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ABSTRACT 

Sami Seppälä: Effects of marine fuel sulfur restrictions on particle properties in atmospheric 
aerosol at the Baltic Sea 
Master of Science Thesis 
Tampere University 
Master’s degree Programme in Science and Engineering 
February 2020 
 

Emissions produced by shipping have been shown to have a significant effect on the climate 
and the human health especially in coastal areas. It is estimated that typically the emissions pro-
duced by shipping have in total a cooling effect on the climate as negative radiative forcing (RF) 
induced by refractive particulate matter (PM) negates the warming effect of greenhouse gases 
(GHGs) emitted in shipping. However, this effect is not uniform and, in some areas, for example 
in the Arctic the net effect of shipping on the climate might also be warming. The shipping emis-
sions also contribute to the acidification of marine environments.  The effects of shipping emis-
sions on the human health are negative. The shipping emissions have been shown to lead to 
increased premature mortality and numerous respiratory diseases. 

This work focuses on the effects of the different marine fuel sulfur restrictions of 1.50 %, 
1.00 % and 0.10 % on the atmospheric aerosol and ship plumes in the Baltic Sea Sulfur Emission 
Control Area (SECA). The discussed properties are total particle number concentration (PNC), 
particle number concentration over background particle number concentration during plume 
(PNCpl), the direct contribution of the PNCpl to the total PNC, the number size distribution of the 
plume particles (NSDpl), the number size distribution of the background particles (NSDbg), the 
surface area concentration of the plume particles (PSCpl) and plume aging. The NSDpls are also 
compared to NSDs from direct emission measurements. The measurement data used in this work 
is differential mobility particle sizer (DMPS) data measured by the Finnish Meteorological Institute 
at the measurement station of Utö in the Baltic Sea between 11.1.2007-31.12.2016. The DMPS 
data was used with the Automatic Identification System (AIS) and weather data to produce the 
results. In this work the plumes were analyzed from three different sectors with the plumes arriving 
from different distances on average. The goal of this work was to study if the ship plumes are 
detectable in the atmospheric measurement data and how the sulfur restrictions influence the 
particle properties of the atmospheric aerosol. This work may give better understanding what kind 
of an effect the sulfur restrictions have on the atmospheric aerosol and how the measurement 
system at Utö could be developed in the future. 

In total 43503 analyzable plumes were detected from the DMPS data. The sulfur restrictions 
were found to be effective, reducing both the PNCs and average particle diameters. The effect of 
the change in the sulfur restriction from 1.50 % to 1.00 % was much smaller than the effect of the 
later change in the sulfur restriction from 1.00 % to 0.10 %. These effects of the sulfur restriction 
changes were observed both in the plumes and the background aerosol particles. The most sig-
nificant effects of the changes in the sulfur restrictions were: 1) The increase of the PNCpls in 
particles sizes smaller than 35 nm, while the PNCpls in total decreased. This increase was related 
to the reduced size of the particles produced in the combustion process. 2) The sulfur restrictions 
were found to decrease the largest average PNCpls. Especially the PNCpls of the plumes with the 
largest diameters of the maximums of the NSDpls were reduced. 3) The lower sulfur contents in 
marine fuels led to larger relative increases of the PNCpls in the smaller particles in the plume 
aging compared to the higher sulfur contents. 4) The stricter sulfur reductions shifted the maxi-
mums of the NSDbgs to smaller particle sizes and reduced the PNCbgs indicating that the effect of 
the shipping emissions on the atmospheric aerosol is a lot larger than what only the direct effects 
would suggest. 5) The measurement cycle of the DMPS (5 min 20 s) was found to be too long for 
the optimal plume detection and using an instrument with a shorter time resolution would be ben-
eficial. 
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Laivaliikenteessä syntyvillä päästöillä on osoitettu olevan merkittävä vaikutus ilmastoon ja ih-
misten terveyteen varsinkin rannikkoalueilla. On arvioitu, että tyypillisten laivapäästöjen vaikutus 
ilmastoon on viilentävä johtuen heijastavien partikkelipäästöjen aiheuttamasta lisääntyneestä ne-
gatiivisesta säteilypakotteesta (engl. radiative forcing, RF), joka on suurempi kuin laivaliiken-
teessä syntyvien kasvihuonekaasujen (engl. greenhouse gas, GHG) lämmittävä vaikutus. Tämä 
vaikutus ei kuitenkaan ole yhtenäinen ja joillakin alueilla, kuten esimerkiksi Arktiksella, laivapääs-
tön vaikutus ilmastoon voi olla myös lämmittävä. Laivapäästöt myös lisäävät merialueiden hap-
pamoitumista. Laivapäästöjen vaikutus ihmisten terveyteen on negatiivinen lisäten ennenaikaista 
kuolleisuutta ja useita hengitys- ja verenkiertoelimistön sairauksia. 

Tämä työ keskittyy 1,50 %, 1,00 %, ja 0,10 % rikkirajoitusten vaikutuksiin ilmakehän aerosoliin 
ja laivojen savuvanoihin (pluumeihin) Itämeren rikkipäästöjen rajoitusalueella (engl. sulfur emis-
sion control area, SECA). Tutkitut ominaisuudet ovat kokonaishiukkaslukumääräkonsentraatio 
(engl. particle number concentration, PNC), pluumin aikainen taustahiukkaslukumääräkonsent-
raation ylittävä hiukkaslukumääräkonsentraatio (PNCpl), PNCpl:n suora vaikutus kokonais- 
PNC:hen, pluumipartikkelien lukumääräkokojakauma (engl. number size distribution, NSDpl), 
taustan lukumääräkokojakauma (NSDbg), pluumi partikkelien pinta-alakonsentraatio (engl. parti-
cle surface area concentration (PSCpl), pluumien ikääntyminen ja pluumien lukumääräkokoja-
kaumien vertailu suorien päästömittausten lukumääräkokojakaumiin. Tässä työssä käytetty mit-
tausdata oli Suomen Ilmatieteenlaitoksen Utön mittaus asemalla aikaväillä 11.1.2007-31.12.2016 
mittaamaa differentiaalisen liikkuvuusanalysaattorin (engl. differential mobility analyzer, DMPS) 
dataa. Dataa käytettiin yhdessä laivojen automaattisen tunnistusjärjestelmä (engl. automatic 
identification system, AIS) datan ja säädatan kanssa tulosten tuottamiseksi. Tässä työssä pluu-
meja tutkittiin kolmelta eri sektorilta, joilta tulevat pluumit olivat keskimäärin lähtöisin eri etäisyyk-
siltä. Tämän työn tavoitteena oli tutkia, ovatko laivapluumit havaittavissa ilmakehän mittausda-
tasta ja kuinka rikkirajoitukset vaikuttavat näihin. Tämä työ voi lisätä ymmärrystä rikkirajoitusten 
vaikutuksista ilmakehän aerosoliin ja antaa uutta tietoa, kuinka Utön mittaus laitteistoa voitaisiin 
kehittää tulevaisuudessa. 

Kokonaisuudessaan 43503 analysoitavaksi kelpaavaa pluumia löydettiin DMPS datasta. Rik-
kirajoitusten huomattiin olleen toimivia, vähentäen niin PNC:itä kuin hiukkasten keskimääräisiä 
halkaisijoita. Rikkirajoituksen muutoksen vaikutuksen 1,50 %:sta 1,00 %:iin huomattiin olleen pal-
jon pienempi kuin myöhemmän suuremman rajoituksen muutoksen 1.00 %:sta 0,10 %:iin. Rikki-
rajoitusten vaikutukset olivat nähtävissä niin laivapluumeissa kuin tausta-aerosolin hiukkasissa. 
Merkittävimmät rikkirajoitusten vaikutukset olivat: 1) PNCpl:t lisääntyivät kokoluokassa alle 35 nm, 
samalla kun PNCpl:t kokonaisuudessaan laskivat. Tämä konsentraation kasvu yhdistettiin entistä 
pienempien hiukkasten syntymiseen paloprosessissa. 2) Rikkirajoitusten huomattiin vähentävän 
suurimpia keskimääräisiä PNCpl:tä. Varsinkin PNCpl:t, joilla oli suurimmat NSDpl:n maksimit, pie-
nenivät. 3) Matalammat rikkipitoisuudet johtivat suurempaan suhteelliseen kasvuun aerosolin 
ikääntymisessä PNCpl:ssä pienemmillä partikkeleilla verrattuna korkeampiin rikkipitoisuuksiin. 4) 
Rikkirajoituksen siirsivät NSDbg:n maksimeja pienemmille hiukkasko’oille ja vähensivät PNCbg: itä 
vihjaten, että laivapäästöjen vaikutus ilmakehän aerosoliin on paljon suurempi kuin suorien vai-
kutusten perusteella voisi olettaa. 5) DMPS:n mittaussyklin (5 min 30 s) huomattiin olleen liian 
pitkä optimaaliseen pluumien tunnistamiseen datasta. Tulevaisuudessa lyhyemmän mittaussyklin 
omaavan laitteen käytöstä voisi olla hyötyä. 

 
Avainsanat: rikkirajoitukset, ilmakehän aerosoli, laivapäästö, laivapluumi  
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1. INTRODUCTION 

Ambient concentrations of airborne particulate matter (PM) have long been known to be 

a large factor in increasing cardiorespiratory mortality and morbidity. This has been 

shown in multiple studies including, but not limited to, Pope (1996), Schwartz et al. (1996) 

and Landis et al. (2001). Eyring et al. (2010) reported shipping to cause air quality prob-

lems through formation of ground level ozone (O3), sulfur (S) emissions and PM. These 

problems were found significant as nearly 70 % of all maritime emissions are produced 

within 400 km from coastlines. Eyring et al. also stated that the problems are mostly 

located around heavily trafficked shipping lanes and harbor areas, but the O3 and aerosol 

precursor emissions can be transported even several hundreds of kilometers inland.  

The ship emissions have been shown to have impacts on the climate in multiple studies 

including, but not limited to, Fugelstvedt et al. (2009), Eyring et al. (2010), Headey et al. 

(2010), and Dessens et al. (2014). The ship emissions cool the climate by altering the 

reflectivity of clouds and forming light reflecting sulfur particles from sulfur dioxide (SO2) 

of marine fuels (Fugelstvedt, et al., 2009; Eyring, et al., 2010). This results to negative 

radiative forcing (RF). The cooling effect of the negative RF outweighs climate warming 

effects of carbon dioxide (CO2) and other greenhouse gases produced by shipping.  

The ship emissions have long been unregulated. According to Chu Van et al. (2019) the 

International Convention for the Prevention of Pollution from Ships (MARPOL) was initi-

ated by the International Maritime Organization (IMO) and adopted in 1973. Chu Van et 

al. also state that the regulations set by the convention aim to reduce nitrogen oxides 

(NOx), sulfur oxides (SOx) and PM from marine engines and that these regulations have 

been effective since May 19th, 2005. They also stated that additional stricter emission 

restrictions have been presented by some nations or set for vulnerable areas. For exam-

ple, Sulphur Emission Control Areas (SECAs) have been set in the Baltic Sea, the North 

Sea area, the North American region, and the United States Caribbean Sea areas. 

This work aims to study the effectiveness of two changes in the sulfur content of the 

marine fuels in the Baltic Sea SECA. The changes of the sulfur restrictions were from 

1.50 % to 1.00 % in July 1st, 2010 and from 1.00 % to 0.10 % in January 1st, 2015 (Antturi, 

et al., 2016). Large positive effects of the sulfur restrictions of the marine fuels on air 

quality have been reported before in Hong Kong harbor area by Mason et al. (2019). 
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Similar studies have not been made before in the Baltic Sea SECA. Another goal of is 

this study is to figure how well the ship plumes can be detected and separated from the 

atmospheric measurement data in marine environments. This has been studied earlier 

by Kivekäs et al. (2014) and the plume detection method used in this thesis is based on 

that article. These results produce valuable information, that can be used in developing 

the marine atmospheric particle measurement setup in Utö and evaluating the effects, 

that the sulfur restrictions have on the atmospheric aerosol particle properties in the Bal-

tic Sea. 

The discussed effects of the sulfur restrictions in this thesis are the total particle number 

concentration (PNC), particle number concentration over background particle number 

concentration during plumes (PNCpl), direct contribution of the PNCpl to the total PNC, 

the number size distribution of the plumes (NSDpl), the number size distribution of the 

background (NSDbg), the surface area concentration of the plume particles (PSCpl) and 

plume aging. The NSDpls are also compared to NSDs from direct emission measure-

ments. The atmospheric measurement data used in this study was measured by the 

Finnish Metrological Institute (FMI) in the atmospheric measurement station at Utö be-

tween 11.1.2007-31.12.2016. The direct emission measurement data was attained from 

Kuittinen (2016). 
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2. ATMOSPHERIC AEROSOLS 

The atmosphere of Earth is mostly composed of gases, but also contains PM from liquid 

and solid substances. Together these particles and gases form an atmospheric aerosol 

(Boucher, et al., 2013). According to Hinds (1999) the atmospheric aerosol is a complex 

and dynamic mixture, where new primary particles are continuously emitted into and 

secondary particles formed in. The atmospheric aerosol particles may undergo evapo-

ration, growth by different mechanisms, chemical reactions, or get removed from the 

atmosphere through numerous removal mechanisms (Hinds, 1999; Grythe, 2017). One 

of the most relevant quantities concerning the atmospheric aerosols is the particle con-

centration. The common particle concentrations to be measured are particle number, 

mass, surface area and volume concentrations (Kulkarni et al., 2011). 

2.1 Sources of atmospheric aerosols 

The sources of the atmospheric aerosols are numerous and widely spread in both space 

and time (Potier, et al., 2019). According to Boucher et al. (2013), all the atmospheric 

aerosols are formed through two pathways, by direct emissions or by the formation of 

secondary particulate matter from precursor gases. In the atmosphere the particles can 

grow to larger sizes through vapor condensation or by coagulation with other particles 

(Hinds, 1999). The most significant removal mechanism of particles from atmosphere is 

precipitation (Grythe, 2017). 

The atmospheric aerosols can be further classified to two distinct categories according 

to their sources, natural and anthropogenic aerosols (Hinds, 1999; Grythe, 2017). The 

natural aerosol is the background aerosol that is not the result of human activities (Hinds, 

1999). Common natural aerosol sources are sea spray, botanical debris, volcanic dust, 

forest fires, gas-to-particle conversion, and photochemical processes (Hinds, 1999; 

Spracklen and Rap, 2013). The contribution of the natural aerosols in the atmosphere is 

significant and the natural aerosols are distributed all around the globe (Hinds, 1999; 

Grythe, 2017). The largest of the natural aerosol sources are the large sea areas of Earth 

followed by deserts and vegetation (Hinds, 1999). 

According to Hinds (1999) the anthropogenic aerosol is the aerosol that is produced by 

or related to human activities. Anthropogenic aerosol sources consist of primary emis-

sions, particles formed by gas-to-particle conversions and photochemical reactions 

(Hinds, 1999). Huang et al. (2014) estimated that 35 % of the global emissions of the 
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total suspended particulate (TSP) in 2007 were from the anthropogenic sources.  The 

sources of the anthropogenic aerosols are more concentrated to the industrialized re-

gions of the world where the levels of the anthropogenic aerosols can be higher than the 

natural background aerosol levels (Hinds, 1999). For example, in South Asia 37 ± 20 % 

of the particulate matter smaller than 2.5 µm (PM2.5) have been measured being vehicu-

lar emissions, 23 ± 16 % industrial emissions, 22 ± 12 % SA and only 20 ± 15 % natural 

aerosols (Singh, et al., 2017).   

The areal variation of aerosol concentrations is large. For example, in measurements 

made in Delhi, India by Tiwari et al. (2011), the hourly mean values of TSP varied be-

tween 395 µg/m3 and 980 µg/m3
. In turn, Zhu et al. (2018) measured in the southeastern 

Tibetan plateau where the TSP levels varied between 12.5 ± 5.5 µg/m3 and 19.1 ± 

8.3 µg/m3. According to Kulkarni et al. (2011) when the aerosol concentrations are con-

sidered, the total aerosol concentrations in polluted urban areas are typically in the order 

of 105 #/cm3 being even in the order of 107 #/cm3 near emission sources and in order of 

104 #/cm3 in less polluted areas.  

2.2 Particle size distribution 

For particle sizes, size distributions and size distribution functions the reader is referred 

to John (2011). The particle size is usually characterized by the diameter of the particle. 

Depending on the circumstances, the particle diameter may refer to multiple different 

diameters, for example, a geometric diameter, an aerodynamic diameter, a Stokes di-

ameter, an electrical mobility diameter or an optical diameter. All these diameters have 

different definitions and can be different for the same exact particle and the optical diam-

eter is even dependent on the used measurement instrument. The particles in an aerosol 

have a wide size range from about 10-9 m to 10-4 m. As the particle sizes range over 6 

orders of magnitude, dividing the particles to smaller size classes is useful. One classifi-

cation made by United States Environmental Protection Agency (EPA) is listed in Table 

1.  



5 
 

Table 1 The different particle size classes according to EPA adapted from 
Castranova (2011). 

Particle Type Aerodynamic diameter 

Ultrafine <0.1 µm 

Fine 0.1-2.5 µm 

Coarse 2.5-10 µm 

Supercoarse >10 µm 

 

The particle diameter is a key parameter in many aerosol processes such as particle 

transport and deposition. That is why it is often useful to study a particle size distribution. 

If all particles in an aerosol are the same size, the size distribution is called a monodis-

perse size distribution. In real aerosols the particles are seldom only one size, but many 

different sizes. The only aerosols with even nearly monodisperse particle distributions 

are usually created in a laboratory. The particle size distribution that consists of many 

different sized particles is called a polydisperse size distribution. 

The simplest form of presenting the particle size distribution of aerosol particles is to form 

size bins for the aerosol particles, measure the aerosol particle numbers for all the size 

bins and plot a histogram. This kind of histogram can be hard to interpret because the 

particle numbers of the size bins are dependent on the width of the size bins. When the 

size bins are fine enough the size distribution is called a differential size distribution. 

Since the plotted quantity is the particle number for each of the differential size bins, the 

distribution is called a number distribution. The particle number distribution 𝑛(𝑑𝑝) is de-

fined as 

 d𝑁 = 𝑛(𝑑𝑝)d𝑑𝑝, 

where the d𝑁 is the number of the particles, in a differential size bin with the width of the 

d𝑑𝑝. The 𝑛(𝑑𝑝) is the size distribution function. In many situations the sizes of the aerosol 

particles can range over several orders of magnitude. That is why it is useful to replace 

the d𝑑𝑝 with the logarithmic differential bin width dlog𝑑𝑝 and therefore the previous equa-

tion can be expressed as 

      d𝑁 = 𝑛(𝑑𝑝)dlog𝑑𝑝. 

In many cases it is convenient to fit the data with a function to characterize the distribution 

by only a few variables. Many natural sources have also been shown to fit well to a log-

normal distribution 
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𝑛(ln𝑑𝑝) =
𝑁𝑇

√2𝜋ln𝜎𝑔

𝑒

−(ln𝑑𝑝−ln𝐶𝑀𝐷)2

2(ln𝜎𝑔) . 

Where 𝑁𝑇 is the total number concentration of the particles, 𝜎𝑔 is the geometric standard 

deviation and the CMD is the count median diameter. This log-normal distribution is 

widely used in aerosol science.  

When atmospheric aerosol particle number size distribution (NSD) is transformed into 

volume distribution typically at least three distinct size modes are revealed. Those three 

modes are nuclei mode 0.005-0.1 µm, accumulation mode 0.1-2 µm and coarse mode 

>2 µm. Hinds (1999) states the following concerning the formation of the particles in the 

different modes: The particles in the nuclei mode are mostly combustion particles from 

direct emission sources or formed straight from gas through gas-to-particle conversion 

i.e. nucleation. The particles in the accumulation mode are direct combustion particles, 

smog or nuclei mode particles that have coagulated with particles from the accumulation 

mode. The particles in coarse mode are mostly windblown dust, salt particles formed 

from sea spray and mechanically generated anthropogenic particles for example from 

surface mining or agriculture. 

2.3 Primary and secondary aerosols 

There are two types of atmospheric aerosols, primary aerosols (PAs) and secondary 

aerosols (SA) (Hinds, 1999). The PAs are emitted directly into atmosphere and SAs are 

formed in the atmosphere trough the chemical reactions of gaseous components (Hinds, 

1999; Grythe, 2017). The contribution of the SAs in the atmosphere for both, natural and 

anthropogenic sources is significant (Hinds, 1999). PA sources consist of wide variety of 

natural and anthropogenic sources. According to Hallquist et al. (2009) the PAs are pro-

duced by biomass burning, fossil fuel combustion, volcanic eruptions, the wind driven 

suspension of soil, mineral dust, sea salt and biological materials. Hallquist et al. (2009) 

also state that there are no direct sources for the SAs, but they are formed by gas-to-

particle conversion processes, such as the nucleation, the condensation, and hetero-

genous and multiphase chemical reactions.  

The formation of the SAs from inorganic gases such as SO2, nitrogen dioxide (NO2), and 

ammonia (NH3) is quite well known, but there is a large uncertainty concerning the pro-

duction of secondary organic aerosol (SOA) from volatile organic compounds (VOCs) 

(Hallquist, et al., 2009). Fossil fuel combustion has been shown to be a large source of 

the SOA (Gentner, et al., 2012). The SOA is formed from condensable oxidation products 
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of VOCs and is known to be a significant and widespread factor of the atmospheric aer-

osol (Kanakidou, et al., 2005; Zieman and Atkinson, 2012; Ehn, et al., 2014). The SOA 

is also noted having an important effect on the climate change and to the overall air 

quality (Hong, et al., 2019). 

The SOA is formed in the atmosphere when the VOCs are oxidized to less volatile oxi-

dation products, that condensate on existing particles to establish equilibrium between 

the gas and aerosol phases (Seinfeld and Pandis, 2006). The VOCs are oxidized by 

reactions with hydroxyl radicals (OH), O3, nitrate radicals (NO3) or chlorine atoms (Cl) 

(Zieman and Atkinson, 2012). The SOA formation is different during the day and the 

night (Warneke et al., 2004). The VOCs emitted in the atmosphere are oxidized with 

chemical processes of photolysis and reactions with the OH during daytime, with NO3 

during evening and with O3 during nighttime (Zieman and Atkinson, 2012).  

2.4 Health effects of aerosol particles 

For the health effects of particles, the reader is referred to Hinds (1999) and Castranova 

(2011). Particles can cause negative health effects when they are inhaled. The harmful-

ness of the inhaled particles depends on multiple variables including their size, shape, 

surface chemistry, and deposition place and residence time in the respiratory system. 

PM concentrations have been related to negative health effects in many studies, includ-

ing but not limited to, Donaldson et al. (2005), Kim et al. (2019) and Lu et al. (2019). The 

PNC of particles in the size range of 50-500 nm and lung-deposited particle surface area 

(LDSA) have also been linked to natural and cardiovascular mortality (Hennig, et al., 

2018). 

In the respiratory system, the particles can deposit to three different regions. The first 

region is the head airways region that includes the nose, the mouth, the pharynx and the 

larynx. The second region is the lung airways region, that includes the airways from tra-

chea to the terminal bronchioles. The third region is the alveolar region, that includes the 

pulmonary alveolus where the gas exchange between inhaled air and blood takes place. 

The deposition of particles is determined by five deposition mechanisms, impaction, set-

tling, diffusion, intersection and electrostatic deposition. From these five, the last two are 

important only in special situations. The deposition can be modelled with the International 

Commission on Radiological Protection (ICRP) model. The different deposition functions 

for the model have been represented in Figure 1. The deposition fractions to the different 

areas of the respiratory system as well as the total deposition are presented as the func-

tion of particle diameter using ICRPN equations. 
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Figure 1 The deposition fractions of particles in the respiratory system accord-
ing to the ICPR model equations adapted from Hinds (1999). 

In the respiratory systems particles that contact the airway walls get deposited and are 

retained there for varying times depending on the location and the clearance mechanism 

involved. Particles deposited in the first two regions are removed in a matter of hours. 

Particles that are deposited into alveolar region are removed very slowly over the period 

of months and years.  

The initiation and progression of pathogenic processes leading to disease induced by 

the inhaled aerosol are governed by the site of the particle deposition in the respiratory 

system, the residence time in the lungs and reactivity with lung cells. The harmfulness 

of the inhaled particles is reduced if the particles are removed rapidly and pronounced if 

the residence time is long. The particles deposited in the pulmonary region are more 

likely to be harmful than the particles deposited in the other parts of the respiratory sys-

tem. Once the particle is deposited in the lung the surface properties of the particle are 

the decisive factor in particle-cell interaction and thus affect the bioactivity and patho-

genicity of the particle. Examples of the PM induced diseases are parenchyneal cancer, 

interstitial fibrosis and emphysema. 

Particles that are smaller than 100 nm in diameter are called nanoparticles. These parti-

cles have some differences to other fine particles considering health effects. Because of 
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their smaller size they have virtually no mass or inertia and are not deposited in the 

respiratory tract by the impaction or sedimentation, but mostly by the diffusion caused 

by Brownian motion. As the nanoparticles are small, they can be inhaled deep in the 

lungs and when they reach the alveoli they get deposited on the alveolar surface by 

diffusion as seen in Figure 1. This increases their residence time and harmfulness in the 

respiratory system. 

2.5 PM climate effects 

The atmospheric aerosols have a large effect on the climate, influencing two major at-

mospheric processes, global warming and O3 depletion (Hinds, 1999). PM interacts with 

solar radiation through two processes, absorption and scattering. The interactions are 

stronger with solar radiation than with the long wave terrestrial radiation, leading to cool-

ing effect (Boucher, et al., 2013). Hinds (1999) lists two ways how aerosols can scatter 

light. Firstly, the aerosols scatter light back to the space by direct scattering where the 

aerosol itself directly scatters the solar light. Secondly, the aerosols scatter light as acting 

as cloud condensation nuclei forming more clouds that scatter the light. Both of these 

effects have a cooling effect on the climate of the Earth, and their total effect is called a 

“white house” effect. Hinds (1999) states that the estimates of the magnitude of this effect 

vary between 20-100 % of the heating effects due the greenhouse gases. Although, ac-

cording to Boucher et al. (2013) there are large uncertainties concerning the net radiative 

feedback of the clouds.  

The effect of the aerosols in the troposphere (the lower level of atmosphere) on the cli-

mate can be warming or cooling depending on the aerosol. If the aerosol is absorbing 

for example black carbon (BC) the effect is warming (Kanakidou, et al., 2005; Gao, et 

al., 2014). According to Gao et al. (2014), if the aerosol is refractive such as sulfate 

(SO4
2−), NO3 or ammonium (NH4

+), the effect on the climate is cooling. Gao et al. also 

state that the warming effect of the absorbing BC negates approximately half of the cool-

ing effects of the refractive aerosols related to the anthropogenic aerosols. A significant 

difference between gases and particles in atmosphere is that particles have a lifetime of 

approximately a week, while greenhouse gases have a lifetime of decades (Hinds, 1999). 

This paragraph has been adapted from Hinds (1999) who states that whereas most aer-

osol mass is located in the troposphere, aerosols in the stratosphere often also have 

significant effects on the climate. Naturally produced aerosols in stratosphere can have 

a significant impact on the radiative balance of the Earth. Major volcanic eruptions can 

increase the stratospheric concentrations of PM up to two magnitudes. The primary 

source of aerosols in stratosphere is the formation of sulfuric acid droplets by gas-to-
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particle conversion of SO2 injected there by volcanic eruptions. These aerosols scatter 

incoming light back to the space meanwhile having little effect on the terrestrial long-

wave radiation, cooling the lower levels of atmosphere and the surface of the Earth. 

These particles in stratosphere have half-lives of a year and may have a cooling effect 

of the same magnitude as the greenhouse gases have warming effect.  

This paragraph has been adapted from Hinds (1999) who states that the second climate 

effect of atmospheric aerosols, O3 depletion happens in the polar stratosphere during 

winter at low temperatures. In this process nitric acid and water vapors condense and 

form stratospheric clouds. The surfaces of these cloud droplets act as catalytic sites for 

conversion of chlorine compounds such as anthropogenic chlorofluorocarbons (CFCs), 

molecular chlorine (Cl2) and hydrochloride monoxide (HClO). In the spring sunlight pho-

todissociates these compounds forming Cl, which then reacts with O3 forming oxygen 

(O2) and chlorine monoxide (ClO). After that ClO is photolyzed back to Cl and the process 

repeats itself destroying even more O3. The stratospheric aerosols enhance this process 

by migrating to the poles of the Earth and acting as an additional surface for catalytic 

activation of the Cl.  
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3. SHIPPING: ENGINES, EMISSIONS AND CON-
TROL 

According to Lehtoranta et al. (2019) shipping is an efficient way to transport goods glob-

ally, and because of this, most of the global trade volume is transported by ships. Emis-

sions produced in the shipping have a significant and growing contribution to the total 

emissions of the global transportation (Eyring, et al., 2010; Viana el al., 2014). 

Fugelstvedt et al. (2009) stated that in 2009, 80 % of world trade was transported by 

ships. They also predicted that the importance of the emissions produced by shipping 

may become greater in the future, as new shipping lanes might open in more sensitive 

areas.  Shipping activity all over the world has been growing since. The commercial ship-

ping fleet of the world has grown between 3 % and 10 % annually and nowadays the 

shipping fleet of the world consist over 94 000 vessels and is responsible of transporta-

tion of over 80 % of the world trade (UNCTAD, 2018).  

According to Viana et al. (2014) the contribution of the shipping emissions to the total 

levels of PM and NO2 are significant in the coastal areas of Europe. They state that the 

shipping emissions are responsible for 1-7 % of the levels of PM smaller than 10 µm in 

diameter (PM10), 1-14 % of the levels of PM smaller than 2.5 µm in diameter (PM2.5), at 

least 11 % of the levels of PM smaller than 1 µm in diameter (PM1) and 7-24 % of the 

levels of NO2. In busy port areas these contributions can be even higher. Wang et al. 

(2019) reported that shipping contributed 36.4 % to the levels SO2, 0.7 % to the levels of 

NO, 5.1 % to the levels of NO2, 5.9 % to the levels of PM2.5, and 49.5 % to the vanadium 

(V) particle concentrations in the Shanghai port. Kivekäs et al. (2014) found that during 

days when wind was blowing over a shipping lane, the shipping was responsible of 11-

19 % of PNCs and 9-18 % of PM0.15 in Høvsøre, Denmark, 25 to 60 km from the shipping 

lane. When these numbers were extrapolated over the whole year, including days when 

the wind was blowing from inland, the fractions caused by the ship plumes were 5-8 % 

for PNC and 4-8 % for PM0.15. In another study by Ausmeel et al. (2019) the shipping 

emissions contributed 18 % to PNC during the winter (January-February) and 10 % dur-

ing the summer (May-July) of 2016 in the Baltic Sea SECA in southern Sweden, 7-20 

km downwind from a shipping lane. Also, time periods when the shipping line was not 

affecting the station were included in the calculation of the contributions.  
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3.1 Ship engines and fuels 

Ushakov et al. (2013) state that diesel engines are a preferred choice in heavy-duty ma-

chinery because of their better fuel efficiency, higher power output and durability. They 

also state that the diesel engines emit lower levels of carbon monoxide (CO) and hydro-

carbons (HC) compared to engines operated with a spark ignition. Despite of this, ship-

ping still produces a wide range of pollutants that have been shown to have a clear im-

pact on the human health and the climate (Sofiev, et al., 2018). Especially the PM emis-

sions from the diesel engines are significant (Ushakov, et al., 2013). The diesel engines 

also emit BC, which is a result of incomplete combustion (Kholod Evans 2016). Gentner 

et al. (2012) found that, compared to gasoline engines, the diesel engines also produce 

approximately 6.7 ± 2.9 times more SOA for the same mass of unburned fuel.  

This paragraph has been written mainly in accordance with Ntziachristos et al. (2016) 

who state that the diesel combustion in large marine engines is significantly different to 

smaller engines used on-road. Most of these differences occur because of the different 

operational speeds of on-road and the marine engines. The typical on-road engines may 

have maximum power outputs for example at 1800-2400 rpm (Thiruvengadam, et al., 

2014). In contrast to this, the typical medium sized marine engines do not usually exceed 

750 rpm and the large marine engines do not exceed even 130 rpm.  The marine engines 

and especially large two-stroke engines typically also have much larger stroke/bore ra-

tios compared to the ratios of the on-road diesel engines, the ratios being 3:1 and 1.3:1, 

respectively. These two factors together allow combustion products to spend longer time 

in cylinders at high temperatures, which increases oxidation. The marine engines also 

have much higher air-to-fuel ratios. While the on-road diesel engines rarely exceed the 

air-to-fuel ratios of 20:1 the air-to-fuel ratios of marine engines often exceed 40:1. This 

further increases the oxidation in the combustion process as there is more oxygen avail-

able. Fuels used in ships are also different. For example, a typical fuel used in ships, the 

heavy fuel oil (HFO) contains ash-forming components and is much less flammable and 

harder to vaporize than the full distillate products used on-road. Together these differ-

ences lead the marine and the engines used on-road to have different exhaust profiles.  

According to Goldsworthy and Goldsworthy (2015) there are two kinds of engines used 

in ships for different task, the main engines that produce the propulsive power of the ship 

and the auxiliary engines that are used for energy generation, lightning cooking, air con-

ditioning, heating, and other auxiliary jobs. They also state that one important difference 

between the engine types is that, while the main engines are used mostly only in the 

open sea, the auxiliary engines are often running also when the ship is at berth. Low-

speed two-stroke engines are mainly used in big containerships as the main engines 
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while medium or high-speed 4-stroke engines are usually used in cruisers as well as 

coastal and inland fishing boats (Molland, 2008; Buhaug, et al., 2009; Zhou, et al., 2019,). 

The main engines are responsible for most of the fuel consumption of ships (Goldsworthy 

and Goldsworthy, 2015).  

The emissions produced in shipping are highly dependent on used fuel type, as the dif-

ferent fuels produce different amounts of CO2 and other pollutants per a unit of work 

done (Buhaug, et al., 2009). One often used fuel in the marine engines is HFO (Corbett 

and Koehler, 2003). The HFO is a left-over product of refinery processes that contains 

typically numerous chemical elements (S, N, C, H, O, Fe, Si, Ni, V and Ca), asphaltenes, 

ash and other sediments such as water and micro carbon residue (Jiang, et al., 2019). 

Another often used fuel in the slow-speed two-stroke and the medium-speed four-stroke 

marine diesel engines is the relatively inexpensive intermediate fuel oil (IFO) (Di Natale 

and Carotenuto, 2015). IFO is a mix of low-cost residual oil from petroleum refining and 

distillate gas in proper proportions to match the needed specifications (Hsieh, et al., 

2013) The IFO also contains many impurities including heavy metals (V, Al, Si, Ni and 

Fe), ash and sulfur (Hsieh, et al., 2013). Other used fuels in the marine engines include 

liquefied natural gas (LNG), marine diesel oil (MDO), and various kinds of biofuels 

(Buhaug, et al., 2009). According to Buhaug et al. (2009) the benefits of the LNG com-

pared to the HFO and the IFO are the lower emissions of NOx, SOx, PM and CO2 and 

that the LNG is also similarly inexpensive to the HFO. Buhaug et al. lists the problems 

related with the usage of the LNG being the needed space on ship for fuel storage and 

that at the availability of the LNG in harbors is limited. The benefit of the MDO in com-

parison to the HFO is the lower sulfur content of the MDO (Peterson and Woessmann, 

2014). Buhaug et al. (2009) state that the biofuels consist of multiple different fuels of 

biological origin. For example, fuels are made from sugar, starch, vegetable oils or ani-

mal fats. According to Buhaug et al. (2009) there are multiple problems related to using 

the biofuels such as stability during storage, acidity, the lack of water-shedding, the plug-

ging of fuel filters, wax formation and more. Wind and solar energy are also used for 

generating power on ships (Buhaug, et al., 2009). 

3.2 Composition of exhaust emissions from ship 

The key components of ship exhaust are HC, NOx CO, CO2, SO2, VOCs and PM (Eyring 

et al., 2005; Goldsworthy and Goldsworthy, 2015). The most important greenhouse gas 

(GHG) emitted in shipping is CO2 (Buhaug et al., 2009). Most of the PM emissions pro-
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duced in shipping are composed of inorganic ions such as SO4
2−, NO3,  NH3, carbona-

ceous matter (organic and elemental carbon) and metal oxides (MMO) (Zhang et al., 

2014; Aakko-Saksa, et al., 2016; Ntzhiachsitos, et al., 2016, Wang, et al., 2019). 

A large variation in the composition of emissions is observed depending on the fuel type, 

the engine and the aging of the emissions. Agrawal et al. (2008) discovered that the PM 

emissions from a large two-stroke engine operating on the HFO were 80 % SO4
2− and 

water (H2O) bound with the SO4
2−, the remainder being organic carbon (OC), and ele-

mental carbon (EC) They also found that 3.7-5.0 % of the fuel sulfur is converted to the 

SO4
2−. Different results were attained in a study made in China by Zhang et al. (2014). 

They measured that the SO4
2−, organic matter (OM), NO3, MMO, NH4

+, and EC corre-

sponded for 18.8 %, 16.5 %, 10.8 %, 9.4 %, 3.5 % and 3.3 % of the PM emissions, 

respectively. Wang et al. (2019) discovered that the composition of the PM emission is 

changing when the aerosol is aged. They stated that the freshly emitted PM emission is 

mostly composed of the SO4
2−, EC and V and there is very little nitrate and in the aged 

emissions there is more nitrate but in other ways the chemical composition is mostly 

unchanged. 

3.3 Particle size distribution in shipping exhaust emission 

NSDs from diesel engines have fairly constant CMDs at about 55-65 nm (Ushakov, et 

al., 2013). When the HFO is used as a fuel in marine engines the NSD of the emission 

has a maximum around 70 nm and the geometric standard deviation (GSD) of 1.4-1.5. 

The maximum shifts to smaller particle sizes if the emission sample is dried with a ther-

modenuder (Ntziachristos et al., 2016). Kivekäs et al. (2014) found that the ship plumes 

transported in air have the fitted mode diameters of the plume peak concentrations on 

average at 39 nm, 10 % of the particles being smaller than 20 nm and 10 % being larger 

than 52 nm in diameter. The similar diameter of 40 nm for the maximum of the NSD of 

plumes has been reported also by Westerlund et al. (2015).  

The NSDs of shipping emissions have been reported being dependent on the used en-

gine loads and fuels (Anderson, et al., 2015; Kuittinen, 2016; Ntziachristos et al., 2016). 

Kuittinen (2016) found that the NSDs from direct emission measurements are fuel and 

engine load dependent. The HFO was found to have the largest size of the maximum of 

the NSD at 57 nm and then in descending order the IFO, the MDO and the mix of biofuel 

and marine diesel (BIO 30) that had the maximums of NSD at the diameters of 45 nm, 

37 nm, and 28 nm, respectively. Anderson et al. (2015) measured the NSDs of shipping 

emissions being bimodal. Independent of the fuel, the NSDs had a smaller peak at 10 nm 
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and another larger peak at 45-50 nm for the distillate fuels and 100-110 nm for the HFO. 

Ntziachristos et al. (2016) found that the NSD of the ship emissions changes only a little 

as a function of engine load so that 25 % load leads to 23% higher particle numbers on 

average than 75 % load. Similar results of increased particle numbers for the lower en-

gine load were also reported by Anderson et al. (2015). Ntziachristos et al. (2016) state 

that 75 % load resembles well the loading of ship engines at the open sea as the maxi-

mum efficiency of the ships is often achieved approximately at 75 % load. They also 

state that the lower loading point of 25 % resembles the load with what the ships usually 

operate in ports.  

3.4 Emission restrictions 

For the emission restrictions, the reader is referred to Buhaug et al. (2009). Many of the 

pollutants emitted in shipping have a negative effect on the human health. For example, 

the emissions of PM2.5, SOx and NOx have been reported to lead to premature mortality 

and morbidity (Sofiev, et al., 2018). The sulfur emissions also contribute to the acidifica-

tion of sea and land areas (Hassellöv, et al., 2013). Therefore, the restrictions on the 

shipping emissions are needed and they are done using multiple different approaches. 

The used means to reduce the emissions are redesigning superstructures, the optimiza-

tion of propeller, engine energy recovery systems and after-body flow control systems, 

improvements in operational systems, hull coating, rerating, and upgrading of engines, 

propeller maintenance and using alternative fuels. 

The emissions of NOx, SOx, PM, CH4 and non-methane volatile organic compounds 

(NMVOCs) are affected by different factors and their emissions are reduced in different 

ways. The NOx emissions originate in engines mainly as the result of reactions between 

nitrogen (N) and oxygen (O). The NOx formation is highly dependent on a combustion 

temperature and residence time in the high temperature. The NOx emissions are reduced 

mainly by reducing the peak temperatures of the engines, the time spent in the high 

temperatures of the engines, the O content in fuels and by using selective catalytic re-

duction (SCR). Using LNG as a fuel is also an effective way to reduce the NOx emissions. 

The SOx emissions originate from the sulfur in marine fuels. The most effective way to 

reduce the SOx emissions is to reduce the sulfur content in the marine fuels. Another 

effective way to reduce the SOx emissions is the seawater scrubbing. The PM emissions 

from the fuels with a high sulfur content can be reduced using scrubbers. The PM emis-

sions from the low sulfur fuels can be reduced for example by optimizing the combustion 

process and minimizing the consumption of lubricant. The burning of fuel-water emulsion 

may also reduce the PM emissions from marine engines. Both the CH4 and the NMVOC 
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emissions can be reduced by optimizing the combustion process. The NMVOC emis-

sions can also be reduced by extra oxidation and the CH4 by careful design and by re-

placing the premixed combustion with a high-pressure gas injection. 

In International Maritime Organization, Sulphur oxides (SOx) and Particulate Matter (PM) 

– Regulation 14 the sulfur restrictions are described as follows: In January 1st, 2012 the 

global limit for fuel sulfur content was changed from 4.50 % to 3.50 %. In January 1st, 

2020 the restrictions are going to be tightened again to 0.50 %. For SECAs, the limits 

have already been set stricter being 1.50 % before July 1st, 2010, when the sulfur limit of 

1.00 % was implemented. In January 1st, 2015 the limit was again tightened to 0.10 %.  

The Baltic Sea area concerned in this study has been a part of SECA since May 19th, 

2006. The other areas part of the SECA are, the North Sea area, the North American 

region, and the United States Caribbean Sea areas (Chu Van, et al., 2019). Using 

cleaner marine fuels can reduce premature mortality and morbidity 34 % and 54 % re-

spectively meanwhile reducing 80 % of the radiative cooling from the shipping emissions 

(Sofiev, et al., 2018). 

3.5 AIS 

This paragraph has been adapted from International Maritime Organization, AIS tran-

sponders (2019). The Automatic Identification System (AIS) is a system that automati-

cally produces and transmits information about vessels to other vessels and coastal au-

thorities. Regulations dictate which kind of information the AIS must provide. This infor-

mation includes the identity, the type, the position, the course, the speed and the navi-

gational status of the vessel and other safety related information. This information must 

be provided automatically to other ships equipped with AIS transponders, as well as ap-

propriately equipped offshore stations and aircrafts. The AIS system must also receive 

AIS information from other vessels and exchange data with shore stations.  

In this paragraph the information concerning IMO numbers has been adapted from In-

ternational Maritime Organization, Identification number schemes, (2019) and the infor-

mation concerning Maritime Mobile Service Identity (MMSI) numbers has been adapted 

from the U.S Department of Homeland Security, Maritime Mobile Service Identity, (2019). 

The IMO number is the permanent registration number of the ship. The IMO number 

remains unchanged when the ownership of the ship changes. The IMO number consists 

of first three letters “IMO” followed by seven numbers assigned to all ships by IHS Mari-

time upon construction. These seven-digit numbers are given to all propelled sea going 

merchant vessels over 100 gross tonnage (GT), exceptions being pleasure yachts, ships 

engaged on special service, hopper barges, hydrofoils, aircushion vehicles, floating 
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docks and other such structures, military vessels and wooden ship. The MMSI number 

is a nine-digit number that is used for identifying a vessel or a coastal radio station in the 

digital selective calling (DSC), the AIS or certain other equipment. The first three digits 

of the MMSI numbers denote the vessel to an administration or the geographical area of 

administration responsible for the vessels station so identified. The last six numbers are 

any numbers between 0-9 and identify the individual vessel. Unlike the IMO number the 

MMSI number may change during the lifetime of a vessel upon ownership changes.  

This paragraph has been adapted from International Maritime Organization, AIS tran-

sponders (2019). The AIS regulation provides that the AIS transponders are mandatory 

for all the vessels of 300 GT or larger, that are engaged on international voyages and for 

all cargo ships over 500 GT even if they are not engaged on international voyages. All 

passenger ships must also be fitted with the AIS transponders irrespective of size. The 

regulation to fit the AIS transponders to ships applies to all ships build after July 1st, 2002. 

All ships build before July 1st, 2002 have had to be fitted with the AIS transponders by 

different dates before July 1st, 2004, depending on the ship type. 
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4. MEASUREMENTS 

The measurement data used in this thesis was measured at the atmospheric research 

station of the FMI located on a small island Utö. Utö is located in the Finnish archipelago 

in the Baltic Sea. The coordinates of Utö are (59º 47N, 21º 23E). The measurement 

station is located 8 m above the sea-level and the distance to the closest city Turku is 

approximately 90 km (Hyvärinen et al., 2008). The measurements used in this study 

were made between 11.1.2007-31.12.2016. This measurement data was analyzed to 

produce the results in the thesis. 

4.1 Measurement setup 

The knowledge of the measurement setup at Utö during the measurements is based on 

a visit at Utö in 11.9.2019-13.9.2019 and measurement logs from the measurement sta-

tion. The measurement setup varied slightly during the measurement period, as individ-

ual parts of the measurement setup needed repair or maintenance. The exact setup of 

the measurement devices also varied. Sometimes there were more instruments running, 

such as a nephelometer or extra condensation particle counters (CPCs). Some modifi-

cations and changes to the measurement setting itself were also made. Regarding to 

this work, the most important changes were the following. Between 24.1.2010 and 

2.3.2010, the CPC was fitted with a temperature restrictor that turns a CPC off when 

temperature exceeds 35 °C. From 7.7.2011 onward, the bypass flow of the differential 

mobility particle analyzer (DMPS) was removed from the measurement setting. It was 

originally used for keeping a higher flow in the inlet than in the CPC to minimize particle 

losses in the inlet line but was later considered unnecessary. In the spring of 2015, the 

CPC used in the DMPS broke and was replaced in 20.8.2015 with a new CPC leading 

to a cap of several months in the measurement data. The measurement setting of the 

DMPS measurement line during the visit in Utö in September 2019 is presented in Fig-

ure 2. 
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Figure 2 The measurement setup at the measurement station of Utö in Septem-
ber 2019. 

The measurement setup used at Utö needs to be relatively simple, as it is meant to be 

operating alone with only occasional maintenance. Figure 2 of the measurement setup 

represents only the DMPS measurement line of the measurement station. The relevant 

parts in this study are the inlet, the nafion dryer and the DMPS that consist of a separate 

DMA and CPC. The data from the stand-alone CPC and the aethalometer are not in-

cluded in this thesis and will not be discussed further. The sampling of ambient aerosol 

for the measurements was done using a PM2.5 inlet. The PM2.5 inlet removes particles 

larger than 2.5 µm (Solomon, et al., 2011). Before entering the DMPS, the aerosol is first 

dried with the nafion dryer to ensure a relative humidity less than 40 %. This is recom-

mended in order to keep particle diameter changes below 5 % (Wiedensohler, et al., 

2012). Welp et al. (2013) describe the structure and the working principle of the nafion 

dryer as follows: The nafion dryer is a tube of semi-permeable membrane separating the 

inner humid gas flow from the outer dried counterflow, contained in a stainless-steel 
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shell. If there is a difference in the partial water pressures between the airflows, the mois-

ture will flow through the membrane drying the airflow. In Figure 3, the current measure-

ment devises are presented as they were during the visit in Utö in September 2019. 

  

Figure 3 The pictures of the measurement setup at the atmospheric measure-
ment station of Utö in September 2019. The instruments from left to right are: The 
PM2.5 inlet, the nafion dryer, the DMA of the DMPS, and the CPC of the DMPS. 

The PM2.5 inlet (Figure 3, first on the left) is positioned approximately 50 cm over the roof 

of the measurement container. From the inlet, the sample flow is led to the nafion dryer 

(Figure 3, second on the left), that is positioned right behind the DMPS. After being dried, 

the sample flow enters the differential mobility analyzer (DMA) of the DMPS (Figure 3, 

second on the right). From the DMA the specified particle size range is lead to the CPC 

of the DMPS, Airmodus model A20 (Figure 3, first on the right), where the particle con-

centration is attained. 

4.2 Instruments 

For the CPC, the reader is referred to Cheng (2011) and for DMA and DMPS to Flagan 

(2011). The CPC is a measurement instrument that is used for counting the number of 

particles. The basic idea of the CPC is that the particles are introduced to a supersatu-

rated vapor, that condenses onto the particles and grows them in the process. The par-

ticle growth in the CPC is needed as the actual detection of the particles is done by 

optical techniques which will not detect particles less than about 300 nm in size. 

In the CPCs there are different techniques used for achieving supersaturation: conden-

sation, adiabatic expansion, thermal diffusion and the mixing of hot and cold air streams. 

The CPCs used in this study are diffusion cooling type CPCs which use the thermal 

diffusion for creating the supersaturation. The schematic of the thermal diffusion type 

CPC is presented in Figure 4. 
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Figure 4  The schematic of the thermal diffusion type CPC adapted from TSI 
(2002). 

The thermal diffusion type CPC uses diffusive cooling to induce the supersaturation of 

working fluid. In the CPC, the aerosol first passes through a saturator that is kept in an 

elevated temperature. In the saturator, the aerosol is saturated with the working fluid. 

From the saturator the saturated aerosol enters a condenser tube that is kept at a lower 

temperature than the saturator. In the condenser, heat transfers from the aerosol to 

cooled walls, and because the working fluid, for example n-butanol, has a high molecule 

mass, the heat transfers faster to the walls than the molecules. This creates an area of 

supersaturation in the middle of the condenser. This supersaturation causes particles to 

grow through condensation. After the condenser, the grown aerosol particles enter to an 

optical detector that measures the scattered light from the particles and so is able to 

count the total number of particles. 

The largest problems with current commercial CPCs are the diffusion losses of small 

particles and the minimum detection limit. The diffusion losses in a CPC are related to 

the particle size. The diffusion losses increase when the particle size decreases. This 

together with the decreasing activation efficiency of the small particles significantly de-

creases the counting efficiency for the small particles. For positively charged particles 

extra problem is that they start growing at larger diameters than the negatively charged 

particles. 

The DMA is an instrument that was first introduced by Knudson and Whitby in 1975 as 

a source of monodisperse sub-micrometer particles. The operation principle of a DMA is 

based on the different electrical mobilities of different sized charged particles. A typical 

design of the DMA is a coaxial flow condenser. In this condenser design, particles 
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charged to a known charge distribution enter the condenser through a narrow slot in an 

outer electrode. In the condenser the particle flow is separated from the high voltage 

inner electrode with a particle free sheet air flow. Inside the condenser, the charged aer-

osol particles are drawn toward the inner electrode by electrical force while at the same 

time moving along with the sheet air flow through the condenser. At the end of the inner 

electrode there is a narrow gap where a fraction of the aerosol particles is collected. The 

collected particles are selected according to their electrical mobilities. The particles with 

too large electrical mobilities migrate across the annulus too fast and deposit on the inner 

electrode too early. The particles with too low electrical mobilities take too long to migrate 

across the annulus and will not deposit on the inner electrode but are removed with the 

excess air flow. The schematic of the structure of the coaxial flow condenser DMA is 

presented in Figure 5.  

 

Figure 5 The schematic of the coaxial flow condenser design of the DMA 
adapted from Flagan (2011). 
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After the certain size range of the particles is collected, the airflow containing the particles 

is led to a CPC where the number concentration of the particles is attained. Repeating 

the measurement with different voltages between the electrodes the number concentra-

tion can be measured for different sized particles. If the voltage between the electrodes 

is increased as a step function the system is called a DMPS. 

4.3 Particle losses 

For the particle losses the reader is referred to Brockmann (2011). In every aerosol 

measurement system, there are particle losses that affect the particle concentrations. 

These particle losses happen through eight different mechanisms. These mechanisms 

are gravitational settling, diffusional deposition, turbulent inertial deposition, inertial dep-

osition at a bend, inertial deposition at flow constrictions, electrostatic deposition, ther-

mophoretic deposition and diffusiophoretic deposition.  

Aerosol collection systems are usually designed to minimize the particle losses to have 

a minimal impact on the measured aerosol. The gravitational settling of the particles can 

be minimized by increasing a volumetric flow through a sampling line, decreasing the 

length of a sampling tube, and preferring vertical sampling tubes. The diffusion losses 

are a problem for small particles undergoing Brownian motion. They diffuse from a high 

concentration in the middle of the sampling tube to the outer edges of the sampling tube 

where the concentration is lower because the tube walls act as a sink for the particles. 

To minimize the diffusional losses the aerosol transport distance should be kept low and 

volume flow as large as possible while keeping the flow laminar. The turbulent flow in-

creases particle losses that can be neglected if the flow is laminar. The inertial deposition 

happens because in bends, the inertial particles cannot perfectly follow the curved 

stream lines and hit and get deposited on the walls. When the sampling line must go 

through bends, the curvature ratio of the bend should be kept four or higher. The particle 

losses in this thesis were taken account in inversion codes used for converting the raw 

data from the DMPS to the final NSD. 
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5. DATA PROCESSING 

For the data processing in this thesis, pieces of MATLAB code made earlier at the FMI 

were attained. Most of the codes had to be modified to be applicable for the data from 

the measurement station at Utö and the goals of this thesis. Most of the primary data 

handling was done using these modified codes. However, almost all the codes used for 

producing the end results and pictures were for the most part developed in this study.  

In the data analysis three different sectors are used. These sectors are: 1) harbor, 2) 

nearby shipping lane and 3) distant shipping lanes sector. These sectors are character-

ized by angle starting from north to clockwise direction. The harbor (1) sector was angles 

315°-350°, the nearby shipping lane sector (2) angles 225°-270° and the distant shipping 

lanes sector (3) angles 75°-165°. The reasoning of these angular limits is discussed in 

Chapter 5.5. Later in this thesis these sectors are referred according to their numbers. 

5.1 AIS data 

The AIS data consists of information about the shipping activity in different areas. In the 

AIS data, MMSI and IMO numbers of ships, the positions of ships as well as their speeds 

were listed at different times. For this thesis, HELCOM AIS data was available from the 

whole Baltic Sea area for the whole measurement period except January 2009. The AIS 

data was used for estimating shipping routes around Utö and to quantify the types of the 

ships passing by the island. 

First, because of the limited calculation power available, the AIS data had to be reduced 

to a smaller area. For this, an area of 400 km2 rectangular box centered around Utö was 

chosen. From the AIS data, the positions of vessels during the period of 01.01.2007-

31.12.2016 were plotted on a map around Utö as dots (Figure 6). Every single position 

of the vessels recorded in AIS data is marked with an individual dot. 
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Figure 6 All AIS signals around Utö during the period of 2007-2016. The sector 
1 is marked with black, the sector 2 with red, the sector 3 with blue and the meas-
urement station with the yellow dot. 

In Figure 6, all vessels around Utö with an AIS transponder have been plotted, showing 

vessel activity all around Utö. Most of the markings are on the western side of Utö while 

there are fewer signals on eastern side of the island. A significant vessel activity can also 

be seen in the northern and southern parts of the area.  

Kivekäs et al. (2014) found in their study using the same plume detection method as in 

this thesis, that the number of the plumes never exceeded the number of the ships over 

10 000 GT passing by the measurement site. They also found that when all the plumes 

considered as analyzable and unanalyzable were included, the detected plumes only 

counted for 30 % of all the ships and 59 % of the ships over 10 000 GT. Using extrapo-

lated valid period detection efficiencies, the corresponding numbers were 27 % and 53 % 

respectively. They listed three possible reasons for this deficiency. The first reason was 

the fact that a substantial portion of the ships was small vessels, and their plumes may 

have been too weak to be detected by the used method. The second reason was the 

different distances to vessels resulting in different dilutions and dispersions of the 

plumes. The third reason was that the meteorological conditions such as the boundary 

layer height and the enhanced deposition for example the rain may have had an effect 
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on the PNCs of the air mass. The plume detection from the atmospheric air mass has 

been pointed to be sensitive to the meteorological conditions also by Pirjola et al. (2014). 

The IMO number is mandatory for the seagoing vessels over 100 GT with very few ex-

ceptions. (International Maritime Organization, Identification number schemes, 2019) As 

this number is much lower than the 10 000 GT used by Kivekäs et al. (2014), it may be 

assumed that almost no plumes from the vessels without the IMO number are detected 

in Utö. The distance in this study for the plumes to travel is in some cases shorter that 

might slightly increase the number of the detected plumes. Figure 7 shows the AIS sig-

nals only from the ships with the IMO number. 

 

Figure 7 All AIS signals from vessels with the IMO numbers around Utö during 
the period of 2007-2016. The sector 1 is marked with black, the sector 2 with red, 
the sector 3 with blue and the measurement station with the yellow dot. 

The disappearance of the AIS signals from the eastern side of Utö in Figure 7 indicates 

that the signals seen in Figure 6 on the eastern side of Utö were from smaller vessels. 

The busy shipping lane on the western side of the island approximately 1-2 km from the 

coastline is quite visible. There is very dense shipping activity on the narrow lane coming 

to the harbor of Utö. These markings are expected to be mostly of the regular ferries 

arriving in Utö. An important thing to notice is that in the sector 2 there is also significant 

background shipping activity behind the nearby shipping lane passing by the island. 
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From the data points shown in Figures 6 and 7, the data was sampled representative to 

the sectors 1 and 2. This was done to study which kind of vessels there were during the 

measurement period. Using the AIS data, the proportions of the different ship types for 

the different sectors were calculated.  While there is no upper limit to the distance from 

which the plumes may be arriving to the measurement station, an arbitrary limit to sectors 

radius had to be set. This radius was set to be 5 km with origin on the measurement 

station. In Figure 8, the fractions of the vessels with and without the IMO numbers as 

well as the different vessel types with the IMO numbers are presented. 

 

Figure 8 The A and B are the fractions of the vessels with and without IMO num-
bers in the sector 1 and the sector 2. The C and D are the fractions of the different 
types of vessels with IMO numbers in the sector 1 and the sector 2. 

The share of the large vessels with the IMO numbers is vastly different between the 

sectors 1 and 2 as can be seen by comparing Figures 8 A and 8 B. In the sector 1, the 

majority of the AIS signals comes from the smaller vessels without the IMO numbers and 
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in sector 2 the larger vessels with the IMO numbers are responsible for over a half of the 

AIS signals. The plumes from the smaller vessels without IMO numbers are unlikely to 

be detected by the method used in this study. 

Comparing Figures 8 C and 8 D, the ship traffic with IMO numbers in the sector 1 is seen 

to be mostly passenger vessels, and in the sector 2 mostly cargo vessels. In the sector 

1, most of the AIS signals from the cargo vessels are from the vessels that went by the 

shipping lane behind the harbor but were still inside the sector. If this shipping lane is 

excluded from the data, 98% of the AIS markings with the IMO numbers were passenger 

vessels. This should not be done, however, as in the data analysis it is impossible to 

separate the plumes coming from the harbor bay and the shipping lane behind it. Many 

of the signals of the passenger vessels seem to be coming from ships that are at berth 

at the ferry harbor of Utö. The IMO number category mixed small vessels and other 

vessels, mostly included smaller vessels as tugboats and fishing boats, and so will not 

have any major effect on the upcoming plumes. 

The different vessel types were also calculated for the sector 3, where there did not seem 

to be any significant vessel activity. The area from where the vessels were calculated 

was chosen similarly to the other two sectors. The area was a sector with the radius of 

5 km, the origin being on the measurement site and sides limited by the limits of the 

sector 3. The exact numbers of the AIS signals from the different vessel types in different 

sectors are presented in Table 2. In Table 2 the ships of which IMO numbers were 

marked falsely, or which could not be found from the data base, were marked as 

small/unidentified.  
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Table 2 The numbers of the AIS signals from the different vessel types with the 
IMO numbers. 

Type Vessel type Sector 1 Sector 2 Sector 3 

Cargo 

vessels 

General cargo 25084 9744 0 

Containership 1265 774 0 

Oil product tanker 387 125 0 

Crude oil tanker 2014 955 0 

Bulk cargo 2482 980 0 

Vehicle carrier 251 127 0 

RoRo cargo 17691 7400 0 

LPG tanker 126 17 0 

Chemical tanker 18915 7797 0 

Refrigerated cargo 2967 36 0 

Passen-

ger ves-

sels 

Passenger cruiser 6356 227 0 

RoRo passenger 235932 920 0 

Passenger 110 23 0 

Ferryboat 94911 8 0 

Mixed 

small 

vessels 

Tugboat 9230 3706 0 

Police, law, military 36 15 0 

Fishing 629 146 8 

Pleasure yacht 763 61 0 

Search and rescue 42 8 0 

Supply ship 68 26 0 

Icebreaker 722 311 0 

Other 2725 465 63 

Oilrig 4 3 0 

Sailboat 289 116 0 

Small/unidentified 46 23 0 

Total  423045 34013 71 
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In the Table 2 the small number of 71 AIS signals from the vessels with IMO number in 

sector 3 can be seen. All these signals are also from the smaller vessels and may be 

assumed to have almost no effect in theplume detection. This ensures that the plumes 

measured from the sector 3 have been carried at least 5 km with the wind before being 

measured. 

It is important to note that the number of the AIS signals from the sector 1 is very high 

compared to the other sectors. The total number of the AIS signals from vessels with the 

IMO numbers in the sector 1 is approximately 12 times as large as in the sector 2 and 

approximately 6000 times as large as in the sector 3. If also the different widths of the 

sectors would be taken into consideration, this difference would only increase, as the 

sector 1 with the highest number of the AIS signals is also the narrowest and the sector 

3 with the lowest number of the AIS signals is the widest. The high number of the AIS 

signals from the sector 1 might be due to the excessive number of the AIS signals from 

passenger ships at berth in Utö harbor. This may add some uncertainty to the results, as 

the ships that were at berth might have been using ground electricity some time to power 

the AIS transponder instead of electricity produced by auxiliary engine and may not have 

acted as plume sources. However, López-Aparicio, et al. (2017) reported in a study made 

in the harbor of Oslo that approximately 50 % of the emissions of ocean-going vessels 

occur at berth. This indicates that many of the plumes from sector 1 are still likely to be 

coming from the ferries at berth. Goldsworthy and Goldsworthy (2019) also speculated 

that in portal areas the shipping emissions can be dominated by the berthed activity. 

Another factor that increases the number of the AIS signals especially from cargo ships 

in the sector 1 is the fact that the sector 1 is partly lined up with the shipping lane behind 

the Utö harbor as seen in Figures 6 and 7. This results to the prolonged residence time 

of the ships in the sector 1 and the individual ships have time to cause a higher number 

of the AIS signals while passing by Utö. 

To further examine the sector 3, another AIS signal plot was made where the shipping 

lanes behind the low shipping activity area in sector 3 could be seen. The plot was made 

from larger area on the eastern side of Utö and is presented in Figure 9. 
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Figure 9 The shipping lanes behind the area of low shipping activity in the sec-
tor 3. The sector 3 is marked with blue and the measurement station is marked 
with the yellow dot. 

From Figure 9 the distance to the nearest shipping lanes in the sector 3 can be seen to 

vary between approximately 8-50 km. Therefore, the distance to the nearest shipping 

lanes in this sector is approximately four times the maximum distance of 2 km to the 

shipping lane in the sector 2.  Notable is also that the shipping lanes are wide especially 

in southern and southeaster directions. This increases the possible distance to ships 

sailing on the shipping lanes to more than 50 km. It can be seen that some ships have 

been sailing between the measurement station and the shipping lanes, but the number 

of these ships is relatively low and the number of detected plumes from these ships is 

likely to be very low. 

5.2 DMPS data cleaning 

The initial DMPS data inversion and cleaning in this thesis was based on the codes made 

by Niku Kivekäs. The codes used for data inversion and for removing the corrupted and 

unwanted data were originally made for ambient measurement data from the atmos-

pheric measurement site of FMI at Sammaltunturi in Muonio. The other codes used in 

the data analysis were based on the codes that were used and evaluated in article by 
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Kivekäs et al. (2014). The data used by Kivekäs et al. (2014) was obtained with a scan-

ning mobility particle sizer (SMPS) whereas the data used in this thesis was obtained 

with a DMPS. The codes were applicable despite of the different measurement instru-

ments. The data from the SMPS must be averaged over the measurement cycle and 

therefore the data produced by the SMPS is in the same form as the data from the DMPS. 

The different measurement mechanism of the SMPS and the DMPS might still cause 

some differences between the two instruments. 

To analyze the results from the DMPS, the data had to be first converted from raw data 

to a meaningful form. The data produced by the DMPS instrument is an electrical mobility 

spectrum. This spectrum was converted to a format where the normalized particle num-

ber concentration was given for 30 distinct size bins ranging from 7 nm to 538 nm. In this 

conversion, the size dependent tube losses, the bipolar charging function of the particles 

and multiply charged larger particles in each size bin were considered and corrected. 

After the inversion, the data was cleaned from obvious bad data. This was done visually. 

The daily raw data was plotted and the corrupted data and the data which seemed to be 

from unwanted sources such as a tractor passing by measurement site were flagged. 

The flagged data was removed from further analysis. In Figure 10, an example of a day 

with an obvious bad data is presented. The picture consists of the timeseries of total 

NSD and total PNC. 



33 
 

 

Figure 10 An example of bad data in the data cleaning phase. In the upper pic-
ture the total NSD is plotted as the function of time. In the lower picture the total 
PNC is plotted as the function of time. 
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In Figure 10 it can be seen that from 4 pm to 9 pm there is a noticeable periodical varia-

tion in the concentration data. This kind of variation is likely to be from a local source or 

malfunction of the measurement system. Since this study discusses only the atmos-

pheric background aerosol and the ship plumes, this kind of data is considered as bad. 

All this kind of phenomena that were likely to be from unwanted sources were removed 

from the data. 

After the initial cleaning of the data, the remaining data was further automatically 

scanned for outlier values in the total concentration. The found outlier values were 

flagged as bad data and removed from further analysis. The code calculated the total 

concentration of the measurement point and four measurement points before and after 

that and formatted two vectors out of them. The first vector included the current meas-

urement point and the four measurement points before and the four measurement points 

after it. The second vector included only the four measurement points before and the 

four measurement points after the current measurement point. The standard deviations 

of these two vectors were compared and if the standard deviation of the first vector was 

more than 5.5 times the standard deviation of the second vector the current measure-

ment point was flagged as an outlier value. In addition to the original code all the days 

with four or less good measurement cycles were also removed from the further analysis. 

5.3 Plume detection from cleaned DMPS data 

The plume detection in this thesis was based on the codes used and evaluated in Kive-

käs et al. (2014). In the codes, the plumes were found by extracting the particle number 

concentration of the background (PNCbg) from the total PNC. The remaining data was 

considered as excess particle number concentration (PNCe). Maximums of the PNCe 

were found, and if these fulfilled the criteria set for the plume detection, they were as-

sumed being the peaks of the plumes. The criteria for the maximum of the PNCe being 

the peak of a plume, were the following: 1) The PNCe had to be at least 500 #/cm3 or 2) 

the ratio of the total PNC to the PNCbg (Re) had to be at least 1.5. These requirements 

were the same as used by Kivekäs et al. (2014) and are compromises between including 

all clear plumes and excluding peaks caused by other variability in the data. The two 

criteria were needed to count all the plumes. In some meteorological conditions, the total 

PNC in air may be lower and the PNCe would not exceed 500 #/cm3 over the PNCbg but 

the Re would still be over 1.5 and be the sign of the existence of a ship plume. If there 

were several peaks in a continuous time period fulfilling the criteria for the PNCe or the 

Re, all the peaks were defined as separate plumes. These plumes were separated by the 

measurement point with the lowest PNCe or Re between them.  
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In the article Kivekäs et al. (2014) the plume detection was done manually, and the max-

imums of the PNCe were found visually from MATLAB plots. For this thesis, the code 

was automated. This was needed, as in this thesis there were continuous data from 10 

years of measurements when in comparison the measurement period in the article by 

Kivekäs et al. (2014) was less than four months.  

The PNCbg data was defined and extracted from the total PNC as 25th percentile values 

of a sliding window with the width of 40 consecutive measurements. The duration of this 

window in this thesis was slightly longer (3 h 33 min 20 s) compared to the window used 

in the article by Kivekäs et al. (2014) (3 h 20 min). This was because the measurement 

cycle used in the DMPS at the measurement station at Utö was 20 s longer than the 

averaging time of 5 min used in the SMPS by Kivekäs et al. (2014). The percentile and 

length of the time window were chosen in the article based on testing with different val-

ues. Higher percentiles led to some of the plumes being counted in PNCbg if the plumes 

were very frequent. Lower percentiles did not follow changes in the PNCbg, but the mini-

mum points of the total PNC. The shorter time window included plumes in PNCbg when 

the plumes were long or frequent. As the time window was a bit longer in this thesis, we 

can assume that the code was slightly more sensitive to finding plumes than in the orig-

inal article.  

Figure 11 represents a typical day with clear plumes exceeding both the PNCe and the 

Re limits. In the uppermost sub figure, the number size distribution the of the PNCe (NSDe) 

is presented as a function of time. In the lower two sub figures, the PNCe and the Re are 

presented as functions of time. The black lines in the two lower plots represent the limits 

set for the PNCe and Re for detecting a plume. The time periods when the red dotted line 

exceeds these lines are considered being the plumes. The parts of the PNCe exceeding 

the plume detection limits during the plumes are considered being particle number con-

centrations of the plumes (PNCpl). 
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Figure 11 From top to bottom: The NSDe, PNCe and Re plotted as the functions 
of the day number for a day with clear cases of plumes exceeding both, limits set 
for the PNCe and Re. 

From the detected plumes, using the codes from Kivekäs et al. (2014) we were able to 

calculate for each plume several different quantities. For example, the starting and end-

ing times and the durations of the plumes, the highest PNCpl and Re during the plume, 

the particle diameter at the maximum of the PNCpl and the total number of particles during 

the plume. Also, the NSDpls and the NSDbgs were calculated. 
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5.4 Plume validation 

For the data, a validity check was made to ensure the reliability of plume detection at 

different times. The data was divided to valid and invalid time periods according to the 

analyzability of the plumes during that time. If the plumes could be analyzed reliably from 

the current time period, the time period was considered as valid and if not, the time period 

was considered as invalid. This validation of the time periods was done as in Kivekäs et 

al. (2014). The code scanned the PNCbgs for rapid and significant changes. The scanning 

was done by counting both the absolute and the relative change rates in the PNCbg and 

smoothing them by taking the smoothed sliding average of six consecutive measurement 

points. When changes in these smoothed values were greater than ± 53 #/cm-3 in the 

absolute change or ± 5 % in the relative change, the data was marked as invalid. These 

values were set so that they corresponded for 67 % of what was needed to define a 

plume. The changes in the PNCbgs were checked because, if there were large and fast 

changes, those would have caused an error to analysis of the plumes detected during 

those times. The error occurs as the sliding 25th percentiles that were used to define the 

PNCbg reacted to decreasing concentrations roughly 10 measurement points too early 

and roughly 10 measurement points too late to the increasing concentrations. That is 

why also 10 measurement points before and after every invalid point had to be marked 

as invalid. The code marked every detected plume with one or more invalid measure-

ment points as invalid.  

The original code needed to be modified as it failed to invalidate the plumes in some 

special cases. Firstly, the code failed to take in account the day changes during the 

plumes as data used by the code was divided to separate data files for each of the meas-

urement days. If the last or the first measurement point of the plume was on another date 

and therefore on another data file as the rest of the plume, the code ended up to on error. 

This was corrected so that the code stops the seeking of the plume end and start posi-

tions if the measurement point was the first or last of the day and marks these plumes 

as invalid. This was done as it is uncertain whether the plume continues in the other date 

and data file or not. The second problem with the original code was that it counted plumes 

that were limited by missing data as valid plumes. This needed to be fixed because when 

the plume ends to the missing data, we cannot be sure if the plume really ends to the 

last existing measurement point or somewhere during the missing data. This was cor-

rected by invalidating these plumes. The third problem with the original code was that it 

did not function properly when data was missing somewhere between the ending and 

starting point of the plume. The code just assumed the plume continuing over the missing 
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data. This led to some of the plumes lasting many hours. All these plumes were also 

marked as invalid.  

The yearly coverages of the cleaned and the valid periods of the data are presented in 

Figure 12. The cleaned data included the data that was left after the obvious bad data 

and the outlier values were removed from the original DMPS data in the data cleaning 

phase. The valid data included the parts of the cleaned data that had been validated in 

the data validation phase. 

 

Figure 12 The yearly cleaned and valid fractions of the data. The blue bars rep-
resent the cleaned fractions of the data and the orange bars the valid fractions of 
the data. 

The blue bars in Figure 12 represent the amount of the cleaned data, the fraction of the 

year that was left for analysis after the bad data was removed.  In the bad data all the 

missing periods of the data, the days with four or less measurement points and data that 

was likely to be from unwanted sources such as a passing by tractor were included. The 

outlier values found by the code were also considered as bad data. The orange bars 

represent the fractions of the year of the valid data. From the cleaned data all the invalid 

periods of the data were removed, and the remaining part was characterized as the valid 

data. An important thing to notice is that as there were extended periods of the data 
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missing from year 2015. There was just approximately 26 % coverage of the cleaned 

data and approximately 22 % coverage of the valid data. This increases the uncertainty 

of results because the data may not resemble the entire year. Most of the missing data 

in 2015 were between 17th of January and 19th of August meaning that the whole spring 

and almost all of the winter and summertime from 2015 are missing. This might cause 

an error because of the possible effect of the different season having different concen-

trations and larger fractions of some seasons being presented in data than others. 

In this thesis wind directions were attached to the plumes and every individual measure-

ment point of the DMPS data for later analysis. The wind direction data was attained 

from the weather service of the FMI with a 10 min time resolution. The wind directions 

were given as angles starting from the north in the clockwise order. For the plumes, the 

wind directions were calculated as the averages during the plumes. The first and the last 

values of the plumes were set to be the values at the nearest wind direction data points.  

A plume was marked to miss the wind direction if the distance to the nearest point of 

wind direction data point at the start or end of the plume was longer than 5 min. The 

plume was marked to miss the wind direction also when at least one data point of the 

wind direction was missing inside the plume. For the individual measurement points the 

values of the nearest wind direction data points were given. If the distance to nearest 

wind direction data point was longer than 5 min or value from the nearest data point was 

missing, the DMPS measurement point was marked to miss the wind direction. 

For evaluating the difference of the aged and the fresh plumes, total radiation data was 

attached to the plumes. The radiation data used was 1 min resolution data produced by 

the FMI. The radiations were attached to the plumes using similar method as in case of 

the wind directions. The data points at the end and the start times of the plumes were 

picked from the total radiation data. The radiations between these points were averaged 

and set as the radiation values for the plumes. If the distance to nearest radiation data 

point was over 30 s or even on radiation data point inside of the plume was missing, the 

plume was marked to miss the radiation data. 

5.5 Dividing data to sectors 

The wind direction data was used for classifying the plumes in three different sectors: 1) 

plumes from the Utö harbor, 2) plumes straight over the nearby shipping lane, and 3) 

plumes from the distant shipping lanes. These sectors are referred in this work according 

to their numbers 1, 2 and 3. The angles 315°-350° were classified as plumes from the 

sector 1, the angles 225°-270° were classified as plumes from the sector 2 and the an-

gles 75°-165° were classified as plumes from the sector 3.  These sectors did not include 
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all the measured plumes at Utö but are considered to be representative samples for 

different types of plumes. 

The classifications for plume sectors were made using the AIS data plots shown in Fig-

ures 6 and 7. The angles for the sector 1 were chosen so that all the plumes measured 

had to come through the harbor bay of Utö. The upper angle limit for the sector 2 was 

chosen so that plumes would not cross any land areas. The lower limit for the sector 2 

was chosen so that the maximum distance to the shipping lane would not get too large. 

The larger maximum distance to the shipping lane would have introduced more variability 

to the distances that the plumes had to be carried by the wind to the measurement site. 

In case of the sector 3 the lower angle limit was chosen so that the plumes would not 

cross the island of Jurmo seen in the upper right corner of Figures 6 and 7. The upper 

limit for the sector 3 was chosen so that the plumes would not come from the shipping 

lane on the western side of Utö and the distance that the plumes had to be carried by 

the wind to the measurement site would be recognizably larger than in the sector 2. Using 

back trajectories for classifying the plumes was also considered. Since in this study the 

shipping plumes are expected to be arriving from short distances on average, the back 

trajectories were almost linear and the wind directions were expected being good enough 

approximations. In Figure 13 the different sectors are presented as photographs from 

the roof of the measurement station. 

 

Figure 13 The pictures of each of the sectors used in the data analysis, taken 
from the top of the measurement station at Utö. The pictures from top to bottom: 
the sector 1 (315-350°), the sector 2 (225-270°) and the sector 3 (75-165°). 
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As seen from Figure 13, in the sectors 2 and 3 there are no significant aerosol sources 

on the island itself. Therefore, most of the peaks identified as plumes are likely to be 

from marine sources as wanted. Since the plumes from the sector 1 must pass by few 

local houses with chimneys, they might occasionally include some particles from bio-

mass burning. However, when there are only few houses and the firewood must be trans-

ported to Utö from the mainland of Finland, the number of the particles included in the 

plumes from the domestic biomass combustion is likely to be very low. 
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6. RESULTS 

In this part of the thesis the produced results are presented and discussed. The dis-

cussed results are the total number of the ship plumes, their distribution according to the 

wind directions, the effects of sulfur restrictions in the marine fuel content on the meas-

ured plumes and the effects of the sulfur restrictions in the marine fuel content on the air 

quality in the area. The properties of the plumes that are discussed are NSDpls, PNCpls, 

PSCpl and aging. The properties of the atmospheric air quality that are discussed are the 

contribution of PNCpls to total PNCs, the total PNCs and NSDbgs. In the end of this chap-

ter the attained NSDpls are compared to the NSDs of the direct emission measurements 

produced by Kuittinen (2016). 

The sulfur emission restrictions have been found to be strictly complied in SECAs. Katt-

ner et al. (2015) found that more than 99 % of all the measured ships in the Hamburg 

harbor in SECA complied the 1.00 % marine fuel sulfur content restriction in autumn 

2014 and in January 2015 already 95.4 % of the measured ships complied the new re-

striction of 0.10 % sulfur in fuel. Similar high compliance percentages have also been 

reported by Pirjola et al. (2014). They found that all the measured ships in Helsinki and 

Turku in the Baltic Sea SECA followed the 1.00 % sulfur limit in the measurements made 

during 2010 and 2011, even though some of the measurements of 2010 were made 

during the sulfur restriction period of 1.50 %. They also found that none of the measured 

ships used fuel that would have fulfilled the next sulfur restriction of 0.10 % implemented 

in the beginning of January 2015. As the compliance of the restrictions is high, the results 

during the sulfur restrictions of 1.00 % and 0.10 % can be assumed to give a good ex-

pression of real sulfur contents in the marine fuel. As seen in Pirjola et al. (2014), there 

is however uncertainty how much the sulfur concentrations changed after the change of 

the sulfur restriction from 1.50 % to 1.00 %, as at least some of the ships seemed to use 

fuel with less than 1.00 % sulfur even before the change of the restriction. 

6.1 Ship plumes 

The total number of the ship plumes was counted and plotted according to the wind 

directions from which the plumes arrived to Utö. The total number of the detected plumes 

in the measurement period of 11.1.2007-31.12.2016 was 71811. A considerable number 

of 43503 valid plumes was observed. The high number of the valid plumes decreases 

the uncertainty in the results caused by the uncertainties concerning the detection of he 

individual plumes. The wind directions could be attached for 42322 of the valid plumes. 
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In Figure 14 the numbers of the plumes with wind directions have been plotted according 

to the wind directions. 

 

Figure 14 The total number of the valid plumes from the whole measurement 
period of 11.1.2007-31.12.2016, divided into 5° bins. The sector 1 is marked with 
blue, the sector 2 is marked with red and the sector 3 with black. 

In total 21960 plumes were found to be arriving from inside the predetermined sectors 

and ended up being analyzed further. In Figure 14, most of the plumes are seen to be 

arriving from SSW, WSW, and NNW directions, those being the relative directions of the 

harbor of Utö and the nearest shipping lanes. Almost no plumes were arriving from the 

ENE direction, which is expected as there is little to no shipping activity as seen in the 

Figure 7.  Interestingly, very few plumes seemed to be arriving from WNW direction even 

though the distance to the nearby shipping lane in this direction is similar to the plumes 

coming from WSW direction and even smaller than the distance of the plumes coming 

from the SSW direction. This can be because of two factors: 1) either the amount of wind 

originating from this direction is lower or 2) there is significant background activity of 

shipping in WSW and SSW sectors. 

The number of the plumes coming from the different wind directions is heavily influenced 

by the amount of time that the wind plows from each direction. To study this effect, the 

total time of wind blowing from the different angles is plotted in 5° bins in Figure 15. 



44 
 

 

Figure 15 The total number of the hours of wind during the valid time periods 
from the whole measurement period of 11.1.2007-31.12.2016, divided into 5° bins. 
The sector 1 is marked with blue, the sector 2 is marked with red and the sector 3 
with black. 

Southwestern winds are typical for Utö during winter and fall and north to southwestern 

winds during spring and summer times (Hyvärinen, et al., 2008). The Figure 15 is in good 

accordance to this showing majority of wind coming from southwestern directions. Inter-

estingly, winds from angles 330°-340° seem to be more common than the other northern 

winds which will magnify the number of the plumes arriving from the sector 1 to the 

measurement site. Now it can also be seen that at least some of the reduced plume 

numbers in WNW direction is because of the lower amounts of wind than in WSW and 

SSW directions. 

When the number of the plumes is divided by the time of wind blowing from the different 

directions, the plume density in time per different wind directions is attained. This is pre-

sented in Figure 16. 
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Figure 16 The total number of the valid plumes divided by the total number of 
the hours of wind during the valid time periods from the whole measurement pe-
riod of 11.1.2007-31.12.2016, divided into 5° bins. The sector 1 is marked with blue, 
the sector 2 is marked with red and the sector 3 with black. The Value on the R-
axis is the number of the plumes per hour of wind. 

From Figure 16 it can be seen that the small number of the plumes coming from WNW 

direction is mostly because the wind is blowing to Utö more often from WSW and SSW 

directions than from the WNW direction. When the amounts of wind are considered, the 

number of the arriving plumes per time is more similar for all the directions SSW, WSW, 

and WNW. However, the effect of existing background shipping activity can still be seen 

especially in SSW direction as the increased plume density in time. It can also be seen 

that, even when the amounts of wind from the different directions are considered, there 

are still almost no plumes coming from ENE direction. Interestingly, the density of the 

plumes from ESE and SSE directions are approximately same as the density of the 

plumes from the WSW, SSW and WNW directions. This is important as there are no 

nearby shipping lanes in the EES and the SSE directions and therefore the plumes can 

be expected being carried from the distant shipping lanes. This makes sure that the sta-

tistics of the detected plumes are comparable between the plumes from the different 

sectors used in the analysis. 
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6.2 Total particle number concentrations 

In this chapter the overall effects of the plumes to the PNCs in Utö are discussed. Divid-

ing data to sectors is not used in this chapter, but all the data irrespective of the wind 

direction has been included. The total PNCs presented here are the total PNCs of only 

the particles in the size range of 7-538 nm. In counting the yearly averages for Figures 

17,19 and 20, every measurement point was weighted equally. Averages for the whole 

sulfur restriction periods were counted as averages of the different yearly averages so 

that each yearly average was weighted equally. The exception to this was the year 2010 

where the sulfur restriction changed in the middle of the year in 1st July. The averages 

for the half-year periods before and after the July 1st, 2010 were calculated separately. 

They were then weighted with 0.5 compared to 1 used for the whole years. The weighting 

was done in this manner to neglect the effect of the different data coverages for each 

year. The different data coverages have been presented in Figure 12.  

The yearly averages of the total PNC as well as the averages of the total PNCs over the 

different sulfur restriction periods were calculated and are presented in Figure 17. The 

total PNCs were calculated over all cleaned periods of the data, not only for the valid 

time periods. This is a valid procedure as the validity of the time periods is only relevant 

for the plume detection and the invalidity of the data does not cause error on total PNCs. 
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Figure 17 The yearly averages and the sulfur restriction period averages of the 
total PNCs for the particles in the size range of 7-538 nm in Utö during years 2007-
2016. The blue bars are the yearly averages. The orange lines are the averages 
over the different sulfur restriction periods. For each of the yearly averages 25th 
and 75th percentiles have been marked with the black error bars. The black vertical 
line marks the change of the sulfur restriction of the marine fuels from 1.50 % to 
1.00 % in June 1st, 2010 and the red vertical line marks the change of the sulfur 
restriction from 1.00 % to 0.10 % in January 1st, 2015. 

In Figure 17 the yearly averages of total PNCs at Utö are seen to vary between approx-

imately 2000-3000 #/cm3 with the exception of year 2014. Similar total PNCs have been 

measured earlier in the Baltic Sea. For example, Plauškaitė et al. (2017) measured in 

southern and southeastern regions of the Baltic Sea the total PNCs of 3000-4000 #/cm3 

in the open sea and 2000-3000 #/cm3 in the coastal site during years 2005-2006 and 

2008-2010. These measurements excluding the measurements in 2005 were made dur-

ing the sulfur restriction period of 1.50 %. The average PNC during this sulfur restriction 

period measured in this thesis was just under 3000 #/cm3, that is between the PNCs 

measured by Plauškaitė et al (2017). This is to be expected as the location of the meas-

urement station at Utö is a mix of open sea and coastal area. It is a small island in rela-

tively open sea area. 
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The effect of the first change in the sulfur content restrictions of marine fuels from 1.50 % 

to 1.00 % seems to have had a minimal to no effect on the total PNCs. The PNCs are 

even slightly higher for the 1.00 % restriction period, because the high total PNCs of 

2014 raise the total PNC average for the whole period. After the second change in the 

restrictions of the fuel sulfur content from 1.00 % to 0.10 % in beginning of 2015 the total 

PNC is seen to decrease drastically. However, the drop is likely to be smaller in reality 

because of the high PNCs of 2014. The PNCs for years 2012-2013 are approximately at 

the same level as during the time period after January 1st, 2015. The high PNCs of 2014 

were found likely to be because of many long and intense nucleation events during the 

year. One example of the nucleation events is shown in Figure 18. 
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Figure 18 The example of an intense nucleation event in cleaned data of year 
2014. 

In Figure 18, the total NSD has been plotted as a function of time in the upper sub figure 

and in the lower sub figure the total PNC has been plotted as a function of time. In this 



50 
 

case the nucleation event raises the total PNC for more than 80 000 #/cm3 which is eight 

times the total PNC before the nucleation event. The total PNC stayed elevated to at 

least three times the original PNC for half a day.  

After further inspection, 14 strong and clear nucleation events and numerous possible 

weaker nucleation events were observed during year 2014. Of the 14 strong and clear 

nucleation events 9 happened in the spring, 1 in the summer, 3 in the autumn and 1 in 

the winter. The winds during these events were mostly from the northern directions, 57 % 

between west and northeast and only few from the southern directions. This is in accord-

ance with the previous study made in the area by Hyvärinen et al. (2008), where they 

found that approximately 49 % of the events came between west and northeast with only 

very few coming from the southern and eastern directions. Differing from the previous 

study, even 29 % of the nucleation events came from the easterly directions while in the 

previous the study only very few nucleation events were observed from the easterly di-

rections.  

The average yearly PNCpls were also calculated and are presented in Figure 19. The 

PNCpls represented in the following figure are the average total PNCs over the PNCbg 

during the plume. Only the valid plumes have been considered in plotting the figure. 
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Figure 19 The yearly averages of the PNCpls in Utö for years 2007-2016 and the 
different sulfur restriction periods. The blue bars represent the yearly averages. 
The orange lines represent the averages during the different sulfur restriction pe-
riods. For each yearly average 25th and 75th percentiles have been marked with 
black error bars. The black vertical line represents the change of the sulfur content 
restriction in the marine fuels from 1.50 % to 1.00 % and the red vertical line rep-
resents the change of the marine fuel sulfur content restriction from 1.00 % to 
0.10 %. 

 In Figure 19 a decreasing trend of PNCpls can be seen. With the exception of year 2014, 

all the yearly averages during the sulfur restriction periods of 1.00 % and 0.10 % are 

lower than the averages during the sulfur restriction of 1.50 %. The yearly averages dur-

ing the sulfur restriction of 0.10 % are also lower than the yearly averages during the 

sulfur restriction of 1.00 %. The average value of the PNCpl for year 2014 seems to be 

affected by some systematical error in the plume detection method caused by the nucle-

ation events of 2014. This raises the question; how much the plume concentrations de-

tected by this method from Kivekäs et al. (2014) are affected by natural phenomena that 

raise the PNCbg?  

After the second change of sulfur restriction from 1.00 % to 0.10 % in January 1st, 2015 

the PNCpls decreased more than after the first change of the sulfur restrictions from 

1.50 % to 1.00 %. This decrease may be portrayed larger than it really is as the average 

PNCpl for the period of the sulfur restriction of 1.00 % seems to be raised because of 
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high concentrations of 2014. The effect of the sulfur restrictions on shipping emissions 

was studied by Zetterdahl et al. (2016). They found that the number of particles emitted 

stayed constant even though PM emissions reduction was 67 %. This implies that the 

usage of other PM removal mechanisms in the area might also have increased as in this 

thesis also the particle number was found to decrease. For example, open loop wet 

scrubber reduced 92 % of the total particle number and 48 % of the fraction of solid 

particles in ship emission in on-board measurements made by Lehtoranta et al. (2019). 

Direct contributions of the valid plumes to the total PNCs in Utö were also calculated for 

every year and the different sulfur restriction periods. These contributions are presented 

in Figure 20.  

 

Figure 20 The direct contributions of the PNCpls to the total PNCs in Utö for 
each year of 2007 - 2016 and for the periods of the different the sulfur content 
restrictions in the marine fuels.  The blue bars represent the yearly average values. 
The orange lines represent the average concentrations during the different sulfur 
restriction periods. The black vertical line represents the change of the sulfur con-
tent restriction in the marine fuels from 1.50 % to 1.00 % and the red vertical line 
represents the change of the marine fuel sulfur content restriction from 1.00 % to 
0.10 %. 

From Figure 20 the yearly direct contributions of the plumes to the total PNC in Utö can 

be seen to have been 4-8 % which is approximately the same level as the 5-8 % ob-

served earlier by Kivekäs et al. (2014), using this same method in similar conditions. As 
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only the valid plumes were considered, the real values are likely to be slightly higher as 

some of the invalid plumes might have been real plumes. Supporting this Ausmeel et al. 

(2019) have reported contributions of 10-18 % in the Baltic Sea SECA during the sulfur 

restriction of 0.10 %. Although in the study by Ausmeel et al. the shipping line might have 

been more densely trafficked. 

The decreasing trend of the direct contributions of the PNCpls to the total PNCs is seen 

in Figure 20. Notable is that the majority of the decrease after the first change in the 

sulfur restriction from 1.50 % to 1.00 % is caused by the low contribution value of 2014. 

This low value is likely to be result of elevated PNCbgs, as mentioned earlier. The second 

change in the sulfur restriction from 1.00 % to 0.10 % in the beginning of 2015 still seems 

to have a clear effect by decreasing the contributions of the plumes. This decrease might 

be even downplayed because of the decreased contribution in 2014. 

In Table 3 the averages of the total PNC, the PNCpl and the direct contribution of the 

PNCpl to the total PNC during the different sulfur restrictions are presented. The relative 

changes of the quantities after the changes of the sulfur restriction have also been cal-

culated. 

Table 3 The averages of the total PNC, the PNCpl and the direct contribution of 
the PNCpl to the total PNC during the different sulfur restriction periods and their 
relative changes during the changes of the sulfur restrictions. 

 Sulfur restriction period Relative change 

<1.50 % <1.00 % <0.10 % Change 1 Change 2 
Total 

change 

Total PNC 2914#/cm3 2956 #/cm3 1971 #/cm3 +1 % -33 % -32 % 

PNCpl 1379 #/cm3 1289 #/cm3 1005 #/cm3 -7 % -22 % -27 % 

Contribu-

tion 
6.9 % 6.4 % 5.7 % -8 % -10 % -17 % 

 

The effect of the second change in the sulfur restrictions is seen to be larger in all the 

three measured quantities. The difference of the changes 1 and 2 is especially large in 

the case of the total PNC. Notable is also that as the direct contribution of the PNCpl to 

the total PNC is approximately 6 % and the total decrease of the PNCpl is 27 %, the 

decrease caused to the total PNC by the decrease of PNCpl is only about 2 %. However, 

the decrease of the total PNC is 32 % implicating that the indirect contribution of the 

shipping on the atmospheric aerosol might be far greater than the direct effect. There 

might also be other factors on top of the sulfur restriction changes reducing the total PNC 
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in the Utö. This is to be suspected as the decrease of the PNCpl is smaller than the 

change of the total PNC, which should not be possible when the SOA production has not 

been taken into account, even if all the PNCbgs would be caused by the PNCpls.    

6.3 Number size distribution of plumes 

In this this chapter the properties of the NSDpls are studied. The NSDpls are plotted sep-

arately for the sectors 1, 2 and 3 during all the three different sulfur restriction periods. 

The used sectors are described in Chapter 5.5 of this thesis. All the individual NSDpls 

that are used in calculating the average NSDpls are normalized to the total concentration 

of 1000 #/cm3. This is done to cancel out the different PNCpls of the different plumes 

caused by the different dilutions of the plumes. Only the valid plumes are taken into 

account in plotting the figures.  

 

Figure 21 The average normalized NSDpls of the observed plumes during the 
measurement period of 11.1.2007-31.12.2016 with geometric standard deviations 
for the sectors 1, 2 and 3. 

In Figure 23 the NSDpls with their standard deviations have been presented for all the 

sectors 1, 2 and 3 during the whole measurement period. From the three sectors, the 

average NSDpl from the sector 3 has a maximum at largest particle size and the smallest 

standard deviation. The plumes from the sector 3 also have relatively the largest number 
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of large particles in them. This is to be expected as all the plumes from the sector 3 have 

to travel at least 8 km in air from a ship to the measurement site and most of the plumes 

seem to be coming from even longer distances as seen from Figures 7 and 9. As the 

transportation time in the air is longer, the smaller particles have time to grow to larger 

sizes through condensation or coagulation. As a reference, particle growth during nucle-

ation events from 10-15 nm to sizes of approximately 50 nm takes several hours 

(Dall’Osto, et al., 2012). Similar growth rate of 3 nm/h-1 for particles in the marine envi-

ronment has been presented also by Ehn et al. (2010). In case of the shipping emissions, 

the maximum of NSD from direct emission measurements has been observed to be an-

ything between 28 nm and 70 nm, depending on used fuel and engine load (Kuittinen, 

2016; Ntziachristos, et al., 2016). This decreases the needed growth of the plume parti-

cles to reach the measured particle diameters.  

When the average NSDpl from the sector 2 is compared to the average NSDpl from the 

sector 3, the standard deviation increases, the NSDpl broadens and the maximum shifts 

to a smaller particle size. The broadening of the NSDpl and the increasing standard de-

viation may be because in this sector, the shipping lane lies 1-3 km to west from the 

measurement site and many of the plumes are coming from there, but many also come 

from longer distances. The existence of this shipping lane and background shipping ac-

tivity can be seen from Figure 7. The smaller particle size of the maximum of the NSDpl 

is the result of many of the plumes coming from the nearby shipping lane and not having 

time to grow. The relative number of the small particles in this sector is also higher. The 

fact that the broadening of the NSDpl happens to the smaller particle sizes supports the 

assumption about the reason of the broadening. 

The average NSDpl from the sector 1 is the widest and it has the largest standard devia-

tion. In the sector 1, the maximum of the NSDpl being at the smallest particle size follows 

the same pattern as the sector 2. When more of the plumes are coming from shorter 

distances, the plumes do not have time to grow and the particle diameter at the maximum 

of the NSDpl is smaller. The standard deviation is the largest and the NSDpl the broadest 

in the sector 1 as many of the plumes can be expected to be coming from the nearby 

harbor of Utö, where there is a lot of passenger vessel traffic. The same western shipping 

lane that crosses the sector 2 also crosses the sector 1 behind the harbor bay and many 

off the plumes are coming from there. Some of the plumes may also be coming from 

even longer distances leading to the large variability of the ages of the plumes in this 

sector. 
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Figure 22 The average normalized NSDpls of the observed plumes from the sec-
tor 1 during the different sulfur restrictions. 

In Figure 22 the effect of the change in the sulfur restriction on the size distributions with 

their standard deviations are presented for the observed plumes from the sector 1. From 

Figure 22 the effect of the first change in the sulfur restriction from 1.50 % to 1.00 % is 

seen to have been smaller than the effect of the second change in the sulfur restriction 

from 1.00 % to 0.10 %. The first change of the sulfur restriction did not affect the maxi-

mum of the NSDpl and only decreased the relative number of particles smaller than 

18 nm, meanwhile slightly increasing the relative particle numbers with diameters larger 

than 18 nm. After the second change of the sulfur restriction, the changes in the shape 

and maximum of the NSDpl were larger. The maximum of the NSDpl shifted to a noticea-

bly smaller particle diameter, the relative particle numbers smaller than 31 nm in diame-

ter increased and the particle numbers in the size range of 31-150 nm decreased. In the 

sizes larger than 150 nm there was no significant difference in the relative particle con-

centrations between the three restriction time periods. These changes in the NSDpl seem 

to implicate that the higher percentages of sulfur in marine fuels grow small particles to 

larger particle sizes. 
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Figure 23 The average normalized NSDpls of the observed plumes from the sec-
tor 2 during the different sulfur restrictions. 

In the Figure 23 the NSDpls for the three sulfur restriction periods with standard devia-

tions from the plumes observed from the sector 2 are presented. From Figure 23 the 

effect of restricting sulfur content in marine fuels from 1.50 % to 1.00 % is observed being 

almost nonexistent in the sector 2. Both of the NSDpls have the same maximums and 

almost identical shapes. The second change of the sulfur restriction from 1.00 % to 

0.10 % caused clear changes in the shape and the maximum of the NSDpl. These 

changes were similar to the changes in the sector 1. The maximum of the NSDpl shifted 

to a smaller particle diameter and the relative particle numbers increased in sizes smaller 

than 35 nm and decreased in sizes 35-150 nm. As in the sector 1, all the different re-

striction periods had relatively the same number of particles in the sizes larger than 

150 nm. The effects seen in the sector 2 after the changes of the sulfur restrictions of 

the marine fuels seem to support the assumption of the higher sulfur content in fuels 

leading to the small particles growing to the larger particle sizes. 
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Figure 24 The average normalized NSDpls of the observed plumes from the sec-
tor 3 during the different sulfur restrictions. 

In Figure 24 the averaged NSDpls of the plumes observed from the sector 3 during the 

three different sulfur restriction periods are presented. In the sector 3, the effects of the 

first change of the sulfur restriction from 1.50 % to 1.00 % were even smaller than in the 

case of the sectors 1 and 2. The maximums of the both NSDpls were the same and the 

shapes were almost identical. The second change of the sulfur restriction from 1.00 % 

to 0.10 % still had a clear effect on the NSDpl. The maximum of the NSDpl shifted to a 

smaller particle size, the relative particle concentrations with diameters smaller than 

35 nm increased and the relative number concentrations of particles in the size range of 

35-150 nm decreased. In the sector 3, similar to the sectors 1 and 2, the relative number 

of the particles larger than 150 nm was similar for the different sulfur restrictions. The 

results from the sector 3 are in line with the results from the sectors 1 and 2 supporting 

the assumption of the larger sulfur contents in the marine fuels allowing the growth of 

the small particles to the larger sizes. 
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Table 4 The diameters of the maximums of the NSDpls and their relative changes 
upon the sulfur restriction changes. 

 
Sector 

average 
Sulfur restrictions Relative change 

  <1.50 % <1.00 % <0.10 % 
Change 

1 

Change 

2 

Total 

change 

Units nm nm nm nm % % % 

Sector 1 41 42 42 26 0 -38 -38 

Sector 2 42 48 48 35 0 -27 -27 

Sector 3 48 48 48 41 0 -15 -15 

 

In Table 4 the maximums of the NSDpls from the different sectors during the different 

sulfur restriction and their relative changes upon the sulfur restriction changes are pre-

sented. The smaller effect of the first change of the sulfur restriction from 1.50 % to 

1.00 % compared to the second change from 1.00 % to 0.10 % can be clearly seen. The 

diameters of the maximums of the NSDpls did not change in any of the sectors after the 

first change but the second change caused considerable reductions to all of the maxi-

mums of the NSDpls. This change is seen to be the largest in the sector 1 where the 

average distance to the ships is the shortest, and the smallest in the sector 3 where the 

distance to the ships is the longest. This indicates that the reductions of the sizes of the 

fresh emission particles may be larger than the reductions of the sizes of the aged emis-

sion particles. Considering the changes of the maximums of the NSDpls, an important 

thing to consider is that the diameter resolution of the DMPS in these particle sizes was 

over 5 nm and therefore the minor changes of the diameter are not seen in Table 4. 

Because there were no plumes coming from near the measurement site in the sector 3, 

the NSDpls during the 1.00 % sulfur restriction should be comparable to the NSDpls that 

Kivekäs et al. (2014) measured using the same method of plume detection. The NSDpls 

should be similar because the both measurements were made in the SECA during the 

same sulfur restriction period. The major differences were the different distance to the 

shipping lanes, the possibly different ship base and the different measurement instru-

ments. The distance from the shipping lanes in the article by Kivekäs et al. (2014) was 

from 25 km to 60 km and in this thesis 8 km and upwards. Kivekäs et al. found that the 

maximum of NSDpl was 41 nm which is slightly smaller than 48 nm found in this study. 

However, in this study, the number of the analyzed ship plumes was many times higher 

and the measurements were made at the different stations. The similar NSDpl of 40 nm 
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in the Baltic Sea SECA area during the sulfur restriction period of 1.00 % has also been 

observed by Westerlund et al. (2015). 

6.4 General plume properties 

In this chapter the maximums of the NSDpls, PSCpls and PNCpls were calculated and are 

presented here as boxplots separately for all the sectors 1, 2 and 3 during all the three 

different sulfur restriction periods. In the end of this chapter also the size class averages 

for the plumes from the different sectors during the different sulfur restriction periods 

have been calculated. The different quantities have been calculated for only the valid 

plumes. The maximums of the NSDpls from the different sectors during the different sulfur 

restriction periods are presented as boxplots in Figure 25.  

 

Figure 25 The boxplots of the maximums of the NSDpls of the individual plumes 
from the different sectors during the different sulfur restriction periods. The red 
lines represent the medians, the blue boxes the 25th and 75rh percentiles and the 
red plus mark (+) the outlier values of the maximums of the NSDpls. 
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In all the sectors the overall change of the sulfur restriction from 1.50 % 0.10 %, led to 

reduced median diameters of the NSDpl, the change being for the sectors 1, 2 and 3 

10 nm (27%), 7 nm (16 %) and 7 nm (15%), respectively. Notable is that these changes 

in median diameters of the maximums of the NSDpls were smaller than the changes of 

the average diameters of the NSDpl maximums listed in Table 4 in the cases of sectors 

1 and 2. This implicates that especially the number of the plumes with the largest diam-

eters of the maximums of the NSDpls decrease as the sulfur content in the marine fuels 

decreases. 

The effect of the later, larger change in the sulfur restriction of marine fuels from 1.00 % 

to 0.10 % was significant in all the sectors. The first change of the sulfur restriction from 

1.50 % to 1.00 % did not have as clear of an effect. The medians and percentiles in the 

sectors 2 and 3 remained almost unchanged and in the sector 2 the median diameter of 

the maximums of the NSDpls even increased. Two possible reasons why the effect of the 

first sulfur restriction was smaller are suggested. 1) The relative change in the sulfur 

content of the marine fuels was larger after the restriction change from 1.00 % to 0.10 

%, 90 % compared to the 33 % of the sulfur restriction change from 1.50 % to 1.00 %. 

2) The uncertainty of the real sulfur content change in the marine fuels during the change 

of the sulfur restriction from 1.50 % to 1.00 %. This uncertainty seen in the study by 

Pirjola el al. (2014) is discussed on the first page of the chapter 6 of this thesis.   

Notable in Figure 25 is also the high number of the maximums of the NSDpls at the small 

particle diameters in the sector 1 during the sulfur restriction of 1.50 %. This is seen as 

the low 25th percentile. This same phenomenon is not seen in any of the other sectors or 

during the other sulfur restriction periods. The high numbers of the small particles in the 

sector 1 during the sulfur restriction of 1.50 % is seen also in Figure 22. 

PSCpls for the plumes from the three different sectors during the three different sulfur 

restriction periods are presented in Figure 26. The presented PSCpls are only the PCSpls 

of the particles in the measurement range of the DMPS (7-538 nm). The real PCSpls are 

likely to be considerably larger as the largest particles with large surface area are not 

measured. 
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Figure 26 The boxplots of the average PSCpls of the individual plumes from the 
different sectors during the different sulfur restriction periods. The red lines rep-
resent the medians, the blue boxes the 25th and 75th percentiles and the red plus 
marks (+) the outlier values of the PSCpls. 

In Figure 26 the average PSCpls can be seen to be lower when the particles are coming 

from shorter distances. Both changes of the sulfur restriction of the marine fuels can also 

be seen to decrease the PSCpls in the sectors 2 and 3. In the sector 1 only the later 

change of the sulfur restriction from 1.00 % to 0.10 % seems to have influenced the 

PSCpls. 

In the sector 1 the total effect of the change in sulfur restrictions is larger than in sectors 

1 or 2. In the sector 1, the median PSCpl decreases for 4.8 µm2/cm3, in the sector 2 for 

4.5 µm2/cm3 and in the sector 3 for 4.0 µm2/cm3. These correspond for 41 %, 32 % and 

23 % of the PNCpls during sulfur restriction period of 1.50 %, respectively. The same 

phenomenon as in the case of the maximums of the NSDpls is seen. The measured 

reductions are smaller when the plumes are arriving from longer distances. The surface 
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area of the particles has been related to toxicity and bioactivity of inhaled aerosol parti-

cles (Sager and Castranova, 2009). Therefore, the reductions of PSCpls are likely to im-

prove the human health in marine and coastal areas.  

The average PNCpls during the plumes from the different sectors during the different 

sulfur restriction periods were plotted and are presented in the Figure 27. 

 

Figure 27 The boxplots of the average PNCpls of the individual plumes from the 
different sectors during the different sulfur restriction periods. The red lines rep-
resent the medians, the blue boxes the 25th and 75th percentiles and the red plus 
marks (+) the outlier values of the PNCpls. 

The average PNCpls during the plumes from the different sectors during the different 

sulfur restriction periods were plotted and are presented in Figure 27. All the sulfur 

changes in the sulfur restriction are seen to have reduced the PNCpls in all the sectors. 

Also, the increasing distances between the emission sources and measurement station 

are seen to have decreased PNCpls. The decreases were larger after the second change 

in sulfur restriction from 1.00 % to 0.10 %. In all the sectors this change of the sulfur 

restrictions also reduced the maximum outlier values, indicating that the highest average 
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PNCpls during the plumes were related to the high sulfur contents in the fuels. Also, the 

variability in the PNCpls was reduced after the implementation of every new sulfur re-

striction. This effect is especially visible in the sector 3 and the second change of the 

sulfur restriction from 1.00 % to 0.10 %. 

The PNCpls measured from the sector 1 are higher than from the two other sectors. This 

is to be expected as low engine loads have been shown to lead to higher particle number 

concentrations by Anderson et al. (2015) and many of these plumes are assumed com-

ing from the ships using the low engine loads in the harbor area. The second factor 

increasing the concentrations in the sectors 1 and 2 in is the lower dilution of the plumes 

compared to the plumes measured from the sector 3 that are coming from longer dis-

tances.  

Ausmeel et al. (2019) measured during the sulfur restriction of 0.10 % in the Baltic Sea 

SECA the PNCpls of 700-750 #/cm3 during the winter and 860-1470 #/cm3 during the 

summer depending on the used measurement instrument. This is in good accordance 

with 663 #/cm3 seen in Figure 27 in the sector 3 during the same sulfur restriction of 

0.10 %. The slightly higher concentrations may be related to the shorter distance to the 

shipping line, the much lower number of the observed plumes and the slightly different 

particle size range of the used instruments in the study by Ausmeel et al. (2019).  

The average PNCpl during plumes were also calculated for different size classes. These 

PNCpls were calculated for all the sectors and the sulfur restriction periods and are pre-

sented in Table 5. Similar values as presented in Table 5 were also calculated for all 

plumes with removed first and last measurement cycles to test the error caused by the 

plume starting and ending inside the measurement cycles on the PNCpl. The attained 

PNCpls were on average higher, but the trend of changes was similar as in Table 5. 

These values are listed in Table 2 in the Appendix A. 
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Table 5 The average PNCpls from the sectors 1, 2 and 3 during the different sul-
fur restrictions divided into three distinct size classes. 

 
Particle 

size 
Sulfur restriction Relative change 

  <1.50 % <1.00 % <0.10 % 
Change 

1 

Change 

2 

Total 

change 

Units nm #/cm3 #/cm3 #/cm3 % % % 

Sector 1 

7-33 760 641 767 -16 +20 +1 

33-108 820 743 418 -9 -44 -49 

108-537 87 82 76 -6 -6 -12 

Total 1667 1466 1261 -12 -14 -24 

Sector 2 

7-33 509 437 530 -14 +21 +4 

33-108 941 789 505 -16 -36 -46 

108-538 88 72 63 -18 -12 -28 

Total 1538 1298 1098 -16 -15 -29 

Sector 3 

7-33 273 271 298 -1 +10 +9 

33-108 681 675 462 -1 -31 -32 

108-538 106 104 85 -1 -18 -19 

Total 1060 1050 846 -1 -19 -20 

 

In Table 5 the reductions of the sulfur content in the marine fuels are seen to lead in all 

sectors to reduced total PNCpls. Only in the case of the sector 3 and the first change in 

the sulfur restriction from 1.50 % to 1.00 % the effect is small with the concentrations 

decreasing only 1 %. The total PNCpls changes in all the sectors after each of the sulfur 

restriction changes are negative for the particle sizes larger than 33 nm. However, for 

the particles in the size class of 7-33 nm the PNCpls increase after the implementation of 

the sulfur restriction of 0.10 %. This leads to overall increased concentrations in this size 

class. The effect of the first sulfur restriction change from 1.50 % to 1.00 % is quite even 

in all the size classes and sectors. The change of the sulfur restriction from 1.00 % to 

0.10 % decreased the PNCpls only in size classes of 33-108 nm and 108-538 nm. The 

effect is largest in size range of 33-108 nm. The particle numbers increased in the size 

range of 7 - 33 nm indicating that while there is a reduction in the total particle numbers, 

some produced particles are smaller than before and are seen in the smallest size class 
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instead of the larger size classes. The increase of the average PNCpls is relatively largest 

when the average distance of the source vessels is the largest.  

In the sectors 1 and 2 the effects of the both sulfur restrictions changes on the average 

PNCpls of largest particles are quite even, but in the sector 3 the effect of the second 

sulfur restriction change is almost 20 times as large as the effect of the first change of 

sulfur restriction. This implicates that the low sulfur content of 0.10 % in the marine fuels 

restricts the growth of the particles while the 1.00 % sulfur content in fuel does not have 

any significant effect on the particle growth. 

Kivekäs et al. (2014) found in their study that average the PNCpl in similar conditions 

during the sulfur restriction of 1.00 % was 790 #/cm3. This is in the same order as 

1050 #/cm3 observed from the sector 3 during the same sulfur restriction period in this 

study. The slightly higher value obtained by Kivekäs et al. might be because the average 

distance to the shipping lanes in the article was longer than in this thesis, and the ship 

plumes had more time to dilute. The measured particle diameter range of 12.2 nm to 

496 nm in Kivekäs et al. (2014) was also slightly narrower than 7-538 nm used in this 

study, leading to lower concentrations overall. 

The decreased total PNCpls seen in Table 5 and Figure 27 together with the reduced 

particle sizes seen in Figures 22, 23, 24 and 25 implicate that the sulfur reductions lead 

to reduced PM emissions. Similar results have been reported by López-Aparicio et al. 

(2017). They found that reducing sulfur content of the marine fuels from 1.00 % to 0.10 % 

reduces the SO2 and PM10 emissions by 90 % and 10 %, respectively. 

6.5 Aging of plumes 

Emission restrictions have been shown to reduce formation of secondary organic carbon 

(SOC) in atmosphere (Ji et al., 2018). This raises the interest of exploring if similar effects 

are seen in the total SOA production. The oxidation of gaseous emissions produces SOA 

by forming low volatility compounds that either nucleate or partition on the existing aer-

osol particles (Kang, et al., 2007). This oxidation is caused by O3, OH and hydroperoxyl 

(HO2) that are produced by UV-light (Kang, et al., 2007). For example, the formation of 

SO4
2− has been shown to be highly related to photochemical reactions during daytime (Ji 

et al., 2018). Also, the oxidation of anthropogenic emissions has been observed to hap-

pen mainly during daytime by Warneke et al. (2004) Because of this it is convenient to 

separate plumes to day- and nighttime in order to study the plume aging in the atmos-

phere.   
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In this thesis the division of the plumes to the day- and nighttime plumes is done accord-

ing to the solar radiations during the measurement times of the plumes. The used solar 

radiation is the total solar radiation measured on a black horizontal plane. The valid 

plumes during the solar radiation of 0 W/m2 were considered as the nighttime plumes 

and the valid plumes during the solar radiation of 200 W/m2 or more were considered as 

the daytime plumes. The NSDpls and the size class averages were calculated for the 

both types of the plumes. In counting the average NSDpls, all the individual plumes were 

normalized to the total PNCpl of 1000 #/cm3 to even the effect of different plumes to 

average NSDpls. The plumes during the different sulfur restrictions and sectors were 

studied separately. 
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Figure 28 The average normalized NSDpls of the observed plumes from the sec-
tor 1 during the nighttime (total solar radiation intensity ~0 W/m2) and the daytime 
(total solar radiation intensity >200 W/m2). 

In Figure 28, the NSDpls have been drawn for the both intensities from the sector 1 during 

the different sulfur restriction periods. The NSDpls from the daytime plumes are seen to 

have relatively lower PNCpls in sizes approximately smaller than 30 nm and increased 

PNCpls in mid-size particles, approximately from 30 nm to 120 nm. The relative PNCpls 

stay almost unchanged in particle sizes larger than 120 nm. In Figure 28 the particle 
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diameters of maximums of the both daytime and the nighttime NSDpls are seen to de-

crease as the sulfur content in the marine fuels decreased. Especially the effect of the 

sulfur restriction change from 1.00 % to 0.10 % is clearly visible.  

During the sulfur restriction period of 1.50 % there is a clear nucleation mode visible as 

a shoulder in the nighttime NSDpl. As the sulfur content decreased this shoulder disap-

peared. This mode was not visible in any of the NSDpls during the daytime or any of the 

NSDpls from the sectors 2 or 3. Therefore, this shoulder can be expected to be fresh 

sulfur related emissions that have not yet grown to larger sizes. The similar bimodality of 

fresh emissions has been observed by Anderson et al. (2015).  
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Figure 29 The average normalized NSDpls of the observed plumes from the sec-
tor 2 during the nighttime (total solar radiation intensity ~0 W/m2) and the daytime 
(total solar radiation intensity >200 W/m2). 

In Figure 29 the NSDpls of plumes during the nighttime and the daytime are presented 

for the sector 2 during the different sulfur restriction periods. The same phenomenon as 

in Figure 28 is seen. The diameter of the maximum of the NSDpl during the nighttime 

decreases as the sulfur content in the marine fuels decreases. The same phenomenon 

cannot be seen in the plumes during the daytime where the maximum of the NSDpl re-

mains almost unchanged during different sulfur restriction periods. The diameter of the 
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maximum of the NSDpl was even highest during the sulfur restriction period of 1.00 %. 

Also, the diameters of the maximums of the NSDpl can be seen to have increased during 

every sulfur restriction period, when the NSDpl from plumes during the nighttime are com-

pared to the NSDpls from plumes during the daytime.  

 

Figure 30 The average normalized NSDpls of the observed plumes from the sec-
tor 3 during the nighttime (total solar radiation intensity ~0 W/m2) and the daytime 
(total solar radiation intensity >200 W/m2). 

In Figure 30, the NSDpls of the plumes during the nighttime and the daytime are pre-

sented for the sector 3 during the different the sulfur restriction periods. In Figure 30 in 
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the sector 3 the maximum of the NSDpl from the nighttime plumes did not seem to de-

crease after the implementation of sulfur restriction of 1.00 % differing from the sectors 

1 and 2 seen in Figures 28 and 29. The restriction of 0.10 % still decreased the maximum 

of the NSDpl. The same phenomenon could be seen in the NSDpls during the daytime. 

The maximums of the NSDpls are the same between the two restriction periods but de-

creased during the second change of the sulfur restriction from 1.00 % to 0.10 %.  

In sector 3 the maximums of the NSDpls during daytime are seen being larger than 

NSDpls during nighttime. This difference is however smaller than in the sectors 1 and 2. 

To further study these changes the exact diameters of the maximums of the NSDpls as 

well as their relative changes have been calculated separately for the night- and daytime 

plumes, sectors 1, 2 and 3 and the different sulfur restriction periods. These values are 

presented in Table 6. 

Table 6 The diameters of the maximums of the NSDpls of the plumes during the 
daytime and the nighttime with the relative changes after the changes of the sulfur 
restriction.  

 
Day 

/night 
Sulfur restrictions Relative change 

  <1.50 % <1.00 % <0.10 % 
Change 

1 

Change 

2 

Total 

Change 

Units  nm nm nm % % % 

Sector 1 

Night 42 36 23 -14 -36 -45 

Day 48 42 26 -13 -38 -46 

Sector 2 

Night 48 42 35 -13 -15 -27 

Day 48 56 47 +17 -16 -2 

Sector 3 

Night 48 48 41 0 -15 -15 

Day 56 56 47 0 -16 -16 

 

In Table 6 the reductions during the both sulfur restriction changes both in the daytime 

and the nighttime plumes are seen to be the largest in the sector 1. The reductions of 

the diameters of the NSDpl maximums are also seen to be similar between the day- and 

nighttime plumes in the sectors 1 and 3. The changes are however different in the sector 

2, where the diameter of the maximum of the daytime NSDpls increases after the first 

sulfur restriction. This increase might however be only an error caused by the diameter 

resolution of the DMSP in these particle sizes being over 5 nm. 
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The effects of the sulfur restriction changes on the changes the PNCpls in plume aging 

were also studied. The increases of the PNCpls in plume aging during the three different 

sulfur restrictions, and in the sectors 1, 2 and 3 and the relative changes of the PNCpls 

increases are presented in the three different size classes in Table 7  

Table 7 The difference of the PNCpls in three different size classes, between the 
plumes during the sunlight intensity of 200 W/m2 (Daytime) and ~0 W/m2 
(Nighttime). The differences have been presented separately for each size class, 
sector, and sulfur restriction period. Both the absolute and relative changes have 
been presented. 

 
Particle 

size 
Sulfur restriction 

  Change in average PNCpl Relative change 

  <1.50 % <1.00 % <0.10 % <1.50 % <1.00 % <0.10 % 

Units nm #/cm3 #/cm3 #/cm3 % % % 

Sector 1 

7-33 nm +84 +45 +281 +12 +7 +42 

33-108 +308 +248 +250 +47 +37 +77 

108-537 +78 +17 +18 +135 +23 +27 

Total +471 +309 +550 +33 +22 +52 

Sector 2 

7-33 -122 -85 -129 -22 -18 -22 

33-108 -361 -39 +49 -32 -5 +10 

108-538 +33 +21 +11 +40 +33 +18 

Total -450 -103 -68 -26 -7 -6 

Sector 3 

7-33 +242 +69 +44 +98 +27 +14 

33-108 +38 +106 +121 +5 +26 +29 

108-538 +32 +43 +12 +31 +46 +16 

Total +312 +216 +178 +30 +21 +22 

 

From Table 7 the exposure to light can be seen to have grown the PNCpls during all 

sulfur restriction periods in all size classes in the sectors 1 and 3. In the sector 2 the 

effects were different with the PNCpls decreasing in the plume aging during every sulfur 

restriction period in the smallest particle size class (7-33 nm) and also in the middle size 

class (33-108 nm) during the first two sulfur restrictions. This might be because of on 
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average larger vessels acting as sources of the plumes measured during the nighttime 

compared to vessels during the daytime in the sector 2. 

The clearest effect of the plumes exposure to the sunlight is that during all the time peri-

ods and in all the sectors the PNCpl in the largest particle size class (108-538 nm) in-

creases. This increase is the smallest for the sector 2, where the total change in the 

PNCpl was negative. The relative growth of the PNCpls in this size class seems to be 

decreasing while the sulfur content in the fuels decreases. This effect is especially visible 

in the sector 1. This indicates that the particle growth potential by aging seems to be 

limited by the low sulfur content in the fuels.    

In the sectors 1 and 3 there are clear increases in PNCpls in the size class of 7-33 nm 

during the plume aging. This indicates that at least one of the following effects is hap-

pening: 1) Smaller than 7 nm particles grow to the size class of 7-33 nm or 2) homoge-

nous new particle formation is happening and the newly produced particles grow to 7-

33 nm size class. When the sulfur content decreases, the increase of the PNCpls in aging 

moves to the smaller particle size classes. This indicates that the lower sulfur contents 

in the marine fuels decrease the amount of particle growth in aging compared to the new 

particle formation. Although this effect cannot be seen in sector 2. 

6.6 Comparison to direct emission data 

From the direct emission data (Kuittinen, 2016) MDO emissions measured were chosen 

for the comparison. In the MDO used by Kuittinen (2016) there was less than 0.10 % 

sulfur which best resembled the regulations after the implementation of the sulfur re-

strictions of 0.10 % in January 1st, 2015. In Figure 31 the NSDs of the emissions from 

the engine loads of 25 % and 75 % have been plotted in the same figure with the average 

NSDpl of the nighttime plumes from the sector 1 during the latest sulfur restriction of sulfur 

content less than 0.10 %.The maximums of the NSDs have been normalized to the con-

centration of 1. The nighttime plumes were chosen as they are expected to be composed 

mostly from unaged emissions as discussed in the chapter 6.5 of this thesis. The sector 

1 was chosen because the distance to ships is on average the shortest.  
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Figure 31 The comparison of the average NSDpl of the plumes from the sector 1 
during the nighttime and the sulfur restriction of 0.10 % to the NSDs from the direct 
emission measurements from Kuittinen (2016). The NSDs for the direct emission 
measurements have been drawn for the engine loads of 25 % and 75 %. The max-
imums of the NSDs are normalized to 1. 

The load of 25 % is expected to resemble ship engines load conditions in maneuvering 

and nearing the harbor and the load of 75 % is expected to resemble the load conditions 

of the ship engines in open waters. The maximum of the NSDpl of the nighttime plumes 

of the sector 1 is found to be slightly smaller than either of these two load conditions. In 

the plot on the right, where the both axes are set as logarithmic, all the NSDs can be 

seen to have two distinct modes, one at the maximum of particle sizes of 20-40 nm and 

another in larger particle sizes. This mode is seen as a shoulder in all the three size 

distributions and is expected to be composed of soot. 

Notable in Figure 31 is that the shapes of the NSDs are almost identical in particle sizes 

larger than 100 nm. These particles can be assumed to be composed mostly from soot. 

Anderson et al. (2015) stated that particles with a diameter over 50 nm from the com-

bustion of marine fuels are solid primary particles and are associated with the quality of 

the fuel and not the sulfur content. They also stated that the nanoparticles smaller than 

50 nm can be related to both sulfur content and the other properties of the fuels and 

consist both primary and secondary particles. They also found that the volatile particles 

were in the size class of the nanoparticles. If the NSDs are normalized according to the 

concentrations of the particles larger than 100 nm the NSDs are assumed having ap-

proximately the same shapes as they have the same sulfur fuel content. To further study 
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this, another normalization for the NSDs was made. In Figure 32 the NSDs from the 

direct emission measurements of Kuittinen (2016) and the nighttime sector 1 NSDpl have 

been normalized to have equal particle concentrations of 100 #/cm3 in particle sizes of 

approximately 18-402 nm. 

 

Figure 32 The comparison of the average NSDpl of the plumes from the sector 1 
during the nighttime and the sulfur restriction of 0.10 % and the NSDs from the 
direct emission measured by Kuittinen, (2016). The NSDs of the direct emission 
measurements have been drawn for the engine loads of 25 % and 75 %. The NSDs 
have been normalized to have the same number of particles in the particle sizes 
of 108-402 nm. 

From Figure 32 it is clearly visible that the NSDs in particle the sizes larger than 100 nm 

have almost identical shapes. In the NSDs from the direct emission measurements the 

mode in smaller particle sizes is seen to have many orders of magnitude higher concen-

trations than the mode in larger particle sizes. In the case of NSDpl the difference of the 

concentrations is much smaller.  

When the large soot modes of the three NSDs are normalized to the same concentra-

tions, the normalized concentrations for the smaller mode are found to be approximately 

two orders of magnitude lower for the NSDpl in comparison to the NSDs of the direct 

emission measurements. The difference in the NSDs might be partly caused by the dif-

ferent shapes of the emission NSDs form the different kind of engines producing the 
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emissions. This means that that the NSDs from Kuittinen (2016) and the average NSDpl 

of the harbor nighttime plumes might have had different shapes from the start. However, 

it is unlikely that this alone would explain the difference of the two orders of magnitude 

in the concentrations. Robinson et al. (2007) found that primary emissions evaporate 

substantially upon dilution to ambient conditions. They stated that up to 75 % of the POA 

might evaporate in the atmospheric conditions. This is well in line with the results attained 

in this study. As the nanoparticles smaller than 50 nm are assumed being partly volatile 

(Anderson et al., 2015) and the concentrations in this study are reduced in particle sizes 

of less than 70 nm. 

6.7 Background number size distributions 

NSDbgs were drawn for each of the sectors during all the three different sulfur restriction 

periods to examine if the changes of the sulfur restrictions had influenced the PNCbgs. 

Differing from the NSDpls of the plumes, the NSDbgs were drawn from unnormalized dis-

tributions. The NSDbgs have been calculated only for the valid time periods as during the 

invalid time periods the PNCpls and the PNCbgs get mixed to some degree because of 

the plume detection method used. In Figure 33 the NSDbgs from the sector 1 have been 

plotted during all three sulfur restriction periods.  
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Figure 33 The NSDbgs from the sector 1 during the different sulfur restrictions. 

A clear difference in the NSDbgs between different sulfur restriction periods can be seen 

in Figure 33. As the sulfur content in the marine fuel decreases the maximum of NSDbg 

shifts to smaller particle sizes and the total PNCbg decreases. During the sulfur restriction 

period of 1.50 % the maximum of the NSDbg was 56 nm decreasing to 48 nm during the 

sulfur restriction of 1.00 % and to 47 nm during the sulfur restriction of 0.10 %. These 

diameters are slightly larger than the maximums of the NSDpls measured in sector 1 

during the same sulfur restrictions. These diameters of the maximum of the NSDpls are 

presented in Table 4. 

Notable is that the shape and height of NSDbgs during different sulfur restriction periods 

are remarkably similar in particle sizes smaller than of approximately 22 nm. This is ex-

pected as the shipping plumes have effect on the PNCbg when they are diluted to point 

that they are undetectable as individual plumes. This dilution takes time and the particles 

have time to grow during this time. 
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Figure 34 The NSDbgs from the sector 2 during the different sulfur restrictions. 

In Figure 34 the NSDbgs have been presented for the sector 2. Restricting the sulfur 

content in the marine fuels seems to have effect on NSDbg
s also in the sector 2. The 

decreased sulfur contents decrease the total PNCbgs and shift the maximum of the NSDbg 

to smaller particle sizes. The maximum of the NSDbg during the first sulfur restriction is 

56 nm as in case of the sector 1, but the shape of the peak is sharper, and the peak is 

higher. During the second sulfur restriction period the diameter of the NSDbg maximum 

stays unchanged, but the concentration overall is lower. During the third sulfur restriction 

period the diameter of the NSDbg drops to 47 nm, which again is same as in the sector 

1. The similarity of the maximums of the NSDbgs during the different sulfur restriction 

periods with the sector 1 is expected as the nearby shipping activity should not have any 

major effect directly on the NSDbgs. The effect of shipping can still be seen in NSDbg 

because when plumes are coming from very long distances, they have much time to 

dilute and will not be identified as individual plumes anymore but are just added to 

PNCbgs and NSDbgs. This effect might be a reason the total PNCbgs seem to be decreas-

ing as the sulfur content in the marine fuels decreases. 
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Figure 35 The NSDbgs from the sector 3 during the different sulfur restrictions. 

In Figure 35 the NSDbgs have been presented for the sector 3. In the sector 3 the different 

amounts of sulfur in the marine fuels also seem to influence the NSDbgs. Now only the 

PNCbgs rise after the first change of the sulfur restrictions from 1.50 % to 1.00 % and 

decrease after the second change from 1.00 % to 0.10 %. Notable is that in this sector 

the sulfur restrictions do not have an effect on the diameters of the maximums of the 

NSDbgs and all these maximums are larger than in the other two sectors. The maximums 

of the NSDbgs being 65 nm during the first, 64 nm during the second and 63 nm during 

the third sulfur restriction period. The number of large particles in total is also larger for 

this sector. In this sector there was a significant shipping activity behind the closest ship-

ping lanes and many, if not all, the plumes arriving from these very long distances will be 

distillated to the point of being undetectable as individual plumes. Therefore, they only 

contribute to the PNCbgs as the increasing concentrations. The maximum of the NSDbg 

is in good accordance with this as the maximum is at the larger particle size than in the 

other two sectors where the plumes are coming from shorter distances. In this sector 

there is also a visible decrease in the PNCbgs after the implementation of sulfur limit of 

0.10 % in the marine fuels.  
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The NSDbgs were plotted also for all the measured background data during the valid time 

periods. To this plot all the NSDbgs with and without wind direction were included. These 

NSDbgs are presented in Figure 36. 

 

Figure 36 The NSDbgs from all wind directions including undetermined wind di-
rections, during the three different sulfur restriction periods. 

In Figure 36 the NSDbgs during the sulfur restriction periods of 1.50 % and 1.00 % are 

seen to be almost identical. There are only minor differences in the largest and the small-

est particle sizes. The NSDbg during sulfur restriction period of 0.10 % is different. The 

maximum of the NSDbg has shifted to the slightly smaller particle size of 55 nm from the 

previous 56 nm and the average PNCbg has decreased. This is in line with Figures 33-

35.  After the first change of sulfur restrictions from 1.50 % to 1.00 %, the background 

aerosol changes very little and almost all of the change happens after the second change 

of restrictions from 1.00 % to 0.10 %. This might be related to the uncertainty concerning 

the real sulfur content change of the marine fuels after the change of 1.50 % to 1.00 % 

in sulfur restriction seen in Pirjola et al (2014). 

6.8 Error sources 

The largest possible causes of errors in this study are the quality of the data cleaning, 

long measurement cycle of the DMPS, functioning of the plume detection method, the 
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uncertainty concerning the functioning and the composition of the measurement setup 

and the different data coverages for the different years. 

The initial cleaning of the data was done manually by visual evaluation of the data. This 

might have produced an error as some errors in data might have been considered to be 

normal phenomenon for some days and errors for others. Also, some corrupted data 

might have been left in the data or some real phenomenon might be considered as bad 

data and falsely removed from the data. The automatic data correction might have 

caused similar errors to the data when the code from Kivekäs et al. (2014) removed the 

data with too fast changes in the total PNC data. Some of these removed fast changes 

might have been real phenomenon like ship plumes and not necessarily bad data. Be-

cause of this, the number of the plumes and the total PNC caused by the plumes may 

be portrayed to be lower than they are in the reality. 

The relatively long measurement cycle of the DMPS (5 min 20 s) might have caused an 

error in the plume analysis. The error is caused because every plume starts during the 

first and ends during the last measurement cycle of the DMPS. This leads to the periods 

of time right before and after the plume being included in the detected plume. This re-

duces the average PNCpls as parts of the time considered as plume are really only peri-

ods with PNCbg. The plume starting and ending inside the measurement cycle also 

causes an error in the PNC through inversion code when the multiple charge particles 

are corrected. However, depending on if the plume starts or ends inside the measure-

ment cycle the effects are opposite and counteract each other. These errors could be 

avoided if the first and the last measurement cycle would be removed from every plume. 

This would lead to large data loss as all measured plumes lasting at maximum two meas-

urement cycles (10 min 40 s) would be removed. This corresponds to large part of the 

measured plumes as 63.8 % plumes were at maximum two measurement cycles and 

36.4 % were even shorter than one measurement cycle (5 min 20 s) of the DMPS. To 

examine the errors caused by the long measurement cycle of the DMPS the normalized 

NSDpls were calculated and plotted for all the plumes, the plumes lasting longer than one 

measurement cycle and the plumes lasting longer than two measurement cycles. These 

NSDpls are presented in Figure 37. 



83 
 

 

Figure 37 The normalized average NSDpls of all plumes, the plumes lasting 
longer than one measurement cycle and the plumes lasting longer than two meas-
urement cycles of the DMPS. 

From figure 37 all NSDpls and their standard deviations are seen to be practically identi-

cal. Therefore, there is no need to leave the short plumes out of the analysis. To further 

study the error caused by the first and the last measurement cycles of the DMPS, NSDpls 

were plotted for plumes the with removed first and last measurement cycles. The attained 

NDSpls had very similar shapes as NSDpls presented in this thesis. These reduced 

NSDpls have been presented in the Appendix B in Figures 1-3. The similarity of the 

NSDpls indicates that the negative error at beginning of the plume and the positive error 

in the end of the plume correct for each other because of the large number of analyzed 

plumes and there is no need to remove the short plumes from the data. 

The plume detection method created by Kivekäs et al. (2014) is highly dependent on the 

values of the background percentile and limits for the PNCe and the Re used for identify-

ing the plumes. These values used in this study were the same as in the original article 

Kivekäs et al. (2014). The reasoning behind these values is presented in Kivekäs et al. 

(2014) and effect of changing these initial values on the results was not further examined 

in this work. Another error caused by the plume detection method is that the data valida-

tion used by the code also removed all the plumes measured during the fast changes in 
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the PNCbg and the plumes from which data was missing. These reduce the total number 

of the plumes compared to the real situation. Also, the added feature to invalidate all the 

plumes going over the day changes slightly reduces the number of the detected plumes 

and the effect of the PNCpls on the total PNCs. 

The measurement setting used in this study was most of the time operating alone without 

continuous manual supervision and the measurement logs were partially incomplete. 

These together lead to certain uncertainty concerning the quality and reliability of the 

measurement data. These errors were corrected in the initial data cleaning removing all 

suspicious periods of the data. As data containing possible errors was exquisitely re-

moved, the coverage of the cleaned data was relatively low for some years ranging be-

tween approximately 25-95 %. This coverage has been presented in Figure 12. The low 

coverages of the cleaned data for some years may have led to some seasons being 

underrepresented and others overrepresented in the data. 
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7. CONCLUSIONS 

The PM emissions from shipping have a considerable effect on the climate and the hu-

man health. The ship emissions have a net cooling effect on the climate, as the increased 

reflection of sunlight back to the space from the particles outweighs the warming effects 

of the GHGs emitted in shipping. The effect that the PM and the gaseous emissions 

produced by the shipping have on human health is negative. The emissions produced 

by shipping have been related to numerous respiratory diseases and increased prema-

ture mortality and morbidity.  

In this thesis the effect of changing the sulfur limit of the marine fuels on particle proper-

ties in atmospheric environment was studied. The atmospheric measurement data 

measured at the measurement site of the FMI at Utö in the Baltic Sea between 

11.1.2007-31.12.2016 was used for this thesis. The used data was the DMPS data com-

bined with the AIS and the weather data. From the DMPS data, ship plumes were found 

using the modified version of the plume detection method developed by Kivekäs et al. 

(2014). The AIS data was used for evaluating the amount of the ship traffic and the ship 

types in the area around Utö. The wind directions were attached to the observed plumes 

in order to divide them into three representative sectors with the plumes arriving from 

different distances on average. Also, the effects of the sulfur restrictions on total PNCs 

and plumes direct contribution to the total PNC in the area as well as the effect on the 

plume aging and the comparability of the measured plumes to the direct emission meas-

urements from Kuittinen (2016) were discussed. 

The statistically significant number of 42322 plumes with available wind data was found 

from the DMPS data. The significant portion (21960) of these arrived from the predeter-

mined sectors 1, 2 and 3, and ended up being analyzed further. Notable is that 63.8 % 

of the plumes were at maximum two measurement cycles long and 36.4 % of the plumes 

were even shorter than one measurement cycle of the DMPS. This did not seem to pro-

duce any significant error in the results. Still in future, an instrument with a shorter time 

resolution would be better for detecting and analyzing the plumes. 

Especially the later change in sulfur restriction from 1.00 % to 0.10 % was found to have 

been effective. After the reduction the total PNC, PNCpl and the contribution of PNCpl to 

the total PNC in the area all decreased. The total decreases were 32 % for the total PNC 

in the area, 27 % for PNCpl and 18 % for the contribution of the PNCpl to the total PNC. 
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The effect of the sulfur restriction change from 1.50 % to 1.00 % was small and most of 

the reductions happened during the change of sulfur restriction from 1.00 % to 0.10 %. 

 

The low concentrations of sulfur in the marine fuels seemed to limit the particle growth 

to larger particle sizes in combustion process. This was observed as the both restrictions 

decreased the diameters of the maximums of the NSDpls also the relative normalized 

PNCpls increased in small particle sizes approximately smaller than 35 nm and de-

creased in particle sizes of 35-150 nm while the concentrations in particle sizes larger 

than 150 nm stayed almost unchanged. Also, when the unnormalized PNCpls were di-

vided into three size bins of 7-33 nm, 34-108 nm and 108-538 nm, the total PNCpls con-

centrations were decreasing in all sectors after the implementation of the both sulfur 

restrictions of 1.00 % and 0.10 %. After the implementation of the sulfur restriction of 

0.10 % the PNCpls slightly increased in the smallest particle size class of 7-33 nm and 

decreased in larger size classes, indicating that while there is reduction in total particle 

numbers, some produced particles are smaller than during periods with the higher con-

centrations of sulfur in the fuels and are seen in the smallest size class instead of the 

larger size classes. The reduction of the PNCpls was largest in the size class of 34-

108 nm which most closely resembles the expected maximum of the NSD of the shipping 

emissions.  

In all sectors the implementation of the sulfur restrictions of 0.10 % reduced the maxi-

mum values of PNCpls, indicating that the highest average values of PNCpls were related 

to the high sulfur contents in the fuels. Also, overall reductions of the PNCpls after the 

changes in the sulfur restriction were observed. The reduction of the PNCpl was espe-

cially large in plumes with the largest maximums of the NSDpl. This was observed as the 

reduction in the average of the NSDpl maximums was larger than in the medians of the 

NSDpl maximums even as the largest diameters of the NSDpl maximums stayed almost 

unchanged during the different sulfur restriction periods.  

There did not seem to be any clear correlation between the fuel sulfur content and the 

increase of the total PNCpl during aging. However, the relative increase of PNCpls sifted 

towards the smaller particle sizes in all the sectors as the sulfur content decreased. This 

indicates that while the amount of new particle formation seems to be unaffected by the 

sulfur content restrictions in marine fuels, the growth potential of the particles is reduced 

as the sulfur content in fuels decreases. However, when the normalized NSDpls of the 

plumes during the nighttime and the daytime were studied the increase in the diameter 

of the maximum of the NSDpl increased when the sulfur concentrations decreased. This 
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implicates that even while the growth potential of the particles is limited by the lowered 

fuel sulfur content the effect on the final size of the particles is not as large as the size 

reduction of the primary emission particles during the nighttime.  

When the average NSDpl of the nighttime plumes from the sector 1 was compared to 

NSDs of direct emission measurements NSDs were found to have very similar shapes 

and two detectable modes. Only the shape of the NSDs from direct emission measure-

ments was a lot sharper. The shapes of the NSDs were almost identical for the particle 

sizes larger than 100 nm, and after normalizing NSDs to same total concentration of 

particles in the size range of 108-402 nm it was found that in atmosphere plumes have 

approximately two orders of magnitude lower concentrations in the particle mode with 

the smaller particle diameter than the direct emissions. Implicating that a large number 

of these particles evaporate in atmosphere. 

The restrictions of the marine fuel sulfur content had an effect on the background aerosol 

shifting the maximums of the NSDbgs to smaller particle sizes and reducing the PNCbgs. 

The PNCbgs were reduced especially in the particle sizes typical for the ship emissions 

indicating that the large fraction of the marine background aerosol particles was from the 

diluted shipping emissions. The effect of the later change of the sulfur restriction from 

1.00 % to 0.10 % had much clearer effect on the background aerosol than the smaller 

first change of sulfur restriction from 1.50 % to 1.00 %. This effect of the sulfur restrictions 

on the PNCbg implicates that the total effect of the particles produced by shipping on the 

atmospheric total PNC is larger than the direct contribution of 4-8 % and that the change 

of the total concentrations in the area might be better implication of the effectiveness of 

the sulfur restrictions than the direct contribution of PNCpl to the total PNC. 
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APPENDIX A: TABLES 

Table 1 The number of plumes detected from the different sectors the during 
different sulfur restriction periods. 

Sector Harbor Nearby shipping lane Distant shipping lanes 

Sulfur re-

striction 

(%) 

1.50 1.00 0.10 1.50 1.00 0.10 1.50 1.00 0.10 

Plume 

number 
1721 3393 860 2601 4400 1251 3121 3982 631 

 

Table 2 The average PNCpls from the sectors 1, 2 and 3 during the different sul-
fur restriction periods, divided into 3 distinct size classes. From the analyzed 
plumes the first and the last measurement cycles inside the plumes have been 
removed. 

 

Particle 

size 

(nm) 

Sulfur restriction Relative change 

  <1.50 % <1.00 % <0.10 % 
Change 

1 

Change 

2 

Total 

change 

Units nm #/cm3 #/cm3 #/cm3 % % % 

Sector 1 

7-33 972 825 1180 -15 +43 +21 

33-108 1290 1070 613 -17 -43 -52 

108-537 109 96 92 -12 -4 -16 

Total 2371 1991 1885 -16 -5 -21 

Sector 2 

7-33 505 506 613 0 +21 +21 

33-108 1033 1064 631 +3 -41 -39 

108-538 104 89 67 -14 -25 -36 

Total 1646 1660 1312 +1 -21 -20 

Sector 3 

7-33 370 330 350 -11 +6 -5 

33-108 936 945 584 +1 -38 -38 

108-538 131 131 102 0 -22 -22 

Total 1437 1406 1037 -2 -26 -28 
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APPENDIX B: NUMBER SIZE DISTRIBUTIONS OF 
PLUMES WITH THE FIRST AND THE LAST 
MEASUREMENT CYCLES REMOVED 

 
Figure 1 The NSDpls of the plumes from the sector 1 during the 3 different sulfur 

restriction periods. From the analyzed plumes the first and the last measurement 
cycles inside the plumes have been removed. 
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Figure 2 The NSDpls of the plumes from the sector 2 during the 3 different sulfur 

restriction periods. From the analyzed plumes the first and the last measurement 
cycles inside the plumes have been removed. 
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Figure 3 The NSDpls of the plumes from the sector 3 during the 3 different sulfur 

restriction periods. From the analyzed plumes the first and the last measurement 
cycles inside the plumes have been removed. 


