degree Programme in Software Development
April 2020

App stores offer a platform for users to download and browse, and for developers to launch

applications. The use of app stores has risen along with the use of smartphones. App stores can

be used for downloading, launching, updating, or browsing apps. Each app also offers a

possibility to write a review of the app or give it a rating. Therefore, app stores offer a high number

of feedback which can be informative for the developing teams of the applications. The thesis

introduces six tools developed for managing and analyzing the feedback provided via app stores.

Research focuses on explaining the concept of feedback in software industry, characteristics

of app stores and app store reviews, and introducing six different tools. The concepts of feedback,

app store reviews, and four of the tools were based on literature, and two of the tools are

introduced based on the use of free trials the providers offered.

The data proves that there is a need for app store review analyzers in software industry. Even

though app store reviews can be generally associated with nonsense information or they may

lack context, yet they offer a valuable repository of user feedback.

Consumption of applications is rising and therefore, the standards of quality will also do so.

User involvement in software development is proven to lead to better understanding of

requirements. Therefore, the use of app store reviews in software industry needs to be studied

more to help integrating the use of them as a solid part a software development cycle.

Key words and terms: app store reviews, feedback, requirements engineering, user involvement.

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

Contents

1. Introduction ... 1

1.1. Research background 1

1.2. Research aims and approach 2

1.3. Thesis structure 3

2. Feedback collection from software industrial perspective 3

2.1. The role of feedback in creating scenarios for requirements engineering 5

2.2. Different types of feedback 5

2.3. Feedback channels 8

2.4. The style of written feedback 10

2.5. Feedback management in software companies 11

3. App store reviews .. 12

3.1. An overview of app stores 12

3.2. The value of the reviews from developers’ perspective 14

4. App store review analyzing tools ... 16

4.1. Commercial app store review analyzers 16

4.1.1. Appbot 17

4.1.2. AppFollow 19

4.2. Tools chosen for review 22

4.2.1. Mobile App Review Analyzer (MARA) 22

4.2.2. Sentimental feature analyzer 24

4.2.3. Framework for App Review Mining (AR-Miner) 28

4.2.4. Research on automatically classifying app reviews 30

5. Comparison between the tools ... 33

5.1. Data retrieving and defining metadata 33

5.2. Sentence splitting and language processing 34

5.3. Topic modelling 36

5.4. Sentimental analysis 36

5.5. Classifying 36

5.6. Summary 37

6. Conclusion .. 38

References ... 41

-1-

1. Introduction

1.1. Research background
Technology has become more available for people to use, causing an increasing number
of users. Nowadays it would be uncommon for an adult not to have a phone, and even
toddlers learn how to use touch screen devices, such as smartphones and tablets, before
they learn how to read. The larger number of users and their variety lead to larger number
of products (such as mobile devices, applications, and interfaces) available. Therefore,
users can be picky and select the exact product they want and need, and the one which
satisfies their needs the most. Competition with different product providers is tense and
the providers are doing their best to be the perfect fit for their customers – because if they
are not, the customer will choose some other provider. But how to keep users satisfied?
Providing an excellent product. That is done by listening to users and offering them to be
a part of software evolution.

As the range of variety in technology users has risen, so has the differences between
the skills of software developers and designers. Individual developers may even act as
both developers and designers of their product, and they may lack formal education in
software engineering and human computer interaction and build products that only satisfy
their requirements and needs. [Iacob et al. 2013] Therefore, users should always be taken
in concern, possibly already in the development process.

Pagano and Brügge [2013] conducted a study regarding user involvement in software
evolution. User involvement is mostly done by collecting, reading and learning user
feedback. According to Pagano and Brügge [2013], developers constantly need to assess
the potential of user feedback to improve their software. Pagano and Brügge [2013] stated
that software companies are interested in user feedback because of two reasons: the first
one is that real-world data is needed from users, for example, which features are mostly
used and which errors occur the most often. Secondly, according to companies which
Pagano and Brügge [2013] interviewed, the user is the king. The latter would be explained
with the high demand for excellent products, leading to the fact that users must be listened
in order to retain them.

Moreover, software companies tend to reach better quality on their products if users
are involved in the development process. According to Kujala et al. [2005] early user
involvement is connected to a better understanding of requirements. The reason for this
is that software is developed for users, which may not always be the development team.
Therefore, there must be active communication between the development team and the
users, so that the product would be built in the right way and it would be the one users
needed. The earlier the communication process is started, the fewer misassumptions and
mistakes would be made. In addition, Maalej et al. [2015] state that a major part of

-2-

requirements engineering is based on the users: they have to use the system, capture their
needs and give feedback for the software to develop. However, more feedback is usually
gathered after launching the product, not before, meaning that users must be taken in
concern even after when the product is in use. The feedback available on launched
products can supply software companies with a rich source of information that can be
used to improve future releases [Galvis Carreño and Winbladh 2013].

One of the most popular devices today are smartphones. Since the use of smartphones
has increased with another products, so does to use of mobile app stores. App stores are
a significant part of a smartphone, and they could be even used as one of the defining
elements of a smartphone. They offer a platform for applications, such as navigating,
messaging and social media applications, to be launched, downloaded and updated.

Additionally, applications can be reviewed in app stores, however, according to Iacob
et al. [2013] there has been only little interest in how online reviews could benefit
developers. Submitting reviews on the app store is fast and easy for the users – an average
app receives 22 reviews per day [Pagano and Maalej 2013], leading to a great amount of
real-world user data available to developers. Moreover, usually, the number of reviews
of one app exceeds a human’s capacity to read them all to identify users’ issues [Iacob
and Harrison 2013]. Therefore, app store feedback provides a large source of information
for both users and developers so it would be irresponsible not to take the feedback
received from there into account when gathering user data. Moreover, having a positive
rating in application distribution platforms and particular rating sites pushes applications
into top lists, which can lead to more downloads and higher sales numbers [Pagano and
Brügge 2013].

One solution for managing app store feedback is to use tools developed for especially
managing and analyzing app store feedback from software industrial point of view. Since
the issue of managing great amounts of app store reviews is rather new, the research for
tools designed for review analyzing has also mostly begun during the last decade. Yet
there are already promising tools in commercial use, and also more detailed research
available for methods in building such tools. This thesis will cover four different
approaches in building review analyzing tools and introduce two commercial app store
review managing tools.

1.2. Research aims and approach
The thesis introduces and compares four tools which are designed for analyzing and
managing app store reviews. Before introducing the tools, feedback collection in the
software industry and common characteristics of app store reviews must be introduced.
In addition, commercial services, which analyze reviews in app stores and provide
marketing analyzes will be briefly covered.

-3-

The research is an integrative literature review. The purpose of this method is to
overview the knowledge base and to review on the theoretical foundation of the topic,
and the general aim of data analysis is to critically analyze and examine the literature and
the main ideas and relationships of the issue [Snyder 2019]. As the thesis will overview
and review the current problems and solutions of app store review managing, following
the comparison of different tools, where relationships between different solutions are
examined, the research will follow the concept of an integrative literature review. The
information will be mostly literature, besides a few online sources. Mobile application
development is a relevantly new topic, but there is a significant amount of source material
available, so finding literature will not be an obstacle. Furthermore, mobile app reviews
have also been studied during the last decade, providing many useful sources.

The research questions will be “What kind of tools can software companies use to
manage app store feedback?” and “What are ideal features in app store review analyzing
tools from software industry perspective?”. Along with these questions, the research will
also answer the questions “How can app store feedback be used in software evolution?”
and “How software companies manage feedback?”.

The process of making the thesis begun in October 2019 with browsing the literature
and finding useful source material. The writing process begun two months later and was
finished in April 2020. Even though most of the literature was collected before the writing
process started, the information regarding the commercial app store review managing
tools was collected with trials which took place in March 2020.

1.3. Thesis structure
The thesis will follow the following structure: The first section is the introduction. In the
second section, feedback collection from a software industry perspective is introduced,
covering different types of feedback, the style of written feedback and feedback
management in software companies. The third section introduces app stores and
characteristics of app store reviews. The fourth section is two-parted: the first part
provides information of two commercially provided app store managing services, and the
second part goes in more detail into the four tools selected for the review. The fifth section
compares the tools selected for the review, covering their data collection, language
processing, topic modelling, sentimental analysis tools and classifying methods. The sixth
and the final section is the conclusion.

2. Feedback collection from software industrial perspective
Morales-Ramirez [2013] defines feedback as meaningful information provided by users
of widely used software applications with the purpose of suggesting improvements to
such applications, for example, new needs, modification or strategic behaviors.

-4-

Feedback can be given in multiple ways but the written form is the most popular
and efficient. The reason for this is that spoken feedback may not always be heard by the
right person or passed on to them. Additionally, spoken feedback can be easily forgotten,
if there is no reminder or evidence of it, such as a written note. However, spoken feedback
may come across as more genuine than for example, anonymous comments, but yet it is
still harder to track and manage. Moreover, when it comes to ratings, such as star ratings,
the reason why a user has given only two stars instead of five, can be left unclear without
an explanation. This is why the written form is the most reliable: in the best cases, it can
be full of useful and well-argued information, which can be observed by many people in
different times and places.

Timely and constructive feedback from users is a significant help for developers to
fix bugs, implement new features, and improve user experience [Chen et al. 2014] and
according to Pagano and Brügge [2013] user feedback does play an important role in
software companies. User feedback provides important information for developers, helps
to improve software quality and to identify missing features. For example, the priority of
a certain feature could change based on user feedback – the comments can tell if the users
would accept the product without that feature. [Pagano and Brügge 2013] For instance, if
an email app lacks a feature of adding attachments, users would most likely not accept
and use the product. Therefore, the feature of adding attachment would have to be
prioritized high.

However, different companies may be looking for different types of feedback.
According to Pagano and Brügge [2013] a company was especially interested in only bug
reports, whereas another stated that rating was the most critical. On the other hand,
another company did take ratings as irrelevant, but the reason for the contrast of these two
companies was the type and the number of end-users. The company, which cared for
ratings, had a large consumer audience, unlike the latter one, whose audience was a small
group of software professionals. [Pagano and Brügge 2013] Therefore, feedback has
different meanings to them.

The company with a large consumer audience cares most about ratings mostly
because ratings have a clear effect on sales, meaning that low ratings would cause less
profit to the company. Additionally, since there is a large number of consumers, following
ratings is a faster and easier way to keep up with the current state of users’ opinions. On
the other hand, the company with an audience of a small group of software professionals
have fewer users to satisfy, but they may be more critical, since they are professionals.
Having a correctly working program is more important to both users and the company,
than having a more usable interface or more possibly unnecessary features.

-5-

2.1. The role of feedback in creating scenarios for requirements engineering
According to Sommerville and Sawyer [1997] “requirements engineering is the process
of discovering, documenting and managing the requirements for a computer-based
system. The goal of requirements engineering is to produce a set of system requirements
which, as far as possible, is complete, consistent, relevant and reflects what the customer
actually wants”. A common tool for requirements engineering is creating scenarios,
which describes issues such as who uses the product, how it is used, when it is used. This
helps the developing team to get more insights into users’ minds.

Li et al. [2018] state that scenarios could have various roles in software system
development, from a rich and informal narrative description of real-world experience on
using a system to formatted texts and more formal models of an event sequence or system
behavior. Written end-user feedback usually tends to be more narrative and real-world
based, because users write from their experiences, which normally come from using the
product in real-world. For example, if a feature request is proposed, the team could start
collecting the scenarios from the stakeholders who propose the change [Li et al. 2018].
For example, if there was a request for adding styling options into a mobile phone
messaging application, the developing team would start finding scenarios from the users,
who request it. A scenario could already be included in the feature request, such as: “I
wish that there were more styling options. Like when I’m writing a long message, it would
be great if I could somehow highlight some words. For example, if I could just bold the
text by tapping the word and choosing the bold option”. When the scenarios are collected,
the developing team can be more able to specify the situational context of the feature with
the reference of the situational context classification [Li et al. 2018]. The situational
context is presented as context in the conceptual model of feedback presented later in
Figure 1. The role of the user is a significant part of that, and user feedback can already
offer the data needed for feature changes and scenarios, so there may not be even a need
to conduct a study, for instance, to get the information.

2.2. Different types of feedback
As stated, feedback can be given in multiple ways. It can be written, spoken, rated or even
in a form of a picture, such as a screenshot. In social media, likes and shares can also be
considered as feedback, since they are often connected with the general user sentiment.
Additionally, sometimes even facial expressions can also be counted as feedback. Since
feedback can be given in various forms, it should be narrowed down so that the different
types of feedback forms would be easier managed. The scope can be, for example, based
on the platform the feedback was given or the type of it (spoken, written, etc.).

One option to categorize feedback is to split it into explicit and implicit feedback.
Explicit feedback tells how the user is feeling about the product, and the user is

-6-

intentionally giving it. For example, emails, phone calls, comments on social media,
structured feedback forms, surveys, and app store reviews are explicit feedback.

On the contrary, implicit feedback provides information that the user may not be
intentionally giving. Usage data, for example, is implicit feedback. Usage data can
include the number of clicks the user makes, mouse movement, performance info (such
as disc memory and battery life), and feature usage sequences. Additionally, some
providers offer beta versions of their products for users to test, and the usage data from
beta version is collected for further development. Moreover, contexts issues such as time
and location can also be classified as usage data. When and where the product is used is
useful information, since it can tell for example, if the usage changes after an update,
which can indicate if the update was successful or not. In addition to usage data, the data
received from observing users or lead users [Thomke and Nimgade 1998] is implicit data.
Explicit feedback summarizes the subjective opinions of users, where the implicit
feedback can help with understanding the reason their opinion was based on [Maalej et
al. 2015]. They support each other, since with usage data, developers would be able to
understand the rationale for users’ opinion [Maalej et al. 2015].

Together with the explicit feedback, it may help the developing team to solve a bug
or user experience issue. However, implicit feedback can be helpful also alone. Sequences
of feature usages, duration, and time and date can be studied to benefit developers and
requirements analysts. [Maalej et al. 2015]

Another way to manage feedback is by dividing it into pulled and pushed feedback.
Maalej et al. [2015] state that if software companies ask for feedback, it is pulled, but if
they allow the user to trigger the feedback communication, it is pushed. Therefore, pulled
feedback can, for example be given in workshops, questionnaires, interviews, or in other
situations where the provider especially asks for user feedback. Moreover, usage data is
also pulled feedback, because the provider is the initiative party of the communication –
even though the user creates the data, the motion to collect it comes from the provider
and the user may not realize that they are giving feedback. Additionally, when the
provider conducts a survey, whether it is an online form or face-to-face interview, the
users are asked to answer questions presented by the provider, meaning that the feedback
is pulled from them.

 On the other hand, when the users themselves decide to start communicating the
feedback is classified as pushed feedback. Writing comments on social media, rating
services, liking, and sharing are all actions triggered by the user. Additionally, writing
emails, calling, writing reviews and rating in app stores are also pushed feedback.
Moreover, lead users also provide pushed feedback. They are users, who start the
communication and implicitly deliver useful input. Typically lead users adjust the product
by themselves to their needs which gives input to software engineers how to improve the

-7-

software system. [Maalej et al. 2015; Thomke and Nimgade 1998] Additionally, users
can reveal useful input while being observed during their work [Maalej et al. 2015], which
is also pushed feedback since the feedback is not especially asked but rather given by the
intention of the user. For example, if the cashier is observed by the provider while using
the cashing machine, the provider learns information from the use of the product in a
natural environment. The information can be such issues as problems as a left-handed
user or longer thinking pauses before doing some specific task.

Other ways to group feedback can be qualitative (descriptive, not measured) and
quantitative (information about quantities), and structured or unstructured feedback.
Structured feedback follows certain forms, such as ratings, multiple choices, or detailed
forms. On the other hand, unstructured feedback is information provided by the user
which does not follow any form, for example, email or a review written in natural
language. Quantitative feedback tends to focus on usage data, where qualitative is more
based on user opinions [Olsson and Bosch 2015]. There is a close connection between
qualitative and quantitative, and structured and unstructured feedback. Qualitative
feedback can be given in a structured or unstructured form, such as writings and ratings,
but quantitative is given in a structured form.

Figure 1 presents a conceptual model of different feedback types, classifying the
feedback channels and forms into pushed or pulled, and implicit or explicit feedback.
Additionally, the types are marked either as quantitative or qualitative.

Figure 1. Conceptual model of various feedback types.

Observation and the information provided by lead users is implicit pushed feedback.
As it is mainly descriptive data, it is qualitative. On the contrary, usage data is marked as
pulled implicit data. Clicks, mouse movement, and performance info is data which can
be measured, therefore, they are classified as quantitative data. However, feature usage

-8-

sequences and context cannot be measured, making them quantitative information. Yet
they are both part of general usage data. Beta versions are attached to usage data, since
the data collected from the use of them is mainly usage data. However, usage data
collected from beta versions can be either quantitative or qualitative, since it can include
both clicks, mouse movement, performance info, but also feature usage sequences and
the context of use.

Surveys are pulled and explicit feedback. Surveys can be either on online or
interviews, and have both qualitative and quantitative data. Text written in natural
language or talking cannot be measured so it is qualitative information. However,
multiple choice answers and ratings are quantitative. In addition to surveys, workshops
arranged by the provider are pulled and explicit feedback, where the information cannot
be measured, so it is quantitative.

Finally, pushed explicit feedback includes feedback given in social media, phone
calls, emails, app store reviews and ratings, and feedback forms. Social media covers
comments, likes, ratings, and shares, where app stores includers ratings and reviews. As
social media comments, emails, phone calls, app store reviews, and feedback forms
include natural language as user input, they are quantitative information. Social media
and app store ratings, likes, and shares can be measured as numbers, so they are
quantitative data.

2.3. Feedback channels
As there are different ways to provide feedback, there are multiple platforms to do that:
more traditional ways such as calling or emailing, or a separate feedback form, or social
media channels, such as Twitter and Facebook. Figure 2 presents a feedback form on
Tampere University website.

Figure 2. Screenshot of a feedback form on the Tampere University website.

-9-

The information written on feedback forms can be directed to an email and then be read
by the person who is responsible from the email. Some forms may have an option of
wanting an answer to the feedback, which can create trust on the user that the feedback
will be read and replied by a human.

Figure 3 presents a post on the Facebook page of the messaging application
WhatsApp. The post has been made by the administer of the page, but there are comments
written by normal Facebook users. The significant difference between this feedback form
is that other users can see what other people have already commented. This feature is
common in also other social media channels. When users can see each other’s comments,
they may not feel the need to write a new one, if their issue has already been said. Instead,
they can show that the issue presented in the other comment is relevant to them by liking
the comment or/and replying the comment. This decreases the repetition and the amount
of feedback to manage.

Figure 3. Screenshot of a post on the Facebook page of WhatsApp.

Additionally, the significance of an individual comment can be interpreted higher if the
comment has many likes and replies supporting the original comment. Consequently,
even though the feedback given on social media channels may not be as formal or even

-10-

thought as regular feedback, it should be taken in concern as least as much as the feedback
provided on traditional channels. The reason is that as other users can see what everyone
has commented, the company’s actions towards feedback can increase or decrease the
image they have on users’ minds. For example, if a user writes a comment on social media
asking for a dark mode and if the dark mode would be implemented, users could see the
possible connection between the comment and the new feature. Especially if the comment
has a high amount of likes and replies, and even if the administrator of the page would
reply to the comment, telling that the feature is on its way. On the other hand, if the feature
request would have been submitted via the regular feedback form, the connection between
user feedback and the implementation would not be as clear. It would be useful for
companies to show their users that they are listened, and this can be done easier on social
media channels. On the contrary, social media can also be more crucial, if the number of
unsatisfied users was high, and the company would not react to that in any way. In Figure
3, it can be seen that the comments the original post has are not related to the post. This
makes comments regarding a certain issue more difficult to track and group.

As the focus of this thesis is the app store reviews, app stores generally and as a
feedback platform will be introduced further in Section 3.

2.4. The style of written feedback
The style of written feedback varies significantly. A company that develops software on
behalf of other companies receives feedback digests, pre-selected user feedback or
feedback reported by their customers, whereas a company, that develops software for
professional users, receives a single message covering all ideas [Pagano and Brügge
2013]. Since the variety of software users has changed from software professionals to
practically any person [Grudin 1991], the people giving feedback are not most likely
software professionals, like before.

Because users can now easily submit their feedback, review new releases, report
bugs, and rate apps and its features, and request new features [Maalej et al. 2015],
feedback does not usually follow any structured form [Stade et al. 2017]. Morales-
Ramirez [2013] states that users would not feel fully stimulated if they had to give
feedback following a certain structure, and this is a problem for developers. According to
Pagano and Brügge [2013] user feedback written in natural language can especially cause
problems, since those texts are typically written from a subjective perspective which
requires developers to get into the user’s mind to be able to reproduce their issue or
request. Moreover, Maalej et al. [2015] state that developers and analysts can hardly use
user feedback, in particular negative feedback, since it lacks context.

Additionally, Maalej et al. [2009] argue that users do not often know exactly what
they want and they cannot always communicate their problems and needs in a clear and
accurate way, because requests and reports often lack context information and cannot be

-11-

easily understood by the development team. Moreover, user value is a subjective measure
and it is a combination of many factors and may be different for different stakeholders
[Geer and Ruhe 2003]. A feature necessary for one user may not be useful for another,
and there needs to be a balance between various users’ requests. In addition to different
opinions on different features, users might mention all their opinions in one review.

Furthermore, there may be individual ways to refer to the same feature, and users
tend to use sarcasm often. [Maalej et al. 2015] These characteristics make natural
language feedback difficult to automatically categorize, and sometimes for developers to
understand. For example, if a message says “Well, this new feature is great”, there is no
clarification of which feature or not even certain if the user uses sarcasm or not.

2.5. Feedback management in software companies
Little is known about how software companies work with user feedback, especially when
a large number of users are involved. There is a lack of knowledge on how the feedback
is collected and what are the benefits and challenges when operating with feedback
channels. [Stade et al. 2017; Pagano and Brügge 2013] Greer and Ruhe [2003] suggest
that user involvement is one of the challenges in the requirements engineering process
and according to Seyff et al. [2010] it has only recently begun to raise interest in the
requirements engineering community. Receiving timely and accurate user feedback has
been experienced as difficult, even though it would be crucial in order to do processes,
such as requirements prioritization, successfully. It is argued that getting feedback from
users is a slow process which also lacks mechanisms which would allow efficient user
data collection and analysis. [Olsson and Bosch 2014]

After studying the different methods of using user feedback, Pagano and Brügge
[2013] concluded that the companies manage feedback in the following six-step way: The
first step is merging the information given over different feedback channels, like email,
phone calls, and app store. In the second step, developers read messages and extract the
included suggestions, and the third step is deciding if the feedback reports a problem or
requests a feature. The fourth step includes developers assessing the individual priority
of the feedback, and in the fifth step developers estimate the impact of the user feedback
by investigating how frequently it occurs. Finally, in the last step developers connect with
conventional development tools and workflows. Stade et al. [2017] conclude that
software companies do not fully exploit the potential of feedback gathering for software
development and evolution, even though research and industry provide solution ideas for
feedback gathering and analysis.

Maalej et al. [2015] suggest that in the future, previously known and used data sources
such as business requirements, system and technical requirements, stakeholder
preferences, and requirements interdependencies, will be combined with aggregated user
data. Maalej et al. [2015], Stade et al. [2017], and Pagano and Brügge [2013] all state that

-12-

feedback analytics tools will help to manage with a large amount of user feedback by
classifying, filtering and summarizing them. However, Pagano and Brügge [2013] note
that analytics tool would have less impact on companies which only receive a small
amount of feedback. But for companies which receive a large amount of feedback, Maalej
et al. [2015] suggest that automatically collected user data, logs, and interaction traces
could improve the feedback quality and assist developers to understand and react to it.
Moreover, Maalej et al. [2015] state that there is no answer to the question of how could
practitioners use the information provided by user feedback and integrate it into their
processes and tools to decide about when the next release should be offered and what
requirements and features should be added or eliminated. Evaluating user needs is a subtle
process, and even the companies with special processes for gathering user input are not
always successful [Maalej et al. 2009].

3. App store reviews

3.1. An overview of app stores
As mentioned in the introduction, app stores are a significant part of a smartphone
ecosystem. The meaning of app stores is to provide different applications to download.
From a developing perspective, app stores serve as a launching platform. Furthermore,
Jansen and Bloemendal [2013] define app store as “an online curated marketplace that
allows developers to sell and distribute their products to actors within one or more
multisided software platform ecosystems”. The impact of app stores in software business
can be considered from at least three perspectives. First, the awareness of software
business rises with the number of people exposed to the app business. Secondly, low
prices of apps in the app stores courage business models to change radically to add value
to the product as to generate as much revenue as they did before app stores. Finally, when
building up healthy software ecosystems, app stores appear to be the method of choice.
[Jansen and Bloemendal 2013; West and Mace 2010; Idu et al. 2004; Hyrynsalmi et al.
2012]

There have been multiple app stores, based on the provider of the phone: Apple’s App
Store [2020], Google Play [2020] of Android phones, BlackBerry’s BlackBerry World
[2020], and the Windows Phone Store [2020] for Windows Phones. However, the
Windows Phone Store and BlackBerry World both closed by the end of 2019. Therefore,
the most common ones are App Store and Google Play.

Even though App Store and Google Play are the most known and used app stores,
they are not the only ones. There are many Chinese app stores for Android phones, such
as MyApp (Tencent) [2020], 360 Mobile Assistant [2020] and Xiaomi App Store [2020].
Other alternative app stores are, for example, CodeNgo [2020] (for Android phones),
AppBrain [2020] (for Android phones), Cydia [2020] (for iOS phones), and GetJar [2020]

-13-

(for iOS phones). The key difference between these alternative app stores and App Store
and Google Play is the revenue share model, which tends to be better for developers. App
Store and Google Play offer a standard 70/30 split.

Figure 4 has two screenshots of an application view on Apple App Store. In Figure 4,
it can be seen that already the first review may have some useful information for
developers, because it states that “I would love absolutely love to see a couple features
added that I believe wouldn’t be too difficult!”.

Figure 4. Screenshots of an application view on App Store [2020]

Figure 5 presents screenshots from similar views taken from Finnish localization of
Google Play. The first screenshot tells that the application has been updated on 2.3.2020,
and the new version has a dark mode. It also suggests the user to review the application
by having five empty starts and a highlighted text telling to write a review.

-14-

Figure 5. Screenshots of an application view on Google Play [2020]

In the second screenshot, there are two reviews visible. The one by Googlen käyttäjä can
be translated as following: “If many messages have been sent, even deleting them won’t
bring back the old sending speed, but removing and reinstalling the application has to be
done. Otherwise, works fast and tells others’ state at the top, which makes communication
easier. When sending a picture, it is not possible to see the own emojis of WhatsApp,
which can sometimes be very annoying”. The second review, by Jeanette Holanti, is
loosely translated into English as: “Useful application, which makes all the messaging
work problem-free. It would be even nicer, if there was a so-called ‘supplement’ in the
settings, which would allow using its own font. Otherwise, all in all a good application,
which usage is quite a lot daily”. Each review also has an option to rate the review either
as useful or not.

3.2. The value of the reviews from developers’ perspective
Since users can nowadays submit their feedback regarding software products in app
stores, social media, or user groups [Maalej et al. 2015] the amount of feedback has
increased. When it comes to app stores, Galvis Carreño and Winbladh [2013], Harman et
al. [2012] and Pagano and Maalej [2013] showed that in addition to the high number of
reviews, the feedback also contains key information to developers, such as user
requirements, bug reports, feature requests and documentation of user experiences with
specific app features. This can be seen already in the previous section, where three of the

-15-

three reviews shown in two randomly taken screenshots from app store reviews included
a feature request. Therefore, app store feedback provides similar information as general
feedback which makes the reviews as significant from developing points of view.
Additionally, using app store reviews in application design processes can be less time
consuming and more informing if used instead of classic software engineering methods,
such as focus groups, interviews, or questionnaires. These require users to be present and
they might be subject to questioning or analysis. On the contrary, app store reviews
provide direct feedback from users without the need to interact with the developing team.
Writing a review does not require the user to be in a laboratory setting and this makes it
less biased, even though it can be less structured. [Iacob et al. 2013]

An average free mobile application on Apple’s AppStore [2020] receives 36.87 daily
reviews, whereas paid apps only 7.18. The difference may result from the larger user
communities of free application. In addition, larger user communities have also effect on
categories, which receive most reviews: popular categories like Games receive median
31.24 reviews per day, unlike less popular category, Books, which has a median of 0.53
reviews. However, the number of daily reviews can differ significantly, because large
applications, like Facebook, receive even 4,275 reviews in one day. The median length
of an average review is 61 characters and the mean is 106.09. Moreover, over 80% of the
reviews contain fewer characters than a text message, which has a maximum of 160
characters. Therefore, the application feedback is more similar to short messages, such as
a tweet, than to other communication artifacts such as an email. User feedback is also
triggered by new releases, because most feedback is given the first few days after a
release, leading to a long tail over time. Furthermore, users tend to write less the more
they like and application, signing that there would be less to improve. [Pagano and Maalej
2013]

The quality of reviews varies strongly, and the content of a review tends to become
insulting rapidly. For instance, Chen et al. [2014] state that the proportion of informative
user reviews is relatively low, meaning that 35% of app reviews included in their study
contained information that could be directly helpful for developers to improve their apps.
In addition, Maalej et al. [2016] add that the majority of app store reviews are rather non-
informative praising or repeating to the star rating words. Pagano and Brügge [2013] also
state that user feedback, especially app store reviews, has poor quality, and a substantial
part of the feedback is unqualified and does not prove any value to developers. However,
the value of feedback can only be estimated after reading or browsing it, leading to the
reader’s frustration if the quality is poor, and therefore increasing the negative
associations with user comments. [Pagano and Brügge 2013] Chen et al. [2014], Pagano
and Brügge [2013], Gärtner and Schneider [2012] and Morales-Ramirez [2013] all state
that the amount of app review data is too large and time-consuming to analyze manually.

-16-

However, app stores can still serve as a communication channel among users and with
developers [Pagano and Maalej 2013]. For example, according to Iacob and Harrison
[2013], feature requests are strongly present in reviews. In their study, they found that
23% of the reviews included a feature request. Even though the portion may not seem
large, it should be taken in concern that that percent can mean over thousands of feature
requests, if the total amount of received reviews is high, as it is in some popular
applications. In addition to feature requests, a review can include a bug report such as a
problem description, crash, erroneous behavior or a performance issue. A review can also
have significant information regarding user experience, such as documentation of a
particular experience with the app of its feature. [Maalej et al. 2015] Additionally,
because reviews are usually written in a natural and not structured form, one review can
express many issues, meaning that one review may not only include one feature request,
but many requests, bug report and user experience. Therefore, mobile app reviews are
valuable repositories of ideas coming directly form app users [Iacob and Harrison 2013].

The contrast between the value of app store reviews is relatively high, since others
believe that it is not useful for developers but others underline its meaningfulness.
However, there is a common problem between both of the ideologies: the amount is too
high to manually analyze all of them. Analysts and developers would profit from tools an
methods which would systematically filter and aggregate feedback [Pagano and Maalej
2013]. Based on the fact that almost a quarter of the reviews included a feature request in
their study, Iacob and Harrison [2013] also state that there is a need for support in
automatically retrieving feature requests from online reviews. Additionally, Iacob et al.
[2013] argue that app stores should now have a permanent place in the mobile application
development cycle, clarifying that the data they offer should be taken in concern.

4. App store review analyzing tools
The following app store review analyzing tools are introduced based on the information
available on each tool and the tools were chosen objectively for the review. The goal of
covering the following tools is to reflect research questions “What kind of tools can
software companies use to manage app store feedback?” and “What are ideal features in
app store review analyzing tools in software industry perspective?”.

4.1. Commercial app store review analyzers
There are already multiple app store review analyzing tools on the market. However, they
do not provide detailed descriptions of their functionality and they may not only focus on
managing the reviews, so they will be introduced briefly. The two tools covered both
offer tree trials, which were exploited in this thesis.

-17-

4.1.1. Appbot
Appbot [2020], released in 2011, monitors and analyzes app reviews from iTunes, Google
Play, Windows and Amazon. Moreover, Appbot [2020] can also be utilized for
monitoring and analyzing product reviews on Amazon.com. Appbot provides automated
easily understood sentiment analysis for both app and product reviews. Trends such as
user sentiment, review volume and star rating can be measured with Appbot to find out
how users think of changes made. [Appbot 2020] Appbot [2020] provides four different
types of subscriptions, from small to medium, with price range 39$ to 349$ per month.
Appbot [2020] offers integrations, such as Slack and Trello, which helps its users to be
updated.

The main service offered by the Appbot is its sentiment analysis, which is artificial
intelligence (AI) based. Appbot’s [2020] sentiment analysis AI has been specifically
trained on large customer feedback sets and tested by teams from popular brands of the
world. However, it is not specified, which brands were included in the testing. The
sentiment analysis AI is designed to answer questions such as “How did our recent app
update affect sentiment” and “What do customer think of our new feature?” [Appbot
2020]. According to Appbot’s [2020] website, sentiment analysis is important for brands
to understand how users feel about their product or service. Appbot [2020] is promised
to make customers’ sentiments clearer by providing information on why the customers
feel the way they do, with advanced text analysis. Appbot [2020] reads all app reviews,
support tickets, survey results and any other types of feedback connected to the account,
and given feedback is grouped together based on sentiment, topics, and keywords.

The free trial offers a possibility to track applications and see some of their data. The
data is separated into Analysis, Groupings and Audience. Analysis and Groupings are
available for public applications, and some of the subsections of the audience, so they
will be covered. The Analysis includes five different subsections: reviews, ratings,
sentiment, dashboard, and comparison. The Grouping has four different subsections:
words, topics, customer topics, and tags. The Audience has also four subsections:
versions, countries, languages, and emotions. Figure 6 presents the opening page of the
logged user. First, the Analysis section will be covered, followed by the Grouping section.
Finally, the available features of the Audience will be introduced.

-18-

Figure 6. The opening page of the logged user of Appbot [2020]

The first feature of Analysis is reviews. Reviews can be filtered by the app, date,
keyword, rating, sentiment, language and topic. Reviews can also be translated so they
can be understood even if they were written in a foreign language. Figure 7 presents
reviews after filtering.

Figure 7. Filtered reviews of WhatsApp [Appbot 2020]

-19-

Rating page shows a graph presenting the change of the ratings during a certain period.
Ratings can be viewed either based on public store ratings or private developer console
ratings. The sentiment view offers information such as a bar chart of sentiment timeline,
overall sentiment score and sentiment breakdown. Sentiments can also be filtered by date,
application, keyword, star rating, language, topics, and if the review was replied or not.
The final subsection of the Analysis is the comparison, where different applications can
be compared. Review volume and ratings are compared in a graph and statistics are
presented as a table. The table has columns for the name of the app, sentiment, score,
reviews, average star rating, rating breakdown, and trend.

The first subsection of the Groupings section is words. Words tool offers a breakdown
of the words used in the reviews, and they can be viewed from six different categories:
interesting, popular, critical, trending up, trending down, and new. Additionally, the tool
presents a word cloud. The second subsection of the Groupings section is topics. Topics
can be, for example, satisfied users, design and user experience, and bugs. Topics are
presented in a table, which shows the sentiment of the topic, its mentions, overall presence
in reviews and a trend curve. Topics can also be custom made, which is the next
subsection. After topics, the final subsection is tags. Tags are not created automatically,
and reviews must be manually tagged.

The audience offers information regarding versions, but they are not available for
public use. Countries can be viewed only for App Store applications, and that page
presents information of reviews by country. Language tool is similar to countries, but
instead of countries, it presents the reviews by the language they were written. Emotions
tool shows the user emotions of individual reviews based on their negativity, positivity,
and if they are more passive or assertive.

Overall, Appbot [2020] offers a lot of information from different perspectives. The
design of it is clear and using it can be learned quickly. Based on the free trial, it can
certainly offer useful information for developers, such as review filtering, sentiment
analysis, and grouping. Those features can easily be utilized when analyzing and
managing app store reviews, which would lead to exploiting more user data in
development process, leading to better products.

4.1.2. AppFollow
AppFollow [2020] is similar to Appbot, and it’s development begun on a hackathon in
2014. What makes a significant difference between Appbot [2020] and AppFollow [2020]
is AppFollow’s feature in which users can reply to app reviews. With AppFollow [2020],
its user can both receive and reply reviews from platforms such as Slack, Zendesk and
Helpshift. To help product providers to understand and reply to the reviews, AppFollow
[2020] provides an auto-translation tool which translates the content to and from 31
languages. In addition, if a user updates or deletes their comments, it is showed to the

-20-

user of AppFollow [2020]. Reviews can be tracked based on the affect they have user’s
app, for example, user problems can be quickly fixed to raise the rating. Users can
additionally choose the reviews they want to receive (positive, negative, all) the moment
they were written, such as daily, weekly or monthly reports in Slack or email. Moreover,
reviews can be analyzed by app, country, language, rating, user, status or device.
[AppFollow 2020] AppFollow [2020] also has a semantic analysis tool to help providers
to get a deeper understanding of how their users feel about the app, to monitor the most
used words and change of users’ attitude over time.

AppFollow [2020] offers multiple features for app store management. The opening
page of the logged user of AppFollow [2020] is presented in Figure 8.

Figure 8. The opening page of the logged user of AppFollow [2020]

The menu is divided into 8 sections: Apps, Ratings & Reviews, Keywords & ASO,
Rankings, Featured timeline, Integrations, Email reports, Setting, and How to start.

The AppFollow has four subsections: Dashboard, Downloads & Revenue,
Timeline, and Compare Apps. The dashboard gives overall information regarding
rankings, keywords, star rating, reviews, downloads, and revenue. Downloads and
revenue are not public information. The timeline presents the information on the latest
releases. App comparison compares the applications based mostly by their releases and
the amounts of versions.

Ratings and reviews page is presented in Figure 9. Many of the subsections of that
section are in the beta phase and therefore not available for use. Those features are
Reviews Dashboard, Semantic Analysis, Auto-tags, Auto-replies and Reviews import.

-21-

Rating chart presents ratings in different charts, such as in bar and pie charts. They can
be viewed based on country or version. Reviews chart presents a graph of star ratings,
based on the amount and the date of the review. Additionally, reviews can be viewed in
a pie chart based on the country, tags and the application. Tags can be manually made.

Figure 9. Ratings and Reviews on AppFollow [2020]

Keywords and ASO provide competitors overview, keyword research, keyword
spy, ASO analytics, traffic score, word counter, app preview, and conversion benchmark
tools. Keyword research shows the most suitable keywords for the applications, so they
could be the most easily found in app stores. Keyword spy shows other keywords, which
are used to find the application. Traffic score can only be used on App Store products,
and it shows recommended keywords for application search. Word counter counts the
words of submitted text and app preview shows how the application looks in the app store.

Rankings show the order of different types of applications: paid, free, or based on
their category. It also presents a diagram of specific application rankings in different
categories and how the position has changed.

The featured timeline tells if the application has been present on daily lists that app
stores provide on applications. Integrations can be created so that users can be notified of
the changes easier. Email reports provide tools for connecting email and receiving reports.
Reports provided can be sent to the right team, for example, bug reports can be sent to
developers, complaints to customer supports team and feedback to the owners of the
product.

As a conclusion, AppFollow [2020] provides multiple useful tools for app review
analyzing. Review filtering, semantic analysis, and keyword analysis can help companies

-22-

to develop their product and revenue. Additionally, replying to reviews can add more
positive sentiments towards the provider from the user, since receiving a reply makes
users feel like they have been heard.

4.2. Tools chosen for review
The four app store review analyzing tools which will be introduced next have multiple
differences but also some similarities. They all have different approaches to the problem:
The aim of the Mobile App Review Analyzer by Iacob and Harrison [2013] is to find only
feature requests provided by app store reviewers, whereas the sentimental feature
analyzer by Guzman and Maalej [2014] attempts to inform application provider about all
sentiments which their users have regarding the features of the application. The
Framework for App Review Mining by Chen et al. [2014] approaches the problem of
managing a large amount of user feedback in app stores by filtering the reviews based on
their informativity, and Maalej and Nabil [2015] and Maalej et al. [2016] did not focus
on building one possible solution, but on comparing various tools and methods, which
could be used in building such a tool. However, as mentioned, they all have some similar
characteristics, which was the reason why they were chosen for this review.

4.2.1. Mobile App Review Analyzer (MARA)
Iacob and Harrison [2013] designed Mobile App Review Analyzer (MARA) as a
prototype for automatic retrieval of mobile app feature requests from online reviews.
MARA is designed to exploit users sentiments regarding the feature request, identifying
pre-defined linguistic rules and evaluating on a large sample (161 apps with a total of
3279 reviews) of online reviews. Iacob and Harrison [2013] state that in addition to the
number of reviews associated with one app, another challenge is the individual style of
each review. Usually, the reviews are short, but they tend to lack structure and not obey
grammar and punctuation rules. Additionally, users may use such humor forms as
sarcasm while writing reviews, which can in some cases cause even human reader trouble
with understanding, let alone computer.

Iacob and Harrison [2013] begun the process by considering a sample of reviews for
analysis and identifying feature requests by counting how many of the reviews included
a feature request and how the users expressed their issue. The findings informed the
design of a prototype system, which Iacob and Harrison [2013] evaluated using a large
sample of reviews and LDA [Blei et al. 2003] to identify common topics across the
feature requests obtained as a result of this evaluation. For each app selected for
evaluation, Iacob and Harrison [2013] automatically extracted and stored the reviews
provided for it by users. In addition to the review collected, metadata was also stored: the
posting date, the rating user gave, the device the review was posted with, the version of
the app and the title given for the review.

-23-

Figure 10 presents the design of the structure of MARA.

Figure 10. The architecture of the prototype of MARA [Iacob and Harrison 2013]

First, the system retrieves all the reviews. Secondly, the content of the reviews is mined
for identifying sentences or fragments of sentences expressing feature requests. Third,
content is summarized and lastly it is presented. [Iacob and Harrison 2013]

To filter feature requests out of other reviews, Iacob and Harrison [2013] defined a
language for expressing requests. The language was created from the sentences labeled
as a feature request by identifying a keyword from each sentence, which denotes the
sentence as a request. To avoid accidental associations, the keywords chosen to use were
the ones that were associated with more than 3 sentences. Finally, there were 24
keywords: add, allow, complaint, could, hope, if only, improvement, instead of, lacks,
look forward to, maybe, missing, must, needs, please, prefer, request, should, suggest,
waiting for, want, will, wish, would. 80% of the sentences included the listed keywords.
When the content of a review and the metadata of the review were collected, the content
was split into sentenced using LangPipe [LingPipe 2019], and normalized to reduce the
noise in the final results. The split review’s content is given as input to the feature request
mining algorithm which uses a set of linguistic rules defined for supporting the
identification of sentences which refer to such requests [Iacob and Harrison 2013]. “For
example, feature requests are more prone to be expressed in sentences such as ‘Adding
an exit button would be great’, which translated to a linguistic rule of the form ‘Adding
<request> would be <POSITIVE-ADJECTIVE>’”, Iacob and Harrison [2013] state.

In the summarization phase, a set of predefined rules are used to summarize the
extracted feature requests. More frequent and lengthier requests are would be shown up
first in the summary to help the reader to see the most requested issues first without having
to search for them from the large number of reviews. [Iacob and Harrison 2013]

-24-

Iacob and Harrison [2013] evaluated the design of MARA by considering precision,
recall, and Matthews correlation coefficient (MCC). The metrics are defined as the
following:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑀𝐶𝐶 = 	
𝑇𝑃𝑋𝑇𝑁 − 𝐹𝑃𝑋𝐹𝑁

6(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑅𝑃)(𝑇𝑁 + 𝐹𝑁)

where TP presents true positives (results which are actual feature requests), TN true
negatives (non feature requests which were not returned as results), FP false positives
(results which are not feature requests) and FN false negatives (feature requests which
did not appear in the results). For evaluation purposes, Iacob and Harrison [2013]
downloaded 136,998 reviews from Google App Store, gave them as input to for the
feature mining algorithm and evaluated the results using the metrics presented above. Out
of 3000 feature requests resulted by the algorithm, a human coder identified false
positives. The precision of the sample was P = 0.85. To evaluate MCC and recall, a
random app was selected and its reviews were used for measuring the two metrics. 480
reviews were split into 778 sentences, and the results are shown in Figure 11.

Inputs TP FP TN FN R MCC
778 65 3 701 9 0.87 0.9

Figure 11. Recall and MCC metrics [Iacob and Harrison 2013]

4.2.2. Sentimental feature analyzer
Guzman and Maalej [2014] produced an analyzer which tells its user opinions of the users
of an application on various features. First, it produces a fine-grained list of features
mentioned in the reviews. Secondly, it extracts the user sentiments of the identified
features and gives them a general score across all reviews. Finally, the analyzer groups
the fine-grained features into more high-level features that tend to be mentioned in the
same reviews and shows the sentiments of users about these high-level features. Guzman
and Maalej [2014] chose to use collocation finding by Manning and Schütze [1999] for
extracting the fine-grained features, sentiment analysis by Thelwall et al. [2010] for
extracting the sentiments and opinions associated to the features, and topic modeling by
Blei et al. [2003] for the grouping of related features.

-25-

The first step is collecting and preprocessing user reviews. The reviews were
collected from both Apple App Store and Google Play, however, by using different tools.
For Apple App Store reviews, a modified version of an open source scraping tool was
used. On the other hand, for Google Play, a tool using Google Play Application
Programming Interface was developed. The data was collected from 32210 reviews for
seven iOS and Android applications. After collecting the data, the title and comment were
extracted from each review. [Guzman and Maalej 2014]

The feature extraction includes three steps: Noun, verb and adjective extraction,
stopword removal, and lemmatization. For the first step, Guzman and Maalej [2014] used
the part of speech tagging functionality of the Natural Language Toolkit, NLTK [2019].
For stopword removal, Guzman and Maalej [2014] chose to use the standard list of
stopwords provided by Lucene [2019] and in addition to common English language
stopwords (e.g., “and”, “this”, and “is”) Guzman and Maalej [2014] expanded the set with
words which are common is user reviews, but not used to describe features. For example,
words like “app”, “please”, and “fix” were added to the set. For the last section of feature
extraction, lemmatization, Guzman and Maalej [2014] used the Wordnet [Miller 1995]
lemmatizer from NLTK [2019] for grouping the different inflected forms of words with
the same part of speech tag which are syntactically different but semantically equal. This
process concluded that the same word in different phrasing was grouped into the same
lemma. For example, the terms describing the verbs “sees” and “saw” are grouped into
the term “see”. [Guzman and Maalej 2014]

To find features from the user reviews, Guzman and Maalej [2014] used the
collocation finding algorithm by the NLTK [2019] toolkit. A collocation is a collection
of words that are often occurred together [Bird et al. 2009], for example, <strong tea> is
a collocation, because the two words are commonly used together in the English language,
unlike <powerful tea>. Features can generally be described as collocations, as they are
normally a pair of words. Examples of collocations that are application features are <pdf
viewer>, <user interface> and <view picture>, which all are concluded from two words.
After finding the collocations they were filtered by taking into consideration only those
that appear in at least three reviews and that have less than three words distance between
them. [Guzman and Maalej 2014] To find synonyms Guzman and Maalej [2014] used
Wordnet [Miller 1999] as a synonym dictionary. Wordnet was also used to group
collocations with misspelling together. When grouping features together Guzman and
Maalej [2014] considered the word collection with the highest frequency to be the name
of the feature. For example, if there are the following word collections: <picture view>,
<view photograph> and <see photo> with a frequency of 30, 10, and 4, the approach
would be grouping these features together as synonyms. Afterwards, the one with the
highest frequency would be chosen as the name of the feature, in this case <picture view>.

-26-

Sentiment analysis is the process of assigning a quantitative value (positive or
negative) to a piece of text expressing an affect or mood of it [Onur Kucuktunc et al.
2012]. Guzman and Maalej [2014] chose to use SentiStrength [Thelwall et al. 2010] for
analyzing sentiments in user reviews. SentiStrength is a lexical sentiment extraction tool
specialized in dealing with short, low quality text. According to Thelwall et al. [2012]
SentiStrength has good accuracy for short texts in social media, such as Twitter.
SentiStrength divides the review text into sentences and then assigns a positive and
negative value to each sentence, because humans can express both positive and negative
sentiments in the same sentence. The review is scored either in a positive score, between
1 and 5, where 5 is extremely positive and 1 absence of sentiment, or negative, where -1
is an absence of negative sentiment and -5 denotes an extremely negative sentiment. The
sentiment score of the whole sentence is computed by taking both the maximum and the
minimum score among all the words in a sentence and creating a pair of numbers, like
{1, -3}. [Guzman and Maalej 2014] The sentiment score of the sentences is exploited in
computing the sentiment score for the features. The sentiment score of a feature is equal
to the score with the sentence in which it is present. The feature score was chosen to be
the score with the maximum absolute value. In the case that the positive and negative
values are the same, the negative value is assigned to the feature. After the sentiment
analysis step, there was a list of all extracted features, their frequencies, and their
sentiment scores. [Guzman and Maalej 2014]

Finally, in the grouping phase, Guzman and Maalej [2014] used the Latent Dirichlet
Allocation [Blei et al. 2003], also known as LDA, as the topic modelling algorithm. In
LDA a topic is a probabilistic distribution over words and each document is modeled as
a mixture of topics. Therefore, each review can be associated with different topics and
topics are associated with different words with a certain possibility. An example of a topic
can be the set of words which describe users’ experiences when updating a faulty app,
such as {crash, update, frustrated, newest, version, help, bug}. [Guzman and Maalej
2014] Normally LDA algorithm is given the words forming the vocabulary of analyzed
reviews as an input, but Guzman and Maalej [2014] gave the list of extracted features and
model each feature as a single word. An example of a topic given could then be the set of
features {picture_view, camera_picture, upload_picture, delete_picture} which describes
features related to manipulating pictures in an application. Guzman and Maalej [2014]
calculated topic sentiments as follows: Let 𝑅 = {𝑟!, 𝑟", ⋯ , 𝑟#} be the set of analyzed
reviews and 𝑇 = {𝑡!, 𝑡", ⋯ , 𝑡$} the set of extracted topics. The final output of the LDA
computation is the matrix 𝑊#×$, where 𝑤&,(contains the number of times a feature
mentioned in a review 𝑟& is associated with topic 𝑡(. Guzman and Maalej [2014] then
used a weighted average to calculate the sentiment score of each topic. For every topic 𝑡(
they calculated the topic sentiment score 𝑡𝑠(as:

-27-

𝑡𝑠! =	
∑ 𝑤",!$
"%& 	 ∙ 	 𝑠"
∑ 𝑤",!$
"%&

where 𝑆 = {𝑠!, 𝑠", ⋯ , 𝑠)} denoted the sentiment score of each feature associated with the
topic 𝑡(.

As evaluation criteria, Guzman and Maalej [2014] used precision, recall and F-
measure. Precision was computed by dividing the number of true positives by the sum of
true positives and false positives, and recall was computed by dividing the number of true
positives by the sum of true positives and false negatives. To count the F-measure,
Guzman and Maalej [2014] used the general form of the measure, which combines the
precision and recall results, for its computation. Additionally, there were 9 human coders
involved in creating the truth set. They all coded 2800 randomly sampled user reviews to
extract feature requests or feedback about an existing feature, to identify the app feature
mentioned in the review, and to assess the sentiment associated to each feature. However,
after running the feature extraction step of the approach Guzman and Maalej [2014]
obtained a list of word sets designating app features. Many of the word sets extracted as
features contained words that do not describe features but rather the general opinion or
sentiments of users (e.g., great, bad, good, like, hate…). To filter these words it was
decided to slightly modify the approach and include all words that are assigned a
sentiment by lexical sentiment analysis tool into the stopword list. The first approach is
presented as 𝐹* and the latter as 𝐹+* in Figure 12.

Figure 12. Metrics of 𝐹* and 𝐹+* [Guzman and Maalej 2014]

-28-

4.2.3. Framework for App Review Mining (AR-Miner)
Chen et al. [2014] created a novel computational framework for App Review Mining, a
tool called AR-Miner. Overview of AR-Miner is the following: First, the raw user review
data is preprocessed into a well-structured format to facilitate subsequent tasks. Secondly,
a pre-trained classifier filters non-informative reviews out. Third, the reviews which are
semantically similar are grouped into own groups. Fourth, groups and the reviews
belonging to them are sorted by the level of importance by using a novel ranking model.
Finally, the ranking results are visualized and an intuitive summary is presented. The
overview is pictured in Figure 13. The experiments and case studies were done using
Android apps.

Figure 13. Overview of AR-Miner [Chen et al. 2014]

Since the non-informative reviews are filtered out, the difference between non-
informative and informative feedback must be defined. The definition of an informative
review is classified based on if the review contains information that app developers are
looking to identify and is potentially useful for improving the quality or user experience.
However, even for developers, it would be possible that no two people would have the
same understanding of the definition of informative. To overcome this thread, online
forums were studied to identify what kinds of information do real app developers consider
as constructive. [Chen et al. 2014]

The first step of creating AR-Miner is preprocessing which converts the raw user
reviews into sentence-level review instances. The format of a raw user review included
the text written in the review, the rating given, and the time the review was posted. The
preprocessing step also preprocesses the text out of the data of a raw user review. [Chen
et al. 2014] For splitting sentences, Chen et al. [2014] used a standard sentence splitter
provided by LingPipe [2019]. Each split sentence was generated values of rating and
timestamp, based on the values of the attributes in the review the sentence was a part of.
The preprocessing of the text includes tokenizing the text, removing all non-alpha-
numeric symbols, converting words to lowercase and eliminating extra whitespace along
with stopwords or rare words. The remaining words are stemmed to their root form and
the sentences which became empty after the process was removed. [Chen et al. 2014]

-29-

The second phase is filtering non-informative reviews out of informative ones [Chen
et al. 2014]. The rules are summarized in Figure 14.

Figure 14. Types of informative and non-informative reviews [Chen et al. 2014]

Chen et al. decided to use a well-known and representative semi-supervised machine
learning algorithm, i.e., Expectation Maximization for Naive Bayes (EMNB) [Nigam et
al. 2000] to build some classifier on the historical training data. After the classifier is
built, it could be applied to filter future unlabeled user reviews. Figure 15 presents a
possible good results after the filtering. R represents the rating of the review, TS the
timestamp and P indicates the probability of the review belongs to the informative class.
[Chen et al. 2014]

Figure 15. Possible good results after filtering. [Chen et al. 2014]

After the filtering step, the grouping is done. The goal of the grouping phase is to
separate the reviews into several groups such that the text of reviews in a group is more
semantically similar to each other than the text of reviews in other groups. [Chen et al.
2014] To implement the grouping step, Chen et al. [2014] chose to adopt topic modelling
which assigns multiple topics to each review, taking into account that one sentence can
include feedback regarding multiple topics.

The focus of the documentation of AR-Miner is on the ranking step. The general form
of the ranking model is shown in the algorithm in Figure 16. [Chen et al. 2014]

-30-

Figure 16. The general form of the ranking model algorithm [Chen et al. 2014]

The inputs are a set of groups (topics) 𝐺 generated by the grouping step. The sets of
functions fG and fI measure the importance of various features of groups and reviews, like
volume and rating. Two weight vectors wG and wI correspond to fG and fI. The algorithm
computes the 𝐺𝑟𝑜𝑢𝑝𝑠𝑐𝑜𝑟𝑒(𝑔) Î [0,1] for each group 𝑔 Î 𝐺, and the 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒(𝑟)
Î [0,1] for each review 𝑟	Î	g. The larger the 𝐺𝑟𝑜𝑢𝑝𝑠𝑐𝑜𝑟𝑒(𝑔) and 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑐𝑜𝑟𝑒(𝑟)
are, the higher importance will be marked. The final output will be the ranking results.
[Chen et al. 2014] Since the detailed description of the algorithm is not necessary for this
thesis, the detailed information regarding to functions fG and fI will not be covered.

The last step of AR-Miner is to visualize the results generated by the ranking model.
The visualization includes the results of 10 highest ranked results, the 𝐺𝑟𝑜𝑢𝑝𝑠𝑐𝑜𝑟𝑒 value
of each group, and the information of review instances of the results. [Chen et al. 2014]

The evaluation included 4 Android apps, 1000 reviews as labeled training pool and
2000 reviews as a test set. The first set of metrics include precision, recall, and F-measure.
In addition, Normalized Discounted Cumulative Gain [Croft et al. 2010] was adopted as
a measure for evaluating the quality of the highest ranked results. Moreover, two different
topic models, LDA [Blei et al. 2003] and ASUM [Jo and Oh 2001], were used and
compared in the results. When LDA was used, the average EMNB value was 0.54,
whereas when using ASUM it was 0.355, indicating that using LDA concludes better
results.

4.2.4. Research on automatically classifying app reviews
Maalej and Nabil [2015] compared different methods of app review classification and
Maalej et al. [2016] continued their work. The methods were string matching as a basic
classifier, bag of words as document classification, natural language processing for text
preprocessing, rating and length analyzing in reviewing metadata, exploiting sentiment

-31-

scores in sentiment analysis, and comparison between binary and multiclass classifiers
with supervised learning.

Maalej et al. [2016] describe string matching as the most trivial technique to
automatically categorize user reviews. In sting matching, a review is checked if it contains
a certain keyword, which was manually defined. Each keyword was also categorized into
different categories, to indicate the type of a review. For example, words “bug”, “fix” and
“problem” are typed as bug reports, whereas “add”, “please” and “improve” were signs
of feature requests. In addition to bug reports and feature requests, ratings and user
experiences were also categorized. [Maalej et al. 2016]

When using document classification in app store reviews, the reviews, including the
title and the text, are the documents. The main difference between document classification
and the string matching is that the first is dynamic and the latter static approach. The
reason for that is that in document classification, the keywords are automatically
identified whereas in string matching they are manually created. Bag of words (BOW) is
a document classification technique which is commonly used. BOW creates a dictionary
of all terms in the corpus of all reviews and calculates whether the term is present in the
review of a certain type and how often. The types of reviews are identified based on the
terms existence and frequency with the help of supervised machine learning algorithms.
[Maalej and Nabil 2015]

Maalej and Nabil [2015] chose to exploit natural language processing, NLP, [Bird et
al. 2009] in preprocessing the review text. Preprocessing is fundamental because
stopword removal, stemming, lemmatization, tense detection, and bigrams can help to
increase the classification accuracy. Removing stopwords increases the influence of
informative terms like “bug” or “add”. [Maalej and Nabil 2015] However, some
keywords Maalej and Nabil [2015] defined can be identified as stopwords [Bird et al.
2009] can be relevant for the review classification. For example, the terms “should” and
“must” may indicate a feature request but they could be left out after removing stopwords
because they are common English words which do not influence the semantic of the
review. Bigrams [Bird et al. 2009] were also used by Maalej et al. [2016] to preprocess
the review text. Bigrams are all combinations of two contiguous words in a sentence, for
example, the sentence “The app crashes often.” has the bigrams “The, app”, “app,
crashes” and “crashes, often”. Compared with using single terms, bigrams capture more
context of the word in the review [Harman et al. 2012]. For example, single terms such
as “crashes”, “never” and “always” might identify the review as a bug report, but bigram
“never crashes” indicates to rating.

Maalej et al. [2016] collected metadata of the reviews, which included the star rating,
the length of the review, and the submission time. Metadata is significant for classifying
app reviews because it can include helpful information. For example, the reviews with

-32-

negative rating are likely to contain a bug report, and according to Pagano and Maalej
[2013] user experience is likely to be found in positive reviews. Pagano and Maalej [2013]
also state that the length of the review is usually connected to its meaningfulness, meaning
that lengthy reviews tend to be more informative indicating a report on an experience or
a bug. Maalej et al. [2016] stated that the tense of the verb can also be used as an
indication of the review type. Past tense is more commonly used for reporting and could
reveal a description of a feature than future tense which is more likely to be used for a
promise or a hypothetical scenario and might reveal an enhancement or a feature request.
Since one review can include several tenses, Maalej et al. [2016] calculated the ratio of
each tense as metadata, using NLP technique. For more fine-grained sentimental analysis
Maalej et al. [2016] chose to use SentiStrength [Thelwall et al. 2012], which assigns for
each review one negative and one positive sentiment score. The scale of negative ratings
is from -5 to -1 and for positive from 1 to 5.

Binary classifier decided whether the review is of a certain type or not. In this study,
each review can be binary-classified four times: as a bug report or not, a feature request
or not, user experience or not, and a rating or not. Each of these four classification models
needs to be created and trained with true positives and true negatives separately. [Maalej
et al. 2016] On the other hand, a review can also belong to several classes at once. To
find all the classes of a single review there needs to be multiclass classification. Naïve
Bayes [Bird et al. 2009] algorithm and Decision Tree learning [Torgo 2011] were used
for binary classifiers and the multinomial logistic regression [Torgo 2011] for multiclass
classification.

As research data, Maalej et al. [2016] collected ~1.1 million reviews from 1100 Apple
store apps and 146057 reviews from 80 apps from Google store. Half of the apps were
paid and half free. For the truth set creation, there were 4400 reviews, where half were
from Apple App Store and the other half from Google App Store, and the all were peer,
manual and content analyzed. There was no clear trend for NLP techniques, meaning that
more language processing may not lead to better results. Removing stopwords and adding
lemmatization separately caused an increase in the precision to bug reports, feature
requests and user experience, but decreased the precision for ratings. However,
combining stopword removal and lemmatization did not have a significant effect on
precision and recall. Additionally, there was no significant difference between using one
or two sentiment scores. [Maalej et al. 2016] The highest precision was achieved for
predicting user experience and ratings (92%) and the highest recall and F-measure was
for predicting user experience. For bug reports, Maalej et al. [2016] found that the highest
precision, 89%, was achieved with the bag of words, rating, and one sentiment, and the
highest recall, 98%, with using bigrams, rating, and one score sentiment. To achieve a
balance for precision and recall, the best result was received when combining a bag of

-33-

words, lemmatization, bigram, rating, and tense. Feature requests were found best using
the bag of words, rating, and one sentiment, resulting in the highest precision 89%,
whereas the best F-measure was achieved with a bag of words, lemmatization, bigram,
rating, and tense (85%). The best option for predicting user experiences was a
combination of the bag of words with bigrams, lemmatization, the rating, and the tense.
To predict ratings, the best precision (92%) was reached when using the bigram, rating
and one sentiment score. In the comparison between binary and multiclass classification,
it turned out that binary classifiers are more accurate for predicting the review types.
[Maalej et al. 2016]

5. Comparison between the tools
The four app store review analyzing tools introduced have multiple differences but also
some similarities. The main reason for such differences is that each of the tools
implements their solutions for analyzing and managing app store reviews from a different
perspective. The aim of the Mobile App Review Analyzer by Iacob and Harrison [2013]
is to find only feature requests provided by app store reviewers, whereas the sentimental
feature analyzer by Guzman and Maalej [2014] attempts to inform application provider
about all sentiments which their users have regarding the features of the application. The
sentiments may cover also feature requests, but will also include information about, for
example, malfunctioning features, which would be most likely classified as a bug report
instead of a feature request. On the other hand, the Framework for App Review Mining
by Chen et al. [2014] approaches the problem of managing a large amount of user
feedback in app stores by filtering the reviews based on their informativity. This approach
can cover more than users’ sentiments regarding features, because an informative review
can include general information about user experience, for example. Finally, Maalej and
Nabil [2015] and Maalej et al. [2016] did not focus on building one possible solution, but
on comparing various tools and methods, which could be used in building such a tool.
However, yet this research was chosen to be covered in this thesis mainly because of the
wide and detailed range of possible solutions.

5.1. Data retrieving and defining metadata
Even though the approaches of the tools vary, there are still some similarities in their
structures. The first step of each tool is to retrieve data and process it. However, the data
used is not the same as any of the tools. The amount of reviews exploited in research
varies from 2 000 to over a million reviews, and some of them are collected from both
Apple App Store and Google Play Store. On the other hand, Chen et al. [2014] only use
reviews written in Google Play Store.

-34-

In addition to different amounts and sources of data, some also exploit metadata.
However, metadata used also varies: Iacob and Harrison [2013] include the date the
review was written, star rating given, the device used for writing the review, version of
the application and the title of the reviews as metadata, where Chen et al. [2014] use the
posting time, rating and the title. Maalej et al. [2016] have similar metadata as Chen et
al. [2014] but also they include the information of the length of the review and the tense
it was written as metadata.

The reasons for why especially posting date, star rating and the tile were included
in metadata in all those researches are logical. Firstly, the posting date may indicate to
the version of the application, and therefore may inform if an issue presented in the review
is relevant. Secondly, the star rating may have a significant role in identifying the type of
the review, because less rated reviews are more likely bug reports whereas top rated
concern commonly user experience. Lastly, the title may have important information
regarding the review, since the main issue can be mentioned there, so it should be
concerned as a key part of written review.

However, there are differences in using metadata, for example, Iacob and Harrison
[2013] also collect the version of the application, but the other two do not. The reason
why the latter ones do not collect the information may be because the posting time may
be connected with the version, as described before. Additionally, Maalej et al. [2016]
differ from Iacob and Harrison [2013] and Chen et al. [2014] by using the length of the
review and its tense as metadata. Using the length as a part of metadata is reasoned with
the fact that Pagano and Maalej [2013] state that the length of the review is usually
connected to its meaningfulness, meaning that lengthy reviews tend to be more
informative indicating a report on an experience or a bug. Moreover, using past tense is
more common for reporting and could reveal a description of a feature than future tense
which is more likely to be used for a promise or a hypothetical scenario and might reveal
an enhancement or a feature request. On the other hand, Guzman and Maalej [2014]
combine different tenses under one word, meaning that they do not use the information
given by the tense of the sentence in their metadata, or in research. Moreover, Guzman
and Maalej [2014] do not mention using any metadata at all.

5.2. Sentence splitting and language processing
Iacob and Harrison [2013], Guzman and Maalej [2014] and Chen et al. [2014] all split
the content of the reviews into individual sentences using LangPipe [LingPipe 2019] and
then analyzing feedback on sentence-level, instead of covering reviews as a whole. This
may be useful since one review can contain many sentences, which can therefore, cover
many issues. However, even one sentence can contain information about multiple things,
such as “I really like the colors but the exit button does not work”, which has both
information regarding user experience and a bug report.

-35-

The tools have different approaches when it comes to language processing. Chen et
al. [2014], Guzman and Maalej [2014] and Maalej et al. [2016] all remove stopwords
from the text. However, the set of stopwords removed varies based on the approach.
Guzman and Maalej [2014] used stopwords provided by Lucene [2019] and added words
which are common in user reviews but do not describe the application itself, such as “app”
and “please”. In their second approach, they added all the words assigned a sentiment into
their stopword set to increase their accuracy. Maalej et al. [2016] exploited NLP [Bird et
al. 2009] to define stopwords. However, they modified the set by removing some
common English words such as “should” from the set, because they could imply that the
review contains a feature request. It is a major difference that where Guzman and Maalej
[2014] removed words such as “please” from their set of stopwords, Maalej et al. [2016]
removed words indicating a request or such. For example, the word “please” is commonly
used when someone asks or needs something, which may be a sign of a feature request.
However, the difference can be explained with a different kind of approach to the
problem.

On the contrary, Chen et al. [2014] do not define the set or a tool used for stopwords,
but they are still used. Therefore, it can be assumed that they used a basic set of English
words without any removal or addition. On the other hand, Iacob and Harrison [2013] do
not use stopwords at all, but rather define keywords to identify a feature request.
However, the scope of their study is significantly smaller than other tools’, which may
clarify the reason why stopwords were not used. Moreover, using only manually collected
keywords was also one technique Maalej et al. [2016] used when comparing the methods.

In addition to utilizing single words, Maalej et al. [2016] and Guzman and Maalej
[2014] used bigrams and collocations. Maalej et al. [2016] decided to use bigrams,
because single terms such as “crashes”, “never” and “always” might identify the review
as a bug report, but bigram “never crashes” indicates to rating. Therefore, using a bigram
instead of a word, the meaning behind the sentence can be clarified. As mentioned,
Guzman and Maalej [2014] also chose to exploit using words as a pair in addition to
singular words. A collocation is a collection of words that are often occurred together
[Bird et al. 2009], and in the case of analyzing users’ sentiments regarding the features of
an application, some features were presented as a collocation, for example, <pdf viewer>.
This clarifies identifying features, since the words are not considered as individuals, but
as a collocation. Therefore, it can be concluded that using a pair of words can sometimes
be a significant help to identify the meaning behind the text. There are multiple ways of
doing so, and in these examples bigrams and collocations were used successfully. The
situation should define which approach could be used, such as in the latter example, where
collocations were useful to help to identify a certain feature.

-36-

5.3. Topic modelling
A common tool used in many of these researches was the topic modelling tool Latent
Dirichlet Allocation, LDA [Blei et al. 2003]. Topic modelling can generally be an
essential feature in managing and analyzing app store reviews, because categorizing
issues by their topic makes it more efficient for the user to browse information. Since
Iacob and Harrison [2013] focused on identifying feature requests, they used LDA for
identifying common topics across the feature requests. On the other hand, Guzman and
Maalej [2014] used LDA to get a matrix including the information of the number of times
a feature was mentioned and was associated with a certain topic. Chen et al. [2014]
compared LDA with another topic modelling tool, ASUM [Jo and Oh 2011]. The topics,
where the sentences were categorized, had a wide range, such as “theme” and “emoji”.
The various kinds of usage of LDA suggest that generally topic modelling is useful with
these kinds of tools and can be exploited in different helpful ways.

5.4. Sentimental analysis
Since user feedback contains usually information which expresses user’s feelings towards
a certain issue, sentimental analysis can be concerned as a useful method to identify those
feelings. Both Guzman and Maalej [2014] and Maalej et al. [2016] exploited
SentiStrength [Thelwall et al. 2010]. SentiStrength [Thelwall et al. 2010] divides the
review text into sentences and then assigns a positive and negative value to each sentence.
The output is a pair of numbers, informing the negativity and the positivity of a sentence.
Because the output is a pair of numbers, they can be considered as individual scores, or
as Guzman and Maalej [2014] did, as a single number presenting the score (the number
was chosen to be the one, which had higher absolute value). Having sentimental scores
may help to identify the type of the review, for example, it is more likely that a review
with high negative sentimental score expresses malfunctioning and therefore could be a
bug report.

5.5. Classifying
Classifying user feedback can be done in multiple ways, for example, Chen et al. [2014]
classified non-informative reviews out of informative ones using Expectation
Maximization for Naive Bayes (EMNB) [Nigam et al. 2000]. Classifying can be either
binary classification, where the given input is classified either to something or not, or
multiclass classification, where the classifier returns different probability values
regarding its class. In the latter one, the given input can be assigned to multiple classes,
where in binary classification it cannot. [Maalej et al. 2016] Where Chen et al. [2014]
used binary classification for identifying informative reviews, Maalej et al. [2016] used
it for finding the types of the reviews: is it a bug report or not, a feature request or not, a
user experience or not, or a rating or not. Maalej et al. [2016] compared Naive Bayes

-37-

algorithm [Bird et al. 2009] and Decision Tree learning [Torgo 2010] with binary
classification, and the multinomial logistic regression, MaxEnt [Torgo 2010] for
multiclass classification. Both require creating different classification models and training
them with true positives and true negatives.

5.6. Summary
Figure 17 concludes the common characteristics and differences mentioned in the
previous subsections.
 Mobile App

Review
Analyzer

Sentimental
feature
analyzer

Framework for
App Review
Mining

Automatically
classifying app
reviews

Data 161 Google
Play
applications,
3279 reviews

7 Google Play
applications, 7
App Store
applications,
32210 reviews

4 Google Play
applications,
2000 reviews

40 Google Play
applications,
1100 App Store
applications,
over 1.2 million
reviews

Metadata Date, rating,
device,
version, title

- Date, rating,
the title

Date, rating,
title, length,
tense

Sentence
splitting

LangPipe LangPipe LangPipe -

Set of
stopwords

- Provided by
Lucene,
additions such
as “app”,
“please”

Not defined
but used

Provided by
NLP, removals
such as
“should”

Topic
modelling

LDA to
identify
feature
requests

LDA to create
a matrix of
feature
requests

Comparing
between LDA
and ASUM

-

Sentimental
analysis

- SentiStrength - SentiStrength

Classifying - - EMNB
(binary)

Naive Bayes
and Decision
Tree (binary),
MaxEnt
(multiclass)

Figure 17. Matrix presenting the key similarities and differences between the tools.

-38-

The data used varied significantly, but implied that the scopes of the researches were
also different. Most similarities were found in defining metadata, sentence splitting, topic
modelling, and sentimental analysis. After data, the most significant difference between
the researches was the use and definition of the set of stopwords. The four tools chosen
for the review are not in commercial use, but yet they offer useful information, such as
various approaches and the use of resources, for developers in app store review analyzing
perspective.

All the tools covered in this research were proven to have positive impact on
managing and analyzing app store reviews. Commercial tools, Appbot [2020] and
AppFollow [2020] are already in use by multiple software companies, and the features
they have provide both concluded and detailed information of users’ opinions, making
user data more accessible to use in development process.

Since the structures of Appbot [2020] and AppFollow [2020] are not publicly
available, it is not possible to compare their approaches with the four other tools.
However, sentimental analysis was utilized in the researches by Guzman and Maalej
[2013] and Maalej et al. [2016], as it was in both commercial tools. Additionally, dividing
the reviews by topic or keyword was also used in both commercial tools and in the four
tools.

6. Conclusion
This research introduced general characteristics of feedback and its management in the
software industry. It was proven that feedback can be pushed and explicit, pulled and
explicit, pushed and implicit, or pulled and implicit [Maalej et al. 2015]. Additionally,
the outputs of user feedback can be classified as either qualitative or quantitative
information. Different feedback categories were presented and concluded as a conceptual
model of feedback types, which can help product providers to make more strategic
planning of feedback collection for product development and maintenance. More
strategic planning with user data usage in development leads to better understanding of
requirements [Kujala et al. 2005] and therefore, to building products with higher quality.

In addition to feedback types, some feedback channels were presented. General
feedback form on a web page and Facebook page were covered more detailed and
compared with other platforms. Following feedback channels, the characteristics of
written feedback were presented. It was stated that the style of written feedback varies
significantly, it does not follow any structured form [Stade et al. 2017] and may lack
context, which would make it more useful [Maalej et al. 2015]. The answer to the research
question “How software companies manage feedback?” was deliberated with introducing
the current challenges, the lack of knowledge on how the feedback is generally collected,
and the benefits and challenges when operating with feedback channels. It was suggested

-39-

that feedback analytic tools would help to manage user feedback, which could improve
user involvement and therefore the quality of the product.

In Section 3, app stores were generally introduced. In addition, the characteristics,
usefulness, and opportunities of app store reviews were covered. It was stated that app
store reviews can serve as a major platform for feedback gathering, as the reviews can
include useful information for developers and it is easier to collect compared with classic
software engineering methods [Iacob et al. 2013]. Even though some of the reviews may
have poor quality or they do not prove any value to developers [Pagano and Brügge 2013],
they can still include important information which would make them valuable repositories
of ideas coming directly from users [Iacob and Harrison 2013].

Two commercial app store review analyzers, Appbot [2020] and AppFollow [2020]
were introduced by concluding the information received after free trials. Both tools were
proven to be helpful to find useful information from the reviews. After the commercial
tools, four tools chosen for the review were covered. First, Mobile App Review Analyzer
by Iacob and Harrison [2013] focused on finding feature requests from app store reviews.
Secondly, the sentimental feature analyzer by Guzman and Maalej [2014] provides
information on the sentiments of application users towards the product. Thirdly,
Framework for App Review Mining by Chen et al. [2014] categorized informative
reviews from non informative ones. Lastly, the research by Maalej and Nabil [2015] and
Maalej et al. [2016] tested various tools and methods which could be exploited in building
a solution for app review analyzing.

Finally, the four approaches for managing app store reviews were compared with each
other. The data used varied significantly, but implied that the scopes of the researches
were also different. The question “What kind of tools can software companies use to
manage app store feedback?” was answered with introductions of two commercial tools
and more detailed information of the structures and approaches of four other tools. The
ideal features in app store review analyzing were sentimental analysis and topic
modelling. It was proven that since app store reviews offer a large and varied source of
user data, managing the feedback would require a separate tool to analyze and categorize
the reviews.

It was proven that app store reviews are useful in software development as a source
of user feedback. Additionally, the issues with the quality and the amount of the reviews
can be managed with appropriate tools. Having users involved in the development can,
therefore, be more efficient which can lead to better products.

As this research is based on the literature and study of the available tools, the
limitation of the work was the lack of both empirical evaluation in the real work settings
and discussions with the practitioners. In the future, this work could be continued by

-40-

doing research based on those perspectives. However, there is yet no intention of
continuing the work.

-41-

References
360 Mobile Assistant. 2020. https://www.360download.org/download-360-mobile-

assistant-for-android. Visited on 26.3.2020.
Appbot. 2020. https://appbot.co. Visited on 12.2.2020.
AppBrain. 2020. https://www.appbrain.com/info/advertise?utm_source=directory

&utm_campaign=Businessofapps. Visited on 26.3.2020.
AppFollow. 2020. http://appfollow.io/. Visited on 20.2.2020.
AppStore. 2020. https://www.apple.com/ios/app-store/. Visited on 25.3.2020.
Steven Bird, Ewan Klein and Edward Loper. 2009. Natural Language Processing with

Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Inc.
BlackBerry World. 2020.

https://appworld.blackberry.com/webstore/?countrycode=US&lang=en. Visited on
25.3.2020.

D. M. Blei, A. Y. Ng, M. I. Jordan. 2003. Latent Dirichlet Allocation. Journal of Machine
Learning Research, Jan, 3, 993–1022.

Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao and Boshen Zhang. 2014. AR-
miner: mining informative reviews for developers from mobile app marketplace.
In: Proceedings of the 36th International Conference on Software Engineering,
767–788.

CodeNgo. 2020. http://www.codengo.com . Visited on 26.3.2020.
Bruce Croft, Donald Metzler and Trevor Strohman. 2010. Search Engines: Information

Retrieval in Practice. Addison-Wesley Reading.
Cydia App Store. 2020. https://cydia-app.com . Visited on 26.3.2020.
Laura V. Galvis Carreño and Kristina Winbladh. 2013. Analysis of user comments: an

approach for software requirements evolution. In: 35th International Conference on
Software Engineering (ICSE), 582–591.

Emitza Guzman, Walid Maalej. 2014. How do users like this feature? A fine grained
sentiment analysis of app reviews. In: IEEE 22nd International Requirements
Engineering Conference, 153–162.

Des Greer, Guenther Ruhe. 2003. Software release planning: an evolutionary and
iterative approach. Information and software technology, 46, 4, 243–253.

Jonathan Grudin. 1991. Interactive systems: bridging the gaps between developers and
users. IEEE Computer, 24, 4, 59–69.

Google Play. https://play.google.com/store?hl=en . Visited on 25.3.2020.
Stefan Gärtner, Kurt Schneider. 2012. A method for prioritizing end-user feedback for

requirements engineering. In: 5th International Workshop on Co-operative and
Human Aspects of Software Engineering, 47–49.

GetJar. 2020. https://getjar.com. Visited on 26.3.2020

-42-

Mark Harman, Ye Jia and Yuanyuan Zhang. 2012. App store mining and analysis: MSR
for app stores. In: Proceeding of the 9th IEEE Working Conference on Mining
Software Repositories, 108–111.

Sami Hyrynsalmi, Tuomas Mäkilä, Antero Järvi, Arho Suominen, Marko Seppänen and
Timo Knuutila. 2012. App store, marketplace, play! An analysis of multi-homing
in mobile software ecosystems. In: Proceedings of the International Workshop on
Software Ecosystems, 59–72.

Claudia Iacob, Rachel Harrison. 2013. Retrieving and analyzing mobile apps feature
requests from online reviews. In: 10th Working Conference on Mining Software
Repositories, 41–44.

Claudia Iacob, Rachel Harrison and Shamal Faily. 2013. Online reviews as a first class
artifacts in mobile app development. In: International Conference on Mobile
Computing, Applications, and Services, 47–53.

Andrei Idu, Tommy van de Zande and Slinger Jansen. 2011. Multi-homing in the apple
ecosystem: why and how developers target multiple apple app stores. In:
Proceedings of the International Conference on Management of Emergent Digital
Ecosystems, 122–128.

Slinger Jansen and Ewoud Bloemendal. 2013. Defining app stores: the role of the curated
marketplaces in software ecosystems. In: International Conference os Software
Business, 195–206.

Yohan Jo and Alice H. Oh. 2011. Aspect and sentiment unification model for online
review analysis. In: Proceedings of the fourth ACM International Conference on
Web Search and Data Mining, 815–824.

Onur Kucuktunc, Barla Cambazoglu, Ingmar Weber and Hakan Ferhatosmanoglu. 2012.
A large-scale sentiment analysis for Yahoo! answers. In: Proceeding of the fifth
ACM International Conference on Web Search and Data Mining, 633–642.

Sari Kujala, Marjo Kauppinen, Laura Lehtola and Tero Kojo. 2005. The role of user
involvement in requirements quality and project success. In: 13th IEEE
International Conference on Requirements Engineering, 75–84.

Xiaozhou Li, Zheying Zhang and Timo Poranen. 2018. Scenario-driven continuous
mobility requirements analysis in mobile app maintenance. CEUR-WS.org, online
CEUR-WS.org/Vol-2075/CRE18_paper1.pdf.

LingPipe. 2019. http://alias-i.com/lingpipe/index.html. Visited on 13.12.2019.
Lucene. 2019. https://lucene.apache.org. Visited on 13.12.2019.
Walid Maalej, Hans-Jörg Happel and Asarnusch Rashid. 2009. When users become

collaborators: towards continuous and context-aware user input. In: Proceedings of
the 24th ACM SIGPLAN Conference Companion on Object Oriented Programming
Systems Languages and Applications, 981–990.

-43-

Walid Maalej and Hadeer Nabil. 2015. Bug report, feature request, or simply praise? On
automatically classifying app reviews. In: IEEE 23rd International Requirements
Engineering Conference, 116–125

Walid Maalej, Laeknaz Nayebi, Timo Johann and Guenther Ruhe. 2015. Towards data-
driven requirements engineering. In: 19th International Working Conference on
Requirements Engineering: Foundations for Software Quality, Doctoral
Symposium Programme, 223–230.

Walid Maalej, Zijad Kurtanović, Hadeer Nabil and Christoph Stanik. 2016. On the
automatic classification of app reviews. Requirements Engineering, 21, 3, 311–331.

Christopher D. Manning and Hinirich Schütze. 1999. Foundations of Statistical Natural
Language Processing. The MIT Press.

George A. Miller. 1995. Wordnet: a lexical database for English. Communications of the
ACM, 38, 11, 39–41.

Itzel Morales-Ramirez. 2013. On exploiting end-user feedback in requirements
engineering. In: 19th International Working Conference on Requirements
Engineering: Foundations for Software Quality, Doctoral Symposium Programme,
223–230.

MyApp. 2020. https://android.myapp.com. Visited on 26.3.2020
Natural Language Toolkit. 2019. https://www.nltk.org . Visited on 13.12.2019.
Helena Holmström Olsson and Jan Bosch. 2014. From opinions to data-driven software

R&D: a multi-case study on how to close the 'open loop' problem. In: 40th
EUROMICRO Conference on Software Engineering and Advanced Applications,
9–16.

Helena Holmström Olsson and Jan Bosch. 2015. Towards continuous customer
validation: A conceptual model for combining qualitative customer feedback with
quantitative customer observation. In: International Conference of Software
Business, 154–166.

Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun and Tom Mitchell. 2000.
Text classification from labeled and unlabeled documents using EM. Machine
Learning, 39, 2–3, 103–134.

Dennis Pagano and Bernd Brügge. 2013. User involvement in software evolution
practice: a case study. In: Proceedings of the 2013 International Conference on
Software Engineering, 953–962.

Dennis Pagano and Walid Maalej. 2013. User feedback in Appstore: An empirical study.
In: 21st IEEE International Requirements Engineering Conference, 125–134.

Norbert Seyff, Florian Graf and Neil Maiden. 2010. Using mobile re tools to give end-
users their own voice. In: 18th IEEE International Requirements Engineering
Conference, 37–46.

-44-

Hannah Snyder. 2019. Literature review as a research methodology: An overview and
guidelines. Journal of Business Research, 104, 333–339.

Ian Sommerville and Pete Sawyer. 1997. Requirements Engineering: a Good Practice
Guide. John Wiley & Sons, Inc.

Melanie Stade, Farnaz Fotrousi, Norbert Seyff and Oliver Albrecht. 2017. Feedback
gathering from an industrial point of view. In: IEEE 25th International
Requirements Engineering Conference, 71–79.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou. 2012. Sentiment strength detection
for the social web. Journal of the American Society for Information Science and
Technology, 63, 1, 163–173.

Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai and Arvid Kappas. 2010.
Sentiment Strength Detection in Short Informal Text. Journal of the American
Society for Information Science and Technology, 61, 12, 2544–2558.

Stefan Thomke and Ashok Nimgade. 1998. Note on lead user research. Harvard Business
Online.

Luis Torgo. 2011. Data Mining with R: Learning with Case Studies. Chapman et Hall.
Joel West and Michael Mace. 2010. Browsing as the killer app: Explaining the rapid
success of apple’s iphone. Telecommunications Policy, 34, 5–6, 270–286.
Windows Phone Apps. 2020. https://www.microsoft.com/en-us/store/apps/windows-
phone. Visited on 25.3.2020.
Xiaomi App Store. 2020. https://www.mi.com/in/appdownload/. Visited on 26.3.2020.

