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Abstract

One of the qualities that allow bacterial cells to survive in diverse, fluctuating environments
is phenotypic plasticity, which is the ability to exhibit different phenotypes depending on
the environmental conditions. Phenotypic plasticity arises via coordinated work of small
genetic circuits that provide the cell with the means for decision-making. The behavior
of these circuits depends, among other factors, on the ability of protein numbers to cross
certain thresholds for a sufficient amount of time. In bacteria, RNA numbers largely
define protein numbers and thus can be used to study the decision-making processes.

Previous research outlined the effects of mean and variance in RNA or protein numbers
on the behavior of small genetic circuits. However, noise in gene expression is often highly
asymmetric. This could impact the threshold-crossing abilities of molecular numbers in a
way that is not detectable by considering only their mean and variance.

The focus of this thesis is to study the regulation of multi-step kinetics of bacterial
gene expression in live bacteria and its effects on the shape of the distribution of RNA
or protein levels. In particular, the thesis investigates how the rate-limiting steps in
bacterial transcription, such as closed and open complex formation, intermittent inactive
states, and promoter escape contribute to the dynamics of RNA numbers, and how this
dynamics propagates to the distribution of protein levels in a cell population. This study
made use of already existing techniques such as measurements at the single-RNA level
and dynamically accurate stochastic modeling, complemented by the novel methodology
developed in this work.

First, the thesis introduced a new method for estimating the numbers of fluorescently
tagged molecules present in a cell from time series data obtained by microscopy. This
method allows improving the accuracy of the estimation when fluorescently tagged
molecules are absent from the cell image for time intervals comparable with cell lifetime.
Second, the new methodology for dissecting in vivo kinetics of rate-limiting steps in
transcription initiation was proposed. Applying this methodology to study initiation
kinetics at lac/ara-1 promoter provided insights on the amount, duration, and reversibility
of the rate-limiting steps in this process. Further, the thesis investigated the kinetics
of transcription activation of lac/ara-1 promoter at various temperatures. The results
indicate that additional rate-limiting steps emerge in inducer intake kinetics as temperature
decreases from optimal (37 °C). Finally, the focus was shifted specifically to quantifying
the asymmetry and tailedness in RNA and protein level distributions, since these features
are relevant for determining threshold crossing propensities. Here, these features were
found to depend both on promoter sequence and on regulatory molecules, thus being
evolvable and adaptable.

Overall, the work conducted in this thesis suggests that asymmetries in RNA and protein
numbers may be crucial for decision-making in bacteria, since they can be regulated
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ii Abstract

by promoter sequence, regulatory molecules levels, and temperature shifts. The thesis
also contributes to the pool of existing methodology for studying in vivo bacterial gene
expression using single-cell biology approach. These findings should be of use both for
better understanding of natural systems and for fine-tuning behavior of synthetic gene
circuits.
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1 Introduction

1.1 Motivation

Bacteria survive in diverse, fluctuating environments (Kussell and Leibler, 2005) due to
their cell-to-cell variability and phenotypic plasticity (Casadesús and Low, 2006, 2013;
Healy and Schulte, 2015; Huang and Agrawal, 2016; Mitchell et al., 2009; Rao et al., 2002;
Smits et al., 2006). These properties are based on stochastic processes (Acar et al., 2008;
Süel et al., 2006) and on genetic mechanisms of decision-making using environment sensing
(Arkin et al., 1998; Golding, 2011; Ribeiro, 2008; Smits et al., 2006; Wolf and Arkin,
2002). These mechanisms are implemented in cells based on small genetic circuits, known
as ‘motifs’ (Milo et al., 2002), that are capable of, e.g., time counting, noise filtering,
information storage, and binary decision-making (Alon, 2007; De Lay and Gottesman,
2012; Porter et al., 2012; Shen-Orr et al., 2002; Wolf and Arkin, 2002, 2003).

Qualitative changes in the behavior of a motif occur when numbers of one or more of its
component proteins cross certain thresholds (Alon, 2007; Arkin et al., 1998; McAdams and
Arkin, 1997; Panovska-Griffiths et al., 2013). The mechanisms underlying the regulation
of the threshold crossing propensities of protein numbers are yet to be understood. Since
proteins are translated from RNAs, one of the key factors that define protein abundances
in organisms from bacteria to mammals is RNA levels (Li et al., 2014; Liu et al., 2016;
Vogel and Marcotte, 2012). Thus, to understand gene network motifs behavior, it is
crucial to study the regulation of RNA levels of the component genes.

RNA numbers are determined by the rates of RNA transcription from DNA template
strand and RNA degradation. In bacteria, and in particular in E. coli, RNA degradation
is known to be independent of RNA abundance, gene sequence, and metabolic function
of the corresponding protein (Bernstein et al., 2002; Chen et al., 2015; Deutscher, 2006;
Vogel and Marcotte, 2012), suggesting that the regulation of RNA levels occurs largely
during transcription. Since not only the average rate but also noise in gene expression
is able to affect the behavior of genetic circuits (Arkin et al., 1998; Kærn et al., 2005;
McAdams and Arkin, 1997; Raj et al., 2006; Raser and O’Shea, 2005), it is crucial to
understand how RNA production kinetics is regulated.

Previous research has shown that most of the regulation in transcription occurs at the stage
of initiation (Browning and Busby, 2004, 2016; McLeod and Johnson, 2001; Ruff et al.,
2015a). Moreover, transcription initiation includes several rate-limiting steps that can be
affected by such factors as changes in promoter sequence, binding of regulatory molecules,
σ factor competition, and transient topological constraints due to DNA supercoiling
build-up, among others (Chong et al., 2014; deHaseth et al., 1998; Duchi et al., 2016;
Kandavalli et al., 2016; Kærn et al., 2005; Lutz et al., 2001; McClure, 1985).

While these rate-limiting steps were originally dissected in vitro using steady-state assays
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2 Chapter 1. Introduction

(Bertrand-Burggraf et al., 1984; McClure, 1980, 1985), a more recent method known as
MS2-GFP tagging allows measuring transcription initiation kinetics in live cells over time
(Fusco et al., 2003; Golding et al., 2005). Namely, it allows obtaining a distribution of
time intervals between consecutive transcription events, collected from individual cells.
Meanwhile, analytical and stochastic models of gene expression based on master equations
were used to explore the possibilities and limitations of this biological system, given
the existing knowledge (Arkin et al., 1998; Kepler and Elston, 2001; Rajala et al., 2010;
Ribeiro, 2010; Sanchez et al., 2011a). By combining these experimental and modeling
techniques, this thesis aims to study the regulation of gene expression at the stage of
transcription initiation.

1.2 Aims of the study

This thesis examines the regulation of the kinetics of bacterial gene expression at the stage
of transcription initiation. We hypothesized that the rate-limiting steps in transcription
initiation can be studied in vivo using an approach analogous to the in vitro steady-state
abortive initiation assay (McClure, 1980). This hypothesis is based on the fact that a
relatively recent technology for in vivo ribonucleic acid (RNA) detection allows observing
the kinetics of transcription initiation in vivo at the level of detail that was not previously
possible (Golding and Cox, 2004). Further, we hypothesized that not only mean and
noise in transcription initiation rate but also asymmetry and tailedness of this process
are sensitive to environmental factors and depend on a promoter sequence, and that the
differences in these features between conditions can affect the decision-making processes
in living cells. This hypothesis is based on the past works that demonstrated that the
rate-limiting steps in transcription initiation can vary independently from each other
between conditions (Browning and Busby, 2016), potentially resulting in multifarious
kinetics of transcription initiation. The thesis has four primary aims that had to be
reached in order to test these hypotheses.

First, we had to develop a methodology for increasing the accuracy of estimating tran-
scription initiation kinetics from measurements. Currently, the most direct method to
measure in vivo transcription initiation kinetics in individual cells over time is single-cell
time-lapse microscopy of fluorescently tagged RNA molecules (Golding and Cox, 2004).
As these tagged RNAs do not degrade on the time-scale of the measurements (Tran et al.,
2015), knowing their total intensities in individual cells at each time moment allows
estimating the time intervals between consecutive RNA production events in individ-
ual cells (∆t intervals). However, although these molecules do not degrade during the
measurement time, they can temporarily disappear from the image, e.g. due to moving
out of the focal plane. While the already existing methodology accounts for this noise
(Häkkinen and Ribeiro, 2015), it does not consider the cases where negative noise in
intensity values appears transiently, for time lengths comparable to a cell lifetime, as
observed in our microscopy measurements. Thus, we aimed to develop a new method
that allows a more accurate quantitative estimation of fluorescent molecule numbers from
temporal fluorescence intensity data corrupted by transient nonzero-mean noise. These
goals were achieved in Publication I.

Achieving the first aim allowed obtaining a distribution of ∆t intervals (∆t distribution)
so as to next estimate the number, durations, and order of the rate-limiting steps in
transcription initiation. Thus, the second aim was to dissect in vivo transcription initiation
kinetics. This was previously done in vitro using the concept of the Lineweaver-Burk plot



1.3. Thesis outline 3

(often called a τ plot in this context) (Bertrand-Burggraf et al., 1984; Buc and McClure,
1985; McClure, 1980). To proceed in analogy to this in vitro methodology, we aimed to
find conditions where the closed complex formation time would vary, while the kinetics
of other rate constants in transcription initiation would not differ significantly. Further,
from empirical data measured in such conditions, we aimed to infer the best-fitting model
of transcription initiation. The novel in vivo methodology that allows achieving these
goals was presented in Publication II, along with an example application to an E. coli
promoter.

The kinetics of transcription initiation can also be regulated, directly or indirectly,
by transiently present regulatory molecules such as activators, repressors and other
transcription factors (Mäkelä et al., 2017; Tran et al., 2015), and it is not impervious
to environmental changes such as acidity and temperature (Muthukrishnan et al., 2014;
Oliveira et al., 2016a). Give this, the third aim was to study the kinetics of transcription
activation by an inducer introduced to the media, as a function of temperature. For this,
we planned to conduct single-cell time-lapse microscopy measurements of transcription
initiation kinetics (i) following the addition of inducer to the media and (ii) at the constant
intracellular inducer concentration, at various temperatures. We then aimed to develop
a novel methodology for estimating inducer intake times from these measurements and
dissecting the inducer intake kinetics. These goals were achieved in Publication III.

Finally, given that cells make decisions by crossing thresholds in protein numbers (Alon,
2007), the fourth aim was to explore the role of transcription initiation kinetics on
cellular decision-making processes. For this, we investigated how transcription initiation
kinetics can affect this threshold crossing process. Recent studies demonstrated that
in vivo kinetics of the rate-limiting steps in transcription initiation defines not only
its mean rate but also variability (Häkkinen and Ribeiro, 2016; Mäkelä et al., 2017).
Consequently, the author and colleagues aimed to investigate whether it is possible to
tune asymmetries in transcription initiation kinetics independently from its mean rate and
variability, and whether changes in these asymmetries have a significant effect on threshold
crossing in RNA and protein numbers. For this, we used single-cell, time-lapse microscopy
measurements (population and time series) of transcription initiation kinetics in various
conditions differing in promoter sequence, induction schemes and media composition,
along with tailored computational and statistical analysis. We also tested whether the
asymmetries in transcription initiation kinetics correspond to the asymmetries in protein
expression levels in individual cells. This study was presented in Publication IV.

1.3 Thesis outline

This thesis is organized as follows. Chapter 2 provides background information, with
the emphasis on transcription initiation in E. coli and stochastic models of this process.
Chapters 3 covers the methodology used for empirical data collection and initial data
processing along with the statistical analysis techniques used in this thesis. Chapter 4
presents a summary of the results, and Chapter 5 contains conclusions and discussion.





2 Background Review

2.1 Escherichia coli as a model organism

Escherichia coli, a gram-negative rod-shaped bacterium, is one of the most studied living
organisms and arguably is the standard model bacterium. This bacterium was discovered
by Theodor Escherich in 1886 and sequenced in 1997 (Blattner et al., 1997). Most of
the established concepts in molecular biology were derived from investigating E. coli.
Further, studies of this relatively simple and widespread bacterium have contributed to the
understanding of evolutionary processes. E. coli is usually selected as a model organism
for the development of new genetic engineering techniques and is used in pharmaceutics
for in vivo synthesis of chemicals relevant to the treatments of human diseases (Blount,
2015; Cooper, 2000).

2.2 Central dogma of molecular biology

Even the simplest of living cells have evolved intricate machinery that allows surviving,
reproducing, and performing other functions under various conditions. The information
utilized in such self-sufficient systems is encoded in genes, the elements that define
characteristics of the species and of the individual belonging to it, and stored in cells
in the form of deoxyribonucleic acid (DNA). The basic principles of preserving and
extracting this information can be described by a central dogma of molecular biology
(Figure 2.1). General transfers occur in all known living cells and involve producing copies
of DNA by replication, information flow from DNA to RNA by transcription, and from
RNA to proteins by translation. In special cases, such as viral infection or controlled
laboratory setting, RNA can be replicated or can transfer information to DNA by reverse
transcription, and a protein can be translated directly from DNA. These special cases do
not occur in E. coli model that is not infected with a virus. In general, the information
cannot be transferred from protein to RNA or DNA. (Alberts et al., 2008; Crick, 1970)

DNA is a double-stranded polymer where each strand is comprised of four unit types
called nucleotide bases: adenine, cytosine, guanine, and thymine. The strands are
complementary to each other in the sense that they form only adenine-thymine and
cytosine-guanine base pairs (bp). E. coli DNA is a circular chromosome, a single molecule
that includes about 4.6 million nucleotide pairs, whereas human DNA in haploid cells, for
comparison, consists of 23 chromosomes and includes about 3.2 milliard nucleotide pairs.
However, the size of the genome should not be used as a sole indicator of the organism
complexity, since organisms differ in fractions of non-coding DNA sequence, even between
the organisms of similar complexity (Alberts et al., 2008; Gil and Latorre, 2012). DNA is
replicated once per cell cycle by DNA polymerase unwinding and pulling apart the DNA
double helix and using each strand as a template to synthesize a new complementary
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6 Chapter 2. Background Review

Figure 2.1: The central dogma of molecular biology. General transfers are shown as solid arrows.
DNA stores genetic information and can be duplicated by replication. RNAs are transcribed
from DNA, and proteins are translated from RNA. Special transfers are shown as dashed arrows.
These are rare and occur only in vitro or in certain virus-infected cells.

strand (Alberts et al., 2008; Nielsen and Løbner-Olesen, 2008). Since DNA strands are
asymmetric, namely they possess a 5′ end and a 3′ end, these polymers can be synthesized
in vivo only in the 5′-to-3′ direction.

Meanwhile, RNA is a single-stranded polynucleotide, which differs from the DNA compo-
sition in that a nucleotide base uracil is used instead of thymine. In living cells, RNA is
usually produced by transcription. This process starts with RNA polymerase (RNAP)
recognizing and binding, with the help of transcription factor(s), to a DNA region called
promoter, which is located upstream of the coding sequence and indicates a starting point
for RNA synthesis. Next, RNAP opens the double helix and proceeds with the synthesis
of a complementary RNA. Upon encountering the terminator sequence, RNAP halts
and releases both the newly formed RNA and the DNA template (Alberts et al., 2008).
RNA can either directly participate in cellular machinery or be used as a template for
synthesizing proteins. The genetic code in the latter, called messenger RNA (mRNA),
is written in triplets of nucleotides called codons, with each codon either standing for a
specific amino acid or signaling the end of the region encoding a specific protein. This
genetic code is redundant, with different codons able to correspond to the same amino acid,
which contributes to the random mutations resistance. In eukaryotes, the transcribed
RNA should undergo the process of non-coding sequence removal, splicing, before it is
available for translation.

Proteins are polypeptide molecules that are usually built from up to 20 common amino
acids in the process of translation from mRNA. This process is initiated by a complex
molecular machine called ribosome assembling around the mRNA. In case of bacteria, this
happens at the ribosome binding site (RBS), a segment of an mRNA that is located closely
upstream of the start codon. While in eukaryotes the mRNA should be fully produced
before it moves to the cytoplasm where ribosomes are available, in prokaryotes translation
can be initiated before the completion of transcription. Amino acids are brought to
the translation site by a transfer RNAs, which can recognize the corresponding mRNA
codons and bind to them. When the start codon is bound by the transfer RNA, the
translation elongation can begin. As the following mRNA codon is bound, the ribosome
moves along the strand, binds the newly brought amino acid to the previous one and frees
the transfer RNA. This process repeats until the ribosome encounters a stop codon, where
translation termination occurs. During the termination, the ribosome releases the nascent
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polypeptide and the mRNA. Finally, translation is followed by protein folding, during
which the polypeptide chain attains the three-dimensional structure that is required for
the protein to perform its functions. (Alberts et al., 2008; Lodish et al., 2016)

It is noteworthy that a given promoter does not necessarily precede only one gene. Instead,
it can control an operon, which is a cluster of co-regulated genes. Operons occur frequently
in a prokaryotic genome, but are more uncommon in eukaryotes (Osbourn and Field,
2009). Transcription of an operon produces a single mRNA that encodes a set of proteins
usually required for a common task. Each gene encoded on such mRNA is called an open
reading frame. These genes are translated separately and with rates differing up to 100
times within the same operon (Burkhardt et al., 2017). Further, promoters of some genes
are closely spaced, which allows for additional means of gene expression regulation (Beck
and Warren, 1988; Chen et al., 2016; Zafar et al., 2014).

2.3 Regulation of bacterial transcription initiation

While the commonalities in the regulation of transcription initiation spawn from non-
cellular life to eukaryotes, the specificities of this process differ between the domains
of life (Grohmann and Werner, 2011; Ptashne, 2005; Travers and Muskhelishvili, 2007;
Werner and Weinzierl, 2002). At the same time, transcription initiation in bacteria, in
general, employs similar regulatory mechanisms across the species (Browning and Busby,
2004, 2016; Hochschild and Dove, 1998; Rojo, 1999; Roy et al., 1998; Ruff et al., 2015b;
Saecker et al., 2011). One example of this can be bacterial RNAP, which is known to
be highly conserved within the domain while differing from viral, eukaryote and archaea
RNAPs (nevertheless being related to these) (Grohmann and Werner, 2011; Ishihama
and Nagata, 1988; Lane and Darst, 2010; Lemon and Tjian, 2000; Roeder and Rutter,
1969; Werner and Weinzierl, 2002).

Transcription initiation is arguably the most regulated stage in bacterial gene expression,
likely due to the fact that it is more energy-efficient to exert the regulation before the
assembling of mRNA and proteins starts (Browning and Busby, 2004, 2016; deHaseth
et al., 1998; McLeod and Johnson, 2001; Ruff et al., 2015b; Thattai and van Oudenaarden,
2001). This regulation can be exerted by direct or indirect tuning of the concentrations
of molecules that are required for transcription initiation to proceed, as well as of other
regulatory molecules (Browning and Busby, 2004; Errington, 2003; Yanofsky, 2004), and
by transient topological constraints in promoter DNA (Bryant et al., 2014; Chong et al.,
2014). Further, transcription initiation kinetics can be altered by promoter modifications,
such as DNA methylation (Casadesús and Low, 2006, 2013) and changes in a promoter
DNA sequence (Brewster et al., 2012; Browning and Busby, 2016; Garcia et al., 2012;
Ruff et al., 2015b; Wisniewski-Dyé and Vial, 2008). Since spontaneous mutations in DNA
sequence occur at a slower rate than e.g. environmental changes, gene expression is, in
general, regulated by other means (Wisniewski-Dyé and Vial, 2008).

Note that transcription initiation is by no means the only significant contributor to regu-
lation in gene expression (Van Assche et al., 2015). Transcription elongation (Dobrzyński
and Bruggeman, 2009; Mironov et al., 2002; von Hippel and Pasman, 2002), mRNA
degradation (Bernstein et al., 2002; Chen et al., 2015; Deutscher, 2006), translation
(Byrgazov et al., 2013; Wilson et al., 2016), and protein degradation (Dougan et al., 2002;
Goldberg, 2003) are also able to introduce layers of global and local regulation.
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2.3.1 Transcription initiation as a multi-step process

Transcription initiation is composed of multiple steps that can become rate-limiting
depending on their durations and interactions with other steps (deHaseth et al., 1998;
Henderson et al., 2017; McClure, 1985; Record et al., 1996; von Hippel et al., 1984).
Although this process involves multiple conformational changes, transcription initiation of
an active promoter is usually represented as a sequence of the following steps (Figure 2.2A).
First, RNAP recognizes and binds to a promoter, forming a closed complex (CC). When
bound, RNAP unwinds approximately 14 bp surrounding the transcription site, forming
an open complex (OC) (Murakami and Darst, 2003; Record et al., 1996; Young et al.,
2002). Further, RNAP begins synthesizing an RNA, forming an initial transcribing
complex (ITC). While in ITC, the RNAP-promoter complex is likely to abort the
production of nascent RNA and reverse to the OC stage, releasing the abortive RNA. As
the nascent RNA reaches a certain length (approximately 10±3 nucleotides, depending on
the promoter), the ITC stabilizes into an elongation complex (EC) and can no longer be
reversed to OC (Henderson et al., 2017; Hsu, 2008; Murakami and Darst, 2003; Revyakin
et al., 2006). This stabilization is likely caused by the accumulation of scrunching and
other stresses that drive the promoter escape (Henderson et al., 2017; Kapanidis et al.,
2006; Revyakin et al., 2006).

Several in vitro and in vivo studies demonstrated that, at least for some promoters, the
branched pathway of transcription initiation explains the experimental observations better
than the sequential one (Henderson et al., 2017; Kubori and Shimamoto, 1996; Susa et al.,
2002, 2006). This pathway (Figure 2.2B) differs from the sequential pathway in that,
from a CC, the system can either move to a productive OC (OCP) or to a non-productive
one (OCNP, also known as a "moribund OC"). The OCP results in a relatively fast EC
formation and production of a full-length RNA transcript, whereas the OCNP results
only in abortive cycling accompanied by the release of a short abortive RNA (Henderson
et al., 2017). Both of these complexes can be reversed to the CC by RNA cleavage
factors GreA and GreB (Sen et al., 2001; Susa et al., 2006). The branched pathway is
hypothesized to provide additional regulatory flexibility, not only by varying the kinetics
of the rate-limiting processes in transcription initiation but also by amplifying effects of
repressors or activators (Susa et al., 2002). In addition, the regulatory role of abortive
RNA transcripts remains unclear, and further research is needed in order to understand
the role of the branched pathway in vivo (Henderson et al., 2017).

Given the multi-step nature of transcription initiation, it is possible to selectively affect
some of those steps while not altering other steps significantly. For example, GreA and
GreB factors and Mg2+ ions affect only the duration spent in transcription initiation
after the closed complex is formed (deHaseth et al., 1998; Hochschild, 2007; Suh et al.,
1992; Susa et al., 2006). Meanwhile, according to Figure 2.2, RNAP concentration affects
only the time spent in closed complex formation. Moreover, the total time spent in
closed complex formation changes linearly with the inverse of RNAP concentration, and
closed complex formation is assumed to be infinitely fast when the inverse of RNAP
concentration approaches zero. This was demonstrated in vitro in (Bertrand-Burggraf
et al., 1984; Buc and McClure, 1985; McClure, 1980) and in vivo in Publication II.
Given the above, and since RNAP is required for transcription of any gene, RNAP
concentration can be considered a global regulator of the time spent in closed complex
formation. Note that the genes which spend a longer time in closed complex formation
would be affected stronger by the changes in RNAP concentration.
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Figure 2.2: Possible pathways of transcription initiation, where RNAP is an RNA polymerase,
CC is closed complex, OC is open complex, ITC is initial transcribing complex, EC is escaped
(elongation) complex, and NTP represents nucleoside triphosphate molecules. (A) Sequential
pathway, where abortive synthesis occurs on the path to promoter escape; (B) Branched pathway,
where productive complexes (subscripted P) lead to promoter escape without abortive synthesis,
while productive complexes (subscripted NP) lead to abortive synthesis but not to promoter
escape. Adapted from (Henderson et al., 2017).

2.3.2 RNA polymerase composition
The main body of bacterial RNAP, called core RNAP complex or RNAP core enzyme,
consists of five subunits: α (two copies), β, β′, and ω (Haugen et al., 2008). The α
dimer acts as a scaffold to which β and β′ subunits bind with the help of ω subunit
(Minakhin et al., 2001). As a part of a functional core enzyme, α subunits engage in both
sequence-specific and sequence-non-specific interactions with promoter DNA, and also
interact with transcription regulatory factors (Finney et al., 2002; Gourse et al., 2000;
Ross et al., 1993). Two largest subunits, β and β′, form the two pincers of the claw-shaped
machinery responsible for RNA synthesis (Darst, 2001; Haugen et al., 2008; Mekler et al.,
2002; Naryshkin et al., 2000; Zhang et al., 1999). The smallest of these components,
the ω subunit, primarily facilitates RNAP assembly and enhances association between
the other subunits (Gunnelius et al., 2014; Mathew and Chatterji, 2006). Core RNAP
complex is capable of transcription elongation and termination but unable to recognize a
promoter and initiate transcription (Browning and Busby, 2004).

A dissociable σ subunit (also known as a σ factor) is responsible for RNAP promoter
recognition (Feklístov et al., 2014; Murakami, 2015). The σ factor can bind to the core
RNAP complex, forming an RNAP holoenzyme, an RNAP configuration that is able to
successfully initiate transcription (Figure 2.3A, the holoenzyme structure is described
in detail in (Murakami et al., 2002)). While core enzyme has a fixed composition, a
holoenzyme can form with one of the several σ factors available in the cell, acquiring a
promoter sequence affinity defined by the σ factor (Mauri and Klumpp, 2014; Mooney
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et al., 2005; Murakami and Darst, 2003). Thus, although both α and σ subunits can
engage in sequence-specific interactions with promoter DNA (Figure 2.3B), most of the
sequence-specific RNAP regulation is implemented via σ factor competition (Browning
and Busby, 2004; Haugen et al., 2008; Mauri and Klumpp, 2014).

Figure 2.3: Schematic representation of RNA polymerase (RNAP) and its interaction with
promoter DNA. (A) RNAP core enzyme is bound by a σ factor in order to form an RNAP
holoenzyme. The holoenzyme can specifically bind to promoter DNA. RNAP subunits are
represented as follows: α subunits in grey, each composed of an N-terminal domain, αNTD, and
a C-terminal domain, αCTD, connected by a linker (grey line); β subunit in blue; β′ subunit in
orange; and σ factor, or σ subunit, in pink. Although not visible on the figure, the ω subunit is
present both in the RNAP core enzyme and in the RNAP holoenzyme. (B) RNAP elements that
contribute to sequence-specific binding to promoter DNA, along with their binding sites and
their consensus sequences. Given that the transcriptional start cite is denoted as +1, the binding
sites are positioned as follows: UP element is -37 to -58; -35 element is -35 to -30; the extended
-10 element, Ext, is -17 to -14; the -10 element is -12 to -7; and the discriminator element, Dis,
is -6 to -4. In the consensus sequences, W stands for A or T, and N is any base. Adapted by
permission from Springer Nature Customer Service Centre GmbH: Nature Reviews Microbiology
(Browning and Busby, 2016), copyright (2016).

2.3.3 Regulation by σ factor competition

Regulation by σ factor competition is enabled by the fact that the numbers of free
RNAP available for transcription is limited, causing high competition for RNAP between
genes (Browning and Busby, 2004; Grigorova et al., 2006; Ishihama, 2000; Maeda et al.,
2000). Since different σ factors, in general, have differing affinities to a given gene,
changes in the concentrations of holoenzymes containing these σ factors can strongly
affect transcription initiation kinetics of this gene. These concentrations can be expressed
as a function of the concentration of the holoenzymes containing other sigma factors,
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along with the dissociation constants and total numbers of all σ factors (Mauri and
Klumpp, 2014). Figure 2.4 gives an example of a competition between two σ factors, σ70
and σAlt . Interestingly, the σ factor competition mechanism provides an additional level
of gene expression control. Namely, it allows for stress-responses that cannot be fully
duplicated by adding activators to the system with only one type of σ factors (Gross
et al., 1998).

Figure 2.4: An example of σ factor competition for RNAP core enzyme, Efree (grey oval),
given that two types of σ factors are present in the system: a housekeeping σ factor, σ70

(blue oval), and a generic alternative σ factor, σAlt (green oval). The σ factors σ70 and σAlt

compete for binding to Efree and forming an RNAP holoenzyme, Eσ70 or EσAlt , respectively.
Dissociation of this holoenzyme competes with reversible binding to a promoter specific to Eσ70

or EσAlt , respectively. Successful transcription initiation is followed by transcription elongation,
during which the σ factor is released after RNAP moves forward Lretσ

70 or Lretσ
Alt nucleotides,

respectively. The released σ factor enters the pool of the σ factors available for the competition.
When transcription is complete, the RNAP core enzyme, denoted E∗70 or E∗Alt, respectively, after
the gene it transcribes, is also released and enters the pool of Efree. Adapted from (Mauri and
Klumpp, 2014).

The change in RNAP holoenzyme concentration can also be achieved without altering
relative σ factor concentrations, by changing the concentration of the core RNAP complex
instead. This strategy was employed in Publications II and IV. In these studies, in most
cases, we deliberately avoided experimental conditions where the σ factor competition
mechanism could significantly affect the data, since this would obscure the results of
interest.

2.3.4 Regulation by transcription factors
Transcription factors are the proteins that can bind to promoters, either independently
or in cooperation with each other, and upregulate or downregulate transcription (Babu
and Teichmann, 2003; Browning and Busby, 2004; Pérez-Rueda and Collado-Vides, 2000).
Some of those target only a small amount of genes, whereas others act as global regulators
(Babu and Teichmann, 2003; Hochschild and Dove, 1998; Martínez-Antonio and Collado-
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Vides, 2003). The most common mechanisms of repression and activation by transcription
factors in transcription initiation are shown in Figure 2.5.

One widespread repression mechanism is a steric hindrance, where repressors bind to
promoter operator sites and their physical presence spatially obscures access to -10 or -35
elements, thus blocking the recruitment of RNAP (Garcia and Phillips, 2011; Oehler et al.,
1990). This mechanism can be seen as a competition between the repressor and RNAP
for binding to the promoter. Another repression mechanism is based on the transcription
factor binding to the operators located near the RNAP recruitment site and at some
distance from one another, thus bending DNA into a loop. This topological constraint
prevents RNAP recruitment (Müller et al., 1996; Oehler et al., 1990; Swint-Kruse and
Matthews, 2009). The less widespread mechanism involves "anti-activator" repressors
that bind to a promoter near the activator binding site and interact with the adjacent
activator (Valentin-Hansen et al., 1996). In addition, the concentration of free RNAP
holoenzymes can be affected by small RNAs which can mimic the target promoters and
block an RNAP by binding to it (Browning and Busby, 2016; Burenina et al., 2015;
Wassarman and Storz, 2000). While the above mechanisms mostly affect the steps before
a closed complex is formed, repressors can also hinder an open complex formation or
promoter clearance (Browning and Busby, 2016; Heltzel et al., 1990; Monsalve et al.,
1996; Sanchez et al., 2011b).

Transcription activation at many promoters is relatively simple and involves only a single
activator, with three general mechanisms being distinguished (Browning and Busby, 2004,
2016; Lee et al., 2012). In class I activation, an operator upstream of the -35 element
of the promoter is bound by a transcription factor that aids in recruiting RNAP by
interacting with the α subunits (Browning and Busby, 2004; Ebright, 1993). The binding
location of the activator can vary in a certain range, since α subunit has a flexible linker
that allows adjusting the distance at which the interaction can occur (Browning and
Busby, 2004). In class II activation, a transcription factor binds to the DNA region that
overlaps with the -35 element and interacts with the RNAP holoenzyme, usually with the
domain 4 of the σ subunit (Browning and Busby, 2004; Dove et al., 2003). While both
class I and class II activation facilitate promoter recruitment, class II activation can also
affect other steps in transcription initiation. In addition, class I and II activation can
work in cooperation, which is the case at many bacterial promoters that are regulated
by two input signals (Browning and Busby, 2004). The third mechanism, activation by
conformational change, occurs at the promoters that usually have a non-optimal spacing
between -35 and -10 elements, by distorting the promoter DNA in a way that positions
the -35 and -10 elements better for RNAP binding (Browning and Busby, 2016; Philips
et al., 2015).

In many cases, activity of a bacterial promoter depends on several factors simultaneously,
thus many promoters are subject to cooperative regulation by several transcription factors
(Browning and Busby, 2004). It is possible for the same transcription factor to act as
an activator or repressor depending on the promoter it is bound to (Pérez-Rueda and
Collado-Vides, 2000). Moreover, transcription factors themselves are subject to various
regulatory mechanisms, e.g. their DNA binding affinity can be altered by small ligands
whose concentration depends on the environmental conditions (Browning and Busby,
2004). Also, small ligands can directly affect transcription initiation rate, e.g. the global
regulatory nucleotide ppGpp destabilizes the open complex at some promoters by binding
to RNAP (Ross et al., 2013). In addition, bacterial CRISPR-dCas9 system, a synthetic
tool for sequence-specific regulation of gene expression, is able to affect binding affinities
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Figure 2.5: Schematic representation of common repression and activation mechanisms in
bacterial transcription initiation. (A) Repression by steric hindrance; (B) Repression by looping;
(C) Repression by modulation of an activator; (D) Class I activation; (E) Class II activation;
(F) Activation by a promoter conformation change. RNAP composition is described in Figure 2.3.
Repressor molecules are shown in purple, and activator molecules are shown in red. -35 and
-10 promoter elements are highlighted with green boxes. Transcriptional starting cite is marked
with +1. Adapted by permission from Springer Nature Customer Service Centre GmbH: Nature
Reviews Microbiology (Browning and Busby, 2016), copyright (2016).

of transcription factors at targeted promoters (Dominguez et al., 2015).

2.3.5 Regulation by promoter modifications
Transcription initiation can also be regulated by chemical modification of nucleotide bases
or changes in their sequence in the promoter region (Browning and Busby, 2016). The
most widespread modification mechanism is DNA methylation, which is able to strongly
affect the affinities with which transcription factors bind to their operator sites. For
example, when DNA adenine methylase binds to GATC regions in the promoter region of
pap or agn43 E. coli gene, repressor molecules lose the ability to bind to this area. Since
methylation of this region does not prevent RNAP form proceeding with transcription,
the gene becomes activated (Figure 2.6A). While DNA methylation is often overlooked in
eukaryotes, it has the potential to cause significant changes in bacterial gene expression
(Browning and Busby, 2016; Casadesús and Low, 2006; Sánchez-Romero et al., 2015). In
some cases, modification by DNA methylation can be inherited by daughter cells, even
though no actual changes in the DNA sequence take place (Veening et al., 2008).

Meanwhile, the chemical modification mechanism that leads to the most drastic effect
at the promoter region is a site-specific DNA inversion (Figure 2.6B). It is performed
by recombinases that recognize short inverted repeat sequences located upstream and
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downstream of the DNA segment to be inverted. This segment usually contains a promoter
(Wisniewski-Dyé and Vial, 2008). The site-specific inversion mechanism sets the state of a
gene to either active or inactive, depending on whether the gene in upstream or downstream
of the promoter. This provides a different mode of regulation from transcription factors,
where the effect is usually proportional to the concentration of these factors (Browning
and Busby, 2016). In E. coli, this mechanism is used to control the production of the
major subunit of type I pili (Browning and Busby, 2016; Wisniewski-Dyé and Vial, 2008;
Wolf and Arkin, 2002).

A more subtle mechanism for regulation by promoter modification is local sequence
variation (Figure 2.6C). The mechanism is based on differences in the length of a DNA
tract that consists of single nucleotide (or dinucleotide) repeats and is often located near
the -35 element of a promoter. The length of this tract can affect transcription initiation
rate, e.g. by tuning RNAP binding affinity. This length is randomly determined during
DNA replication and thus differs between cell generations and between cells of the same
population. Such variation allows at least a fraction of cells in a given population to have
the optimal transcriptional activity at the regulated promoter (Browning and Busby,
2016).

All the three mechanisms described above are able to produce phase variation, the
intra-population diversity that is crucial for survival in rapidly changing environments.
This phase variation is based on the switching of bacterial phenotype at a much higher
frequency than random mutations could occur (Casadesús and Low, 2013; Wisniewski-Dyé
and Vial, 2008). While local sequence variation happens by chance, the DNA methylation
and site-specific inversion are often regulated based on sensing the environment (Browning
and Busby, 2016).

2.3.6 Example case of lac/ara-1 promoter
A synthetic hybrid promoter lac/ara-1 (Plac/ara-1) includes (i) the activation operator
site from the araBAD promoter (ParaBAD) and (ii) repression operator sites from the
lac promoter (Plac) (Lutz and Bujard, 1997; Stricker et al., 2008). The first one allows
Plac/ara-1 to be activated by AraC protein in the presence of arabinose, a monosaccharide
(Stricker et al., 2008). The second one enables Plac/ara-1 to be repressed by LacI protein
in the absence of isopropyl β-D-1-thiogalactopyranoside (IPTG) (Stricker et al., 2008).

The activation system by arabinose exemplifies cooperative behavior. For the promoter to
become activated, two AraC proteins have to be bound upstream of the RNAP binding
site, and arabinose molecules have to be bound to these AraC proteins in order to cause
the conformational change that would allow AraC to interact with RNAP (Hendrickson
and Schleif, 1984; Schleif, 2010). The regulation at repression operator sites derived from
Plac exemplifies cooperative repression and indirect activation. Namely, Lac repressor
(LacI) forms a tetramer that is bound to an operator site upstream and an operator site
downstream the RNAP binding site, forming a loop that blocks transcription initiation
(Lutz and Bujard, 1997). When IPTG molecules are present in the cell, they bind to LacI
molecules, which significantly reduces the ability of LacI to bind to its operator, thus
indirectly activating the promoter. In addition, it also has been shown that the presence
of IPTG interferes with induction by AraC (Lee et al., 2007; Schleif, 2010).

While ParaBAD and Plac are considered to have at most intermediate regulatory flexibility
(Deuschle et al., 1986; Lutz and Bujard, 1997), expression of a gene that is controlled
by Plac/ara-1 can be tuned in a significantly wider range compared to its predecessors, as
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Figure 2.6: Schematic representation of common mechanisms of transcription initiation reg-
ulation by DNA modification. (A) DNA methylation. When the GATC regions of ang43
gene is not methylated, it is bound by transcription factors OxyR (purple ovals) which block
transcription initiation. Presence of DNA adenine methylase (orange circles) at the GATC
regions prevents OxyR from binding, allowing transcription initiation to commence; (B) DNA
inversion. The region between blue triangles can be inverted by FimB and FimE recombinases.
fimA transcription can be initiated only when the promoter is oriented in the direction of the
fimA gene. The elements on the DNA region shown are not at the realistic relative scale;
(C) Local sequence variation. Promoters of hifA and hifB genes of Haemophilus influenzae differ
between generations in sequence located between -35 and -10 promoter elements (the elements are
highlighted with green boxes). Namely, they differ in the number of repeats of TA dinucleotides.
The number of repeats affects RNAP binding rate, and thus regulates transcription initiation.
RNAP composition is described in Figure 2.3. Genes are highlighted with brown rectangles and
are not shown at the right relative scale. Adapted by permission from Springer Nature Customer
Service Centre GmbH: Nature Reviews Microbiology (Browning and Busby, 2016), copyright
(2016).



16 Chapter 2. Background Review

a result of the combination of the two different regulatory mechanisms described above
(Lutz and Bujard, 1997). This suggests potential advantage of using synthetic promoters
when aiming to develop tightly controlled genetic circuits, which in turn could have a
vast array of applications (see e.g. Stricker et al., 2008).

In Publication II, we studied transcription initiation kinetics of Plac/ara-1. In Pub-
lication III, we used Plac/ara-1 to dissect the kinetics of inducer intake process. In
Publication IV, we observed transcription initiation kinetics of Plac/ara-1 in various
conditions, along with transcription initiation kinetics of its mutants and other promoters.

2.4 Modeling chemical reaction systems

In classical chemical kinetics, a well-stirred system at temperature equilibrium is usually
modeled using coupled first-order differential equations (Gillespie, 2007; Goutsias, 2007).
Given the system with N reactant species, these reaction-rate equations describe how
the number of molecules Xi of each chemical species Si evolves in time as defined by the
functions fi (i = 1, ..., N):

dXi

dt
= fi(X1, ..., XN ) (2.1)

Reaction-rate equations do not provide information on the individual behavior of each
molecule. Instead, they inform on the average behavior of molecules in each species.
This approach works well for the systems where the number of molecules belonging to
each reactant species is several orders of magnitude higher than one, which is the case in
many in vitro experiments (Gillespie, 2007). In such systems, the number of times that
a given reaction would occur in a small time interval is well-predicted from the rate of
the reaction and the numbers of the reactants. However, when even one of the reactant
species is present in low numbers, these predictions become inadequate (Gillespie, 2007;
McAdams and Arkin, 1997).

The processes that take place in living cells are often based on the interaction of molecular
species with low copy numbers (McAdams and Arkin, 1999). In the context of gene
expression and its regulation, genes, RNAs, and regulatory molecules are often present in a
cell in low copy numbers, and even small changes in these numbers can significantly affect
behavior of gene regulatory networks (Mileyko et al., 2008; Taniguchi et al., 2010). Since
continuous and deterministic reaction-rate equations cannot account for this biochemical
noise, an approach that operates discrete and stochastic variables was introduced to
model such systems more accurately (Gillespie, 2007; Munsky and Khammash, 2008).

The most precise way of describing these stochastic processes would be to explicitly model
the state of the system at each moment by tracking the exact position and momentum of
each molecule, and thus being able to calculate when and at which point in space the
collisions between the molecules would occur. While this approach is technically correct,
it is usually computationally demanding to the point of being impractical (Gillespie, 2007).
Instead, given the assumption that the reactants are well-mixed, it is possible to omit the
direct modeling of the space, and use a probabilistic approach described in the following
subsections 2.4.1 and 2.4.2 (Gillespie, 1977, 1992, 2007).
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2.4.1 Chemical master equation
Let us assume a system of molecules that belong to N chemical species Si(t) (i = 1, ..., N),
where the number of molecules of each species at a given time moment is denoted as
Xi(t) = xi. Then the state of the system is represented by an N -dimensional vector
x = (x1, ..., xN ). The molecules of these species interact with each other via M chemical
reactions Rj (j = 1, ...,M). These molecules are well-mixed and confined to a constant
volume at thermal equilibrium, which allows disregarding the trajectories of these molecules
in space, and instead consider only the molecular events that alter the population sizes of
the species, stored in the state vector x. (Gillespie, 1977, 2007)

The effect of each chemical reaction is defined by two quantities. The first one is the
change in the state vector x that would be caused by this reaction, represented by a
state-change vector vj . The second one is the propensity function aj , which is defined so
that, given the state vector x and an infinitesimal time interval [t, t+ dt), aj(x)dt would
represent the probability that one reaction Rj will occur in this time interval. (Gillespie,
2007)

The rationale for the existence of the propensity function aj can be summarised as follows.
If the reaction Rj is unimolecular, represented as Sa → product(s), it can be assumed
that this reaction is caused by an internal process described by quantum mechanics,
similarly to the decay of a radioactive nucleus (Gillespie, 1992). From this, there exists
such constant cj that cjdt is the probability that any given molecule of the species Sa
would partake in reaction Rj in the next infinitesimal time interval dt. Then, from the
laws of probability, the propensity that a unimolecular reaction Rj would occur can be
written as follows (Gillespie, 2007):

aj(x) = cjxa (2.2)

where xa is the number of molecules belonging to the species Sa present in the system.
In case when the reaction Rj is bimolecular and takes the form Sa + Sb → product(s), it
can be described by the kinetic molecular theory. From this, given that the system is
well-stirred, there exists such constant cj that cjdt is the probability that a randomly
chosen pair of molecules belonging to the species Sa and Sb would react in the next
infinitesimal time interval dt. Thus, the propensity that a bimolecular reaction Rj would
occur can be written as follows (Gillespie, 2007):

aj(x) = cjxaxb (2.3)

where xa and xb are the numbers of molecules belonging to the species Sa and Sb,
respectively. Note that, in case of a bimolecular reaction Sa + Sa → product(s), the
number of distinct molecular pairs that can react equals 1

2xa(xa − 1), and the propensity
function takes the following form:

aj(x) = cj
1
2xa(xa − 1) (2.4)

Meanwhile, trimolecular reactions (and those of higher order), written as Sa+Sb+Sc+...→
product(s), arguably do not occur as "elementary events", and thus should not be
considered as such (Gillespie, 1992). Instead, these processes should be divided into
simpler components and modeled as sets of unimolecular and bimolecular reactions.
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Assuming that the state-change vector vj and the propensity function aj are defined
for each chemical reaction Rj , it is possible to derive an equation that describes a time-
evolution of P (x, t|x0, t0), the probability of the system being in a state x at the time
point t given the initial state x0 and initial time t0. The result, known as chemical master
equation (CME), is a system of first-order differential equations (Gillespie, 2007):

∂P (x, t|x0, t0)
∂t

=
M∑
j=1

[aj(x− vj)P (x− vj , t|x0, t0)− aj(x)P (x, t|x0, t0)] (2.5)

Although CME determines the function P (x, t|x0, t0), it is hard to solve since the system
can be highly multi-dimensional. Namely, the amount of possible states equals to the
number of all possible combinations of population sizes of the reactant species. Presently,
the field has accumulated a diverse set of methodologies that allow either an exact solution
of CME or its approximation (see e.g. Cao et al., 2016; Kazeev et al., 2014; Lee and Kim,
2012; Munsky and Khammash, 2006; Wolf et al., 2010). For instance, the finite state
projection algorithm provides a useful and intuitive framework for obtaining a direct
solution for a finite number of states, or an approximation with known precision when an
infinite (or an extremely large) number of states is truncated. In this approach, a finite
subset of states in the state space is appropriately chosen, and the remaining states are
projected onto a single space (Munsky and Khammash, 2006).

2.4.2 Stochastic simulation algorithm
The behavior of the stochastic system introduced in the previous subsection can also
be studied by sampling the time evolution of the state vector x using the stochastic
simulation algorithm (SSA). This approach generates trajectories of x over time that are
exact numerical realizations of the process described by CME. Thus, a combination of
the infinite number of such samples is logically equivalent to the exact numerical solution
to the CME (Gillespie, 2007).

The SSA is based on iteratively answering two questions, given the defined set of reactions
and the initial populations of the reactant species: which of the reactions will occur next,
and when will it happen (Gillespie, 1977). To answer these questions, let us introduce the
reaction probability density function p(τ, µ)dt, a probability that, given the current state
x at the time t, the next reaction will occur in an infinitesimal interval (t+ τ, t+ τ + dτ),
and it will be the Rµ reaction. Given the definition of aj(x) and by applying the laws of
probability, this function takes the following form (Gillespie, 1976, 2007):

p(τ, µ|x, t)dt = aµ(x) exp(−a0(x)τ),

a0(x) =
M∑
j=1

aj(x)
(2.6)

The equation 2.6 is central for the SSA approach. Here, the time until the next reaction
will occur, τ , is an exponentially distributed random variable with a mean of 1/a0(x),
and it is equivalent to the minimum of the times it would take for each reaction to
occur next given that no other reaction would occur before it. Meanwhile, the number
of the next reaction, j, is a categorical random variable that holds the integer number
of a reaction Rµ with the probability aµ(x)/a0(x). Note that these two variables are
statistically independent of each other.
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The samples of τ and µ can be generated using one of the existing Monte Carlo procedures,
such as the direct method, which employs the standard inverse transform sampling
(Gillespie, 2007). Given that r1 and r2 are two independent uniformly distributed random
numbers in the interval (0, 1), the samples are generated as follows:

τ = − ln (r1)
a0(x) , (2.7)

while µ is set to the value that makes the statement true:

µ−1∑
j=1

ak(x) ≤ r2a0(x) <
µ∑
j=1

ak(x) (2.8)

Once τ and µ are obtained, the state vector x is updated based on the values stored in
the state-change vector vµ. Next, one has to decide whether the simulation should stop
or the number and waiting time of the next reaction should be generated. This decision
can be based on the current time, on the population levels of the reactant species, or on
the number of reactions that occurred so far. Also, the algorithm should be terminated
in case the value of a0(x) ever reaches 0. The stepwise procedure of the SSA is presented
in Algorithm 1, given the start time t0, the stop time tstop, and the initial state of the
system x (Gillespie, 1977).

Algorithm 1 : Stochastic simulation algorithm
1: t← t0; x← x0
2: evaluate all aj(x) values (section 2.4.1) and the a0(x) value (equation 2.6)
3: while (t < tstop) and (a0(x) > 0) do
4: generate a random pair (τ, µ), e.g. using equations 2.6 and 2.7
5: t← t+ τ ; x← x + vµ
6: save the values of t and x
7: evaluate all aj(x) values (section 2.4.1) and the a0(x) value (equation 2.6)
8: end while

2.4.3 Delay stochastic simulation algorithm
The SSA provides a framework for describing the events that occur with a given propensity
and are completed at the same moment as they are initiated. However, gene expression
involves many complex processes that do not happen in an instant, but instead, once
initiated, require certain time to be completed. This is the case when these processes,
chemically, are not elementary reactions but instead are also composed of multiple steps,
with each step being a simpler reaction. One strategy that would allow accounting for
this is modeling each of these steps explicitly, as in (Mäkelä et al., 2011). This strategy is
preferable when the dynamics of these steps is relevant for the study. However, considering
the additional reactions and species can significantly slow down the simulation times.
Another strategy is to introduce a delayed release of the reaction products, which allows
accounting for the dynamics of the intermediate steps without explicitly introducing them
into the model (Bratsun et al., 2005; Gibson and Bruck, 2000; Roussel and Zhu, 2006).

Following the second strategy, the delay SSA allows a reaction product to be released
into the system only a defined time interval after the reaction occurs. The duration of the
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delay is drawn from an arbitrary distribution, and the distributions from which the delay
is drawn may vary between reactions as well as between the products of the same reaction.
This approach is able to support more realistic modeling at reasonable computational
costs. (Roussel and Zhu, 2006)

To implement the delay SSA based on the SSA, a delayed reaction should be separated into
reacting events, which include instantaneous consumption of reactants, and generating
events, which are the release of the possibly delayed reaction products. The time when
the next reaction will occur and the reaction that will occur next are determined in the
same way as in SSA, and the non-delayed generating events are performed at the same
moment as the reacting events. Meanwhile, the generating events with non-zero delays
are stored in a waiting list L, sorted by the time of their future release. After the next
time point at which the next reaction should occur is drawn, it is compared with the
smallest time value stored in the waiting list L (unless the list is empty). If the next
reaction should happen before the release of the product stored in the waiting list, then
this reaction occurs. Otherwise, the release of the product occurs. Following either of
these events, a new time for the next reaction is drawn. (Roussel and Zhu, 2006; Zhu
et al., 2007)

The procedure for the delay SSA is shown in Algorithm 2, given that tmin is the earliest
release time among the generation events stored in the waiting list, gmin is the state
change of this generation event, and vµ accounts only for the production and non-delayed
generation events, while gµ accounts for the delayed generation events. Note that if all
delays equal zero, the delay SSA behaves exactly as the regular SSA, and thus can be
considered its generalization (Roussel and Zhu, 2006; Zhu et al., 2007).

Algorithm 2 : Delay stochastic simulation algorithm
1: t← t0; x← x0; L← empty waiting list
2: evaluate all aj(x) values (section 2.4.1) and the a0(x) value (equation 2.6)
3: while (t < tstop) and (a0(x) > 0) do
4: generate a random pair (τ, µ), e.g. using equations 2.6 and 2.7
5: if L is empty then
6: tmin ←∞
7: else
8: tmin,gmin ← the time and state change of the earliest event in L
9: end if

10: if τ < tmin then
11: t← t+ τ ; x← x + vµ
12: if the reaction µ includes gµ, add those and their delay times to L
13: else
14: t← t+ tmin; x← x + gmin
15: remove the earliest event from L
16: end if
17: save the values of t and x
18: evaluate all aj(x) values (section 2.4.1) and the a0(x) value (equation 2.6)
19: end while
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2.5 Stochastic models of bacterial gene expression

2.5.1 Transcription
Given stochastic nature of bacterial gene expression, it can be well-modeled by a set of
stochastic chemical reactions (Arkin et al., 1998; McAdams and Arkin, 1997; Ribeiro,
2010; Zhu et al., 2007). The model presented here offers the level of detail required for
studying how the regulation of rate-limiting steps in transcription initiation affects the
kinetics of RNA production.

PON + R
k1−−−→←−−−

k−1
RPc

k2−−→ RPo
k3−−→ PON + R + RNA (2.9)

PON
kOFF−−−→←−−−
kON

POFF (2.10)

Transcription initiation starts when an RNAP molecule, R, binds to an active promoter,
PON, at the rate k1. This process is in competition with the promoter entering an inactive
state, POFF, at the rate kOFF, e.g. due to the activity of transcription factors or as a
result of transient topological constraints (Browning and Busby, 2016; Chong et al., 2014).
The promoter returns to the active state at the rate kON. Thus, as long as neither kON
or k1 equals zero and RNAP is present in the system, following the laws of probability
and given enough time, the promoter and RNAP will eventually form a reversible closed
complex, RPc. At this stage, the reaction with the rate k2 that describes commitment
to the formation of an open complex, RPo, is in competition with the reaction that
describes the dissociation of the RNAP from the promoter at the rate k–1. Finally, the
reaction with the rate k3 represents several successive steps that include promoter escape,
promoter clearance, transcription elongation and its termination, followed by a release
of the product RNA and the RNAP. As a result of this reaction, the active promoter
becomes available for the next transcription initiation attempt, new RNA is produced,
and the RNAP re-enters the pool of available RNAPs.
The reaction rates of this model depend on various factors such as promoter sequence,
activities of regulatory molecules and topological location of the promoter, among others
(for more detail, see section 2.3). Moreover, the processes represented by these reactions
are not necessarily elementary, but instead can involve multiple steps, including e.g.
reversibility and additional transient isomerization complexes (see section 2.3.1 and
Figure 2.2).
Also, reaction 2.10 might take a different form, depending on the cause of the transient
promoter inactivation. For example, if the inactive state is caused by binding of a
transcription factor to the promoter, then this repressor, Rep, either can be modeled
explicitly (reaction 2.11) or, if its concentration is in equilibrium, could be accounted for
in the rate of promoter inactivation in reactions 2.10. Namely, kOFF should be defined
as follows: kOFF = Rep krep, where krep is the rate of the reaction given that only one
repressor molecule is present in the system.

PON + Rep
krep−−−→←−−−
kON

POFF (2.11)

The model of transcription described in reactions 2.9 and 2.10 was considered when
interpreting experimental data in Publications II and IV. In Publication III, to
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model transcription from an active promoter, a simplified version of reactions 2.9 is
assumed based on the properties of genetic constructs employed in the study. Meanwhile,
promoter repression in the Publication III is modeled as in reactions 2.11, since explicitly
introducing repressor molecule species was required to describe promoter activation by
inducer (see section 2.5.3).

2.5.2 Coupled transcription and translation
In bacteria, transcription and translation are coupled (Belogurov and Artsimovitch, 2015).
Translation of an RNA can start before its transcription is completed, as soon as the
RBS is produced. Thus, one feature required to couple the models of transcription
and translation is the explicit production of an RBS. Meanwhile, transient promoter
inactivation can be modeled in the same way as in the previous section, by reactions 2.10
or 2.11, since it is assumed to not interfere with translation. Given the above, transcription
from an active promoter in this model is described as follows:

PON + R
k1−−−→←−−−

k−1
RPc

k2−−→ RPo
ke−−→ PON(τ1) + RBS(τ1) + R(τ2) + RNA(τ2) (2.12)

In reactions 2.12, in addition to the rate constants described in the section 2.5.1, ke is the
rate of promoter escape. Utilizing the strategy presented in section 2.4.3, this model has
delays on product release times. Promoter clearance delay, τ1, accounts for the time that
RNAP takes to move approximately 30–60 bp downstream of the transcription starting
side after it has escaped the promoter. Since RBS is located near the transcription
starting site, upstream of the start codon, and given that its length usually does not
exceed ~40 bp (Ringquist et al., 1992; Shultzaberger et al., 2001; Zhu et al., 2007), RBS
release happens at approximately the same time as promoter clearance. It is worth noting
that, given transcription elongation rate of 12 bp/s (Adelman et al., 2002), τ1 duration is
about 3–4 s, which is considered fast compared to the rate-limiting steps in transcription.

Meanwhile, τ2 represents the mean duration of transcription elongation (since the time
taken by termination is negligibly small in comparison (Ray-Soni and Landick, 2016)).
Being a sequence of multiple short single-nucleotide events, the total duration of tran-
scription elongation is usually well-approximated by a constant (Adelman et al., 2002).
Nevertheless, in the case of some genes, rare long sequence-specific pauses can occur and
might become rate-limiting. To account for this additional complexity, a single-nucleotide
model of elongation can be used (Mäkelä et al., 2011).

As soon as the RBS is released, it is available for translation initiation. A single-reaction
model of translation that incorporates delayed product release captures the main rate-
limiting steps:

RBS + Rib ktr−−→ RBS(τ3) + Rib(τ4) + Protein(τ5) (2.13)

In reaction 2.13, a ribosome, Rib, binds to the RBS and initiates translation with the rate
ktr. As the ribosome proceeds with translation, it frees the RBS with the delay τ3 after
the successful initiation event. Translation elongation and termination are completed
with the delay τ4, at which point the ribosome releases the RNA (note that the RNA
molecule is not modeled explicitly). The protein release delay, τ5, equals to the sum of
the τ4 duration and the time it takes for the protein to fold.
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Note that the model described here does not account for RNAP and ribosome traffic events,
which in some cases are able to significantly affect gene expression kinetics (Belogurov
and Artsimovitch, 2015; Lesnik et al., 2000; Mäkelä et al., 2011).
The model described by reactions 2.10, 2.12 and 2.13 was used in Publication IV for
interpreting experimental data. This model was selected because it provides a detailed
insight into the rate-limiting steps in transcription initiation, the only stage of gene
expression that was intended to differ between the experimental conditions used in the
study.

2.5.3 Inducer intake and transcription activation by inducer binding
to a repressor

When an activator molecule is placed in the media, it must pass through the cell wall
in order to become available for transcription activation. This process, called inducer
intake, is stochastic and can introduce additional noise to gene expression (Megerle et al.,
2008). In gram-negative bacteria, the cell wall consists of an outer membrane, a thin
inner membrane, and a gel-like layer called periplasm located between those (Beveridge,
1999). As such, when transcription is activated externally and given that the process is
diffusive-like (i.e. no active intake mechanism is involved, or its contribution is negligible
compared to the intake by diffusion), the inducer intake kinetics can be modeled as
follows:

Ienv
int1−−→ Iperi

int2−−→ I (2.14)

In reactions 2.14, an inducer molecule located outside of the cell wall, Ienv, can cross
the outer membrane with the rate int1 and become an inducer molecule located in
the periplasm, Iperi. Meanwhile, Iperi can cross the inner membrane with the rate int2
and become an active inducer molecule, I, that is able to bind the repressor molecules,
Rep. Note that reactions 2.14 are not necessarily elementary. As has been shown in
Publication III, while in normal conditions the inducer intake process appears to have
only two rate-limiting steps, at suboptimal temperatures the existence of additional
rate-limiting steps can be inferred.
The general case of promoter inactivation by repressor molecules is modeled by reac-
tions 2.11. Given that the inducer can bind both to free repressor molecules and to those
that are bound to the promoter, transcription activation can be modeled as follows:

Rep + I
kact−−−−→←−−−−

kinact
Rep.I (2.15)

POFF + I kact−−→ PON + Rep.I (2.16)

The reversible reaction 2.15 describes the binding of an inducer to the repressor molecule
with the rate kact, which reduces the repressor concentration in the system and thus
indirectly activates transcription initiation. The resulting complex Rep.I can dissociate
into the inducer and repressor molecules with the rate kinact. Meanwhile, reaction 2.16
shows that an inducer molecule can bind to a repressor molecule that occupies the
promoter with the same rate as to a free repressor molecule, directly activating the
promoter. This reaction is irreversible since the formed Rep.I complex leaves the promoter
and is indistinguishable from the complexes formed in reaction 2.15.





3 Materials and Methods

3.1 Fluorescent proteins

The first fluorescent proteins – aequorin, which emits blue light when reacting with Ca2+
ions, and a wild-type green fluorescent protein (GFP), which absorbs blue and emits
green light – were isolated from Aequorea, a bioluminescent jellyfish (Morise et al., 1974;
Shimomura et al., 1962; Ward et al., 1980). About two decades later, GFP was shown
to produce stable fluorescence in live E. coli cells, expressed under the control of a T7
promoter (Chalfie et al., 1994). In the following years, new types of fluorescent proteins
were engineered, providing a vast array of tools for in vivo and in situ visualization of
cellular components and for visual quantification of gene expression activity (Day and
Davidson, 2009; Shaner et al., 2005; Tsien, 1998).

The key advantage of using fluorescent proteins over other fluorescent labeling techniques
(Hayashi-Takanaka et al., 2014; Schneider and Hackenberger, 2017) is that they allow
fusion-tagging of the molecules of interest. This can be employed for observing gene
expression dynamics in real time (Golding and Cox, 2004; Yu et al., 2006). However,
there are certain limitations that must be considered when selecting a fluorescent protein
for a particular experimental design (Shaner et al., 2005). The main issues are toxicity of
the fluorescent proteins, detectability of their fluorescence, and robustness of the proteins
to environmental conditions. First, many wild-type fluorescent proteins form dimers or
trimers. This oligomerization can be toxic to cells, and thus monomeric variants of the
fluorescent proteins are usually used instead (Shaner et al., 2005). Moreover, toxicity
can originate not only from the protein itself but also from the light wavelengths used to
excite the protein or emitted by it. For example, exposure to near-UV light is known to
affect the physiology of some microorganisms (Jagger, 1976; Kramer and Ames, 1987). To
ensure cell health, tests for toxicity should be performed when introducing a fluorescent
protein to a new cell strain or cell line. Second, the fluorescence signal must be sufficiently
above the autofluorescence of the cell and of the background (e.g. cell growth media).
The techniques chosen for acquiring the cell images can affect the signal-to-noise ratio
in fluorescence detection. Further, photostability and protein maturation time should
be considered, although the degree to which these parameters are relevant depends on
the experimental design. Finally, protein folding often depends on temperature, and
performance of many fluorescent proteins is sensitive to acidity of the environment (Shaner
et al., 2005).

In Publication II, E. coli strain with fluorescently tagged RNAP molecules that are
functionally identical to their non-tagged version (Bratton et al., 2011; Cabrera and Jin,
2003) was used to validate the values of the relative change in RNAP concentration
([RNAP]) between experimental conditions (first measured by quantitative PCR (qPCR),
see section 3.4). In Publication IV, the same strain was used to demonstrate that
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skewness of the distribution of [RNAP] measured from individual cells is not correlated
with the skewness in RNA production kinetics. The tagging method that is crucial for
the work presented in this thesis is described below.

3.1.1 MS2-GFP tagging method
The method for tagging RNAs with MS2-GFP molecules was first introduced in living
yeast (Bertrand et al., 1998), then adapted for usage in live mammalian cells (Fusco et al.,
2003), and in live E. coli (Golding and Cox, 2004; Golding et al., 2005). In this method,
GFP is fused with MS2, which is the coat protein of a bacteriophage MS2, an RNA virus
that can infect E. coli and other similar bacteria. This protein binds to a specific hairpin
loop formed by a segment of the viral RNA (Peabody, 1993). These hairpin loops, called
MS2 binding sites, can be added to the sequence of the gene controlled by the target
promoter, which allows MS2-GFP tagging of this RNA.

The MS2-GFP tagging method presented in (Golding et al., 2005) (Figure 3.1A) has an
advantage over its earlier version (Golding and Cox, 2004) in that it also allows observing
the proteins translated from the target RNA. In this tagging method (Golding et al.,
2005), the promoter of interest, Plac/ara-1, is placed on a single-copy plasmid and controls
the expression of the target RNA that includes two major segments. The segment that is
located immediately after the RBS encodes for a red fluorescent protein, and the following
segment encodes for 96 MS2 binding sites (each site can be bound by one MS2 dimer).
The expression of an RNA that encodes for MS2-GFP proteins is controlled by a reporter
promoter, PLtetO-1. The reporter RNA sequence includes the region encoding a fusion
of two MS2 proteins that form a dimer, MS2d, followed by the region encoding a green
fluorescent protein, GFP. Thus, by the time the MS2-GFP complex becomes fluorescent,
it is expected to be fully produced. The reporter is carried by a plasmid with high copy
number, to ensure sufficient concentration of MS2-GFP molecules in the cell.

The abundance of the reporter protein guarantees that the background fluorescence
intensity formed by diffusing MS2-GFP molecules does not change strongly when a
new target RNA is produced and 96 MS2-GFP proteins bind to it. The newly formed
MS2-GFP-RNA complex appears as a bright spot in the cell on a fluorescence microscopy
image (Figure 3.1B). Note that multiple MS2 binding sites at the target RNA allow for a
brighter spot to form, and thus a higher signal-to-noise ratio on the microscopy images.
Further, the RNA molecule is assumed to be fully tagged when first detected under the
microscope, given that transcription elongation of the target RNA segment with the
MS2 binding sites and the MS2-GFP binding to the RNA are fast compared to the time
interval between the consecutive microscopy images (which is usually about 1 min) (Tran
et al., 2015).

In order to reach a sufficient concentration of MS2-GFP molecules in the cell by the time
the first target RNA is produced, the reporter is activated prior to activation of the target
promoter. It is crucial that the activation of the reporter would not affect the expression
from the target promoter, and it is in general undesirable to affect the reporter when
regulating the expression from target promoter. Thus, when selecting the promoter that
controls the reporter, the crosstalk between the target and the reporter promoters should
be minimized.

In this thesis, in Publications I-IV, the MS2-GFP tagging method described above
was utilized for in vivo quantification of integer-valued RNA numbers in E. coli. These
numbers were then used to estimate time intervals between consecutive RNA production
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Figure 3.1: In vivo detection of RNA molecules using the MS2-GFP tagging method. (A) A
schematic representation of the MS2-GFP tagging method used for in vivo RNA detection E.
coli. The target gene is carried on a single-copy plasmid (large black circle) and produces the
target RNA under the control of Plac/ara-1 promoter. The reporter gene, controlled by PLtetO-1
promoter, is carried on a multicopy plasmid (small gray circles). The MS2-GFP molecules
(merged blue and green circles) are expressed from the reporter plasmids and bind to the MS2d
binding sites located on the target RNA. Target RNA expresses the red fluorescent protein,
mRFP1 (red circles). (B) An example image obtained by fluorescence microscopy. The uniform
background fluorescence inside the cells is caused by freely diffusing MS2-GFP molecules, whereas
bright spots correspond to the tagged RNA molecules.

events. In Publication III, these numbers were also used to estimate the time between
the addition of the target promoter activator into the media and the first target RNA
being produced. In addition, Publication IV made use of the MS2-GFP tagging method
with different pairs of target and reporter promoters.

3.2 Microscopy

Fluorescence microscopy allows observing fluorescently tagged molecules in live cells by
illuminating the sample with the light of the excitation wavelength and detecting the
emitted light. The most common illumination scheme, widefield, illuminates a large
area and depth of the sample. As a consequence, besides the signal from the sample of
interest, the obtained image includes also the signal from a large background area, which
can result in a low signal-to-noise ratio. Confocal microscopy addresses this problem by
using point illumination and point detection, exciting and receiving signal only from a
small section of the sample at a given time. This approach improves optical resolution
but increases the time required to obtain the image, since a confocal microscope can
register only a small area of the sample at a single time moment. Parallel scanning, e.g.
using a spinning disk, helps to reduce this time. Various other fluorescence microscopy
approaches and illumination schemes allow reducing the signal-to-noise ratio via the
restriction of the illuminated sample volume. Among others, total internal reflection
fluorescence microscopy uses an evanescent field of light to excite only the thin top layer
of a sample, whereas highly inclined and laminated optical sheet (HILO) microscopy
utilizes a highly inclined thin sheet of a laser beam to visualize the illuminated slice inside
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the sample. (Minsky, 1988; Stephens and Allan, 2003; Tokunaga et al., 2008)

Aside from the fluorescent molecules, it is often useful to detect the location of the
elements that are not fluorescently tagged, such as cell walls or inclusion bodies. It can
be challenging to reliably extract this information from fluorescence microscopy images.
Instead, bright-field or phase-contrast microscopy can be used for this purpose (Chowdhury
et al., 2013; Selinummi et al., 2009). The former is a simple optical microscopy technique
where the sample is illuminated with white light, and the effects of the sample refractive
index and light absorption then detected from the light that passes through the sample.
The latter is a more elaborate optical microscopy technique that allows detecting the
phase shift in the light weaves scattered by the sample and converting this phase shift
into the contrast of the image (Zernike, 1942).

In Publication I, Publication II, and Publication IV confocal and phase contrast
images of the same cells were taken approximately at the same time. A confocal laser-
scanning system was used to obtain the fluorescence images of the cells, and phase-contrast
microscopy to detect the cell borders. In Publication III, fluorescence images were
obtained both by confocal and by HILO microscopy.

In all microscopy experiments conducted during the work on this thesis, the cells to
be imaged were placed on a thin agarose gel pad and topped with a coverslip (Golding
et al., 2005; Kandavalli et al., 2016). This agarose pad should contain nutrients and other
chemicals required for the experiment. Further, it should be dense enough for the bacteria
to become immobilized but not so dense as to prevent healthy growth and division, thus
allowing in vivo time-lapse imaging.

Finally, controlling the sample temperature during the experiment can be of value (Kumar
and Libchaber, 2013). To maintain the cells at a constant temperature, the sample can
be placed under the microscope in a thermal chamber, which was done in Publications
I-IV. In addition, Publication III employs a thermal microfluidic system that allows
shifting temperature during the course of a microscopy imaging experiment.

3.3 Analysis of microscopy images

Extracting single-cell data on the kinetics of fluorescently tagged RNA production from
time-lapse microscopy images involves a sequence of non-trivial data processing steps.
The main stages of the data extraction from microscopy images used in this thesis are
outlined in Figure 3.2. First, the imaging process often consequently covers several cell
areas, called panels, at each time point, thus producing several sets of time series images
during one experiment. The images obtained from each panel should be aligned over time
in order to minimize the small shift in the imaging position that occurs due to mechanical
iteration over the panels. This alignment can be done e.g. using cross-correlation (Gupta
et al., 2014; Häkkinen et al., 2013).

The most reliable method for detecting borders of individual cells, in many cases, is
still drawing the cell masks manually by a human expert. However, since this is a time-
consuming process, automatic cell segmentation is often used for preliminary construction
of cell masks, followed by manual correction (Chowdhury et al., 2013; Häkkinen et al.,
2013). To track individual cells over time, cell lineages can be reconstructed with CellAging
software (Häkkinen et al., 2013). If the masks are constructed from phase contrast or
brightfield microscopy images, they must be aligned with the fluorescence microscopy
images, since they can have a different resolution and a slightly different position and area
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Figure 3.2: Extracting data from microscopy images. (A) Phase-contrast microscopy image
with semi-automatically segmented cells. The cell masks are shown as white lines. (B) Alignment
of the cell masks with a confocal microscopy image. Masks are shown in transparent red, seen as
yellow when located on top of the GFP fluorescence. Landmarks are shown in blue. (C) Confocal
microscopy image with segmented cells. The cell masks are shown as green lines. (D) Confocal
microscopy image of one cell followed over time, after the detection of MS2-GFP-RNA complexes.
Cell masks are shown as green lines, the detected MS2-GFP-RNA complexes are outlined in
white. (E) Scaled total intensity of MS2-GFP-RNA complexes over time (grey circles) and the
estimated number of target RNA molecules in the cell at each time point (black line). The total
intensity is scaled by the estimated intensity of one MS2-GFP-RNA complex. (F) An example
∆t distribution.
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coverage. After this alignment, the masks applied to fluorescent images can be further
improved in accuracy by adjusting their borders based on the fluorescence intensity of
the nearby pixels.
Next, the total intensity of MS2-GFP-RNA complexes, visible as bright fluorescent spots,
is detected from each masked cell using the procedure described in (Häkkinen et al.,
2014). Two main steps of this procedure are the cell background removal and fitting
a set of Gaussian surfaces to the remaining cell image in order to detect the bright
fluorescent spots. Based on the cell lineage information, the time series of these intensities
for each observed cell is extracted. The time points at which a new RNA is produced
are usually estimated using a least-square fit of a monotonic piecewise-constant function
with a constant increment (Häkkinen and Ribeiro, 2015). From these, the ∆t intervals
are calculated, and the obtained ∆t distributions can be used to study the kinetics of
transcription initiation.
In this thesis, the main results were obtained using data extracted from time-lapse
microscopy images. Publication I focuses on processing the time series of the total
intensity of MS2-GFP-RNA complexes. Publication II and Publication IV are based
on analyzing the shape of ∆t distributions. Finally, Publication III makes use of the
distributions of time intervals between the target gene induction and the first RNA
production, along with the ∆t distributions collected in another recent study (Oliveira
et al., 2016a). Note that the ∆t distributions used in Publication III were obtained by
microscopy and image analysis techniques that are similar to those used in this thesis,
differing only in that all cell masks were produced manually.
In Publication I, Publication II and Publication IV, cell segmentation was per-
formed from phase contrast images. In Publication III, cell segmentation was performed
directly from fluorescent images. In all cases, the images were initially subject to auto-
matic segmentation which was followed by a manual correction. In Publication I and
Publication II, the automatic segmentation was performed using MAMLE (Chowdhury
et al., 2013). In Publication III and Publication IV, the automatic segmentation
was performed using CellAging (Häkkinen et al., 2013). These two segmentation tools
produce results of comparable quality (Chowdhury et al., 2013; Häkkinen et al., 2013).
In the later publications, CellAging was chosen for segmentation since the next steps in
the image analysis pipeline are also performed using CellAging.
InPublication I,Publication II andPublication IV, alignment of the masks obtained
from phase-contrast images with the confocal microscopy images was performed semi-
automatically. In the first time frame, we manually selected 5-8 landmarks that placed
the cell masks on top of the corresponding cells, which were visible due to fluorescent cell
background formed by free GFP molecules. After establishing the landmarks, we used
the thin-plate spline interpolation to transform the masks into the coordinate system of
the confocal images and propagate the alignment to all time frames. The results were
inspected by human specialists, who repeated the procedure with additional landmarks
in case the outcome was not satisfactory.
In Publication I, the time points at which new RNAs are produced were estimated
using both a new methodology developed in this thesis and the methodology proposed
in (Häkkinen and Ribeiro, 2015), as the aim of Publication I was to propose the new
method and to evaluate its accuracy relative to the method that is currently in use. In
Publication II, Publication III and Publication IV, the performance of both the
new methodology and the one from (Häkkinen and Ribeiro, 2015) was visually evaluated
by human specialists. In all cases, either the method from (Häkkinen and Ribeiro, 2015)
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provided better results or there was no clear difference between the performance of the two
methods. Thus, for consistency, the Publication II, Publication III and Publication
IV employed only the method from (Häkkinen and Ribeiro, 2015).

3.4 Quantitative PCR

Polymerase chain reaction (PCR) is a molecular biology method that allows creating
multiple copies of a specific DNA segment. When combined with a reverse transcription
technique, PCR can be used to amplify RNA numbers and thus measure relative gene
expression levels (Livak and Schmittgen, 2001; Schmittgen and Livak, 2008). Quantitative
PCR (qPCR) allows measuring these gene expression levels in real time by using fluorescent
labels. The amount of the amplification product can be estimated from the measured
fluorescence intensity. The labeling can be performed by dyes that bind to DNA non-
specifically, by probes specific to the target sequence, or by combining the dyes and the
probes (Lind et al., 2006). In this thesis, a non-specific dye (SYBR Green I) was used in
all qPCR experiments, which is a standard approach when quantifying gene expression
levels (Livak and Schmittgen, 2001; Schmittgen and Livak, 2008).

In Publication II, qPCR was employed to estimate relative RNAP concentrations by
measuring relative transcript levels of the rpoC gene, which encodes the β′ subunit.
In Publication II and Publication IV, qPCR measurements of the transcript levels
produced under control of the target promoter were used to construct τ -plots (see
section 3.8). In Publication III, qPCR measurements of relative transcript levels
produced under the control of lac/ara-1 promoter at different IPTG concentrations were
used to obtain an induction curve.

3.5 Western blot

Western blot is a molecular biology technique that provides means for identifying specific
proteins in the sample and measure protein size and relative abundance (Burnette,
1981; Mahmood and Yang, 2012). In Publication IV, relative RNAP concentrations
were estimated by measuring RpoC protein levels using western blot. This differs
from estimating relative RNAP concentrations by qPCR in that western blot provides
information on proteins, whereas qPCR provides information on RNA transcripts. Given
that regulation in gene expression occurs not only at the stage of transcription but also
during translation, western blot is, in general, more reliable for estimating relative RNAP
concentrations.

3.6 Flow cytometry

Flow cytometry is a technique that allows collecting single-cell data in a format that is
faster to process than, e.g., single-cell microscopy data. In flow cytometry, the cells are
carried by a liquid stream in single file. When passing the detector, each cell is illuminated
by a laser beam, with forward-scattered and side-scattered light being detected (Shapiro,
2005). To filter out the instances of cell doublets and other measurement instances that
can be considered as debris, gating techniques should be applied to the measured data
(Aghaeepour et al., 2013; Razo-Mejia et al., 2018). While flow cytometry allows gathering
data on thousands of cells in a matter of minutes, it is limited in the sense that the same
cell cannot be tracked over time, as it is possible under the microscope. In Publication
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IV, flow cytometry was used to obtain distributions of fluorescent protein levels in cell
populations. The data was gated by an automated method proposed in (Razo-Mejia
et al., 2018).

3.7 Lineweaver-Burk plot

Originally, the Lineweaver-Burk plot was introduced as a graphical method that uses
a double reciprocal plot for evaluation of the constants involved in the description of
enzyme kinetics (Lineweaver and Burk, 1934). Such catalytic reactions usually involve
reversible binding stage and mostly irreversible catalysis stage. For the purposes of our
study, we apply the Lineweaver-Burk plot method to a process that is well-described by
Michaelis-Menten enzyme kinetics, which can be modeled by the following stochastic
reactions (Chen et al., 2010):

E + S
kf−−→←−−
kr

ES kcat−−→ E + P (3.1)

In equation 3.1, enzyme, E, binds to a substrate, S, at the rate kf , forming a reversible
active complex, ES. Dissociation of this complex at the rate kr is in competition with
a catalytic reaction of product formation at the rate kcat, which results in a release of
the enzyme and the product, P. Classical Michaelis-Menten equation that describes a
relation between the rate of product formation, V, and the concentration of a substrate,
S, takes the following form:

V = Vmax[S]
[S] + KM

,

where Vmax = kcat[E]0 and Km = kr + kcat

kf
.

(3.2)

In equation 3.2, Vmax is the maximum possible rate of the product formation, [E]0 is the
starting concentration of the enzyme, and KM is the Michaelis constant. Note that Km
equals to a subtract concentration at which V = Vmax/2.

The Lineweaver-Burk equation can be written as a reciprocal of equation 3.2:

1
V = Km

Vmax

1
[S] + 1

Vmax
(3.3)

This equation reveals linear relationship between the inverse rate of product formation,
1/V, and the inverse of the substrate concentration, 1/[S]. Figure 3.3 shows a Lineweaver-
Burk plot, from which Vmax can be calculated as the inverse of the y-intercept, and
KM can be calculated as a ratio between the slope of the line and the y-intercept. In
Publication III, the concept of Lineweaver–Burk equation was employed to estimate
the intake times of an inducer.

3.8 τ plot

τ plot is a double reciprocal plot that describes a relationship between the inverse of
transcription rate and the inverse of [RNAP] (McClure, 1980). A τ plot is technically a
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Figure 3.3: Schematic representation of a Lineweaver-Burk plot providing a graphical represen-
tation of Michaelis-Menten enzyme kinetics. The inverse of the rate of product formation, 1/V,
is plotted against the inverse of the substrate concentration, 1/[S]. Shown are the example data
points (black circles) and the best-fitting line to the data (grey line). The line intersects the
y-axis at a point with the value of 1/Vmax, and the x-axis at a point with the value of – 1/KM.

Lineweaver-Burk plot used to dissect rate-limiting steps of bacterial transcription. The
concept of Lineweaver-Burk plot is not specific to interactions between an enzyme and a
substrate. In general, it is applicable to any biochemical process that can be described by
equivalent stochastic chemical kinetics. For example, this concept was previously utilized
in vitro in the steady-state assay methodology for studying separate steps in transcription
initiation (McClure et al., 1978), allowing e.g. for a better understanding of the role of
rifampicin in this multi-step process (McClure and Cech, 1978).

A τ plot, which is a graphical method for dissecting rate-limiting steps in transcription
initiation, emerged as another steady-state assay application of this concept (Bertrand-
Burggraf et al., 1984; McClure, 1980). In particular, a τ plot is based on the assumption
that the rate of an RNAP binding to a promoter is directly proportional to the [RNAP].
This is equivalent to the inverse of the average time spent in the closed complex formation
being directly proportional to the inverse of the [RNAP]. Meanwhile, the time spent
in the subsequent steps remains constant with the changes in [RNAP]. Given this, the
average total time spent in transcription initiation should change linearly with the inverse
of [RNAP]. As such, by changing the [RNAP] between experimental conditions and
measuring this average total time in each condition, it is possible to estimate the average
time spent in the steps whose duration depends on [RNAP] and the average time spent
in the subsequent steps.

This methodology was originally used to study in vitro abortive transcription initi-
ation, the process that involves fewer stages than in vivo transcription modeled by
reactions 2.9 and 2.10. First, no repression mechanism was present in these in vitro stud-
ies, which means that the reactions 2.10 are not needed. Second, transcription initiation
always was abortive, releasing a short product sequence negligibly fast after successfully
forming an open complex (McClure, 1980). This in vitro abortive transcription initiation
thus can be described by the following reactions (see section 2.5.1 for a description of the
reactant species and rate constants):
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PON + R
k1−−−→←−−−

k−1
RPc

k2−−→ RPo
∞−−→ PON + R + abortive product (3.4)

The average time between an active promoter becoming available for RNAP binding
and an abortive product being released, denoted as τ , can be obtained, e.g., using a
moment-generating function of the distribution of the transition times between PON and
Po states (Häkkinen and Ribeiro, 2016), which takes the following form:

M(in vitro)(t) = k2(k1 − t)
(k−1 + k2 − t)(k1 − t)− k1k−1

+ k2 − t
k2

(3.5)

τ = M ′(in vitro)(0) = 1
[RNAP]

k−1 + k2

k1k2︸ ︷︷ ︸
τc

+ 1
k2︸︷︷︸
τo

(3.6)

Equation 3.6 shows a linear relationship between the inverse of the rate of abortive
transcription initiation (τ) and the inverse of the [RNAP]. the average duration of the
closed complex formation (τc) is directly proportional to 1/[RNAP], whereas the average
duration of the open complex formation (τo) remains constant. Given equation 3.6, the
linear fit to the data on an in vitro τ plot (Figure 3.4) intersects with y-axis at the value
that equals to the inverse of the production rate when [RNAP] is assumed to be infinitely
large. Since, at this point, the steps that depend on [RNAP] occur infinitely fast, this
value equals to τo. Knowing this value, one can obtain τc in a measured condition of
interest: τc = τ − τo.

In Publication II, the concept of an in vitro τ plot was utilized to propose a new
methodology that allows to construct τ plots based on in vivo data. This in vivo τ plot
methodology was then used in Publication III and Publication IV to estimate the
average time spent in transcription initiation prior and after commitment to open complex
formation.

3.9 Uncertainty estimation

Estimation of uncertainty in the results is essential for evaluating the significance of the
conclusions. There is no universal approach to uncertainty estimation, with the choice
of the method depending, e.g., on whether the variable in question follows a known
distribution and on the sample size of the data set. Therefore, this thesis employed a
case-based approach.

3.9.1 Delta method

The Delta method allows estimating the variance of a function of random variables by
using the Taylor series approximation, given that the variances (var) and covariances
(cov) of these random variables are known. Let X = {X1, ..., Xk} be k random variables
with means M = {M1, ...,Mk}. Then the variance of the function g(X) can be written
as follows (Casella and Berger, 2001):
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Figure 3.4: Schematic representation of an in vitro τ plot, showing the inverse of the rate
of abortive transcription initiation, τ , against the inverse of RNAP concentration, 1/[RNAP].
The average duration of the open complex formation, τo, is estimated as a y-intercept of the
best-fitting line to the empirical data (black dots).

var(g(X)) =
k∑
i=1

(g′i(M))2var(Xi) + 2
∑
i>j

g′i(M)g′j(M)cov(Ti, Tj),

g′i(M) = ∂g(X)
∂Xi

∣∣∣∣
T1=M1,...,Tk=Mk

(3.7)

In Publication II, Publication III, and Publication IV, this method was used to
estimate the standard error of the relative transcript levels obtained by qPCR. In all cases,
the qPCR data provided 2 random variables in all conditions: the reference and control
gene transcripts. Since the activity of these two genes is independent of each other, the
covariance between the two random variables considered always equals zero. Meanwhile,
the variance of the random variables is obtained by repeating the experiment several
times in each condition. In Publication II, the Delta method was used to estimate the
standard uncertainty of the time durations spent on the events prior and after closed
complex formation in transcription initiation. In Publication IV, it was used to estimate
the standard uncertainty of the relative durations spent on the events prior and after
closed complex formation in transcription initiation.
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3.9.2 Non-parametric bootstrap confidence intervals
Bootstrapping is a technique for estimating a distribution of some feature of the data set,
e.g. its skewness, by using resampling with replacement. The resampling can be either
non-parametric or parametric. The former does not require any assumptions about the
distribution from which the data was drawn, contrary to the latter, where a parametric
model of the data is assumed. A non-parametric bootstrap confidence interval for a
given feature of the data sample is constructed as follows. First, the data is resampled
with replacement B times, with the size of each bootstrapped data set usually being the
same as the size of the original sample, and B being high enough to produce repeatable
confidence intervals in the end, in general B ≥ 103. From each bootstrapped data set,
the bootstrapped feature is calculated. Finally, the α/2 and 1− α/2 percentiles of this
bootstrapped distribution of the feature values form the bootstrap confidence interval
of this feature with the significance level α. (Carpenter and Bithell, 2000; DiCiccio and
Efron, 1996)

In Publication III, non-parametric bootstrap was used to construct confidence intervals
for the mean and coefficient of variation of the distributions of (i) time intervals between
the inducer placement in the media and the cell producing the first target RNA and
(ii) time intervals between consecutive RNA production events (∆t distributions). In
Publication IV, non-parametric bootstrap was used to construct confidence intervals
for the mean, coefficient of variation, skewness, and kurtosis of ∆t distributions.

3.9.3 Simultaneous estimation of confidence bands
Let us assume a linear regression model ŷ = âx+ b̂ that is best-fit to the data (x1, y1),
..., (xn, yn). In order to estimate the confidence bands on ŷ for all possible values of x,
it does not suffice to combine the confidence intervals with the desired confidence level
1− α obtained at each xi point, since this would usually produce a confidence band with
the confidence level 1− α′, where α′ > α (Casella and Berger, 2001; Degras, 2017). One
way to correct for this and obtain a good approximation of the confidence bands with
the confidence level 1− α is based on the Bonferroni inequality. In this approach, the
confidence level of each confidence interval is equaled to 1− γ, γ = 1− α

m , where m is
the number of individual confidence intervals. Another approach employs the Scheffé’s
method to estimate the confidence bands of ŷ simultaneously for all values of x, defining
the confidence bands with the confidence level 1− α, y±, as follows (Casella and Berger,
2001):

y± = ŷ ±MaS

√
1
n

+ (x− x̄)2

Sxx
,

S =

√√√√ 1
n− 2

n∑
i=1

(yi − ŷi)2,

Sxx =
n∑
i=1

(yi − ȳ)2,

Ma =
√

2F2,n−2,α,

(3.8)

where F2,n−2,α is the F -statistic at the significance level α with the degrees of freedom
d1 = 2 and d2 = n− 2. In Publication II, the Scheffé’s approach was used to estimate
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confidence bands of one standard uncertainty for the linear regression models that describe
(i) the inverse of RNA production rate and (ii) the inverse of red fluorescent protein
production rate, as a function of the inverse RNAP concentration.

3.10 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a method for finding such parameters of a
statistical model that would maximize the likelihood that the data was generated by
this model. Let the data set x = {x1, ..., xn} consist of n independent and identically
distributed random variables. Given a probability density function (or a probability mass
function) f(x|θ), the likelihood that the data set x was generated by the model with
parameters θ = {θ1, ..., θk} takes form (Casella and Berger, 2001):

L(θ|x) =
n∏
i=1

f(xi|θ) (3.9)

The parameter set at which the value of L(θ|x) is maximized is called a maximum
likelihood estimator, θ̂(x). One common way of finding the θ̂(x) is by differentiation.
First, extrema of L(θ|x) are found as follows:

∂

∂θi
L(θ|x) = 0, i = 1, ..., k (3.10)

Next, at each extremum point, the second derivative test is performed in order to
determine whether the point is a maximum or a minimum. In general case, this requires
construction of a Hessian matrix (which at k = 1 equals the second derivative of the
likelihood function). Finally, L(θ|x) is evaluated at the local optima along with the
boundary θ values, and the θ̂(x) is set to the one that produces the highest value.

It is a common practice to replace the likelihood function with its natural logarithm,
log-likelihood logL(θ|x), since it is often easier to differentiate:

logL(θ|x) =
n∑
i=1

log f(xi|θ) (3.11)

This is possible because the logarithm function is monotonous, and thus L(θ|x) and
logL(θ|x) have a common estimator θ̂(x) (Casella and Berger, 2001).

In Publication II and Publication III, MLE was used to estimate parameters of
statistical models of gene expression and inducer intake kinetics from single-cell microscopy
data, utilizing the methodology developed in (Häkkinen and Ribeiro, 2016). Namely, in
Publication II, the best-fitting parameters of several possible models of transcription
initiation dynamics were obtained. Meanwhile, in Publication III, the best-fitting
gamma distributions for the distributions of time intervals between the placement of
the inducer in the media and the first RNA production event were obtained at various
temperatures. In Publication IV, linear fits used in τ plots were obtained by MLE as
described in (Bevington and Robinson, 2003).
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3.11 Methods for model selection

It is often of interest not only which parameters of a given statistical model maximize its
likelihood function, but also which of the two given models can explain data the best. A
common approach for comparing nested models (i.e. a pair of models where one model is
identical to the other under a certain set of constraints) is a likelihood ratio test. The
test assumes a null hypothesis H0 that the model parameters θ belong to the constrained
subset Θ0 of the parameter space Θ. The alternative hypothesis H1 states that the model
parameters θ belong to the subset Θc

0 which is complementary to the subset Θ0. The
likelihood ratio test statistic is calculated as follows (Casella and Berger, 2001):

Λ(x) = supL(θ ∈ Θ0|x)
supL(θ ∈ Θ|x) (3.12)

In equation 3.12, the nominator is always equal or less than the denominator, thus Λ(x)
is in the interval [0; 1], with the higher values showing that the two models perform
similarly, and the lower values showing that the general model outperforms the model
with additional constraints. According to the Wilks’ theorem, as the sample size of the
data increases, −2 log Λ is asymptotically approaches a chi-squared distribution (Wilks,
1938). Further, the degree of freedom of this chi-squared distribution equals to the
difference in the dimensionality between Θ0 and Θ. Chi-squared distribution evaluated
at −2 log Λ(x) thus produces a p-value that is then compared to the chosen significance
level α of the test. If p-value ≤ α, than the H0 is rejected in favor of H1. If the p-value
> α, the H1 does not provide significant improvement and H0 cannot be rejected.

Multiple methods for comparing non-nested models are available, with the Akaike in-
formation criterion (AIC) and the Bayesian information criterion (BIC) being the most
commonly used. Both methods measure the goodness of fit of a model by taking into
account the maximum value of its likelihood function, L̂, and penalizing the model based
on the number of parameters, k. The difference between AIC and BIC is in the penalty
on the number of parameters, which in the case of BIC is scaled by the sample size on
the data, n:

AIC = −2k − 2 ln(L̂)
BIC = −2 ln(n)k − 2 ln(L̂)

(3.13)

The smaller value of AIC or BIC corresponds to the best-fitting model among the tested
set. In general, BIC performs better than AIC when the "true model" that produced the
data is assumed to be in the set of the models being compared (Burnham and Anderson,
2004).

The likelihood ratio test was used in Publication II and Publication IV to test whether
the data is best-fit by a line or a polynomial of the higher order. In Publication IV,
the linear model was also compared with the models where data is constant on x-axis or
on y-axis. The maximum of the likelihood function for these likelihood ratio tests was
estimated based on the approach presented in (Krystek and Anton, 2008). In Publication
III, the likelihood ratio test was used to compare the models of d exponential steps
fitted to the estimated distribution of the inducer intake times at various temperatures.
Finally, in Publication II, BIC was used to select between several plausible models of
transcription initiation at lac/ara-1 promoter.
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3.12 Applying deconvolution to empirical data

In certain cases, in a process that consists of two sequential sub-processes, the distributions
of completion times of the whole process, dfull, and of one sub-process, d1, are known,
but the distribution of completion times of the other sub-process, d2, cannot be measured
directly. This composite process can be expressed as a convolution of its sequential
sub-processes: dfull = d1 ∗ d2. Thus, d2 can be obtained by deconvolving d1 from dfull.
This problem is usually solved numerically by converting the distributions dfull and d1 to
the frequency domain, by the Fourier transform, and obtaining the d2 in the frequency
domain by complex division: D2 = Dfull/D1 (Sheu and Ratcliff, 1995; Smith, 1990). D2
is then converted to the time domain using the inverse Fourier transform, yielding a d2
estimate.

For this approach to produce meaningful results, the measured dfull and d1 used for
deconvolution should be close to the actual distributions that produced the data. For
this, the measurements should contain a sufficient amount of samples, dfull and d1 should
not be significantly corrupted by noise, and the duration of the experimental observations
should be long enough to avoid right-censoring of the data. Even if a large number
of samples is used, the data is filtered from noise, and right-censoring does not pose a
problem, a small number of samples in d2 could still take negative values. This is the
case since the experimentally obtained dfull and d1 are not the exact representations
of the distributions that produced these data. It is also common for this method to
underestimate the peak value of the d2 distribution (Sheu and Ratcliff, 1995). With these
limitations in mind, this deconvolution approach can be used to obtain insights into the
processes that otherwise are challenging to quantify.

In Publication III, deconvolution was applied to empirical distributions of (i) time
intervals between the inducer placement in the media and the first RNA production event
and (ii) time intervals between consecutive RNA production events from an induced gene,
in order to estimate the distributions of time intervals that it takes for the inducer to
enter the cell after being placed in the media, tint, at various temperature conditions. To
evaluate the confidence in the estimates, confidence intervals for the mean and coefficient
of variation of the tint distributions in various temperature conditions were constructed
using the bootstrap approach (section 3.9.2).





4 Summary of the Results

In Publication I, a new method for quantitative estimation of fluorescent molecule
numbers from temporal fluorescence intensity data corrupted by transient nonzero-mean
noise was developed. The method aimed to prevent the transient disruptions in the signal
from affecting the molecule number estimates at the time moments before the disruption
was introduced. For this, the author and colleagues developed an algorithm that utilizes
a stepwise approach, where only the information from several following time points is
allowed to affect the estimated number of molecules at a given moment. This improved
accuracy in the cases where fluorescent molecules were absent from the cell image for
durations comparable to the cell lifetime.

This method is based on the assumption that temporal fluorescence intensity data can be
described as a monotonic non-decreasing function corrupted by three types of noise. First,
the imprecisions of a microscope and detector add an independent, normally distributed
noise to the fluorescence intensity value at each time point (Chowdhury et al., 2012;
Waters, 2009). Second, fluorescent molecules are able to move out of the focal plane
and remain out of focus for durations on the order of the cell lifetime before reemerging.
This causes transient, non-periodic negative noise in the fluorescent intensity signal.
Third, such events as, e.g., false-positive detection of fluorescent molecules result in
rarely occurring positive spikes in the fluorescent intensity values. The parameters of the
algorithm developed in this thesis for detection of RNA production events can be tuned
to account for various intensities of these three types of noise.

The algorithm, shown in Figure 2 of the Publication I, has two parameters. The first
one, ω, is the number of consecutive points in the time series, starting with the current
one, used to decide whether a new RNA has been produced at the current time point. The
decision is made by comparing the average intensity at these time points to a specified
threshold. Considering only ω points at a time allows to avoid the influence of the negative
noise (type 2) that occurs before or after this time window. However, low ω values could
cause false-positive detection of RNA production events based on rare spikes of positive
noise (type 3) or based on random fluctuations of the local mean of the zero-mean noise
(type 1). The second parameter, v, is the value used to modify the aforementioned
threshold so that these random fluctuations in the local mean would not hinder detection
of RNA production events.

Using stochastic simulations, Publication I demonstrates that the optimal value of ω
depends mostly on two factors: f , the sampling frequency of the time series, and σ, the
standard deviation of the consistent zero-mean noise. Namely, ω increased both with
the increase in f and with the increase in σ. Meanwhile, the intensity of the transient,
non-periodic negative noise (type 2) does not seem to affect this value. The optimal value
of v equals 0.25 and does not respond to changes in any of these factors. However, the
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optimal value of v increased when the mean of the consistent noise (type 1) was changed
from zero to a negative value.

To evaluate the performance of this new algorithm in comparison with the previously
existing one, both the new and the reference methods were applied to the simulated
data. As Figure 5 in Publication I shows, the new method consistently performs better
when the data is affected by the transient, non-periodic negative noise, and performs
worse in the absence of this noise. The transient noise was modeled by allowing each
present RNA to leave the focal plane, on average, once in 60 min, and by permitting each
absent RNA to return into focus, on average, in 20 min, mimicking the behavior of the
MS2-GFP-RNA complexes observed under the microscope. Finally, both the new and
the reference methods were applied to empirical data corrupted by this transient noise,
and the new method was found to produce more accurate results, as evaluated by human
experts and illustrated in Figure 6 of Publication I.

In Publication II, we proposed a methodology for dissecting in vivo transcription
initiation kinetics and applied it to an E. coli promoter Plac/ara-1. For this, we first
established the concept of an in vivo τ plot and demonstrated its viability. The in
vivo τ plot allows to estimate, from in vivo measurements of transcription initiation
kinetics, the average time spent in transcription initiation prior to commitment to the
open complex formation (τprior) and the average time spent in transcription initiation
after successful commitment to the open complex formation (τafter). Further, the concept
of an in vivo τ plot was utilized to put constraints on the parameters of a stochastic
model of transcription initiation. This allowed to infer the rate-limiting constants of in
vivo transcription initiation in more detail than it was possible previously.

Construction of a τ plot using in vivo measurements of transcription initiation kinetics
utilizes the similarities in behavior of τprior and τafter with τc and τo, correspondingly
(see section 3.8). Namely, given the stochastic model of in vivo transcription (reac-
tions 2.9 and 2.10), τprior changes linearly with the inverse of [RNAP], whereas τafter is
not significantly affected by this concentration. To demonstrate this, a moment-generating
function of the distribution of the transition times between the PON state and the release
of the product RNA (see reactions 2.9 and 2.10) was derived as in (Häkkinen and Ribeiro,
2016):

M(in vivo)(t) = (kON − t)
kON

Q2(0)
Q2(t) + k3 − t

k3
,

Q2(t) = (k−1 + k2 − t)Q1(t)− k1k−1(kON − t),

Q1(t) = (kOFF + k1 − t)(kON − t)− kONkOFF.

(4.1)

Equation 4.1 allows obtaining the analytical expression for the mean of this distribution,
denoted here as µ:

µ = M ′(in vivo)(0) = 1
[RNAP]

(kON + kOFF)(k−1 + k2)
k1k2kON︸ ︷︷ ︸

τprior

+ 1
k2

+ 1
k3︸ ︷︷ ︸

τafter

(4.2)



43

From equation 4.2, µ changes linearly with 1/[RNAP]. In particular, τprior is directly
proportional to 1/[RNAP] and τafter is not affected by [RNAP]. This allows to construct
a schematic in vivo τ plot (Figure 4.1). Note that τprior differs from τc by also including
the time the promoter spends in a transient inactive state POFF, and τafter differs from
τo by accounting for transcription elongation.

Figure 4.1: Schematic representation of an in vivo τ plot, showing the inverse of RNA
production rate, µ, against the inverse of RNAP concentration, 1/[RNAP]. The average time
spent in transcription initiation after commitment to the open complex formation, τafter, is
estimated as a y-intercept of the best-fitting line to the empirical data (black dots).

To construct this τ plot based on empirical data, it is essential to vary [RNAP] in vivo with-
out significantly affecting other variables in the modeled system (reactions 2.9 and 2.10).
Here, in vivo [RNAP] was varied by changing growth media composition in a specific range
that was determined empirically. The criterion for this range of media concentrations
was that the inverse of RNA production rate should change linearly with the inverse of
[RNAP] in this range. This assumption of linearity was supported by empirical data. The
inverse of RNA production rate from an E. coli promoter Plac/ara-1 and the inverse of
[RNAP] were estimated from qPCR measurements (see section 3.4) in live E. coli cells.
The inverse of RNA production rate was shown to change linearly with the inverse of
[RNAP] within a specific range of media conditions. Additional results provided evidence
that this linear relationship is strain-independent.

Next, using single-cell time-lapse microscopy (see section 3.2), we obtained the distributions
of time intervals between RNA production events from Plac/ara-1 promoter in different
media conditions. Using these and the RNAPs concentrations measured above, we
utilized the in vivo τ plots methodology to estimate not only τprior and τafter, but also
the rate-limiting steps in transcription initiation. Based on the concept of a τ plot,
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only the rate constant that depends on [RNAP], the rate of RNAP binding to an active
promoter, was allowed to differ between different media conditions during the model
fitting. To infer the rate-limiting steps, we considered the full model of transcription
initiation (reactions 2.9 and 2.10) and simplified models that could be preferred if some
steps of the full model do not influence the transcription initiation kinetics significantly.
We considered the following simplifications (in various combinations): (i) the time that
promoter spends in the locked state is negligible, either because it rarely gets into the
locked state or because unlocking is fast; (ii) the closed complex formation is reversible,
(iii) the closed complex formation is irreversible, (iv) the steps in transcription initiation
that take place after the open complex is formed happen negligibly fast. By comparing
the models using BIC (see section 3.11), we found that the best-fit model is the one that
allows the promoter to be in an inactive state for non-negligible time and assumes that
the closed complex formation is a reversible process. The best-fitting rate constants are
shown in Table 2 of Publication II. Finally, by varying the induction scheme of the
Plac/ara-1 promoter and by applying the same model fitting and selection technique as
above, we determined that the intermittent inactive states are caused by intermittent
binding of LacI repressor.

In Publication III, we studied how kinetics of inducer intake varies with temperature
shifts. For this, we developed a new method for estimating the distribution of time
intervals between the moment when inducer is placed in the media and the moment
when the inducer has entered the cell cytoplasm, where it activates the target gene. By
applying this method to the empirical data collected at various temperature conditions,
we found that the mean inducer intake time increases at suboptimal temperatures, while
the cell-to-cell variability of the intake times decreases. Using the standard model-fitting
procedure, we demonstrated that this is likely due to emergence of an additional step in
the inducer intake process at suboptimal temperatures.

Using single-cell time-lapse microscopy, we measured the distribution of time intervals be-
tween adding an inducer to the media and the first RNA production event (t0 distribution)
under various temperature shifts. The ∆t distributions under the same conditions were
obtained in a previous work (Oliveira et al., 2016a). To estimate the distribution of induc-
tion times in each condition, we deconvolved each ∆t distribution from the corresponding
t0 distribution using a common strategy for applying deconvolution to empirical data (see
section 3.12). We then calculated the mean and the variability (the squared coefficient
of variation) of the distributions of the intake times, and found that the mean increases
at suboptimal temperatures, while the variability decreases. The former finding was
validated by estimating the mean inducer intake time at various temperatures, from qPCR
measurements (see section 3.4), using the Lineweaver-Burk equation (see section 3.7 and
equation (3) in Publication III).

Finally, we estimated the number and durations of the rate-limiting steps in the decon-
volved distributions of inducer intake times in maximum likelihood sense (see section 3.10).
Namely, we assumed a model of inducer intake to involve d consecutive exponential steps,
with this number of steps possibly differing between various temperature conditions.
Using the likelihood ratio tests (see section 3.11), we found that the inducer intake
involves two rate-limiting steps at the optimal temperature, with at least one additional
rate-limiting step emerging at lower temperatures (the detailed results are shown in
Table 4 of Publication III).

In Publication IV, we studied the means to control propensities of threshold crossing
in RNA and protein numbers in E. coli. For this, we investigated whether it is possible
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to tune asymmetry and tailedness in transcription initiation kinetics independently of
its mean rate and variability, and whether changes in these asymmetry and tailedness
can significantly affect threshold crossing in RNA and protein numbers. By applying
the tests of statistical comparison to empirical data, we demonstrated that changes in
these asymmetry and tailedness are independent of changes in the mean and variability
(while correlated between each other), and play a key role in crossing more exclusive
thresholds. Further, these asymmetry and tailedness propagate to the asymmetry and
tailedness of protein levels in a cell population. Since this can be observed for the sets
of conditions that differ only in a promoter sequence and only in regulatory factors, the
asymmetry and tailedness in transcription initiation kinetics could play a crucial role in
cellular decision making processes by controlling the threshold crossing propensities both
through evolution and by regulation.

First, we performed single-cell microscopy measurements to obtain the ∆t distributions
in various conditions differing in promoter sequence, induction schemes, and media
composition (see Table 1 of Publication IV for the detailed description of the conditions).
From each ∆t distribution, we estimated its mean (M), coefficient of variation (CV),
asymmetry (assessed by skewness, S), and tailedness (assessed by kurtosis, K). The results
are shown in Figure 4.2A, with the standard error of the mean estimated using non-
parametric bootstrapping (see section 3.9.2). We found that S and K are correlated with
each other, whereas all other pairs of these four features do not exhibit correlation. This
was also found true for the set of conditions that differ only in promoter sequence and for
the set of conditions that differ only in regulatory mechanisms (Table 2 of Publication
IV). In addition, Figure 4.2B shows that S and K can differ widely between conditions
even when M and CV remain nearly the same.

We then investigated whether the values of S and K contribute significantly to crossing
thresholds in RNA numbers. Since these numbers are defined by the ∆t intervals, we
tested how the percentage of the ∆t intervals that are higher than a given threshold
depends on CV, S and K. To eliminate the influence of M from our results, we scaled the
threshold by the mean of the ∆t distribution. Figures 4.2C and 4.2D show that, at lower
thresholds, the values of S and K don’t seem to affect the threshold propensities and
CV plays the major role in the threshold crossing. However, to cross more challenging
thresholds (5M and 6M), both higher values of CV and of S and K are required.

Further, we estimated τprior and τafter in each condition using the in vivo τ plot method-
ology developed in Publication II. The inverse of RNAP concentration was measured
using the Western blot, and the inverse of RNA production rate was measured using
qPCR. S and K were shown to change linearly with τprior when the number of variables
that were allowed to change between conditions was restricted (only the promoter sequence
or only regulatory factors were allowed to change). Interestingly, the linear relationship is
positive in the set of conditions where only promoter sequence changes, and is negative in
the set of conditions where only regulatory factors change. This suggests that these two
sets of conditions affect τprior differently, e.g. by tuning different rate-limiting steps in
transcription initiation that occur before commitment to open complex formation. In
addition, no significant relationship between S and K and τafter or τafter/M was found.

Finally, using flow cytometry, we measured the distributions of corresponding protein
expression levels in individual cells, in various conditions. We found that the skewness of
this distribution is negatively correlated with the skewness of a ∆t distribution. Further,
the mean of the ∆t distribution was not found to affect the skewness and kurtosis of
the distribution of protein expression levels. Publication IV demonstrates that τprior
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Figure 4.2: Skewness (S) and kurtosis (K) of a ∆t distribution are independent of the mean (M)
and the coefficient of variation (CV) of this distribution and affect the probability of crossing the
upper-bound thresholds in ∆t intervals. (A) M, CV, S and K of the ∆t distributions measured
in 14 different conditions. Error bars denote the standard error of the mean. (B) Pairwise
differences (∆) in M, CV, S and K between conditions (blue dots). The red diamond is the
difference between LA(IPTG) and Mut1 conditions that illustrates how changes in S and K can
be independent from changes in M and CV. (C and D) Percentage of ∆t intervals (black dots)
that are longer than a given threshold (from 2M to 6M) against (C) CV and S, and (D) CV and
K. Also shown is the natural neighbor interpolation surface. Reproduced from Publication IV.

partially defines the values of skewness and kurtosis of a ∆t distribution. These values
affect threshold crossing propensities of RNA numbers and propagate to the values of
skewness and kurtosis in the protein levels. Based on this, we suggest that changes in
transcription initiation kinetics play a role in cellular decision-making processes.



5 Conclusions and Discussion

This thesis has focused on dissecting rate-limiting steps in transcription initiation and
activation, studying the means to regulate these rate-limiting steps, and quantifying the
influence of this regulation on the single-cell distributions of gene expression products.
The study was mainly based on single-cell time-lapse microscopy data, heavily supported
by novel applications of established molecular biology techniques. To interpret the
empirical data, this study employed image and data processing strategies, stochastic
modeling, and statistical analysis. Further, new methods for interpreting the data were
developed and their usage was exemplified. Finally, this study resulted in novel insights
into the regulation of rate-limiting steps in transcription initiation and its impact on
RNA production kinetics and protein level distributions.

In order to understand the regulation of gene expression at the level of transcription, it is
crucial to observe RNA production kinetics, and not only RNA and protein numbers, as
these are affected by post-transcriptional and translational regulatory mechanisms (Picard
et al., 2012; Van Assche et al., 2015). Thus, the distributions of the intervals between
consecutive RNA production events (∆t distributions) are the backbone of the body of
empirical data used in this work. To detect when a new RNA molecule is produced in
a live E. coil cell, we used the MS2-GFP tagging method (see section 3.1.1). Although
this tagging method significantly alters the properties of the RNA molecules, this is
beneficial for detecting the intervals between RNA production events. Namely, the fact
that MS2-GFP-coated RNA region degrades at a much slower rate than individual GFP
or RNA molecules is utilized in the methodology for detection of RNA production events
in live E. coli cells (Häkkinen and Ribeiro, 2015), including the method proposed in
Publication I.

Publication I achieved the first aim of the study by presenting a new method for
analyzing fluorescence time series data extracted from microscopy images. This method
allowed to reduce the impact of transient nonzero-mean noise at previous time points
on the estimation of an integer-valued RNA amount at the given moment by applying a
stepwise approach to the time series data analysis. A search for the optimal values of the
two parameters of this method shown that the optimal value of one of the parameters,
v, is constant given realistic changes between the simulated conditions. Meanwhile, the
optimal value of the other parameter, ω, depends on the sampling frequency of the time
series and on the standard deviation of the constantly present zero-mean noise. While the
sampling frequency of the data is always known because it is set up during the microscopy
experiment, the standard deviation of the zero-mean noise was not estimated in this work.
Instead, we used an average optimal value of ω that was obtained based on the analysis
of the simulated data with realistic characteristics. Given this, augmenting our method
with a step of estimating the standard deviation of the zero-mean noise and using this
value to choose the optimal ω could result in higher accuracy of the method. However,
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when the method was tested on the simulated data, using an optimal ω value provided
only a slight increase in accuracy compared to using the average value.

The method developed in Publication I showed better performance than the existing
method (Häkkinen and Ribeiro, 2015) when transient nonzero-mean noise was added to
the simulated data, but also showed lower performance when no noise or only constantly
present Gaussian noise with zero mean was introduced. Thus, the new method is not
aimed to replace the already existing one, but instead the methods should be used in
a complementary manner, in accordance with the characteristics of the data. When
processing the data produced during the work on the following publications of the thesis,
we visually evaluated performance of both the new and the reference methods and selected
the one that performed better. In all cases, the performance of the new method was either
worse or the same as that of the reference method. This is explained by an improvement in
the microscopy setup that occurred after the completion of Publication I. Namely, the
microscope laser alignment and coupling of the laser box were performed, which improved
signal-to-noise ratio in the obtained images. The nonzero-mean transient noise posed a
serious signal processing problem when using the MS2-GFP tagging system with the old
microscopy setup but was not an issue anymore when using the new setup. Nevertheless,
the method developed in this thesis could be of use in the future. For example, it is
expected to perform well when the fluorescent time series are obtained from the molecules
tagged by a small number (e.g. less than 40) of fluorescent proteins. This is based on the
observation that as the size of the fluorescent tag reduces, the probability that the tagged
molecule would not appear on the microscopy image in a given frame increases, adding
tangible nonzero-mean noise to the fluorescence time series.

The second aim of the study was achieved in Publication II, which developed and
applied a novel methodology for dissecting in vivo, single-cell transcription initiation
kinetics. The prerequisite assumptions of the proposed approach were proved to hold true
by a combination of molecular biology assays and statistical analysis techniques. The
functionality of this new approach was demonstrated in a case study of E. coli promoter
lac/ara-1. Publication II contributed to unraveling in vivo transcription initiation
kinetics by approaching the question in two stages. First, it established that τ plots,
previously used only in vitro (Bertrand-Burggraf et al., 1984; McClure, 1980), can also
be used in vivo for estimating the average durations spent in transcription initiation
prior and after closed complex formation. Next, it combined the model-fitting strategy
recently developed to characterize the rate-limiting steps in transcription (Häkkinen and
Ribeiro, 2016) with introducing the parameter constraints based on the experimental
conditions into the model fitting procedure. This resulted in a novel methodology that
allows studying in vivo transcription initiation at a higher level of detail than previously.

Although τ plots were known to be applicable to in vitro data for about 40 years, it was
not clear whether the in vivo application of this method would be possible. In particular,
varying RNAP concentration in vivo without significantly affecting other variables in
transcription initiation was a non-trivial task, since RNAP concentration is known to
affect cell growth rate, a parameter that is linked to changes in global regulation of gene
expression (Klumpp and Hwa, 2008, 2014). Nevertheless, we were able to find a range of
growth media composition where RNAP concentration changes while other variables stay
approximately constant. This new methodology makes possible testing whether the in
vitro measurements of transcription initiation kinetics are a good proxy for the in vivo
dynamics. If this would be proven true, the large volume of measurements on in vitro
transcription initiation kinetics could be used with more confidence than previously for
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estimating the in vivo transcription kinetics.

The method developed in Publication II does not yet allow to estimate the number and
durations of the multiple steps that compose the open complex formation and promoter
escape. This could be possible if the kinetics of one of the sub-steps could also be altered
without altering the other sub-steps. Interestingly, at about the same time as this work,
the in situ studies of transcription initiation using single-molecule Förster resonance
energy transfer were conducted (Duchi et al., 2016; Lerner et al., 2016). The approach
used in these studies offer a great level of detail on certain steps in transcription initiation.
However, the methodology used in this thesis is less invasive and allows for time-lapse
observation of living cells during several hours, which is not possible with the in situ
approach.

The third aim of the study was achieved in Publication III, which offered previously
intangible insights into the temperature dependence of inducer intake times by combining
the established molecular biology and statistical methods. The results indicated higher
mean intake times and lower coefficient of variation in these times at lower temperatures,
which suggests the emergence of additional rate-limiting steps. The results were consistent
in that we found two exponential rate-limiting steps at 37 °C, three at 30 °C, and four or
more at 24 °C. The fact that we cannot conclude on the number of the rate-limiting steps
in inducer intake kinetics at 24 °C suggests that, at this temperature, the inducer intake
kinetics have changed so drastically that a sequence of a small number of exponential
steps is not a sufficient model anymore. One possible explanation for this phenomenon is
an increase in the viscosity of the cytoplasm and the periplasm at lower temperatures
(Oliveira et al., 2016b).

Publication III was based on the recent work that studied how the rate-limiting steps
in transcription initiation are affected by temperature and induction schemes (Oliveira
et al., 2016a). This study demonstrated that sub-optimal temperatures affect different
rate-limiting steps to an unequal degree, and that these effects differ between promoters.
However, it did not investigate whether inducer intake times are also significantly affected
by the temperature shifts. Answering this question is crucial for understanding how
bacterial cells function in constantly changing environmental conditions. Our results
strongly suggest significant changes in the inducer intake kinetics at lower temperatures.
It is yet to be understood how bacteria adapt to these changes, since they are known to
survive in a wide range of temperature conditions. From previous studies, it is known that
response to temperature shifts is gene-dependent (Chandraseelan et al., 2013; Touhami
et al., 2006), which may play a role in how bacteria handle intake of molecules through
cell walls at lower temperatures.

The fourth aim of the study was achieved in Publication IV by investigating the rela-
tionship between rate-limiting steps in transcription initiation, asymmetry and tailedness
in RNA and protein expression levels, and threshold-crossing in RNA numbers in various
conditions. It has been suggested that cellular decision-making mechanisms depend
on threshold-crossing by RNAs or proteins (Alon, 2007; Arkin et al., 1998; McAdams
and Arkin, 1997). In Publication IV, increasing skewness and kurtosis can serve as
a means to cross higher thresholds in ∆t intervals while not changing the mean and
coefficient of variation. It also was shown that skewness and kurtosis in RNA production
kinetics are negatively correlated with the skewness and kurtosis in protein level distribu-
tions, demonstrating that the impact of the rate-limiting steps is not necessarily lost in
post-transcriptional noise. In addition, these skewdness and kurtosis were found to vary
significantly between conditions differing only in promoter sequence or in RNAP or inducer
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concentrations, indicating that the skewness and kurtosis are both sequence-dependent
and subject to regulation. Thus, the work conducted in Publication IV suggests that
skewness and kurtosis play a significant role in cellular decision-making.

Previously, it has been shown that the rate-limiting steps in transcription initiation can
tune the mean and coefficient of variation of a ∆t distribution (Häkkinen and Ribeiro,
2016; Mäkelä et al., 2017; Oliveira et al., 2016a). However, the regulation of the skewness
and kurtosis of the ∆t distribution has not been considered before. Given that changing
the rate-limiting steps in transcription initiation allows tuning the skewness and kurtosis of
this distribution independently from its mean and coefficient of variation, considering these
skewness and kurtosis when, e.g., constructing genetic circuits with desirable properties
could allow higher precision and flexibility in tuning the dynamics of these circuits.
Previous studies have demonstrated that the mean and noise of a distribution of protein
numbers affect different genetic circuits to various extent depending on the topology of
the circuit (Cameron and Collins, 2014; Morelli and Jülicher, 2007; Purcell et al., 2010).
In particular, different shapes of noise in protein numbers can either facilitate or affect
detrimentally the functionality of a genetic oscillator, depending not only on the shape of
noise but also on the topology of the oscillator (Purcell et al., 2010). Thus, it would be of
interest to study how the skewness and kurtosis in RNA and protein numbers affect the
functionality of various genetic circuits and how these effects are related to the topology
of the circuits. For example, it would be of interest to test the hypothesis that lower
absolute values of skewness and kurtosis in protein numbers increase robustness of a
repressilator (a three-gene repression oscillator) by reducing the occurrence of short-term
spikes in protein numbers that may cause skipped oscillations.

To summarize, the results of this study could be of use for investigating how regulation
in transcription initiation affects functionality of network motifs. The presented work
can serve as a starting point for future studies based both on stochastic models and
on single-cell microscopy measurements of in vivo dynamics of genetic constructs. This
thesis contributes to an emerging field of studying the rate-limiting steps in prokaryotic
transcription initiation in vivo, at the single-cell level, and should facilitate further research
in the area.
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Abstract: We present a new quantitative method of estimation of fluorescent molecule numbers from time-lapse, 
single-cell, fluorescence microscopy data. Its main aim is to eradicate backward propagation of noise, which 
is present in previous methods. The method is first validated using Monte Carlo simulations. These tests 
show that when the time-lapse data are corrupted with negative noise, the method obtains significantly more 
precise results than current techniques. The applicability of the method is demonstrated on novel time-lapse, 
single-cell measurements of fluorescently tagged ribonucleic acid (RNA) molecules. Interestingly, we find 
that the intervals inferred by the new method have the same mean but reduced variability when compared to 
the previously existing method, which, in accordance to human observers, is a more accurate estimation.

for the duration of the experiment (Golding and Cox, 
2004; Muthukrishnan et al., 2012). Thus, in this 
case, when estimating the numbers of target RNAs, 
any signal reduction can be classified as noise.  

Since complexes can co-localize, the number of 
target RNAs in each cell is estimated from the total 
fluorescence of the complexes at a given moment 
(Golding and Cox, 2004; Kandhavelu et al., 2012; 
Häkkinen and Ribeiro, 2014). However, the signal 
can be disrupted (i.e. subject to nonzero-mean 
noise), which hampers an exact determination of 
fluorescent molecules’ numbers. That is, though the 
number of RNA-MS2-GFP complexes in a cell is 
considered as a monotonic non-decreasing function 
during the experiment (Muthukrishnan et al., 2012), 
the total fluorescence intensity of the tagged RNA 
molecules can decrease, transiently or permanently, 
in the course of an experiment. These decreases are 
usually caused by the RNA complexes moving away 
from the focal plane, or as a result of 
photobleaching. While the latter corrupts the data 
permanently, the former are isolated events in single 
cell time series and usually cause a steep, transient 
decrease in the fluorescence intensity of tagged 
RNA molecules. 

Here, we present a new quantitative method of 
estimation of fluorescent molecule numbers from 
single-cell fluorescent intensity data obtained by 
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1 INTRODUCTION

Gene expression is a complex, multi-step process
(McClure, 1985; Lutz and Bujard, 1997; deHaseth
et al., 1998; Yarchuk et al., 1992; Wen et al., 2008;
Zhang et al., 2014). In addition, the underlying steps
of this process are stochastic in nature, generating a
variability in RNA and protein numbers that mostly
explains the phenotypic diversity of monoclonal cell
populations (McAdams and Arkin, 1997; Elowitz et
al., 2002; Rao et al., 2002; Raser and O’Shea, 2005).
To study this process, specialised techniques in
molecular biology (Golding and Cox, 2004; Yu et
al., 2006), microscopy (Rutter et al., 1998;
Chowdhury et al., 2012), image analysis
(Chowdhury et al. 2013; Häkkinen et al., 2013),
computational biology (Zhu et al., 2007) and signal
processing (Häkkinen and Ribeiro, 2014) were
developed.

Methods of signal processing should consider the
characteristics of the underlying processes. For
example, in the RNA tracking technique based on
MS2-GFP tagging, the MS2-GFP proteins
(composed of the bacteriophage MS2 coat protein
fused to the GFPmut3 protein (Golding et al., 2005))
bind to multiple MS2 binding sites of the target
RNA soon after its production, and once formed,
those RNA-MS2-GFP complexes remain in a cell



time-lapse microscopy. The method aims to 
eliminate backward noise propagation, caused by 
molecules ‘moving out of focus’, which currently is 
one of the main sources of noise in the estimation of 
the numbers of fluorescent molecules from time-
lapse, live cell images. 

2 METHODS 

The technique of RNA detection by MS2-GFP 
tagging allows observing individual RNA molecules 
in live cells, soon after they are transcribed (Golding 
et al., 2005). In order to extract information from the 
images in an automated fashion, it is necessary to 
detect the tagged RNA molecules, which appear as 
bright spots in the image. Then, the intensity of the 
spots is extracted and summed, so as to obtain the 
“total RNA intensity signal” in a cell, at a given 
point in time.  

This RNA intensity signal from non-degradable 
fluorescent tagged RNA molecules contains noise 
accumulated through each step of signal registration 
(microscope settings, image registration and image 
processing). From observation of the data 
(Muthukrishnan et al., 2012; Kandhavelu et al., 
2012; Häkkinen et al., 2014), we assume that the 
signal behaves as a monotonic non-decreasing 
function corrupted with three types of noise: 

1. Consistent, normally distributed independent 
noise (probability of occurrence ݌ଵ 	ൌ 	1), with zero 
mean and given standard deviation, which is 
introduced by imprecisions of the microscope and 
detector (Chowdhury et al., 2012; Waters, 2009). 

2. Negative noise, which in our measurements 
corresponds to fluorescent molecules moving out of 
focus and remaining there for a certain amount of 
time. Probabilities ݌ଶ	௢௨௧ of going out of focus and 
 ௜௡ of returning to focus depends, e.g., on the type	ଶ݌
of fluorescent molecule, temperature, etc. 

3. Inconsistent positive noise (low probability of 
occurrence, ݌ଷ ൏ 0.01), caused, for instance, by 
false-positive detection of fluorescent molecules. 
These events are independent from each other, so the 
probability of occurring n times is ݌ଷ

௡, which is 
negligible for ݊ ൒ 3. Note that, the limit value of p3 
is set by empirical observations that these events are 
rare. 

2.1 Previous Computational Methods 

In (Häkkinen and Ribeiro, 2014), a method was 
proposed for estimating RNA numbers and 
production intervals from temporal data of tagged 

RNAs fluorescence intensity in individual cells. This 
method, here denominated as a ‘reference method’, 
has three steps. First, a monotonically increasing 
curve is fitted to the time series, and temporal 
information on related samples is extracted. Second, 
the intensity of a single fluorescent molecule, or a 
‘jump size’, is estimated from the information 
obtained at the first step. In the third and final step, a 
quantized curve is fit to the time series, given the 
parameters, enforcing the quantization to the fit. 
From this, the RNA numbers are extracted. 

The third step in (Häkkinen and Ribeiro, 2014) 
goes as follows. Given the jump size, time series are 
fitted quantitatively, and the fit obtained is an 
estimation of the number of fluorescent molecules. 

For the fits performed throughout the method, 
one can use least squares (LSQ) or least absolute 
deviations (LD) fitting. The LD was found to be 
more robust to signal disruptions. 

In order to exploit the characteristics of the 
empirical data, this method assumes that all 
fluorescent molecules have the same intensity and 
that, once formed, they do not degrade before the 
end of the measurements (experimental evidence for 
this assumption is provided in (Muthukrishnan et al., 
2012)). The first assumption is equivalent to 
assuming that the jump size is a constant. The 
second assumption corresponds to forbidding non-
monotonic behaviour of quantitative estimation of 
the molecules over time. 

This method fits full time series to a curve in one 
step, which aids in eliminating a consistent zero-
mean noise, but also allows a backward propagation 
of any inconsistent disruption of the signal. Hence, 
although this method fully addresses the problems of 
the first and the third types of noise described in the 
Methods section, the problem of the second type of 
noise is addressed only to a limited extent (a 
fluorescent molecule is detectable only if it is in 
focus for at least more than 50% of the time series 
length). 

2.2 Experimental Methods 

2.2.1 Cells, Plasmids, Chemicals and Media 

For live, single cell, time-lapse measurements of the 
RNA production times, the MS2d-GFP tagging 
system was used. Fluorescent RNA-MS2d-GFP 
complexes were observed in Escherichia coli DH5α-
PRO strain (generously provided by Ido Golding, 
University of Illinois, IL). The strain contains a 
single copy plasmid (coding for the RNA with 96 
MS2d binding sites under the control of the 
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promoter Plac) and a high-copy reporter plasmid 
coding for MS2d-GFP under the control of the 
promoter PLtetO-1 (Golding and Cox, 2004). 

For growth media, we used the following 
composition per 100 ml: 1.5 g tryptone, 0.75 g yeast 
extract and 1 g NaCl (pH of 7.0). Media components 
were purchased from LabM (UK), while antibiotics, 
Isopropyl b-D-1-thiogalactopyranoside (IPTG), 
arabinose, and anhydrotetracycline (aTc) are from 
Sigma-Aldrich (USA). 

2.2.2 Cell Growth and Microscopy 

Cells from the DH5α-PRO strain, containing the 
target and the reporter plasmids, were grown 
overnight, diluted into fresh media to an OD600 of 
0.1 (measured with an Ultraspec 10 cell density 
meter), and allowed to grow to an OD600 of ~0.3. For 
the reporter plasmid induction, aTc (100 ng/ml) was 
added 1 h before the start of the measurements. For 
the target plasmid, IPTG (1mM) was added 10 min 
before the start of the measurements. Cells were 
pelleted and resuspended into fresh medium. A few 
µl of the cells were placed between a coverslip and 
an agarose gel pad (2%), containing the respective 
inducers, in a thermal imaging chamber (FCS2, 
Bioptechs), heated to 37 oC. The cells were 
visualized using a Nikon Eclipse (Ti-E, Nikon, 
Japan) inverted microscope with a C2+ confocal 
laser-scanning system using a 100x Apo TIRF 
objective. Images were acquired using the Nikon 
Nis-Elements software. GFP fluorescence was 
measured using a 488 nm argon ion laser (Melles-
Griot) and 514/30 nm emission filter. Phase contrast 
images were acquired with an external phase 
contrast system and a Nikon DS-Fi2 camera. 
Fluorescence images were acquired every 1 min for 
2 hours. Phase-contrast images were acquired every 
5 min. 

2.2.3 Image Analysis 

 

Figure 1. Panel A and B exemplify phase contrast and 
confocal images, correspondingly, of the same cells. Panel 
C shows masks of those cells and their fluorescent spots. 

Cells were detected from phase contrast images as in 
(Gupta et al., 2014). First, the images were 
temporally aligned using cross-correlation. Next, an 

automatic segmentation of the cells was obtained 
with MAMLE (Chowdhury et al., 2013). The results 
were corrected manually. Cell lineages were 
constructed by CellAging (Häkkinen et al., 2013). 
Alignment of the phase contrast images with the 
confocal images was done by manually selecting 5-7 
landmarks in both images, and using thin-plate 
spline interpolation for the registration transform. 
After the registration, the cell masks were adjusted 
to the borders of corresponding cells from the 
confocal images based on the fluorescent intensity. 
Finally, fluorescent spots and their intensities were 
detected from confocal images using a Gaussian 
surface-fitting algorithm from (Häkkinen et al., 
2014). Examples of original images and obtained 
masks are shown in Figure 1. 

3 RESULTS 

3.1 Algorithm 

Our algorithm for the quantitative estimation of 
fluorescent molecules from the data is described in 
Figure 2. 

3.1.1 Initial Parameters 

To obtain the intensity of one fluorescent molecule, 
 we combine the first two steps of the ‘reference ,ߤ
method’ in their original form with visual inspection 
of the time series of fluorescence intensity. Other 
methodologies could be used instead. 

To account for positive noise (type 3 noise), the 
‘trusted interval’, ݓ, is introduced. If an increase in 
intensity persists for ݓ frames, then we assume that 
this increase is not due to noise. Otherwise, the 
assumption that it is positive noise cannot be 
rejected. 

The choice of the value of ݓ is based on the 
standard deviation σ of a consistent noise (type 1). 
The optimum value of ݓ rises with the increase of σ 
(Figure 4). Also, we found by inspection that, to be 
resistant to the type 3 noise, ݓ should not be smaller 
than 5 data points. 

The parameter ݒ is introduced to account for 
deviations in the mean of type 1 noise. The 
exploration of the parameter space of the fit 
(Figure 4) shows that, for a signal without a 
consistent non-zero mean noise, ݒ ൎ 0.25 is an 
optimal value. However, the optimal ݒ increases up 
to 0.4 in the case of fitting a signal with σ ൌ 2. 
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Figure 2: Algorithm used for the quantization of fluorescent molecules. 

3.1.2 Computational Procedure 

The procedure of the algorithm can be represented 
as a set of interval-fitting events. Each interval l has 

length ݓ, the values of each fit at each time point are 
a constant proportional to ߤ, the fit is performed 
using least absolute deviations and, the coefficient of 
proportion ܭ of the best fit is an initial estimate 
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ofthe amount of fluorescent molecules. Given this, 
first, we estimate the amount of fluorescent 
molecules in the first ݓ time points. For each 
following data point ܫ௜, where ݓ ൏ ݅ ൑ ܰ െݓ, the 
fit is performed. If ܭ௜ ൐  ௜ିଵ, then the estimatedܭ
amount of  fluorescent molecules at time point ݐ௜  is 
the maximum value of the estimated amount 
௜ܫሺ݀݊ݑ݋ݎ ⁄ߤ ሻ at ݐ௜, and the estimated amount ܭ௜ିଵ at 
 .௜ିଵݐ

Since it is not possible to determine whether any 
increase in the signal at the time points ሾܰ െ ݓ ൅
1:ܰሿ is caused by noise or by the production of 
fluorescent molecules, no estimation is performed on 
this interval. 

Finally, the obtained time series of estimated 
amounts of fluorescent molecules ܭ are checked at 
each time point ݅ (from ܰ to 1). If ሺܭ௜ାଵ ൐  ௜ሻ andܭ
ሺ݀݊ݑ݋ݎሺܫ௜/ߤሻ ൐  ௜ is set toܭ ,௜ሻ are trueܭ
݉݅݊ሺܭ௜ାଵ,  ሻሻ. We note that theߤ/௜ܫሺ݀݊ݑ݋ݎ
production events at these moments were not 
detected during the fitting procedure because of the 
local disruptions of the signal in subsequent 
moments. 

3.2 Analysis of in Silico Data  

Monte Carlo simulations were performed using a 
model of transcription that assumes that RNA 
molecules are produced in exponentially distributed 
intervals (with mean interval of 15 min 
(Muthukrishnan et al., 2012)). The sampling 
frequency ƒ used is 10 sec-1 and 1 min-1, for 
comparison. 

The obtained time series are then corrupted by 
adding zero-mean independent and normally 
distributed noise. To introduce significant, transient 
disruptions of the signal (i.e. to model RNA-MS2d-
GFP complexes going out of focus), we set the RNA 
signal to zero at random moments, for a randomly 
selected duration. For that, we set the probability 
that an RNA goes out of focus to ݌ଶ	௢௨௧ ൌ 60 min-1 
and the probability of the zeroed RNA to be fully 
recovered to ݌ଶ	௜௡ ൌ 20 min-1. 

In Figure 3 we exemplify the outcome of 
simulating the model for 120 min. 

We use this model’s ground truth data to test the 
accuracy of the RNA numbers estimation by our 
method. To quantify the accuracy, we define it to be 
the proportion of time moments where the RNA 
numbers in a cell were correctly detected (Häkkinen 
and Ribeiro 2014). 

First, the parameter space of the proposed model 
was investigated in order to detect a combination of 
values of ݓ and ݒ that maximize the accuracy. 

 

Figure 3: Simulated data. ƒ ൌ 10sec-1. ߪ	 ൌ 	0.5. pଶ	୭୳୲ ൌ
60min-1 and pଶ	୧୬ ൌ 20min-1, ݓ	 ൌ 	ݒ ,8	 ൌ 	0.25. 

 

Figure 4: Mean accuracy along the parameter space of 
	ߪ forݒ andݓ ൌ 	ߪ ,0.5	 ൌ 	1, and ߪ	 ൌ 	2. In panel A, ƒ ൌ
10sec-1 and in panel B, ƒ ൌ 1min-1. In both panels, from a-
c: pଶ	୭୳୲ ൌ 0 min-1 and pଶ	୧୬ ൌ 0min-1; from d-f: pଶ	୭୳୲ ൌ
60min-1 and pଶ	୧୬ ൌ 20min-1; from g-i: 25% time series 
points were randomly selected and set to zero. In all sub-
panels of panel A and in sub-panels a-c of panel B, each 
accuracy value is a mean of 1000 simulations. In sub 
panels d-f of panel B, each accuracy value is a mean of 
2500 simulations. 
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For that, we performed a set of at least 1000 
simulations for each combination of values of ݒ, in 
the range ሾ0, 0.6ሿ, and w, in the range ሾ3, 15ሿ for 
	ߪ ൌ 	0.5, 1, 2 for each of the following sets of 
parameter values: a) pଶ	୭୳୲ ൌ 0 min-1, pଶ	୧୬ ൌ 0 min-

1 (ƒ ൌ 10 sec-1 and ƒ ൌ 1 min-1); b) pଶ	୭୳୲ ൌ 60 min-

1, pଶ	୧୬ ൌ 20 min-1 (ƒ ൌ 10 sec-1 and ƒ ൌ 1 min-1); 
and c) 25% time series points randomly selected and 
set to zero (ƒ ൌ 10 sec-1). Results are shown in 
Figure 4. 

From Figure 4, ݓ depends on the variation of ߪ 
of the consistent noise (namely, as it increases 
monotonically with increasing ߪ), whereas ݒ 
depends on the mean consistent noise (which 
becomes negative due to zeroing 25% of the time 
moments). Also, the optimal trusted interval ݓ 
suffered only a slight reduction with a sixfold 
decrease of the sampling frequency, ƒ.  

In addition, we found that for ߪ	 ൌ 	0, 0.5, 1,
1.5, 2 and ƒ ൌ 10 sec-1, we obtain ݓ௢௣௧ ൌ
	5, 7, 13, 13, 13, respectively. Meanwhile, for ƒ ൌ 1 
min-1, we obtain ݓ௢௣௧ ൌ 	5, 5, 10, 10, 12, 
respectively. Finally, we found that the optimal ݒ	 ൎ
	0.25. 

 

In particular, we measured the accuracy of our 
method for ߪ	 ൌ 	0, 0.5, 1, 1.5, 2, along with an 
optimal ݓ (‘Opt’ method) as well as with a mean w 
(‘Avg’ method), in order to study the impact of this 
parameter as a function of ߪ. An estimated optimal ݒ 
was chosen separately for data with zero-mean noise 
and for data with negative-mean noise. Also, we 
measured the accuracy of the reference method 
(‘Ref’) on the same data, for comparison. 

From Figure 5, in general, the proposed method 
has higher precision when analysing data with out-
of-focus events (i.e. is more robust to type 2 noise). 
For ߪ ൌ 0.5, its accuracy is improved from 49.1% to 
67.6% for ƒ ൌ 10 sec-1, and from 47.7% to 60.1% 
for ƒ ൌ 1 min-1. However, our method is less robust 
to type 1 noise, which is expected because the data is 
processed piecewise. 

Also from Figure 5, note how the precision is 
lowered for mean ݓ versus optimal ݓ. This 
difference in precision increases with increasing ߪ. 

Finally, we made use of the in silico data to 
assess the timing of the proposed algorithm. For this, 
we measured the time required to analyse 10000 
simulated time series with ƒ ൌ 1 min-1, ߪ	 ൌ 	1, 
௢௨௧	ଶ݌ ൌ 60 min-1, ݌ଶ	௜௡ ൌ 20 min-1, and length of 
120 min. For w=4, 8, 16 the duration was 16 s, 12 s, 
and 10 s respectively (processor Intel Core i5-2400, 
3.10GHz), while v does not have a noticeable impact 
on the time length of this process.  

3.3 Analysis of Empirical Data 

We next applied our method to empirical data, 
obtained as described in the methods section. This 
data was processed using our method and the 
reference method, for comparison (Table 1). The 
fluorescent RNA complexes have a non-negligible 
tendency to go out of focus, which makes it possible 
to demonstrate the usefulness of the proposed 
method. 

Table 1: Comparative analysis of the mean and variability 
of the intervals between consecutive RNA production 
events obtained by our method (w ൌ 8, v ൌ 0.25) and the 
reference method. The data was collected from 178 cells. 

Method No. 
intervals 

Mean 
interval 

Interval 
CV2 

Our method 158 1047 1.15 
Ref. method 153 1018 1.43 

 

From the Table 1, the two methods differ in 
performance. Namely, while the two methods infer 
similar mean intervals between transcription events 
(the new method detected 3% more intervals), the 
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Figure 5: Mean accuracy of the counting of fluorescent
molecules using a given method (Opt, Avg, or Ref) with a
given noise model (1, 2, or 3) from STD ߪof zero-mean
noise. Panel A: ƒ ൌ 10sec-1; panel B: ƒ ൌ 1min-1. Opt is
the proposed method with ݓ ൌ ௢௣௧; Avg is the proposedݓ
method with ݓ	 ൌ 	10(panel A) and ݓ	 ൌ 	8(panel B); Ref
is the reference method. In case 1, pଶ	୭୳୲ ൌ 0min-1 and
pଶ	୧୬ ൌ 0min-1. In case 2, pଶ	୭୳୲ ൌ 60min-1 and pଶ	୧୬ ൌ
20min-1. In case 3, 25% of the data points are randomly
selected and set to zero. Each accuracy value is a mean of
10000 simulations (using ݒ	 ൌ 	0.2 in case 3 and ݒ	
ൌ 0.25 otherwise).

Next, we analysed the simulated data with and
without going-out-of-focus events using the
proposed method and the LD version of the
reference method, and compared their accuracies.



CV2 of those intervals duration is significantly 
smaller when using the new method (19.6% 
smaller). Inspection of the data by two expert human 
observers indicated that the new method’s detection 
process was the more accurate one (see example 
Figure 6). 

 

Figure 6: Example intensity series and estimated RNA 
numbers with the proposed method (ݓ ൌ ݒ ,8 ൌ 0.25), 
and with the reference method (LD version). 

4 CONCLUSIONS 

Here we proposed a new method for the quantitative 
estimation of fluorescent molecules from temporal 
intensity microscopy data. This method was 
developed to handle transient, nonzero-mean noise 
in the data, i.e. it aims to cope with temporary 
absences of fluorescent molecules from the focal 
plane in time-lapse microscopy measurements. This 
is particularly important in studies requiring a 
consistent tracking of tagged molecules, such as 
studies of, e.g., chemotaxis mechanisms which rely 
on chemoreceptor clusters (Sourjik and Berg, 2004; 
Wadhams and Armitage, 2004; Parkinson et al., 
2005; Kentner and Sourjik, 2006) and protein 
aggregates’ accumulation, which is associated with 
cellular aging processes (Maisonneuve et al., 2008; 
Tyedmers et al., 2010; Winkler et al., 2010; Lindner 
et al., 2008; Gupta et al., 2014; Lloyd-Price et al., 
2012). 

We validated our method by tests on in silico 
data. Next, we applied it to empirical data to show 
that its results can differ from those of the previous 
method. By inspection, we found, as expected, that 
the reason why the results of the two methods differ 
is the enhanced robustness of our method to 
‘negative’, inconsistent noise. Another reason is its 
weaker robustness to consistent, type 1 noise. 

The causes of the two main differences are that, 
in the new method: i) previous values of a tagged 
RNA intensity confine the next ones into boundaries 
defined by the known properties of the signal. The 
main benefit of this is that it restricts backward 
propagation of inconsistent noise, which results in 
more precise results when pଶ	୭୳୲ ൐ 0; ii) the 
stepwise analysis of the signal hampers the removal 

of consistent zero-mean noise. 
We expect our method to be of use to a broad 

range of time-lapse microscopy measurements 
making use of fluorescence molecules in live cells, 
particular when the phenomenon of moving out of 
the focus plane is common for those molecules. 
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Abstract

We investigate the hypothesis that, in Escherichia coli, while the concentration of RNA polymerases

differs in different growth conditions, the fraction of RNA polymerases free for transcription remains

approximately constant within a certain range of these conditions. After establishing this, we apply a

standard model-fitting procedure to fully characterize the in vivo kinetics of the rate-limiting steps in

transcription initiation of the Plac/ara-1 promoter from distributions of intervals between transcription

events in cells with different RNA polymerase concentrations. We find that, under full induction, the

closed complex lasts ∼788 s while subsequent steps last ∼193 s, on average. We then establish that

the closed complex formation usually occurs multiple times prior to each successful initiation event.

Furthermore, the promoter intermittently switches to an inactive state that, on average, lasts ∼87 s.

This is shown to arise from the intermittent repression of the promoter by LacI. The methods em-

ployed here should be of use to resolve the rate-limiting steps governing the in vivo dynamics of ini-

tiation of prokaryotic promoters, similar to established steady-state assays to resolve the in vitro
dynamics.

Key words: free RNA polymerase, in vivo transcription dynamics, rate-limiting steps, reversible closed complex formation, repressor
binding dynamics

1. Introduction

Gene expression has been intensively studied with the relatively new
tools provided by fluorescent proteins and microscopy techniques
with single-molecule resolution, in both prokaryotic1–5 and eukaryot-
ic6,7 systems. These studies have established that this process cannot be
fully characterized by the mean protein production rate,8–12 since cells
exhibit fluctuations (i.e. noise) over time and diversity in numbers
across populations,13 which, among other things, generates phenotyp-
ic diversity.8 The noise has generally been investigated through indir-
ect means, such as by observing the diversity in RNA and protein
numbers in cell populations.2,3,10,11,14 Other, more direct means

consist of observing the distribution of intervals between RNA pro-

ductions2,4,5 and between protein bursts in individual cells.3,15

From these observations, a wide range of gene expression beha-
viours have been reported and, therefore, significantly different prob-

abilistic models of transcription have been proposed.2,4,16–18

In general, higher-than-Poissonian variability in RNA numbers has

been explained by models in which the promoter intermittently

switched into an inactive state, resulting in bursty RNAproduction dy-

namics.2,16,19 Meanwhile, lower-than-Poissonian variability appears

to be more consistent with models assuming multiple rate-limiting

steps.4,5,16,20,21
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There is direct experimental evidence for the existence of both me-
chanisms. Recently, Chong et al.19 showed that bursts of RNA pro-
duction can emerge due to positive supercoiling build-up on a DNA
segment, which eventually stops transcription initiation for a short
period until the release of the supercoiling by gyrase. On the other
hand, the existence of rate-limiting steps was established by studies
using steady-state assays.22–24 Also, more recently, by fitting a mono-
tone piecewise-constant function to the fluorescence signal from
MS2-GFP tagged RNAs in individual cells, it was shown that in
vivo RNA production can be a sub-Poissonian process.4,5,20,21

Recent studies have considered the possibility that both mechan-
isms can be present in a single promoter.16,25 In ref. 25, a model in-
cluding both mechanisms was proposed, and statistical methods
were developed to select the relevant components and estimate the ki-
netics of the intermediate steps in initiation based on empirical data.
However, this method cannot distinguish the order of the steps which
occur after the start of transcription initiation, nor can it determine
their reversibility, which recent evidence suggests may play a signifi-
cant role in the dynamics of RNA production.26

A complete model for transcription in prokaryotes must account,
apart from the genome-wide variability in noise levels,17,27,28 for the
well-established genome-wide variability in mean transcription
rate2,3,8 and in fold change (ratio of production rate between zero
and full induction)29 in response to induction found, e.g. in Escheri-
chia coli promoters. For example, in vitro measurements on fully in-
duced variants of the lar promoter showed that the mean interval
between transcription events of these variants differs by hundreds of
seconds.29 Promoters also differ widely in range of induction, even
when differing only by a couple of nucleotides.29,30 For example,
while PlarS17 has an induction range of 500 fold, PlarconS17 has an in-
duction range of 4.5-fold, even though it only differs by 3 point muta-
tions.29 This wide behavioural diversity is likely made possible by the
sequence dependence of each step in transcription initiation.29

Thus far, the strategies used in vitro to characterize the kinetics of
the steps involved in transcription initiation22,26 have not been applied
in vivo since they rely on measuring transcription for different RNA
polymerase (RNAp) concentrations. Such a change in cells is expected
to have a multitude of unforeseen effects31 (in addition to the side ef-
fects of the means used to alter RNAp concentrations), which hampers
the assessment of its consequences to the duration of the closed com-
plex formation of a specific promoter. However, it is reasonable to hy-
pothesize that, for certain small ranges of RNAp concentrations, these
side effects will be negligible and thus, in such ranges, the inverse of the
rate of transcription will be linear with respect to the inverse of the free
RNAp concentration.

Importantly, in E. coli, RNAp concentrations have been shown to
vary widely with differing growth conditions.32 As such, herewemake
use of different media richness to achieve different RNAp concentra-
tions and test whether within this range of conditions, the RNA pro-
duction rate changes hyperbolically with the RNAp concentrations
(i.e. if the inverse of this rate changes linearly with the inverse of
the RNAp concentration). Having established this relationship, we
make use of it to study the in vivo kinetics of transcription initiation
of Plac/ara-1. In particular, we perform measurements of the time inter-
vals between RNA productions at the single molecule level in different
intracellular RNAp and inducer concentration conditions, which we
use to derive a more detailed model of transcription initiation of
Plac/ara-1. For this, we first extrapolate the mean interval between
production events to the limit of infinite RNAp concentration, so as
to estimate the in vivo durations of the open and closed complex
formations of this promoter. Next, we examine the significance of

an intermittent inactive promoter state, and the role of LacI in the
emergence of this state. Finally, for the first time in vivo, we determine
the reversibility of the closed complex formation.

2. Materials and methods

2.1. Cells and plasmids

For single-cell RNAp fluorescence measurements, we used E. coli
W3110 and RL1314,33 generously provided by Robert Landick,
University of Wisconsin-Madison. For single-cell transcription inter-
val measurements, we used E. coli DH5α-PRO (generously provided
by Ido Golding, Baylor College of Medicine, Houston). The strain in-
formation is: deoR, endA1, gyrA96, hsdR17(rK- mK+), recA1, relA1,
supE44, thi-1, Δ(lacZYA-argF)U169, Φ80δlacZΔM15, F-, λ-, PN25/
tetR, PlacIq/lacI and SpR. This strain contains two constructs: a high-
copy reporter plasmid vector PROTET-K133 (carrying MS2d-GFP
under the control of PLtetO-1) and a single-copy plasmid vector pIG-
BAC carrying the target transcript (mRFP1 followed by 96
MS2-binding sites) under the control of Plac/ara-1.

2 This promoter is lo-
cated approximately 2 and 9 kb from the origin of replication (Ori2)
and the plasmid size is 11.5 kb.2 This system has been used to measure
the distribution of time intervals between RNA production events due
to its ability to detect individual target RNA molecules consisting of
numerous MS2 coat protein binding sites, which are rapidly bound
by fluorescently tagged MS2 coat proteins. These can be seen as
they are produced under a fluorescence microscope as fluorescent
foci.2,4,5,20,21 Finally, we used the plasmid pAB332 carrying
hupA-mCherry to visualize nucleoids (generously provided by
Nancy Kleckner, Harvard University, Cambridge, MA, USA). For
our measurements, we inserted this plasmid into DH5α-PRO cells
so as to detect nucleoids in individual cells during the live cell micros-
copy sessions. HupA is amajor nucleoid associated protein (NAP) that
participates in its structural organization.34

2.2. Chemicals

The components of Lysogeny Broth (LB) were purchased from LabM
(UK), and antibiotics from Sigma-Aldrich (USA). For RT-PCR, cells
were fixed with RNAprotect bacteria reagent (Qiagen, USA). Tris
and EDTA for lysis buffer were purchased from Sigma-Aldrich and
lysozyme from Fermentas (USA). The total RNA extraction was
done with RNeasy RNA purification kit (Qiagen). DNase I, RNase-
free for RNA purification, was purchased from Promega (USA). iS-
cript Reverse Transcription Supermix for cDNA synthesis and iQ
SYBR Green supermix for RT-PCR were purchased from Biorad
(USA). Agarose, isopropyl β-D-1-thiogalactopyranoside (IPTG), ara-
binose, and anhydrotetracycline (aTc) are from Sigma-Aldrich.

2.3. Growth media

To achieve different RNAp concentrations in cells, we altered their
growth conditions as in.35 For this, we used modified LB media
which differed in the concentrations of some of their components.
The media used are denoted as m×, where the composition per
100 ml are: m grams of tryptone, m/2 gram of yeast extract and 1 g
of NaCl (pH = 7.0). For example, 0.25× media has 0.25 g of tryptone
and 0.125 g of yeast extract per 100 ml.

2.4. Relative RNAp quantification

We measured relative RNAp concentrations in cells using four differ-
ent methods. First, relative RNAp concentrations in the strainsW3110
and DH5α-PRO were measured from the relative rpoC transcript
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levels obtained using RT-PCR. Cells containing the target plasmid
with Plac/ara-1-mRFP1-96BS and the reporter plasmids were grown
overnight in respective media. Cells were diluted into fresh media to
an OD600 of 0.05. After 110 min, cells were re-diluted to an OD600

of 0.05 into respective media containing IPTG (1 mM) and arabinose
(1%). After 70 min, RNA protect reagent was added to fix the cells,
followed by enzymatic lysis with Tris–EDTA lysozyme buffer (pH
8.3). RNA was isolated from cells using RNeasy mini-kit (Qiagen).
One microgram of RNA was used as the starting material. The
RNA samples were treated with DNase free of RNase to remove re-
sidual DNA. Next, RNAwas reverse transcribed into cDNA using iS-
CRIPT reverse transcription super mix (Biorad). RT-PCR was
performed using Power SYBR-green master mix (Life Technologies)
with primers for the amplification of the target gene at a concentration
of 200 nM. Reactions were carried out in triplicate with 500 nM per
primer with a total reaction volume 20 µl. The following primers were
used for quantification: RpoC-F: CGTCAGATGCTGCGTAAAGC,
RpoC-R: GCGATCTTGACGCGAGAGTA, mRFP1-F: TACGACG
CCGAGGTCAAG, mRFP1-R: TTGTGGGAGGTGATGTCCA. Esti-
mated relative RNAp concentrations R̂m in each condition m, and
their standard uncertainties σðR̂mÞ, were calculated according to the
ΔC0

T method.36

Second, E. coli RL1314 cells with fluorescently tagged β′ subunits
were grown overnight in respective media. A pre-culture was prepared
by diluting cells to an OD600 of 0.1 with fresh specific medium, and
grown to an OD600 of 0.5 at 37°C at 250 rpm. Cells were pelleted
by centrifugation and re-suspended in saline. Fluorescence from the
cell population was measured using a fluorescent plate-reader (Ther-
mo Scientific Fluoroskan Ascent Microplate Fluorometer).

Third, relative RNAp concentrations were also estimated based on
the growth rates of DH5α-PRO cells in Supplementary Fig. S1. First,
we fit a power law function to the ‘RNApolymerasemolecules per cell’
row of Table 3 from ref. 32, which we found to be R = 106 µ−1.426,
where µ is the cell doubling time. Relative RNAp concentrations
were then estimated from the measured cell doubling times.

Lastly, we measured the relative RNAp concentrations in RL1314
cells under the microscope using fluorescently tagged RpoC (described
in the next section).

2.5. Microscopy

DH5α-PRO cells containing the target and the reporter plasmids were
grown as described previously. Briefly, cells were grown overnight in re-
spectivemedia, diluted into freshmedia to anOD600 of 0.1, and allowed
to grow to an OD600 of ∼0.3. For the reporter plasmid induction, aTc
(100 ng/ml) was added 1 h before the start of the measurements. For the
target plasmid, arabinose (1%) was added at the same time as aTc (fol-
lowing the protocol in ref. 2), and IPTG (1 mM) was added 10 min be-
fore the start of the measurements. Cells were pelleted and resuspended
to fresh medium. A few microliters of cells were placed between a cover-
slip and an agarose gel pad (2%), which contains the respective indu-
cers, in a thermal imaging chamber (FCS2, Bioptechs), heated to
37°C. The cells were visualized using a Nikon Eclipse (Ti-E, Nikon,
Japan) inverted microscope with a C2+ confocal laser-scanning system
using a 100× Apo TIRF objective. Images were acquired using the
Nikon Nis-Elements software. GFP fluorescence was measured using
a 488 nm argon ion laser (Melles-Griot) and 514/30 nm emission
filter. Phase-contrast images were acquired with the external phase con-
trast system and a Nikon DS-Fi2 camera. Fluorescence images were ac-
quired every 1 min for a total duration of 2 h. Phase-contrast images
were acquired simultaneously every 5 min during the measurements.

We tested for phototoxicity due to the fluorescence and the
phase-contrast imaging in these measurements. Supplementary Re-
sults suggest that there is no significant phototoxicity. Additionally,
we verified that the relative RNAp concentrations under the micro-
scope are similar to those measured in the previous section by repeat-
ing the above procedure with RL1314 cells and imaging RpoC::GFP
fluorescence, 1 h after being placed in the thermal imaging chamber
(see Supplementary Fig. S4). The relative RNAp concentration was es-
timated from the mean fluorescence concentrations of cells growing in
each media.

2.6. Image analysis

Cells were detected from the phase contrast images as described in ref.
37. First, the images were temporally aligned using cross-correlation.
Next, an automatic segmentation of the cells was performed by
MAMLE,38 which was checked and corrected manually. Next, cell
lineages were constructed by CellAging.39 Alignment of the phase-
contrast images with the confocal images was done by manually se-
lecting 5–7 landmarks in both images, and using thin-plate spline in-
terpolation for the registration transform. Fluorescent spots and their
intensities were detected from the confocal images using the Gaussian
surface-fitting algorithm from.40

Jumps were detected in each cell’s spot intensity timeseries using a
least-deviation jump-detection method.41 Given the level of noise in
the timeseries, jump sizes, i.e. the intensity of ‘one RNA’, were selected
by manual inspection of the timeseries of total foreground spot inten-
sities within cells of a given timeseries, and cross-referencing these va-
lues with the observed numbers of spots in the cells. After performing
the jump detection process making use of the complete timeseries,
jumps occurring within 5 min of the beginning or end of a cell’s life-
time were disregarded due to our observation that the jump detection
method tends to produce spurious jumps in these regions due to insuf-
ficient data. The remaining jumps were interpreted as RNA produc-
tion times, from which intervals between transcription events were
calculated. Finally, censored intervals were calculated as the time
from the last RNA production in a cell until the last time at which a
jump could have been observed (i.e. until 5 min prior to cell division or
the end of the timeseries). This removes the possibility of false positives
while not affecting the distribution of intervals.

This method, when first proposed, made two assumptions on the
fluorescence of MS2-GFP tagged RNAs (named ‘spots’). Importantly,
both assumptions were recently shown to be valid.42 First, an individ-
ual spot is bound sufficiently rapidly by MS2-GFPs such that its fluor-
escence intensity, when first detected, is already within the range of
fluorescence of fully formed MS2-GFP-RNA spots (when taking one
image per minute). In other words, the spot intensity of a newly tran-
scribed RNA jumps from 0 to ‘full’ in <1 min, rather than slowly
ramping up. Namely, since the transcription elongation rate of
mRNA in E. coli is ∼50 nt/s32 and the target gene is ∼3,200 bp
long,1 the time to elongate the MS2-binding site region of the target
RNA is ∼60 s. Provided that MS2-GFP binding to its RNA-binding
sites is fast, there will therefore be a maximum of one timepoint at
which the fully transcribed target RNA may have reduced fluores-
cence. Since MS2-GFP is produced in excess in the cell and its binding
affinity is strong (dissociation constant of ∼0.04 nM43), most binding
sites will be saturated very shortly after being produced. In agreement
with ref. 42, no gradual increase in spot fluorescence was observed
around the time of the first appearance of a spot.

Second, once formed, MS2-GFP-RNA spots, as well as their fluor-
escence, are resistant to degradation for the duration of our
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measurements (2 h). This was shown by measurements of the dissoci-
ation rate of MS2 coat proteins from their RNA binding sites (on the
order of several hours43), and by measurements of the lifetimes of the
fluorescence of MS2-GFP tagged RNAs kept under observation for
more than 2 h.1,2,5,42,44 Relevantly, no detectable decrease in fluores-
cence was observed during this time.42

2.7. Model of transcription initiation

We first consider amodel that allows for RNAproduction dynamics to
range from sub-Poissonian to super-Poissonian, given the results from
genome-wide studies of the variability in RNA numbers27,45 and from
studies of the transcription dynamics of individual genes.2,4,5,17,20 The
features of the model that allow it to reproduce these numbers are
based on processes known to occur during transcription initiation in
E. coli (e.g. the open complex formation16,22,23 and an ON/OFF
mechanism16,19). Then, based on our novel empirical data and meth-
odology, we aim to obtain themost parsimonious version of the model
that fits the data for a given promoter. We expect this procedure to be
applicable to any promoter, and to result in slightly different models
due to their differing dynamics and regulatory mechanisms.

The full model of transcription initiation considered here consists
of the following set of reactions:

Rþ PON ←
→

k1

k�1

RPc →
k2

RPo→
k3

Rþ PON þ RNA ð1Þ

PON ←
→
kOFF

kON

POFF ð2Þ

Reaction (1) represents the multi-step process of transcription ini-
tiation of an active promoter in prokaryotes.23,24,46,47 It begins with
the formation of the closed complex (RPc), i.e. the binding of the
RNA polymerase (R) to a free promoter (PON). Once at the start
site, the polymerase must open the DNA double helix, a process
that includes several long-lived intermediate states,23,26,46,48 resulting
in the open complex (RPo). Finally, the polymerase begins RNA elong-
ation, though before clearing the promoter, it may engage in abortive
RNA synthesis in which short RNA transcripts (<10 nt) are pro-
duced.47,49 The reactions in (1) should not be interpreted as elemen-
tary transitions. Rather, they represent the effective rates of the
rate-limiting steps in the process, thus defining the promoter strength,
and have been shown to be sequence-dependent.50

Specifically, k1 represents the rate at which polymerases find and
bind to the promoter region, which is the overall result of the promoter
search process which includes non-specific binding of the polymerases
to the DNA, followed by a 1D diffusive search,51,52 collectively re-
ferred to here as the closed complex formation. Subsequently, several
rapid, possibly reversible isomerization reactions occur until the poly-
merase melts the DNA and forms the transcription ‘bubble’.51 In Re-
action (1), the RPc state represents all substates until the first
irreversible reaction in this chain. Consequently, k2 and k−1 should
be interpreted as the product of the rates of the elementary reactions
which exit from this group of substates, and the steady-state probabil-
ity of being in the appropriate substates for these reactions to occur.

Similarly, the RPo state may represent numerous substates between
the first state after which the complex is committed to initiation, and
successful initiation. However, after this point, we cannot distinguish
the reversibility of any of the following steps, since the time-interval
distribution of a sequence of elementary reversible reactions of arbi-
trary rates is observationally equivalent to a sequence of irreversible
reactions.25 The remaining steps (here, only k3) therefore represent

the rates of the slowest of these irreversible reactions. Such steps
may include additional isomerization reactions, abortive RNA synthe-
sis and promoter escape and clearance.35

Reaction (2) represents the promoter intermittently transitioning
to a transcriptionally inactive state (POFF). Experimentally verified me-
chanisms by which this can occur are the binding and unbinding of
repressors and activators,29 the accumulation of positive supercoiling
in the DNA.19 Additional mechanisms have also been hypothesized,
such as transcriptional pausing53,54 and others.55

For a given concentration of R, the interval distribution between
transcription events described by Reactions (1) and (2) (i.e. the first-
passage time distribution to reach the final state, starting in the PON

state) is observationally equivalent to the interval distribution de-
scribed by a model of the form:

SOFF ←
→
λON

λOFF

S0 →
λ1

S1→
λ2

S2 →
λ3

S0 þ RNA, ð3Þ

where the system starts in state S0. The relationship between the para-
meters of these two models is described in Supplementary Table S1.
Note that the states Si do not correspond to the promoter states in Re-
actions (1) and (2). For details on how to derive and evaluate the dis-
tribution function for this model, see Supplementary Material and.25

It is noted that this model assumes that only one copy of the pro-
moter is present in each cell at any given time. In the experiments per-
formed here, in all conditions tested, the bacteria divided sufficiently
slowly such that they spent most lifetime with only one chromosome.
Specifically, cells spent nomore than 11.4 ± 1.0%of their lifetimewith
two copies of the target promoter (Supplementary Material).

Finally, it is noted that the present model does not consider the in-
fluence of σ factors’ numbers on the dynamics of transcription initi-
ation, focussing instead solely on the concentration of RNA
polymerases (in particular, on the concentration of holoenzymes con-
taining a σ70, i.e. Eσ70, since our promoter of interest can only be tran-
scribed by Eσ70). This is based on the fact that, in all conditions tested,
most RNA polymerases are occupied by σ factors.56,57 Further, this
occupation is made largely by σ70 since, first, when altering media
richness, only σ32’s concentration is significantly altered56 and, se-
cond, the binding affinity of σ70 to E is much higher than that of
any other σ factor (e.g. it is approximately 9 times higher than that
of σ32).57

2.8. Parameter estimation

Parameter estimates in Tables 1–3 were obtained by a maximum like-
lihood fit using the samples of the distribution of time intervals be-
tween production events obtained above (the intervals and censored
intervals), as in.25 The complete model-fitting procedure is detailed
in the Supplementary Material. The uncertainty of the fit of the
model parameters was estimated using the negative of the Hessian
of the log-likelihood surface, evaluated at the maximum likelihood
estimate.

The mean of the time interval distribution between transcription
initiation events, I(R), predicted by Reactions (1) and (2) is, for a
given RNAp concentration R:

IðRÞ ¼ ðkON þ kOFFÞðk�1 þ k2Þ
Rk1k2kON

þ 1
k2

þ 1
k3

¼ τCCðRÞ þ τCC ð4Þ

where τCCðRÞ ¼ k�1
CCR

�1 is the mean time taken by the initial binding
of RNAp for a given RNAp concentration, and τCC is the mean time
taken by the steps occurring after the polymerase has committed to
transcription until the clearance of the promoter region (due to the
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initiation of elongation). As such, we expect the majority of the dur-
ation of τCC to consist of the open complex formation as defined in.46

The remaining of its duration we attribute to failures in promoter es-
cape.59

Estimates of τCC and k�1
CC, denoted τ̂CC and k̂�1

CC, were obtained
from the best-fit parameters of the most parsimonious model, as
given in Table 3. The standard uncertainties of the estimators τ̂CC
and k̂�1

CC, denoted σðτ̂CCÞ and σðk̂�1
CCÞ, were obtained using the Delta

Method60 from the uncertainties of the model parameters.
Finally, mean durations of intervals between transcription events

for each media condition Îm, were estimated by fitting the model in Re-
action (3) to the data from only that condition, and taking the mean of
the distribution. This procedure was followed to include the censored
intervals in the estimate of Îm to avoid underestimating the mean inter-
val duration due to the limited observation times. The standard uncer-
tainty σðÎmÞ was estimated using the Delta Method.60

2.9. Validation of the τ-plot slope
We verified the slope of the τ-plot in Fig. 4 using the RT-PCRmeasure-
ments from Fig. 3. These measurements are both linear with respect to
R̂�1

m , but differ by an unknown scaling factor. We denote the estimated
production rate as measured by RT-PCR in media condition m as Ŝm,
with standard uncertainty σðŜmÞ. We found this scaling factor by fit-
ting the parameter c in Îm ¼ cŜ�1

m by weighted total least squares61

(WTLS), with the measurements weighted by the inverse of their un-
certainty (i.e. σ�2ðŜ�1

m Þ and σ�2ðÎmÞ). This method was chosen since it
accounts for the uncertainty in both of the measurements. It results in
the estimate ĉ. The dashed line in Fig. 4 was obtained by fitting the
scaled points ĉŜ�1

m against R̂�1
m by WTLS. The uncertainty shown in-

cludes both the uncertainty in the WTLS fit of this line, as well as the
uncertainty in ĉ.

2.10. Method to infer the duration of the closed

complex of a promoter

The method to infer the kinetics of transcription initiation in vivo is
illustrated in Fig. 1. First, conditions are selected that differ widely
in free intracellular RNAp concentrations (step A in Fig. 1). Next,
an in vivo single-molecule detection technique is used to sample the
time interval distribution between consecutive transcription events
in individual cells in each of the conditions (step C in Fig. 1). To obtain
these intervals, here we used theMS2d-GFP single RNA detection sys-
tem4 (step B in Fig. 1). Then, we fit a general model of transcription
initiation to the empirical data (see above), which includes both the
multi-step nature of transcription initiation as well as the possibility
of an intermittently inactive promoter state25 (Reactions (1) and
(2)). From this fit, we obtain an estimate of the in vivo mean duration
of the open complex formation by extrapolating the duration of inter-
vals between transcription events to infinite RNAp concentrations,
similar to the in vitro extrapolation presented in ref. 22 (step D in
Fig. 1). The model fit will also assess the importance of an intermittent
inactive promoter state and the reversibility and kinetics of the closed
complex formation.

3. Results

3.1. Changing free RNA polymerase concentrations

We first verified that it is possible to change intracellular RNAp con-
centration by a wide range by changing the growth conditions of the
cells.32,35,62 As such, we grew cells in four media (described in theMa-
terials andmethods), labelled 1×, 0.75×, 0.5×, and 0.25×, which solely

differ in richness of two components (tryptone and yeast extract). We
then measured the relative RNAp concentrations in cells grown in
these four media using RT-PCR of the rpoC gene, i.e. the gene coding
for the β′ subunit, which is the limiting factor in the assembly of the
RNAp holoenzyme.48,57,62 Results in Fig. 2 (dark grey bars) show
that, in the range tested, the RNAp concentration in the cells increases
significantly with increasing media richness.

To validate this result, we measured the relative RNAp concentra-
tions by plate reader in cells expressing fluorescently tagged RpoC in
the strain RL1314 (derived fromW3110),33 in the same four media. In
addition, we also measured the levels of the rpoC transcripts in the
strain W3110 by RT-PCR in the 0.5× and 1× conditions. Results
(Fig. 2) show that the relative changes in the protein and mRNA levels
of rpoC match the measurements by RT-PCR of the rpoC gene in
DH5α-PRO.

Note that, even though the experimental procedures and strains
differ, our measurements are in agreement with the relative changes
in RNAp concentrations reported in ref. 32, for the difference in
growth rates observed here between the 0.25× and 1× conditions (Sup-
plementary Fig. S1), which we estimate to be ∼0.48 (Materials and
methods). In this regard, given that the same result applies to (at
least) three different strains, we expect it to be significantly
strain-independent.

Finally, to verify that the relative RNAp concentrations measured
in Fig. 2 are maintained under the microscope, we measured the rela-
tive RNAp concentration in the RL1314 cells expressing fluorescently

Figure 1. Schematic representation of the in vivomeasurement of the initiation

kinetics, using simulated data. (A) First, several conditions are selected,

labelled I–IV, differing in intracellular RNAp concentration, R. (B) Next, we

obtain timeseries of fluorescence and phase contrast (for cell segmentation

purposes) images of cells expressing MS2d-GFP and target RNA under the

control of the promoter of interest in each condition, from which time

intervals between individual transcription events are determined. This is

done by jump detection in the total RNA spot intensity of each cell (lower-left

in B), from which the interval distribution is obtained (lower-right in B). (C)

Mean interval durations are then estimated from these interval distributions

for each condition. (D) Finally, the mean interval durations and

measurements of R are combined into a τ-plot,22 from which estimates of

the mean times taken by the closed complex and open complex formation

are obtained for each condition. Arrows depict the flow of information in the

measurement procedure.

J. Lloyd-Price et al. 207



tagged RpoC under the microscope between the two extreme condi-
tions (0.25× and 1×), after 1 h in the thermal imaging chamber
(Materials and methods). The relative RNAp concentration between
the conditions was measured to be 0.367 ± 0.012, which is consistent
with the measurements in Fig. 2. Lastly, from these images, we did not
observe significant cell-to-cell variability in the RNAp concentrations
(Supplementary Fig. S4), indicating that the mean concentrations re-
ported in Fig. 2 are representative of the populations.

These measurements show that the relative RNAp concentra-
tion changes widely between the selected growth conditions.
However, the variable affecting transcription kinetics is the relative
free RNAp concentration. As such, we must verify whether the
relative total RNAp concentration can be used as a proxy for the rela-
tive free RNAp concentrations. If this holds true and there are no other
factors affecting the production rate of the promoter of interest in these
conditions, then the RNA production rate should be hyperbolic with
respect to the RNAp concentration. That is, the reciprocal of the RNA
production rate from this promoter should be linear when plotted
against the reciprocal of the measured relative RNAp concentrations,
and one should obtain a line on a Lineweaver–Burk plot.

There are several reasons why this plot may not be linear. If, for
example, the ratio of free RNAp to total RNAp is not constant in
this range of growth conditions, with a higher fraction of free
RNAp in the poorer growth conditions due to increased ppGpp,31

then we expect a curve with positive curvature on this plot. Mean-
while, a negative curvature would be obtained if the promoter of inter-
est could be induced by increased cAMP in the poorer growth
conditions, or if the cells spent, on average, a significantly increased
amount of time with multiple copies of the plasmid in the richer
growth conditions, among other possibilities. In these cases, to dissect
the transcription initiation kinetics of such promoters, another meth-
od of modifying the free RNAp concentration will be required.

Given the above, we interpret a straight line on the Lineweaver–
Burk plot as evidence that, for the conditions tested, (i) the relative
free RNAp concentrations can be assessed from the total RNAp

concentrations, and (ii) no factors other than the changes in the free
RNAp concentration affect the target promoter.

Here, we tested this by measuring the RNA production rate from
Plac/ara-1 inE. coliDH5α-PRO by RT-PCR in the same fourmedia con-
ditions as in Fig. 2. We selected this promoter, since its dynamics has
been extensively characterized2,21,29,63–67 and because it has the same
logical structure as the lac promoter, with an activator and a repres-
sor.63 The resulting Lineweaver–Burk plot is shown in Fig. 3 where
a linear relationship is clearly observed between these points (black
points). To determine whether the small deviations from linearity
are statistically significant, we performed a likelihood ratio test be-
tween a linear fit by WTLS61 (shown as a line in Fig. 3), and fits
with higher order polynomials (also by WTLS by minimizing χ2 as
in61). No test rejected the linear model (all P > 0.25). As noted earlier,
this relationship is only expected to occur in a limited range of growth
conditions. To illustrate this, we repeated the same measurements in
1.5× media (grey point in Fig. 3). The result shows that this hyperbolic
relationship is lost in very rich media (including this point causes the
likelihood ratio test to reject the linear model, P = 0.0014). We con-
clude that, for the growth conditions in Fig. 2, the relative free
RNAp concentrations are well-approximated by the total RNAp con-
centrations, and there are no significant other factors affecting the ini-
tiation dynamics of Plac/ara-1.

3.2. Interval distributions between consecutive RNA

productions

Given this, it is possible to apply a standard model-fitting procedure to
fully characterize the in vivo kinetics of the rate-limiting steps in tran-
scription initiation of the Plac/ara-1 promoter from distributions of in-
tervals between transcription events in cells with different RNA
polymerase concentrations.

We measured the distribution of time intervals between transcrip-
tion events (hereafter referred to as ‘intervals’) for Plac/ara-1 in each cell
growth condition using theMS2d-GFP single-RNA detection system,1

with a least-deviation jump-detection procedure41 (Materials and

Figure 3. Lineweaver–Burk plot of the inverse of the production rate of mRFP1

from the Plac/ara-1 promoter against the inverse of the total RNAp

concentrations for the same growth conditions as in Fig. 2 (black points),

and for 1.50× media (grey point). Standard uncertainties are shown for both

quantities (horizontal and vertical error bars). Relative production rates were

measured by RT-PCR with two biological replicates with three technical

replicates each.

Figure 2.Measurements of the relative intracellular RNAp concentrations ðR̂mÞ
for cells growing in the four different media. Bars show the standard

uncertainties ðσðR̂mÞÞ of the measurements. Data is from two replicates with

3 technical replicates each (DH5α-PRO, RT-PCR, and W3110, RT-PCR), and

three replicates with three technical replicates each (RL1314, RpoC::GFP). All

data are presented relative to the RNAp concentration at 1×. The media used

are denoted as m×, where the composition per 100 ml is: m grams of

tryptone, m/2 grams of yeast extract and 1 g of NaCl (pH = 7.0).For example,

0.25× media has 0.25 g of tryptone and 0.125 g of yeast extract per 100 ml.
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methods). This measurement results in samples from the interval dis-
tribution as well as ‘censored’ intervals, i.e. intervals for whichwe only
observe the beginning due to cell division or the end of the time series.
Both censored and uncensored intervals were accounted for in all par-
ameter estimates to avoid biasing the estimates. For example, note that
taking the mean of the uncensored intervals alone would underesti-
mate the mean of the true interval distribution since long unobservable
intervals would be absent from the estimate. Including the censored
intervals balances this by considering long intervals that are at least
as long as the censored interval length.25

From these distributions, we estimated the true mean and the
squared coefficient of variation (CV2, defined as the variance over
the squared mean) of the interval distributions (Materials and meth-
ods). We chose CV2 for quantifying the noise in the interval distribu-
tion since, to a good approximation, this quantity reflects the level of
noise in the protein levels regardless of the actual shape of the tran-
scription interval distribution.68 Further, this variable equals 1 for
the interval distribution of a Poisson process (i.e. an exponential dis-
tribution), regardless of the mean rate. These results, along with the
amount of empirical data used, are shown in Table 1.

From Table 1, the mean interval decreases significantly with increas-
ingmedia richness, as expected from the increasedRNAp concentrations.
Meanwhile, the CV2 does not exhibit the same dependence on the media
richness, and remains slightly >1 in all conditions tested.

3.3. Decomposition of the in vivo kinetics

From the data in Table 1, we next recreate the Lineweaver–Burk plot in
Fig. 3 (white circles in Fig. 4), using the mean interval durations be-
tween RNA productions, as this quantity is an absolute measure of
the inverse rate of RNA production (this plot is called a τ-plot).

Previously, using in vitro techniques, it has only been possible to
extract from a τ-plot the mean duration of the open complex forma-
tion (the y-intercept of the plot, here denoted τCC), because the plot is
based on the steady-state assay which only measures the mean rate of
abortive transcription initiations. However, the distributions of time
intervals between RNA productions contain information about the
stochasticity of the process (i.e. the variability between intervals). As
such, it is possible to extract a more complete model of the process
of transcription. Namely, aside from the open complex formation,
as mentioned in Materials and methods, it is possible to extract infor-
mation on the closed complex and on an intermittent state prior to the
closed complex formation.

In particular, we consider the detailed model of transcription ini-
tiation presented in Materials and methods (Reactions (1) and (2)),

along with simplified models that can be considered if certain steps
of the more detailed model do not influence the distribution of inter-
vals. This model assumes that only one copy of the promoter is present
in each cell at any given time, since in all conditions, the bacteria di-
vided slowly, which suggests that they spent most lifetime with only
one chromosome. We then consider three simplified models. First, if
the time spent in the OFF state is very small, or if the system switches
between OFF and ON very rapidly when compared with the forward
reaction, then Reaction (2) will not affect the RNA production dynam-
ics. A sufficient condition for both of these situations is that kON >> k1.
The other two simplifications are two limits of the closed complex for-
mation, first considered in22: (i) k−1 >> k2, i.e. it is reversible (Limiting
Mechanism I), and (ii) k2 >> k−1, i.e. irreversible (LimitingMechanism
II). Limiting Mechanism I was found to be more likely in several
in vitro measurements of various promoters.22,23,26

While all three simplifications are consistent with a line on a τ-plot,
they produce significantly different distributions of intervals between
RNA production events. For example, a significant ON/OFF mechan-
ism will result in a more noisy distribution (a higher CV2).25 Similarly,
Limiting Mechanism I effectively eliminates one limiting step, which
also results in higher noise when compared with Limiting Mechanism
II (Supplementary Fig. S2).

We fit the full and simplified models of transcription initiation to
the observed dynamics of Plac/ara-1 from all media conditions (Materi-
als andmethods). We used the Bayesian Information Criterion70 (BIC)
to compare the fits. The BIC is a model selection criterion which bal-
ances goodness-of-fit with the number of parameters to determine
which model is most likely the ‘truth’. The difference between BIC va-
lues (ΔBIC) can be interpreted as evidence against the model with high-
er BIC, with a ΔBIC > 5 being interpreted as strong evidence.58 Results
are shown in Table 2. Since, for several of the models, the optimal fit
was for k�1

3 ¼ 0, we also considered models that do not include an-
other rate-limiting step after the open complex formation.

From Table 2, the initiation kinetics of Plac/ara-1 is best-fit by Limit-
ing Mechanism I (i.e. a reversible closed complex), with very high

Table 1.Statistics of themeasured distributions of intervals between

transcription events from lac/ara-1 promoters

Condition Number
of cells

Number
of intervals

Number
of censored
intervals

Inferred
interval
mean and

uncertainty (s)

Inferred
CV2

0.25× 196 371 323 1,899 ± 105 1.08
0.5× 302 1,027 605 1,553 ± 50 1.06
0.75× 146 620 345 1,205 ± 51 1.09
1× 206 1,202 573 1,005 ± 112 1.21

Shown are the condition, the number of cells (which is the cell count at the
start of the measurements), the numbers of whole and censored intervals
extracted, and finally the inferred mean (and its standard uncertainty) and
CV2 of the interval distribution.

Figure 4. τ-plot for Plac/ara-1, showing the mean interval between transcription

events in individual cells for each media condition (white circles), with their

standard uncertainties (vertical error bars) and the standard uncertainties of

the relative RNAp concentrations (horizontal error bars). Also shown is the

best-fit line (solid line), as determined by the intercept and slope obtained

from the best-fitting model (Table 3), with one standard uncertainty

estimated by Scheffé’s method69 combined with the Delta Method60 (grey

area). In addition, the figure shows the data from Fig. 3 (triangles), and the

best-fitting line (dashed line, see Materials and methods) with one standard

uncertainty estimated by Scheffé’s method69 (dotted black curves).
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certainty (ΔBIC of all other models >8). We also find evidence for a
significant ON/OFF mechanism. Though the time spent in each OFF
state is short (∼87 s), it will turn OFF, on average, ∼9.1 times before
committing to transcription in the 1× case (see Supplementary Mater-
ial). This results in an interval distribution which is only slightly more
noisy than what would be expected if the production process were
Poissonian (i.e. a CV2 of the interval distribution of 1; see the CV2 va-
lues in Table 1). Interestingly, this implies that the noise in transcrip-
tion of this promoter is representative of the behaviour of the majority
of promoters in E. coli.27 Finally, the steps after the commitment to
transcription are fast, indicating that abortive initiation events do
not play a significant role in the dynamics of RNA production by
Plac/ara-1. This model is depicted graphically in Fig. 5.

In addition, from Table 2, we find that τCC is 193 ± 49 s. Mean-
while, the slope of the line on the τ-plot, here denoted k�1

CC, is
788 ± 59 R·s (R is the polymerase concentration such that R = 1 is
the polymerase concentration in 1× media). The line given by these va-
lues is shown in Fig. 4 (solid line). As a side note, the uncertainties of
these estimates exaggerate the uncertainty of the inference, since the
estimates are highly correlated (correlation coefficient of −0.6). This
correlation is responsible for the hyperbolic shape of the confidence
bounds (grey region in Fig. 4).

We verified the slope of the solid line in Fig. 4 using the RT-PCR
measurements presented in Fig. 3, scaled to match the timescale of the
intervals (Materials and methods). The resulting line is shown in Fig. 4
(dashed line), and is in good agreement with both the line given by our
estimates of τCC and k�1

CC (solid line), and the inferred interval means
(white circles).

Lastly, we note that the BIC depends on the number of samples
used to calculate the likelihood. Thus, BIC values calculated assuming
that each censored interval is ‘one sample’ will over-penalize models
with more parameters, while removing them will under-penalize
them. Both sets of ΔBIC values are presented in Table 2 and, in our
case, both result in the same conclusion, and thus the distinction
does not affect the results for Plac/ara-1. If, for another promoter, this
turns out to be the case, additional measurements will be required
to distinguish between the models.

Our results are in agreement with previous measurements of the
kinetics of this and similar promoters. For example, a previous study re-
ported that, under full induction in LB media (1× media here), Plac/ara-1
expresses ∼4 RNA/h2 (i.e. 1 RNA every ∼900 s), while we inferred the
time between transcription events to be ∼980 s. Using the steady-state
assay, τCC was measured to be ∼330 s for Plac

71 (with or without
CRP-cAMP), while we obtained ∼193 s.

3.4. Determining the source of the intermittent inactive

state for Plac/ara-1

We identified the presence of an ON/OFF mechanism in the dynamics
of Plac/ara-1. It is worth noting that this ON/OFF phenomenon differs
from the one reported in refs 2 and 19 since, first, we only observe OFF
periods on the order of ∼87 s, while in ref. 2 the OFF periods reported
for Plac/ara-1were on the order of 37 min. In addition, both here and in
ref. 2, the promoter of interest is integrated in a single-copy plasmid,
and thus the OFF periods cannot be explained by the buildup of posi-
tive supercoiling, since the plasmid is not topologically constrained.19

We therefore hypothesized that the OFF periods observed here more
likely result from the intermittent formation of a DNA loop, due to
the transient binding of LacI, which exists in high concentration in
DH5α-PRO (∼3,000 copies vs. ∼20 in wild type63).

If LacI is responsible for the ON/OFF behaviour, then reducing the
concentration of IPTG should affect the ON/OFF dynamics, and notT
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change the dynamics following the closed complex formation.29

To test this prediction, and demonstrate the utility of the model-fitting
approach, besides considering the interval measurements in 1× in
Table 1, we also measured the interval distribution of Plac/ara-1 using
MS2d-GFP in the 1× media without induction by IPTG. From 130
cells, we extracted 57 intervals and 117 censored intervals between
transcription events. From these, we inferred a mean interval of 3,374
± 462 s, and a CV2 of 1.03. This mean is significantly greater than the
meanmeasured in the fully induced condition (1,005 ± 112 s), consist-
ent with the much stronger repression of the promoter by LacI in this
condition.

Given the wide difference in dynamics of RNA production be-
tween the induced and non-induced cases, we used the model fitting
procedure to determine which steps are significantly affected by
LacI. For this, we performed independent fits of a reduced model of
initiation to the induced and the non-induced conditions. This
model is observationally equivalent to the full model of initiation
(Reactions (1) and (2)) for a single value of R, and is presented in Re-
action (3). This reduced model is necessary since we do not have mea-
surements of the uninduced case at multiple values of Rwith which to
fit all parameters of the full model. The reduced model’s parameters
are denoted by λx, which are related to, but are not equal to the values
of kx. Their relationship is presented in Supplementary Table S1. The
fitting results are shown in Table 3 (labelled ‘Independent’). We also
considered joint models where parameters were fixed between condi-
tions, and used the BIC to select the most likely model.

The first three models with joint parameters test for whether or not
the parameters controlling the ON/OFF mechanism change with in-
duction strength. Consistent with this hypothesis, the models with
joint λ�1

OFF are strongly rejected (ΔBIC much higher than that of the In-
dependent model). Surprisingly, the model with only joint λ�1

ON was
also rejected, implying that the mean OFF times might also vary
with induction strength. Additional studies are needed to elucidate
why such OFF times depend on the induction strength.

Having established that λ�1
ON and λ�1

OFF differ between conditions,
we next assessed whether only these parameters differ. For that, we
fixed λ�1

1 and λ�1
2 , and verified that this model is the most parsimoni-

ous model (ΔBIC relative to the Independent model of−14.3).We con-
clude that only λ�1

ON and λ�1
OFF differ between conditions, confirming

the prediction that LacI is responsible for the ON/OFF mechanism af-
fecting the RNA production dynamics.

Finally, other models were considered, e.g. the hypothesis that λ�1
1 ,

λ�1
2 , and/or λ�1

ON do not differ between conditions. These models were
also strongly rejected in favour of the parsimonious model, and are not
shown for brevity.

3.5. Precision of the estimates

We define the precision of the estimates of τCC and k�1
CC as the ratio be-

tween the timescale of the intervals (i.e. themean interval in the condition
with greatest R) and the standard uncertainties of τ̂CC and k̂�1

CC, respect-
ively. Specifically, the precision of τ̂CC’s estimate is PCC ¼ Î1=σðτ̂CCÞ, and
the precision of k̂�1

CC’s estimate isPCC ¼ Î1=σðk̂�1
CCÞ. Given this, here, with

the volume of data in Table 1, we achieved PCC ¼ 20:7 and PCC = 17.0,
corresponding to errors of ∼5 and ∼6%, respectively.

In addition, we found that this precision is highly dependent on the
dynamic range of RNAp concentrations. For example, for a small dy-
namic range of 1.5 (our measurements in Fig. 2 have a range of ∼2.4),
the precisions PCC (in τ̂CC) and PCC(in k̂�1

CC) would have been reduced
to ∼11.2 and∼6.7, respectively. Losses in precision due to reduced dy-
namic ranges can, however, to some extent, be offset by collecting
more samples for the interval distributions (see estimation of precision
in Supplementary Material).

Figure 5. Best fitting model of transcription initiation (with ON/OFF mechanism and reversible close complex formation). The model parameters are specified in

black and estimated durations of the transcription initiation steps for 1× LB media are shown in grey.

Table 3. Fit parameters of the transcription initiation model in

Reaction (3) to the measured intervals in the 1× media with and

without induction by IPTG

Joint
parameters

Condition λ�1
ON (s) λ�1

OFF (s) λ1λ
�1
OFF λ�1

1 (s) λ�1
2 (s) ΔBIC

Independent IPTG+ 110 Fast 0.11 Fast 5 14.3
IPTG− 48 Fast 0.01 Fast Fast

λ�1
ON IPTG+ 4,444 Fast 11.50 Fast 964 120.3

IPTG− Fast ∞ Fast 2,919

λ�1
OFF IPTG+ 7 Fast ∞ Fast 964 152.9

IPTG− 320 1.86 Fast 2,919

λ�1
ON; λ�1

OFF IPTG+ 326 Fast ∞ Fast 964 145.7
IPTG− 1.94 Fast 2,918

λ�1
1 ; λ�1

2 IPTG+ 106 Fast 0.11 Fast Fast 0.0
IPTG− 48 Fast 0.01

The relationship between these parameters and the parameters in Table 2 are
discussed in the Materials and methods and Supplementary Material. Five
models are considered, differing in which parameters are assumed to be the
same between the two induction conditions. Parameters denoted ‘fast’ are too
fast to present on the timescale of seconds. As λ�1

OFF and λ�1
1 were found to be

fast in all models, the λ1λ�1
OFF ratio is also shown. ΔBIC values are given as the

difference of the model’s BIC from the BIC of the best-fitting model (the onewith
ΔBIC = 0). Models with lower ΔBIC are favoured over models with higher
ΔBIC.58
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4. Discussion

We established that, in E. coli, the concentration of free RNA poly-
merases differs significantly within a certain range of growth condi-
tions, and that the inverse of the target RNA production rate under
the control of Plac/ara-1 varies linearly with the inverse of the free
RNAp concentration (which are the conditions imposed in the
in vitromeasurements the open complex formation by steady state as-
says22,24,72). Thus, wewere able to apply a standard model-fitting pro-
cedure to fully characterize the in vivo kinetics of the rate-limiting
steps in transcription initiation of the Plac/ara-1 promoter from distribu-
tions of intervals between transcription events in cells with different
RNA polymerase concentrations. This revealed that this promoter
has two rate-limiting steps: a reversible closed complex formation
and a significant open complex formation. Further, it also intermit-
tently switches to a short-lived inactive state. Based on the inferred
timescale of this inactive state, we predicted that this state is the result
of the intermittent binding of the repressor LacI, which we verified by
measuring the interval distribution when the promoter is not induced
by IPTG. We believe that the complexity of this process is the reason
why it has not been reported before. Namely, previous studies only
considered either multiple rate-limiting steps,4,5,22,23,66 or an ON/
OFF process,2,17,19,73,74 while this promoter exhibits both.

We note that, provided that the promoter has a reversible closed
complex formation, the model fitting procedure proposed here allows
the duration and order of two steps following the closed complex to be
obtained (specifically, the ratio between k2 and k3 can be determined
from how the CV2 of the interval distribution changes with R; see Sup-
plementary Fig. S2). Here, this additional step was not found. How-
ever, we expect that, for other promoters, or in different conditions
(e.g. low temperatures72), this step may be significant. Meanwhile, if
Limiting Mechanism II is found to be the best-fitting model, the
order of the last two steps will remain ambiguous due to the lack of
reversibility.

Finally, it is worth noting that in previous works, we have not
found evidence for an ON/OFF mechanism for Plac/ara-1, due to the
low levels of noise detected in the time intervals between transcription
events.4,21,66 This can be explained by, first, we did not consider cen-
sored intervals, which contribute significantly to the increase of the tail
of the distribution of intervals.25 Second, the OFF period is quite
short, and thus its detection requires a large volume of data and a sen-
sitive inference methodology.25 Our results show that, by solving these
two issues (by applying the methods in refs 41 and 25), our method-
ology can identify and characterize many relevant steps in transcrip-
tion initiation, including those with lesser influence.

In the future, it would be of interest to extend themodel to consider
what occurs when more than one copy of a promoter is present in the
cell. We expect that variations in the promoter copy numbers would,
in that case, explain some of the variance of the data, instead of this
variance being solely determined by the ON/OFF mechanism and the
sequential steps.

We expect the methodology employed here to be applicable to pro-
moters, native or synthetic, whose changes in the inverse of the tran-
scription rate are linear with the inverse of the free RNAp
concentrations. Also, it should be applicable to promoters evolved
to interact with multiple transcription factors (TF), provided their
fast binding and unbinding (compared with competing events), as
they could be accounted for by tuning the rate constants of some of
the reactions of the model. Further, multiple slow TFs, including acti-
vators, can be accounted for by adding appropriate TF-bound states,
with differing production rates, in a similar manner to the ON/OFF

model. As such, the methodology should be applicable at a genome
wide scale. It should also be applicable to eukaryotes, provided suit-
able means to alter polymerase concentrations. Lastly, it should be
useful in detecting differences in transcription initiation kinetics of a
promoter subject to different intra- or extra-cellular conditions.
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process in live Escherichia coli” 
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Samuel M. D. Oliveira, Antti Häkkinen and Andre S. Ribeiro 

I. Growth Curves 

 

Supplementary Figure S1: Growth curves (OD600, measured with an Ultraspec 10 cell density meter) 

of cells in 1x and 0.25x media (circles) at 37 oC. DH5α-PRO cells were grown overnight in 1x media at 

30 oC with aeration of 250 rpm, and diluted into fresh 1x media to an initial OD600 of 0.05. Cells were 

incubated at 37 oC at 250 rpm until reaching the mid-log phase (~2 h), and re-diluted into the 

appropriate medium to an OD600 of 0.05. Their OD600 was measured every 10 minutes thereafter. At 

~30 min, the cells in 0.25x media adjusted their growth rate (before this, the measurements 

overlap). Thus, growth rates were measured by least-squares fits (lines) from the data from 30 min 

onward. The slopes of the fits correspond to doubling times of 34.4 min (1.00x) and 57.9 min (0.25x).  

II. Models of transcription initiation 

To evaluate the cumulative distribution function (CDF) of the distribution of time intervals between 

production events from the full model of transcription initiation for a given value of R, we first 

translate this model into an observationally equivalent model of the form in equation 3. For the full 

model, this translation is given in the first row of Supplementary Table S1. The translated model’s 

CDF can be evaluated using 1. This CDF, when there are n  steps after 
0S , is referred to here as 

ON/OFF nF 
. This distribution has a mean and variance of: 
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Supplementary Table S1: Relation between kinetic parameters from equations (1) and (2) of the 

main manuscript with the parameters of the model from equation (3), for a given value of R. Here, 
1
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1 2 ONd Rk k k , 

ordered such that OFF 0  . 

In the manuscript, several limiting cases of this model are considered. The first is that the ON/OFF 

mechanism is fast relative to initiation, i.e. ON 1k k . In this case, the model’s CDF simplifies to that 

of a hypoexponential distribution with three exponentials with rates 1 , 2  and 3 , which relate to 

the parameters of 0 as shown in the fourth row of Supplementary Table S1. The hypoexponential 

CDF with n  exponentials is referred to here as Hypo( )nF . 

Two further simplifications are considered, referred to in the manuscript as Limiting Mechanisms I 

and II. Both of these result in models with CDFs that are equivalent to either ON/OFF nF   or Hypo( )nF . The 

parameters of the CDFs of the models derived from these three simplifying assumptions are 

presented in Supplementary Table S1. The final model simplification considered in the manuscript is 

when 3k   , i.e. when there is no rate-limiting third step in initiation, which removes the step 

parameterized by 3k  from the model. 

The model of transcription initiation predicts the same linear change in the mean interval duration 

with 1 R , regardless of the model simplifications (Figure S2A). However, the different simplifications 

result in different distributions of intervals as a function of 1 R , which will differ in, e.g., noise 

(Figure S2B). 
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Supplementary Figure S2: Model prediction for (A) mean and (B) CV2 of intervals as a function of 1/R 

with assumptions 2 1k k  (dashed black line, 1

ON 1000k  , 1
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3 100k  ), and ON 1k k , 2 1k k  (grey lines, 1

1 200k  , 1

2 300k  , 1

3 100k  ). 

Note that in (A), all three lines overlap. Interval distributions for several parameter sets are shown in 

the insets of (B) (the axes of the insets are the same). 

III. Parameter Estimation 

Model parameter estimation was performed using a censored log-likelihood objective function as in 
1, which accounts for uncertainty in the measurement of R , and for the uncertainty in the interval 

durations that arises from the limited framerate of the measurements and from the limited 

observation time: 
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where  is the expectation over 1R , and the conditional log-likelihood for condition m  at relative 
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where  1; ,x RF θ  is the CDF of the model being fit (either ON/OFF nF   or Hypo( )nF ) with parameters 

translated as appropriate using Supplementary Table S1, θ  is the parameter vector, ,m it  are 

measured intervals in condition m , MT  is the time between frames, and ,m ic  are the right-censored 

intervals. 

The expectation of  1log ;mL Rθ  over R in equation (S3) accounts for the uncertainty in the 

measurement of R . This was performed with   1 1 2 1ˆ ˆ~ ,m mR R R   , which was approximated by 
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evaluating the conditional log likelihood at 21 equally-spaced points in the interval 

   1 1 1 1ˆ ˆ ˆ ˆ3 , 3m m m mR R R R      
 

. 

Fitting was performed using the ‘fminsearch’ function in Matlab, with multiple restarts, to ensure 

that a local minimum was not selected. Each restart was started randomly in the parameter 

subspace where the model’s mean interval at 1R   matched the corresponding measured mean 

interval. 

The Bayesian Information Criterion (BIC) was used to compare models. We selected it over other 

candidates, such as the Akaike Information Criterion (AIC), due to its consistency. That is, as the 

number of samples n , the probability that the BIC will select the true model (assuming it is 

among the candidate models) approaches 1, while the AIC will tend to over-fit the data2. We note, 

however, that in the case of all model comparisons in the manuscript, none of the conclusions are 

altered by utilizing the AIC over the BIC.  

The BIC is calculated as follows: 

 maxBIC 2log ( ) logL n  θ  

 

(S5)  

where maxθ  is the parameter set which maximizes log ( )L θ . 

IV. Number of transitions into the OFF state per RNA production event 

In this section, we estimate the number of times that, on average, a promoter will transit into the 

OFF state for each time it commits to transcription. This estimation is made for the best fitting 

model (see Table 2 in the main manuscript). 

For the best-fitting model (Limiting Mechanism I), the back-and-forward transitions between ONP

and cRP  states can be considered to be fast (since 1k >> 2k and 1k >> OFFk ). We can therefore apply 

the slow-scale SSA to merge these two states3. In this limit, the probabilities P( )ONP and P( )cP  of 

being in ONP  and cP states, respectively, are: 
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(S6)  

The propensity of changing from the merged state to oRP  is then   2P cP k   , while the propensity 

to move from the merged state to OFFP  equals  P ON OFFP k   . The probability of moving into cP  

instead of OFFP  is therefore given by: 
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(S7)  

Since each attempt at transcription is independent in the model, and has a constant probability of 

committing at each attempt, the number of times that the systems changes into the OFF state prior 

to committing to transcription follows a geometric distribution with a probability of success 

of /Pc OFF . The mean of this distribution is: 
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c OFF

c OFF




  (S8)  

Converting this in terms of model parameters (and given 1 1

1 2 1 OFF 0.11k k k k 

   from Table 2) one obtains: 
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V. Minimum samples required for a given precision 

To estimate the number of samples required to obtain a given precision in the estimates of 
CC
  and 

CC , consider the following alternate method of measuring these values if we could sample the 

uncensored interval distribution between transcription events.  

Let these measurements be at two RNAp concentrations ˆ
mR , where {1,2}m   such that 

1 2
ˆ ˆ 1D R R  . Let mI  be the population mean of the inter-transcription intervals in medium m , 

with corresponding standard deviation m , and that we have mn  samples of this distribution (we 

assume, without significant loss of generality, that 1 2n n n  ). For sufficient n , estimates of the 

population means ˆmI  will follow Normal distributions with  2 2ˆ
m mI n  . The least-squares fit of 

a line to these points will thus result in: 
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(S10)  
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(S11)  

Note that this method will overestimate the uncertainty in 
CC
̂  and 1

CCk̂   since these estimates are 

highly anti-correlated. We define the precision of the measurement as  1
ˆ
xP I   , where ˆx  is 

CC
̂  or 1

CCk̂  . Intuitively, this definition relates the uncertainty in the estimate with the mean 

timescale of the intervals. For example, if the intervals are on a timescale of ~500 s, to achieve a 

precision of 10 in 
CC
̂ , we must know it to within 50 s. Assuming that 2 2 2 2 2

1 1 2 2I I     , i.e. that 

the CV2 of the interval distribution is similar between the two RNAp concentrations, the number of 

samples required to achieve a given precisions in 
CC
̂  and 1

CCk̂   is: 
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(S12)  
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Note that the above assumes that there is no variance in the estimate of the RNAp concentration, 

and that all n  samples are uncensored. Equations (S12) and (S13) should therefore be considered as 

only a rough guide for the number of samples required. The number of samples required for a range 

of precisions and possible dynamic ranges in RNAp concentrations is shown in Supplementary Figure 

S3. 



 

Supplementary Figure S3: Number of samples required in two conditions to achieve a given 

precision in (A) 
CC
̂  and (B) 1

CCk̂  , with production interval measurements at only two RNAp 

concentrations with ratio D and assuming 2 1  . Lines are shown for values of D of 1.25, 1.5, 1.75, 2, 

2.5, 3, and 4 (from top to bottom).  

VI. Photo-toxicity measurements 

To assess the level of phototoxicity from the imaging procedure under the microscope, we took the 

measurements in the 1.00x case (Table 1, main manuscript), and estimated the cells’ doubling time 

under the microscope by counting the number of cells at the start and end of the two hour 

measurement period (first row of Table S2). In this case, cells were imaged by phase contrast every 5 

minutes, and confocal microscopy every minute for two hours. We then imaged two new 

populations of cells, but in the first, we only imaged the cells with phase contrast (i.e. no confocal, 

row 2 of Table S2), while in the second, only two images were taken in total, one at the start and one 

at the end (row 3 of Table S2). 

Phase Contrast Confocal Cells at start Cells at end Doubling Time 

5 min 1 min 206 468 52.8 min 

5 min Not used 399 962 49.8 min 

2 h Not used 480 1189 48.4 min 

 Supplementary Table S2: Phototoxicity under the microscope for different imaging intervals and 

channels. All measurements took 2 hours. The first two columns of the table show the intervals at 

which images were taken. The subsequent columns show the number of cells at the start and end of 

the measurements, obtained from single phase contrast images. Finally, it is shown the estimated 

doubling time of the cells, which was determined from the fold change. 

From Supplementary Table S2, the estimated doubling time while taking images with both channels 

is only 4.4 minutes longer than in the case with minimal imaging. Thus, while there is an observable 

effect on the doubling time, it is not expected to cause significant differences in the transcription 

initiation dynamics. In any case, any changes would affect all conditions similarly, and will not affect 

relative RNAp concentrations. Finally, we note that the effect from phase contrast imaging appears 

to be negligible. 
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VII. Cell-to-cell variability in RNAp concentrations 

 

 

Supplementary Figure S4: Confocal image of RL1314 cells expressing fluorescently-tagged RpoC in 1x 

media, one hour after being placed in the thermal imaging chamber at 37 oC. Contrast was enhanced 

for easier visualization. 

VIII. Number of promoter copies during the cell lifetime 

The model fitting procedure employed in the main text assumes that there is only one copy of the 

target promoter in a cell at all times. To determine to what extent this assumption is not true in our 

experimental system, we measured the fraction of time cells contain two chromosomes. Since the F-

plasmid replicates at the same time4 or shortly after5 the chromosome, this provides an upper bound 

for the fraction of time the cells spend with more than one promoter of interest (it is worth noting 

that, in our measurements, we did not observe cells with more than 2 nucleoids at any given point). 

For this, E. coli DH5α-PRO cells (see main text) were transformed with the pAB332 plasmid carrying 

the gene hupA-mcherry that encodes a fluorescent protein tag under the control of the hupA 

constitutive promoter6. This tagging protein, composed of a nucleoid-associated protein (HupA) 

fused with a red fluorescent protein (mCherry), can be used to assess the location and size of 

nucleoids in live cells7 (see Methods). 



Cells were diluted from overnight culture to an OD600 of 0.05 in fresh 1x media, supplemented with 

appropriate antibiotics, and kept at 37°C in a shaker at 250 rpm, until reaching an OD600 of 0.3. Cells 

were then placed in a thermal chamber (FCS2, Bioptechs, USA), set to 37°C, and imaged once every 

minute for 1 hour (the red signal was too weak to continue after 1 hour) using a Nikon Eclipse (Ti-E, 

Nikon) inverted microscope equipped with C2+ (Nikon) confocal laser-scanning system. To visualise 

HupA-mCherry-tagged nucleoids, we used a 543 nm HeNe laser (Melles-Griot) and an emission filter 

(HQ585/65, Nikon). Phase contrast images of cells were captured every 5 minutes by a CCD camera 

(DS-Fi2, Nikon). 

Cells were segmented from phase contrast images using CellAging8. Fluorescent nucleoids were 

segmented and quantified from confocal images as in 7,9. Of the cells that were born and divided 

during the time series (124 cells), we found that the mean fraction of time points in which cells had 

two nucleoids was 0.114 ± 0.010. 

Thus, we estimate the fraction of time spent with multiple target promoters to be at most 11.4 ± 

1.0% in 1x media. As this was the most nutrient-rich condition tested, other conditions should have 

even lower fractions5. 
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Abstract 

From in vivo single-cell, single-RNA measurements of the activation times and subsequent steady-

state active transcription kinetics of a single-copy Lac-ara-1 promoter in Escherichia coli, we 

characterize the intake kinetics of the inducer (IPTG) from the media, following temperature shifts. 

For this, for temperature shifts of various degrees, we obtain the distributions of transcription 

activation times as well as the distributions of intervals between consecutive RNA productions 

following activation in individual cells. We then propose a novel methodology that makes use of 

deconvolution techniques to extract the mean and the variability of the distribution of intake times. 

We find that cells, following shifts to low temperatures, have higher intake times, although, 

counter-intuitively, the cell-to-cell variability of these times is lower. We validate the results using 

a new methodology for direct estimation of mean intake times from measurements of activation 

times at various inducer concentrations. The results confirm that E. coli’s inducer intake times 

from the environment are significantly higher, following a shift to a sub-optimal temperature. 

Finally, we provide evidence that this is likely due to the emergence of additional rate-limiting 

steps in the intake process at low temperatures, explaining the reduced cell-to-cell variability in 

intake times. 

Introduction 

RNA and protein numbers differ between cells of monoclonal populations, due to the 

stochastic nature of the chemical reactions composing gene expression (‘intrinsic’ noise) 

[1,2] and the cell-to-cell variability in the numbers of the molecules involved (‘extrinsic’ 

noise) [3]. 

Besides these ‘constant’ sources of cell-to-cell variability, recent studies have shown 

that, following the appearance of an inducer of gene expression in the media, there is an 

additional transient cell-to-cell diversity in RNA and protein numbers of the target gene [4–

6], which cannot be explained by the intrinsic and extrinsic noise of active gene expression. 

This additional source can be strong enough and the transient long enough to affect the 

phenotypic diversity of cell lineages for generations [4–12]. 

The origin of this transient phenotypic diversity has been shown to be the noise in 

the intake time of the inducers, which causes the time for transcription to be activated 

(following the introduction of the inducers in the media) to differ widely between cells [5]. 

At the RNA numbers level, this transient diversity can be higher than the diversity caused 

by the intrinsic and extrinsic noise in active transcription for long periods of time [5].  

Similarly to noise in gene expression, noise in intake times has two sources. One is 

the stochasticity of the intake process, caused by the random nature of the chemical 

reactions and the membrane crossing processes [2,6]. The other is likely a non-negligible 

degree of cell-to-cell heterogeneity in the efficiency of the mechanisms involved in the 

intake of inducers [5]. This heterogeneity can be caused by, among other, cell-to-cell 

diversity in the number of transmembrane proteins involved in the active uptake of 



inducer/repressor molecules [5]. One example is the lactose permease (LacY), which, while 

being produced by an all-or-nothing system that minimizes cellular heterogeneity, it 

nevertheless exhibits significant cell-to-cell diversity in numbers, following the appearance 

of the inducer (e.g. TMG) in the media [13].  

As natural environmental conditions fluctuate and many genes in E. coli are only 

activated in specific conditions, cellular heterogeneity in gene expression activation times 

is expected to affect significantly the phenotypic diversity of cell populations.  

One environmental parameter that we expect to have a tangible impact on both the 

mean and variability of intake times of external inducers and repressors of gene expression 

is temperature. This assumption originates from the fact that temperature affects not only 

proteins functionality and numbers in cells [14], but also the physical properties of cell 

walls, periplasm and cytoplasm (e.g. the cytoplasm’s viscosity is temperature dependent 

[15]), and these variables are expected to affect the kinetics of intake of inducers from the 

environment.  

However, there is yet no direct experimental validation and, as many variables are 

involved, model-based predictions of the quantitative degree of changes with temperature 

in inducers intake times and subsequent transcription initiation times are unreliable. 

Here, we characterize quantitatively the changes in cell-to-cell variability in gene 

expression activation times of the Lac-ara-1 promoter and, more importantly, of the intake 

times of its inducer, Isopropyl β-D-1-thiogalactopyranoside (IPTG), caused by rapid 

physical changes following temperature shifts. 

For this, we use time-lapse microscopy measurements of RNA production at the 

single-cell, single-RNA level at various temperatures, along with several recently 

developed techniques [6,14,16], including a new strategy here proposed to dissect the 

kinetics of the intake process. Our results provide novel information for the understanding 

of the effects of temperature shifts of bacterial populations at the single-cell level. 

 

Methods 

Bacterial strains and plasmids 

 

We use E. coli strain DH5α-PRO, generously provided by I. Golding, University of Illinois, 

U.S.A. The genotype is deoR, endA1, gyrA96, hsdR17(rK- mK+), recA1, relA1, supE44, 

thi-1, Δ(lacZYA-argF)U169, Φ80δlacZΔM15, F-, λ-, PN25/tetR, PlacIq /lacI, SpR. The strain 

contains two genes, lacI and tetR, constitutively expressed under the control of Placi
q and 

PN25 promoters, respectively [17]. Relevantly, the native lac operon (lacZYA) is mutated, to 

prevent production of permease (lacY) and activation of the lactose metabolic system [18]. 

I.e., these cells lack the native positive feedback mechanism involving lactose [6,19]. 

 In addition to this strain, we also use E. coli JW0334 strain. The genotype is  F- (Δ 

(araD-araB)567 ΔlacY784 ΔlacZ4787(::rrnB-3) λ-rph-1 Δ(rhaD-rhaB)568 hsdR514) [18]. 



This strain also lacks the ability to produce lacY [18]). Here, we only make use of this strain 

to show that the changes in the target gene activation time with temperature are, 

qualitatively, only weakly strain dependent. Unless stated otherwise, measurements are 

made using DH5α-PRO cells. 

Both strains lack the ability to express lacY permease [18], which is responsible for 

a feedback response to the intake of IPTG, which would result in more complex, time-

dependent single-cell intake times, as they would not be solely determined by the induction 

level and temperature. 

Two constructs were added to DH5α-PRO cells: pROTET-K133 with PLtetO-1-

MS2d-GFP and pIG-BAC, a single-copy plasmid with PLac-ara-1-mRFP1-MS2d-96bs [20] 

(Figure 1). In the case of JW0334 cells, another reporter is used (PRHAM-MS2d-GFP), as 

these cells lack the ability to express TetR. 

 

 

Figure 1. Diagram of the target gene and its RNA tagging system, along with the intake system of 

inducers of the target gene: IPTG molecules (I) are added to the media and enter the cytoplasm by 

passing through two membrane layers, with a periplasmic space in between. When in the 

cytoplasm, they neutralize lacI repressors (R) by forming inducer-repressor complexes (RI). This 

allows PLac-ara-1 to express RNAs that include an array of 96 MS2d-binding sites. Meanwhile, 

MS2d-GFP expression is controlled by the PLtetO-1 promoter and anhydrotetracycline (aTc). Once 

produced, each target RNA is rapidly bound by multiple tagging MS2d-GFP proteins (G), and 

appears as a bright spot, significantly above background fluorescence, under the confocal 

microscope [6,20]. The tagging provides the RNA a long lifetime, with constant fluorescence, 

beyond our observation times [6]. 

Finally, it is noted that previous measurements [6] have shown that, provided full 

induction of the reporter gene (1 hour) prior to induction of the target gene, any newly 

produced target RNA molecule becomes ‘fully fluorescent’ (i.e. its RNA MS2-GFP binding 



sites become fully occupied) in less than 1 minute. These measurements were conducted in 

the same strain and media employed here. Given this, and since our microscopy time-lapse 

images are separated by 1 minute intervals, it is reasonable to assume that, once a new RNA 

appears, the full occupation of its MS2-GFP binding sites will take less time than the time 

between two consecutive images. This is agreement with measurements in [21]. 

 

Growth Conditions, Microscopy, Data Extraction on Transcription Activation Times 

 

Cells were grown overnight at 30 °C with aeration and shaking in lysogeny broth (LB) 

medium, supplemented with the appropriate antibiotics (35 μg/ml Kanamycin and 34 μg/ml 

Chloramphenicol). From the overnight cultures, cells were diluted into fresh LB medium, 

supplemented with antibiotics, to an optical density of OD600 ≈ 0.05, and allowed to grow 

at 37 °C, 250 rpm, until reaching an OD600 ≈ 0.3. Next, 100 ng.ml-1 anhydrotetracycline 

(aTc) was added to induce PLtetO-1 and produce MS2d-GFP, and 0.1% L-Arabinose to pre-

activate the target gene, controlled by PLac-ara-1 [17,20]. Afterwards, cells were centrifuged 

(8000 rpm, for 1 minute), and re-suspended in the remaining LB medium. From this, a few 

microliters of cells were taken and placed between a 3% agarose gel pad and a glass 

coverslip, before assembling the FCS2 imaging chamber (Bioptechs, see Figure S1). 

Finally, the chamber was heated to the desired temperature (24 °C, 30 °C, 37 °C and 41 °C) 

and placed under the microscope.  

We observed that, in the absence of IPTG, the cells produce the same (spurious) 

amount of RNA, with or without Arabinose (data not shown), in agreement with previous 

studies [20]. However, pre-induction by Arabinose much prior to induction by IPTG, 

enhances slightly the RNA production rate [16,18]. As such, we pre-induced cells with 

Arabinose [17,20] 45 minutes prior to introducing IPTG in the media. As such, we pre-

induced cells with Arabinose [17].  This implies that, by the time IPTG is added, the cells 

already contain a constant amount of Arabinose. This is ensured by the presence of 

Arabinose in the original media and by the constant replenishment of this media during 

microscopy measurements (Methods and Figure S1). Thus, we do not expect any potential 

feedback mechanism associated to the Arabinose intake process to influence the 

transcription activation times measured here, following the introduction of IPTG in the 

media. 

Cells were visualized by a 488 nm argon ion laser (Melles-Griot), and an emission 

filter (HQ514/30, Nikon) using a Nikon Eclipse (Ti-E, Nikon) inverted microscope with a 

100x Apo TIRF (1.49 NA, oil) objective. Fluorescence images were acquired by C2+ 

(Nikon), a point scanning confocal microscope system, and Highly Inclined and Laminated 

Optical sheet (HILO) microscopy, using an EMCCD camera (iXon3 897, Andor 

Technology). The laser shutter was open only during exposure time to minimize 

photobleaching. All images were acquired with NIS-Elements software (Nikon). While 

imaging, cells were supplied with a constant flow of fresh LB medium (pre-warmed to the 



same temperature as in the chamber), containing 1 mM of IPTG, 0.1% of L-Arabinose, and 

100 ng.ml-1 of aTc, using a peristaltic pump (Bioptechs), at a rate of 0.1 mL min-1. Images 

were taken once per minute for 2.5 hours. At each moment, we imaged 6 specific locations, 

to attain information on multiple lineages. 

After performing a semi-automated cell segmentation and lineage construction [22], 

the moment of production of the first RNA by each cell lineage was obtained by selecting 

cells absent of RNA spots at the start of the imaging period (i.e., without leaky expression), 

and then detecting by visual inspection (from fluorescence images) when the first 

production occurs in each branch of each lineage (Figure 2B), after introducing the 

inducers. 

Aside from visual inspection, fluorescent RNA spots and their intensities were also 

detected from the confocal images using the Gaussian surface-fitting algorithm proposed 

in [23] specifically for the purpose of detecting and quantifying MS2-GFP tagged RNAs. 

We found no significant difference between using this automatic algorithm and the visual 

inspection of the moment when the first RNA appears. 

 

Figure 2. Data collection: (A) Cells are placed under the microscope at t=0 min and continuously 

supplemented with fresh medium. The reporter system (MS2d-GFP) is induced in liquid culture at 

t = -45 min. At t = 0 min, with the cells already having sufficient MS2d-GFP proteins for accurate 

RNA detection, transcription of the target RNA for MS2d-GFP is induced. (B) Illustration of RNA 

production events (circles) in cell lineages. Shown are the time for the first RNAs to appear (t0) 

and the subsequent time intervals between consecutive RNA production events (Δt) in single cells. 

A dotted line indicates when the inducer of the target promoter is introduced. 

As a side note, we found the rate of leaky expression to be very weak (less than 1 

spot per ~20 cells prior to induction). 



Finally, we note that the data on time intervals between consecutive RNA 

productions in individual cells used here was entirely obtained from [15]. There, time lapse 

microscopy was conducted on cells of the same strain, with the same constructs, and under 

the same induction and growth conditions as the ones used here. 

 

Quantitative PCR for mean RNA quantification 

 

Quantitative PCR (qPCR) was used to attain the induction curve of PLac-ara-1 as a function 

of IPTG concentration at 37 °C (for details, see Supplementary Material). This induction 

curve is shown in Figure S2. Visibly, for 0.5 mM IPTG and above, PLac-ara-1 is fully induced. 

 

Estimation of intake times by deconvolution from empirical data on activation times and 

active transcription interval duration 

The empirical method of MS2-GFP tagging of RNA allows for new RNAs 

containing multiple MS2-GFP binding sites to be detected shortly after they are produced 

[20]. From this data, one can directly extract the time intervals between consecutive RNA 

productions in individual cells following induction, as well as the time for the first RNA to 

be produced once inducers are added in the media. However, one cannot directly measure 

the time that inducers take to enter the cells and activate the target promoter. To obtain this 

information, we next propose a methodology based on deconvolution techniques for 

extracting this information from the data. 

Given the model above, the mean time for the first RNA to appear in a cell following 

the addition of inducers in the media (here named t0) depends on the time for inducers to 

enter the cell (reactions (1-2) in Supplementary Material) [4,5], here denoted as tint. Also, 

it depends on the time for RNA production by an active promoter (which depends on the 

rate-limiting steps in transcription) [24,25], determined by reactions (3-6) in 

Supplementary Material, and here represented by ∆t since, under full induction, this time 

should equal the time between consecutive RNA productions in active promoters [5]. In 

particular, we have: 

0 intt t t   (1) 

 

As the inducer intake and the production of the first RNA are independent, 

consecutive processes, one can use deconvolution to obtain a distribution of values of tint 

(and, thus, mean and variance) from the data. Namely, for each temperature, one can 

deconvolve the probability density function (PDF) of the ∆t distribution from the PDF of 

the t0 distribution, provided that these two distributions are known [26].  

For this, we estimate the PDFs of ∆t and t0 distributions as their best-fitted gamma 

distributions to the respective empirical distributions. We choose the gamma distribution 

as a model, since such distributions allow the mean and the variance to change 

independently, thus facilitating the fitting to the empirical distribution [14].  



First, we use the gamma fits to the empirical ∆t distributions reported in a previous 

work [14]. This fit used censored intervals between productions of consecutive transcripts 

extracted from live-cell measurements. The censoring accounts for the effects of finite 

sampling rate (60 s sampling interval), and thus improves the accuracy of the parameter 

estimation [27]. It also accounts for right-censored intervals, to compensate for the 

truncation of the right tail of the ∆t distribution due to the finite cell division times. This 

fitting follows the maximum likelihood criteria [14]. 

Afterwards, to the measured t0 distributions, we apply the same censored fitting 

procedure, but without right-censoring (as t0 durations are not restricted by cell lifetime). 

Finally, we obtain the PDF of the tint distribution using the Fast Fourier Transform (FFT) 

deconvolution method, as proposed by Sheu and Ratcliff [26], except that we do not apply 

frequency filtering, since our estimated t0 and ∆t PDFs do not contain high-frequency noise.  

As outlined by Sheu and Ratcliff [26], the result of the deconvolution may contain negative 

values, even though the PDF, by definition, cannot have values below zero. Those negative 

values should be interpreted as resulting from the uncertainty in the best-fit gamma 

distributions to t0 and ∆t empirical data, which, in turn, originates from uncertainty in the 

t0 and ∆t measurements. However, even if the selected models do not precisely depict the 

PDFs of the corresponding processes, the results of the deconvolution are still interpretable, 

even though the uncertainty in the deconvolution product is undefined [26]. Here, to allow 

such interpretation, we set the negative values of the tint PDF to zero. 

To estimate the uncertainty of our findings, we constructed bootstrap 95% 

confidence intervals (CIs) for mean and noise of the tint distribution using non-parametric 

resampling of t0 and ∆t empirical data [28,29]. For this, for each temperature condition, we 

perform 2000 random resamples with replacement of the t0 and ∆t empirical distributions 

(using an original amount of samples), and obtain the tint PDF for each resampled pair of t0 

and ∆t distributions, which then allows obtaining the bootstrap distributions of the mean 

and CV2 (squared coefficient of variation) of the tint PDFs. We take 0.05 and 0.95 

percentiles of those distributions as the 95% CIs of the estimated mean and CV2 of the tint 

distribution. 

 

Estimation of intake times using Lineweaver-Burk equation 

 

Aside from the method above, we make use of the Lineweaver-Burk equation [30] to 

estimate mean intake times. For this, from (1) and the model of gene expression (reactions 

1-6 in Supplementary Material), note that as the amount of inducers in the media is 

increased, in a first stage, the inducers inside the cell will increase in number. As such, 

during this stage, both tint and ∆t will decrease with increasing inducer concentration. 

However, beyond a certain concentration of inducers in the media, further increases in this 

concentration will no longer lead to increases in the rate of RNA production (i.e. when the 

regime of full induction is reached), due to the rate-limiting steps in transcription and the 



finite number of RNA polymerases inside the cell (reaction 6 in Supplementary Material). 

This well-known fact is also demonstrated here by Figure S2, which shows that, beyond a 

certain inducer concentration (both in the microscopy measurements and in the qPCR 

measurements) the rate of RNA production no longer increases with further increases in 

the IPTG concentration in the media. 

Meanwhile, the time taken by the cell to intake inducers should continue to decrease 

with increases in inducer concentration in the media, even in the regime of full induction 

of transcription. Namely, in theory, for an infinite amount of inducers in the media, tint 

should equal zero. In this regime, following the introduction of infinite number of inducers 

in the media, the total mean time taken to produce the first RNA will be equal to the duration 

of subsequent intervals between consecutive RNA productions, i.e.: 

 

  0t IPTG t     (2) 
 

Thus, provided that the decrease in tint with the decrease of the inverse of the inducer 

concentration is linear (as assumed in our model reactions (1) and (2) in Supplementary 

Material), we can derive tint in the ‘control condition’ using the Lineweaver-Burk equation 

[30] as follows: 
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In equation (3), 
10t and 

1[IPTG] are, respectively, the mean t0 and the inducer 

concentration in the control condition. Meanwhile, 
20t  and 

2[IPTG] are the corresponding 

values in a condition where the inducer concentration differs from the control, and is above 

the minimum concentration to achieve maximum RNA production rate. 

Also, one can calculate 95% CIs for the obtained mean tint value based on the method 

of propagation of errors [31]. 

As a side note, this methodology is similar to the usage of  plots, from which, by 

fitting a line to the results of measurements of the transcription rate for increasing RNA 

polymerase concentrations one can extract the duration of the events following the initiation 

of the open complex formation [16,24,32]. 

 

Inference of the number and duration of the sequential steps in the intake process by fitting 
with a sum of exponential steps 

 

Our model of intake (reactions (1) and (2) in Supplementary Material) assumes 2 steps, 

each with a duration following an exponential distribution, in agreement with 

measurements at optimal temperatures [5,6]. However, as noted, our modelling strategy 

allows considering the possibility that, at different temperatures, additional or less steps 

may be rate-limiting.  



To determine the number of steps, one can perform fittings of d-steps models (each 

step following an exponential distribution) for increasing number of steps, until adding a 

step no longer improves the fitting. In such a model, as more steps are added and if the 

overall mean duration of the d-steps process is kept constant, the variance of the durations 

between events will decrease. The closer the d-exponential steps distribution is to a gamma 

distribution with a shape parameter set to d, the smaller will be its variance. 

The d-exponential step model was chosen due to how we model transcription, 

namely, as a set of consecutive of chemical reactions, each of which having a distribution 

of intervals between consecutive occurrences that is expected to follow an exponential 

distribution. Also, there is significant accumulated evidence that, in E. coli, this model fits 

very well, in a statistical sense, the empirical distributions of many promoters 

[5,6,16,33,34]. 

Here we perform this fitting to a d-steps model for each temperature condition. For 

this, by deconvolution of the empirical data, we obtain a distribution of the duration of the 

intake process. From it, we determine the maximum likelihood fit of a model with d 

statistically independent steps, whose time lengths each follow an exponential distribution, 

with possibly different rates. 

The likelihoods are compared using the likelihood ratio test, and the model with 

smallest d that cannot be rejected at the significance level 0.01 is selected in favor of a 

higher order model. 

Note that this method does not allow determining the order of the steps, only their 

number and durations. Note also that, while changing temperature may not alter the number 

of rate-limiting steps, it may instead (or also) cause them to no longer be well modeled by 

elementary reactions as our model assumes. In that case, we expect the fitting to d 

exponential steps to require a higher number of steps than if the steps were elementary. 

Results and Conclusions 

PLac-ara-1 transcription activation kinetics is temperature dependent 

 

We first studied, at the single cell level, the temperature dependence of the kinetics of 

transcription activation of PLac-ara-1 by IPTG. All empirical data were obtained from 

observing individual cells over time, using MS2d-GFP tagging of the target RNA, 

fluorescence microscopy, and image analysis techniques (Methods). 

For this, we placed E. coli cells (DH5α-PRO) with a single-copy plasmid coding for 

the RNA target for MS2d-GFP under the control of PLac-ara-1, and fully activated its 

expression by adding IPTG (1 mM) to the media (Figure S2) while already under 

microscope observation (Figure 2). The MS2d-GFP reporters, expressed by a multi-copy 

plasmid, were induced prior to this, so that cells were flooded with MS2d-GFP by the time 

PLac-ara-1 was induced (Methods). 



From the time series obtained (~2.5 hour long, with images taken every minute), for 

each temperature, we extracted t0, the time taken by individual cells to produce the first 

RNA, following the addition of inducers in the media (Methods). Note that only one such 

event per lineage is considered and that cells already with one or more RNAs at the start of 

the observation period were discarded. 

From these data, we calculated the mean, standard error, and CV2 of t0 values. 

Finally, we performed Kolmogorov-Smirnov (KS) tests to compare each distribution of t0 

values with the distribution at 37 °C (named ‘control’ condition). Results are shown in 

Table 1. 

 

Table 1. Measurements of t0 vs temperature. Shown are the number of measurements (Nt0
), 

mean (𝜇t0
) standard error (SE) and CV2 of the distribution of t0 values (CVt0

2 ). The table 

also shows the p-value from the KS tests comparing the t0 distributions at each temperature, 

with the distribution at 37 ˚C (control). For p-values smaller than 0.01, the null hypothesis 

that the two sets of data are from the same distribution can be rejected. 

 

From the data in Table 1, we find that for temperatures lower than 37 °C, the 

activation time t0 differs significantly from the control (in a statistically sense), with its 

mean (𝜇t0
) being higher and its CVt0

2  (surprisingly) being lower for lower temperatures. 

Qualitatively similar results were obtained (Table S1) using the E. coli JW0334 

strain (see section ‘Bacterial strains and plasmids’). 

 

Cell-to-cell variability of tint decreases with decreasing temperature 

 

Next, we investigate how the time for inducers to enter the cell, tint, changes with 

temperature. For this, besides the data above, we make use of the data from [14], which 

consists of empirical distributions of intervals between consecutive RNA productions by 

active promoters in individual cells (Δt), under the same temperature conditions as above. 

These data therefore informs on the kinetics of active transcription (i.e. is not affected by 

intake times). 

As mentioned in Methods, in accordance to our model (reactions 1-6 in 

Supplementary Material) and equation 1, the time for the production of the first RNA in 

each cell, following the introduction of inducers in the media (t0), should consist of the time 

for the intake of the inducer by the cell (tint) and the time taken by the active promoter to 

produce the first RNA (∆t). As these processes are consecutive and independent, it should 

T (˚C) Nt0
 𝜇t0

± SE (s) CVt0
2  KS-test for t0 values vs 37 ˚C (p-value) 

24 93 2743 ± 102 0.13 < 0.01 

30 162 3020 ± 119 0.25 < 0.01 

37 60 2109 ± 215 0.63 - 

41 93 2379 ± 144 0.34 0.19 



be possible to obtain the time-length for intake of the inducers (tint) by deconvolving Δt 

from t0. 

For this, we performed model fitting with censoring to the data from live-cell 

measurements of t0 (Table 1) and used the model fitting of empirical Δt values from [14]. 

In Figure 3, we show the empirical distribution and the best gamma fits of t0.  

 

Figure 3. Empirical distribution of t0 (histogram), along with the best gamma fit to t0 

(dashed line) and the deconvolved tint (solid line), as function of temperature.  

 

Next, we obtained the tint distribution for each temperature condition from the 

deconvolution of Δt from t0 (Methods). Results for the mean and CV2 values of the 

distributions of tint obtained from this deconvolution are shown in Table 2, along with the 

95% CI. It is noted that the values at 37 °C are in agreement with previously reported 

measurements [5,6]. 

Meanwhile, the deconvolved distributions are shown in Figure 3. From these, we 

find a clear change in the shape of the tint distribution as temperature is lowered. 

 

Table 2. Mean and CV2 of the deconvolved tint, along with the 95% CI for each temperature 
condition. 

 

T (˚C) 𝜇t𝑖𝑛𝑡̂  (s) 95% CI of 𝜇t𝑖𝑛𝑡̂  (s) CVt𝑖𝑛𝑡̂
2  95% CI of CVt𝑖𝑛𝑡̂

2  

24 1548 [1316, 1799] 0.10 [0.06, 0.18] 

30 1369 [1113, 1671] 0.32 [0.20, 0.48] 

37 986 [726, 1329] 0.52 [0.28, 0.95] 

41 1083 [807, 1402] 0.37 [0.23, 0.63] 



From Table 2, we find that the mean duration of the intake process, 𝜇t𝑖𝑛𝑡̂
, is the 

lowest while the variability, CVt𝑖𝑛𝑡̂

2 , is the highest at 37 °C. Meanwhile, at the lowest 

temperature tested (24 °C) the opposite occurs (𝜇t𝑖𝑛𝑡̂
 is the highest and CVt𝑖𝑛𝑡̂

2  is the lowest). 

Also, from the values of t0 (Table 1) and tint (Table 2), we find that the dynamics of 

intake plays a major role in the dynamics of transcription activation in all temperature 

conditions, both regarding the mean duration of activation and its cell-to-cell variability. 

Thus, it is not a surprise that tint behaves similarly to t0 with changes in temperature. 

Finally, note that the fact that noise is reduced with decreasing temperature suggests 

that the process becomes more sub-Poissonian, which could occur, e.g., if the number of 

the rate-limiting steps in the intake process increases with decreasing temperature. 

As a side note, we also conducted similar experiments in the absence of IPTG, so as 

to estimate the level of toxicity due to induction by 1 mM IPTG. We found no difference 

in cell growth rate between the two conditions, and thus conclude that the levels of toxicity 

are not significant. 

 

Validation of the inferred mean tint using the Lineweaver-Burk equation 

 

It is possible to empirically validate the mean value of the deconvolved tint using the 

Lineweaver-Burk equation (Methods). For this, from individual cells at 24 °C, 37 °C and 

41 °C, we measured the time between the moment of induction and the moment when the 

first RNA is produced for IPTG concentrations of 1 mM and of 0.5 mM. Note that both of 

these concentrations suffice to reach maximum induction in cells under the microscope (as 

shown in Figure S2). Because of this, ∆t does not differ between the two conditions, and 

only affects tint. From the measurements of t0 in these two induction levels at a given 

temperature, using the Lineweaver-Burk equation, one can extrapolate the value of t0 for 

infinite inducer concentration, which allows estimating the mean intake time at that 

temperature (Table 3). 

 

Table 3. Mean tint (𝜇t𝑖𝑛𝑡
) obtained from the Lineweaver-Burk equation and 95% CI of 𝜇t𝑖𝑛𝑡

 

for various temperatures.  

 

From Table 3, we find that, in accordance with the results of deconvolution (Table 

2), the mean tint is highest at 24 °C, and is similar at 37 °C and 41 °C, being slightly smaller 

at 37 °C. 

T (˚C) 𝜇t𝑖𝑛𝑡
 (s) 95% CI of 𝜇t𝑖𝑛𝑡

 (s) 

24 2434 [1949, 2918] 

37 1322 [842, 1801] 

41 1459 [1113, 1804] 



Quantitatively, we find that these values are ~ 35% larger (for 37 °C and 41 °C) and 

~50% for 24 °C than those in Table 2. This is expected, as the deconvolution method is 

known to underestimate the peak value of the PDF [26].  

Finally, we note that the value at 37 °C is also in clear agreement with a previous 

estimation of intake times at this temperature [6]. 

 

Number and duration of the rate-limiting steps of the intake process differs with 
temperature  

 

To investigate the hypothesis that temperature affects the number and duration of the rate-

limiting steps of the intake process, next, from the deconvolved tint distributions of each 

temperature condition, we estimated the number and duration of these steps in maximum 

likelihood sense (Methods). 

For this, we generalize the model of intake depicted by reactions (1) and (2) in 

Supplementary Material to a d-steps model, each exponentially distributed in duration, so 

that the number and duration of the rate-limiting steps are allowed to differ between the 

temperature conditions. 

Results of this estimation are shown in Table 4, where we present the number and 

duration of the steps of the best fit model, along with the log-likelihood values. Meanwhile, 

in Table S2, we show the results for each condition when assuming specifically 1, 2, 3, and 

4 steps, along with the p-values of the tests comparing pairs of models that are used to select 

the best model. Finally, in Figure 4 we show the best fit to the deconvolved tint for each 

condition. 

Table 4. Rate-limiting steps in the intake process determined by maximum likelihood estimation. 

Shown are the number of steps, the log-likelihood, the durations of the steps of the inferred models 

for each condition, and the CV2 of the best fit. We fit the models to 105 random samples from the 

deconvolved tint distribution. Note that there is no implied temporal order of the steps. 

 

T (˚C) No. Steps Steps Durations Log-likelihood CVt𝑖𝑛𝑡̂
2  

24 ≥4 (387, 387, 387, 386) -774461 0.25 

30 3 (457, 457, 457) -801201 0.33 

37 2 (667, 319) -783576 0.56 

41 3 (532, 532, 20) -783350 0.48 



 

Figure 4. Deconvolved tint distributions (solid line) and their best-fit d-steps model (dashed line). 

Importantly, this result is in agreement with previous studies using data from cells at 37 °C 

[5]. 

 

From Tables 4 and S1, for all conditions, the test rejects the 1-step model in favor 

of a higher order model. This is expected, given the existence of the two membranes in the 

cell walls of E. coli cells and the time that inducers are expected to take to cross the 

periplasm in between [6]. 

Also, interestingly, the 2-steps model is the preferred one for cells at 37 °C and 41 

°C (the step with a 20 s duration for the 41 °C condition can be disregarded, as the 

microscopy images are separated by 60 s intervals). 

Meanwhile, at lower temperatures, higher order models (3 or more steps) are 

preferred, indicating that other steps become rate-limiting (in agreement with the 

deconvolution results), and/or that the steps duration may no longer follow an exponential 

distribution.  

In this regard, we interpret the fact that a 4-steps model did not suffice to model the 

24 °C condition (see Figure 4) as evidence for a significant change in the kinetics of intake 

with temperature, which renders the multi-step, exponentially distributed model incapable 

of fully capturing the dynamics. We hypothesize that this may be the consequence of 

increased viscosity of the cytoplasm and periplasm [14], along with changes in the physical 

properties and functionality of the intake ‘machinery’ in the cell walls. 



Note that the CV2 values of the best fits for 30 °C, 37 °C and 41 °C match the 

estimated values of the corresponding tint distributions deconvolved from the fits to the 

empirical data. While the best fit in 24 °C condition has higher CV2 than the deconvolved 

tint (which is expected from the fact that the 4-steps model did not suffice to model the 24 

°C condition), the trend in CV2 of the deconvolved distributions and of their best fits is the 

same. 

Finally, note that, in several cases, the time scales of the steps are identical. This 

may be due to an unknown artefact of the inference method or be representative of the real 

kinetics of intake of this inducer.  

Discussion 

In this work, we studied the single-cell dynamics of intake of IPTG, an inducer of the 

promoter PLac-ara-1, as a function of temperature. Rather than focusing on biological cellular 

adaptations, we focused solely on rapid physical changes due to temperature shifts in the 

process of inducer intake and consequent transcription kinetics. 

For this, we first measured in vivo the time taken by individual cells to produce the 

first RNA, following the start of induction. From this, and previously collected data on the 

dynamics of RNA production by PLac-ara-1 [14], we applied two novel, independent methods 

to obtain the single-cell intake kinetics of the inducers, for each temperature condition. 

These methods’ results were consistent with one another. 

From this, first, we established that the response of the distribution of intake times 

of individual cells to temperature changes remains similar to that of the distribution of 

transcription activation times as temperature is changed, much due to the fact that most of 

the activation time is spent in the intake process in all conditions. Interestingly, the mean 

value of these distributions increases while their variability decreases for decreasing 

temperatures.  

Since the intake process is bound to consist of multiple consecutive steps (in the 

case of IPTG, it was previously shown to be well modeled by a 2-step process for cells at 

37 °C [5,6], we hypothesize that the decrease in variability could be the result of the 

emergence of additional rate-limiting steps in this process with decreasing temperature. The 

results of the maximum likelihood estimation tests support this view.  

Further, they suggest that, at the lowest temperature condition tested here, the 

process is, from a dynamical point of view, ‘too complex’ to be well fitted by a sum of a 

small number (less than 5) of exponential steps. We hypothesize that this is clear evidence 

that the duration of one of the steps of the intake process becomes non-exponential-like at 

low temperatures. There are several potential causes for this (and perhaps multiple causes), 

and they are likely not accounted by our model (else, the increase in number of exponential 

steps would have allowed to fit the data well). We expect these potentials causes to range 

from malfunctioning of the porins in the membrane responsible for the diffusive intake of 



the inducers, increased viscosity of the cytoplasm and periplasm, alteration of the physical 

properties of the outer and inner membranes, etc. 

It is worth noting that the application of the Lineweaver-Burk equation to extract the 

mean value of the intake times is a methodology that has not been previously used, but we 

expect it to be of use in future works as well. It requires measuring transcription activation 

times for various inducer concentrations (at least 2) above the minimum concentration 

required for maximum induction. It is limited by the fact that the speed of intake is assumed 

to change linearly with the inverse of the inducer concentration, which may not always be 

the case. However, we expect this to be the case within certain ranges of inducer 

concentrations for simpler intake (mostly diffusion-based), mechanisms. Thus, it should be 

applicable to the study of a wide range of cellular intake mechanisms. 

Overall, we conclude that different environmental conditions cause significant 

changes in the single-cell distributions of intake times of transcription inducers, which is 

expected to have a significant effect on the degree of heterogeneity in cell populations and 

cell lineages, due to the longevity of the transients during which this phenomenon has a 

strong effect in RNA numbers. 

In the future, one important aspect that requires further research is the cause for the 

reduced cell-to-cell diversity in response times with decreasing temperatures, which we 

believe to be due to the emergence of rate-limiting steps in the intake process. Which steps 

and how they emerge are open questions, whose answers will help better understanding the 

robustness of the intake systems of E. coli. 
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1. Supplementary Methods  
 

Quantification of target gene activity by qPCR and microscopy 

Cells with the plasmid carrying the target gene (pIG-BAC-Plac-ara-1-mRFP1-96xMS2) were grown 

overnight at 30 °C with aeration and shaking in lysogeny broth (LB) medium, supplemented with 

the appropriate antibiotics (35 μg/ml Kanamycin and 34 μg/ml Chloramphenicol). From the 

overnight cultures, cells were diluted into fresh LB medium, supplemented with antibiotics, to an 

optical density of OD600 ≈ 0.05, and allowed to grow at 37 °C, 250 rpm, until reaching an OD600 

≈ 0.3. 

Next, qPCR was performed to analyze the fold change in mRNA production with induction of 

the target gene. From the culture described above, cells were then grown in LB media, at 37 ºC. 

To obtain the induction curve of this promoter, we first pre-induced with L-Arabinose (0.1%). 

Next, we induced with different concentrations of IPTG (0, 0.05, 0.1, 0.25, 0.5 and 1 mM). After 

collecting the cells by centrifugation at 8000 rpm for 5 minutes, twice the cell culture volume of 

RNA protect reagent (Qiagen) was added to the reaction tube, following the addition of Tris 

EDTA Lysozyme (15mg/ml) buffer (pH 8.0) for enzymatic lysis. Total RNA was isolated using 

RNeasy kit (Qiagen), according to the manufacturer instructions. Samples with total isolated 

RNA were treated with DNase for residual DNA removal. The A260/A280nm ratio of the 

isolated RNA samples was assessed using a Nanovue plus spectrophotometer (GE Healthcare) 

with the value obtained (2.0-2.1) indicating a highly purified RNA. Additionally, the resulting 

RNA yield was used to normalize the RNA concentration in the samples with varying IPTG 

concentrations. Following that, iSCRIPT reverse transcription super mix (Biorad) was added for 

cDNA synthesis. Next, the cDNA samples were mixed with the qPCR master mix, containing iQ 

SYBR Green supermix (Biorad), with specific primers for the target and reference genes. The 
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qPCR reaction was carried out in technical triplicates with a total reaction volume of 20 µL. To 

amplify the target gene mRPF1 and reference gene 16SrRNA, we used the following primers, 

respectively: i) forward 5' TACGACGCC GAGGTCAAG 3' and reverse 5' 

TTGTGGGAGGTGATGTCCA 3', and ii) forward: 5' CGTCAG CTCGTGTTGTGAA 3' and 

reverse: 5' GGACCGCTGGCAA CAAAG 3'. The qPCR experiments were performed using a 

MiniOpticon Real time PCR system (Biorad). The following thermal cycling protocol was used: 

40 cycles at 95 ºC for 10 s, 52 ºC for 30 s, and 72 ºC for 30 s. No-RT and No-Template controls 

were used to crosscheck non-specific signals and contamination, and the efficiency of the PCR 

reactions were found to be greater than 95%. The data from the CFX ManagerTM software was 

then used to calculate the fold change in mRNA production and its standard error [1], which are 

presented in Figure S2. 

Meanwhile, microscopy measurements were conducted as described in Methods (section 

“Growth Conditions, Microscopy, Data Extraction on Transcription Activation Times”).  

We note two main differences between the qPCR and the microscopy measurements. First, in the 

qPCR measurements, the report system is not activated, since it is not required to obtain the 

measurements and since this does not cause significant differences in target RNA production 

rates (data not shown). Second, in the qPCR measurements, the activation of the target gene is 

performed in liquid. In general, this results in higher absolute expression levels than if the 

induction is performed under the microscope. However, this does not constitute a problem as it 

does not alter the inducer concentration at which maximum induction is reached (Figure S2). 

 

FCS2 imaging system 
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Supplementary Figure S1. (A) Schematic illustration of the CFCS2 microfluidics and the 

temperature control system for cell cultures while under microscope observation. The CFCS2 

chamber is mounted on the stage of an inverted microscope. This device is comprised of two 

independent fluidic systems. One is a thermo-chiller device (not shown), which is connected to 

two inlets and two outlets of the CFCS2 chamber. This device controls the temperature of the 

system (i.e. of the metal chamber and the optical cavity, where cells are placed) through the flow 

of heat/chilled fluidics, whose temperature can range from 5 ºC to 50 ºC ± 0.2 ºC. The second 
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device, a micro-perfusion device (not shown), is connected to one inlet and one outlet of the 

CFCS2. It constantly provides cells with fresh media and chemicals required for cell growth. (B) 

Illustrative front cut view of the optical cavity of the cooled FCS2 adapter (CFCS2). The CFCS2 

is a modified version of the FCS2 system, in that it has an additional, independent tubing system 

to facilitate the circulation of a heat/chilled fluid, that increases/reduces temperature of the metal 

base and of the optical cavity of the chamber. (C) Schematic top view of the micro-aqueduct 

slide, which is placed inside the optical cavity. The slide allows laminar flow of fluids, when a 

uniform and rapid exchange of media is required across the cell population. Images shown in (B) 

and (C) are adapted from Bioptechs Inc. (http://www.bioptechs.com). 

 

Model of Inducer Intake and Active Transcription 

 

We assume the following models of transcription activation and active transcription [2]. 

First, regarding activation, when an inducer is added to the media, the gene is only 

activated after a multi-step process that includes events such as the entry and diffusion of 

inducers in the periplasm and then cytoplasm, binding of an inducer to a transcription 

factor repressing gene activity, etc. These events and their kinetics differ with the 

induction and repression systems of the gene [3, 4]. 

Relevantly, as mentioned, the strain used here lacks the ability to produce LacY 

[5]. As such, we expect the intake process of inducers (IPTG) to be purely diffusive-like. 

Also, as E. coli is gram-negative, the cell walls have an outer and inner membranes, with 

a periplasmic space in between. Thus, the activation process is expected to have at least 

two, consecutive rate-limiting steps: entering of inducers into the periplasm, followed by 

entering into the cytoplasm. In agreement, previous studies of the intake of IPTG at 

optimal temperatures (37 ºC) [2] have shown that the activation process of our target 

promoter, PLac-ara-1, in cells lacking LacY as those used here [5 ], is well modelled by a 2-

step stochastic process of the form [29]:  

1I I
Int

env peri  (1) 

2I I
Int

peri   (2) 

Reaction (1) represents the entrance of an inducer molecule (I) into the periplasm, 

while reaction (2) models the passage of that inducer from the periplasm into the 

cytoplasm, where it can activate the target gene, e.g. by interacting with repressor 

molecules. In general, additional rate-limiting steps could, in theory, be modelled by a 

sequence of d-steps with exponential duration: I1…Id. This is particularly important 

when selecting a strategy to decompose the rate-limiting steps from the empirical data. 

Meanwhile, transcription activation is modeled as follows: 

Rep I Rep.I
act

inact

k

k

   (3) 

P I P  + Rep.Iactk

OFF ON   (4) 
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P P  + Rep
on

off

k

OFF ON
k

  (5) 

 

In (3), an inducer (I) binds to the repressor (Rep), creating a complex (Rep.I) that 

cannot repress the promoter (see reactions (5)). In our case, the repressor are LacI 

tetramers, and IPTG, the inducer, acts by binding to these tetramers, greatly reducing their 

binding affinity to the promoter [6]. We assume that this binding reaction is very weakly 

reversible. Also, the reactions necessary to form LacI tetramers are not explicitly 

considered since most LacI molecules in the cell are present in the form of tetramers.  

In reactions (4), again an inducer binds to a repressor, but the repressor is bound to 

the promoter, which frees the promoter. We note that, for such to occur, the LacI tetramer 

must unbind from both DNA binding sites [6]. 

Reaction (5) allows for the repression of the promoter by free repressors and for 

the possibility of a repressor unbinding the promoter, without direct intervention of 

inducers. 

Finally, active transcription by a free promoter is modeled as a multi-step process 

[7-11]: 

 

 

In (6), R is the RNA polymerase. Once bound to the promoter, it forms a closed 

complex (RPcc), which is followed by the open complex (RPoc) formation, elongation (not 

rate-limiting, and thus not represented), and, finally, RNA production and RNA 

polymerase release (also not rate-limiting, and thus having an ‘infinite’ rate,). 

It is of importance to note that, while not represented, the steps in (6) are all 

considered to be reversible (except the open complex formation, which, once initiated, is  

nearly irreversible [9]. I.e., the reactions in (6) are not to be interpreted as elementary 

transitions. Instead, they represent effective rates of the rate-limiting steps in 

transcription, thus defining the promoter strength [11]. 

 

2. Supplementary Results 
 

2.1 Induction curve at 37 ºC 

cc ocR+P RP RP P R+RNAcc ock k

ON ON

     (6) 
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Supplementary Figure S2. Induction curve of PLac/ara-1 in cells at 37 ºC as obtained by 

microscopy (A) and qPCR (B). In the case of microscopy, from the single cell measurements, we 

calculated the mean and standard uncertainty from the distribution of RNA numbers produced in 

each cell during 1 hour following induction. In the case of qPCR, the mean RNA fold change 

and its standard uncertainty in each condition were extracted from 3 technical replicates. In both 

(A) and (B), values relative to the 1 mM induction condition were calculated in each condition 

using the Delta Method [12]. Also in both, measurements were conducted after induction of the 

target gene (IPTG added 1 hour prior to the measurements and 0.1% of L-Arabinose added 1 

hour and 45 minutes prior to the measurements, see Methods). 

 

2.2 Measurements of t0 vs temperature for E. coli JW0334 strain 

 

 

Supplementary Table S1. Measurements of t0 vs temperature for E. coli JW0334 strain. 

Shown are the number of measurements (Nt0
), mean (𝜇t0

) standard error (SE) and CV2 of 

the distribution of t0 values (CVt0

2 ). The table also shows the p-value from the KS tests 

comparing the t0 distributions at each temperature, with the distribution at 37 ˚C (control). 

For p-values smaller than 0.01, the null hypothesis that the two sets of data are from the 

same distribution can be rejected. 

T (˚C) Nt0
 𝜇t0

± SE (s) CVt0

2  KS-test for t0 values vs 37 ˚C (p-value) 

24 76 1939 ± 99 0.20 < 0.01 

30 64 1725 ± 108 0.25 < 0.01 

37 97 1089 ± 67 0.37 - 

41 106 1729 ± 86 0.26 < 0.01 
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2.3 Maximum log-likelihood fit to the deconvolved distributions of intake times 

24 ˚C    

d Log-likelihood Durations p-values (d1 = d0 + 1) 

1 -834550 (1549) 0.00 

2 -801008 (775, 775) 0.00 

3 -784454 (517 , 517,  516) 0.00 

4 -774461 (388 , 388, 388,  387) - 

30 ˚C    

d Log-likelihood Durations p-values  (d1 = d0 + 1) 

1 -822278 (1370) 0.00 

2 -803246 (685, 685) 0.00 

3 -801201 (457, 457, 457) 1.00 

4 -801204 (458, 456, 456, 0) - 

37 ˚C    

d Log-likelihood Durations p-values  (d1 = d0 + 1) 

1 -789385 (986) 0.00 

2 -783576 (667, 319) 1.00 

3 -783576 (667, 319, 0) 1.00 

4 -783576 (667, 319, 0, 0) - 

41 ˚C    

d Log-likelihood Durations p-values  (d1 = d0 + 1) 

1 -798760 (1083) 0.00 

2 -783444 (542, 542) 0.00 

3 -783350 (532, 532, 20) 1.00 

4 -783350 (532, 532, 20, 0) - 

 

Supplementary Table S2. Log-likelihood and durations of the steps of the inferred models with 

d-steps, for each temperature condition. The table shows, first, the number of steps (d) assumed, 

followed by the log-likehood, and the duration of the steps (the order of these steps cannot be 

determined by this method). The last column shows the p-values of the likelihood-ratio tests 

between pairs of models for each condition. The null model is the d0 = [1:3] step model, while 

the alternative model is the d1 = d0 + 1 step model. 
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A B S T R A C T

Genetic circuits change the status quo of cellular processes when their protein numbers cross thresholds. We
investigate the regulation of RNA and protein threshold crossing propensities in Escherichia coli. From in vivo
single RNA time-lapse microscopy data from multiple promoters, mutants, induction schemes and media, we
study the asymmetry and tailedness (quantified by the skewness and kurtosis, respectively) of the distributions of
time intervals between transcription events. We find that higher thresholds can be reached by increasing the
skewness and kurtosis, which is shown to be achievable without affecting mean and coefficient of variation, by
regulating the rate-limiting steps in transcription initiation. Also, they propagate to the skewness and kurtosis of
the distributions of protein expression levels in cell populations. The results suggest that the asymmetry and
tailedness of RNA and protein numbers in cell populations, by controlling the propensity for threshold crossing,
and due to being sequence dependent and subject to regulation, may be key regulatory variables of decision-
making processes in E. coli.

1. Introduction

The gene regulatory networks of bacteria, such as Escherichia coli,
include network motifs [1,2]. Some of these are responsible for deci-
sion-making processes that assist cells in adapting to environmental
changes [3,4]. Significant behavioural changes in these motifs usually
occur when the numbers of one or more of the component proteins
cross thresholds [3]. The underlying mechanisms that define the pro-
pensity for the protein numbers of a given gene to cross a specific
threshold are not yet fully understood.

In E. coli, it is common for the protein numbers to follow the cor-
responding RNA numbers [5,6]. These are determined by the rates of
RNA production and degradation. Interestingly, RNA degradation in E.
coli appears to be largely independent from the RNA sequence, abun-
dance and metabolic function [7–9], suggesting that little regulation
occurs at this stage. Meanwhile, various regulatory mechanisms of
transcription have been identified, which usually act at the stage of
initiation, suggesting that control over the RNA numbers is exerted at
this stage [10–12].

From the dynamics point of view, the regulation of transcription
initiation kinetics occurs via the tuning of the time-length of the rate-
limiting steps of initiation, respectively, the events prior and after

committing to open complex formation [13–17]. In particular, recent
studies [14,16–18] have shown that, under full induction, the in vivo
kinetics of these rate-limiting steps, along with supercoiling buildups
[19], define, to a great extent, the distribution of time intervals between
consecutive RNA production events (here referred to as ‘Δt distribu-
tion’). Further, it was shown that not only the first moment (mean), but
also the second moment of this distribution (variance) can be tuned by
the kinetics of these steps [16,18].

Given this, we hypothesise that, by tuning the kinetics of these rate-
limiting steps, one can also tune the third and fourth moments of the Δt
distribution (respectively, the skewness and kurtosis). Further, we hy-
pothesise that these two moments can be tuned independently from the
mean and coefficient of variation. To test these hypotheses, we perform
in vivo time-lapse microscopy employing single-RNA detection by MS2-
GFP tagging [20–22], from which we extract the Δt distributions for
various promoters, media, induction schemes, growth phases, mutants
and a stress condition. Next, for each condition, we estimate their
mean, coefficient of variation, skewness and kurtosis. Subsequently, we
estimate the kinetics of the rate-limiting steps in each condition and
assess their influence on the skewness and kurtosis. Finally, to test
whether changing the skewness and kurtosis of the Δt distribution has
functional consequences, we measure the corresponding values of the
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skewness and kurtosis of the distributions of single-cell protein ex-
pression levels.

2. Materials and methods

Fig. 1 informs on the models and methods used. In short, the main
empirical data (Δt distributions) are obtained by measuring when each
RNA appears in each cell. Also, we measure the average intracellular
RNAP concentration. From these concentrations and the corresponding
mean of the Δt distribution in each condition, we estimate the time
spent in transcription initiation prior and after commitment to open
complex formation (τprior and τafter, respectively, with their sum
equalling Δt) (model in Fig. 1E).

In summary, we first estimate τprior/M from τ plots [23]. For this,
the inverse of the RNA production rate relative to the control (as
measured by qPCR) is plotted against the inverse of the RNAP con-
centration relative to the control (as measured by Western blot, Sup-
plementary materials and methods, Section 1.4). Next, a line is fitted to
the data. The point where this line intersects the Y axis equals the ex-
trapolated value of the inverse of the transcription rate for an ‘infinite’
RNAP concentration. As such it should equal τafter/M, according to the
model in Fig. 1E. From this and the value of M, one can calculate τafter
and τprior (Supplementary materials and methods, Section 1.5). Next,
from the same Δt distributions, we extract the coefficient of variation,
skewness and kurtosis in each condition.

Note that, although genes replicate during the cells lifetime by a
process that is not absent of noise and many variables control when

each specific gene is replicated [24], we assume that the rate constants
controlling the kinetics of RNA production of our gene of interest
(Fig. 1E), which is on a single-copy F-plasmid, do not change sig-
nificantly during the lifetime of the cells. To validate this assumption
we compared the distributions of time intervals (between consecutive
RNA production events) that started and ended in the first half of the
lifetime with intervals that started and ended in the second half (Sup-
plementary results, Section 2.1). From the comparisons of these dis-
tributions in each condition (Table 1) we conclude that the assumption
is sufficiently accurate.

2.1. Bacterial strains, plasmids, growth conditions, MS2-GFP tagging
system, induction of the reporter and target genes, and measurement
conditions

The E. coli strain used was DH5α-PRO (identical to DH5αZ1) [26]
whose genotype is: deoR, endA1, gyrA96, hsdR17(rK− mK+), recA1,
relA1, supE44, thi-1, Δ(lacZYA-argF)U169, Φ80δlacZΔM15, F-, λ-,
PN25/tetR, PlacIq/lacI and SpR. This strain produces, from the chro-
mosome and in abundance, the necessary regulatory proteins for their
constructs, namely, LacI, AraC and TetR [26]. E.g. LacI, the main re-
pressor of the control promoter (Plac/ara-1), exists in a concentration
much higher than the wild type (∼3000 copies vs ∼20 in wild type
[26]). These characteristics allow tight regulation of both target and
reporter genes, ensuring that the observed RNAs are due to active
transcription and not the result of transcription leakiness (i.e. in the
absence of activation). In particular, we measured leaky expression of

Fig. 1. Schematic representation of the steps for the analysis of the dynamics of RNA production in individual cells, from in vivo single-RNA, single-cell mea-
surements. (A) Example confocal microscopy images over time of a cell expressing MS2-GFP and the target RNAs. (B) Segmentation of a cell and the MS2-GFP tagged
RNA spots within (white lines). (C) Scaled RNA spots intensity over time (grey circles) of the example cell, along with the best-fitting monotonic piecewise-constant
curve (black line) from which Δt intervals are estimated. (D) The distribution of time intervals between consecutive RNA production events in individual cells (Δt)
from which mean (M), coefficient of variation (CV), skewness (S) and kurtosis (K) are extracted. (E) Model of transcription initiation. The first box contains the
reactions occurring before commitment to open complex formation, with their mean time-length denoted as τprior. The second box contains the reactions occurring
after commitment to open complex formation, with their mean time-length equals τafter. For a detailed description of these reactions and parameters see
Supplementary materials and methods, Section 1.6. (F) Western blot image of the RNA polymerase (RNAP) subunit in different media richness. (G) Relative inverse
transcription rate of the target gene, measured by qPCR. (H) Relative τ plot (Lineweaver–Burk plot [25] of the inverse of the RNA production rate versus the inverse
of the RNAP concentration, [RNAP]) for estimating τprior relative to M. (I) S and K versus τprior and τafter in different conditions.
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Plac/ara-1, in the absence of IPTG and arabinose, and found only ~5% or
less cells with an MS2-GFP tagged RNA, 2 h after inducing the reporter
expressing MS2-GFP.

We also use BW25113, whose genotype is F-, DE(araD-araB)567,
lacZ4787(del)::rrnB-3, LAM-, rph-1, DE(rhaD-rhaB)568, hsdR514,
which expresses LacI and AraC from the genotype. The absence of TetR
allows the Tet promoter to express constitutively.

All cells carry two plasmids: a multi-copy reporter plasmid coding
for MS2-GFP under the control of an inducible promoter and a single-
copy F-based target plasmid coding for the transcript with multiple
MS2-GFP binding sites under the control of another promoter (Table 1).
Also, in all target plasmids, we inserted a sequence coding for a red
fluorescent protein, between the target promoter and MS2 binding sites.
Promoter sequences are specified in Supplementary Fig. S1. Tagged
RNAs can be visualized as fluorescent spots [14,20–23] (Fig. 1A).

In general, to observe RNAs tagged by MS2-GFP proteins, cells were
grown overnight in LB media with the respective antibiotics at 30 °C in
an orbital shaker with aeration of 250 rpm. From the overnight culture,
cells were diluted using fresh LB media (unless stated otherwise in
Table 1) to an initial OD600 of 0.05 (measured with a spectro-
photometer, Ultrospec 10; GE Healthcare) and incubated at 37 °C at
250 rpm to allow growth until reaching an OD600 of 0.25. In general,
the reporter gene was induced 1 h prior to the target gene, to allow for
sufficient MS2-GFP proteins to be produced prior to the appearance of
the target RNAs. For a detailed description, see Supplementary mate-
rials and methods, Section 1.1. Inducers of target and reporter genes are
described in Table 1.

The MS2-GFP RNA tagging technique, proposed in [27], is at pre-
sent the only direct method to measure time intervals between RNA
production events in live, individual cells [14,16,21,22]. This is pos-
sible because, first, once appearing, each tagged RNA spot exhibits ‘full’
fluorescence (assuming 1min interval between microscopy images)
[22]. This removes uncertainty in the process of RNA counting as it
reduces the possibility for ‘partially fluorescent RNAs’. This uncertainty
is further reduced in that, once tagged, the fluorescence of the spots
remains near constant for longer than our measurement time (2 h or
more) [22]. This provides significant reliability to the quantification of
the time-length of intervals between consecutive RNA production
events [21].

MS2-GFP tagging affects the spatial organization of the RNAs inside
the cell [28]. However, this does not affect the precision of quantifi-
cation of the intervals between consecutive RNA production events,
which are based solely on the total intensity of the MS2-GFP tagged
RNAs in a cell, not on their location.

To assess whether this technique has a negative impact on cell
physiology, we compared cell growth rates and morphology with and
without activating the expression of the MS2-GFP reporter.

Supplementary results in Section 2.2 show that growth rates and cell
morphology are not significantly affected by expression of MS2-GFP, in
agreement with previous studies [14,23].

Finally, it is also reasonable to assume that MS2-GFP tagging could
affect the protein expression levels of the target gene, due to partially
interfering with the target RNA (albeit in a different region from the
one coding for the red fluorescent protein). We tested this by comparing
protein expression levels when and when not activating the expression
on MS2-GFP (Supplementary results, Section 2.3). The results confirm
that the expression levels of the red fluorescent protein are not per-
turbed significantly by MS2-GFP tagging (Fig. S9).

Meanwhile, to measure the single cell distributions of RNAP con-
centration, we used E. coli RL1314 strain with fluorescently tagged β'
subunits (a kind gift from Robert Landick, University of Wisconsin-
Madison) [29]. From the overnight culture, we diluted the cells to an
OD600 of 0.1 in various media richness (Materials and methods) and
allowed them to grow to an OD600 of 0.5 at 37 °C at 250 rpm. Cells were
then pelleted by centrifugation and visualized under the microscope.

The plasmids (Table 1) construction and transformation were per-
formed using standard molecular cloning techniques [30]. To construct
Plac/ara-1-mCherry-48 binding sites (bs) mutants, we used a plasmid
carrying mCherry followed by a 48bs array in the pBELO vector back-
bone, originally constructed in [31]. To obtain the mutant promoters
(Supplementary Fig. S1), we synthesized new promoter sequences of
Plac/ara-1 with specific point mutants with support from Gene Script,
USA. Next, we inserted them into the pBELO vector backbone by Gibson
Assembly [32], to obtain a single copy F-based plasmid carrying the
target region Plac/ara-1-mCherry-48bs mutants. This product was trans-
ferred into competent E. coli host cells. The recombinants were selected
by antibiotic screening and confirmed with sequence analysis. It is
noted that the mutant promoters were selected solely based on that
their Δt distributions differed from the one of Plac/ara-1.

2.2. Chemicals

The chemical components of LB media are Tryptone, Yeast extract
and NaCl, purchased from LabM (Topley House, Bury, Lancashire, UK).
The antibiotics used are Kanamycin 34 μg/ml, Ampicillin 50 μg/ml and
Chloramphenicol 35 μg/ml, purchased from Sigma-Aldrich (St. Louis,
MO). The inducers used are isopropyl β-D-1-thiogalactopyranoside
(IPTG), anhydrotetracycline (aTc) and arabinose (ara), purchased from
Sigma-Aldrich. Agarose (Sigma-Aldrich) was used for preparing the
microscope gel pads. For PCR, Phusion high-fidelity polymerase and
other PCR reagents were purchased from Finnzymes (Finland). Qiagen
kits (USA) were used for plasmid isolation. For qPCR, cells were treated
with RNA protect bacteria reagent (Qiagen, USA). iScript Reverse
Transcription Supermix for cDNA synthesis and iQ SYBR green

Table 1
Description of conditions. Shown are the name by which the condition is identified, the target plasmid and corresponding inducer, the reporter plasmid and
corresponding inducer, and the media.

Conditions Target promoter Target inducers Reporter promoter Reporter inducer Growth media

LA Plac/ara-1 1 mM IPTG+1% ara PLtetO-1 100 ng aTc 1×
LA(75) Plac/ara-1 1 mM IPTG+1% ara PLtetO-1 100 ng aTc 0.75×
LA(50) Plac/ara-1 1 mM IPTG+1% ara PLtetO-1 100 ng aTc 0.5×
LA(ara) Plac/ara-1 1% ara PLtetO-1 100 ng aTc 1×
LA(IPTG) Plac/ara-1 1 mM IPTG PLtetO-1 100 ng aTc 1×
LA(oxi) Plac/ara-1 1 mM IPTG+1% ara PLtetO-1 100 ng aTc 1×+0.6mM H2O2

Mut1 Plac/ara-1 (Mut-1) 1 mM IPTG+1% ara PLtetO-1 100 ng aTc 1×
Mut2 Plac/ara-1 (Mut-2) 1 mM IPTG+1% ara PLtetO-1 100 ng aTc 1×
Mut3 Plac/ara-1 (Mut-3) 1 mM IPTG+1% ara PLtetO-1 100 ng aTc 1×
Mut4 Plac/ara-1 (Mut-4) 1 mM IPTG+1% ara PLtetO-1 100 ng aTc 1×
tetA PtetA – Plac 1 mM IPTG 1×
tetA(st) PtetA – Plac 1 mM IPTG Stationary phase
BAD PBAD 0.1% ara Plac 1 mM IPTG 1×
BAD(st) PBAD 0.1% ara Plac 1 mM IPTG Stationary phase
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supermix for qPCR were purchased from Biorad (USA).

2.3. Growth media

In all experiments, we used the LB media and its altered versions,
first described in [14]. Namely, we used the following media compo-
sitions per 100ml: 1 g tryptone, 0.5 g yeast extract and 1 g NaCl
(pH 7.0), referred to as ‘1×’ (Table 1); 0.75 g tryptone, 0.375 g yeast
extract and 1 g NaCl (pH 7.0), referred to as ‘0.75×’; 0.5 g tryptone,
0.25 g yeast extract and 1 g NaCl (pH 7.0), referred to as ‘0.5×’; 0.25 g
tryptone, 0.125 g yeast extract and 1 g NaCl (pH 7.0), referred to as
‘0.25×’. These four media are used to attain various mean intracellular
RNA polymerase concentrations ([RNAP]) in cell populations, while not
affecting normal cell physiology and morphology [14,16,23] (Supple-
mentary Fig. S2A). Additionally, in two conditions, as in [23], we used
the stationary phase media obtained by centrifuging the overnight
culture of LB media at 10000 rpm for 10min followed by filtration [23]
(growth rates shown in Supplementary Fig. S2B).

2.4. qPCR measurements

Cells with target plasmids were harvested by centrifuging them at
8000×g for 5min. To the pelleted cells, twice the amount of RNA
protect reagent (Qiagen) was added, followed by the enzymatic lysis
with Tris EDTA lysozyme buffer (pH 8.0). Total RNA was isolated using
RNeasy kit (Qiagen) according to the kit instructions. The concentration
of RNA was quantified using the Nanovue plus spectrophotometer (GE
Healthcare). The RNA samples were treated with DNase to remove the
residual DNA, followed by cDNA synthesis, using the iSCRIPT reverse
transcription super mix. The cDNA samples were mixed with the qPCR
master mix containing iQ SYBR Green Supermix (Biorad) with primers
for the target and reference genes. The reaction was carried out in
triplicates with the total reaction volume of 20 μl. For quantifying the
target gene we used following primers: for mRFP1 (Forward: 5′ TACG
ACGCCGAGGTCAAG 3′ and Reverse: 5′ TTGTGGGAGGTGATGTCCA
3′), for mCherry (Forward: 5′ CACCTACAAGGCCAAGAAGC 3′ Reverse:
5′ TGGTGTAGTCCTCGTTGTGG 3′). For the reference gene, 16S RNA
primers (Forward: 5′ CGTCAGCTCGTGTTGTGAA 3′ and Reverse: 5′
GGACCGCTGGCAACAAAG 3′) were used. The qPCR experiments were
performed by a MiniOpticon Real- time PCR system (Biorad). The fol-
lowing conditions were used during the reaction: 40 cycles of 95 °C for
10 s, 52 °C for 30 s and 72 °C for 30 s for each cDNA replicate. We used
no-RT controls and no-template controls to crosscheck non-specific
signals and contamination. PCR efficiencies of these reactions were>
95%. The data from CFX Manager TM Software was used to calculate
the relative gene expression and its standard error [33].

2.5. Microscopy

Measurements of integer-valued numbers of RNAs or of the mo-
ments when a new RNA appears in individual cells were conducted
using microscopy. For this, a few μl of cells carrying the induced re-
porter and target plasmids were placed between a coverslip and agarose
gel pad (2.5%), with the respective inducers and antibiotics. Next, an
FCS2 chamber (Bioptechs) was heated to 37 °C and placed under the
microscope. Cells were visualized using a Nikon Eclipse (Ti-E, Nikon)
inverted microscope, equipped with a 100× Apo TIRF (1.49 NA, oil)
objective. Confocal images were obtained by a C2+ (Nikon) confocal
laser-scanning system. For measuring GFP fluorescence (to visualize
MS2-GFP ‘spots’ or RNAP-GFP), we used a 488 nm laser (Melles-Griot)
and an emission filter (HQ514/30, Nikon). For time series, confocal
images were taken every 1min for 2 h. Previous studies [14] have
shown that these microscopy settings do not cause significant photo-
toxicity in this strain. Finally, phase-contrast images were obtained si-
multaneously, with an external phase-contrast system and CCD camera
(DS-Fi2, Nikon), every 5min. Images were extracted using Nikon Nis-

Elements software.

2.6. Image and data analysis

Microscopy images were analysed using the software ‘CellAging’
[34]. For details see Supplementary materials and methods, Section 1.2.
From these analysed time-lapse images, we extracted intervals between
consecutive RNA production events in individual cells, from which
empirical distributions of these intervals (Δt distributions) were ob-
tained (Fig. 1A–D). Data analysis was conducted using tailored algo-
rithms implemented in MATLAB R2017b (MathWorks).

2.7. Flow cytometry

Measurements of protein expression levels were conducted using
flow cytometry (FC). For this, cells from 5ml of bacterial culture were
diluted 1:10,000 into 1ml PBS vortexed for 10 s. We performed mea-
surements under various conditions. In each condition, a total of 50,000
cells were observed. Measurements were performed using an ACEA
NovoCyte Flow Cytometer (ACEA Biosciences Inc., San Diego, USA)
with a yellow laser (561 nm) for excitation and the PE-Texas Red
(mCherry) fluorescence detection channel (615/20 nm filter) for emis-
sion, at a flow rate of 14 μl/min and a core diameter of 7.7 μM. The PMT
voltage of 584 was used for mCherry. To avoid background signal from
particles smaller than bacteria, the detection threshold was set to 5000
in FSC-H analyses.

We applied unsupervised gating [35] (implemented in Python 3.6)
to the flow cytometry data. We set the fraction of the cells whose data is
used in the analysis (α) to 0.9, as it was sufficient to remove data points
produced by debris, cell doublets and other undesired events. Reducing
α further did not change the results qualitatively.

3. Results

3.1. Mean, coefficient of variation, skewness and kurtosis of the
distributions of time intervals between consecutive RNA productions in
individual cells differ with promoter sequence, regulatory factors and growth
conditions

First, we obtained empirical data on the Δt distributions in 14
conditions (see Table 1 for details). These conditions were selected so as
to test if the promoter sequence (conditions LA, Mut1, Mut2, Mut3, and
Mut4, see Supplementary Fig. S1), regulatory factors such as RNAP and
inducer concentrations (conditions LA, LA(75), LA(50), LA(ara),
LA(IPTG)), and variables associated to the environment (e.g. media and
stress) affect the skewness and kurtosis of the Δt distribution.

Results are shown in Supplementary Fig. S3. From these distribu-
tions, we estimated their mean (M), coefficient of variation (CV),
skewness (S) and kurtosis (K) (Supplementary materials and methods,
Section 1.3). The data was produced from at least 3 repeats per con-
dition. Since no significant differences were found between repeats, the
data for each condition were merged. Noteworthy, all target genes used
have identical sequences upstream and downstream of the promoter
region (Materials and methods). Also, as noted above, as they are in-
tegrated into single-copy F-plasmids, not anchored to the membrane,
they are not expected to be significantly influenced by transcription
halting due to positive supercoiling buildup [19,36].

From Fig. 2A, M and CV differ between conditions. S and K also
differ between conditions, but do so following a similar trend to one
another. Importantly, changes in S and K seem uncorrelated with the
values of M and CV. These results suggest that altering the promoter
sequence and/or the active regulation allows altering M, CV and S in-
dependently.

Observing only subsets of this data, we find it to be in accordance
with the model considered (Fig. 1E). E.g., consider the conditions LA,
LA(75) and LA(50), which differ only in [RNAP] [14]. In these, as
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[RNAP] decreases, M increases and CV decreases. Meanwhile, S and K
decrease (weakly) as [RNAP] decreases. This change is weak enough so
that, as shown in the next section, the only significant difference in S is
between the two extreme conditions, LA and LA(50), and differences in
K are not statistically significant (Supplementary Table S1).

Mutations in Plac/ara-1 (Supplementary Fig. S1) also cause significant
behavioural changes. Namely, M, CV and S differ between the mutants
independently from each other, and only changes in S and K appear to
be correlated. The same is observed when considering only the induc-
tion schemes of Plac/ara-1 (LA, LA(ara) and LA(IPTG) conditions).
Oxidative stress also affects M, CV, S and K significantly, when com-
pared to the control. Further, comparing the three promoters tested
here (Plac/ara-1, PtetA and PBAD), again M, CV and S differ in an in-
dependent way, and only the differences between conditions in S and K
exhibit a similar trend.

Finally, comparing PtetA and PBAD in the exponential and stationary

growth phases (Supplementary Fig. S2A,B), we find that both differ
significantly in M, S and K with the growth phase. This agrees with the
findings in [23], which reported that the kinetics of rate-limiting steps
in transcription changes with σ38 numbers (even in σ70-dependent
promoters). Interestingly, the differences in M, CV, S and K between
growth phases are, qualitatively, the same in both promoters, sup-
porting that they have the same cause.

We also tested whether the differences in M, CV, S and K between
conditions could be explained by differences between the distributions
of cell lifetimes or between the distributions of intracellular RNAP
concentrations. The results of this test indicate that the features of the
Δt distribution cannot be explained by the features of either these dis-
tributions (Supplementary results, Section 2.4; Supplementary Figs.
S4A and S5).

Fig. 2. Skewness (S) and kurtosis (K) affect the probability of crossing upper-bound thresholds in the time length of the intervals between consecutive RNA
production events in individual cells (Δt). (A) Mean (M), coefficient of variation (CV), S and K of the distribution of Δt intervals (~600 cells per condition). S and K
vary independently from M and CV. Error bars denote SEM. (B) Pairwise differences (Δ) in M, CV, S and K between conditions (blue dots). The red diamond is the
difference between LA(IPTG) and Mut1 conditions that illustrates how changes in S and K can be independent from changes in M and CV. (C and D) Percentage of Δt
intervals (black dots) that are longer than a given threshold (from 2M to 6M) against (C) CV and S, and (D) CV and K. Also shown is the natural neighbour
interpolation surface.
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3.2. Promoter sequence and regulatory factors suffice to alter skewness and
kurtosis of RNA production kinetics independently from its mean and
coefficient of variation

To determine whether changes in M, CV, S and K between condi-
tions are uncorrelated in a statistical sense, we first calculated linear
correlations between each pair of these features when considering all
14 conditions (Fig. 2A). Results in Table 2 show no significant corre-
lation between all pairs, except between S and K. The result holds also
when applying the Bonferroni-Holm correction for multiple compar-
isons (the corrected p-value in the case of S and K is< 0.001). Tests for
non-linear correlations (Kendall's and Spearman's rank correlation
coefficients) give the same qualitative results. While this could be due
to the lack of significant changes in M and CV, results in Fig. 2A reject
this hypothesis. We thus conclude that all features can differ between
conditions in an uncorrelated way, aside from S and K.

We also performed pairwise comparisons of M, CV, S and K between
each pair of the 14 conditions. The results (Supplementary Table S1)
show statistically significant differences between many pairs of condi-
tions, indicating that all features differ widely between conditions. In
detail, one observes that it is possible to alter S and K significantly,
while CV is kept unchanged (e.g. between LA(IPTG) and Mut1).
Similarly, the same is possible keeping M unchanged (e.g. between
LA(50) and tetA).

Next, we quantified the degree with which each feature can differ
between conditions while another feature is kept constant. In Fig. 2B we
show all pairwise differences in M, CV, S and K between conditions. In
all cases, we find that a feature can differ widely while the others re-
main mostly unchanged, except between S and K.

Finally, we investigated how S and K change as a function of the
promoter sequence and the regulatory factors. For this, we considered
two subsets of the data above. The first subset (‘Mutants’) includes the
original Plac/ara-1 promoter (LA) and the 4 mutants, specifically 1 single-
point mutant (Mut1) and 3 three-point mutants (Mut2, Mut3 and Mut4)
(Supplementary Fig. S1). The second subset (‘Regulatory factors’) in-
cludes the control (LA), two conditions with different [RNAP] (LA(75)
and LA(50)) and two induction schemes (LA(IPTG) and LA(ara)). From
Table 2, we conclude that changes in S (and K), due to point mutations
and/or due to altering the concentrations of the regulatory factors, are
not correlated to the changes in CV and M.

As before, for both subsets, we tested whether the differences in M,
CV, S and K between conditions could be explained by differences be-
tween the distributions of cell lifetimes. Again, the results showed that
the features of the cell lifetimes distributions cannot explain the fea-
tures of the Δt distribution (Supplementary results, Section 2.4;
Supplementary Fig. S4B,C).

3.3. Increasing the skewness and kurtosis of RNA production kinetics
enhances the probability of crossing upper bound thresholds in intervals
between consecutive RNA production events

Stochastic models of gene expression assuming transcription in-
itiation as a two-step process predict that changing these steps' kinetics
can alter the noise in RNA production without changing the mean rate
of RNA production [37]. If the intrinsic noise in transcription changes,

so will the probability of crossing thresholds based on RNA numbers.
Here we quantify this noise by the CV of the Δt distribution [17,18],
because this distribution is not affected by noise in RNA degradation.

If this noise was symmetric around the mean of the Δt distribution,
the CV would suffice to estimate the probability of threshold crossing.
However, recent results [16,17] suggest that it can be significantly
asymmetric. As such, a more accurate estimation of threshold crossing
probabilities in RNA numbers requires calculating S and K of the Δt
distribution.

To test whether S and K differ significantly between the conditions
(Supplementary materials and methods, Section 1.3), we first obtained,
for each condition, the fraction of individual Δt intervals that are longer
than a given threshold. We considered the thresholds 2M, 3M, 4M, 5M
and 6M, to eliminate influences by the value of M. Results in
Supplementary Table S2 indicate that the fraction of intervals that cross
a specific threshold differ between conditions, particularly for higher
thresholds.

Next, to determine whether it is CV or S (and K) that is responsible
for the differences in threshold crossing probabilities between condi-
tions, we plotted the percentage of intervals in each condition that
crossed each threshold against CV and S. We also calculated the natural
neighbour interpolation surfaces (using MATLAB R2017b function
scatteredInterpolant [38]).

Results in Fig. 2C show that for the lower thresholds (2M and 3M),
varying S does not alter significantly the chance of threshold crossing,
while changing CV does. For higher thresholds (4M and 5M), both S
and CV are relevant. For the highest threshold (6M), the relevance of S
further increases. Equivalent conclusions are reached when considering
K instead of S (Fig. 2D).

Overall, tuning S and K of the Δt distribution allows altering sig-
nificantly the probability of crossing upper-bound thresholds in Δt va-
lues and, thus, of crossing lower-bound thresholds of RNA numbers in
individual cells.

3.4. Skewness and kurtosis of RNA production kinetics can be tuned by the
rate-limiting steps in transcription initiation

Previous studies have established that CV can be tuned by changing
the kinetics of the rate-limiting steps in transcription initiation
[14,16,17]. In particular, for example, changing the average time spent
in the events prior (τprior) and after (τafter) commitment to open com-
plex formation without changing M, allows tuning noise in RNA pro-
duction without affecting the rate of this production [16]. We hy-
pothesised that S and K could be similarly regulated.

To test this, for each condition, we first estimated the mean fraction
of time spent in the events prior to commitment to open complex for-
mation (τprior/M) from τ plots (Materials and methods, paragraphs
1–2). Namely, we plotted the inverse of the relative RNA production
rate, as measured by qPCR, against the inverse of the relative RNAP
concentration, as measured by Western blot (Supplementary materials
and methods, Section 1.4). Then, we fitted a line to the data from which
we obtain τprior/M (Fig. 3A and Supplementary Table S3). Finally, from
this and the value of M (Fig. 2A), we obtained the absolute values of
τprior and τafter for each condition (Supplementary Table S3).

Cells in the stationary phase (conditions tetA(st) and BAD(st)) are

Table 2
Pearson's correlation coefficient r (with the corresponding two-tailed p-value) for all conditions, for the subset ‘Mutants’, where only the promoter sequence differs
between conditions, and for the subset ‘Regulatory factors’, where only the inducers or RNA polymerase concentrations differ between conditions. For p-va-
lues≤ 0.05, the null hypothesis that there is no correlation is rejected.

M vs CV M vs S M vs K CV vs S CV vs K S vs K

All conditions −0.44 (0.12) −0.19 (0.52) −0.08 (0.80) 0.01 (0.98) −0.10 (0.73) 0.94 (< 0.001)
Mutants −0.12 (0.85) −0.64 (0.24) −0.56 (0.32) 0.27 (0.66) 0.07 (0.91) 0.96 (< 0.01)
Regulatory factors −0.47 (0.43) −0.24 (0.70) 0.02 (0.98) −0.17 (0.79) −0.54 (0.34) 0.91 (0.03)
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not considered since, in these conditions, σ38 numbers are sufficiently
high for the amount of core RNAP enzymes to become a less accurate
proxy of the RNAP-σ70 holoenzymes levels [23]. Additional factors that
may differ include potential sRNA regulation [39,40], ppGpp [41],
cAMP (see e.g. [42]) contribute to these differences.

We assessed whether S and K change with τprior. For this, we plotted
S and K against τprior in each condition (Fig. 3B) and performed like-
lihood ratio tests (at significance level of 0.05) between the best-fit
polynomial models (using weighted total least squares approach
[14,43]) with degrees ranging from 0 to N-1, with N being the number
of conditions (p-values are shown in Supplementary Table S4). We also
tested whether the data can be better explained by a model where τprior
does not differ between conditions, by performing a likelihood ratio test
between this model and the selected best-fitting polynomial (Supple-
mentary Table S4). For both S and K, the zero-degree and the first-
degree polynomial models, as well as the models where τprior is con-
stant, are rejected in favour of higher-degree polynomials.

The fact that S and K are best fit by, respectively, third and fourth
degree polynomials (that still do not explain all data points) illustrates
the level of complexity of the data. This is likely due to the conditions
differing in several factors (promoter, induction scheme, etc.). We thus
next consider, as above, the subsets ‘Mutants’ and ‘Regulatory factors’.
For each, we perform, also as above, likelihood ratio tests to determine
the best fitting models (Supplementary Table S4). In both subsets, a 1st
degree model is preferred.

Meanwhile, from the Pearson's correlation coefficient (with the
corresponding two-tailed p-value) between τprior and skewness (S) and
kurtosis (K), for the subsets ‘Mutants’ and ‘Regulatory factors’, we find a
significant correlation in all cases (absolute correlation values above
0.85 and p-values≤ 0.05), except for K in ‘Regulatory factors’, where
the p-value equals 0.06. Overall, the results suggest that, similarly to M
and CV, tuning τprior can regulate S and K. This implies that the lower
bound threshold crossing probability of RNA numbers over time can be
tuned.

Next, we performed the same analysis for changing τafter and τprior/
M. Contrary to when considering τprior, the results (Supplementary Fig.
S6 and Supplementary Tables S5-S6) do not allow establishing statis-
tically significant relationships (also the p-values from the Pearson's
correlation were larger than 0.05).

Interestingly, the linear relationships of S and K with τprior are po-
sitive in the subset ‘Mutants’ and negative in the subset ‘Regulatory
factors’. This strongly indicates that τprior is not the only parameter
defining these features. Namely, we hypothesise that these relationships

may depend on what causes τprior to differ between the conditions. For
instance, in one subset, the difference may be due to differences in the
mean time required by the RNAP to complete a closed complex for-
mation, while in the other subset the differences may be in the number
of times that the RNAP fails to commit to the open complex formation.
These potential differences could be accounted for in the model by
tuning k1, k−1 and k2 (Supplementary materials and methods, Section
1.6), but cannot be detected by the measurements conducted here.
Future work is needed to test this hypothesis.

3.5. Skewness and kurtosis of the RNA production kinetics and of the
distribution of protein expression levels in individual cells are negatively
correlated

To assess if changes in S and K of the Δt distribution could affect the
phenotypic distribution of cell populations, we next investigate whether
these changes result in significant changes in the distribution of protein
expression levels of a cell population. This is expected given the known
coupling between transcription and translation in prokaryotes [44–46].
Nevertheless, it is reasonable to assume that noise in the stochastic
process of translation (e.g. on the time to be completed once initiated)
would render changes in S and K ineffectual on protein expression le-
vels. A model of gene expression in prokaryotes accounting for the
coupling between the two processes is shown in Supplementary mate-
rials and methods, Section 1.6.

We first tested whether the mean protein expression levels of the
cell populations follow their mean RNA numbers. For that, we mea-
sured RNA numbers (by microscopy) and protein mean expression le-
vels (by flow cytometry) produced under the control of Plac/ara-1 for
various induction conditions. We expect the same relationship in all
other constructs used here, as they have identical sequences following
the promoter sequence. Results in Supplementary Fig. S7 show that the
average number of proteins in a cell population follows the average
RNA numbers.

Given this, since M of the Δt distribution is negatively correlated
with the mean RNA numbers of the cell population, one can expect it to
also be negatively correlated to the mean number of proteins. Using the
same promoter as a case-study, we tested whether the skewness and
kurtosis of the distribution of protein expression levels of a cell popu-
lation are sensitive to the induction strength. For this, we measured the
total fluorescence intensity level of the proteins expressed by Plac/ara-1
in individual cells for various induction levels using flow cytometry
(Materials and methods). From these, for each induction level, we

Fig. 3. Skewness (S) and kurtosis (K) of the distribution of intervals between consecutive RNA production events in individual cells change linearly with the fraction
of time spent in events prior to commitment to the open complex formation (τprior). (A) Relative τ plots. Transcription rates are measured by qPCR, and RNA
polymerase (RNAP) levels are measured by Western blot (Supplementary Fig. S2C). Values are shown relative to the control condition (red dot). Error bars denote the
standard error. The solid line is the best-fitting line, and the dashed lines denote the standard error of the fit. (B) S and K plotted against τprior. Values plotted for all
conditions and for subsets (‘Mutants’ and ‘Regulatory factors’). Error bars denote SEM. The black line is the best-fitting model. The linear relationships are statistically
significant when the set of variables allowed to change between conditions is restricted to either the sequence of the promoter or the regulatory factors. When all
variables are allowed to differ simultaneously, the best-fitting model is a polynomial of the third or fourth degree.
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obtained the distribution of fluorescence of individual cells (in arbitrary
units). For each of these distributions, we estimated the mean (MP),
skewness (SP) and kurtosis (KP) as previously (Supplementary materials
and methods, Section 1.3). From Supplementary Fig. S8, we find that SP
and KP can differ with induction strength. Also, it is possible to have, for
similar values of MP, significantly different values of SP and KP (e.g.
conditions 0 to 25 μM). Further, conditions differing in MP can have
similar values of SP and KP (beyond 100 μM). Overall, we find that, as
for the Δt distributions, SP and KP can change independently from MP

and vice versa.
Next, we investigate whether changes in S and K of the Δt dis-

tribution due to changing the promoter sequence or its regulation re-
flect on the distribution of protein expression levels, as expected from
the model. For this, we consider, respectively, the subsets ‘Mutations’
and ‘Induction schemes’. We note that, within these subsets, the cells
are grown under identical culture conditions and do not differ in their
fundamental physiology, and are therefore not expected to differ in,
e.g., ribosome population and/or in any other global gene expression
regulators, such as [RNAP] or σ factors. For these reasons, here we do
not consider the other conditions in Table 1, as the translation rate or
protein maturation time may differ significantly from the control.

For each condition considered, we measured the fluorescence in-
tensity from the target proteins by flow cytometry (Materials and
methods) and obtained the single-cell distributions of protein fluores-
cence intensity. Next, we estimated its MP (in arbitrary units), SP and
KP, as previously. We also measured MP for cells with an uninduced
Plac/ara-1 to obtain a reference point for the values of MP. In this regard,
the LA(ara) condition was not included in the subsequent analysis since,
for unknown reasons, its protein expression levels were not significantly
above those of the uninduced Plac/ara-1 (Fig. 4).

In Fig. 4, we show MP, SP and KP plotted against M, S and K, re-
spectively, along with the best-fitting models obtained by likelihood
ratio tests (Supplementary Table S7). In all cases, the linear model is
preferred. We also calculated the Pearson's correlation coefficient for
each case. The results agree with the likelihood ratio tests. Namely,
there are strong, statistically significant (p-values≤ 0.05), negative
correlations between M and MP (−0.82) and between S and SP
(−0.86). Between K vs KP the negative correlation is also strong
(−0.70), but the p-value is 0.12, likely due to higher uncertainty. From
the statistically significant linear relationships, we conclude that the
differences in skewness and kurtosis of the Δt distribution between
conditions result in statistically significant differences between the
skewness and kurtosis of the corresponding protein distributions, in a
manner that is consistent with the model. As a side note, our data does
not allow investigating whether a similar (expected) correlation exist in
the case of CV and CVP, since LA, LA(IPTG), and the mutant promoters
have CV values that cannot be distinguished in a statistical sense
(Supplementary Table S1).

Finally, to assess if the values of M could explain the values of SP
and KP, we performed likelihood ratio tests (as above) between M and
SP and between M and KP. A polynomial model of the 1st order was

rejected in both cases (p-values equal 0.04 and 0.02, respectively). Also,
we failed to find linear correlations (p-values equal 0.06 and 0.25, re-
spectively). We conclude that M is not correlated with either SP or KP, as
expected from the lack of the correlation between M and S or K.

4. Discussion and conclusions

Previous research have established that bacterial transcription is
mostly regulated at the stage of initiation [10–12,47]. This regulation,
e.g. by transcription factors and σ factors, affects the mean and variance
in RNA and protein numbers [10–12,19,48]. From the dynamics point
of view, these and similar regulatory molecules were shown to have
direct effect on the kinetics of the rate-limiting steps in transcription
initiation of a gene (assessed here by τprior and τafter), resulting in
changes in the mean and variance of its distribution of intervals be-
tween consecutive RNA production events in individual cells (Δt dis-
tribution) [14,23].

Here we provided evidence that the fraction of cells that reach high
thresholds in RNA and protein numbers of an externally regulated gene
can be tuned by altering the skewness and kurtosis of its Δt distribution.
Also, we showed that this can be achieved without significantly altering
the mean and CV of this distribution. Further, this regulation is possible
by tuning τprior and τafter alone which can be altered by changing the
promoter sequence, the induction scheme, or the intracellular RNAP
concentration.

On the other hand, we did not find significant evidence that the
skewness and kurtosis could be altered independently from one an-
other. Instead, they exhibit a strong positive correlation (Fig. 2B, ΔK vs
ΔS, and Table 2). We suggest that this may be due to the variability of
the time length between transcription events along with the existence of
mechanical constraints imposed by the transcription machinery. This
variability is visible in Fig. S3, which shows that the distributions of
intervals between transcriptions are broad, with several intervals
having a short time-length. This limits how much the kurtosis of this
distribution can increase by increasing the tail on the left side. This
limit does not exist on the right side. Thus, increasing the kurtosis of
one of these distributions by increasing the size of the right tail cannot
be easily compensated on the left side so that the skewness remains
unaltered.

Regulation of asymmetry and tailedness of gene expression, so far,
has only been considered in the context of small genetic circuits or
complex regulatory pathways (e.g. [3]). Given the above, our findings
suggest that regulatory mechanisms of individual genes suffice for this
regulation as well. In particular, based on the data from the conditions
in Table 1, we found statistically significant linear relationships be-
tween τprior and the skewness and kurtosis of the Δt distribution, pro-
vided that either only the promoter sequence or the regulatory factors
(i.e. inducers and RNAP concentrations) differ between the conditions.
We hypothesise that relationships more complex than linear are also
possible, if more than one parameter is allowed to change. E.g. in the
future it would be of interest to investigate whether the data in Fig. 3B

Fig. 4. Mean (M), skewness (S), and kurtosis (K) of the distribution of protein expression levels in individual cells change linearly with the corresponding features of
the distribution of time intervals between consecutive RNA production events (Δt distribution). (From left to right) MP, SP and KP of the single-cell distributions of
protein levels against the corresponding feature of the Δt distributions (extracted from Fig. 2A). Error bars denote SEM (in some cases, the SEM is too small to produce
visible error bars). The solid line is the best fitting model. On the left plot, the horizontal grey line corresponds to MP for an uninduced Plac/ara-1 which is used as a
reference point (SEM is too small to be represented). MP of LA(ara) is not considered in model fitting.
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could be better explained by consider both τprior and τafter simulta-
neously. Nevertheless, the linear relationships found here are evidence
that the skewness and kurtosis are evolvable (i.e. sequence dependent)
and adaptable (i.e. subject to regulation). Meanwhile, the strong cor-
relation between RNA production kinetics and single-cell distribution of
protein levels suggests that tuning these skewness and kurtosis can have
a significant impact on the phenotypic distribution of the cell popula-
tion.

It is well known that the two rate-limiting steps of transcription
initiation here considered (i.e. the events prior and after commitment to
open complex formation) are composed of specific ‘sub-steps’, such as
promoter escape [49–51], reversibility of the closed complex formation
and isomerization [13,52,53]. Further developments in the dissection
techniques of the in vivo kinetics of these sub-steps during transcription
initiation should allow characterising, in greater detail, their con-
tributions to the regulation of the skewness and kurtosis of the dis-
tributions of RNA production kinetics and corresponding protein
numbers. This should also allow establishing precise methods for tuning
the skewness and kurtosis of these distributions.

It is worth noting that the findings here reported do not discard the
importance of other mechanisms of regulation of protein numbers in E.
coli, such as regulation by sRNAs [39,40,54]. Here we did not consider
this mechanism since all target genes studied shared the same elonga-
tion region. It will be of interest to study whether this post-transcription
regulation process also allows tuning the skewness and kurtosis of
single-cell distributions of protein numbers, particularly given its
known effects on the cell-to-cell variability in protein numbers [55,56]
and protein numbers' threshold-crossing propensities [39,57].

Finally, while a strict relationship between the skewness and kur-
tosis in the RNA and protein numbers was established here, the im-
plications of these findings in the context of the qualitative behaviour of
genetic circuits remain to be demonstrated. We expect the amplitude of
these effects to differ with the circuit topology, as in the case of mean
and variance [58–60]. If the effects are significant, direct regulation of
these features in genetic circuits (by tuning the rate limiting steps of the
component genes) should allow a more precise control of their kinetics,
towards enhancing their robustness to fluctuations in molecular num-
bers or environmental changes, and sensitivity to external signals.
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1. Supplementary Materials and Methods 

1.1. Measuring times of RNA and proteins following induction  

When measuring the integer-valued number of RNAs or the moment when a new RNA appears in a cell, for 

Plac/ara-1 and its variants, following the procedure above, we induce the reporter gene with aTc and the target 

gene with arabinose (when appropriate, as in [1]). Next, 50 min later, we induce the target gene with a given 

amount of IPTG (Table 1). Images of cells are taken 1 h after that, from which RNA numbers are quantified. In 

time series measurements, imaging starts 10 min after induction with IPTG (for details, see Materials and 

Methods, section 2.5). For other promoters (PtetA and PBAD), the reporter gene, under the control of a Plac, is 

induced with IPTG. Next, 50 min later, we induce the target gene (using the inducer specified in Table 1).  

When measuring protein expression levels, we followed the same protocols as for measuring RNA numbers 

(aside from inducing MS2-GFP production), but we waited 90 min after induction of the target before 

performing the flow cytometry measurements. The additional 30 min compared to the RNA measurements are 

to account for the time for protein translation and maturation, in agreement with [2]. We also tested other 

waiting times (15, 45 and 60 min), but 30 min was the time interval that generated more consistent results 

between RNA and protein numbers in all conditions. 

1.2. Image analysis of microscopy data 

We used the software ‘CellAging’ [3]. It performs automated segmentation of phase-contrast images, followed 

by a manual correction. Next, confocal images are semi-automatically aligned with the phase-contrast images 

using thin-plate spline interpolation for the registration transform (for that, we manually select 5-8 landmarks 

that adjust the cell masks to the borders of the corresponding cells from the confocal images). After alignment, 

cell lineages are constructed (when applicable), by establishing the relationships between cell masks in 

sequential frames. Next, from each segmented cell, at each time point, fluorescent spots are detected 

automatically by the Gaussian surface-fitting algorithm [4]. From these data, time-series of fluorescent spots 

intensity were obtained for each cell, and the time points when novel RNA molecules appear in each cells 

were estimated [4]. This allows obtaining the time between consecutive RNA production events in individual 

cells (see Materials and Methods, section 2.6). 



2 

 

1.3. Analysing the mean, coefficient of variation, skewness and kurtosis of the ∆t distribution 

From the ∆t distributions, we calculated M, CV, S and K in accordance with the definitions below, where Δt , 


t  and n  denote the average, SD and sample size of the ∆t distribution, respectively. In the case of S and 

K, we also applied the sample size correction [5]).  

 

Feature M CV S K 

Definition Δt  
Δt

Δt


  

3

3
Δt

Δt- Δt


 

 
4

4
Δt

Δt- Δt


 

Corrected 
value 

- - 
 

S
n n 1

n 2




 

 

  
    K

n 1
n 1 - 3 n 1 3

n 2 n 3


  

 
 

 

Next, we estimated the standard error of the mean (SEM) of these features using a non-parametric bootstrap 

method [6,7]. Namely, for each ∆t distribution, we performed 10
5
 random resamples with replacement and 

obtained the bootstrapped distributions of M, CV, S and K values. Since a bootstrapped distribution is 

expected to converge to Gaussian according to the central limit theorem, the standard deviation (SD) of each 

bootstrapped distribution is equivalent to the SEM of the corresponding feature. This allows using a 2-sample 

z-test to compare the estimated features between conditions.  

The same methodology was also applied when extracting mean, coefficient of variation, skewness and 

kurtosis from other distributions, such as the distribution of protein expression levels in single cells. 

1.4. Western blot measurements 

Mean RNA production rates differ with the free RNAP concentration in the cells [8,9]. The RNAP 

concentrations in each condition, relative to the control, were assessed by measuring the level of the RpoC 

protein by Western blot. The results confirmed that the relative RNAP levels change linearly with media 

richness as first reported in [1] and then confirmed in [10–12]. To attain different concentrations of intracellular 

RNAP without altering significantly the growth rates of the cells, we grow the cultures in media of different 

richness (1x, 0.5x and 0.25x), as described above. Results are shown in Supplementary Figure S2C. 

Pelleted cells were lysed with B-PER bacterial protein extraction reagent supplemented with a protease 

inhibitor for 10 min, at room temperature. Afterwards, the lysed cells were centrifuged at 15000xg for 10 min, 

and the supernatant was collected and diluted in the 4X laemmli sample loading buffer containing β-

mercaptoethanol, after which it was boiled for 5 min at 95 °C. Each sample containing ~30 μg of total soluble 

proteins, were resolved by 4% to 20% TGX stain free precast gels (Biorad). Proteins were separated by 

electrophoresis and then electro-transferred to the PVDF membrane. Membranes were blocked with 5% non-

fat milk for 1 h at room temperature and incubated with respective primary RpoC antibodies of 1:2000 

dilutions (Biolegend) overnight at 4 °C, followed by the appropriate HRP-secondary antibodies 1:5000 

dilutions (Sigma Aldrich) for 1 h at room temperature. For detection, chemiluminescence reagent (Biorad) was 
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used. Images were generated by the Chemidoc XRS system (Biorad). Quantification of the band intensity was 

done using Image lab software (version 5.2.1). 

1.5. Estimating the time spent in transcription initiation prior and after commitment to open complex 

formation 

To estimate prior and after, we use a methodology based on measuring RNA production rates at different 

intracellular RNAP concentrations in live cells. The method follows a similar protocol, established using in vitro 

techniques [13], and was adapted for in vivo, single-cell, single-RNA detection measurement techniques [1]. 

From the in vitro measurements one can directly measure the time-length of the closed and open complex 

formations since one can limit which components are in the reaction vessels and which reactions can take 

place during transcription initiation [13]. This is not possible in live cells. Also, one can only measure (by 

microscopy and single-RNA detection by MS2-GFP tagging) the time intervals between consecutive RNA 

production events in individual cells (Δt) at different intracellular RNAP concentrations [1]. As such, all normal 

events during transcription initiation can occur, unlike when using in vitro techniques. Consequently, prior 

(Figure 1) is not the mean time-length of the closed complex formation since, among other, it also is affected 

by transient promoter locking events. Similarly, after is not the mean time-length of the open complex 

formation since it is affected by other events, such as promoter escape. Rather, prior is the mean time-length 

of all events preceding commitment to open complex formation, while after is the mean time-length of all 

events subsequent to this commitment. 

According to the model (Figure 1E), prior depends on the intracellular concentration of RNAP while after does 

not. Thus, provided knowledge on M (mean of the Δt distribution, which equals the inverse of the mean RNA 

production rate), prior and after can be estimated from measurements of the rates of RNA production at 

different RNAP concentrations [1,10,13–15] (Materials and Methods, section 2.3). For that, one can use a 

Lineweaver–Burk plot [16] of the inverse of the RNA production rate versus the inverse of the RNAP 

concentration ([RNAP]) (also named ‘ plot’). From this, one can estimate after (which equals the inverse of the 

rate of RNA production for infinite [RNAP]). Next, prior at a given [RNAP] can be obtained by subtracting after 

from M at that [RNAP]. 

Here, we measure [RNAP] by Western blot [10,11] and RNA production rates by qPCR [10], relative to the 

control condition (1x LB media) (Figure 1F-G). From these, we estimate prior/M (Figure 1H), where the line is 

obtained by a maximum likelihood fit [17]. We also calculate the standard error of the estimate using the Delta 

Method [18]. Next, given M for each condition, we calculate the absolute values of prior and after for that 

condition (Figure 1I). 

1.6. Stochastic model of transcription 

In vitro studies have shown that, in normal conditions, the kinetics of active transcription initiation in E. coli can 

be well described as a stochastic, two rate-limiting steps process [1,14,15,19–21]. The kinetics of these steps 

can be regulated separately from one another [1,10,13,15,19,21–24]. The first rate-limiting step is the set of 

events that take place from the freeing of a promoter from a preceding RNAP until the successful binding of 
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the ‘next’ RNAP to the promoter and commitment to open complex formation (including, among other, the 

sporadic repression states and the finding of the transcription start site by the RNAP). The average time-

length of these events is here denoted as prior. We note that this time includes the fractions of time that the 

promoter may be under the influence of a repressor molecule.  

The second step is the set of events (e.g. isomerization) that occur from the commitment to open complex 

formation up to its completion and promoter escape [22,25–30]. The average time-length of these events is 

here denoted as after. The sum of these two average time-lengths (prior and after) is denoted as M, which 

corresponds to the mean time-length between two consecutive transcription events.  

Given this, the empirical data is analysed assuming that transcription is well modelled by a two rate-limiting 

steps stochastic process [1] (depicted in Figure 1E). In detail, in this model, an active promoter (PON) can 

participate in either of two competing processes. The first is a transition with the rate kOFF of PON to an 

intermittent inactive state (POFF), e.g. due to repression. This step is reversible (e.g. due to the unbinding of 

the repressor) with the rate kON. 

The other competing step is PON being bound by an RNAP (R) at the rate k1 and forming a closed complex 

(RPc). This step is also reversible [1,13,15] at the rate k-1 and competes with the formation of an open 

complex (RPo) whose rate constant is k2. Once committed to the open complex formation, it is assumed that, 

in normal conditions, transcription is no longer reversible [13]. The subsequent steps are accounted for by a 

single-step reaction with the rate k3 [14,31,32] (also see [33] and references within). These steps include, 

among other, promoter escape (freeing the promoter for new events), transcription elongation, and 

termination, at which point the RNA and RNAP are also released. 

This stochastic model does not consider positive supercoiling buildups, as we do not model genes exhibiting 

particularly high expression levels [34], in accordance with the empirical data (Figure 2A). 

1.7. Stochastic model of coupled transcription and translation  

To model the dynamic coupling between transcription and translation, one needs a more complex stochastic 

model of transcription than the one considered in Figure 1E. For this, we model explicitly the ribosome binding 

site (RBS) region of the RNA, while still also modelling the complete RNA molecule. This is because the 

production of the RBS occurs soon after promoter escape (following the completion of transcription initiation) 

and, once this occurs, translation can begin (but not be completed before the transcript is complete). For a 

detailed description of this modelling strategy see e.g. [35,36] and references within. The multi-delayed 

stochastic model on RNA production considered here is: 

            
1 e2

-1

k kk

ON c o ON
k

1 1 2 2P + R RP RP P + RBS  + R RNA    +   (S1) 

OFF

ON

k

ON OFF
k

P P             (S2) 
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In reactions S1 and S2, aside from the rate constants defined in the previous section, ke is the rate of 

promoter escape. Meanwhile 1  is the time for the RNAP to move 30 to 60 base pairs (bp) downstream of the 

transcription start site. This allows a new RNAP to bind [37]. At approximately the same time, an RBS is 

produced (since this region of the RNA is up to ~40 nucleotides long [38]). As such, and given the much 

longer time-length of the intervals between consecutive RNA production events, we assume that this process 

time-length also equals 1 . Finally, 2  is the time-length of completion of transcription elongation along with 

RNAP and RNA release.  

As a side note, this model can also account for elongation along with alternative pathways, such as pausing, 

arrests, editing, pyrophosphorolysis and RNA polymerase traffic. Namely, the effects of such events can be 

accounted for by the distribution from which the values of 1  and 2  are randomly extracted [39].  

Next, translation is modelled by reaction S3, using the RBS above as a reactant (thus allowing it to initiate 

prior to the complete production of the corresponding RNA). The other reactant is a ribosome (Rib) [35]: 

     tr
3

k
4 5RBS + Rib  RBS  + Rib  + Protein         (S3) 

In (S3), trk  is the binding rate of a ribosome to the RBS of the target RNA. Meanwhile, 3  is the time for the 

RBS to be available for a new ribosome to bind and 4  is the time for a polypeptide to be produced and the 

ribosome to be released. Finally, 5  includes the time for the previous events plus the time for protein folding 

and maturation. As above, one can consider in the distribution from which 4  and 5  are extracted, events 

such as variable codon translation rates, ribosome traffic, back-translocation and trans-translation.  

Known events not accounted in this model are premature termination during transcription and drop-off in 

translation, whose occurrence is rare in normal growth conditions [39]. 

Based on this model, while affected by noise, we expect a positive correlation between the mean number of 

proteins and the RNA numbers. This correlation should be maximal if the moments when RNA and proteins 

numbers are counted are distanced by the mean time taken to produce a functional protein from the RNA.  

2. Supplementary Results 

2.1. RNA production kinetics during the lifetime of the cells 

It is reasonable to hypothesize that the kinetics of RNA production of the target gene may differ following gene 

replication. Meanwhile, we interpret our measurements of RNA production intervals assuming that in each cell 

there is only one gene active coding for this target RNA. For this to be valid, on average, there should not 

exist a significant difference in the kinetics of RNA production (e.g. mean rate) between the first and second 

half of the cells lifetime. 

To test this, we compared distributions of ∆t intervals extracted from cells during the first half of their lifetime 

and during the second half of their lifetime (during which the DNA replicates). In particular, we compared the 
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distribution of intervals that started and ended in the first half of the lifetime with the distribution of intervals 

that started and ended in the second half of the lifetime. For this, we performed 2-sample Kolmogorov-

Smirnov tests for each condition (see Table 1 for the list of conditions), and applied a Bonferroni-Holm 

correction for multiple comparisons to the p-values obtained. We found that, at the significance level of 0.05, 

the two distributions cannot be distinguished (p-values > 0.31) except for the LA(75) condition (p-value = 

0.04). As it is unlikely that DNA replication would affect this condition differently when compared to the other 

conditions, we conclude that there are no significant differences in the kinetics of RNA production of the target 

gene during the cell lifetime. This suggests that, in our measurements, DNA replication does not disturb 

significantly the RNA production kinetics of our target genes. 

2.2. Cell growth rates and morphology 

We tested whether the expression of MS2-GFP proteins, at the induction levels employed in this study, affects 

cell growth rates and/or cell morphology. For this, first, we measured mean cell division times. Their mean and 

standard error were found to equal 44.3 ± 1.4 min, when expressing, and 43.2 ± 1.3 min, when not expressing 

MS2-GFP, from which we conclude that they do not differ significantly. Next, using phase-contrast microscopy 

and image analysis [3], we compared the morphology of the cells with and without the expression of the MS2-

GFP proteins, and found no significant differences. 

2.3 Distribution of protein expression levels in individual cells is not affected by MS2-GFP tagging 

To test if the MS2-GFP tagging system could affect the protein expression levels of the target gene, we 

measured the distribution of single-cell protein expression levels (by flow cytometry) under the control of 

Plac/ara-1 (LA condition, Table 1 in main manuscript) when and when not activating the expression of MS2-GFP. 

From the distributions, we extract M, CV, S, and K, as these are the features of interest. 

To quantify the degree to which two distributions differ (i.e. the distance D between them), we obtained the 

distance between the values of M, CV, S and K of these distributions, and normalized them by dividing by the 

mean value of that feature in the conditions considered. Assuming that Δ is the difference between two 

features, this distance between two distributions equals: 

 
P P P P

P P P P

ΔM ΔCV ΔS ΔK
D =  +  +  + 

M CV S K
       (S4) 

In order to determine whether this distance is significant, we also considered the distances between pairs of 

distributions obtained in different conditions. Shortly, if the distance D between the LA conditions expressing 

and not expressing MS2-GFP is smaller than the distances between different conditions, we can conclude 

that the expression of MS2-GFP followed by tagging of the target RNA does not perturb significantly the 

relationship between RNA and protein numbers of the target gene.  

For this, we make use of the single-cell distributions of protein expression levels of the control condition (LA) 

along with the subset ‘Mutants’ (Mut1, Mut2, Mut3, Mut4) and the LA(IPTG) condition, since those are the 

conditions used in Figure 4. Since we make use of more than two conditions, the normalization in equation 
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(S4) is performed by dividing the difference in each feature between a pair of conditions by the mean of all 

conditions considered. 

In Figure S9, it is visible that, in general, the pair of conditions LA, differing in whether MS2-GFP is expressed, 

exhibits one of the smallest differences in each of the features considered. More importantly, when 

considering the four features together (using distance D as defined above), they are the pair of conditions 

whose distributions of single-cell protein expression levels are most similar. We thus conclude that the 

expression of MS2-GFP does not affect significantly the observed protein expression levels. 

This result can be explained by the location of the coding regions of the RNA target for MS2-GFP in the 

plasmid, relative to the transcription start site. Namely, it starts with a ribosome binding site (RBS), followed by 

the region coding for the red fluorescent protein. Only afterwards is the region coding for the MS2-GFP 

binding sites, thus minimizing interference with the RBS activity and with the degradation rate of the region 

coding for the red fluorescent protein.  

2.4. Skewness and kurtosis of RNA production kinetics are not correlated to the distributions of cell 

lifetimes or to the distributions of intracellular RNAP concentrations 

It is reasonable to assume that differences in the shapes of the distributions of cell lifetimes between the 

conditions considered above could also affect the ∆t distributions. To test this, we measured cell lifetimes in 

the conditions where cells are in the exponential growth phase (Table 1). Next, we calculated the mean, 

coefficient of variation, skewness and kurtosis of each of these distributions of cell lifetimes (here named ML, 

CVL, SL, and KL, respectively) and plotted them against the corresponding M, CV, S, and K of the ∆t 

distribution (Figure S4A). In each case, we calculated the Pearson’s correlation coefficient (with the 

corresponding two-tailed p-value), and found no significant correlation (all p-values > 0.05). 

We conclude that, in our data, S and K of the ∆t distribution are not correlated with any feature of the 

distribution of cell lifetimes. This is in agreement with our observation that the cell morphology (Materials and 

Methods) and physiology do not differ significantly between the conditions considered. 

Further, as in the main manuscript, section 3.2, we applied the same calculations when considering the 

subsets ’Mutations’ and ’Regulatory factors’ separately (Figure S4B,C). Again, when applying the Bonferroni-

Holm correction for multiple comparisons, the only potential correlation (K vs. KL in the subset ‘Regulatory 

factors’) is not statistically significant. These results show that even when reducing the number of variables 

differing between conditions, there is no visible significant correlation between the features of the distributions 

of cell lifetimes and the features of the ∆t distribution. 

Finally, we obtained the single-cell distributions of RNAP concentrations using a cell strain where RNAPs are 

fluorescently tagged with GFP (Materials and Methods) in the media richness conditions 1x, 0.75x and 0.5x 

(Supplementary Figure S5). We found no relationship between the skewness of these distributions and S of 

the corresponding ∆t distributions. 

The results on the various conditions differing in target promoter or regulatory factors are expected since the 

cells are from the same strain and in the same media conditions. Similarly, the results on the conditions 
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differing in medium are expected given that these media (1x, 0.75x and 0.5x) were specially tuned for having 

cells with differing RNAP levels but similar average growth rates [1]. In this regard, it is worth mentioning that 

when observing the lifetimes of a small number of cells (values of ML in Figure S4) there are visible 

differences between the conditions. However, the growth curves (Supplementary Figure S2A) indicate that 

this variability is due to the small number of cells that are observed during their entire lifetime by microscopy 

(when compared to the growth curves). 
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Supplementary Figures 

 

 

Figure S1. Related to Figure 2A and Tables 1 and 2. Schematic representation of the target promoter’s 

sequences. The -35 and -10 promoter elements are shown in black boxes. The transcription start sites (+1 

TSS) are marked in orange. Operator sites are marked in cyan and blue. In the mutants, specific nucleotide 

changes in the -35 and -10 region are marked by red circles. These promoters were used in the studied 

conditions (Table 1) as follows: (A) LA, LA(75), LA(50), LA(ara), LA(IPTG) and LA(oxi); (B) Mut1; (C) Mut2; 

(D) Mut3; (E) Mut4; (F) tetA and tetA(st); (G) BAD and BAD(st). 
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Figure S2. Related to Figures 2A and 3A. Bacterial growth curves and RNAP levels as a function of media 

richness, relative to the control condition. (A) Bacterial growth curves of the DH5α-PRO and BW25113 E. coli 

strains when grown in LB media with different richness (1x, 0.75x, 0.5x and 0.25x, see Materials and Methods 

for a detailed description). The optical density at the wavelength of 600 nm (OD600) was measured every 30 

min for 3 h. (B) Bacterial growth curve of the BW25113 strain reaching the stationary phase. Cells were grown 

in 1x LB media (see Materials and Methods for a detailed description) at 37 °C with shaking at 250 rpm, and 

the OD600 values were monitored every 30 min (blue stars). After the cells reached the stationary phase, we 

diluted them in stationary phase media (Materials and Methods) and monitored the OD600 every 30 min (red 

circles) for 4 h. The vertical dashed line shows the time of the dilution. (C) RNAP levels (relative to the 1x 

condition) of the DH5α-PRO and BW25113 E. coli strains grown in LB media with different richness (1x, 0.5x, 

and 0.25x) as assessed by Western blot measurements of the RpoC protein (Supplementary Materials and 

Methods, section 1.4). 
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Figure S3. Related to Figure 2A. The shape of the distribution of time intervals between consecutive RNA 

production events in individual cells (∆t distribution) changes significantly between mutants as well as with the 

promoter, induction scheme and media. See Table 1 for a detailed description of each condition and 

Supplementary Table S8 for the statistical tests to assess whether the distributions normalized by the mean 

differ significantly. Data were collected from approximately 600 cells per condition. 

  



15 

 

 

Figure S4. Related to Figure 1. Mean (M), coefficient of variation (CV), skewness (S) and kurtosis (K) of the 

distribution of intervals between consecutive RNA production events in individual cells plotted against the 

mean (ML), coefficient of variation (CVL), skewness (SL) and kurtosis (KL) of the corresponding distributions of 

single-cell lifetimes. Shown are (A) all conditions, (B) the ‘Mutants’ subset, (C) the ‘Regulatory factors’ subset. 
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Figure S5. Related to Figure 1. Skewness of the ∆t distribution (S) measured from a fully induced Plac/ara-1 

promoter in various media conditions (see section 1.3 in main manuscript) plotted against the skewness of the 

single-cell RNAP fluorescence distribution. The RNAP fluorescence distributions are measured by microscopy 

(~400 cells per condition). Error bars denote SEM. 

 

 

Figure S6. Related to Figure 3B and Supplementary Tables S5 and S6. Skewness (S) and kurtosis (K) of the 

distribution of intervals between consecutive RNA production events in individual cells do not show linear 

relationships with the fraction of time spent in events after commitment to the open complex formation (after) 

nor with the mean fraction of time spent in the events prior to commitment to open complex formation (prior/M, 

where M is the mean time between transcription events). Shown is (A) S and K as a function of after and (B) S 

and K as a function of prior/M, for all conditions and for the subsets of conditions ‘Mutants’ and ‘Regulatory 

factors’. Error bars denote SEM. The best-fitting model is shown as a dashed line if it is a zero-degree 

polynomial and as a solid line if it is a polynomial of a higher degree. In plots where two separate lines are 

visible, the best fitting model is partially outside of the plot borders on the y-axis. 
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Figure S7. Related to Figure 4. Mean protein numbers of the target gene under the control of Plac/ara-1 follow 

the corresponding average RNA numbers for increasing induction levels. Induction curve of Plac/ara-1 as seen 

by observing the mean RNA numbers produced by the target promoter (Plac/ara-1) in individual cells using 

microscopy (dark grey), and by observing the mean fluorescent intensity of proteins in individual cells from the 

same promoter using flow cytometry (light grey). In all conditions, cells are subject to 1% of arabinose. Data 

obtained by microscopy was collected 60 min after induction of the target gene, while data obtained by flow 

cytometry were collected 90 min after induction of the target gene. In both measurements, the values are 

shown relative to the value obtained in the condition ‘1000 µM IPTG’ of the corresponding measurement. 

Error bars denote the standard error of the ratio. 
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Figure S8. Related to Figure 4. The skewness (SP) and kurtosis (KP) of the single-cell distributions of protein 

expression levels differ with induction strength but can also have significantly different values for similar mean 

(MP) expression levels. (Top) MP, (middle) SP and (bottom) KP of the single-cell distributions of protein 

expression levels, as expressed under the control of Plac/ara-1 for changing induction strength. Data were 

collected by flow cytometry, 90 min after induction of the target gene. Error bars denote SEM. In the top 

figure, the error bars are too small to be visible. In the regime of weak induction (25 or less µM IPTG), SP and 

KP show significant, consistent changes, although MP does not exhibit significant changes. Meanwhile, above 

25 µM IPTG concentration, the opposite occurs. 
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Figure S9. Related to Figure 4. Activation of the MS2-GFP reporter does not affect significantly the single-cell 

distribution of protein expression levels. (A) Numbers of pairs of conditions (grey bars) with given values of, 

respectively, the absolute differences in mean (|∆MP|), coefficient of variation (|∆CVP|), skewness (|∆SP|) and 

kurtosis (|∆KP|) of the single-cell distributions of protein expression levels. The conditions considered are LA, 

LA(IPTG), Mut1, Mut2, Mut3 and Mut4 (see Table 1 in main manuscript). Meanwhile, the red bar marks the 

values for these differences between the pair of measurements in the LA condition with and without activating 

the reporter. (B) Distance D between the values of M, CV, S and K (equation S4) for the same pairs of 

conditions as in (A). The red bar holds the value 0.31, while the grey bar further to the left holds the value 

0.33. 
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Supplementary Tables 

Table S1. Related to Figure 2B and Table 2. Two-tailed p-values obtained by testing, for each pair of 

conditions, the null hypothesis (H0) that the difference in the mean (M), coefficient of variation (CV), skewness 

(S) and kurtosis (K) of the distribution of time intervals between consecutive RNA production events between 

the two conditions equals zero, using a 2-sample z-test. In cases where the p-value ≤ 0.05, the H0 is rejected 

(highlighted with italics). In cases where the p-value > 0.05, the H0 cannot be rejected. 

M LA(75) LA(50) LA(ara) LA(IPTG) LA(oxi) Mut1 Mut2 Mut3 Mut4 tetA tetA(st) BAD BAD(st) 

LA < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.16 < 0.001 < 0.01 < 0.001 < 0.001 < 0.001 < 0.001 

LA(75)  < 0.001 < 0.01 < 0.001 < 0.001 0.28 0.90 < 0.001 0.06 < 0.001 < 0.001 0.28 < 0.001 

LA(50)   0.19 0.17 < 0.001 < 0.01 0.18 0.12 0.36 0.75 < 0.001 < 0.001 < 0.001 

LA(ara)    0.49 < 0.001 < 0.01 0.06 1.00 0.90 0.24 0.86 < 0.01 < 0.01 

LA(IPTG)     < 0.001 < 0.001 0.07 0.42 0.58 0.31 0.07 < 0.001 < 0.001 

LA(oxi)      < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Mut1       0.77 < 0.01 0.12 < 0.01 < 0.001 0.05 < 0.001 

Mut2        < 0.01 0.13 0.16 < 0.01 0.68 < 0.001 

Mut3         0.90 0.17 0.84 < 0.001 < 0.001 

Mut4          0.40 0.98 < 0.01 0.06 

tetA           < 0.01 < 0.001 < 0.001 

tetA(st)            < 0.001 < 0.001 

BAD             < 0.001 

CV LA(75) LA(50) LA(ara) LA(IPTG) LA(oxi) Mut1 Mut2 Mut3 Mut4 tetA tetA(st) BAD BAD(st) 

LA < 0.01 < 0.001 < 0.01 0.43 < 0.001 0.49 0.28 0.68 0.62 < 0.001 < 0.001 < 0.001 < 0.001 

LA(75)  < 0.01 0.23 < 0.01 < 0.001 < 0.01 0.05 0.25 0.20 < 0.001 < 0.001 < 0.01 < 0.01 

LA(50)   0.66 < 0.001 < 0.01 < 0.001 < 0.01 < 0.01 0.06 < 0.01 < 0.001 0.65 0.25 

LA(ara)    < 0.01 0.71 < 0.01 < 0.01 0.08 0.07 0.56 0.46 0.76 0.97 

LA(IPTG)     < 0.001 0.91 0.42 0.41 0.80 < 0.001 < 0.001 < 0.001 < 0.001 

LA(oxi)      < 0.001 < 0.01 < 0.001 < 0.01 0.60 0.31 0.06 0.31 

Mut1       0.47 0.42 0.84 < 0.001 < 0.001 < 0.001 < 0.001 

Mut2        0.24 0.71 < 0.001 < 0.001 < 0.01 < 0.01 

Mut3         0.52 < 0.001 < 0.001 < 0.01 < 0.01 

Mut4          < 0.01 < 0.01 0.05 < 0.01 

tetA           0.70 < 0.01 0.14 

tetA(st)            < 0.01 < 0.01 

BAD             0.47 

(see the rest of the table on the next page) 
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S LA(75) LA(50) LA(ara) LA(IPTG) LA(oxi) Mut1 Mut2 Mut3 Mut4 tetA tetA(st) BAD BAD(st) 

LA 0.89 < 0.01 0.88 0.12 0.62 0.19 0.67 0.43 0.33 0.17 0.40 0.85 < 0.01 

LA(75)  0.06 0.85 0.20 0.57 0.18 0.64 0.51 0.37 0.16 0.54 0.75 0.06 

LA(50)   0.43 0.57 0.05 < 0.01 0.23 0.53 0.97 < 0.01 0.17 < 0.01 0.89 

LA(ara)    0.53 0.94 0.57 0.87 0.63 0.49 0.69 0.69 0.93 0.41 

LA(IPTG)     0.13 < 0.01 0.32 0.79 0.78 < 0.01 0.46 0.07 0.52 

LA(oxi)      0.42 0.89 0.30 0.24 0.53 0.29 0.70 0.05 

Mut1       0.66 0.10 0.09 0.73 0.08 0.22 < 0.01 

Mut2        0.43 0.32 0.81 0.47 0.72 0.22 

Mut3         0.69 0.08 0.81 0.35 0.49 

Mut4          0.09 0.54 0.29 0.99 

tetA           < 0.01 0.20 < 0.01 

tetA(st)            0.29 0.16 

BAD             < 0.01 

K LA(75) LA(50) LA(ara) LA(IPTG) LA(oxi) Mut1 Mut2 Mut3 Mut4 tetA tetA(st) BAD BAD(st) 

LA 0.94 0.18 0.57 0.08 0.46 0.19 0.93 0.34 0.16 0.19 0.26 0.76 < 0.01 

LA(75)  0.15 0.59 0.07 0.49 0.20 0.96 0.31 0.15 0.21 0.22 0.70 < 0.01 

LA(50)   0.30 0.55 0.14 0.06 0.57 0.99 0.50 < 0.01 0.82 0.23 0.19 

LA(ara)    0.23 0.96 0.61 0.72 0.32 0.20 0.92 0.33 0.49 0.16 

LA(IPTG)     0.09 < 0.01 0.46 0.68 0.71 < 0.01 0.42 0.10 0.53 

LA(oxi)      0.51 0.70 0.19 0.10 0.83 0.17 0.35 < 0.01 

Mut1       0.37 0.08 < 0.01 0.57 0.07 0.14 < 0.01 

Mut2        0.59 0.39 0.56 0.61 0.84 0.35 

Mut3         0.55 < 0.01 0.89 0.43 0.40 

Mut4          < 0.01 0.43 0.20 0.95 

tetA           < 0.01 0.10 < 0.01 

tetA(st)            0.35 0.13 

BAD             < 0.01 

 

 

  



22 

 

Table S2. Related to Figure 2C-D. Percentage of the time intervals between consecutive RNA production 

events in individual cells (∆t intervals) longer than a given threshold in each condition. 

Threshold 

Condition 

2M 3M 4M 5M 6M 

LA 16.3 6.3 2.2 0.7 0.3 

LA(75) 13.9 4.7 1.5 0.7 0 

LA(50) 11.8 3.2 0.8 0.1 0 

LA(ara) 10.6 3.5 1.8 0 0 

LA(IPTG) 17.7 7.1 1.7 0.5 0 

LA(oxi) 11.0 3.0 0.5 0.2 0 

Mut1 13.8 6.2 2.5 1.2 0.5 

Mut2 17.0 6.4 2.1 2.1 0 

Mut3 16.3 6.2 1.6 0 0 

Mut4 21.1 7.9 2.6 0 0 

tetA 9.4 3.2 0.9 0 0 

tetA(st) 11.4 2.9 0 0 0 

BAD 12.1 4.0 0.8 0.1 0 

BAD(st) 12.9 3.5 0.3 0 0 
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Table S3. Related to Figure 3A. Mean time length spent in the events prior to commitment to open complex 

formation (prior) and in the events following the commitment to open complex formation (after) for each 

condition, along with their SEM. Also shown, for each condition, is the mean fraction of time between 

transcription events that is spent in the events prior to commitment to open complex formation (prior/M, where 

M is the mean time between transcription events), along with its SEM. 

Condition prior ± SEM (min) after ± SEM (min) prior/M ± SEM 

LA 7.8 ± 1.2 2.0 ± 1.2 0.80 ± 0.12 

LA(75) 10.6 ± 1.4 2.1 ± 1.3 0.83 ± 0.10 

LA(50) 14.1 ± 1.3 2.0 ± 1.2 0.87 ± 0.08 

LA(ara) 5.0 ± 2.3 13.9 ± 2.7 0.26 ± 0.12 

LA(IPTG) 11.3 ± 2.2 6.1 ± 2.2 0.65 ± 0.12 

LA(oxi) 17.9 ± 3.4 18.6 ± 3.4 0.49 ± 0.09 

Mut1 11.8 ± 1.7 1.9 ± 1.6 0.86 ± 0.11 

Mut2 8.3 ± 1.9 4.7 ± 1.4 0.64 ± 0.09 

Mut3 4.3 ± 2.1 14.6 ± 2.5 0.23 ± 0.11 

Mut4 4.2 ± 1.5 15.2 ± 3.1 0.21 ± 0.07 

tetA 0.9 ± 1.2 15.4 ± 1.3 0.06 ± 0.07 

BAD 9.2 ± 0.6 2.9 ± 0.5 0.76 ± 0.04 
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Table S4. Related to Figure 3B. One-tailed p-values obtained from likelihood ratio tests between the pairs of 

the polynomial models of degrees n and m. The models are best-fitted to the values of skewness (S) and 

kurtosis (K) as a function of prior, estimated in all studied conditions (excluding tetA(st) and BAD(st)) and in 

various subsets of these conditions. A model where prior does not change between conditions is denoted as 

n = 0inv. For p-values ≤ 0.05, we assumed that the model of degree m fits the data significantly better than the 

model of degree n. 

Data set S K 

n m p-value n m p-value 

All 

conditions 

0 1 0.01 0 1 0.11 

1 2 0.54 0 2 0.15 

1 3 0.03 0 3 0.25 

3 4 0.98 0 4 0.02 

3 5 0.66 4 5 0.93 

3 6 0.84 4 6 0.94 

3 7 0.65 4 7 0.70 

3 8 0.68 4 8 0.83 

3 9 0.65 4 9 0.92 

3 10 0.75 4 10 0.96 

3 11 0.83 4 11 0.98 

0inv 3 < 0.001 0inv 4 < 0.001 

Mutants 0 1 0.05 0 1 0.03 

1 2 0.86 1 2 0.77 

1 3 0.98 1 3 0.86 

1 4 0.97 1 4 0.95 

0inv 1 < 0.001 0inv 1 < 0.001 

Regulatory 

factors 

0 1 0.01 0 1 0.04 

1 2 0.70 1 2 0.85 

1 3 0.92 1 3 0.72 

1 4 0.90 1 4 0.70 

0inv 1 < 0.001 0inv 1 < 0.001 
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Table S5. Related to Supplementary Figure S6A. One-tailed p-values obtained from likelihood ratio tests 

between the pairs of the polynomial models of degrees n and m. The models are best-fitted to the values of 

skewness (S) and kurtosis (K) as a function of after, estimated in all studied conditions (excluding tetA(st) and 

BAD(st)) and in various subsets of these conditions. A model where prior does not change between conditions 

is denoted as n = 0inv. For p-values ≤ 0.05, we assumed that the model of degree m fits the data significantly 

better than the model of degree n. 

Data set S K 

n m p-value n m p-value 

All 

conditions 

0 1 0.17 0 1 0.53 

0 2 < 0.01 0 2 < 0.01 

2 3 0.99 2 3 0.75 

2 4 1.00 2 4 0.30 

2 5 1.00 2 5 0.43 

2 6 1.00 2 6 0.59 

2 7 1.00 2 7 0.56 

2 8 1.00 2 8 0.68 

2 9 1.00 2 9 0.78 

2 10 1.00 2 10 0.86 

2 11 1.00 2 11 0.91 

0inv 2 < 0.001 0inv 2 < 0.001 

Mutants 0 1 0.15 0 1 0.08 

0 2 0.24 0 2 0.19 

0 3 0.41 0 3 0.34 

0 4 0.41 0 4 0.30 

0inv 0 < 0.001 0inv 0 < 0.001 

Regulatory 

factors 

0 1 0.65 0 1 0.38 

0 2 0.13 0 2 0.09 

0 3 0.21 0 3 0.10 

0 4 0.14 0 4 0.19 

0inv 0 < 0.001 0inv 0 < 0.001 
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Table S6. Related to Supplementary Figure S6B. One-tailed p-values obtained from likelihood ratio tests 

between the pairs of the polynomial models of degrees n and m. The models are best-fitted to the values of 

skewness (S) and kurtosis (K) as a function of prior/M, estimated in all studied conditions (excluding tetA(st) 

and BAD(st)) and in various subsets of these conditions. A model where prior does not change between 

conditions is denoted as n = 0inv. For p-values ≤ 0.05, we assumed that the model of degree m fits the data 

significantly better than the model of degree n. 

Data set S K 

n m p-value n m p-value 

All 

conditions 

0 1 0.06 0 1 0.41 

0 2 0.04 0 2 0.04 

2 3 < 0.01 2 3 0.76 

3 4 0.77 2 4 0.02 

3 5 0.95 4 5 0.77 

3 6 0.52 4 6 0.96 

3 7 0.69 4 7 0.99 

3 8 0.81 4 8 1.00 

3 9 0.89 4 9 1.00 

3 10 0.94 4 10 1.00 

3 11 0.97 4 11 1.00 

0inv 3 < 0.001 0inv 4 < 0.001 

Mutants 0 1 0.13 0 1 0.07 

0 2 0.23 0 2 0.12 

0 3 0.26 0 3 0.23 

0 4 0.40 0 4 0.28 

0inv 0 < 0.001 0inv 0 < 0.001 

Regulatory 

factors 

0 1 0.12 0 1 0.55 

0 2 0.10 0 2 0.12 

0 3 0.16 0 3 0.14 

0 4 0.18 0 4 0.22 

0inv 0 < 0.001 0inv 0 < 0.001 
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Table S7. Related to Figure 4. One-tailed p-values obtained from likelihood ratio tests between the pairs of 

the polynomial models of degrees n and m. The models are best-fitted to the values of mean (MP), skewness 

(SP) and kurtosis (KP) of the distribution of protein numbers as a function of the corresponding features (M, S 

and K) of the distribution of time intervals between consecutive RNA production events in individual cells (∆t 

distribution), estimated in the conditions from the subset ‘Mutants’ and LA(IPTG) condition. A model where a 

feature of the ∆t distribution does not change between conditions is denoted as n = 0inv. For p-values ≤ 0.05, 

we assumed that the model of degree m fits the data significantly better than the model of degree n. 

MP vs M SP vs S KP vs K 

n m p-value n m p-value n m p-value 

0 1 < 0.001 0 1 < 0.001 0 1 < 0.001 

1 2 0.99 1 2 0.21 1 2 0.17 

1 3 0.97 1 3 0.45 1 3 0.38 

1 4 1.00 1 4 0.66 1 4 0.58 

1 5 1.00 1 5 0.81 1 5 0.58 

0inv 1 < 0.001 0inv 1 0.02 0inv 1 0.04 

 

Table S8. Related to Figure S3. Comparisons of the Δt distributions (normalized by the mean) of pairs of 

conditions (see Table 1) by a two-tailed Kolmogorov-Smirnov test. The table shows the p-values obtained 

from these tests, for each pair of conditions. In cases where the p-value ≤ 0.05, the H0 that the Δt values 

normalized by the mean are from the same distribution is rejected (highlighted with italics).  

 
LA(75) LA(50) LA(ara) LA(IPTG) LA(oxi) Mut1 Mut2 Mut3 Mut4 tetA tetA(st) BAD BAD(st) 

LA 
< 0.001 < 0.001 < 0.01 < 0.01 < 0.001 < 0.01 0.78 0.67 0.18 < 0.001 < 0.001 < 0.001 < 0.001 

LA(75) 
 < 0.01 0.28 < 0.001 < 0.001 < 0.01 0.23 0.18 0.05 < 0.001 < 0.001 < 0.001 < 0.001 

LA(50) 
  0.56 < 0.001 < 0.001 < 0.01 0.15 < 0.01 < 0.01 < 0.001 < 0.001 < 0.001 < 0.01 

LA(ara) 
   < 0.01 0.39 0.06 0.14 0.07 0.09 0.31 0.31 0.18 0.43 

LA(IPTG) 
    < 0.001 0.09 0.74 0.67 0.49 < 0.001 < 0.001 < 0.001 < 0.001 

LA(oxi) 
     < 0.001 < 0.01 < 0.001 < 0.001 0.23 0.83 < 0.01 < 0.01 

Mut1 
      0.75 0.92 0.30 < 0.001 < 0.001 < 0.001 < 0.001 

Mut2 
       0.65 0.78 < 0.01 < 0.01 < 0.01 < 0.01 

Mut3 
        0.25 < 0.001 < 0.001 < 0.001 < 0.001 

Mut4 
         < 0.001 < 0.001 < 0.001 < 0.01 

tetA 
          0.41 < 0.01 < 0.001 

tetA(st) 
           < 0.01 < 0.01 

BAD 
            0.14 

 

 








