
Atte Virtanen

ROBUST F0 ESTIMATION OF TELEPHONY
SPEECH USING ARTIFICIAL NEURAL

NETWORKS

Faculty of Information Technology and Communication Sciences
Master of Science Thesis

February 2020

i

ABSTRACT

Atte Virtanen: Robust F0 estimation of telephony speech using artificial neural networks
Master of Science Thesis
Tampere University
Master’s Degree Programme in Electrical Engineering
February 2020

The goal of this study was to develop a proper method for reliable estimation of fundamental
frequency (F0) of telephony speech. This process of F0 estimation is often called "pitch tracking",
and a large amount of research has been carried out on the topic. However, most of the studies
have been performed on clean speech and robustness against adverse signal conditions is still
an issue.

Today majority of recorded speech is from mobile phone calls. This poses two-folded require-
ment for robustness: First, speech is coded with a lossy speech codec modifying the audio wave
form. Second, as a result of mobility, the human speaker is often located in a noisy environment,
resulting in additive noise in the speech signal. Therefore robustness was the main topic of the
study.

Traditional F0 estimation methods have been digital signal processing (DSP) -based, i.e., con-
taining carefully defined mathematical operations and domain knowledge used only in algorithm
design. However, late advancements in the field of Deep Learning makes it possible to let a com-
puter learn the relevant representation of the speech signal in order to perform the F0 estimation
task. This approach was taken in the present study.

A starting point for the study was an F0 estimation algorithm developed in Aalto University [10].
The present thesis builds on top of that work by incorporating speech codecs in model training,
and evaluating the resulting system with clean and coded test data. The use of speech coded
signals in training phase was motivated by the fact that a learning method should learn from data
having similar properties as the evaluated data. On the other hand, speech coding can also be
seen as a data augmentation method to increase model robustness even with non-coded speech
signals.

The proposed method with different training strategies was compared to a number of estab-
lished DSP -based methods. Comparison was done with all combinations of speech coding and
noise scenarios. The results show that the proposed method clearly outperforms traditional meth-
ods when background noise is present in coded speech. A slight performance improvement was
also achieved with clean speech signals, indicating that the proposed method should always be
used instead of DSP -based method unless computational resources are of scarce.

Keywords: F0, AMR, deep learning, pitch tracking, speech analysis

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Atte Virtanen: Puhelinpuheen luotettava perustaajuuden estimointi neuroverkkojen avulla
Diplomityö
Tampereen yliopisto
Sähkötekniikka, DI
Helmikuu 2020

Tämän tutkimuksen tavoite oli kehittää menetelmä puheen perustaajuuden (F0) luotettavaan
estimointiin puhelinpuheesta. Kirjallisuudessa tästä puheen perustaajuuden estimointiongelmasta
käytetään usein termiä englanninkielistä termiä "pitch tracking"ja aiheesta löytyykin paljon tutki-
mustietoa. Suurin osa tutkimuksesta on kuitenkin suoritettu puhdasta puhetta käyttäen ja tulosten
yleistyminen erilaisissa olosuhteissa tallennettuun puheeseen kaipaa lisätutkimusta.

Nykyisin suurin osa tallennetusta puheesta on kulkenut matkapuhelinverkossa eli ainakin toi-
nen päätelaite on ollut matkapuhelin. Tästä on seurauksena kaksi haastetta puheen analyysissä.
Ensinnäkin matkapuhelinverkossa siirtoa varten puhe koodataan häviöllisesti eli tietoa kadottaen.
Toiseksi puhuja voi olla meluisassa ympäristössä ja siten puheen seassa saattaa olla additiivista
kohinaa. Tämän vuoksi tutkimuksessa keskityttiin erityisesti käytettävän menetelmän robustisuu-
teen eli häiriösietoisuuteen.

Perinteiset menetelmät perustaajuuden estimointiin ovat perustuneet digitaalisen signaalinkä-
sittelyyn (DSP, Digital Signal Processing) eli matemaattisesti määriteltyihin operaatioihin, joiden
avulla ja sovellusalue tuntemalla on mahdollista tutkia signaalin sisältämää informaatiota. Viimeis-
ten vuosien aikana tapahtunut edistys syväoppimisen tutkimuksessa on mahdollistanut järjes-
telmät, joissa tietokoneohjelma itse oppii tunnistamaan signaalista piirteitä ja niiden perusteella
päättelemään asioita, esimerkiksi tässä tapauksessa signaalin sisältämän puheen perustaajuut-
ta. Syväoppimiseen perustuva puheen perustaajuuden estimointi valittiin työn lähtökohdaksi ja
perinteiset menetelmät toimivat verrokkeina.

Tutkimuksen lähtökohtana toimi Aalto-yliopiston tutkimusryhmässä kehitetty keinotekoisiin neu-
roverkkoihin perustuva algoritmi [10]. Tämä työ yleistää algoritmin käyttöä puhekoodekin kautta
kulkeneelle puheelle lisäämällä algoritmin opetusmateriaaliin puhekoodattua puhetta ja vertaa-
malla suorituskykyä muihin menetelmiin niin koodatulla kuin koodaamattomalla puheella. Koo-
datun puheen lisääminen neuroverkon opetukseen on perusteltua, sillä neuroverkko voi toimia
varmasti oikein vain sellaisella datalla, jonka ominaisuudet se tuntee. Tämän lisäksi oletuksena
on, että koodattu puhe toimii myös datan lisääjänä ja siten parantaa myös neuroverkon yleistä-
miskykyä.

Ehdotettua neuroverkkomenetelmää erilaisilla koulutusvaihtoehdoilla verrataan useisiin tun-
nettuihin DSP -pohjaisiin menetelmiin. Vertailu tehdään kaikilla signaalityyppien yhdistelmillä eli
eri koodekit ja kohinatapaukset käsitellään erikseen. Tulokset osoittavat, että ehdotettu menetel-
mä suoriutuu merkittävästi perinteisiä menetelmiä paremmin, mikäli puhesignaali sisältää paljon
taustakohinaa tai on puhekoodattu.

Myös puhtaan puheen tapauksessa ehdotettu menetelmä suoriutui hieman verrokkeja parem-
min, ja on siten tarkkuuden puolesta soveltuva kaikkiin puheen perustajuuden estimointitehtäviin.
Mikäli laskentaresurssit ovat rajatut tai aikaa algoritmin kouluttamiseen ei ole, verrokkina olleet
perinteiset menetelmät ovat vielä parempi vaihtoehto.

Avainsanat: F0, AMR, syväoppiminen, puheen perustaajuus, puheanalyysi

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This thesis is part of Finnish Academy funded project "Rhythms in Infant Brain: Wearables
for Computational Diagnostics and Mobile Monitoring of Treatment (RIB)" and prepared in
co-operations between Aalto University Department of Signal Processing and Acoustics
and Tampere University Signal Processing Research Center.

My deepest gratitude goes to my supervisor Prof. Okko Räsänen who not only gave me
the opportunity to finish my prolonged studies and also made it happen with invaluable
advice, push and support. DSc. Manu Airaksinen provided the core of the thesis with the
method developed by him and guidance how to extend its application and evaluation to
another domain.

The direct technical guidance provides a solid base to the research and thesis work but,
of course, other kind of support cannot be overestimated. I want to thank my room mates
Anant and Khazar for being there when I was struggling with my work. Thanks to Prof.
Tuomas Virtanen for creating an inspiring atmosphere around audio signal processing at
Tampere University.

There are so many colleagues both from the current thesis period and previous profes-
sional and studying life worth for various reasons worth naming here that I can only say
Thank You to all of you, you know who you are and I wish we still meet again.

Above all, I need to thank the most important people in my life, my family. My beloved
wife Jenni has all these 15 years supported and pushed me with the graduation project.
I was not an easy ride but will end soon. Thank you! Our kids Kerttu and Lauri are
the foundation of our life and gave the reason to go through this project. Obviously my
parents are also to thank, for everything!

Tampere, 3rd February 2020

Atte Virtanen

iv

CONTENTS

List of Figures . vi

List of Tables . vii

List of Programs and Algorithms . viii

List of Symbols and Abbreviations . ix

1 Introduction . 1

2 Human speech production . 3

2.1 Speech production system . 3
2.1.1 Larynx and phonation . 3
2.1.2 Vocal tract and nasal tract . 5
2.1.3 Lip radiation . 6

2.2 Linguistic properties of speech . 6
2.2.1 Modeling of Human speech production 7
2.2.2 Speech coding . 7

3 F0 estimation . 10

3.1 The problem of F0 estimation . 10

3.2 Basic methods for F0 estimation . 12
3.2.1 Autocorrelation . 13
3.2.2 Cross-correlation . 14
3.2.3 Spectrum . 15
3.2.4 Cepstrum . 15
3.2.5 Post-processing . 16

3.3 F0 estimation algorithms . 16
3.3.1 RAPT . 16
3.3.2 REAPER . 17
3.3.3 YAAPT . 18

3.4 Electroglottography (EGG) or electrolaryngography 18

3.5 Applications of F0 estimation . 20

4 Neural networks for F0 estimation . 22

4.1 Introduction to artificial neural networks . 22
4.1.1 Artificial neuron and Perceptron . 23
4.1.2 Multilayer perceptron . 24
4.1.3 Convolutional neural networks . 24
4.1.4 Recurrent neural networks . 25
4.1.5 Training of the networks and regularization 26
4.1.6 WaveNet model . 28

4.2 Existing ANN based F0 estimators . 29

v

4.3 The proposed neural network for F0 estimation 29
4.3.1 Structure of the proposed neural network 30

5 Test setup . 32

5.1 Test data . 32
5.1.1 Data for neural network training . 32
5.1.2 Data augmentation of training data 33
5.1.3 Data for F0 estimation evaluation . 33

5.2 Simulation environment . 34
5.2.1 Python for neural networks . 34
5.2.2 Speech processing utilities . 35
5.2.3 Matlab for results and running external utilities 35
5.2.4 Speech codec . 36

5.3 Reference methods for F0 estimation . 36

5.4 Error metrics . 37
5.4.1 Voicing Decision Error . 38
5.4.2 Gross Pitch Error . 38
5.4.3 Fine Pitch Error . 38
5.4.4 F0 frame error . 39

6 Results . 40

6.1 Results with non-speech coded signals . 40

6.2 Results with AMR-NB coded signals . 44

6.3 Results with AMR-WB coded signals . 47

6.4 Overall impressions . 50

6.5 Example pitch tracks . 50

7 Conclusion . 55

References . 57

Appendix A Numeric results by method . 63

vi

LIST OF FIGURES

2.1 Human speech production mechanism. Reproduced from [44] 4
2.2 Different phonation types. Topmost figure depicts glottal vocal fold configu-

ration, middle figure resulting glottal excitation and bottom figure excitation
spectrum. Printed with permission from [8] 5

2.3 Waveform of female spoken utterance "She had your dark suit in greasy
wash water all year." . 7

2.4 Waveform of a female spoken word "suit" 7
2.5 Block diagram of source-filter model. Reproduced from [44] 8
2.6 Waveforms of female spoken word "suit" as raw PCM and AMR-WB coded 9

3.1 Example frame of voiced speech . 12
3.2 Example frame of mostly non-voiced speech 13
3.3 Pitch track of a female spoken utterance "She had your dark suit in greasy

wash water all year." . 17
3.4 EGG waveform of female spoken word "suit" 19
3.5 Highpass filtered EGG waveform of female spoken word "suit" 20

4.1 Block diagram of the proposed model. Printed with permission from [10] . . 31

6.1 Results of non-coded files with white noise in different SNR scenarios . . . 42
6.2 Results of non-coded files with babble noise in different SNR scenarios . . 43
6.3 Results of AMR coded files with white noise in different SNR scenarios . . . 45
6.4 Results of AMR coded files with babble noise in different SNR scenarios . . 46
6.5 Results of AMR-WB coded files with white noise in different SNR scenarios 48
6.6 Results of AMR-WB coded files with babble noise in different SNR scenarios 49
6.7 Example pitch tracks for file mic_F03_si888.wav from PTDB-TUG 53
6.8 Example pitch tracks for file mic_M06_si1455.wav from PTDB-TUG 54

vii

LIST OF TABLES

5.1 Used parameters in F0 estimation . 37

A.1 YAAPT results . 63
A.2 REAPER results . 64
A.3 RAPT results . 65
A.4 DNN results . 66
A.5 DNNAMR results . 67
A.6 DNNAMR−WB results . 68

viii

LIST OF PROGRAMS AND ALGORITHMS

5.1 Pseudocode of data augmentation process. 34

ix

LIST OF SYMBOLS AND ABBREVIATIONS

AMR-WB Adaptive Multi-Rate Wideband, a wideband speech codec used in
mobile networks

AMR Adaptive Multi-Rate, a speech codec used in mobile networks

ANN Artificial Neural Network

API Application Programming Interface

CELP Code-Excited Linear Prediction, method for speech coding

CNN Convolutional Neural Network

DNN Deep Neural Network

DSP Digital Signal Processing, here: traditional methods composing of
basic mathematical operations not including machine learning

EGG Electroglottogram, a non-intrusive method for vocal fold position
tracking

F0 Fundamental frequency

FFE F0 Frame Error

FIR Finite Impulse Response, a digital filter type

FPE Fine Pitch Error

GCI Glottal Closure Instant, the moment of closed glottis during voiced
speech

GPE Gross Pitch Error

GPU Graphics Processing Unit, microprocessor type originally devel-
oped for graphics calculations but also used with ANN calculations

GRU Gated Recurrent Unit, Recurrect Neural Network subtype

LP Linear Prediction, operation used in many speech processing ap-
plications

LSTM Long Short-Term Memory, Recurrent Neural Network subtype

LTE Long Term Evolution, Mobile network standard

ML Machine Learning

NB Narrowband, speech sampled at 8000 Hz

NCCF Normalized Cross-Correlation Function

PCM Pulse Code Modulation

x

RMSE Root Mean Square Error

RNN Recurrent Neural Network

STFT Short-Time Fourier Transform, a method for transforming a part of
time domain signal to frequency domain

VDE Voicing Decision Error

WB Wideband, speech sampled at 16000 Hz

1

1 INTRODUCTION

Speech is perhaps the most distinctive feature of humans among other animals. Com-
municating via sound waves is a common feature in nature, but simple sounds alone do
not carry enough information to express complex entities. By development of language
and versatile speech production system, humans achieved such a level in communication
that it was possible to express arbitrary things by voice.

The ability to speak made it possible accumulate information by spreading it mouth to
mouth. Before invention of writing this was the only true way to develop civilization, so
that not every generation had to start from scratch and personally gain the experience
required for survival. Now parents could teach their children how to act in new situations
and the wisdom of elder people increased their value even if they physically were already
a burden to community.

Language is not the only dimension of speech. In addition to words, speech carries a vast
amount of information regarding the speaker itself and the intention of spoken words.
Human voices are quite distinguishable, and people can recognize a familiar speaker
without seeing or hearing the direction of incoming speech. This is a very important
aspect of communication in communities.

Speech can be varied to transmit feelings or urgency. Depending on intonation, stressing
and other properties, semantically identical utterance can have different meaning, for
example place an imperative or question form on top of declarative meaning. Therefore
machine listening at broad is a much more complex issue than just traditional automatic
speech recognition transcribing audio waveform into text.

Fundamental frequency, or F0, is one of the basic properties of speech. A large part of
speech is voiced, meaning that it has a quasi-periodic structure. This periodicity comes
from vibrating vocal folds which modulate the airflow coming from lungs. Frequency of the
vocal fold vibration is affected by many linguistic and neurophysiological factors, hence
carrying a lot of information regarding the speaking style or, e.g., health or mood of the
speaker. Therefore robust estimation of F0 is also required in several uses cases rang-
ing from basic speech research (e.g. [33]) to applications such as speech synthesis or
speech-based diagnostics of speaker health [16] or occupational voice (e.g. [36]). F0 is
also one of the standard features included in the speech analysis toolkits OpenSMILE
[17] and Praat [12] which are widely used in speech processing tasks.

In this thesis we provide an overview of current state of F0 estimation methods and pro-

2

vide a new method to further improve the robustness of F0 estimation. Usually F0 esti-
mation methods have been developed with clean speech signals and possibly somehow
verified with noisy or otherwise imperfect signals, or, alternatively, designed specifically
for noisy conditions using dedicated signal processing mechanisms. Our approach is to
use machine learning to create an F0 estimation model that learns to cope with distur-
bances already in the algorithm training phase. The current work is based on the method
initially reported in [10]. We improve the robustness of the original algorithm in telephony
applications by applying speech coding to the training data in our training procedure.

This thesis is organized as follows. In chapter 2 we introduce basics of human speech
and also the properties related to speech coding. In chapter 3 estimation of the F0 is dis-
cussed. We introduce the main principles used in F0 estimation and some of the present
algorithms. In chapter 4 we take a look at artificial neural network (ANN) -based estima-
tion along with introduction to ANNs. We also present our convolutional neural network
-based F0 estimator that is inspired by the WaveNet architecture originally developed for
speech synthesis [40]. In chapter 5, our test and evaluation setups are described in de-
tail. Chapter 6 presents the results obtained. An overall wrap-up, significance of the work
done, and possible future improvements are discussed in chapter 7.

3

2 HUMAN SPEECH PRODUCTION

Speech production is very complex entity starting from abstract thought and ending to
acoustic pressure waves radiating from mouth and nose. Between these, neural and
muscular operations take place, converting the communication intention to movements of
the parts of the speech production system, also referred to as articulators. In this chapter,
we consider only the last part, the mechanical production of speech.

2.1 Speech production system

As speech is a form of acoustical energy which in turn is (air) pressure variation in time,
the first thing in speech production is to generate air pressure. This takes place in the
lungs with the aid of diaphragm and abdominal muscles, pressing air through upper parts
of the respiratory (and vocal) tract. Without any interaction of speech producing organs,
the resulting action would be breathing and the sound would be just noise of flowing air.
Actual speech is formed in phonation and articulation processes taking place in larynx
and vocal tract.

2.1.1 Larynx and phonation

Actual generation of speech starts to take place in larynx area. Figure 2.1 shows the
cross-sectional view of human speech production organs. Air always flows through larynx
and vocal folds, but by controlling the position and tension of the vocal folds, the speaker
can create voiced sounds.

A voiced sound is periodic and it is generated when vocal cords vibrate, corresponding to
periodic opening and closing of the glottis, which is the space between the vocal folds. As
a result, the constant airflow from the lungs changes into a process in which accumulating
subglottal pressure first opens the glottis with increasing amounts of airflow through it,
followed by a sudden closure of the glottis due to the suction caused by the rapid airflow
through the gap (also known as the Bernoulli effect). This is again followed by pressure
accumulation and opening of the glottis. The rate of this cycle is dependent both of the
air flow from lungs and the tension on vocal folds. Result is an air flow with pulses. This
periodic air flow change is called phonation. The inverse of the period of pulses is the
fundamental frequency, or F0, of speech.

4

The frequency of the pulses is not the only characteristic of the phonation. It can be
further categorized to three types: breathy, modal or pressed phonation based on the
shape of the pulse. This can be actively varied by the speaker through muscular control
of the vocal fold tension, or can be caused by different non-intended mechanisms such
as pathology to the vocal folds. One special case is whispering, where vocal folds are not
vibrating at all, and where also typically voiced speech is presented as unvoiced.

These aforementioned phonation types are presented in detail in figure 2.2. First is pre-
sented the cross-section of larynx to demonstrate the glottis opening. Second figure in
each case presents glottal excitation obtained from speech signal by inverse glottal filter-
ing. The third figure presents the spectrum of the glottal excitation. In case of breathy
phonation (figure 2.2a) vocal fold tension is light and less pressure is needed for opening
glottis. This results in wide pulse in time and less high frequency components in spec-
trum. Pressed phonation (figure 2.2c) on the other hand is result of tense vocal folds and
resulting excitation is shorter and sharper pulses in time having wider range of frequency
content. Typical modal phonation (figure 2.2b) is between aforementioned extreme cases.

In general, phonation takes place when vocal folds are tight and glottis is small enough to
allow pressure accumulation. For unvoiced speech, glottis is wide open in a similar way
as when breathing and air flows freely through the glottis.

Figure 2.1. Human speech production mechanism. Reproduced from [44]

5

Figure 2.2. Different phonation types. Topmost figure depicts glottal vocal fold config-
uration, middle figure resulting glottal excitation and bottom figure excitation spectrum.
Printed with permission from [8]

2.1.2 Vocal tract and nasal tract

The airflow from the larynx is often referred to as the excitation signal, which is either
periodic for voiced or noise-like for unvoiced speech. This excitation signal is not very
expressive yet, and it needs to be shaped to produce more diverse sounds correspond-
ing to different speech sounds of the given language. This shaping process is called
articulation, and it takes place in the vocal and nasal tracts.

At pharynx there is a flap called velum which controls the airflow division between oral
cavity and nasal cavity. Nasal tract has a fixed form, thus letting the air flow freely out
from nose. This means that alone it cannot produce different sounds, but it is used in
addition to oral path to create more diverse set of speech sounds.

Most of the articulation process takes place in the mouth. Oral cavity acts as a resonator
and articulators shape the vocal tract. Tongue, jaw, and lips are the most influential
organs is articulation. They shape the vocal tract, thereby effectively adjusting the fre-
quency response of the channel. This introduces formants, which are the resonance fre-
quencies of the vocal tract. The locations of the formants in the frequency space mostly
characterize voiced speech. Whispering is a special case where all the normally voiced
phones are also produced as unvoiced, thus vocal tract alone determines the identity of
the phones.

Some unvoiced and mixed sounds are also characterized by formants. Most extreme
vocal tract cases contain either very narrow gap or even full closure of vocal tract. Nar-
row gap, or constriction, causes high pressure and thus high velocity air flow, producing
turbulent flow and noise-like sound. This is called frication. Some phones require a full
closure of the tract to create a transient sound. These sounds, called plosives, are gen-
erated when the vocal tract if fully closed for a short period of time to build up pressure,

6

followed by sudden release of it.

2.1.3 Lip radiation

The final stage of speech production is related to the release of the produced air flow
variations from the oral and nasal cavities to the external environment as acoustic air
pressure variations. The air flows between lips, which not only act as a part of vocal tract,
but as a radiator with directional properties. Low frequencies with wavelength exceeding
head dimensions are radiated relatively omnidirectionally. At higher frequencies, clear
directivity is observed [44]. In addition, the external environment acts as an acoustic
impedance mismatch with the vocal tract described in detail in e.g. [34]. More broad
overview can be found in e.g. [9] and the conclusion is that lip radiation effect for lower
frequencies can be considered as a first order differentiator with a 6dB/octave emphasis
on higher frequencies. As a result of these factors, high frequencies are amplified com-
pared to lower frequencies, compensating for part of the low-pass characteristics of the
glottal excitation.

2.2 Linguistic properties of speech

Speech and language can be seen as having a hierarchical structure. The smallest unit
in speech is a phone, which is the smallest speech sound that can be separated from
speech. Close match to the phone on a theoretical level is a phoneme, which is more
language specific, and where phonemic contrast is defined as the minimal change in the
speech sound that can lead to a change in meaning in the given language. Phones are
true speech parts and phonemes more theoretic entities but sometimes they are used
interchangeably in the literature.

Phones (or phonemes) form rhythmic units called syllables which are still mostly mean-
ingless, except for monosyllabic words like "dog". Syllables are building blocks of words,
which are the smallest units with an individual meaning. An utterance is a group of words
in speech delimited by breath or other pauses. They may or may not convey a complete
meaning to be commmunicated, which is the property of a sentence.

An example of the acoustical waveform of an utterance is presented in figure 2.3. It is
part of the PTDB-TUG database [42] and extracted from file mic_F01_sa1.wav.

A more detailed view of a single word is presented in figure 2.4. It is an excerpt from the
utterance in figure 2.3 and presents the word "suit". This word clearly has three parts: [s]
(roughly 1.25-1.4 s), [u] (1.4-1.55 s), [t] (1.6-1.7 s). [s] is a typical fricative consonant with
a noise-like signal structure. [u] is voiced vowel with very clear periodicity. [t] is a plosive
first having a stop period followed by a noise-like burst.

7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t/s

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 2.3. Waveform of female spoken utterance "She had your dark suit in greasy wash
water all year."

1.2 1.3 1.4 1.5 1.6 1.7 1.8

t/s

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 2.4. Waveform of a female spoken word "suit"

2.2.1 Modeling of Human speech production

One rather simple way to model the speech production system is to split it into two blocks,
one for the excitation signal and another for vocal tract and lip radiation. This is called
source-filter model. Excitation signal block generates the basic waveform, such as peri-
odic signal for voiced speech or noise for mimicking turbulent airflow of fricatives. Vocal
tract part is a linear filter, usually all-pole, which shapes the excitation’s frequency re-
sponse. The block diagram is presented in figure 2.5. Even though this model is very
much simplified, it is broadly used in numerous applications, such as speech coding or
speech feature extraction [45].

2.2.2 Speech coding

Most speech codecs apply the aforementioned source-filter model because of its mathe-
matical simplicity. The whole system can be expressed as a single transfer function which
in turn is very easy to implement with digital filters. An important note here is that efficient

8

Figure 2.5. Block diagram of source-filter model. Reproduced from [44]

speech coding is lossy and perceptual, i.e., for human listener most of the information is
preserved but the actual waveform can be seriously distorted from the original uncoded
speech. This is illustrated in figure 2.6 where the same word is presented as an original
waveform sampled at 16 kHz and as the corresponding typically used 12.65 kbps AMR-
WB decoded waveform. The original signal is sampled at 16-bit accuracy, corresponding
to an overall bitrate of 256 kbps, which is roughly 20 times the bitrate of the encoded sig-
nal. Perceptually the signals are very close to each other, only the beginning [s] starting
at 1.25 s and ending at 1.40 s is muffled in AMR-WB coding but the voiced part is very
close to the original. The highest frequencies (above 6400Hz) are not coded at the 12.65
kbps bit rate, which partially explains weak frication energy in [s].

Modern speech codecs such as AMR are using CELP-like analysis-by-synthesis structure
originally presented in [39]. Excitation is modelled with a fixed codebook of signal vectors
while vocal tract parameters are obtained by linear prediction (LP) analysis. Analysis-by-
synthesis codecs create the encoded speech by synthesizing a number of signal candi-
dates and choosing the best one out of those and passing the corresponding parameters
to a decoder. LP coefficients are straightforward to calculate and the amount of resulting
data is small. Most of the bits in the encoded speech are consumed by source signal,
corresponding to the index of the vector quantized codebook. Finding the optimum vector
is time consuming and a full exhaustive search is not feasible in real-time communica-
tion. Smart algorithms have been developed for the search, and "good enough" outcome
can be achieved with acceptable computation times in practical hardware such as mobile
phones.

9

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

t/s

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

PCM

AMR-WB

Figure 2.6. Waveforms of female spoken word "suit" as raw PCM and AMR-WB coded

10

3 F0 ESTIMATION

The fundamental frequency is defined to be the one with lowest period in periodic signal
of interest, and in speech it corresponds to the vibration frequency of the vocal folds. In
speech signals, fundamental frequency really is not the only periodic component. Due to
the human speech generation mechanism, harmonics of the fundamental are also always
present. That property poses a challenge for f0 estimation, since signal has several
periods and fundamental might not be the strongest one.

The definition of perfect periodicity for a signal is

x(t+ αT) = x(t) (3.1)

where x denotes signal of interest, t time, α is an arbitrary integer ≥ 1, and T period
length. Here we want to estimate the value of T corresponding to fundamental frequency.
It is to be noted that natural speech is not in reality perfectly periodic, but quasi-periodic.
I.e., the consecutive fluctuations of the vocal folds have jitter in their period lengths. In
addition, the period changes as a function of time due to intonation and disappears totally
when voicing ends. Nevertheless, the aforementioned model of perfect periodicity is a
commonly applied simplification in F0 estimation, and the assumption is only applied to
short segments of signal at a time.

3.1 The problem of F0 estimation

The first problem in determining F0 of speech is to decide if there is speech at all and
is it voiced or not. This voicing decision is crucial part of successful estimator, since F0
is defined only for voiced phones. Unvoiced speech has no real F0 and can be omitted.
Usually, voicing decisions are based on the same algorithm-internal mechanics that are
also used to determine the value of the F0. As an example, autocorrelation-based F0
estimation methods usually attempt to measure the height of the dominant peak in the
signal autocorrelation curve as a proxy for the strength of voicing, while the temporal
delay at which the peak occurs corresponds to the period of the F0.

Although F0 is a well-defined property, its estimation is not always straightforward. One
reason to this is the fact that F0 is usually estimated from speech signal which is a prod-
uct of a cascade of operations in human speech production system. Glottal pulses are

11

generated in an early phase of the pipeline, so final acoustic speech signal only weakly
resembles the original glottis signal in terms of its periodical characteristics. Another
big issue is that speech is analyzed in frames containing multiple F0 periods (or glottal
pulses). It is assumed that the interval between consecutive glottal pulses is the same
(i.e., F0 stays constant within the analysis window), but in reality it seldom is constant
even for short periods. Therefore the F0 estimate can either reflect the average of sev-
eral glottal pulses, or be biased towards strongest pulses in the analysis window.

Due to these challenges, straightforward DSP operations are not necessarily enough
to provide reliable F0 estimates. One needs to pre-process the speech signal first to
remove extra distractors such as the DC component. Even after the pre-processing stage,
common periodicity estimators such as autocorrelation and cepstrum (introduced in 3.2)
usually end up in several F0 candidates. Post-processing is then applied to select the best
candidate as the F0 estimate. This stage often contains heuristics which are often driven
by hand-designed rules on how to act in certain kind of situations, or using information
from multiple neighboring frames to find a solution that fits to the current temporal context
as F0 can only change from frame-to-frame with a finite speed. This post-processing
area is covered in more detail in Section 3.2.5.

All of the above applies to clean recordings of speech. In practice, high quality recordings
are usually only available in laboratory situations i.e. with low levels of reverberation and
background noise, whereas most real life applications and naturalistic data collections
will take place outside controlled environments. Usually any recorded speech signal con-
tains some amount of additive noise either from the recording device (with possibly known
properties) or environmental noise with random properties. Typically lower signal to noise
ratio (SNR) leads to worse results in any signal analysis. In this case especially a com-
peting speaker, transient noises, or any other noise with speech-like characteristics may
severely affect the F0 estimation performance.

Another kind of source of distraction is channel variability, mathematically meaning con-
volution of the original signal with some kind of transmission channel that depends on
the use context. The most typical case is room reflections and reverberation in general.
Reflected speech reaches the microphone later than the direct speech and is probably
also spectrally altered. Technically speaking this is about impulse response of the system
being different from an ideal Dirac delta pulse. These kind of noise scenarios have been
analyzed and tested with F0 estimators in, e.g., [21] and [30].

Additive noise and channel noise are results of linear phenomena. Many audio process-
ing techniques are non-linear and usually non-linear problems are harder to solve than
linear. A substantial proportion of speech data transmitted or stored for analysis is from
telephone calls or video recordings.This also means that they are most likely processed
by an audio codec in order to reduce the size of the data. Lossy codecs discarding per-
ceptually non-relevant data may alter the speech signal nonlinearly and even change the
frequency content. This is especially true for low bit-rate speech codecs which are audio
codecs optimized for speech. They do very heavy processing to audio waveform, which

12

may be perceptually not so different from the original but have a drastic difference in the
resulting signal waveform.

3.2 Basic methods for F0 estimation

Periodicity estimation can be done both in time and frequency domains. In principle, time
domain methods utilize the original signal as a sequence of samples within an analysis
window, whereas frequency domain methods are based on a spectrum usually created
by short time Fourier transform, also applied to a windowed signal. The time domain ap-
proach typically includes finding the longest period using the (auto)correlation function.
In the frequency domain, the spectrum shows periodical components as evenly spaced
peaks, and F0 is estimated from those. Typically processing is done in overlapping win-
dows (also called frames), which means that only a small part of the signal is analyzed at
a time and successive frames partly contain the same data. In practice the reported F0
for a specific time instant is some sort of average inside the frame centered at this time
instant.

Some methods may not directly seek the fundamental frequency inside frame and pro-
cessing may not be based on frames at all. Example of this kind of processing is REAPER
[50] algorithm which actually estimates GCI (glottal closure instant) track and calculated
F0 estimates based on that.

Figure 3.1 shows an example of a frame containing voiced speech. The frame length is
512 samples and sampling frequency 16 kHz which corresponds to 32 ms. Periodicity
is well visible and should be easily estimated. In Figure 3.2 frame signal is mostly non-
voiced. The first 10ms look like periodic but the rest of the signal is noise-like. This frame
would most probably be considered non-voiced.

0 5 10 15 20 25 30 35

t/ms

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

a
m

p
lit

u
d

e

Figure 3.1. Example frame of voiced speech

Here we present a few key methodologies which are also sometimes used as basic blocks

13

0 5 10 15 20 25 30 35

t/ms

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

a
m

p
lit

u
d

e

Figure 3.2. Example frame of mostly non-voiced speech

in several more advanced F0 estimators. These are generic operations suitable for many
other estimation tasks. As such, none of these are sufficient beyond the most simple
periodicity estimation problems, as they propose F0 candidates out of which the best one
should be picked in a separate post-processing phase (Section 3.2.5).

3.2.1 Autocorrelation

As was stated in Section 3, a periodical signal repeats itself. Knowing this property, one
of the first things to try is estimating this period directly from the time series signal. This is
mathematically done by a correlation function which is maximized when correlated signals
are maximally similar. When we are estimating the similarity of a single signal against
itself at different relative delays, the operation to be used is referred to as autocorrelation.
It is formalized as

RXX(k) =

K∑
k=−K

x(n) ∗ x(n− k) (3.2)

where x is the signal, k is the lag and K maximum lag corresponding to the lowest
potential F0 of interest. Sometimes autocorrelation coefficients are normalized between
[-1, 1] with the maximum value of one at zero-delay, thereby corresponding to the Pearson
correlation coefficient.

Maximum value of the autocorrelation function tells at which lag the signal repeats itself
most accurately. Due to the problems mentioned in 3.1, this might not be the true F0 lag
but either a multiple or fraction of it. Further actions need to be taken to select the most
probable candidate as an estimate. Actual F0 frequency is then calculated from lag of k

14

samples as

F0est =
1

k
∗ Fs (3.3)

where Fs is the sampling frequency.

Autocorrelation has its maximum value at a lag of zero samples which also represents the
signal energy as 3.2 reduces into sum of squared sample values. F0 candidates are the
strongest lags within a non-zero lag search range that spans the minimum and maximum
desired fundamental period lengths.

Autocorrelation is a simple and traditional method for obtaining F0 candidates. It is easy to
implement and is fairly robust to noise if long analysis windows are used. Computational
complexity is proportional to window length and all possible F0 candidates can be found
with a single correlation operation.

The main shortcoming of the autocorrelation operation is the limitation of having to set
the correlation window to be at least the expected maximum glottal period corresponding
to the lowest expected F0. This means long correlations that result in large numbers of
calculations and, more importantly, the resolution for estimating single glottal periods is
lost since multiple high-pitched periods can exist within a single window. Also a rapid
change in F0 smears the peak in the autocorrelation function. Finally, even if F0 was
constant during the entire window, the confidence of the estimate depends on the value
of F0, since more periods of high F0 fit into fixed-length windows [49].

3.2.2 Cross-correlation

In the autocorrelation function, exactly the same signals are correlated. Cross-correlation
is a more general operation, where the signals under investigation are arbitrary. When
estimating the F0, the cross-correlation is calculated between an analysis window of the
signal of interest and a delayed part of it. Cross-correlation is separately calculated for
each possible delay and window length corresponding to a specified F0 range. This ap-
proach fixes the two problems of the autocorrelation mentioned in 3.2.1: Single glottal
periods can now be estimated with the adaptive-length windows, which solves the prob-
lem of variable amounts of periods on a fixed-length frame. Also, a similar resolution of
periodicity confidence is achieved across the desired F0 search range. [49]

Cross-correlation is defined as:

RXY (k) =

K∑
k=−K

x(n) ∗ y(n− k) (3.4)

where x is the actual signal, y is candidate period signal of x and K lag of the candidate
period.

15

As the window length is varying with each F0 candidate, the maximum signal energy is
too. Therefore normalization is essential for getting varying length correlations compara-
ble. Here we introduce normalized cross-correlation function (NCCF) which normalizes
the correlation values to be in range [-1,1]:

RXY (k) =

∑K
k=−K x(n) ∗ y(n− k)

√
eX + eY

(3.5)

where e is the energy of the signal:

e =

K∑
k=−K

s(k)2 (3.6)

With NCCF, a fixed thresholding value can be used when deciding F0 candidates.

3.2.3 Spectrum

Correlation functions operate directly on time series data. An alternative approach is to
transfer data to another domain by some mathematical transform operation. A typical
use case is using STFT (Short-time Fourier Transform) to carry out a time-frequency
decomposition of analyzed signal frames. For each analyzed signal frame, the output
of this operation is the magnitude and phase of each frequency component within the
signal of interest at a resolution of frame length’s proportion to sampling frequency. F0
candidates are obtained by picking the strongest peaks with comb structure from resulting
spectrum in desired frequency range.

3.2.4 Cepstrum

Cepstrum is a widely used tool in audio and especially speech processing. It is a time-
domain representation although not in a traditional way. It is defined as a inverse Fourier
transform of a logarithm of a Fourier transform

C = F−1(log(| F (x) |) (3.7)

The resulting cepstrum’s units are in the time domain. These quefrencies depict the dif-
ference of spectral peaks in time. The power of cepstrum is that for a tone with harmonics
the first and strongest peak in cepstrum corresponds to F0 in time and it is not sensitive
to stronger than fundamental harmonics. Therefore it is very useful for determining the
fundamental frequency of human speech or most music instruments.

16

3.2.5 Post-processing

All of the above mentioned F0 candidate creation methods are providing measures of pe-
riodicity from which the F0 candidates are picked. Ideally the peak corresponding to true
F0 would be the highest, but often that is not the case. More logic is needed when choos-
ing peaks even though periodicity measurement already is designed to emphasize the
most probable peaks. This is called peak-picking and it usually involves some heuristics.

So far we have been considering F0 estimate for a single frame. As we know that vo-
cal fold vibration frequency cannot change abruptly and it usually stays quite stable for
longer periods, noisy F0 frame estimates can be further enhanced by taking into account
also frames of near vicinity as a post-processing stage. This helps especially in fighting
against octave errors, where the estimated F0 is doubled or halved from the real value
which can occur often in the raw estimates. This temporal processing is called pitch track-
ing and it’s task is to find the most probable sequence of F0 estimates. Many algorithms,
such as RAPT [49], YAAPT [55], and REAPER [50], perform pitch tracking with dynamic
programming based on the previous window-level F0 estimates and candidate sets as an
input.

Dynamic programming is both optimization method and programming technique. The
core principle is to divide problem into smaller sub-problems and instead of recursively
solving the whole problem each time, re-use still valid results of previously solved sub-
problems.

An example of a pitch track analyzed with 10-ms frame shifts is presented in figure 3.3.
The pitch track corresponds to the signal presented in figure 2.3. It is the reference
pitch track provided in [42] that has been obtained from an electroglottography (EGG)
measurement signal (see section 3.4) processed with the RAPT method presented in
Section 3.3.1.

3.3 F0 estimation algorithms

The F0 estimation problem has inspired many researchers to develop different kinds of
algorithms to solve the problem. Many of them are based on principles mentioned in 3.2.
Here we present prominently used algorithms and take a closer look on the ones chosen
as reference methods for the experiments presented in Chapter 5.

3.3.1 RAPT

RAPT (Robust Algorithm for Pitch Tracking) is a famous algorithm by David Talkin [49].
It is based on generalized cross-correlation presented in 3.2.2 as an F0 candidate gen-
erator. A major improvement of RAPT from a computational complexity point of view is

17

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t/s

0

50

100

150

200

250

f/
H

z

Figure 3.3. Pitch track of a female spoken utterance "She had your dark suit in greasy
wash water all year."

that correlation is not performed for each candidate frequency but the signal is first down-
sampled. From this shorter signal with a coarse time resolution all of the correlation lags
required for F0 frequency range are calculated. Candidate lags are collected and further
refined with the original signal by cross-correlating in the vicinity of the candidates only.
Within the post-processing stage, dynamic programming is used to decide the final F0
estimate or unvoiced decision.

There is no full reference implementation of RAPT openly available, but many speech
processing tools or libraries include partial implementations. In the present work, we
are using the one implemented within the Speech Signal Processing Toolkit (SPTK) [51].
Only a small portion of the parameters mentioned in the algorithm description [49] are
configurable in this implementation.

3.3.2 REAPER

REAPER is a more recent pitch estimation algorithm by David Talkin. More specifically, it
estimates the glottal closure instants (GCIs) and F0 estimates are then calculated based
on the time differences between two consecutive GCIs. The main tools, NCCF and dy-
namic programming, are already used in RAPT but, in overall, REAPER is a completely
new algorithm. REAPER source code if freely available under Apache license. [50]

As preprocessing, REAPER high-pass filters the signal and possibly performs the Hilbert
transform. Then signal features are calculated: GCI candidates are generated by first
calculating the LP residual of the signal, then grading the resulting peaks and finally
cross-correlating all candidates in the expected pitch range. The voicing decision features
in REAPER are based on low frequency energy (normalized by utterance peak energy)

18

and change in low-passed signal energy, which are used together in determining the
voicing status of the frame.

All of the candidate pulses are set in a lattice structure for which dynamic programming
is used to calculate probabilities for each pulse period. The best GCI track is obtained
by backtracking the most probable path. F0 estimates for requested time stamps are
calculated based on GCIs and cross-correlations made in the feature extraction phase.

3.3.3 YAAPT

YAAPT, or Yet Another Algorithm for Pitch Tracking, is a hybrid algorithm working in both
time and frequency domains. It was especially developed to perform well with telephony
speech alongside high quality recordings. It was originally introduced in [31] and further
developed and analyzed in [55].

YAAPT has its roots in RAPT but it adds frequency domain information to enhance ro-
bustness. As preprocessing, a new nonlinearly processed version of the original signal
is constructed and both signals are then bandpass filtered. Purpose of the nonlinearity is
to try to restore possibly missing fundamental period components, which could occur in
a high-pass filtered telephony use case. Original YAAPT used the absolute value as the
nonlinear function, but latest version opts to the square function. F0 candidate refinement
information is obtained by analyzing the spectrogram of the non-linearly processed signal
and the normalized low frequency energy ratio is used to enhance the voicing decision.

Frequency domain processing produces F0 candidates with merit values. To reduce pitch
halving and doubling, extra candidates may be inserted at the half or double of the highest
merit candidate frequency. After combining values as a sequence, a new F0 candidate
is added as a 7-point median of the highest merit candidates within the sequence. After
dynamic programming, the result is a F0 track with each frame considered to be voiced.

Full accuracy estimates are provided by combining F0 candidates obtained from the spec-
tral track and NCCF from both signals. The final pitch track is obtained by dynamic
programming from a matrix containing all of the F0 candidates and corresponding merit
values.

3.4 Electroglottography (EGG) or electrolaryngography

Due to the problems mentioned in section 3.1, reliable F0 estimation from speech is a
complicated task, and for more accurate results, alternative recording methods can be
used. One of the best options would be to actually see the movement of vocal folds, but
these methods are intrusive, meaning in practice that endoscope has to be inserted via
nasal cavity to proximity of vocal folds. This means that visual inspection of the vocal
folds is usually feasible only in a laboratory environment and also makes the operation

19

both feel uncomfortable and potentially affect the produced speech. Some people cannot
tolerate the inserted endoscope and even if they did, in some cases the visibility to glottis
can be limited. This and other methods are discussed and experimentally evaluated in
e.g. [25].

Less intrusive method is Photoglottography (PGG) where light is emitted through the
glottis and the amount of light passing the glottis is measured and mapped into glottis
size. Typically this operation also involves the use of endoscope but experiments with
completely externally installed light transmitter and sensor have been made e.g. in [48].

A popular very lightly intrusive solution for F0 estimation is the EGG. It is a simple proce-
dure of measuring electrical impedance over the larynx. Electrodes are placed around the
subject’s neck, and a high frequency but low voltage is applied between the electrodes.
The current flowing through the larynx and neighbouring tissues is modulated by the po-
sition of the vocal folds in such a way that closed vocal folds result in the highest current
(lowest impedance), and open vocal folds in the lowest current (highest impedance). This
is due to the fact that vocal fold tissue (with higher surface area while the glottis is closed)
has lower impedance than air (glottis open).

The obtained signal can be divided into two components: A high-band component corre-
sponding to the movement of the vocal folds (F0), and a low-band component resulting
from other tissue and electrode movement. In F0 estimation, only the high-band is of
interest, so high pass filtering for example with a first-order differentiator is applied to
remove low frequencies and the DC component [24].

1.2 1.3 1.4 1.5 1.6 1.7 1.8

t/s

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 3.4. EGG waveform of female spoken word "suit"

A sample EGG signal is presented in figure 3.4. It is the EGG signal corresponding
to the audio signal presented in figure 2.4. The two components mentioned above are
clearly distinguishable: The strong slowly changing (low-band) signal from larger muscle
movements and a weaker periodic high-band component caused by the vibration of the

20

1.2 1.3 1.4 1.5 1.6 1.7 1.8

t/s

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 3.5. Highpass filtered EGG waveform of female spoken word "suit"

vocal folds. To obtain the high-band part of interest, this signal needs to be highpass
filtered. In figure 3.5 the same signal is filtered with a 2nd order highpass filter having a
cut-off at 50 Hz. Now the periodic component between 1.4 s–1.55 s is clearly visible.
The filter in this example is not having a linear phase response and a linear phase FIR
might be a better option.

When only glottal period is of interest, very good estimation accuracy can be obtained
by differentiating the signal and considering the peak values ans GCIs since EGG signal
changes abruptly at the moment of glottis opening. However, in some conditions peak
can appear as double peak and special care has to be taken to choose the right one. [23]

As EGG is measuring only the overall impedance, it cannot explicitly describe how vocal
folds or other parts of the larynx are moving. There is only a limited amount of research
done on the topic, such as [20]. What it can do, however, is to measure the timing
of the minimum and maximum opening of the vocal cords. This gives highly accurate
information of the glottal period corresponding to the F0 of speech.

3.5 Applications of F0 estimation

Reliable F0 estimation is a key part in many speech processing applications. Traditionally
all the speech coding, speech analysis and speech synthesis applications have been
dependent on separately acquired F0 estimates. Nowadays many speech technology
applications are moving towards data driven approaches and especially deep learning
where original signal can be the only input parameter and where F0 is not necessarily
explicitly represented. F0 estimation is still especially important in speech synthesis,
where intonation or other parameters are varied to add naturalness and carry information
about feelings etc. Other important application areas are in basic research of speech and

21

prosody where theoretical background of speech communication is built.

For instance, robust F0 estimate can be used in determining subject’s emotional state
[43] or health [16] if some history is available. With accurate F0 estimation one possible
application is long time analysis of a person’s speech parameters. If the F0 (or other
properties) are changing over time and health data is available we might be able to notice
problems in physical or mental health or even predict problems before they are otherwise
observable.

22

4 NEURAL NETWORKS FOR F0 ESTIMATION

In chapter 3 we discussed traditional F0 estimation algorithms which are based on digital
signal processing techniques. That incorporates the use of basic mathematical opera-
tions with heuristic models. Machine learning (ML) techniques are able to learn model
parameters from the data itself by optimizing a training criterion designed for the particu-
lar task. Increasing data amounts and processing power have led to a situation where ML
is a viable option to many traditional problems and can often clearly outperform previous
approaches.

Artificial neural networks (ANN) are very compelling tools for classification or regression
tasks when a large number of labeled data for training the system is available. The
main advantage of ANNs over other ML algorithms is that they can learn the statistical
properties of raw data such as natural audio or images. With other ML algorithms a
user is usually first required to perform dimensionality reduction (i.e., compression) of the
data by defining so called features which are descriptors of the data to be fed to the ML
system. This approach has clear drawbacks. The user must know the application area
and data so well that he can define the essential features. Still, it is very easy to miss
some information that is crucial to very high quality results. In theory, when raw data is
used as an input to an ANN system, it could learn high-performance features for the given
task without domain-specific human expertise.

4.1 Introduction to artificial neural networks

Artificial neural networks are computational systems inspired by the human nervous sys-
tem. This system facilitates brain-centralized control of the body by having a vast net-
work of interconnected neurons. A biological neuron is a cell that has input and output
synapses. If enough input synapses of a neuron activate, the neuron activates its output
synapse that acts as an input to other neurons. This process can be interpreted with
the model of an artificial neuron that is a mathematical data processing model with input
and output connections. By the view of this model, the hugely complex network of a hu-
man brain performs data fusion of raw messages created by sensory neurons resulting
in abstract entities such as feelings or thoughts.

ANNs are typically hierarchical structures which are formed of layers. Each layer uses
previous layer’s output as an input (or in recurrent case also the same layer’s previous

23

output) which makes neurons within one layer independent of each other forming a paral-
lel system. This property enables efficient implementations of ANNs with modern GPUs
and other parallel computing systems.

From a computer science point of view, an ANN can be seen as a computational graph.
In mathematics one research area is graph theory. Graphs are networks of nodes, or
vertices, connected by the edges. Nodes are entities whose relationships to others are
described by the edges. ANNs can be modeled as computational graphs by considering
inputs, outputs and mathematical operations as nodes and data flow as edges. Current
top ANN libraries TensorFlow [37] and PyTorch [41] work internally with this computa-
tional graph principle. This enables the automatic computation of error gradients during
backpropagation training for complex network architectures, thereby enabling optimiza-
tion of model parameters towards a lower error on the training data.

ANNs date back to 1940s and the first AI wave. Back then, both algorithmic and computa-
tional restrictions made practical ANNs small and thus unable to solve complex problems.
The second rise of ANNs was in 1980–1995 when multilayer network training was made
possible by e.g. backpropagation. The third and still ongoing wave started around 2006,
and it is characterized by the phrase “deep learning”. This refers to the fact that the
amount of training data and available computational power enabled for the first time the
functional training of “deep” networks that have more than 2 hidden layers [19].

4.1.1 Artificial neuron and Perceptron

In order to create a neural network, a basic node, neuron, is needed. The most fa-
mous neuron model is the Perceptron which actually is an entire ANN but used also as
a reference to neuron model [46]. It has an arbitrary number of weighted inputs and a
single output. The output is created as a linear combination of weighted inputs and a
possible bias term, followed by a non-linearity in the form of binary thresholding. The
Perceptron is capable of binary classification and, when having several nodes in parallel,
multilabel classification. However, the famous XOR problem, pointed out by Minsky et
al. [38], showed that the perceptron was not capable of separating non-linear functions.
Therefore Perceptrons in single layers (or two if input and output of a perceptron are both
counted as layer) are linear classifiers. The XOR problem along with other criticisms
presented by Minsky and Papert [19] was considered so drastic that ANN research was
mostly put on hold for a decade and strongly contributed to the forthcoming so called "AI
winter". In theory, perceptrons could have been stacked in layers but the used perceptron
learning rule did not generalize to multiple layers and therefore training of such network
was impossible.

The modern model of the computational neuron is identical to the perceptron in every
regard except for the chosen non-linearity: Binary thresholding does not allow error gra-
dients to propagate during backpropagation training, so differentiable functions such as

24

the hyperbolic tangent, logistic sigmoid, or rectified linear unit are used instead.

4.1.2 Multilayer perceptron

Multilayer perceptron (MLP) or "feedforward net" or "dense net" is a set of interconnected
neurons in stages called layers. The first and last layers of a network are called the
input and output layers, respectively. The input layer is in the form of an input data
vector and the output layer correspondingly produces an output data vector processed
by the previous layers of neurons. It has been shown that already one hidden layer in
addition to the input and output layers perform the XOR operation and thus solve more
complex non-linear problems [47]. To be noted here is that this non-linearity property
arises from cascading linear combination operations with a non-linear activation function:
Stacking linear units such as perceptrons without non-linear activations still produces
linear models.

The real modeling power of ANNs arises when additional “hidden” layers are added be-
tween the input and output layer. As these hidden layers have no direct connection to
external world, they are called hidden. It has been shown that even with a single hidden
layer it is possible to approximate any continuous function, and thus an MLP can act as
an universal function approximator. In theory, an infinite number of neurons in a single
hidden layer can reach infinite accuracy and complexity of approximation [27]. Implication
of this property is that MLP failing in its task must either be poorly trained, have too few
hidden units or, in the worst case, is performing a non-deterministic task.

MLP was the second wave of ANN research, made possible especially by backpropa-
gation [47] training algorithm. It was possible to train networks with one or two hidden
layers. ANNs still failed to deliver up to expectations and advances in other ML areas led
to decrease of research funding and popularity [19].

4.1.3 Convolutional neural networks

Convolutional neural networks (CNNs) have been exceptionally efficient in image recog-
nition tasks. Their main advantage over dense networks is the much smaller number
of trainable parameters required for equivalent performance in many tasks, which both
makes training of the network easier by making more efficient use of the training data,
and the convolutions can be efficiently calculated by modern GPUs. Also, in the case of
multidimensional data such as images, CNNs are able to extract local features in spa-
tially correlated data whereas MLPs would ignore the input topology. CNNs were first
introduced by LeCun et al. in 1989 [35].

A convolutional layer processes a data tensor consisting of spatially correlated data over
a number of channels, and consists of filters (kernels) with which the data is filtered

25

producing a feature map obtained with parameter sharing from the convolutions, and
dense connections over the channels. Filter dimensions and number are fixed. Every filter
calculates a feature map which has dimensions depending on both input dimensions and
filtering parameters. These feature maps are called channels. In training phase each filter
stays constant for each epoch (or batch in case of batch processing) over the data but
they are trained between epochs (batches). Filters can be randomly initialized or some
suitable pre-trained values can be used to make learning faster. Convolutional layers are
trained to recognize features by backpropagation, just like normal fully connected layers
in MLPs.

Typical structure of convolution layers is such that the next layer processes somehow
downsampled output of the previous layer which results in a hierarchical representation
of the input. For example in image classification, the first layer usually finds different kinds
of edges, the second layer finds more complex contours and so on, eventually ending in
high-level representations such as a car tire. The deepest convolutional layer is often
followed by a dense layer in order to carry out a classification decision on the input data.

The aforementioned hierarchy is based on a principle of reducing the data between layers
by using each layer as a decimator. The purpose of the decimation is not just to reduce
data but also add some translational invariance. The are two main approaches to this.
Perhaps the most obvious is the strided convolution in which convolution output is calcu-
lated to samples with stride n. Stride n=1 corresponds to calculating convolution to every
sample, n=2 for every other sample and so on. Output will then be a decimation by factor
n. A more subtle method for downsampling is pooling. When pooling, the convolution is
actually performed to every input sample, but the output is formed from a pool of neigh-
bouring convolution outputs. A very common pooling principle is max pooling, in which
the output would be the maximum value (i.e., activation) on the pool.

One important aspect in convolutional neural networks is the concept of the receptive
field. It is defined to be the image area (or length in time for audio signals) which is taken
into account in each convolution operation. For a single layer and normal convolution, it
is simply the size of the convolution kernel. However, when stacking layers and reducing
data in between, the receptive field would be the union of receptive fields of connections
to previous layers. For spatially correlated or time series data, the receptive field is the
input area that can affect the output of the given network node.

4.1.4 Recurrent neural networks

Previously introduced networks were feedforward, meaning that information was always
flowing forward only. This is enough if the inputs are independent of each other. However,
if the there are clear dependencies on previous data points, as in many cases (e.g., time
series data such as speech) it is the case, feedforward networks cannot utilize depen-
dencies beyond their receptive fields. Therefore some sort of memory is needed in the

26

system.

Recurrent neural networks (RNNs) have feedback loops in some of their layers, i.e., they
use as input not only the output of the previous layer but also their own previous output.
History is then preserved by allowing the previous states of the layer to condition each
output. RNNs have shown great performance in e.g. automatic speech recognition where
consequent phones and words are clearly dependent.

Recurrent networks were first considered in [47] and each backward connection was
shown to be equivalent to an extra layer with the same coefficients, thus making training
possible with a similar approach as with feedforward networks with the backpropagation
training algorithm.

Theoretically RNNs can have a memory trace of every single input in history. In practice,
however, this is not possible and RNNs are difficult to train because of the vanishing
gradient problem (see Section 4.1.5). To alleviate the vanishing gradient problem, the
Long Short-Term Memory (LSTM) [26] model was introduced. The main contribution
was a new "gated" neuron which has an explicit memory state and the ability to update
and read from it. The continuous cell state allows for unattenuated gradient propagation
through time steps, which greatly enhances the length of the input history that the RNN
can utilize.

The LSTM cell has three gates: input, forget and output gate. The name gate comes from
the fact that they are controlling, "gating" the data flow. Input gate decides whether to let
new data in or not. Forget gate removes the trace of the defined old data. Output gate
function is to decide whether the neuron state is affecting the output or not. In addition to
the gates, there is also a Cell state variable which gets carried over to be used with the
next input.

Different LSTM variants have been very popular with sequential data, including use cases
such as speech recognition and natural language processing. A Gated Recurrent Unit
(GRU) [14] can be seen as simpler variant of LSTM. GRU cell contains only two gates
and no Cell state. Update gate replaces LSTM’s Input and Forget gates in deciding how
input and previous output is affecting the output. Reset gate determines how much of the
previous state is to be forgotten.

Both LSTM and GRU are performing on the same level in general [15], and the winner
depends on application and usually both need to be tested. GRU as a simpler unit has the
advantage in computational complexity. Vanilla RNNs have been almost entirely replaced
by these more advanced recurrent neuron models.

4.1.5 Training of the networks and regularization

It was already mentioned that an ANN is a universal function approximator. This is true on
a theoretical level, but in practice it is hard to train perfectly performing networks. Training

27

refers to the adjustment of network weights on the basis of minimizing prediction error
on labeled training data. Here we consider only supervised learning which means the
network under training always knows the expected output.

For decades, the dominant method for network training has been stochastic gradient
descent (SGD) with error backpropagation made popular by Rumelhart et al. in 1986
[47]. The idea of backpropagation is that input is passed through the network (forward
propagation) and prediction error relative to a labeled target is calculated at each layer
when propagating the error backwards (backpropagation) in the net. A loss function is
needed for error calculation and partial derivatives are calculated for each parameter
(weight) of the loss function by using the chain rule of partial derivatives. This gradient
points to the direction of increasing error and as we want to minimize the error, we update
parameters (weights) to the direction of negative gradient.

A major problem with backpropagation training is the already mentioned vanishing gra-
dient problem: As the error gradient is propagated layer by layer from output to input
layer especially through activation functions, the resulting error gradients get smaller and
smaller. At some point, the gradient can become so small that either the parameters of
the first layers stop updating, or at least the training gets prohibitively slow. As mentioned
in Section 4.1.2, for a long time it seemed that only few consecutive layers were possible
to train with backpropagation. However, after advancements in many areas (e.g., com-
putational power, deep learning research, amount of data), networks of even more than
thousand layers can now be trained with backpropagation [22].

Overfitting and generalization are key concepts of ANN performance. Overfitting relates
to ANN (or any ML algorithm) learning the (irrelevant) details of the training data so well
that it performs poorly on unseen data due to mismatching details. Generalization is the
ability to generalize the mapping function so that only essential features are concerned,
thus making prediction perform on a similar level with both previously seen and unseen
data.

Regularization is a training tool to reduce overfitting and thus to improve generalization.
Various methods of regularization have been proposed. For example, drop-out, weight
decay, and batch normalization are widely used regularization methods. These are spe-
cific to ANNs, other ML methods usually regularize by the use of penalty term in cost
function, which prevents optimization reaching optimum with training data hence creating
more generalized model.

In drop-out regularization, some predefined proportion of neurons chosen randomly each
training pass are completely neglected. This forces the network to learn the most signifi-
cant features but also requires more training epochs to converge. This additional training
is partly compensated in shorter time for a single epoch since many parameters are ze-
ros. In batch normalization [28], inputs of each layer are normalized to have zero mean
and unit variance, usually measured from the minibatch at hand, not the whole training
data. Batch normalization especially shortens the needed training time but also works as

28

a regularization term. Weight decay is a penalty term in the cost function which penal-
izes large model parameter weight values during training. This basically discourages the
model from reaching too specific solutions for the training data, and forces it to use more
generic representations.

4.1.6 WaveNet model

One specific type of neural network model architecture is the so-called WaveNet model
[40] that was presented by Google DeepMind team for speech synthesis, in which it
reached state-of-the-art quality at the time. It was based on their previous work at image
generation, namely PixelRNN and PixelCNN models. Its main property is several con-
volutional layers of dilated convolutions to increase receptive field but limit the number
of calculations. Other major building blocks are residual blocks, skip connections and
gated convolutions. WaveNet has become very popular in different kinds of audio appli-
cations, as it combines a rather large receptive field to a deep network architecture that
can handle the vanishing gradient problem. As WaveNet is not recurrent and therefore
it also trains quite fast. WaveNet was originally designed for generative purposes, but it
was also showed to perform well in discriminatory use cases such as automatic speech
recognition.

The foundation of WaveNet is a stack of dilated convolutions. Dilated convolution means
that convolution kernel is dilated by adding zeros making the kernel bigger but still hav-
ing the same non-zero coefficients. When used to increase the receptive field, dilated
convolution layers are stacked and greater than one dilation (typically a power of two),
is used in the upper layers. Then each layer increases the receptive field by its dilation
factor. This allows the CNNs to achieve receptive fields that are functionally comparable
to LSTMs, but still are faster to train with GPUs.

In dilated convolution each convolution kernel coefficient is applied to the input signal
with a certain integer skip factor, effectively downsampling the input. The difference be-
tween a dilated convolution and a strided convolution described in 4.1.3 is that dilation
increases the receptive field by downsampling the input while strided only increases the
step between consecutive convolutions and thus downsamples the output.

Another key concept of WaveNet is the use of skip connections in order to be able to
train such a deep network. Residual skip connections were proposed by He et al. [22]
enabling the training of even a thousand-layer network. Skip connections let gradients
flow past some layers thus not getting smaller resulting in a vanishing gradient problem.
In the present work, we use WaveNet-like architecture for F0 estimation (see Section
4.3).

29

4.2 Existing ANN based F0 estimators

Articifial neural networks have been used for F0 estimation for decades. Early research,
such as [11] were based on hand-crafted features and MLPs. Until the recent rise of deep
learning they failed to provide state-of-the-art estimation accuracy. Earlier approaches
used ANNs as feature classifiers only while DNN systems mostly operate directly on
actual acoustic waveform or spectrogram, thereby giving ANN all the possible information
for the task. Some work has still been carried out with classical feature based approach
with good results, such as in [21].

It is also possible to mix ANN and DSP methods. One interesting approach to pitch es-
timation is presented in [32]. ANN, in this case specifically RNN, is used in a regression
task of mapping audio signal into single sinusoid presentation. In other words, voiced
frames are mapped a into a single sinusoid having a period corresponding to F0 while
non-voiced frames are kept as original. Actual F0 is then calculated with autocorrelation.
Single sinusoid has a very strong correlation value at lag corresponding to signal period
while original signal parts have much lower correlation values. Therefore it is easy to
threshold voiced/un-voiced decision and have very accurate F0 estimate from purely si-
nusoid frames. This method especially differs from most ANN -based methods by making
the estimation task to be regression instead of classification. Hence the resolution of the
F0 estimate is much higher than with classification based methods. This method was
also showed to perform very well with noisy speech.

CREPE [54] is a CNN based method for general pitch estimation. It was developed for
music applications but can be used with speech too. CREPE is utilizing a typical CNN
structure with six convolutional layers responsible for extracting increasingly complex non-
linear signal features and two fully connected layers for input classification into one of 360
different possible frequencies.

CREPE was trained and evaluated with synthesized signals which, on the other hand,
makes perfect ground truth signal track, but may also not generalize well enough for
real-world recordings. In the original CREPE paper, its performance was measured as
state-of-the-art. However later studies such as [10] and [32] report CREPE results with
real speech recordings that are inferior to many other methods. CREPE with pre-trained
models in different sizes is available as a python module for easy deployment.

4.3 The proposed neural network for F0 estimation

The used ANN model in this work was first presented in [10]. It is inspired by the WaveNet
[40] model presented in Section 4.1.6. The formulation of the F0 estimation problem for
the proposed ANN model was designed to be interchangeable and comparable to tradi-
tional DSP-based methods, which means that the input to the neural network is the raw
speech signal that has been split into fixed-length frames at regular intervals. The out-

30

put of the neural network is a one-hot vector of log(F0) frequency bins within a specified
resolution plus the voicing decision.

4.3.1 Structure of the proposed neural network

Proposed network is presented in figure 4.1. Input is a tensor of raw signal frames having
dimensions (1, Nframes, wl) , where Nframes is the total number of frames and wl the
length of each frame. Padding has to be used if original signal is not divisible by wl. This
structure is for complying with the traditional problem of F0 estimation of estimating F0
for given speech frame.

The first layer is a convolution with a single coefficient kernel effectively acting as an affine
transform to each frame. The purpose of this layer is to remove position dependencies
from frames.

The features produced by the input layer are then passed to a residual module stack
depicted in detail in figure 4.1b. The first phase in the module is two independent dilated
convolutions with different activations. These convolution outputs are then combined and
residual is calculated for next round. Also skip connection is provided to the end of the
residual module stack where all of the skip connections and the final output connection
are summed.

Postnet layer then transforms the features provided by residual module into onehot (only
one of the values is non-zero) output vector containing logF0 frequencies and non-voiced
decision. The final F0 estimate is obtained by choosing the maximum activation and
checking the value. If the value is the unvoiced flag, frame is marked as unvoiced. Oth-
erwise bin number is converted into logF0 value from look-up table and finally converted
into Hertz with equation F0 = e(logF0).

31

Input
stacked raw frames

(1, Nframes, wl)

Input layer
conv(1,wl,r), tanh

Residual module

...
...
...
...
...

+

Postnet
conv(5,r,s), relu

conv(5,s,Nbins), softmax

Output
logF0 bin activations

8x

(1, Nframes, r)

(1, Nframes, r)

(1, Nframes, Nbins)

(a) Overall structure

X

tanh σ

+

Wout

Wskip

conv(5,r,r)
dilation=d

Skip
output

Output

Input

conv(5,r,r)
dilation=d

(1, Nframes, r)

(1, Nframes, r) (1, Nframes, r)

(1, Nframes, r) (1, Nframes, r)

(b) Residual module

Figure 4.1. Block diagram of the proposed model. Printed with permission from [10]

32

5 TEST SETUP

The goal of the present experiments was to investigate the applicability of the WaveNet-
inspired F0 estimator presented in Section 4.3.1 to speech in clean speech and noisy
telephony speech, and to investigate whether robustness of the network towards tele-
phone speech can be improved through incorporation of coded speech in network train-
ing. Simulation environment consisted of signal generation, actual F0 estimation process
and result validation and analysis. Everything was run in a Linux environment. Python
programming language was used in signal generation and artificial neural network op-
erations. Performance analysis and running of external evaluators were performed with
Matlab.

5.1 Test data

If possible, it is a good practice to use completely different test sets for development and
validation. Each dataset usually has some unique properties due to recording setup and
speaker population. Developing only with a single dataset may lead to suboptimal per-
formance with other datasets. Therefore actual performance evaluation and verification
should ideally be done with different dataset(s).

Original signals were containing as clean speech as possible i.e. ambient noise and
channel effects were of minimal. To simulate real environment, real ambient noise was
added into files and channel effect was simulated by filtering the signal. As the main goal
of the research was to develop a robust method for telephony speech, signals were fed
through a mobile network simulating system. Simulating properties of mobile telephone
was out of the scope of this study but heavy signal processing performed by the handset
could have impact on F0 estimation performance.

5.1.1 Data for neural network training

For neural network training, CSTR VCTK corpus [53] was chosen. It is a well-known
database of 109 different native English speakers containing approximately 400 sen-
tences uttered by each person. The main drawback in pitch estimation purposes is that
this database was intended to automatic speech recognition purposes, thus having no an-
notated F0 reference. However, high quality of the signals makes reliable automatic pitch

33

tracking possible, and F0 reference data was generated by the well-performing REAPER
algorithm. These estimates were not manually annotated and, as they are calculated
from actual speech signal instead of more reliable laryngograph signals, pitch errors are
likely. This could be a problem with machine learning techniques since algorithms can
learn wrong results. Fortunately, due to the properties of artificial neural networks, this
is not seen a major problem since a proper ANN is robust to certain amount of wrongly
labeled data.

5.1.2 Data augmentation of training data

Data augmentation for neural network training means generating new synthetic data
based on existing one. Augmented data contains the desired information in a different
form. Adding noise to audio signal can be considered as data augmentation. It still car-
ries the original information interfered by noise. Purpose of the neural network is to learn
the original signal model and neglect non-relevant information.

Noise database used for augmentation on ANN training was NOISEX-92 [52]. It contains
e.g. factory and car noise. In addition, a generated random signal (white noise) was
used as one of the noise cases. These noise samples were mixed with original speech
samples with a predefined signal power and at random start positions of the noise signal.
The end result was then filtered with a 17-tap long FIR -filter having random coefficients
to simulate different frequency responses and other channel effects. This part of the
augmentation process is linear.

Another form of augmentation performed in this study was the use of a speech codec.
Speech codecs perform non-linear transformation to speech signal in order to reduce
the the amount of data while preserving the information relevant for perceptual signal
quality and intelligibility. F0 typically is one of the well preserved properties with only
slight variation compared to original uncoded signals, and therefore original labeling can
be used as an F0 reference for network training.

The pseudocode presented in Algorithm 5.1 illustrates the functionality of the data aug-
mentation strategy:

5.1.3 Data for F0 estimation evaluation

Generalization is always the key problem with machine learning solutions. ML model
might perfectly learn the representation of the training data but perform poorly with other
data even though they would be considered as similar. This phenomenon is called overfit-
ting. In extreme cases even within the same data set samples not seen in training phase
provide poor results. To fight this overfitting issue with proposed method, completely dif-
ferent data set was used for performance analysis. The one chosen for this purpose was

34

1 i f (rand (0 ,1) > 0 .5)
2 sample noise from NOISEX−92
3 sample SNR
4 add noise to o r i g i n a l
5 end
6
7 i f (rand (0 ,1) > 0 .5)
8 sample 17 FIR c o e f f i c i e n t s WGN
9 f i l t e r s i g n a l w i th FIR

10 end
11
12 i f (speechcoding enabled)
13
14 i f (AMR−WB enabled)
15 rand=rand (0 ,1)
16 switch rand
17 case rand < 0.33
18 code s i g n a l w i th AMR
19 case rand > 0.66
20 code s i g n a l w i th AMR_WB
21
22 else
23
24 i f (rand (0 ,1) > 0.5
25 code s i g n a l w i th AMR

Algorithm 5.1. Pseudocode of data augmentation process.

PTDB-TUG (Pitch Tracking Database from Graz University of Technology) [42]. It con-
tains 4720 sentences extracted from TIMIT corpus [18] read by 10 males and 10 females.
In addition to raw audio signals, also laryngograph (described in 3.4) recordings are pro-
vided along with example pitch track estimated with RAPT. To be noted here is that this
pitch track is automatically generated and not manually checked for estimation errors.

5.2 Simulation environment

Linux PC was chosen to be the platform for the study. It is very well supported by both
open source and commercial players. Used tool set was a mixture of open source and
commercial programming environments, ready-built executables and self-built executa-
bles from open source files.

5.2.1 Python for neural networks

Today Python is the most common environment for ANN development. Probably the
main reasons for popularity are ease-of-use and existence of all the major ANN libraries.

35

Thus Python can be used both quick prototyping without serious programming skills and
creating state-of-the-art ANN solutions.

Anaconda Python distribution was used in study. Anaconda contains most of the needed
packages by default and conda environment maintenance tool guarantees compatible
system by using only verified versions packages and checking their dependencies. For
neural network operations TensorFlow backend was used. Proposed method was written
in TensorFlow low level API.

5.2.2 Speech processing utilities

So far we have been simulating real-world noise conditions as if we would have just
recorded speech in PCM form. In many applications speech transported by telephone
network is of interest. Modern networks are not transporting speech signal as such but
some encoded version of it. Speech codec can alter the speech signal in many ways thus
presenting a big challenge to signal estimators built for clean speech.

Traditional telephone network has approximately 300..3400 Hz frequency range for speech.
This is considered as narrowband (NB) speech. Landline networks still operate at this
range while mobile networks have recently upgraded to handle wideband (WB) speech
too. Typically phone calls are still narrowband quality and AMR codec is used to com-
press speech to fewer bits. AMR-WB coded with 16kHz sampling frequency (and band-
width 50..7000Hz) is used in increasing amounts while 4G LTE and beyond networks
offer even greater quality speech in form of EVS codec (introduced in [7]) support. In this
study we focus on AMR coded speech due to it being the most common case and also
the hardest from bandwidth point of view. AMR-WB is also considered as it has been
quite widely deployed.

The first step in narrowband network simulation process is filtering the signal with high-
pass filter having cut-off at 300 Hz. AMR codec has internal high-pass filtering at 80 Hz
as described in [3], but typically devices set their own high-pass filtering in preprocessing
phase to match the characteristics of landline network.

5.2.3 Matlab for results and running external utilities

Matlab R2018b was used in creating results figures and running F0 analysis for algoritms
except proposed DNN method. YAAPT is fully Matlab code whereas RAPT and REAPER
were executables run in Matlab script. Many of the used Matlab scripts were written at
Aalto University Acoustics Lab and modified to fit the purpose.

36

5.2.4 Speech codec

AMR codec top level documentation is presented in [1]. As AMR codec is commercial
and licensiable product, only reference code provided by standard [2] is available. From
these source codes we built executable encoder and decoder to be run on PC.

Similar licensing issues apply to AMR-WB codec [5, 6] too and same steps were taken to
get executable encoder and decoders.

AMR codecs have several possible bit rates that can change dynamically. In this study
the bit rate was restricted to be constant (with DTX, Discontinuous Transmission when
silent) and the most popular bit rates were chosen: 12.2 kbps for AMR and 12.65 kbps
for AMR-WB. 12.2 kbps is the highest possible AMR bit rate and codec acts as GSM-
EFR codec [1]. 12.65 kbps is typical bit rate for AMR-WB deployment providing better
voice quality with approximately similar bit rate compared to AMR. 12.65 kbps bit rate set
higher limit of codec frequency response to 6400 Hz and frequency range from 6400 Hz
to 7000 Hz is synthesized based on lower frequency content [5].

As summarized in [13] CELP based speechc codecs such as AMR do change the placing
of formants and even F0. On the other hand, in [29] it is stated that F0 is almost unaffected
by AMR compression. A change in formant frequency alone can alter the pitch perception
but change in actual F0 is a fundamental flaw. Even if we were able to perfectly estimate
the F0, coded speech might not contain the real F0 and thus severely limit the possible
applications of F0 analysis. Very interesting research topic here is to check whether
ANNs can estimate the true F0 from the corrupted speech codec processed speech.

5.3 Reference methods for F0 estimation

We chose as reference methods three established F0 estimation algorithms already pre-
sented in 3.3: RAPT, YAAPT, and REAPER. They all are general purpose algorithms to
provide good overall performance and also are based on somewhat different basic op-
erations covering most popular techniques. As they are DSP algorithms no training is
required and results are easy to reproduce.

RAPT is the simplest one, basing its F0 candidates only on GCC and overall pitch track
calculated with dynamic programming. RAPT has been very popular and performed very
well with clean speech. The implementation used was the one inside SPTK [51].

YAAPT was interesting because is was designed for use with telephony speech. It tries to
restore the filtered out fundamental and, in addition to GCC, also uses frequency domain
information.

REAPER was chosen as the third reference, as it represents the latest DSP only gener-
ation of F0 tracking algorithms and actually tracks GCIs from LP residuals. F0 estimates

37

are then calculated from GCI data and dynamic programming is used for actual pitch
track calculation.

The most important parameters used in this study are reported in Table 5.1. Sampling
frequency was always 16000 Hz corresponding to typical wideband speech. The mini-
mum and maximum F0 estimate frequency were specified in [10] to be 50 and 500 Hz
and those same values were supposed to be used with all methods to make comparison
fair. Unfortunately in case of YAAPT these parameters were not given and defaults 60
Hz and 400 Hz were used. Frame shift specifies the amount of time difference between
consecutive analysis frames. In this study it was chosen to be 10ms. Frame shift may or
may not be the same as analysis frame length. The default parameters for frame length
were used. SPTK RAPT and REAPER do not specify frame length.

Method parameter list

Parameter DNN RAPT REAPER YAAPT

Sample frequency (Hz) 16000 16000 16000 16000

Min Frequency (Hz) 50 50 50 60

Max Frequency (Hz) 500 500 500 400

Frame shift (ms) 10 10 10 10

Frame length (ms) 32 N/A N/A 35

Table 5.1. Used parameters in F0 estimation

5.4 Error metrics

Performance of any estimator is measured by the prediction error of the estimate com-
pared to the true value, "ground truth". In many cases there is no single metric that would
provide complete information of the performance. Typical example is a binary decision
with heavily skewed distribution where a good estimate would be achieved just by guess-
ing using prior information. Or as another example, not all the errors are as severe and
they have to be weighted to get descriptive metric. This leads to use of either very com-
plex single metric or, more often, several simpler metrics with possibly some contradicting
properties. From this kind of results educated observer can see what kind of errors es-
timator usually does and thus take it into account when utilizing the estimator in specific
task.

F0 estimation accuracy is a product of two properties: voicing decision and estimated
frequency. As we are interested in speech only, we want to estimate the F0 frequency
only on voiced speech, not when unvoiced speech or noise is present. This voicing
decision is the fundamental property of estimation result, as it marks which parts of the
sample are containing speech of interest and it has very noticeable effect on many other
error metrics. Typically F0 estimators mark non-voiced frames in resulting frequency
vector as 0 or -1 to distinguish them from real F0 frequency estimates.

38

After voicing decision for the frame is done, the estimated fundamental frequency is re-
ported. This is then compared to reference value and their difference is reported. Fre-
quency error is usually calculated only on frames classified as voiced both reference and
F0 estimator under test. Absolute value of error is usually not meaningful metric because
in most audio and speech use cases relative error is of interest and in many cases on a
logarithmic scale. In this study relative error is presented as error percentage but some
studies, especially in the field of music, prefer using cents defined as

ecents = 1200 ∗ log2
x

y
(5.1)

where x is the F0 estimate and y the reference.

5.4.1 Voicing Decision Error

Voicing Decision Error, VDE, is the proportion of incorrectly made voiced/non-voiced de-
cisions.

V DE =
Nincorrect

N
∗ 100 (5.2)

where N is the number of frames.

5.4.2 Gross Pitch Error

Gross Pitch Error, GPE, it the proportion of frames correctly classified as voiced but F0
estimate differs more than 20% from the ground truth.

GPE =
Ne>20%

Nvoiced
∗ 100% (5.3)

where N is the number of frames.

5.4.3 Fine Pitch Error

Fine Pitch Error, FPE, describes the prediction error in good frames i.e. voicing decision
is correct and prediction error is less than 20%. Here error is presented as standard
deviation of the relative error.

FPE = std(
F0ref − F0pred

F0ref
∗ 100%) (5.4)

39

where F0pred is correctly predicted (voiced frame and GPE < 20%) value vector and F0ref

corresponding reference value vector.

5.4.4 F0 frame error

F0 Frame Error, FFE, is the proportion of frames that are either wrongly classified (VDE)
or prediction error is more that 20% (GPE). This metric can serve as an overall error if
very high accuracy is not needed.

FFE =
Ne>20% +Nvoiced

N
∗ 100% (5.5)

where N is the number of frames.

40

6 RESULTS

This chapter presents the results of F0 estimation experiments. Proposed method is
compared to the baseline methods described in 5.3 in different signal conditions. Each
method was ran with exactly the same input files containing speech in different noise
conditions. Noise was either white or babble noise at four different SNR levels (+15, +5,
0, and -5 dB) in addition to the original clean signals. Input speech to the algorithms
was either unprocessed PCM or speech coded with AMR-NB or AMR-WB codecs. The
total number of audio files was 4718. In this chapter results are presented in figures and
numerical results can be found in Appendix A.

Important thing to notice is that reference pitch tracks (ground truths) were automatically
generated with no human supervision so fair amount of errors is expected. This sets the
lower limit for error (unless estimators make exactly the same mistakes) and therefore
the actual accuracy can be better than the metrics suggest. In this kind of situations one
should look at relative errors i.e. how each method compares to others and no absolute
numbers.

6.1 Results with non-speech coded signals

Figures 6.1 and 6.2 show the results from the experiments that use test signals without
a speech codec. The first main finding is that all compared methods, including all DNN
variants with or without AMR coding during training, perform at a comparable level on
clean speech. There is a slight advantage for the DNN variants in terms of GPE and
FPE, but overall all methods are performing on a good level, similar to [10, 30] . In case
of white noise, differences between the methods can be observed already at 5 dB SNR
where REAPER and RAPT start to make more voicing decision errors, which is also
reflected then in the FFE metric. Around 0 dB, REAPER starts to make a substantial
amount of gross prediction errors, while RAPT VDEs increase substantially from 0 to -5
dB. YAAPT seems to perform relatively well down to -5 dB, but is still outperformed by all
three DNN variants. For YAAPT it is interesting to note that its baseline performance with
clean speech is the worst overall but gets better in high SNR noise conditions.

In case of babble noise, the situation changes somewhat: as the SNR becomes worse, all
DSP-based methods (YAAPT, RAPT, REAPER) start to suffer from an increasing number
of voicing decision errors and gross errors. YAAPT, a method that is also supposed to be

41

robust in noisy conditions [55], also suffers from a large number of fine estimation errors
(in terms of FPE), and REAPER and RAPT also systematically decease in their fine pitch
estimates. REAPER is having major problem with GPE which increases rapidly starting
from 5 dB SNR. The DNN variants seem to perform relatively systematically down to 0
dB, but at -5 dB there is already a notable increase especially in VDE (although much
smaller than that of the other compared algorithms). YAAPT again shows a bit strange
behaviour as VDE suddenly increases along with higher noise levels. This indicates
YAAPT confusing speech like signals with speech when speech like noise is close to
speech level. RAPT and REAPER are more linear in increase of errors according to the
noise level.

As for the use of speech coding as training data preprocessing step, the main finding
is that the use of either types of AMR coding have only a very small effect on model
performance in clean and noisy signal conditions, which is a desirable property. Overall,
the performance of the F0 estimation with the DNN-based variants is at an acceptable
level in all SNRs, although performance in severe babble noise is naturally lower than that
of white noise.

It is worth noting that FPE actually appears to improve in basically all DNN methods as
the SNR degrades in white noise, and also stays at a relatively low level with increasing
levels of babble noise for the DNN variants. This somewhat counter-intuitive pattern is
primarily caused by the concurrent changes in voicing decisions, where the frames that
are still detected as voiced in severe additive noise are actually the ones with very clear
harmonic (periodic) structure. In contrast, "difficult" frames are more likely to be discarded
from the FPE metrics as the noise increases, since they are more likely to be classified
as unvoiced by the algorithms (see also [10]).

42

VDE

Clean 15 5 0 -5
0

10

20

V
D

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

GPE

Clean 15 5 0 -5
0

10

20

G
P

E
 (

%
) YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FPE

Clean 15 5 0 -5
0

1

2

F
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FFE

Clean 15 5 0 -5
0

10

20

F
F

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

Figure 6.1. Results of non-coded files with white noise in different SNR scenarios

43

VDE

Clean 15 5 0 -5
0

10

20

V
D

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

GPE

Clean 15 5 0 -5
0

10

20

G
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FPE

Clean 15 5 0 -5
0

2

4

F
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FFE

Clean 15 5 0 -5
0

10

20

F
F

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

Figure 6.2. Results of non-coded files with babble noise in different SNR scenarios

44

6.2 Results with AMR-NB coded signals

Figures 6.3 and 6.4 show the results from the experiments where each test signal is
passed through an AMR-NB codec before the pitch estimation.

One of the most prominent findings is that, in contrast to other methods, REAPER starts
to produce a large number of gross errors already at 5 dB SNR with white noise, and
even more errors with babble noise. In addition, YAAPT GPE at -5 dB is much worse
than without coding of the test signals. Similarly to the non-coded signals, VDEs of all
DSP methods start to increase more quickly at low SNRs than those of DNN variants.
DNN is having FPE problems with babble noise, for unknown reasons.

Importantly, the inclusion of training samples processed by the speech codecs improves
performance from the baseline DNN system, and the difference is most marked in terms
of GPE and somewhat less so in FPE. This confirms that the proposed strategy for AMR
coding of training data is successful in improving the generalization towards telephone
speech, but does not come at a significant cost of reduced performance on non-coded
signals (Section 6.1).

One difference in the coded babble noise inputs compared to their non-coded counter-
parts is that even the DNN variants start to fail in their voicing decisions with more than
> 20% VDE, indicating that either the quantization artifacts or the narrowband nature of
the coded signal substantially hinders voicing decisions in noisy conditions. Note that no
such difference in VDEs is observed when comparing clean signals with or without the
codec.

One possible explanation for greatly reduced accuracy in case of AMR -coded babble
noise injected files in the use of VAD inside AMR codec as described in [4]. As AMR
codec is designed to carry speech as information is may discard other kind of sounds.
By the use of VAD codec decides which audio frames should be encoded and which are
replaced with comfort noise. In practice this means that frames considered as speech
or other kind on sounds of interest are let through and noise frames are discarded.
As false negatives (frames incorrectly classified as noise) are very bad, most even re-
motely speech like parts are coded and transmitted. Encoding probably emphasizes
these speech like sounds in the eyes of pitch tracking algorithms and leads to increased
false positives (noise considered as speech). Thus, given SNR values are before the
AMR codec and true SNR could significantly vary from that.

45

VDE

Clean 15 5 0 -5
0

10

20

V
D

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

GPE

Clean 15 5 0 -5
0

10

20

G
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FPE

Clean 15 5 0 -5
0

2

4

F
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FFE

Clean 15 5 0 -5
0

10

20

F
F

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

Figure 6.3. Results of AMR coded files with white noise in different SNR scenarios

46

VDE

Clean 15 5 0 -5
0

10

20

V
D

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

GPE

Clean 15 5 0 -5
0

10

20

G
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FPE

Clean 15 5 0 -5
0

5

10

F
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FFE

Clean 15 5 0 -5
0

10

20

F
F

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

Figure 6.4. Results of AMR coded files with babble noise in different SNR scenarios

47

6.3 Results with AMR-WB coded signals

Finally, figures 6.5 and 6.6 show the experimental results for the case of AMR-WB coded
speech inputs.

One might expect the results being somewhere between non-coded and AMR-NB -coded
since AMR-WB has frequency range close to non-coded but still has gone through similar
processing as AMR-NB -coded signals. Contrary to expectations, AMR-WB coded files
seem to in overall provide worse results than AMR-NB. YYAPT is even more suffering
from voicing errors especially in babble noise scenario while REAPER improves in GPE
point of view.

In general, as with the original and AMR-NB speech, all DNN variants are clearly more
accurate than the baseline DSP methods when all metrics are considered.

48

VDE

Clean 15 5 0 -5
0

10

20

V
D

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

GPE

Clean 15 5 0 -5
0

10

20

G
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FPE

Clean 15 5 0 -5
0

2

4

6

F
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FFE

Clean 15 5 0 -5
0

10

20

F
F

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

Figure 6.5. Results of AMR-WB coded files with white noise in different SNR scenarios

49

VDE

Clean 15 5 0 -5
0

10

20

V
D

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

GPE

Clean 15 5 0 -5
0

10

20

G
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FPE

Clean 15 5 0 -5
0

5

10

F
P

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

FFE

Clean 15 5 0 -5
0

10

20

F
F

E
 (

%
)

YAAPT

REAPER

RAPT

DNN

DNNamr

DNNamrwb

Figure 6.6. Results of AMR-WB coded files with babble noise in different SNR scenarios

50

6.4 Overall impressions

With clean speech all every estimator performed on a relatively similar performance level
at ~5%, likely probably setting the lower limit for error. More prominent differences started
to be visible at 0 dB SNR white noise and 5 dB SNR babble noise. AMR-NB and AMR-WB
codings further increased the error.

YAAPT is designed for telephony speech and indeed AMR-NB coding is not having a
big effect on its accuracy. However, for some reason it seems to be the most sensitive to
babble noise, making it useless in low SNR babble noise scenarios because of numerous
voicing decision errors. White noise performance of YAAPT beats RAPT and REAPER.

RAPT is the most sensitive to white noise and the difference between its white noise and
babble noise performance is the smallest in the group. REAPER is in overall performance
close to RAPT but, instead of voicing errors, it suffers from severe GPE error. Usually
high GPE indicates large amount of octave errors but this was not analyzed in enough
detail to make the statement.

DNNs with any tested training procedure seem to be outperforming the other methods
consistently. This is especially the case in babble noise while the best case performance
is on a same or slightly better level as in the compared methods. The only case where
DNN based method had problems was the lowest SNRs with AMR coded speech using
the most basic DNN. That is well understandable since the training of DNN was done
without AMR coded samples. Still the performance is better than with the DSP based
traditional methods.

6.5 Example pitch tracks

To illustrate the real estimation performance on utterance level, example pitch tracks in
different conditions are provided in Figures 6.7 and 6.8. The example utterance audio
files are mic_F03_si888_amr.wav (6.7) and mic_M06_si1455.wav (6.8) from PTDB-TUG
in three forms: clean, 0 dB SNR babble noise and 0 dB babble noise with AMR coding.
Clean signal demonstrates the best case performance while 0 dB SNR babble is close
to real world worst case. The first utterance (6.7) has been spoken by a female speaker,
thus having a relatively high F0, and the second one (6.8) by a male speaker with a con-
siderably lower F0. Performance is demonstrated for two estimators in study, DNNamrwb
and RAPT against the EGG signal based reference provided with the dataset.

Figure 6.7a shows the performance with clean and non-coded speech for given female
speech sample. The first impression is that both pitch trackers are able to follow reference
quite faithfully. RAPT is closer to reference, which was expected since the reference has
been calculated with RAPT even though from the EGG signal instead of audio signal.
RAPT and reference pitch tracks show very suspicious F0 estimates at 3.9–4.0s and

51

5.3–5.5s. In those periods pitch estimate is roughly half of the estimates in the rest of
the signal, which strongly indicates them being half of the true F0. This is common error
with RAPT and, when present in reference, leads to higher than true GPE performance
measures even when the evaluated algorithm itself is estimating correctly. DNNamrwb
seems to perform better in this sense.

In Figure 6.8a a corresponding comparison is done with male speech sample. In this
case both methods seem to perform very well, resulting in nearly identical pitch tracks
with the reference. Thing especially to be noted here is that no obvious pitch halvings are
present. In case of RAPT this most probably means that half of the true F0 would already
be out of range possible F0s and pitch doubling would be more of a concern. That one
is not happening either and pitch tracks look very credible. Another thing to note is that,
compared to previous female speech example, more severe overshoot is happening at
the edges of speech parts. This phenomenon is more severe with DNNamrwb but clearly
visible also in RAPT results.

Adding babble noise causes RAPT to make false voicing decisions which is clearly seen
in both figures 6.7b and 6.8b. In Figure 6.7b there are three extra consider to be voiced
tracks present before the speech starts and in Figure 6.8b two parts after the true speech
end. VDE is increased with these false positives. False negatives are absent in this
female case (6.7), so for actual speech pitch is tracked still quite well but F0 halving is
happening in two occasions. In male speech case (6.8) especially RAPT entirely misses
several speechs parts leading to bad VDE score. DNNamr performs close to the clean
speech case and clearly outperforms the RAPT.

Compared to babble noise scenario, the AMR codec conditions turns out to be even more
challenging. DNNamrwb still performs on a good level in both cases with no false posi-
tives but with some false negatives for voicing decisions especially in male speech case.
This leads to increased VDE, but in general the result is still good in female speech case
while in male speech case false positives are close to RAPT level and estimation quality
probably is insufficient for some applications. With female speech (Fig 6.7) RAPT starts
to consider even more noise as speech, and the amount of false positives is notable.
Some pitch halving is also occurring. In male speech case (Fig 6.8) there is less false
positives and pitch halving but the amount of false negatives is considerable. In these
cases RAPT clearly is not reliable estimator anymore.

Overall, DNNamrwb performs better than RAPT in these example file cases. DNNamrwb
does not make octave errors and is especially robust to false positives in voicing deci-
sions. It seems that DNN trained with speech samples will learn the characteristics of
speech and is able to distinguish it from speech-like babble noise. Hence DNN works
well as a voice activity detector as well. RAPT

One characteristic of the proposed DNN method seems to be often occuring overshoot
in the F0 estimates at the beginning of voiced regions. This behaviour was not prominent
in this particular example pitch tracks, but some other signals showed significant error on

52

the edges of speech regions. However, as these are of very short duration, the overall
average performance is not too much affected. One can also see from the plots, the
reference signal has also individual frames with octave errors in the F0, indicating the the
ground truth signals are not always unanimous.

53

0 1 2 3 4 5 6 7 8

t/s

0

100

200

300

f/
H

z

reference

DNNamrwb

0 1 2 3 4 5 6 7 8

t/s

0

100

200

300

f/
H

z

reference

RAPT

(a) Example pitch tracks with clean speech

0 1 2 3 4 5 6 7 8

t/s

0

100

200

300

f/
H

z

reference

DNNamrwb

0 1 2 3 4 5 6 7 8

t/s

0

50

100

150

200

f/
H

z

reference

RAPT

(b) Example pitch tracks of speech with 0dB SNR babble noise injected

0 1 2 3 4 5 6 7 8

t/s

0

50

100

150

200

f/
H

z

reference

DNNamrwb

0 1 2 3 4 5 6 7 8

t/s

0

100

200

300

f/
H

z

reference

RAPT

(c) Example pitch tracks of amr-coded speech with 0 dB SNR babble noise injected

Figure 6.7. Example pitch tracks for file mic_F03_si888.wav from PTDB-TUG

54

0 1 2 3 4 5 6 7 8 9 10

t/s

0

50

100

150

200

f/
H

z

reference

DNNamrwb

0 1 2 3 4 5 6 7 8 9 10

t/s

0

50

100

150

200

f/
H

z

reference

RAPT

(a) Example pitch tracks with clean speech

0 1 2 3 4 5 6 7 8 9 10

t/s

0

50

100

150

200

f/
H

z

reference

DNNamrwb

0 1 2 3 4 5 6 7 8 9 10

t/s

0

100

200

300

f/
H

z

reference

RAPT

(b) Example pitch tracks of speech with 0 dB SNR babble noise injected

0 1 2 3 4 5 6 7 8 9 10

t/s

0

100

200

300

f/
H

z

reference

DNNamrwb

0 1 2 3 4 5 6 7 8 9 10

t/s

0

100

200

300

f/
H

z

reference

RAPT

(c) Example pitch tracks of amr-coded speech with 0 dB SNR babble noise injected

Figure 6.8. Example pitch tracks for file mic_M06_si1455.wav from PTDB-TUG

55

7 CONCLUSION

In this work, a WaveNet inspired CNN introduced in [10] was proposed as a pitch track-
ing method for telephony speech. Telephony was restricted to mobile networks and AMR
codecs, as they are the most prominent medium for speech transmission currently. Espe-
cially interesting is the narrowband (landline or AMR coded mobile network) case when
the fundamental frequency is basically missing and F0 has to be calculated from other
signal properties.

Since the proposed method is ANN based, most crucial parts of the work are model
definition and training strategy. The model was kept as in the original paper [10], but
training was revised to better take telephony speech into account. This was done by using
also AMR and AMR-WB coded samples for model training. Used speech database was
CSTR VCTK and F0 ground truths for training were calculated by REAPER algorithm.

The testing of the method and comparison to reference methods was done with a com-
pletely different dataset to demostrate the generalization capability of the proposed method.
The whole PTDB-TUG database was utilized and speech samples were randomly noise
injected and speech coded. These samples were then analyzed with each method and
results compared to pitch tracks provided with PTDB-TUG

Results of the study can be summarized in three main points. First, the proposed method
outperforms reference method with non-telephony but noise contaminated speech al-
ready with very simple training data augmentation and training strategy. Second, data
augmentation by speech coding is a valid ANN training strategy also when analyzing
non-coded files. Third, AMR -coded speech especially benefits from the use of AMR
data augmentation in the training phase.

Future work would be mostly focused on hyperparameter tuning in order to see if perfor-
mance can still be improved and, on the other hand, if a smaller number of parameters
could provide comparable performance. In this work, the original parameter set was
not optimized even though the new augmenting methods might have benefited from fine
tuning of hyperparameters. For instance, added complexity would allow model to better
utilize richer training data if such is available. Smaller model would better scale to real-
time device use because of the lesser memory and computational power requirements,
perhaps allowing completely new applications of pitch tracking.

Another aspect worth further research is the data augmentation part. An obvious con-
tinuation path would include different bit rates of AMR codecs and possibly other codecs

56

used in speech coding. As this study was conducted only with speech samples in En-
glish, some other languages also used in training phase might benefit the generalization
capability.

For the method itself, further analysis should be done in order to understand occasional
"overshoots" happening at the edges of periodic parts. Otherwise clearly erroneous be-
haviour was not seen in results.

As a conclusion, this study shows that the proposed method for F0 tracking should be
used over existing DSP based methods when strong noise is present in audio signal
and/or speech has been processed by telephony network. Absolute error numbers are
debatable, since ground truths used for both ANN training and method testing were auto-
matically created by a certain algorithm, thus essentially making comparison to be partly
against that algorithm and not a universal truth. However, the relative results are clearly
indicating superior performance of the proposed method.

57

REFERENCES

[1] 3GPP TS 26.071: Mandatory speech CODEC speech processing functions; AMR
speech Codec; General description. Tech. rep. 3rd Generation Partnership Project,
June 2018. URL: https://www.etsi.org/deliver/etsi_ts/126000_126099/
126071/15.00.00_60/ts_126071v150000p.pdf.

[2] 3GPP TS 26.073 : ANSI-C code for the Adaptive Multi Rate (AMR) speech codec.
Tech. rep. 3rd Generation Partnership Project, June 2018. URL: https://www.
etsi . org / deliver / etsi _ ts / 126000 _ 126099 / 126073 / 15 . 00 . 00 _ 60 / ts _

126073v150000p0.zip.
[3] 3GPP TS 26.090 : Mandatory Speech Codec speech processing functions; Adap-

tive Multi-Rate (AMR) speech codec; Transcoding functions codec. Tech. rep. 3rd
Generation Partnership Project, June 2018. URL: https://www.etsi.org/deliver/
etsi_ts/126000_126099/126090/15.00.00_60/ts_126090v150000p.pdf.

[4] 3GPP TS 26.094 : Mandatory speech codec speech processing functions; Adap-
tive Multi-Rate (AMR) speech codec; Voice Activity Detector (VAD) speech codec;
Transcoding functions codec. Tech. rep. 3rd Generation Partnership Project, June
2018. URL: https://www.etsi.org/deliver/etsi_ts/126000_126099/126094/
15.00.00_60/ts_126094v150000p.pdf.

[5] 3GPP TS 26.171: Speech codec speech processing functions; Adaptive Multi-Rate
- Wideband (AMR-WB) speech codec; General description. Tech. rep. 3rd Genera-
tion Partnership Project, June 2018. URL: https://www.etsi.org/deliver/etsi_
ts/126100_126199/126171/15.00.00_60/ts_126171v150000p.pdf.

[6] 3GPP TS 26.173 : ANSI-C code for the Adaptive Multi-Rate - Wideband (AMR-
WB) speech codec. Tech. rep. 3rd Generation Partnership Project, June 2018. URL:
https://www.etsi.org/deliver/etsi_ts/126100_126199/126173/15.00.00_60/

ts_126173v150000p0.zip.
[7] 3GPP TS 26.441 : Codec for Enhanced Voice Services (EVS); General overview.

Tech. rep. 3rd Generation Partnership Project, June 2018. URL: https://www.
etsi . org / deliver / etsi _ ts / 126400 _ 126499 / 126441 / 15 . 00 . 00 _ 60 / ts _

126441v150000p.pdf.
[8] M. Airaksinen. Methods for the application of glottal inverse filtering to statisti-

cal parametric speech synthesis; Glottaalisen käänteissuodatuksen käyttö tilas-
tollisessa parametrisessa puhesynteesissä. en. Aalto University publication series
DOCTORAL DISSERTATIONS; 109/2018. Aalto University; Aalto-yliopisto, 2018,
102 + app. 84. ISBN: 978-952-60-8028-4 (electronic); 978-952-60-8027-7 (printed).
URL: http://urn.fi/URN:ISBN:978-952-60-8028-4.

[9] M. Airaksinen, T. Bäckström, and P. Alku. Automatic estimation of the lip radia-
tion effect in glottal inverse filtering. English. In: INTERSPEECH, Singapore, Sept.

https://www.etsi.org/deliver/etsi_ts/126000_126099/126071/15.00.00_60/ts_126071v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126000_126099/126071/15.00.00_60/ts_126071v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126000_126099/126073/15.00.00_60/ts_126073v150000p0.zip
https://www.etsi.org/deliver/etsi_ts/126000_126099/126073/15.00.00_60/ts_126073v150000p0.zip
https://www.etsi.org/deliver/etsi_ts/126000_126099/126073/15.00.00_60/ts_126073v150000p0.zip
https://www.etsi.org/deliver/etsi_ts/126000_126099/126090/15.00.00_60/ts_126090v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126000_126099/126090/15.00.00_60/ts_126090v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126000_126099/126094/15.00.00_60/ts_126094v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126000_126099/126094/15.00.00_60/ts_126094v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126100_126199/126171/15.00.00_60/ts_126171v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126100_126199/126171/15.00.00_60/ts_126171v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126100_126199/126173/15.00.00_60/ts_126173v150000p0.zip
https://www.etsi.org/deliver/etsi_ts/126100_126199/126173/15.00.00_60/ts_126173v150000p0.zip
https://www.etsi.org/deliver/etsi_ts/126400_126499/126441/15.00.00_60/ts_126441v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126400_126499/126441/15.00.00_60/ts_126441v150000p.pdf
https://www.etsi.org/deliver/etsi_ts/126400_126499/126441/15.00.00_60/ts_126441v150000p.pdf
http://urn.fi/URN:ISBN:978-952-60-8028-4

58

14-18, 2014. Interspeech. International Speech Communication Association, 2014,
398–402. ISBN: 978-1-63439-435-2.

[10] M. Airaksinen, L. Juvela, P. Alku, and O. Räsänen. Data Augmentation Strate-
gies for Neural Network F0 Estimation. In: 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). May 2019. DOI: 10.1109/
ICASSP.2019.8683041.

[11] E. Barnard, R. Cole, M. P. Vea, and F. Alleva. Pitch detection with a neural-net
classifier. In: Signal Processing, IEEE Transactions on 39 (Mar. 1991), 298–307.
DOI: 10.1109/78.80812.

[12] P. Boersma and D. Weenink. Praat: doing phonetics by computer [Computer pro-
gram]. URL: www.praat.org.

[13] E. Cheng and I. S. Burnett. On the effect of amr and AMR-WB GSM compression
on overlapped speech for forensic analysis. In: Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011,
May 22-27, 2011, Prague Congress Center, Prague, Czech Republic. 2011, 1872–
1875. DOI: 10.1109/ICASSP.2011.5946871. URL: https://doi.org/10.1109/
ICASSP.2011.5946871.

[14] K. Cho, B. van Merriënboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Ben-
gio. Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. In: (June 2014). DOI: 10.3115/v1/D14-1179.

[15] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling. In: (Dec. 2014).

[16] N. Cummins, A. Baird, and B. W. Schuller. Speech analysis for health: Current
state-of-the-art and the increasing impact of deep learning. In: Methods 151 (2018).
Health Informatics and Translational Data Analytics, 41–54. ISSN: 1046-2023. DOI:
https : / / doi . org / 10 . 1016 / j . ymeth . 2018 . 07 . 007. URL: http : / / www .

sciencedirect.com/science/article/pii/S1046202317303717.
[17] F. Eyben, M. Wöllmer, and B. Schuller. openSMILE – The Munich Versatile and

Fast Open-Source Audio Feature Extractor. In: Jan. 2010, 1459–1462. DOI: 10.
1145/1873951.1874246.

[18] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L.
Dahlgren. DARPA TIMIT Acoustic Phonetic Continuous Speech Corpus CDROM.
1993.

[19] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[20] V. Hampala, M. Garcia, J. G. Švec, R. C. Scherer, and C. T. Herbst. Relationship
Between the Electroglottographic Signal and Vocal Fold Contact Area. In: Journal
of Voice 30.2 (2016), 161–171. ISSN: 0892-1997. DOI: https://doi.org/10.
1016/j.jvoice.2015.03.018. URL: http://www.sciencedirect.com/science/
article/pii/S0892199715000600.

https://doi.org/10.1109/ICASSP.2019.8683041
https://doi.org/10.1109/ICASSP.2019.8683041
https://doi.org/10.1109/78.80812
www.praat.org
https://doi.org/10.1109/ICASSP.2011.5946871
https://doi.org/10.1109/ICASSP.2011.5946871
https://doi.org/10.1109/ICASSP.2011.5946871
https://doi.org/10.3115/v1/D14-1179
https://doi.org/https://doi.org/10.1016/j.ymeth.2018.07.007
http://www.sciencedirect.com/science/article/pii/S1046202317303717
http://www.sciencedirect.com/science/article/pii/S1046202317303717
https://doi.org/10.1145/1873951.1874246
https://doi.org/10.1145/1873951.1874246
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/j.jvoice.2015.03.018
https://doi.org/https://doi.org/10.1016/j.jvoice.2015.03.018
http://www.sciencedirect.com/science/article/pii/S0892199715000600
http://www.sciencedirect.com/science/article/pii/S0892199715000600

59

[21] K. Han and D. Wang. Neural Network Based Pitch Tracking in Very Noisy Speech.
In: Audio, Speech, and Language Processing, IEEE/ACM Transactions on 22 (Dec.
2014), 2158–2168. DOI: 10.1109/TASLP.2014.2363410.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recog-
nition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. 2016, 770–778. DOI: 10.
1109/CVPR.2016.90. URL: https://doi.org/10.1109/CVPR.2016.90.

[23] N. Henrich Bernardoni, C. d’Alessandro, B. Doval, and M. Castellengo. On the use
of the derivative of electroglottographic signals for characterization of nonpatho-
logical phonation. In: The Journal of the Acoustical Society of America 115 (Apr.
2004), 1321–32. DOI: 10.1121/1.1646401.

[24] N. Henrich, C. D’Alessandro, B. Doval, and M. Castellengo. On the use of the
derivative of electroglottographic signals for characterization of nonpathological
phonation. In: Journal of the Acoustical Society of America 115.3 (2004). cited
By 141, 1321–1332. DOI: 10.1121/1.1646401. URL: https://www.scopus.com/
inward/record.uri?eid=2- s2.0- 1542286741&doi=10.1121%2f1.1646401&

partnerID=40&md5=f48fecd793ab393a49021087c2956a1f.
[25] D. P. Hill, A. D. Meyers, and R. C. Scherer. A comparison of four clinical techniques

in the analysis of phonation. In: Journal of Voice 4.3 (1990), 198–204. ISSN: 0892-
1997. DOI: https://doi.org/10.1016/S0892- 1997(05)80014- 1. URL: http:
//www.sciencedirect.com/science/article/pii/S0892199705800141.

[26] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. In: Neural Comput.
9.8 (Nov. 1997), 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997.9.8.1735.
URL: http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[27] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-
versal approximators. In: Neural Networks 2.5 (1989), 359–366. ISSN: 0893-6080.
DOI: https://doi.org/10.1016/0893-6080(89)90020-8. URL: http://www.
sciencedirect.com/science/article/pii/0893608089900208.

[28] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In: Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learning - Volume 37.
ICML’15. Lille, France: JMLR.org, 2015, 448–456. URL: http : / / dl . acm . org /
citation.cfm?id=3045118.3045167.

[29] D. Ireland, C. Knuepffer, and S. J. McBride. Adaptive Multi-Rate Compression Ef-
fects on Vowel Analysis. In: Frontiers in Bioengineering and Biotechnology 3 (2015),
118. ISSN: 2296-4185. DOI: 10.3389/fbioe.2015.00118. URL: https://www.
frontiersin.org/article/10.3389/fbioe.2015.00118.

[30] D. Jouvet and Y. Laprie. Performance analysis of several pitch detection algorithms
on simulated and real noisy speech data. In: Proceedings of the 2017 25th Euro-
pean Signal Processing Conference (EUSIPCO), Kos, Greece. 2017, 1614–1618.
DOI: 10.23919/EUSIPCO.2017.8081482.

https://doi.org/10.1109/TASLP.2014.2363410
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1121/1.1646401
https://doi.org/10.1121/1.1646401
https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542286741&doi=10.1121%2f1.1646401&partnerID=40&md5=f48fecd793ab393a49021087c2956a1f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542286741&doi=10.1121%2f1.1646401&partnerID=40&md5=f48fecd793ab393a49021087c2956a1f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-1542286741&doi=10.1121%2f1.1646401&partnerID=40&md5=f48fecd793ab393a49021087c2956a1f
https://doi.org/https://doi.org/10.1016/S0892-1997(05)80014-1
http://www.sciencedirect.com/science/article/pii/S0892199705800141
http://www.sciencedirect.com/science/article/pii/S0892199705800141
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
https://doi.org/10.3389/fbioe.2015.00118
https://www.frontiersin.org/article/10.3389/fbioe.2015.00118
https://www.frontiersin.org/article/10.3389/fbioe.2015.00118
https://doi.org/10.23919/EUSIPCO.2017.8081482

60

[31] K. Kasi and S. A. Zahorian. Yet Another Algorithm for Pitch Tracking. In: Proceed-
ings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, ICASSP 2002, May 13-17 2002, Orlando, Florida, USA. 2002, 361–364.
DOI: 10.1109/ICASSP.2002.5743729. URL: https://doi.org/10.1109/ICASSP.
2002.5743729.

[32] A. Kato and T. Kinnunen. Waveform to Single Sinusoid Regression to Estimate the
F0 Contour from Noisy Speech Using Recurrent Deep Neural Networks. In: Proc.
Interspeech 2018. 2018, 327–331. DOI: 10.21437/Interspeech.2018-1671. URL:
http://dx.doi.org/10.21437/Interspeech.2018-1671.

[33] P. Keating and G. Kuo. Comparison of speaking fundamental frequency in English
and Mandarin. In: Journal of the Acoustical Society of America 132 (2012), 1050.
DOI: 10.1121/1.4730893.

[34] U. Laine. Modelling of LIP radiation impedance in Z-domain. In: (Jan. 1982). DOI:
10.1109/ICASSP.1982.1171841.

[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation Applied to Handwritten Zip Code Recognition. In:
Neural Comput. 1.4 (Dec. 1989), 541–551. ISSN: 0899-7667. DOI: 10.1162/neco.
1989.1.4.541. URL: http://dx.doi.org/10.1162/neco.1989.1.4.541.

[36] L. Lehto, L. Laaksonen, E. Vilkman, and P. Alku. Changes in Objective Acoustic
Measurements and Subjective Voice Complaints in Call Center Customer-Service
Advisors During One Working Day. In: Journal of Voice 22.2 (2008), 164–177. ISSN:
0892-1997. DOI: https://doi.org/10.1016/j.jvoice.2006.08.010. URL: http:
//www.sciencedirect.com/science/article/pii/S0892199706001135.

[37] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems. Software available from ten-
sorflow.org. 2015. URL: https://www.tensorflow.org/.

[38] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry.
Cambridge, MA, USA: MIT Press, 1969.

[39] S. MR and B. Atal. “Code-excited Linear Prediction (CELP): High Quality Speech at
Very Low Bit Rates,” in: vol. 10. May 1985, 937–940. DOI: 10.1109/ICASSP.1985.
1168147.

[40] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A. Senior, and K. Kavukcuoglu. WaveNet: A Generative Model for
Raw Audio. In: Arxiv. 2016. URL: https://arxiv.org/abs/1609.03499.

https://doi.org/10.1109/ICASSP.2002.5743729
https://doi.org/10.1109/ICASSP.2002.5743729
https://doi.org/10.1109/ICASSP.2002.5743729
https://doi.org/10.21437/Interspeech.2018-1671
http://dx.doi.org/10.21437/Interspeech.2018-1671
https://doi.org/10.1121/1.4730893
https://doi.org/10.1109/ICASSP.1982.1171841
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
https://doi.org/https://doi.org/10.1016/j.jvoice.2006.08.010
http://www.sciencedirect.com/science/article/pii/S0892199706001135
http://www.sciencedirect.com/science/article/pii/S0892199706001135
https://www.tensorflow.org/
https://doi.org/10.1109/ICASSP.1985.1168147
https://doi.org/10.1109/ICASSP.1985.1168147
https://arxiv.org/abs/1609.03499

61

[41] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, and A. Lerer. Automatic Differentiation in PyTorch. In: NIPS Autodiff
Workshop. 2017.

[42] G. Pirker, M. Wohlmayr, S. Petrik, and F. Pernkopf. A Pitch Tracking Corpus with
Evaluation on Multipitch Tracking Scenario. In: Interspeech (2011), 1509–1512.
URL: https://www.spsc.tugraz.at/tools/ptdb-tug.

[43] L. Probst and A. Braun. The effects of emotional state on fundamental frequency. In:
Sasha Calhoun, Paola Escudero, Marija Tabain and Paul Warren (eds.) Proceed-
ings of the 19th International Congress of Phonetic Sciences, Melbourne, Australia
2019.

[44] V. Pulkki. and M. Karjalainen. Communication Acoustics: An Introduction to Speech,
Audio and Psychoacoustics. Wiley, 2015. ISBN: 9781118866542.

[45] L. R. Rabiner and R. W. Schafer. Introduction to Digital Speech Processing. In:
Found. Trends Signal Process. 1.1 (Jan. 2007), 1–194. ISSN: 1932-8346. DOI: 10.
1561/2000000001. URL: http://dx.doi.org/10.1561/2000000001.

[46] F. Rosenblatt. The Perceptron: A Probabilistic Model for Information Storage and
Organization in The Brain. In: Psychological Review (1958), 65–386.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representations by
Back-propagating Errors. In: Nature 323.6088 (1986), 533–536. DOI: 10.1038/
323533a0. URL: http://www.nature.com/articles/323533a0.

[48] E. Suthau, P. Birkholz, A. Mainka, and A. P. Simpson. Non-invasive photoglottogra-
phy for use in the lab and the field. In: (Oct. 2016), 1–5. ISSN: null.

[49] D. Talkin. A robust algorithm for pitch tracking (RAPT). In: Speech Coding and
Synthesis. Ed. by W. B. Kleijn and K. K. Paliwal. Elsevier Science B.V., 1995, 497–
518.

[50] D. Talkin. REAPER: Robust Epoch And Pitch EstimatoR. 2014. URL: https://
github.com/google/REAPER (visited on 04/02/2019).

[51] K. Tokuda, K. Oura, et al. Speech Signal Processing Toolkit (SPTK). URL: http:
//sp-tk.sourceforge.net/.

[52] A. Varga and H. Steeneken. Assessment for automatic speech recognition: II. NOISEX-
92: A database and an experiment to study the effect of additive noise on speech
recognition systems. In: Speech Communication 12 (July 1993), 247–251. DOI:
10.1016/0167-6393(93)90095-3.

[53] C. Veaux, J. Yamagishi, and K. MacDonald. CSTR VCTK Corpus: English Multi-
speaker Corpus for CSTR Voice Cloning Toolkit, [sound]. In: (2017). URL: https:
//doi.org/10.7488/ds/1994.

[54] J. Wook Kim, J. Salamon, P. Li, and J. Pablo Bello. Crepe: A Convolutional Repre-
sentation for Pitch Estimation. In: 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). Apr. 2018, 161–165. DOI: 10.1109/
ICASSP.2018.8461329.

[55] S. A. Zahorian and H. Hu. A spectral/temporal method for robust fundamental fre-
quency tracking. In: The Journal of the Acoustical Society of America 123.6 (2008),

https://www.spsc.tugraz.at/tools/ptdb-tug
https://doi.org/10.1561/2000000001
https://doi.org/10.1561/2000000001
http://dx.doi.org/10.1561/2000000001
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
http://www.nature.com/articles/323533a0
https://github.com/google/REAPER
https://github.com/google/REAPER
http://sp-tk.sourceforge.net/
http://sp-tk.sourceforge.net/
https://doi.org/10.1016/0167-6393(93)90095-3
https://doi.org/10.7488/ds/1994
https://doi.org/10.7488/ds/1994
https://doi.org/10.1109/ICASSP.2018.8461329
https://doi.org/10.1109/ICASSP.2018.8461329

62

4559–4571. DOI: 10.1121/1.2916590. eprint: https://doi.org/10.1121/1.
2916590. URL: https://doi.org/10.1121/1.2916590.

https://doi.org/10.1121/1.2916590
https://doi.org/10.1121/1.2916590
https://doi.org/10.1121/1.2916590
https://doi.org/10.1121/1.2916590

63

A NUMERIC RESULTS BY METHOD

SNR Clean 15 dB 5 dB 0 dB -5 dB

PCM 5,00 4,66 4,41 4,51 5,71

VDE AMR 5,13 4,91 5,07 6,29 13,95

AMR-WB 5,04 4,64 4,61 7,38 29,72

PCM 3,39 3,34 3,26 3,41 3,93

GPE AMR 4,08 4,15 3,99 4,34 11,95

AMR-WB 3,35 3,27 3,23 4,25 58,85

PCM 2,91 2,85 2,78 2,73 2,74

FPE AMR 2,69 2,62 2,55 2,61 3,68

AMR-WB 2,65 2,56 2,48 2,64 6,82

PCM 5,77 5,41 5,13 5,23 6,49

FFE AMR 6,04 5,83 5,91 7,12 15,51

AMR-WB 5,80 5,38 5,30 8,16 34,85

(a) Clean and white noise

SNR 15 dB 5 dB 0 dB -5 dB

PCM 5,08 16,10 26,06 33,97

VDE AMR 5,50 16,15 27,16 39,28

AMR-WB 5,54 19,12 31,57 38,04

PCM 3,35 4,13 6,68 15,95

GPE AMR 3,95 4,79 10,25 43,42

AMR-WB 3,27 5,27 23,31 68,83

PCM 2,83 3,10 3,62 4,60

FPE AMR 2,58 3,10 4,63 8,07

AMR-WB 2,57 3,34 5,28 11,72

PCM 5,83 16,99 27,44 36,82

FFE AMR 6,36 17,12 28,96 44,08

AMR-WB 6,26 20,18 34,76 42,63

(b) Babble noise

Table A.1. YAAPT results

64

SNR Clean 15 dB 5 dB 0 dB -5 dB

PCM 4,88 4,65 5,65 7,40 11,12

VDE AMR 5,39 5,15 6,63 9,71 16,25

AMR-WB 5,21 4,82 7,22 13,30 22,45

PCM 3,42 3,08 3,70 6,19 12,08

GPE AMR 4,64 5,04 9,05 18,20 39,95

AMR-WB 3,70 3,50 6,02 13,81 43,63

PCM 2,89 2,73 2,61 2,57 2,62

FPE AMR 2,81 2,64 2,53 2,54 3,46

AMR-WB 2,81 2,62 2,56 2,68 3,71

PCM 5,64 5,30 6,36 8,46 12,69

FFE AMR 6,41 6,20 8,28 12,38 19,31

AMR-WB 6,03 5,55 8,27 14,77 22,95

(a) Clean and white noise

SNR 15 dB 5 dB 0 dB -5 dB

PCM 4,88 6,89 9,87 16,21

VDE AMR 5,68 8,98 15,37 34,37

AMR-WB 5,62 11,30 19,74 29,54

PCM 3,33 6,47 16,55 48,56

GPE AMR 6,23 20,27 48,97 90,68

AMR-WB 4,46 17,92 66,42 94,53

PCM 2,68 2,66 2,85 3,55

FPE AMR 2,52 2,60 3,76 7,53

AMR-WB 2,50 2,64 5,57 9,77

PCM 5,57 8,05 12,34 21,88

FFE AMR 6,91 12,20 21,52 44,30

AMR-WB 6,49 13,61 23,97 31,88

(b) Babble noise

Table A.2. REAPER results

65

SNR Clean 15 dB 5 dB 0 dB -5 dB

PCM 4,58 4,33 5,76 9,33 17,11

VDE AMR 5,13 5,01 6,26 10,11 20,20

AMR-WB 4,78 4,81 7,52 16,82 23,56

PCM 2,35 2,17 1,92 1,68 1,44

GPE AMR 2,87 2,73 2,38 2,25 3,29

AMR-WB 2,28 2,46 1,87 1,77 79,71

PCM 2,85 2,67 2,27 1,98 1,77

FPE AMR 3,25 3,17 2,92 2,74 1,98

AMR-WB 2,74 3,20 2,08 1,81 4,74

PCM 5,10 4,80 6,12 9,57 17,21

FFE AMR 5,76 5,59 6,70 10,42 20,31

AMR-WB 5,29 5,33 7,84 16,94 23,56

(a) Clean and white noise

SNR 15 dB 5 dB 0 dB -5 dB

PCM 6,08 10,55 13,54 19,49

VDE AMR 7,33 13,40 19,27 29,81

AMR-WB 5,83 10,69 21,01 29,32

PCM 2,41 3,80 8,32 19,61

GPE AMR 3,05 7,17 19,78 50,09

AMR-WB 2,45 8,18 28,74 68,95

PCM 2,90 3,16 3,49 4,00

FPE AMR 3,34 3,85 4,54 7,91

AMR-WB 2,91 3,58 4,64 11,39

PCM 6,61 11,31 15,00 21,77

FFE AMR 7,97 14,76 22,12 32,83

AMR-WB 6,35 12,10 23,15 31,11

(b) Babble noise

Table A.3. RAPT results

66

SNR Clean 15 dB 5 dB 0 dB -5 dB

PCM 4,35 4,35 4,38 4,49 4,85

VDE AMR 4,85 4,90 5,22 6,01 9,80

AMR-WB 4,61 4,63 4,77 5,69 15,59

PCM 2,53 2,53 2,54 2,58 2,64

GPE AMR 3,21 3,23 3,37 3,81 5,66

AMR-WB 2,78 2,75 2,78 2,76 9,78

PCM 2,28 2,28 2,22 2,16 2,05

FPE AMR 2,60 2,60 2,56 2,48 2,45

AMR-WB 2,77 2,76 2,68 2,13 3,13

PCM 4,89 4,90 4,93 5,03 5,39

FFE AMR 5,52 5,57 5,90 6,74 10,62

AMR-WB 5,21 5,22 5,35 6,22 16,53

(a) Clean and white noise

SNR 15 dB 5 dB 0 dB -5 dB

PCM 4,41 5,00 6,61 11,40

VDE AMR 5,04 6,84 11,60 24,41

AMR-WB 4,76 7,08 16,51 24,12

PCM 2,57 2,70 3,00 4,11

GPE AMR 3,36 4,37 6,99 45,11

AMR-WB 2,78 2,79 5,94 65,96

PCM 2,23 2,08 2,01 2,06

FPE AMR 2,58 2,47 2,50 9,58

AMR-WB 2,70 2,54 2,78 11,12

PCM 4,95 5,55 7,15 11,93

FFE AMR 5,73 7,66 12,56 25,43

AMR-WB 5,34 7,57 16,97 24,28

(b) Babble noise

Table A.4. DNN results

67

SNR Clean 15 dB 5 dB 0 dB -5 dB

PCM 4,57 4,69 4,40 4,53 4,99

VDE AMR 4,51 4,56 4,93 5,73 9,43

AMR-WB 4,53 4,94 4,82 5,85 15,76

PCM 2,30 2,38 2,22 2,24 2,32

GPE AMR 2,43 2,43 2,46 2,61 3,30

AMR-WB 2,37 2,52 2,43 2,56 5,73

PCM 2,37 2,66 2,06 1,99 1,87

FPE AMR 2,19 2,17 2,09 1,96 1,96

AMR-WB 2,47 2,91 2,44 2,32 2,44

PCM 5,06 5,20 4,87 5,00 5,46

FFE AMR 5,02 5,07 5,43 6,23 9,92

AMR-WB 5,03 5,47 5,32 6,33 16,23

(a) Clean and white noise

SNR 15 dB 5 dB 0 dB -5 dB

PCM 4,44 5,16 6,79 11,31

VDE AMR 4,72 6,29 11,18 21,41

AMR-WB 4,65 7,36 17,54 23,91

PCM 2,22 2,33 2,53 3,46

GPE AMR 2,50 2,84 4,19 13,05

AMR-WB 2,37 2,22 4,80 67,06

PCM 2,08 1,92 1,85 1,97

FPE AMR 2,14 1,98 2,05 3,40

AMR-WB 2,28 2,08 2,44 11,56

PCM 4,91 5,62 7,23 11,75

FFE AMR 5,24 6,82 11,73 21,77

AMR-WB 5,15 7,75 17,85 24,01

(b) Babble noise

Table A.5. DNNAMR results

68

SNR Clean 15 dB 5 dB 0 dB -5 dB

PCM 4,44 4,54 4,45 4,53 4,82

VDE AMR 4,52 4,57 4,86 5,50 8,82

AMR-WB 4,49 4,47 4,63 5,52 15,62

PCM 2,50 2,51 2,38 2,41 2,48

GPE AMR 2,47 2,45 2,43 2,59 3,61

AMR-WB 2,61 2,65 2,61 2,64 7,49

PCM 2,47 2,60 2,10 2,05 1,96

FPE AMR 2,31 2,30 2,20 2,10 2,15

AMR-WB 2,35 2,37 2,24 2,05 2,28

PCM 4,98 5,08 4,96 5,04 5,33

FFE AMR 5,05 5,09 5,36 6,01 9,38

AMR-WB 5,06 5,04 5,18 6,04 16,26

(a) Clean and white noise

SNR 15 dB 5 dB 0 dB -5 dB

PCM 4,39 4,89 6,08 9,86

VDE AMR 4,68 6,04 10,44 20,91

AMR-WB 4,63 6,88 15,75 23,87

PCM 2,44 2,62 2,91 4,48

GPE AMR 2,50 2,82 4,38 13,31

AMR-WB 2,63 2,83 6,70 61,34

PCM 2,16 2,10 2,11 2,25

FPE AMR 2,25 2,10 2,21 2,90

AMR-WB 2,28 2,10 2,44 10,55

PCM 4,92 5,42 6,62 10,51

FFE AMR 5,21 6,57 11,06 21,33

AMR-WB 5,19 7,39 16,33 23,95

(b) Babble noise

Table A.6. DNNAMR−WB results

	List of Figures
	List of Tables
	List of Programs and Algorithms
	List of Symbols and Abbreviations
	Introduction
	Human speech production
	Speech production system
	Larynx and phonation
	Vocal tract and nasal tract
	Lip radiation

	Linguistic properties of speech
	Modeling of Human speech production
	Speech coding

	F0 estimation
	The problem of F0 estimation
	Basic methods for F0 estimation
	Autocorrelation
	Cross-correlation
	Spectrum
	Cepstrum
	Post-processing

	F0 estimation algorithms
	RAPT
	REAPER
	YAAPT

	Electroglottography (EGG) or electrolaryngography
	Applications of F0 estimation

	Neural networks for F0 estimation
	Introduction to artificial neural networks
	Artificial neuron and Perceptron
	Multilayer perceptron
	Convolutional neural networks
	Recurrent neural networks
	Training of the networks and regularization
	WaveNet model

	Existing ANN based F0 estimators
	The proposed neural network for F0 estimation
	Structure of the proposed neural network

	Test setup
	Test data
	Data for neural network training
	Data augmentation of training data
	Data for F0 estimation evaluation

	Simulation environment
	Python for neural networks
	Speech processing utilities
	Matlab for results and running external utilities
	Speech codec

	Reference methods for F0 estimation
	Error metrics
	Voicing Decision Error
	Gross Pitch Error
	Fine Pitch Error
	F0 frame error

	Results
	Results with non-speech coded signals
	Results with AMR-NB coded signals
	Results with AMR-WB coded signals
	Overall impressions
	Example pitch tracks

	Conclusion
	References
	Appendix Numeric results by method

