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ABSTRACT
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December 2019

Arrhythmia is a condition that may appear at any-time and anywhere. Unfortunately, the conse-
quences are as well sometimes very serious for the suffering person. Therefore, the studies about
automated ECG monitoring have gained a lot of attraction in the literature. This study focuses on
the personalized monitoring aspect, which has been rarely investigated. In this thesis, we pro-
pose a novel sparse representation based feature extraction methods to be used with one class
classification, which has potential to outperform the competing methods. To evaluate the per-
formance, we run experiments with data from the MIT-BIH database and find that the proposed
methods occasionally surpass the performance of the method that does not use the proposed
feature extraction procedures and one class classification.
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detection
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Sydämen rytmihäiriö voi kehittyä missä ja milloin vain. Rythmihäiriön seuraamukset voivat ol-
la vakavia. Automatisoitu EKG-monitorointi onkin saanut paljon huomiota kirjallisuudessa. Tämä
työ keskittyy automatisoituun henkilökohtaiseen EKG-monitorointiin, jota ei ole käsitelty kirjallisuu-
dessa läheskään niin paljon kuin ei-henkilökohtaista EKG-monitorointia. Esitämme tässä työssä
ratkaisuksi menetelmiä, jotka perustuvat uusiin harvaan esitykseen perustuviin ominaisuuksiin.
Pyrimme ehdotetuilla menetelmillä parantamaan jo olemassa olevan menetelmän tehokkuutta.
Vertailemme kaikkia menetelmiä tutkimuksissa, joissa menetelmien tehokkuutta mitataan MIT-
BIH -tietokannan datalla. Tutkimuksissa ilmeni ehdotettujen menetelmien voivan osittain parantaa
jo olemassa olevan menetelmän tehokkuutta.

Avainsanat: anomalian tunnistus, yhden luokan luokittelu, henkilökohtainen EKG-monitorointi,
EKG-anomalian tunnistus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

Automated electrocardiogram (ECG) monitoring by machine learning methods is cov-
ered widely in the literature. Though, most of the study focuses on the ECG classification
problem, which requires annotated data with different types of arrhythmias for the train-
ing phase. As a consequence, ECG classification is only practical with both non-person
specific settings and hospital environments. Instead, this research focuses on the person-
alized ECG anomaly detection (AD) problem with wearable devices. Moreover, methods
used in this study enables person-specific monitoring since AD algorithms require only
data of normal heartbeats for the training phase. The proposed methods in this research
are not computationally intensive and so are reasonable to be computed by a wearable
device.

In the prior related work, a lot of different machine learning methods have been applied
for solving the automated ECG monitoring problem. Accordingly, there are many differ-
ent approaches for solving the ECG classification problem. These methods include hand
crafted feature extraction based methods [1][2] as well as methods based on the data-
driven feature extraction [3][4]. Additionally, the ECG AD problem is also covered in the
literature. [5][6] approaches the problem with neural networks while [7][8] studies sparse
representation based methods. Similarly to our research, [9] uses K-singular value de-
composition (K-SVD) not only for the AD but also for the feature extraction. Certain issues
may also arise during long term ECG monitoring by wearable devices. However, some
solutions for long term monitoring exists, i.e., solutions for K-SVD based methods [10].

This thesis aims to improve the ECG AD method proposed in [7] by using more exten-
sive feature extraction methods. A Somewhat similar way of feature extraction compared
to our methods is proposed in [9]. Consequently, K-SVD and orthogonal matching pur-
suit (OMP) [11] algorithms are used for the person specific feature extraction. Then we
try to detect anomalous heartbeats by using either single or multiple extracted features.
The detection step is known as an AD problem in the literature, although AD is often
also referred as a one-class classification or as a novelty detection problem. Fortunately,
many solutions have been discovered by the research. In this study, we adopt a famous
one-class support vector machine (OCSVM) with a Gaussian radial basis function (RBF)
kernel [12] to solve the AD problem. Both are chosen for our study due to their perfor-
mance and reasonable computational requirements [13]. Finally, to compare the method
[7] and the proposed methods in this study, we evaluate the performance of each method
in several experiments.
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In Chapter 2, we explain ECG briefly, introduce how we utilize the MIT-BIH arrhythmia
database [14], and define our methods for the ECG signal preprocessing and hearbeat
segmentation. Following that, in Chapter 3, we address the theory of the methods used
in this study. The methods consist of sparse representation, feature extraction and one-
class classification. Next, in Chapter 4, the figures of merit, experimental setup and the
results of the experiment are presented. Finally, in Chapter 5 we draw the conclusions of
this study and discuss the future work.
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2 ECG DATA

Electrocardiogram, more commonly known as ECG, is a record of the electrical poten-
tial difference between determined points as a function of time. Such a record can be
measured in practice by placing electrodes on the skin of the patient. One commonly
used configuration is a setup of 10 electrodes, which allows recording 12 different types
of leads. One of the leads named as lead II is essential for the automatic arrhythmia
detection and classification problem. [15]

ECG monitoring is mostly utilized in a hospital environment. However, ECG monitor-
ing elsewhere than in the hospital environment is, in fact, possible with mobile devices.
Though automatic heartbeat classification methods designed for the hospital environment
can not be utilized straightforwardly for mobile device use cases since using such devices
for long term monitoring raises issues to overcome. The morphology of the ECG signal
recorded with such a mobile device might reshape through time, for example, in cases if
the user misplaces the device or if the device gets misplaced by the user’s movement. [7]

2.1 MIT-BIH

In this research, the arrhythmia database MIT-BIH [14] will be used for the experiment.
It consists of 48 two-channel ECG records, each from different patients. All the records
are approximately 30-minutes-long and digitized with a 360 Hz sampling rate. For most
of the records these channels are modified lead V1 and modified limb lead II.
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Table 2.1. Comparison of labeling of MIT-BIH and AAMI heartbeat classes and how they
corresbond to classes used in this study

MIT-BIH AAMI Normal (N) / Abnormal (A)

N N N

L N N

R N N

e N N

j N N

A SVEB A

a SVEB A

J SVEB A

S SVEB A

V VEB A

E VEB A

F F A

P Q A

f Q A

U Q A

For the ECG classification problem the AAMI standard [16] recommends dividing heart-
beats into five different classes. Instead, for purposes of this research those five classes
will be again divided into two classes: normal and abnormal. Table 2.1 illustrates how
those two classes correspond to the MIT-BIH and AAMI classes.
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Table 2.2. All the patients from the MIT-BIH database mapped to the datasets 1 and
2. One patient may either be part of the validation set (VAL), part of the test set (TES)
or excluded from the dataset (EXC). The columns are named accordingly Patient (PAT),
dataset 1 (DS1) and dataset 2 (DS2).

PAT DS1 DS2 PAT DS1 DS2 PAT DS1 DS2 PAT DS1 DS2

100 EXC VAL 113 EXC VAL 201 TES TES 217 EXC EXC

101 EXC VAL 114 VAL VAL 202 TES TES 219 TES TES

102 EXC EXC 115 EXC VAL 203 TES TES 220 TES TES

103 EXC VAL 116 VAL VAL 205 TES TES 221 TES TES

104 EXC EXC 117 EXC VAL 207 TES TES 222 TES TES

105 EXC VAL 118 VAL VAL 208 TES TES 223 TES TES

106 VAL VAL 119 VAL VAL 209 TES TES 228 TES TES

107 EXC EXC 121 EXC VAL 210 TES TES 230 EXC TES

108 EXC VAL 122 EXC VAL 212 EXC TES 231 EXC TES

109 EXC VAL 123 EXC VAL 213 TES TES 232 EXC EXC

111 EXC VAL 124 VAL VAL 214 TES TES 233 TES TES

112 EXC VAL 200 TES TES 215 TES TES 234 TES TES

In this research we divide the MIT-BIH database patients into two different datasets,
Dataset 1 and Dataset 2, where Dataset 1 is a subset of Dataset 2. As suggested in
[2], patients 102, 104, 107 and 217 will be excluded from both datasets due to the paced
heartbeats. Moreover, all the patients with less than 550 normal heartbeats or 50 ab-
normal heartbeats are excluded from Dataset 1. The patient 232 is excluded from both
datasets since its record does not contain 500 normal heartbeats which is the size of the
patient specific training set used in our experiments. Thus, the two explained datasets
meet all the requirements set by the evaluation metrics explained in Chapter 4. Table 2.2
illustrates the described setting and also presents how the patients are divided into the
validation–test subsets.

2.2 Preprocessing

In experiments the preprocessing step will be the same as in [2], as also suggested in
[15]. In total, it consists of three steps, two median filters and one low-pass filter. The
signal is filtered by the median filter with a width of 200 ms following by another one 600
ms wide. The resulting signal is then extracted from the original signal. Finally, the signal
is filtered with finite 12-tap low-pass filter. More precisely, the filter is designed to have a
3-dB cutoff frequency at 35 Hz and an equal ripple for both pass and stopband.
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Figure 2.1. The signal before (blue) and after (orange) the preprocessing

Figure 2.1 demonstrates the effect of the explained preprocessing step.

2.3 Heartbeat segmentation

After preprocessing, the signals are split into segments. Each segment being R-peak
centered with a length of 0.6 seconds, there are 216 samples per each segment since
the sampling frequency is 360 Hz.

MIT-BIH database contains handcrafted location annotations for the R-peaks. However,
such handcrafted location marks are practically not available. Fortunately, this problem
is already solved and some of the methods are listed in [15]. Although, these kinds of
algorithms always suffer from some level of error. In addition to the R-peak annotations
provided by the MIT-BIH, we also run experiments in which additional artificial jitter is
applied to the R-peak annotations. Thus, we also consider the robustness of the anomaly
detection methods in this experiment. As suggested in [1][15], the jitter will be generated
randomly with zero mean and standard deviation of five samples.
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3 METHODS

In this chapter the proposed methods for detecting the anomalous heartbeats will be ex-
plained. All the methods studied in this thesis consist of either two or three different steps.
The steps are sparse representation, feature extraction and one-class classification. The
latter step may not be necessary if only a single feature is utilized for detecting anomalous
heartbeats.

3.1 Sparse representation

The heartbeat signal after the preprocssing and segmentation s ∈ Rp will be classified
as either normal sn or abnormal sa. Dictionary D ∈ Rp×n is a matrix which consists of n
so-called atoms. With s and D we may produce a sparse code vector x ∈ Rn for sparse
representation. Consequently, if the D and x suits well for the s, we obtain:

s ≈ Dx (3.1)

In this research we measure the sparsity of the x by l0 norm. Thus, we can limit the
sparsity:

∥x∥0 ≤ κ (3.2)

where the κ ∈ N. The reconstruction error may be measured by using the l2 norm,
denoted by:

r = ∥s−Dx∥2 (3.3)

Obtaining such an x for s and D, which minimizes the r is known as sparse coding.
Thus, an optimization problem may be formulated in which the sparsity of x is also limited
accordingly to the equation 3.2:

min
x

∥s−Dx∥2, s.t.∥x∥0 ≤ κ (3.4)

Additionally, to be able to find an optimal solution for the equation 3.4, finding a suitable D

is as well necessary. In this study we produce the optimal D by a process which is known
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as dictionary learning. Similarly to the equation 3.4, the dictionary learning is denoted by
an optimization problem:

min
D,X

∥S −DX∥2, s.t.∥xi∥0 ≤ κ, i = 1, ...,m (3.5)

where the S ∈ Rp×m and X ∈ Rn×m. In this study, the S refers to the training set which
consists of m normal heartbeat signals sn of a specific user. Therefore, we expect the r

to be smaller for sn than for sa if the x and person specific dictionary D are produced by
the described sparse coding and dictionary learning. The figure 3.1 demonstrates how
the sparse approximation is more similar to normal heartbeat than to abnormal one for
the learned dictionary.

Figure 3.1. At left, all the dictionary atoms are plotted. In the middle, a normal heartbeat
(blue) is plotted beside the according sparse approximation (orange). The right plot is
similar to the middle one with the exception that the heartbeat is abnormal instead. The
chosen parameters were n = 4 and κ = 2.

Similarly to the [7], we chose the K-SVD and orthogonal matching pursuit (OMP) algo-
rithms for the dictionary learning and sparse coding tasks. The algorithms are explained
precisely in [17]. Basically, the K-SVD algorithm iterates k times through a given initial
dictionary D0 and the training set S. For our experiments, we use the random uniform
distribution to generate the D0 and then normalize its atoms to have unit l2-length. Then,
we chose the first 500 normal heartbeats from the patient as the S and set the k to 50.
The best performing κ and n at the validation step are then chosen for the final evaluation.
The validation of κ and n are discussed more in Chapter 4.

3.2 Feature extraction

In this section, we introduce all the feature extraction methods. Nonetheless, the feature
combinations chosen for the experiments are not discussed here. Those combinations
are explained in Section 4. For convenience, all the considered features extraction meth-
ods are marked into a list:

i. The reconstruction error r from the equation 3.3.

ii. The l1 norm of the sparse code vector: ∥x∥1 where the x is obtained from the
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equation 3.4.

iii. Kurtosis of x which is obtained form the equation 3.4. Denoted by: µ4/σ
4, where µ4

and σ4 are the fourth central moment and the standard deviation of x.

iv. The sparse code vector x itself from the equation 3.4.

v. First, the x is obtained from the equation 3.4. Then the s and D are divided into
α equal size segments and the reconstruction error from equation 3.3 is calculated
per segment: ri = ∥si−Dix∥2, i = 1, ..., α. Unlike with the feature extraction method
1, α amount of features are received.

Depending on the amount of atoms n and the value of α, features extraction methods iv
and v may result more than just a single feature. Instead, the methods i, ii and iii will
always result a single feature.

The methods i and ii have been already discovered in the literature for the AD problem.
In the prior studies, the method i has been the most usual way to detect anomalies
[7][5]. The method ii was proposed in [9], although, they measured the sparsity of the
sparse vector x by l1 norm. Additionally, the method iv was proposed to solve the ECG
classification problem in [4].

3.3 One-class classification

Detection of anomalous heartbeats based only on a single feature is very straightfor-
ward. Only a threshold τ value has to be set when the heartbeats may be classified as
a normal if ≤ τ and as an abnormal otherwise. However, in our experiments we also
study the effect of utilizing more than just a single feature for the AD task. Classifying
such multivariate feature sets is possible by one-class classification algorithms. For our
experiments, we chose the OCSVM algorithm with the Gaussian RBF kernel [12].

The OCSVM is very similar algorithm to the support vector machine (SVM) [18]. While
the SVM aims to find a hyperplane which maximizes the margin between two different
classes, the OCSVM aims to find a hyperplane which separates the single class from
the origin maximizing the distance between the origin and the hyperplane. The Gaussian
RBF is denoted by:

K(x, x′) = exp(−γ∥x− x′∥2) (3.6)

where the γ ∈ R is situation specific parameter. The OCSVM algorithm finds an optimal
hyperplane when it is given: training data, kernel function K and parameter ν ∈ (0, 1).
The ν parameter controls two things: it sets an upper bound for the amount of outliers
in the training data and a lower bound for the amount of chosen support vectors. Then
with the obtained hyperplane it is possible to classify the sample as a normal (1) or as an
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abnormal (-1) by:

f(x) = sgn(
∑︂
i

αiK(xi, x)− ρ) (3.7)

In the equation 3.7 the αi with the ρ characterizes the hyperplane. However, the learned
hyperplane may not always be the most optimal one for the intended task. Thus, we
define an anomaly score function which may then be used to classify the anomalies:

s(x) = −(
∑︂
i

αiK(xi, x)− ρ) (3.8)

The bigger the anomaly socre, the more anomal the x is considered. With the defined
anomaly score function it is also possible to do the classification in a similar fashion
compared to the methods based on a single feature, only the threshold τ being required.
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4 EXPERIMENTS

First, we cover the figures of merit used in our experiments. Then two different experi-
ments are explained, followed by their results.

4.1 Figures of merit

For performance evaluation, the following metrics are introduced. True positive (TP)
means classifying abnormal class correctly, whereas false positive (FP) is about clas-
sifying abnormal class incorrectly. Similarly, true negative (TN) and false negative (FN)
are about correct and incorrect predictions for the normal class.

Accordingly, the true positive rate (TPR) is defined as

TPR = TP/(TP + FN) (4.1)

and false positive rate (FPR) is:

FPR = FP/(FP + TN), (4.2)

The receiver operating characteristic (ROC) curve may thus be explained. To obtain the
curve, TPR and FPR have to be plotted as a function of threshold which varies from the
smallest possible threshold to the biggest one. Using the FPR as a x-coordinate and TPR
as a y-coordinate the curve will settle between points (0,0) and (1,1).

Finally, we define the area under the curve (AUC). Basically the AUC is the area between
the curve and the x-axis. Thus, the best possible AUC score is 1 while the worst is 0.
Although, it should be noted that a random classifier would achieve AUC score of 0.5. In
this experiment the AUC score is always taken from the area under the ROC.

The AUC score depends on how well the method’s anomaly indicator separates the nor-
mal class from the abnormal class. Unlike the AUC score, the rest of the metrics to be
introduced depend on the actual class predictions. Accuracy (ACC) is defined as

ACC = (TP + TN)/(TP + FP + TN + FN) (4.3)
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whereas precision (PRE) is

PRE = TP/(TP + FP ), (4.4)

specificity (SPE) is

SPE = TN/(TN + FP ), (4.5)

and F1 score (F1)

F1 = 2TP/(2TP + FP + FN). (4.6)

Also, the TPR from the equation 4.1 is also called as sensitivity (SEN).

4.2 Experimental setup

This research will cover 9 different methods in 2 different experiments. The methods
mostly differ on their feature extraction part. Thus, for the convenience we list all the
feature extraction combinations:

1. i

2. iv

3. i and ii

4. i and iii

5. i and iv

6. i , ii and iii

7. i , ii , iii and iv

8. v where the α is set to 4

9. v where the α is set to 8

Method i [7] produces only a single feature which will be considered as the anomaly
score. The rest of the methods produce multivariate feature sets where the proposed
OCSVM algorithm can be applied. For the multivariate methods we also obtain the
anomaly score but from Equation 3.8 instead. Therefore, a simple thresholding method
suits for all the proposed methods. Lets also remark that with the threshold τ , we consider
heartbeats with anomaly scores ≤ τ as normal ones and the rest as anomalous.

Next, we introduce the 2 different experiments where the 9 different methods are evalu-
ated. For both experiments, the training procedure for the dictionary and the for OCSVM
are the same. Since the main focus on this study is on the personalized setting, we
use patient specific training datasets. Each training set consists of the first 500 normal
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heartbeats of the particular patient. Hence, the rest of the patient’s heartbeats are for
the evaluation. Also, the covered parameter combinations for the sparse representation
and the OCSVM are the same in both of the experiments. Parameters n = {4, 8, 16, 32}
and κ = {2, 4, 8} where κ ≤ n are covered for the sparse representation step. Sim-
ilarly for the methods which utilize the OCSVM, we cover parameters ν = {0.1, 0.01}
and γ = {2−6, 2−5, ..., 21}. The best proposed parameter combination is found for each
method by evaluating the performance against the validation dataset. Then the final per-
formance is measured based on the test dataset by using the parameter combination
found from the validation step. Finally, we take the random nature and the tolerance
against the error of the R-peak detection algorithm into consideration. So, all of the ex-
periments are proceeded seven times and the average and standard deviation over all
the results are reported. Moreover, to test the tolerance against the jitter, we report two
different results for both of the experiments, with and without the described artificial jitter.

In the first experiment, instead of classifying the heartbeats, we obtain the anomaly
scores for each method. This enables comparison of the methods based on their AUC
score. All the anomaly scores are user-specific, therefore we measure the AUC score
patient specifically. To be able to evaluate the performance, we then take the average
over the patient-specific AUC scores. Dataset 1 defined in Chapter 2 is utilized in this
experiment. All the patients in Dataset 1 have at least 50 normal and abnormal heart-
beats in their records after the 500 normal heartbeats for the training are excluded. In
this study the minimum requirement for the patient’s heartbeats is decided to exclude the
biased ROC curves.

The second experiment measures how the proposed methods perform based on the F1,
ACC, PRE, SPE and SEN metrics. Moreover, we use the F1 score in the validation step
to find the best parameter combination. Unlike in the first experiment, Dataset 2 is used
and the metrics are not measured patient specifically. Since the metrics covered in this
experiment are based on the class predictions instead of the anomaly score, a suitable
threshold τ has to be found for each patient. To find the optimal threshold, we gath-
ered 500 abnormal heartbeats randomly from the whole dataset excluding the targeted
patient’s record. Then the optimal threshold is settled to be the one that maximizes the
F1 score across the gathered 500 abnormal heartbeats and the 500 normal from the
patient’s training set.

4.3 Results

Table 4.1 presents the results for both experiments where there was no artificial jitter
applied to the heartbeat segmentations.
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Table 4.1. All the introduced metrics for all the methods from the experiments without
artificial jitter. The figures are the average and standard deviation of 7 repetition.

Method AUC F1 ACC SEN SPE PRE

1 [7] 0.959± 0.001 0.733± 0.015 0.885± 0.008 0.944± 0.010 0.873± 0.009 0.599± 0.018

2 0.957± 0.003 0.762± 0.006 0.904± 0.004 0.918± 0.009 0.901± 0.006 0.651± 0.011

3 0.954± 0.003 0.784± 0.007 0.916± 0.003 0.912± 0.006 0.917± 0.004 0.688± 0.010

4 0.952± 0.002 0.718± 0.032 0.890± 0.018 0.836± 0.006 0.900± 0.022 0.632± 0.054

5 0.959± 0.003 0.792± 0.008 0.920± 0.004 0.913± 0.008 0.922± 0.005 0.700± 0.013

6 0.956± 0.002 0.778± 0.006 0.913± 0.003 0.915± 0.005 0.912± 0.004 0.676± 0.001

7 0.958± 0.003 0.789± 0.009 0.918± 0.004 0.916± 0.011 0.919± 0.006 0.693± 0.014

8 0.945± 0.002 0.725± 0.007 0.890± 0.004 0.868± 0.004 0.894± 0.004 0.622± 0.001

9 0.950± 0.004 0.755± 0.012 0.897± 0.006 0.949± 0.008 0.886± 0.007 0.626± 0.015

It seems that the method 5 specially outperforms the other methods on the second ex-
periment.

To compare the method 1 [7] to the one that achieves the highest AUC-score from the
others, we also present the figure 4.1. In the figure we plot the patient-specific AUC-
scores for the methods 1 [7] and 5.

Figure 4.1. Person-specific AUC-scores from the experiment without artificial jitter. The
blue bars present the method 1 [7] while the orange bars present the method 5. The
scores are the average of 7 repetition.

200 201 202 203 205 207 208 209 210 213 214 215 219 220 221 222 223 228 233 234
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

According to the figure 4.1, it should be noted that the best method may vary among the
patients.

Finally, to address the robustness against the errors from the heartbeat segmentation
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methods, we also present the results of experiments where there is the described artificial
jitter applied. The table 4.2 has the results in the same format as in the table 4.1.

Table 4.2. The figures are produced similarly to the table 4.1 except from the experiments
with the artificial jitter.

Method AUC F1 ACC SEN SPE PRE

1 [7] 0.953± 0.001 0.706± 0.009 0.868± 0.006 0.950± 0.005 0.852± 0.008 0.562± 0.012

2 0.956± 0.003 0.709± 0.012 0.878± 0.008 0.891± 0.010 0.875± 0.011 0.589± 0.019

3 0.940± 0.005 0.712± 0.032 0.885± 0.018 0.844± 0.009 0.894± 0.022 0.617± 0.049

4 0.942± 0.003 0.633± 0.032 0.844± 0.022 0.804± 0.012 0.851± 0.028 0.524± 0.045

5 0.957± 0.002 0.656± 0.065 0.849± 0.044 0.839± 0.018 0.851± 0.055 0.546± 0.094

6 0.943± 0.005 0.690± 0.019 0.873± 0.012 0.849± 0.011 0.877± 0.015 0.583± 0.032

7 0.957± 0.003 0.697± 0.042 0.876± 0.025 0.842± 0.009 0.883± 0.003 0.597± 0.061

8 0.945± 0.003 0.665± 0.025 0.862± 0.019 0.818± 0.020 0.870± 0.026 0.563± 0.044

9 0.949± 0.003 0.639± 0.025 0.841± 0.018 0.837± 0.008 0.842± 0.023 0.518± 0.036

According to the tables 4.1 and 4.2, the artificial jitter has an effect on how the methods
perform and on which methods perform better.
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5 CONCLUSIONS

Many different methods for personalized ECG monitoring by anomaly detection methods
were proposed. Novel proposed methods covered the impact of the sparse representa-
tion based feature extraction with OCSVM algorithm. Also, all the considered methods
were chosen not to be computationally intensive since the personalized monitoring meth-
ods are very important specifically for wearable devices.

Eventually, all the methods were evaluated in the experiments using MIT-BIH data. The
proposed methods were partially able to surpass the performance of the method without
the suggested more extensive ways of feature extraction. Although, none of the methods
was the best across all the covered metrics in the experiments. Neither, the best method
for a certain person may not always be the best for everyone. The artificial jitter also had
a significant effect on the performance. So, the robustness of the methods against the
heartbeat segmentation error may also be wise to take into consideration.

In the future work, different sparse coding and dictionary learning methods could as well
be discovered. This study did not either utilize any data actually from the wearable de-
vices. The MIT-BIH data is from hospital ECG so the figures in this study are only directive
when these methods are considered to be used with the wearable devices.
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