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Abstract

Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between

cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular

matrix, these receptors have critical functions in intracellular signaling, but are also taking

center stage in many physiological and pathological conditions. In this review we provide some

historical, structural and physiological notes, so that the diverse functions of these receptors can

be appreciated and put into the context of the emerging field of mechanobiology. We propose

that the exciting journey of the exploration of these receptors will continue for at least another

new generation of researchers.
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Chapter 1: Introduction and some historical notes

It is always difficult to trace back the origin of an idea, a particular historic event or the role of

its founders, that initiated a new way of thinking in a particular field of science. In the case of

the cell-matrix adhesion receptors of the integrin family, we could highlight the work of

Abercrombie and co-workers as well as Curtis, who explored the mechanisms allowing cells to

adhere to and crawl on petri dishes, recognizing the cytoskeleton and substrate anchoring

adhesion sites visible in the electron microscope or by interference reflection contrast (1, 2, 96).

Cell adhesion was also a subject interesting researchers in the field of tumor biology, as a central

feature of cancer cells is their ability to grow on soft agar, indicating that these cells no longer

require adhesion to their tissue environment and have lost the regulatory influence of the

healthy microenvironment of the tissue (273). At about that time, Richard Hynes incubated

normal adhering hamster fibroblasts or their hamster sarcoma virus-transformed derivatives

with an extracellular iodination solution. When analyzing the iodinated proteins by SDS-

PAGE, he identified an abundant 250 kDa protein present on normal, but not on transformed

cells (202). This large, external, and transformation-sensitive (LETS) glycoprotein was

simultaneously found and characterized in many different laboratories and given names such

as cold-insoluble globulin, cell surface protein, fibroblast surface antigen and eventually named

fibronectin (296, 375, 474). Since fibronectin showed an intriguing overlap with intracellular

stress fibers (204), the existence of a transmembrane link was postulated. Only a few years later

it became clear that fibronectin was a major extracellular binding partner for fibroblasts and

that the critical binding element in fibronectin was a short peptide Arg-Gly-Asp (RGD) (7,

334). The respective surface receptors recognizing this motif in fibronectin as well as in

vitronectin were identified by Pytela and Ruoslahti (349, 350). In an alternative approach, the

same fibronectin-binding surface receptors were also identified based on monoclonal antibodies

that prevented cell binding to fibronectin, such as JG22, CSAT and GP135 (8, 97, 158). Shortly

afterwards the integrin field enjoyed its first expansion phase, where all the different integrin

receptors and the majority of their ligands were described and named, either according to

biochemical or ligand-affinity data as in the case of fibronectin (a5b1) (349) and vitronectin

(avb3) receptors (350), or by researchers working in the field of immunology according to

antibody reactivity as for VLA1 to 6. Especially the latter field helped to develop the concepts

of integrin-dependent adhesion during platelet activation or cytokine-mediated adhesion of

leukocytes to the endothelium via (a4b1/VCAM-1) (110, 426) and LFA1 (aLb2)/ICAM-1

binding (117, 383, 406). Importantly, these integrin-dependent adhesion processes were not

constitutive, but could be triggered by cytokine stimulation and even b1-integrin-directed



adhesion-stimulating antibodies, proposing that the affinity of these cell surface receptors was

specifically regulated (22). The analysis of integrin receptors and their ligand specificity on the

vascular endothelium (85) eventually led to the idea, that the inhibition of integrin-dependent

adhesions in sprouting endothelial cells could inhibit the angiogenic switch and prevent tumors

from growing in the tissue (59, 138, 209), taking the research on integrin receptors to almost

all domains of biomedical research.

One of us was actually in the lucky position to assist this process, as his colleagues were actively

identifying, purifying and characterizing different members of the integrin family in the labs of

Jürgen Engel, Mats Paulsson and Ruth and Matthias Chiquet (193, 298, 423). It was clearly the

golden age, or alternative the “Sturm und Drang” period, of the integrin and extracellular matrix

research, in which most of the integrin-receptor concepts were created. In this phase also the

majority of the integrin knockout models were established in the labs of Richard Hynes,

Reinhard Fässler, Dean Sheppard and many others (111, 132, 198, 396), leading to the

quintessential integrin review published in 2002 by Richard Hynes (203).

About this time, first attempts were made to understand the structure-function relationship of

integrin receptors. First, the I-domain insert of the α-subdomain of the lymphocyte integrins

(aM) was crystallized in two different conformations, providing a strong argument for the

association of integrin ligand binding with conformational changes in the receptor (245). While

the I-domain of the a-subunit exhibited a single metal-ion-dependent ligand binding site, the

revelation of the structure of the entire extracellular domain of the avb3 integrin receptor,

identifying three differently complexed metal ions coordinating the RGD-peptide to the central

Mg2+ ion, determined a breakthrough in understanding how integrin-ligand-binding was

coupled to conformational changes of the integrin receptors (471, 472). The structural

differences between the headpiece of the lymphocyte integrin aM and the integrin avb3

expressed in fibroblasts and endothelial cells allowed first considerations about the connection

of integrin structure to physiological function (see Chapter 2).

It took a few additional years to understand the flexible elements of the integrins and the

allosteric conditions under which the receptor was extending into a conformation that was

compatible with ligand binding (470). Importantly the crystallographic studies with the aIIbb3

integrin ectodomain were backed up by electron microscopy analysis of individual integrin

heterodimers changing their conformation in the presence of Mn2+ ions and RGD peptides,



confirming the allosteric nature of the integrin receptor (125). With the analysis of other integrin

receptors, however, the debate continues about how conformational flexibility of the integrin

receptor and allosteric influence of intracellular adapters and extracellular ligands shape the

function of the different integrin receptors (289, 484) (see Chapter 2).

This second phase of in-depth analysis of the integrin structure/function relation was greatly

advanced by the discovery of the green fluorescent protein (GFP). The fusion of GFP to

cytoskeleton proteins or integrins allowed to localize these receptors in living cells, to study

their dynamic association in the plasma membrane and their cycling through the membrane

systems of the cell. In migrating cells, a different behavior of b3-GFP-integrin clusters located

at the front and at the rear of cells was apparent (35). Furthermore, the differences in the integrin

cluster behavior between immobile, but transient clusters in the cell front, and inward sliding

integrin clusters at the cell rear correlated with the dynamic exchange measured by fluorescence

recovery after photobleaching (FRAP) between these different integrin-dependent adhesions.

Interestingly, the dynamics of the integrin exchange depended on the regulation of the actin

cytoskeleton, providing at the same time a structural and dynamic vision of the integrin

receptors and their association with the actin cytoskeleton and integrin adaptor proteins such as

talin and vinculin (35, 90).

However, as we are learning more and more about the different integrin receptors, their

functions as well as mechanical and signaling capacities, we have entered a third and still

ongoing phase of research on the integrin receptor family. This third phase involves attempts

to integrate the notion of mechanosignaling with the mechanical aspects of cell linkage to the

extracellular matrix. Tensional forces created between the extracellular matrix and the

cytoskeleton induce changes in the extracellular visco-elastic scaffold, the integrin receptors as

well as their adapter proteins, linking intracellular signaling to conformational changes in

multidomain proteins (205, 450). In turn, such conformational changes can affect enzymatic

reactions and lead to activation of kinases such as focal adhesion kinase (FAK) and src family

kinases as well as different types of phosphatases. Thus, the large number of integrin-associated

proteins, defined as the adhesome (63, 239, 387, 492), as well as their differential interaction

with the plasma membrane is forming a puzzle consisting of 200 to 1000 different pieces, of

which we have only limited structural and biochemical information. Under tensional stress

many of these adhesome proteins will undergo conformational changes, further increasing the

complexity of the adhesion site. It remains a challenging task to identify the molecular



machinery, that has constantly evolved since the moment cells started to actively explore their

environment and to form multicellular organism relying on extracellular scaffolds.

Chapter 2: Structure and allosteric control of the integrin receptor

Overall integrin structure

As mentioned above, some integrins like aIIbb3, aVb3, and the integrins involved in

immunological functions containing the b2 subunit have been studied in more detail than other

members of the family, and many concepts in the field are based on these integrins. We

therefore want to give a general overview about the structural organization of integrins before

a more detailed discussion about structure and integrin activation based on aIIbb3 and aVb3

integrins. Finally, we extend the discussion to other integrins and the differences in their

organization before presenting potential consequences of integrin structure for their

physiological function (Chapter 3).

Ultimately, the understanding of the physiological roles of integrins requires to comprehend

the link of structural organization to adhesive function. Especially crystallography, electron

microscopy (EM), and conformation-specific antibodies have been pivotal to reveal different

conformations of integrins and the structural organization of the a- and b-subunits (Figure 1).

Both subunits are tightly bound to each other by interactions between the a-propeller and the

b-I-like domain in the extracellular “head” regions of both subunits. This association occurs in

the endoplasmic reticulum, and single chain integrins do not reach the cell surface (250).

Probably the most drastic structural difference between integrins is the presence or absence of

the ligand-binding a-I domain, inserted in the top part of the a-subunit (9 integrins have, 15 do

not have an a-I domain; see Figure 1). The a-I and b-I-like domains are structurally related to

the Von Willebrand factor A-domain, exhibiting both a metal ion-dependent adhesion site

(463). Although showing a similar fold, the b-I-like domain in the b-subunit of integrins

possesses some unique structural characteristics (see below). Integrins with an a-I domain

belong to the classes of collagen-binding integrins and leukocyte specific integrins (Figure 1)

and are found only in vertebrates. Functionally, the most obvious difference between integrins

with and without a-I domains is the mode of ligand binding. Integrins without a-I domains

bind ligands in a binding pocket formed by the a-propeller in the a-subunit headpiece and the

MIDAS ion in the center of the b-I-like domain of the b-subunit (Figure 2, 3). In contrast,

integrins with an a-I domain recognize ligands only with their a-I domain, which is however



structurally coupled to a b-I-like domain-binding  “IEGT” peptide motif, serving as an internal

integrin ligand (Figure 3D). Further analysis showed that the spatial arrangement of ligand-

integrin interactions is diverse even within the respective groups of integrins with or without

a-I domains (Figure 3).

Given the frequency of the RGD sequence in many extracellular matrix proteins, the group of

RGD-binding integrins is considered to recognize many different ligands. Because of the

importance of the RGD sequence motif, one might neglect the relevance of the structural

organization around the RGD peptide and the respective specificity of the ligand binding event.

While present in an exposed loop in fibronectin, the RGD-peptide is flanked by a helical motif

in the latent TGF-b binding protein, which leads to the specificity in binding to avb6 and avb8

(113, 321, 484). In addition, the initial characterization of integrin-ligand binding specificity

proposed the selective recruitment of the RGD ligands vitronectin and fibronectin to avb3 and

a5b1 respectively (349, 350). More recently, we have revisited ligand specificity by creating

binary choice substrates, that allow cells to simultaneously use their different integrin

populations on the most relevant ECM ligand (335). In fact, when cells were given the choice

between different substrates, the selection of the appropriate ligand was surprisingly specific,

suggesting that cells prefer to adhere on the most fitting adhesive surface in respect to ligand

density and stiffness. However, cells were also able to adhere to less-preferred ligands,

indicating that flexibility in ligand recognition might explain seemingly promiscuous integrin-

ligand binding. New techniques, e.g. single cell force measurements (233) and super-resolution

light microscopy (292) can detect differential ligand interaction in living cells (373), and will

certainly facilitate the reassessment of integrin-ligand interactions, their dynamic regulation,

and their in vivo behavior.

The ligand-recognizing headpieces of both a- and b-subunits are sitting on top of “leg”

domains (Figure 2), followed by transmembrane regions and, with the exception of b4 integrin,

comparably short cytoplasmic tails. While the extracellular headpiece binds ligands, the

cytoplasmic tails interacts with intracellular adapters. Especially the cytoplasmic tails of

b-subunits have been analyzed in detail and are attributed to important functions in regulating

integrin activity (see below) and actin linkage (Chapter 4). Functions and binding partners of

the cytoplasmic tails of a-subunits are less studied and have been associated with integrin

inactivation rather than activation and signaling (see Chapter 4 and (54, 344, 359)).



aIIbb3 and aVb3 integrin activation

Integrin activation (in terms of gaining the ability to bind ligands) is coupled to extensive

structural changes in both subunits. Currently, the prevailing model for aIIbb3 and aVb3

integrin activation assumes a tight coupling of integrin-ligand binding with a structural change

from a bent-closed to an extended-closed integrin conformation (‘switchblade model’; similar

to the opening of a Swiss army knife), and a further opening of the head piece to an extended-

open conformation (Figure 3E). All three conformations are present in the membrane in a

dynamically regulated equilibrium that involves intracellular adapters, as well as extracellular

ligands. Ligand binding affinity increases with integrin extension and head-piece opening.

However, also the bent conformation is able to bind RGD ligands (472). Nevertheless, the

structural rearrangement during integrin extension and subsequent head-piece opening is

accompanied by several local changes in the headpiece of the b-subunit induced by the carboxyl

binding of the Asp-side chain of the RGD-motif to the central MIDAS Mg2+ ion (Figure 3A,B):

(i) the ADMIDAS site moves towards the Asp-bound Mg2+ ion, (ii) the a1-helix in the b-I-like

domain straightens, (iii) the a7-helix makes a piston-like movement towards the hybrid domain,

(iv) which swings out, thereby increasing the angle to the b-I-like domain and completing the

headpiece opening (Figure 3). It seems that these discrete structural events cannot be uncoupled

during the process of headpiece opening; straightening the a1-helix by mutations leads to

increased overall integrin activation (495), as does constitutive hybrid domain swing-out by

introducing a glycosylation site that provokes opening of the angle between the b-I-like and

hybrid domain by steric interference (Figure 3A) (272). The structural integrin activation

process starts with a bent state and proceeds to the extended-closed and finally to the extended-

open state (347, 427, 500). In contrast to such a strict three-step process, Zhu and colleagues

showed that headpiece opening of aIIbb3 integrin is a continuous process, in which they

defined eight different steps (501). They also estimated the integrin headpiece affinity for an

RGD peptide in the open state to be more than 200-fold higher than in the closed conformation

and thus considered the extended-open conformation to be the active, ligand-binding state.

Moreover, recent electron microscopy data of different b1-integrin containing integrins,

proposes that the bent-closed conformation is not typical for these integrins, but regulated

essentially at the level of the integrin head-piece opening (289, 417). In addition, recent data

from our group indicates at least for aVb3 integrin, that the correlation between conformation

and ligand binding is more complex: aVb3 integrin locked in the extended-closed state was

able to bind vitronectin, but not fibronectin. Only the extended-open state of aVb3 integrin was

able to bind fibronectin, a behavior that required tensional forces acting on the integrin receptor



(31). Thus, structure-function relationships differ among ligands binding the same integrin,

suggesting that the extended-closed conformation might be more than just a ‘not yet activated’

integrin. A similar situation was demonstrated for α4b7 integrin, where two cytokines (CCL25

and CXCL10) cause different integrin conformations, binding either to MAdCAM or VCAM

(452). A explanation how the same integrin can select between different ligands was offered by

Cormier and colleagues (92). They argued that besides αVb3 integrin affinity for RGD, the

accessibility of the ligand to the integrin binding pocket might be a regulating factor. Figure 3

highlights some of the headpiece features influencing integrin ligand binding selectivity,

carrying the analysis also to laminin-binding integrins and how ligand accessibility and binding

can be enhanced by the integrin headpiece movement.  More detailed research will be required

to challenge the notion of RGD ligand promiscuity and to show how switching between

selective and promiscuous ligand binding can be of physiological relevance in vivo.

Given the extensive literature about mechanosensing and mechanotransduction by integrin

mediated adhesions, it is almost surprising that the experimental data about the influence of

mechanical forces on the integrin structure is rather limited. Based on molecular dynamics

simulations of aIIbb3 (500) and aVb3 integrin (347) it was hypothesized that mechanical load

on the b3-subunit facilitates the headpiece opening of the integrin by increasing the hybrid

domain swing-out. Therefore, one might argue that mechanical forces activate integrins, an

exciting concept contributing to the emerging field of mechanobiology. So far, this idea is

supported by experimental data for aLb2 integrin (LFA1) (292, 313) and aVb3 integrin (31,

83, 146). In line with this, b-integrin subunits are especially well suited to bear mechanical load

due to a reinforcement with two polypeptide chains (between the b-I-like and hybrid domain)

or a disulfide bridge in addition to a polypeptide chain between their domains (113). Domain-

connections in the a-subunit miss these additional reinforcements, and the a integrin subunit

may therefore unfold more easily under mechanical load.

Similarities and differences between integrins

Many cell culture studies compare aVb3 integrin and α5b1 integrin (34, 69, 98, 369, 388). Both

belong to the group of RGD integrins, bind fibronectin and are expressed in both fibroblasts

and endothelial cells. Accordingly, the overall structural organization is very similar.

Nevertheless, there are important structural and functional differences between aVb3 integrin

and α5b1 integrin. In a recent study, Takagi and coworkers detected aVb3 integrin to be present

in the bent, extended-closed, and extended-open conformation in the absence of ligands or



stabilizing antibodies (289). However, under identical conditions the authors failed to detect an

extended-open conformation for α5b1 integrin. In contrast, the group of Timothy Springer

detected all three conformations for α5b1 integrins by complexing them with conformation-

specific antibodies (417). This approach also allowed them to measure affinities of specific

conformations for RGD and fibronectin fragments (257). Interestingly, they detected a 4,000-

to 6,000-fold increase in affinity of the extended-open compared to the extended-closed

conformation for cyclic RGD (cRGD) and fibronectin fragments. This is in clear contrast to

αIIbb3 integrin, for which an only 200-fold increase was reported (501). This difference in

affinity increase during headpiece opening could imply α5b1 integrin to be ‘locked’ to its ligand

when reaching the extended-open conformation. Such a strong binding to fibronectin could

have evolved to support the mechanical stretching of the ligand during fibronectin

fibrillogenesis (390), which is likely to be a non-linear and visco-elastic process, in which a

rapid loss of tensional load in fibronectin fibrils should not result in the immediate dissociation

from the integrin receptor. On the other hand, the evolution of a synergy site in fibronectin,

specifically enhancing the on-rate for α5b1 integrin binding, may help to diversify the specific

features of certain integrin/ligand pairs (302). At the same time, a strong binding with a low

off-rate might also set the need for precise regulation of the activity of b1 integrins by inhibitors

(54) or by posttranslational modifications like phosphorylation, glycosylation, or acetylation.

This example emphasizes the connection of structural differences and specific physiological

tasks of a5b1 integrin in fibronectin fibrillogenesis. At the same time, it highlights the

difficulties of generalizing concepts from well-studied integrins to the entire family of integrin

receptors.

As mentioned above, collagen-binding integrins and leukocyte specific integrins differ from all

other integrins by the presence of an αI domain in the α-subunit. Importantly, only this αI

domain binds the respective ligand, in contrast to a combined ligand binding by both subunits

in integrins without αI domain. This might explain why RGD-binding integrins, lacking an αI

domain, evolved a bigger variety of α- and b-subunit pairings (Figure 1). Interestingly, the

initial binding pocket formed by the propeller domain in the α-subunit and the b-I-like domain

in the b-subunit is still present in αI domain integrins. However, it is used by the αI domain as

an intramolecular ‘pseudo-ligand’ for recognition of the IEGT-peptide motif (Figure 3D).

Additionally, αI domains have no ADMIDAS site, and their αI helix is always straightened

during activation. Thus, ADMIDAS movement towards the ligand and α1-helix straightening

during integrin activation might be used to fine-tune the affinity of the MIDAS site in b-I-like



domains (495, 501). Therefore, Zhang and colleagues (495) argued that αI-domain integrins,

missing this fine-tuning, might be better suited for fast on/off switching than integrins without

αI domain.

Another surprising mechanobiological feature of integrins are catch bonds between ligands and

integrins, meaning that the lifetime of a bond increases when force is applied (82). As

summarized by Cheng Zhu and colleagues (82), catch bonds are now described for α5b1 –

fibronectin, αVb3 – fibronectin, αLb2 – ICAM-1, α4b1 – VCAM-1, and αMb2 – ICAM-1. As

these authors point out, it is more appropriate to describe these bonds as catch-slip bonds, since

the bond will change from a catch bond to a slip bond when the force on the bond exceeds a

certain level. Catch bonds might have evolved to stabilize cell-ECM anchorage by allowing

integrin-ligand bonds to persist under mechanical load, especially when the other bonds in their

surrounding break by mechanical stress. Interestingly, catch bonds are documented also for

other receptor-ligand pairs than integrins (Notch-Jagged1, VWF-GPIbα, TCR-pMHC as

described by Cheng Zhu and colleagues (82); E-Cadherins (356), P-Selectin-PSGL-1 (281)), as

well as intracellular force-bearing connections like vinculin and actin (197). Potentially, catch

bonds will emerge as the rule and not the exception whenever mechanical forces are involved

in receptor ligand interactions. Still, the structural implementation of this feature within the

integrin headpiece requires yet to be shown. The increasing unmasking of the positive charge

of the metal ion at the MIDAS position and the consequentially tighter binding of the negatively

charged Asp in the RGD peptide during integrin activation are, however, a plausible mechanism

(458, 459) (Figure 2, 3). Catch bonds in aI domain integrins aLb2 and aMb2 have to include

the aI domain, but mechanisms in the b-I-like and hybrid domain could be analogous in

integrins without aI domain (82).

The in vivo importance of catch bonds might be best documented in the vasculature, where

selectin-based catch bonds regulate leukocyte rolling in presence of shear stress caused by the

blood stream (139). Additionally, recent examples of circulating tumor cells arresting in a b1-

dependent manner in the blood flow might indicate the relevance of catch bonds (281).

On a first glance, the structural understanding of integrins might appear quite detailed already.

However, as described here, not every integrin is studied to the same extent, and the

generalization of individual integrin qualities to other integrins might be misleading. While

structural features of integrins can be linked to physiological settings, it is also clear that we are



limited by techniques that allow us to test these hypotheses in vivo. Additionally, the examples

of mechanical integrin regulation suggest that the transfer of data from experiments in the

absence of force (in vitro studies, flow cytometry) to the in vivo setting is not always

straightforward. Having said this, we are nevertheless convinced that the detailed understanding

of even a few integrins will be useful as a framework to compare with other integrins, deducing

their function based on differences and similarities.

Chapter 3: The physiological role of integrin-dependent cell adhesion explained through

several examples

Integrin affinity modulation versus clustering in the plasma membrane (talin and kindlin)

When integrins recognize extracellular ligands and change from a low to a high affinity

conformation, either by an outside-in or inside-out triggered mechanisms, they also start to form

clusters in the membrane that are visible by light microscopy (35, 90, 336). Using super-

resolution light microscopy, the initial formation of nano-clusters of 50 to 100 ligand-bound

integrins can be detected (75), that will further assemble into larger integrin clusters to enable

cell adhesion. The mechanistic connection between conformational activation of b3-integrins

and integrin clustering is still not fully understood, but requires at least extracellular ligand-

binding, talin-head/integrin interaction and talin and kindlin binding to phosphoinositol lipids

in the plasma membrane (51, 90).

Although aIIbb3 and avb3-integrin activation and clustering are among the best studied

integrin processes, it is still not clear, why in resting platelets a2b1 integrin is in an apparently

extended, ligand binding-competent, but not fully activated state  (289, 312), while at the same

time aIIbb3 receptors are thought to be present in the platelet membrane in a bent-closed

conformation (485). Differences between b1 and b3-integrins in the transmembrane and

cytoplasmic a-domain association, also known as the inner membrane clasp (Figure 2), could

account for these different integrin resting states (271). Similarly, intracellular isoform-

selective integrin inhibitors could be responsible for maintaining distinct conformational pools

of cell surface integrins, e.g. keeping aIIbb3 in a bent-closed conformation and preventing it

from binding plasma fibrinogen, while presenting a2b1 in an extended conformation able to

bind to exposed collagen fibers at sites of vessel damage (441). Support for the model of

conformational activation of aIIbb3 integrin has come mainly from the discovery of a ligand-

mimetic IgM monoclonal antibody (PAC-1) binding aIIbb3 integrin on activated, but not



resting platelets (394). Interestingly PAC-1 exhibits an RGD-related KYD sequence in the H3

loop of the heavy chain, thought to be responsible for aIIbb3 binding. However, a report by

Tomiyama and coworkers described two different IgG antibodies with the same KYD sequence

that bound equally well to resting as well as activated platelets (439). Although this discrepancy

in aIIbb3 binding by IgG and IgM antibodies can be explained by a specific conformation of

the KYD-containing loop, probing aIIbb3 integrin binding with Fab fragments of the PAC-1

antibody did not allow to discriminate between integrins on resting or talin-head activated

platelets or CHO cells (62). Thus it appears possible that the large size of the PAC-1 IgM

prevents it from efficiently recognizing the bent-closed aIIbb3 integrin receptor. On the other

hand it is also likely that the enhanced cell surface binding of PAC-1, e.g. observed during talin-

head mediated aIIbb3 activation (425), is due to talin-mediated (90, 380) or kindlin-induced

integrin clustering (486). Such an increase in integrin clustering is particularly well detected

due to the polyvalency of the PAC-1 ligand (62), therefore proposing that physiological inside-

out activation of the b3-integrin receptor involves conformational changes of the integrin

ectodomain as well as adapter-induced clustering of the receptors in the plasma membrane (90,

380). Kindlin appears to contribute to integrin clustering rather than to activation, co-operating

with talin in this process (486).

The conformational activation of integrins has also been analyzed by a genetic screening

approach based on a monovalent integrin ligand binding to the Drosophila aPS2bPS integrin.

This study revealed mostly gain of function mutants in bPS, stressing the physiological

importance of keeping integrins in a low ligand-binding affinity state. On the other hand, the

mutation of the juxtamembrane CGFFNR sequence in aPS2 to CGFANA enhanced ligand

binding of the integrin, while the VGFFNR mutation led to a reduction of ligand binding (187,

220). Interestingly, the mutated cysteine residue is conserved in a3, a6, a8 and aE-integrins

(Figure 1) and known to be palmitoylated in a3 and a6-integrins (480),  proposing the existence

of still undiscovered mechanisms to control the integrin affinity state in general (such as

kindlin) or in integrin-specific situations, such as in aPS2.

The aIIbb3 receptor on platelets

One of the best studied integrin structure-function relationship concerns the aIIbb3 receptor

expressed on platelets. Blood is coagulating through activation of platelets, that are stimulated

by agonists such as ADP or thrombin, or by binding to injury-released, collagen-bound von



Willebrand factor, leading to a conformationally induced change in the affinity of aIIbb3

integrin (also known as  GPIIb/IIIa) for circulating fibrinogen in the plasma (470). Based on

this physiological example, the signal-mediated conformational change of aIIbb3 integrin and

the subsequent binding of extracellular fibrinogen allowed to establish the concepts of inside-

out and outside-in signaling. The activation of aIIbb3 integrin has to be strictly regulated to

avoid a fatal thrombosis, therefore it cannot be activated by the always-present ligand

fibrinogen. Instead, intracellular signals are required for aIIbb3 integrin activation, leading to

fibrinogen binding and formation of a blood clot (i.e. inside-out signaling). These activating

signals for aIIbb3 integrin, on the other hand, have to originate from the outside, where a signal

conveying the presence of a wound to the platelet triggers the intracellular cascade leading to

aIIbb3 integrin activation (i.e. outside-in signaling). Platelets express the collagen receptors

GPVI and a2b1 integrin, both potentially sensing wound-exposed collagen, but the precise

contribution of both receptors to aIIbb3 integrin activation appears controversial (279, 309).

Recent structural studies for b1 integrins in the presence and absence of ligands revealed

interesting differences to b3 integrins with consequences for the structure-function relationship

of both integrins. Takagi and coworkers found b1 integrins in the absence of ligands to be

mostly present in the extended-closed conformation, irrespective of the ion conditions (289).

The same study, but also work by the group of Timothy Springer (417), detected extended-open

conformation for b1 integrins in the presence of ligands (or stabilizing antibodies). On the other

side, b3 integrins conformations were strongly affected by ion conditions, revealing

conformations from bent, extended-closed to extended-open. Thus, b3 integrins might be more

susceptible to allosteric regulation by cytoplasmic adapters, while b1 integrins are mostly

regulated by the presence of ligands.

The inside-out activation of aIIbb3 integrin is still a matter of research, but essential features

include the activation of the Rap-1 GTPase, binding the talin rod-domain to release talin

autoinhibition and to induce a mechanical coupling between the actin cytoskeleton (talin rod

domain) and the integrin-cytoplasmic tail (talin head domain) (64, 230, 416, 454). Since the

talin-integrin connection provided an explanation of the aIIbb3 integrin activation mechanism,

critical roles for additional integrin activators were not considered at the time. However, it has

become clear, that the talin-head interaction with the cytoplasmic tail of the b3-integrin receptor

alone is not sufficient, and that the plasma membrane-associated adapter protein kindlin is at

least equally, if not even more important than talin to induce aIIbb3 integrin conformational



activation and fibrinogen binding, subsequently triggering platelet and cell spreading (295, 437)

(Figure 2, 3).

Several publications indicated Rap1-mediated activation of integrins to include the binding of

RIAM to talin, as demonstrated for aIIbb3 integrin (179). Recent publications analyzed this

process in more detail and found RIAM-mediated activation to be specific for b2 integrins,

whereas within the same leukocytes a4b1 integrin is activated in a RIAM-independent manner

(230, 414). Additionally, RIAM knockout mice showed no severe phenotype and unaltered

b1 and b3 integrin activation (230, 414). Thus, it appears that pathways upstream of talin (and

kindlin) are able to target and activate specific integrin subunits, enabling cells to react

differentially to separate outside-in signals. One of these pathways may involve a direct

activation of the talin-head domain by Rap1-binding, instead of an indirect, RIAM-dependent

mechanisms (58, 68, 502).

The role of integrins in extracellular matrix assembly: fibronectin

So far we have mainly considered the role of integrin receptors in a cell-autonomous way, as

integrins are critical for cell anchorage to the extracellular matrix, providing signals for survival

and proliferation. However, integrin receptors are also used by cells to organize or remodel the

extracellular matrix. For example, cultured fibroblasts synthesize extracellular matrix proteins

such as fibronectin, which they incorporate into an extracellular scaffold that allows their

adhesion and generates survival signaling. In the well-studied case of fibroblasts cultured on

fibronectin, the avb3 integrin receptor assures the binding of the cell periphery to the culture

substrate, while a5b1 is “spinning” or “weaving” a fibronectin network around the center of

the spread cells by forming fibrillar adhesions (324). In a preformed 3D fiber network the

classical distinction between focal and fibrillar adhesion is no longer maintained (95, 473). As

mentioned in Chapter 1, transformed fibroblasts loose the capacity to synthesize fibronectin

fibrils. In cancer tissues cancer-associated fibroblasts partially compensate this by excessive

deposition of extracellular matrix in the tumor stroma (CAFs) (126, 316). Interestingly, the

enhanced deposition of extracellular matrix by CAFs should be taken into consideration during

the treatment of tumor patients, as the enhanced stiffness of the tumor stroma induces survival

signaling in B-RAF inhibitor-treated melanoma cells (191). The mechanisms responsible for

fibronectin fibril synthesis are still incompletely understood, but involve the cytoplasmic

integrin adapter protein tensin1 (324). Interestingly tensin1 function is targeted also by



intracellular metabolic pathways, linking integrin-dependent fibronectin assembly to the level

of glucose in the tissue and in general to the metabolic state of a cell in a tissue (157, 288).

Moreover, the tracking of fluorescent b1-integrin in astrocytes has allowed to connect the

assembly of fibronectin fibers in fibrillar adhesions to the simultaneous association of GFP-

labeled VEGF with such newly synthesized fibronectin fibers (119). These results do not only

provide a unique insight into the process of integrin-dependent fibronectin assembly, but also

highlight the fact that the extracellular matrix is providing a delicately tensioned scaffold,

binding and storing growth factors and releasing this pool of signaling molecules in the case of

tissue injury or pathological signaling in the case of fibrosis (see Chapter 9). Rather recently, it

became evident that not only tensins, but also proteins from the kank family are relevant in

fibrillogenesis (420). Kank2 reduces the affinity of the talin rod for actin, thereby weakening

the mechanical load on the ECM-integrin-actin axis. This process acts in parallel to the

maturation of focal adhesions to fibrillar adhesions and their translocation to the cell center. It

might be counterintuitive that mechanical alignment of fibronectin fibers is mediated by

fibrillar adhesions under low mechanical load. Interestingly, detailed studies with atomic force

microscopy revealed that the initial reorganization of fibronectin fibers already occurs in the

cell periphery, where integrins are under higher mechanical load (174). Thus, we envision a

model of initial fibronectin stretching in the cell periphery, including higher forces on the

integrin-fibronectin link. After this opening of cryptic binding sites on fibronectin, and

potentially detachment from the substrate, small fibrils are aligned and organized to form bigger

fibrils. This translocation of detached fibrils might benefit from high-affinity binding even

under low force, which is achieved by a5b1, but not by aVb3 integrin (31, 388), while kank2

orchestrates the change in force level through the modulation of the talin-actin connection.

Interestingly, kank2 might also be important for the effect of microtubules and focal adhesion

stability (77). Kank binds simultaneously to the CLASP family of microtubules plus-end

binding proteins, the R7 subdomain of talin, as well as the membrane-bound liprin/LL5

scaffold, which functionally associates focal adhesions with the vesicular transport machinery

(53, 410).

The role of integrins in extracellular matrix assembly: laminin and collagen

Collagen and fibronectin are both major components of the ECM, responsible for the structural

organization and mechanical integrity of the ECM. Collagen type I is a prime example for

fibrillar collagens, in contrast to collagen type IV that forms networks in the basement



membrane. Four integrins,  a1b1, a2b1, a10b1, and a11b1 (all containing an a-I domain; see

Figure 1), are reported to bind collagens with certain preferences for either collagen I or

collagen IV (222). Both collagens also have different mechanisms leading to their structural

arrangement in the ECM. Collagen I is known to align with fibronectin and to gradually replace

it in the ECM during wound healing (287). Interestingly, collagen I preferentially binds to

relaxed fibronectin fibers (236). On the other hand, the same study (236) showed fibronectin

fibers to be under increased stress in the absence of collagen I, thereby emphasizing the

relevance of collagen for the mechanical state of ECM. A self-assembly of fibrillar collagen,

used for surface coatings in cell culture studies, seems to be much less relevant in vivo (215).

The experimental observation of the basement membrane organization and its main components

collagen IV, laminin, nidogen, and perlecan in epithelial cells is more complex. Collagen IV

was shown to be dispensable for the initial organization of the basement membrane in the

embryo (before E10 in mice), but to be essential in later developmental stages (341). Thus, like

fibrillar collagen, also collagen IV is highly important for the structural integrity of the ECM.

It is well accepted that in basement membranes a3b1, a6b1 and a6b4 integrins contribute to

adhesion of epithelial cells by recognizing the c-terminal globular domains of the laminin a-

subunit (see also Figure 3D) (483). In the absence of these integrins, the epithelia detach and

blisters form (111, 112). Defects in the deposition and organization of such basement

membranes have been rarely reported, but it has been recognized that laminin binding integrins

are palmitoylated in either their a3, a6 CGFFKR sequence or b4-juxtamembrane domains

(480). The absence of this reversible lipidation affects laminin-dependent adhesion and

association with the palmitoylated tetraspanins in the plasma membrane (39, 479).

Interestingly, the depletion of the tetraspanin CD151 causes kidney failure associated with

altered glomerular basement membranes (378). Moreover, in tissue culture a3b1-integrins

showed enhanced, focal adhesion-like clustering due to the absence of the tetraspanin CD151

(377), suggesting that membrane distribution and tetraspanin association of laminin-binding

integrins are not only regulating the adhesion to basement membranes, but also their assembly.

Non-classical integrin mediated adhesions

Integrin-mediated adhesions were often classified according to a maturation sequence starting

from nascent adhesions, leading over focal complexes and focal adhesions to fibrillar adhesions

(88, 151). However, it is also clear that not all integrin adhesions follow this scheme.



Podosomes and invadopodia (now summarized as invadosomes) were already described in the

1980s (reviewed in (195, 300)), and their structural organization differs drastically from

‘classical’ integrin adhesions. Invadosomes have a central actin core oriented perpendicular to

the substrate and surrounded by a belt of adhesome proteins like talin and vinculin. As the name

indicates, invadosomes are involved in ECM degradation, thereby supporting invasion of the

cell into the degraded, softened tissue. This is achieved by the delivery of matrix

metalloproteases (MMPs) to sites of invadosomes, where they are secreted and digest the ECM

(338). This process was shown to also occur at focal adhesions (410), but appears to be more

prominent at invadosomes. For more insights about integrin recycling and endo- and exocytosis

at sites of integrin adhesions we would like to refer to excellent reviews about this topic (142,

293, 328).

More recently, a new type of adhesions specific for αVb5 integrin emerged (270). During the

analysis of integrin adhesions throughout the cell cycle the authors detected an enrichment of

b5 integrin to specific adhesion structures during interphase. Interestingly, αVb5 integrin-

mediated adhesions in these cells recruited no classical adhesome proteins like talin1, kindlin2

or vinculin and were not coupled to actin filaments. Additionally, their shape differed from

classical adhesions; they formed a dense net of adhesive structures coined reticular adhesions.

The reticular adhesions recruited adapters of clathrin-mediated endocytosis, potentially

contributing to their ability to stay attached to the matrix during mitosis and to serve as a

‘adhesion memory’ during re-spreading after mitosis. Additional studies by other groups

confirmed this dependence of αVb5 integrin-mediated adhesions on adapters of clathrin-

mediated endocytosis, in contrast to classical adhesome proteins (38, 503). Interestingly, αVb5

integrin adhesions associated with clathrin adapters have a capacity for mechanosensing and

mediate cell adhesion even in the absence of the classical adhesion machinery. b5 integrin

knockout mice develop age-related retinal dysfunction due to the lack of b5 integrin-dependent

phagocytosis of photoreceptors by retinal pigment epithelial cells (304). The relation of this

finding to reticular adhesions in cell culture experiments remains to be shown in future

experiments.

Forces in tissues

The third phase of integrin research, reconciling known features of integrins with their ability

of mechanosensing and -transduction, is presumably just beginning. But can we expect that

these findings have a relevance in more physiological settings, compared to cells cultured on



glass and plastic coated surfaces? We believe that recent findings strongly suggest important

roles of mechanical parameters (e.g. tissue stiffness, ligand geometry, elasticity vs. visco-

elasticity) in developmental and pathological settings. As we discuss in Chapters 6 and 9,

integrin-mediated mechanotransduction follows a sigmoidal mechanoswitch triggered around

5 kPa substrate stiffness. It is striking that most healthy tissues have a stiffness below this point,

while fibrotic tissue is stiffer than 5 kPa (see Chapter 9). At the same time, stiffness gradients

observed during the development of Xenopus (438) and Drosophila (94) make clear that

developing organisms consist of regions with distinct mechanical properties. Richard Harland

and coauthors showed in elegant experiments that the positioning of feathers in developing

chicken skin is based on mechanical signals (401). Therefore, it will be not surprising when

more reports uncover the contribution of integrin mechanosensing and -transduction in

development and pathologies. On a more structural level, it is interesting to note that both talin

(265) and integrins (422) are aligned with the force vector of actomyosin forces. As mentioned

in Chapter 2, MD simulations suggest that forces parallel to the membrane (imitating retrograde

actin flow) support the extended-open conformation of αIIbb3 integrin, while the extended-

closed conformation is stabilized by forces perpendicular to the membrane (422, 500).

Additionally, work in Drosophila indicates that integrins and talins might experience unique

force vectors in different tissues (229). Combined with the findings that specific integrin

conformations bind ligands selectively (see above), differential force vectors in tissues might

be a mechanism to tune the physiological needs for integrin activation and signaling. This very

likely includes also mechanical regulation of integrin adapter conformations (208). However,

the testing of these hypotheses will require improved tools to measure forces and force vectors

in vivo. Several studies in Drosophila offered interesting insights into this question and might

indicate a renaissance for this model organism (166, 172, 229, 249, 431).

Chapter 4: Regulation of integrins by adapter proteins

Integrins recruit hundreds or even up to thousand different proteins, building the so-called

adhesome (63, 239, 387). However, a recent meta-analysis defined a consensus adhesome of

60 proteins (194), that the authors organized in four groups: 1) ILK – PINCH - kindlin, 2) FAK

- paxillin, 3) talin - vinculin and 4) α-actinin – zyxin – VASP. Most of these proteins have been

mapped into functional layers with super-resolution imaging (217). The importance of these

sets of proteins is reflected by their frequent discussion in reviews on integrin-mediated

adhesions (199, 207, 208, 364, 371, 419).



For this review, we wanted to focus on adapters that directly bind integrins. Therefore, we

curated a list of such direct integrin adapters (Table 1). Some of these proteins, like talin or

FAK, are well known in the integrin field, others are less well studied and their effect on

integrins might not be fully established yet. Additionally, the large diversity of the integrin

family as well as their extensive functional diversity suggests that integrins are regulated in a

cell- and integrin-type specific manner. For example, kindlin3 is only expressed in

hematopoietic cells (49) but kindlin1 and kindlin2 show unique interactions with integrins in

keratinocytes (36), indicating that they are not functionally redundant (371). Talin1 and talin2

are shown to influence mechanotransduction differently (26) and to possess altered affinity for

the β1- and β3-integrin subunits (15). They also differ in their expression within tissues, with

e.g. talin2 being the dominating form in striated muscle (392) and required for fibronectin

assembly (345). Nevertheless, the knockout of talin1 is embryonic lethal, while talin2 knockout

mice show a dystrophic phenotype (104). We assume that further detailed and isoform-specific

analysis will reveal more selective integrin-adapter interactions and their evolution for specific

physiological needs.

To support a conceptual understanding of integrins we want to introduce 5 functions that are

mediated by integrin adapters: (i) activation, (ii) inactivation, (iii) inhibition, (iv) signaling, and

(v) mechanosensing. We expect that less-studied adapters can be explained within the

framework of these functions. This classification also implies that adapters can have more than

one function.

Activation

Talin and kindlin activate integrins (= change the extracellular conformation)  and increase their

affinity for ligands in a process of inside-out activation involving interaction of these adapter

proteins with the b-integrin cytoplasmic tail. Both talin and kindlin are required for integrin

activation and clustering, but appear to differentially contribute to mechanosensing (talin) and

signaling (kindlin) (354, 437). An important part of integrin activation are the unclasping of the

a- and b-subunit at the level of the transmembrane and cytoplasmic tails as well as the physical

connection to the actin cytoskeleton. The a-integrin cytoplasmic tails vary in sequence and

length, but share a common GFFKR motif partially buried within the cell membrane interacting

with the transmembrane domain of the b-subunit (Figure 4 and 7). The cytoplasmic tails of



b-integrins contain two conserved PTB (phosphotyrosine-binding domain) binding sequences

(Figure 7): the membrane-proximal NPx(Y/F) and membrane-distal Nxx(Y/F) motifs. Talin

binds both the membrane-proximal helix and the b-integrin tail up to the first, membrane-

proximal NPx(Y/F) motif (16, 150, 457). Kindlin binds to the inter-NXXY-region and the

membrane-distal Nxx(Y/F) motif (253). Talin and kindlin can thus bind integrin simultaneously

(46). Furthermore, the binding of paxillin to kindlin has been found to promote integrin

activation (149), potentially further increasing the complexity of the integrin activating

intracellular adapter complex. As shown for some integrins, outside-in activation is triggered

by ligand binding, and therefore also ligands can be considered as integrin activators.

Additionally, mechanical load supports integrin activation (see Chapter 2) and could therefore

be considered as an activator. In this context, it is important to note that the F-actin linkage to

integrins is the mechanically weak point, where integrin clustering, recruitment of adapter

proteins (such as vinculin) and regulation of actin (de)polymerization are likely to be involved

(200, 327).

Inactivation

Integrin inactivators ensure the dynamic regulation of cell adhesion, e.g. by unbinding from

areas a cell wants to avoid, allowing migration away from this location. Phosphorylation by

kinases, most notably FAK and Src, increases the turnover of integrins and integrin-mediated

adhesions. Src serves as an integrator of several pathways, as it was shown that local ephrin/Eph

signaling influences integrin-mediated adhesions in its vicinity via a Src-FAK-paxillin cascade

(84). Additionally, endocytosis allows integrin detachment from the ECM and thereby

inactivates integrins: Dab2/clathrin-mediated endocytosis was shown to replace integrin

activators like talin and kindlin from b3 integrin and to mediate integrin endocytosis (488).

Interestingly, Dab2-mediated endocytosis was increased in the absence of mechanical load on

integrins, indicating that a lack of force can participate in integrin inactivation. Thus, there

might be different ways integrins can be inactivated, involving either an inside-out mechanisms,

e.g. proteolytic degradation of adapter proteins (386), or phosphorylation of integrins or

adapters (as review, see (148)). On the other hand, the proteolytic degradation of extracellular

matrix generates protein fragments with intact integrin binding functions. Such ECM

fragments, also termed matrikines, can bind to integrins in their soluble forms, maintaining the

extended-open conformations of integrins without mechanical linkage to the ECM. At this

point, it is not clear why such a tension-free state would enhance the exchange of talin with



other intracellular adapters, but it leads to the subsequent internalization of the complex, as

observed for fibronectin-bound receptors (76, 269).

As just mentioned, an interesting aspect of integrin activation vs. inactivation is the role of force

in these processes. Why are activators and inactivators needed, if increased mechanical load

activates integrins and decreased mechanical load inactivates them? First of all, it is important

to keep in mind that force needs a physical link to be transmitted: there is no relevant

mechanical force on integrins without talin-mediated actin linkage (354). Maybe even more

importantly, integrins are not purely mechanical anchors, but also measure tension, create and

integrate biochemical signals that in turn will change cell adhesion, motility and proliferation.

These different integrin functions should be reflected by different modes of integrin

(in)activation. At the same time, the crosstalk between different modes of integrin activation

would allow to integrate mechanical and biochemical signals at the level of cell adhesion.

Inhibition

Some integrins are found in the membrane in an inactive, bent conformation (see Chapter 2).

Additionally, the pool of inactive integrins can be stabilized or increased by integrin inhibitors

(summarized in (54)). ICAP, for example, binds to the tail of b1 integrin and prevents activation

(61), while filamin A is shown to inhibit integrin activation by establishing a ternary complex

with αIIb and β3 integrin subunits, preventing the separation of the integrin subunits (264) (see

Figure 3E).

Signaling and Mechanosensing

Finally, some adapters of integrins are involved in signaling or mechanosensing. Signaling

adapters include kinases like FAK, but also paxillin, that serves as a dynamic scaffold recruiting

different GEFs and GAPs, thereby regulating Rho-GTPases signaling and the organization of

the actin cytoskeleton (103). Mechanosensing adapters, on the other hand, include e.g. the Src-

substrate p130Cas, that is phosphorylated upon cell stretching (385). The ability of adapters to

sense and transduce mechanical signals is often coupled to force-mediated conformational

changes (208). Talin is an example, having several cryptic vinculin- and hidden actin-binding

sites that become accessible when the talin rod domain is put under tension (24, 353, 365). In

turn, the tension-exposed vinculin binding sites will enhance the physical anchorage of the talin

rod to the actin cytoskeleton via newly recruited vinculin. The examples of FAK and talin



illustrate that the same adapter can fulfill different tasks, according to the functional

classification presented here.

The slanted fence model of focal adhesions

What can we say about the spatial organization of integrin adapters within focal adhesions?

Super-resolution light microscopy has allowed the analysis of integrin-dependent adhesions in

great details. This strategy involves on the one hand the analysis and tracking of individual

integrin receptors in living cells, on the other the identification of the spatial organization of

key adhesion components (217, 373). In fact, tracking of individual b3 or b1 integrins in living

cells revealed the transient immobilization of these receptors within paxillin-positive focal

adhesions (373, 456). Moreover, cytoplasmic adapter proteins such as talin were directly

recruited from a cytoplasmic pool into focal adhesions, suggesting that the stabilization of the

talin/integrin interaction seen e.g. during talin-induced integrin clustering occurs inside the

adhesions themselves and not as a precursor outside of adhesions. The analysis of elongated

focal adhesions by interferometric photoactivated localization microscopy (iPALM) has

revealed specific membrane distances for different types of integrin adapter proteins. While the

paxillin/FAK/src module is located in a membrane-proximal “signaling layer”, the c-terminal

F-actin binding region of talin is located distant from the membrane within the F-actin and

vinculin cross-linking domain of focal adhesions. Moreover, the local tension induced on the

talin-rod domain is directly reflected by the orientation of the F-actin network forming the

backbone of adhesion (238). If these positional informations are integrated with the lateral F-

actin/myosin tension as well as the recent interactions of paxillin and DLC within the talin R8

bundle (491), one possible orientation is that of a slanted fence, similar to mobile fence systems

used in the alpine regions. These slanted fences are stabilized by slanted long poles,

representing the extended talin and F-actin fibers, and held in place by vertical poles, laterally

connecting the fence structure (see for example

https://de.wikipedia.org/wiki/Zaun#/media/File:Schrankzaun2.JPG).

For focal adhesions, we are proposing that the flexible regions in paxillin and FAK could serve

as dynamic connectors between the different layers of the focal adhesion, reacting to force

changes in the lateral as well as vertical axis of the tethered talin-rod domain (Figure 6). As for

the slanted fence, such a dense interaction in lateral and axial direction would increase the

stability of the system against perturbations from multiple directions.



Table 1 Integrin cytoplasmic adaptors and their known properties. The abbreviations of the detection methods are AC:
affinity chromatography, B: biosensor assay, EA: enzyme assay, ELISA: enzyme-linked immunosorbent assay, IP:
immunoprecipitation, ITC: isothermal titration calorimetry, NMR: nuclear magnetic resonance spectroscopy, PD: pulldown
assay, XRAY: X-ray crystallography, Y2H: yeast two-hybrid, O: other. The PDB code refers to the available structural
information in the Protein Data Bank (42). IBS1 and IBS2: integrin binding sites 1 and 2 in talin. The list is not exhaustive.

Adapter Integrin Approximate binding site or interaction Detec-
tion

PDB
code

Refe-
rence

Proposed
role

12-LOX β4 residues 661-1752 IP (432) fatty acid
metabolism

14-3-3 β2, β1A,
α4

T758-phosphorylated (by PKC) β2:
KSA[pT]TTVMNP, α4: KRQYK[pS]IL

AC, IP,
XRAY

2V7
D,
4HK
C

(48,
102,
129,
428)

integrin
activator (78)

4.1B β8 DYRVSASKKDKLILQSVCTRAVTYRREK Y2H, IP (283)

4.1G β1 IP, PD (81)

4.1R β1 IP, PD (80)

Abl2 β1 KFEKEKMNAK; phosphorylates Y783 IP, PD,
EA

(404,
453)

tyrosine
kinase

ACAP1 β1 DRREFAKFEK PD, IP (32,
254)

integrin
recycling
(254)

AKT1 β3 phosphorylates T753 EA (227) Ser/Thr
kinase

Annexin
A5 β5 FQSERSRARYEMAS O (70)

AP2M1 α4 QYKSILQE XRAY 5FPI (141)
integrin
endocytosis
(141)

AUP1 αIIb KVGFFKR Y2H,
PD (218)

recruits SYK
to αIIb tail
(219)

BIN1 α3 KCGFFKR Y2H (466)

CD98hc
β1A, β3;
not β1D
or β7

β1A: NPKYEGK, β3: TNITYRGT AC (346,
494)

promotes
integrin
signaling
(346)

CENP-R β3 β3: S752P weakens the binding Y2H, IP (395)

CIB1

αIIb,
αV, α5,
α2, α3,
α4, αM,
αL, α11

αIIb: LVLAMWKVGFFKRNR
Y2H,
IP, ITC,
O

(37,
145,
303,
400,
475,
487)

inhibits
αIIbβ3
activation
(490)

Csk β3 IP (314) Tyr kinase

Cytohesin-
1 β2 β2: WKALIHLSDLREYRRFE

Y2H,
IP, PD,
O

(29,
154,
232,
363)

an Arf-GEF,
restrains
αMβ2
activation
(29),
promotes
α4β1 and
α5β1 integrin
activation
(28)



Dab1 β1A, β3 membrane-distal NxxY PD (65) adaptor
protein

Dab2 β3, β5 membrane-distal NxxY PD (65) adaptor
protein

Dok1 β3, β1A,
β7, β2

phosphorylated NPxY (β3, β1A, β7), phosphorylated
NxxY (β3), S756-phosphorylated β2 NMR

(14,
175,
320)

adaptor
protein

EED β7, α4,
αE β7: RLSVEIYDR Y2H, IP (363) polycomb

protein

EIF6 β4 1st and 2nd FNIII domains and the connecting
sequence

Y2H,
PD (44) ribosome

binding

EPS8 β1A, β3,
β5 membrane-proximal NPxY PD (65)

Erbin β4 4th FNIII domain and C-terminal sequence (res. 1457-
1752)

Y2H,
PD (133)

Ezrin β4 IP, PD (451)
promotes β4
expression
(451)

FAK1 β5, β3

β3: complete cytoplasmic tail
β5+Y861-phosphorylated FAK1:
QSERSRARYEMASNPLYRKPISTHTVDFTFNKFN
KSYNGTVD
β5+Y861-nonphosphorylated FAK1: complete
cytoplasmic tail

IP, PD (120)

Tyr kinase

FAK2 β3 β3: LYKEATSTFTNITYRGT IP, O (333) Tyr kinase

FHL2
α3, α7,
β1, β2,
β3, β6,

α7A: AVQPSAMEAGGP, α7B:
GTIQRSNWGNSQWEGS, β1A: VVNPKYEGK,
α3: ARTRALYEAKRQ

Y2H, IP (382,
465)

adaptor
protein

FHL3 α3, α7,
αV, β1

α7A: GTVGWDSSSGRST; α7B:
DAHPILAADWHPELGP Y2H, IP (382) adaptor

protein

FilaminA

β1A,
β1D, β3,
β7, β2,
β6, αIIb

β2: LFKSATTTVMN
β3: PLYKEATSTFT
β7: LYKSAITTTI
αIIb: WKVGFFKRNRP

NMR,
XRAY,
PD,
Y2H, B

2MT
P,
2BR
Q,
2JF1

(137,
211,
223,
264,
428)

actin binding;
competes
with talin
(223)

FilaminB
β1A,
β1D, β3,
β6

Y2H,
PD (137)

actin binding

FilaminC β1A Y2H,
PD (164) actin binding

FRMD5 β5 PD, IP (196)

interacts with
and inhibits
ROCK1
(196)

Fyn β3 IP (18, 19,
314)

Tyr kinase

GIPC1 α3, α6,
α5 α3: ERLTSDA, α6: NRNESYS Y2H,

PD (434)

HAX1 β6 KLLVSFHDRKEVAKFEAERSKAKWQTGT Y2H, IP (357)

clathrin-
mediated
endocytosis
of αVβ6
(357)

Hck β1, β2,
β3 IP (18) Tyr kinase



ICAP1 β1 NxxY; KSAVTTVVNP

PD,
Y2H,
IP,
XRAY

4DX
9

(74,
267,
498)

negative
regulator of
β1 integrin,
competes
with talin
(55)

ICln αIIb KVGFFKR IP, PD,
B, O (241)

ILK β1, β3 Y2H, IP (181)

(pseudo-)
kinase, part
of ILK-
PINCH-
Parvin
complex,
triggers F-
actin
bundling
(443, 446)

Kindlin1 β1, β3,
β6 β1: TTVVNPKY AC, PD (182,

231)

co-operates
with talin to
activate
integrin (444)

Kindlin2 β1, β3,
β5, β2

β1: VTTVVNPKYEG
β3: TSTFTNITYRG

XRAY,
IP

5XQ
0,
5XQ
1

(196,
253)

co-operates
with talin to
activate
integrin (437)

Kindlin3 β1, β2,
β3 β1: TTVVNPKY, β2: membrane-distal NPKF PD (294,

295)

co-operates
with talin to
activate
integrin (248)

Lyn β1, β2,
β3 IP, PD (18, 19) Tyr kinase

MAPK1 β6, β3 β6: RSKAKWQTGTNPLYR, β3: EATSTFTN
IP,
ELISA,
PD

(6, 367)
ERK2,
Ser/Thr
kinase

MAPK3 αV, β3 β3: EATSTFTN IP, PD (260,
367)

ERK1,
Ser/Thr
kinase

MDGI α1, α2,
α10, α11

α1: WKIGFFKRPLKKKMEK
α2: WKLGFFKRKYEKMTKNPDEIDETTELSS
α10: WKLGFFAHKKIPEEEKREEKLEQ
α11: WKLGFFRSARRRREPGLDPTPKVLE

Y2H, B (308)

inhibits
integrin
activity (308)

Melusin β1 KLLMIIHDRREFAKFEKEKMNAKWDT Y2H,
PD (57)

Moesin β1 PD (449)
competes
with talin
(449)

MYO7A β5 IP, PD (268)
promotes cell
migration
(268)

MYO10 β1, β3,
β5 β1: WDTGENPIY Y2H,

IP, PD (496)

integrin
relocalization
to filopodia,
actin binding
(496)

Neuropilin
-1 α5 IP (445)

Nischarin α5 IYILYKLGFFKRSL Y2H, B (9)
inhibits PAK
kinase
activity (10)



NRK2

β1A,
β1D
(α7β1
but not
α5β1)

LIWKLLMIIHDRREFAKFEKEKMNAKW Y2H,
PD, IP

(255,
256)

nicotinamide
riboside
kinase 2

Numb β3, β5 membrane-proximal NPxY PD (65)

clathrin-
mediated
endocytosis
of integrin
(311)

p120RasG
AP α1, α2 α2: WKLGFFKRKYEKM IP, PD,

B, O (275)

recycling of
endocytosed
integrins
(275)

PAK4 β5 SERSRARYE Y2H,
PD (497) Ser/Thr

kinase

Paxillin β1, β3,
α4 α4: ENRRDSWSY, β3: LYKEATSTFTNITYRGT AC, IP,

O

(180,
266,
333)

adaptor
protein

PDK1 β3 phosphorylates T753 EA (227) Ser/Thr
kinase

PKC β2
PKCδ, PKCβI/II, PKCα and PKCη phosphorylate β2:
S745 and β2: T758
PKCα phosphorylates T760

EA (128)
Ser/Thr
kinase

PKD1 β3 EATSTFTNITYRGT IP, PD (467) Ser/Thr
kinase

Plastin2 β1, β2 β1: DRREFAKFEKEKMNAKWDTG
β2: LSDLREYRRFEKEKLKSQWN

IP, PD,
O (162)

preferentially
binds clasped
αMβ2 and
stabilizes its
inactive state
(441)

Plectin β4 FNIII 1 and 2, N-terminal part of connector between
FNIII 2 and 3 XRAY 3F7P (332)

hemidesmoso
me assembly
(234)

PP1C αIIb KVGF IP, PD (13,
447)

Ser/Thr
phosphatase

PP2A
β1A,
β1D,
αIIb

dephosphorylates T788 and T789 in β1A
αIIb: KVGFFKR

IP, PD,
EA

(176,
225)

Ser/Thr
phosphatase

PTPN1 β3 IP (17) Tyr
phosphatase

Rab21
α1, α2,
α5, α6,
α11, α16

GFFKR Y2H,
IP, O

(275,
331)

small GTPase

Rab25 β1 IP, PD (72) small GTPase

Rab34 β3 PD (418) small GTPase

RACK1
β1, β2,
β5, α4,
αV

β2: KALIHLSDLREYRRFEKEKL Y2H, IP (258,
498)

adaptor
protein

Radixin β2 CWKALIHLSDLREYRRF PD,
ELISA (433)

RanBP9 β2, β1 Y2H,
PD (105) Ran GTPase

binding

RNF181 αIIb KVGFFKR PD (60) ubiquitin
ligase



SHARPIN
α1, α2,
α5, αL,
αM, αD

GFFKR PD, IP
(143,
343,
359)

inhibitor of
integrin
activation
(359)

SHC1 αVβ3,
β1, β4

DTANNPL[pY]KEATSTFTNIT[pY]RGT; β4: Y1440
binds to Shc SH2, Y1526 binds to Shc PTB

IP,
NMR,
O

2L1C

(99,
108,
227,
243)

adaptor
outside-in
signaling (93)

Shp2 β4 Y1494 IP (43,
478)

Tyr
phosphatase

Skelemin αIIb, β3 αIIb: VGFFKRNRPP
β3: KLLITIHDR

Y2H,
PD,
NMR,
B, O

(109,
337,
360)

SNX17
β1, β3,
β5, β6,
β2

membrane-distal NxxY PD, IP

(50,
314,
411,
442)

integrin
recycling
from early
endosomes
(411)

SNX31
β5, β6,
β1, β2,
β3

membrane-distal NxxY PD, IP (442)

integrin
recycling
from early
endosomes
(442)

SRC β3 C-terminal RGT
XRAY,
IP, AC,
PD

4HXJ (18,
469)

Tyr kinase

SYK β2 IP (448,
476)

Tyr kinase

Syntrophin
1 β5 KFNKSYNGTVD O (47)

Talin1

IBS1:
β1A,
β1D, β2,
β3, β5,
β6, β7

IBS2:
β1, β2,
β3, β7

IBS1:
β1A: NAKWDTGENPIYKS
β1D: NAKWDTQENPIYKS
β3: TIHDRKEFAKFEEERARAKWDTANNPLYKEA

IBS2:
β1: KLLMIIHDRREFAKFEKEKMNAK
β2: KALTHLTDLREYRRFEKEKLKSQ
β3: KLLITIHDRKEFAKFEEERARAK
β7: RLSVEIYDRREYRRFEKEQQQLN

IBS1:
XRAY,
NMR,
PD, B

IBS2:
PD,
ELISA,
B, O

IBS1:
1MK
7

IBS1:
(15, 65,
150,
237,
442)

IBS2:
(159,
290,
370)

integrin
activation
(66), adaptor
protein, actin
binding

Talin2
IBS1:
β1A,
β1D, β3

β1A: NAKWDTGENPIYKS
β1D: NAKWDTQENPIYKS
β3: TIHDRKEFAKFEEERARAKWDTANNPLYKEA

XRAY,
NMR,
ITC

3G9
W (15, 16)

adaptor
protein, actin
binding

Tensin-1 β1A, β3 β1A: KWDTGENPIYKS
β3: KWDTANNPLYKE B (284) actin binding

Tensin-2 β3, β5,
β7, β1A PD (65) actin binding

Yes β3 β1.
β2 IP, PD (18, 19,

314)
Tyr kinase

α-actinin β1, β2,
β3 β2: RRFEKEKLKSQ AC, IP,

O
(318,
381)

actin binding
(318)



Chapter 5. Proliferation and YAP/TAZ signaling

Proliferation

Integrins are usually considered to be cell-matrix receptors. This might be mistaken as a passive

“gluing” to a substrate, offering a mere structural link to the cytoskeleton. Telling the story of

the paxillin discovery, Christopher Turner described this as the “dogma of the time” for

integrin-mediated adhesions (103). Fittingly, integrins possess no kinase domain, potentially

enhancing this belief at the beginning of integrin adhesion research. Still today, integrins and

integrin-mediated adhesions are sometimes just regarded as a structural link to actin und

intermediate filaments. Nevertheless, there is no doubt about the signaling capacity of integrin-

containing adhesive structures. Already early on, integrin-mediated adhesions were shown to

have elevated levels of tyrosine phosphorylation in v-Src transformed cells (161). On the other

hand, endothelial (286) and epithelial cells (147) undergo apoptosis after detachment from the

ECM (i.e. anoikis). Both examples, anoikis and increased phosphorylation after v-Src mediated

immortalization, highlight the link of integrin signaling to proliferation. Anoikis is regulated by

a FAK-p53 signaling axis (259), while YAP/TAZ proteins regulate substrate stiffness-

dependent proliferation (see below). Especially the YAP/TAZ pathway has attracted a lot of

attention in the last years, as it forms a link between mechanical input and cell proliferation.

However, it is interesting to note that the MRTF/SRF signaling pathway acts in parallel to and

shares certain target genes with the YAP pathway (140). Additionally, the MRTF/SRF pathway

targets also genes independently of YAP, which mediate a phenotype often associated with

increased YAP/TAZ signaling (140, 188).

YAP/TAZ

As integrins are increasingly recognized as mechanosensors, we want to discuss the

proliferative signaling of the integrin-dependent mechanotransducers YAP/TAZ in more detail.

For many years, the co-transcriptional regulators YAP and TAZ were mainly associated with

the Hippo signaling cascade controlling organ size in vivo and contact inhibition of proliferation

in cell culture (322). More recently, YAP/TAZ also emerged as important mechanotransducers,

sensing a variety of mechanical inputs and integrating them into output signals controlling

proliferation and stem cell differentiation (116). Stiff substrates in 2D and 3D, large adhesive

areas and increased blood pressure are examples of physical parameters that induce YAP/TAZ

activity by increasing their nuclear localization (323). At the same time, active YAP/TAZ

increases the expression not only of proteins driving proliferation, but also of focal adhesion

and actin organization (305), establishing a positive feedback ensuring persistent YAP/TAZ



activation. Mechanistically, YAP/TAZ proteins were found to be inactive as long as they reside

in the cytoplasm. This is the case, when they are Ser/Thr phosphorylated, leading to the

formation of a complex with phosphoSer-binding 14-3-3 adapters (116). YAP/TAZ proteins

are phosphorylated by the large tumor suppressor gene 1 and 2 (LATS1/2) as part of the

canonical Hippo signaling pathway. Dephosphorylated YAP/TAZ instead is enriched in the

nucleus, where it binds transcription factors like TEAD1 (305). This YAP/TAZ activation is

supported by a b1 integrin-Src axis and potentially explains the proliferative effects of

b1 integrin expression (376). However, the precise mechanism of YAP/TAZ activation remains

controversial, as some groups found also integrin-independent cell adhesion on poly-L-lysine-

coated substrates to cause YAP/TAZ activation (100, 499). These reports argued that the actin

network integrity is necessary for nuclear localization of YAP/TAZ. Recent publications might

now be able to reconcile these different findings: Elosegui-Artola and colleagues (121) found

that mechanical stretching of the nuclear membrane opens nuclear pore complexes (NPCs). An

increased diameter of NPCs then allows an easier entry of YAP proteins into the nucleus. This

size-dependent mechanism of YAP transport was supported by experiments showing that

increasing the size of the YAP protein by attachment of one or two GFP reduces its nuclear

localization. The importance of mechanical force on the nucleus for YAP/TAZ activation was

also shown by Shiu, Aires and colleagues (399). Their work indicated that an actin cap,

spanning over the nucleus and thereby flattening it, applied mechanical force on the nucleus,

leading to YAP activation. This actin cap relied on b1 integrin localization in the perinuclear

region. Thus, it is evident that both b1 integrin signaling as well as actin integrity are needed

for force application on the nucleus, which then facilitates the nuclear localization of

YAP/TAZ. Apart from this mechanism, also other signaling cascades for YAP/TAZ signaling

have been introduced recently. Meng and colleagues (285) showed that focal adhesions on soft

substrates activate RAP2, leading to a deactivation of RhoA and activation of LATS1/2. As a

consequence, YAP becomes phosphorylated and remains in the cytoplasm. Thus, separate

pathways might work together to balance activation and inactivation of YAP/TAZ. However,

as mentioned in the beginning, it is important to better analyze these pathways in order to

understand the potential crosstalk with the MRTF signaling cascade. Interestingly, both

YAP/TAZ and MRTF cascades involve integrin-mediated structural linkage and signaling,

rendering these pathways fascinating examples of cellular signaling, where mechanical and

biochemical inputs are sensed and integrated by integrins and their downstream targets.



Chapter 6: The concept of mechanosensing: linking integrin-dependent cell adhesions to

signaling

Cells are in an active crosstalk with their surrounding environment. Cells integrated in a

functional tissue receive signals not only from their neighboring cells, but also sense the global

forces and metabolic state of a tissue. Although chemical signaling has highly important roles

in cellular homeostasis, also physical signals including mechanical cues are essential for proper

tissue functions. How do cells sense mechanical signals?

Integrin-mediated adhesions have a central role in cellular mechanosensing: they are physical

links between individual cells and their surrounding extracellular matrix (419). Cell-matrix

adhesions can thus be considered mechanical connectors. On the intracellular side, they are

linked to the actomyosin machinery via the cell cytoskeleton, and on the extracellular side they

are coupled to extracellular scaffolds formed by proteins such as fibronectin and collagen,

containing specific attachment sites for integrin receptors (177, 458, 493). Cell-matrix

adhesions are considered mechanosensitive, as their size, composition and signaling capacity

are known to be affected by mechanical load and substrate stiffness (123, 366).

Integrins are among the most studied mechanosensory receptors. In cellular mechanosensing, a

mechanical signal is received by a mechanoreceptor, which is capable of translating the signal

into a chemical cue (82). The chemical signal may then affect cellular processes such as gene

expression. This process is called mechanotransduction (79).

What do we know about the details of integrin-mediated mechanosensing? First of all, integrins

have several different conformations, as discussed in Chapter 2. The regulation of integrin

conformation is the first level of mechanosensing in cell adhesion (Figure 8). Although integrin

conformation can be modulated by chemical factors, the full activation of integrins requires

mechanical signals (208). However, as indicated in Chapter 2, it is still under investigation

whether mechanisms of integrin activation found in well-studied integrins can be easily

transferred to others. Therefore, we should not expect the same scheme of conformational

regulation to be applicable for all integrin family members.

The second level in integrin-mediated mechanosensing is the integrin-ligand binding (Figure

8). While protein-protein interactions typically have a decreased lifetime under mechanical



load, the bond between fibronectin and integrins a5b1 and aVb3 has been found to function as

a catch-bond, becoming stronger when force is applied (146, 233, 291).

The third level of integrin-mediated mechanosensing relates to the intracellular adapter proteins

(Figure 3, Table 1). The cytoplasmic domain of integrin acts as a ligand for several adapter

proteins, including talin (177, 228), kindlin (371), sharpin (359), tensin (156) and a-actinin

(329). These adapter proteins link integrins to the cytoskeleton, but also mediate cellular

signals. Importantly, the adapter proteins also act as mechanosensory elements (for review, see

(153, 194, 208)). The best studied example is talin, which connects to integrin via its N-terminal

head domain and to F-actin via the C-terminal rod domain (169, 228). This exposes talin to

mechanical load, facilitating conformational changes. As a result, cryptic binding sites for other

adhesion proteins become exposed and the particular adhesion site is reinforced (160). Proposed

force-regulated talin binding partners include vinculin (135, 160, 206, 247, 353, 482), DLC1

(178, 491), RIAM (170, 244, 477), and paxillin (384), but considering the size and complexity

of talin, it is likely that additional force-regulated talin interactions exist (169, 301). As

mentioned above, the situation for paxillin is unique, as it is recruited to the talin-rod by short

helical elements positioned in its flexible N-terminal domain, that show affinity towards FAK

and parvin as well as the GIT/PIX/PAK regulatory complex. On the other hand, tension-

mediated paxillin recruitment to adhesions (384) is regulated at the level of the proximal talin-

binding NPXY motif of the integrin (335), as well as the integrin-tail recruited kindlin (149,

437). While the mechano-dependent recruitment of paxillin to integrin-adhesions is still not

fully understood, it illustrates well how the connectivity of different intracellular adapter

proteins allows different signaling outputs in responses to mechanical perturbations.

Although these signaling outputs appear to create an on/off signal, it is also important that this

mechanosensing system can be used in different cellular contexts, exhibiting largely different

force regimes. Our recent study focusing on the talin rod revealed the tailoring of talin

properties to have significant effects on cellular mechanosensing (353). We found mechanically

weakened talin to decrease cellular traction force. Even more interestingly, we noticed the

recognition of extracellular matrix proteins to be altered in cells expressing mechanically

weakened talin compared to cells expressing the wild-type protein. Therefore, it appears that

mechanical signals are instrumental in controlling the environmental sensing via integrins.



The mechanically induced conformational changes in intracellular proteins contributing to cell-

matrix adhesion have been discussed in our previous review (208). We are only at the beginning

to understand the mechanoregulation of adhesion signaling at the molecular level. However,

the mechanisms are taking shape: i) opening of binding sites due to mechanical load (example:

vinculin binding sites in talin rod (115, 160, 206), ii) disappearance of binding sites due to

mechanical load (DLC1 – talin, (178, 252)), iii) phosphorylation of mechano-exposed regions

within proteins (p130Cas) (385), iv) and proteolytic cleavage of partially unfolded proteins (4).

Figure 8 aims to summarize these mechanisms. These regulatory events, combined with the

high number of components involved, makes the creation of a comprehensive model of

adhesion signaling challenging. In addition, new mechanisms still emerge as e.g. the

competition between kank2 and actin for talin binding, leading to a modulated force

transmission to integrins (420). The motor-clutch model emerged over the years as a promising

framework to explore integrin dependent mechanotransduction (73, 123). In this model,

molecular clutches link F-actin to the substrate and mechanically resist myosin-driven F-actin

retrograde flow (73). This model might in future incorporate additional features to model real

integrin-mediated adhesions more closely.

An increasing number of reports indicate that mechanotransduction on substrates of increasing

stiffness follows a sigmoidal mechanosensitivity, creating a behavioral switch at a substrate

stiffness around 5 kPa. Adhesion maturation, nuclear translocation of YAP or cell spreading

are all suppressed on substrates below 5 kPa and increase from there within a narrow stiffness

range to reach plateau levels. Roca-Cusachs and coworkers successfully linked this behavior to

the motor-clutch model (122). Importantly, this on/off mechanoswitch also implies that studies

on glass substrates, with a stiffness in the MPa range, might miss important changes in

mechanotransduction occurring around the physiologically relevant 5 kPa stiffness range.

According to the motor-clutch model, integrin-ligand affinity is a parameter that might shift the

onset of mechanotransduction from 5 kPa to softer or stiffer substrates. This also implies that

seemingly redundant integrin-ligand interactions on glass substrates might cause specific,

differential effects at physiological stiffness values. We recently showed aVb3 integrin to have

a higher affinity for vitronectin than for fibronectin, leading to differential mechanotransduction

on the respective ligands (31). We envision that the increased interest in the mechanical

regulation of integrins will lead to the discovery of further force- and stiffness-dependent

integrin-ligand interactions. At the same time, it is clear that also integrin adapters are an

intrinsic part of the mechanosensory machinery. Talin has several cryptic binding sites, that



open under mechanical stretch, and is therefore not only of interest as integrin activator, but

also as mechanosensor and mechanotransducer (see above) (170, 353, 354). Interestingly, the

mechanotransduction by talin is isoform-specific, with talin2 increasing the ability of cells to

spread on 1-2 kPa substrates compared to talin1 (26). This difference can be attributed to the

subdomains R1-R3 in the talin rod domain (indicated as yellow rectangles in Figure 6).

Interestingly, several studies found these subdomains to be relevant for mechanosensing and

force-dependent structural rearrangements. While talin is involved in integrin activation, it was

demonstrated that also an integrin inhibitor, Thy-1, modulates mechanosensing (see Figure 3E)

(136). Therefore, mechanosensing by integrins appears to rely on the proper balance between

ligand binding and unbinding.

Chapter 7: Role of integrins in viral and bacterial infections

Integrins are best known as receptors contributing to cellular attachment. However, they also

act as receptors for viruses and bacteria and are otherwise involved in pathogenic processes.

There are numerous known viruses exploiting integrins for their attachment to the cell, the virus

entry into the cell as well as endosome escape (reviewed in (201)). Many viruses display an

RGD sequence on their surface, which enables integrin binding. Adenoviruses utilize integrin

αV for virus internalization (464). Binding of the adenovirus to integrin appears to induce a

conformational change of integrin into an extended conformation; simultaneously a

conformational rearrangement is observed also in the virus capsid (261). Similarly, integrin

αVb3 has been identified as a cellular receptor mediating both the cell adhesion and entry of

Kaposi's sarcoma-associated Herpes virus into target cells (152). Another interesting group of

viruses utilizing RGD-dependent integrins are enteroviruses, being among the most common

human pathogens. Within the group of enteroviruses, only a handful of virus strains appear to

utilize integrins in cell recognition. One of them is the coxsackie virus A9 (CVA9), which

shows preferential binding to αvβ6 with a low nanomolar Kd (393). However, in this case

integrin activation might actually not promote virus internalization (393). Among other RGD-

possessing viruses, HIV utilizes α4β7 via the RGD tripeptide in the V2 loop of gp120 to infect

the cell (23), and Ebola virus appears to bind α5β1-integrin for cell entry.

Viruses do not always depend on RGD to utilize integrins in their propagation cycle. Rotavirus

infection was blocked with peptides containing the α4 integrin ligand sequences Tyr–Gly–Leu

and Ile–Asp–Ala. These peptides eliminated virus binding to α4 integrins and infectivity (171).



Another non-RGD integrin-dependent virus is Ross River virus, which appears to utilize the

collagen-binding integrin α1β1 (263). Some integrin-interacting enteroviruses do not contain

RGD-like peptides, such as echovirus 1 (41). Interestingly, this virus appears to prefer binding

to closed α2β1 integrin, and the inactivating integrin mutation E336A further enhanced this

integrin binding (213). Echovirus 1 makes a large contact with the I-domain, with MIDAS site

not being involved in binding (226). This virus  does not depend on the integrin α-subunit during

the later events of virus entry – the virus can infect cells even if the α2-tail is swapped or deleted

(40).  Notably, the binding of echovirus 1 appears to induce cellular signaling via focal adhesion

kinase (379).

The natural tendency of integrins to cluster as a response to extracellular signals is

complementary to the repetitive structure found in many virus capsids. For example,

enteroviruses are ~30 nm in diameter, and contain 60 copies of VP1-VP4 capsid proteins.

Therefore, the RGD sequences are displayed on the virus capsid almost perfectly in line with

the density of clustered integrins observed in living cells:  Changede et al. (75) reported

∼100 nm clusters containing ∼50 activated β3-integrins in the early adhesions under a wide

variety of conditions on RGD surfaces. Thus, the regular and dense arrangement of integrin

ligands on the virus particle offers a fascinating platform for the active integrin-mediated

communication between cells and viruses.

The studies of Echovirus 1 have revealed, that virus binding can lead to integrin clustering

without activation (213). Further, clustering of nonactivated integrins induces transient

phosphorylation of FAK and paxillin in a PKCα-dependent, but talin-independent manner

(379). These findings suggest that virus-induced clustering of integrins can activate FAK

without conformational integrin activation.

Coxsackievirus B3 is the most viral cause of myocarditis (for review, see (130)). Activation of

Akt during coxsackievirus B3 infection has been shown to take place through a PI3K-dependent

pathway (127). Inhibition of integrin-linked kinase (ILK) activity and expression significantly

blocked coxsackievirus B3-triggered Akt phosphorylation on Ser473 without effect on Thr308

phosphorylation. As a consequence, ILK inhibition lead to a significant decline in

coxsackievirus B3 RNA transcription, viral protein synthesis, and virus progeny release.



Integrins are involved also in bacterial infections, and the following examples provide some

insights into the mechanisms. A more extensive summary of bacterial species engaging

integrins within the infection cycle can be found in a review by Hauck et al. (186).

Shigella bacteria cause shigellosis, a common intestinal infection leading to diarrhea and fever.

Using CHO cells expressing integrin subunits, Watarai et al. showed that integrin α5b1

promotes the entry of the Shigella flexneri bacteria (455). They demonstrated IpaB, IpaC and

IpaD proteins to bind to α5b1. Interestingly, Shigella appears to utilize also other components

of the cell adhesion complex during its invasion, including vinculin (326) and ILK (224).

Staphylococcus aureus is a common cause for respiratory infections. Most clinical isolates of

S. aureus express the fibronectin-binding proteins FnBP-A and FnBP-A (330). Binding of

fibronectin by FnBPs is essential for the bacterial invasion, with fibronectin functioning as a

bridging molecule linking FnBP to integrin α5β1 (reviewed in (186)). This leads to the active

intake of the bacteria, which does not require other bacterial factors, since even FnBP-coated

polystyrene beads are internalized by cells (405).

Invasins are a class of bacterial proteins associated with the penetration of bacteria into cells.

Isberg et al. showed that α3β1, α4β1, α5β1, and α6β1 all bind the Yersinia pseudotuberculosis

invasin protein (210). The integrin-binding domain was mapped to a 192-aa C-terminal region

of invasin that does not contain any RGD sequence (251). This integrin-binding domain was

found sufficient to allow bacterial entry into mammalian cells (358). Later, beads coated with

a larger invasin derivative comprising the C‐terminal 497 amino acids were found to be

internalized more efficiently than those bearing only 197 C-terminal residues. This seemed to

be explained by the homomultimerization of the immobilized invasin fragment (106),

suggesting a role of integrin clustering also in bacterial invasion.

The last example of integrin-bacteria-interaction demonstrates how bacterial cells can modulate

tissue structure to support bacterial colonization. In some human tissues, the turnover rate of

cells can be high, and e.g. the intestinal epithelium self-renewal is completed within 2–3 days

(342). Slowing down this epithelial turnover can support bacterial colonization during an

infection (212). Shigella flexneri can reinforce host cell adherence to the basal membrane via

ILK (224). The interaction between ILK and the effector protein OspE increases cell surface

levels of b1 integrin and suppresses phosphorylation of focal adhesion kinase and paxillin. As



a result, the reduced adhesion turnover and suppressed detachment of infected cells enables

Shigella to colonize the epithelium. In a similar fashion, some bacteria such as N. gonorrhoeae

can bind to human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs),

promoting enhanced host cell adhesion via integrin b1 activation (297).

In summary, integrins are important mediators of viral and bacterial infections, and integrin-

mediated attachment, internalization as well as control over tissue integrity are central

mechanisms in pathogenic processes. One may thus ask if integrins are employed more

frequently as receptors for pathogens than other cell surface proteins. This is not straightforward

to address: Although integrins are widely utilized by viruses and bacteria (280, 413), also

numerous other known viral receptors are known (173). Potentially the intense study of

integrins has lead to their frequent identification as virus receptors. In any case, it appears

remarkable, that viruses, having a highly variable structure and shape, can exploit integrins in

cell recognition. One such example is the utilization of integrins by adenoviruses and

enteroviruses, two different classes of viruses with different evolutionary origin, showing both

five integrin binding sites located in pentagonic assembly with spacing of ~60Å (reviewed by

Stewart & Nemerow (413)). We therefore speculate that integrin clustering and integrin

activation are suitable cellular mechanisms for the exploitation by infectious agents, and that

the integrin-pathogen interactions thus offer potential targets for development of novel drugs.

Chapter 8: Integrins and diseases

Integrins are central for the integrity of the tissues, cellular adhesion and cell-matrix

interactions, and it is therefore not surprising that several diseases are associated with defects

in integrins. These integrin-related diseases are an active target for drug development, and a

search with the term “integrin” revealed 151 studies in ClinicalTrials.gov, reflecting the

importance of this research field. A significant portion of these studies (~30%) are focusing on

integrin-targeting drugs. The first integrin-targeting drug entering the market 1994 was

Abciximab (ReoPro), a 47 kDa Fab fragment against αIIbβ3 based on the monoclonal antibody

developed by Coller et al. 1983 (91). This antibody also binds αvβ3 (430) and αMβ2 (403); it

is used to prevent blood clots during the opening of blood vessels in the heart. Eptifibatide

(Integrilin) is a cyclic heptapeptide derived from a barbourin protein found in the venom of the

southeastern pygmy rattlesnake. This peptide targets αIIbβ3 and is used to reduce the risk of

acute cardiac ischemic events (183, 435). It was launched in Europe 1999 and in USA 1998.



Tirofiban (Aggrastat) is small molecule inhibitor for αIIbβ3. It was approved in USA 2000 and

in Europe 1999 for the treatment of acute coronary syndrome. Natalizumab (Tysabri) is a

humanized monoclonal antibody against α4-integrin used in the treatment of multiple sclerosis

(339) and Crohn's disease (167). Natalizumab is thought to prevent immune cells from crossing

blood vessel walls to reach the affected organs. The most recent integrin-targeted therapeutic

antibody accepted for clinical use is Vedolizumab (Entyvio), which is a humanized monoclonal

antibody specifically binding to the α4b7 integrin and blocking the interaction of α4b7 integrin

with mucosal addressin cell adhesion molecule-1 (407). This leads to inhibition of the migration

of memory T-lymphocytes across the endothelium into inflamed gastrointestinal tissue (372).

Vedolizumab is approved for treating patients with ulcerative colitis or Crohn’s disease.

The following paragraphs provide insights into the importance of integrins and integrin

activation in various diseases.

Integrins and skin diseases

Integrins are important for the integrity of the skin. Experiments with genetically manipulated

mice have shown that deletion of α6 or β4 leads to disappearance of hemidesmosomes and the

impairment of the epidermal adhesion to the underlying basement membrane (114, 155, 307).

Even modest mechanical stress causes peeling of the epidermis from its underlying tissue in

these animals. In humans the equivalent disease is known as junctional epidermolysis bullosa,

and the associated genetic factors are reviewed in (185).

Mice deficient in α3 integrin have only a mild skin phenotype: the epidermis of α3 integrin-

deficient mice has normal morphology and other characteristics (111, 192, 235). Also the

hemidesmosomes of α3 integrin-deficient mice appear intact, and most regions of the basal

membrane are coherent. The only defects observed in these animals are microblisters in the

limb skin regions due to ruptures within the basal membrane.

As b1 integrin is essential for mouse development (132, 412), the role of β1 in skin epithelium

has been studied using conditional knockout technology (56, 352). Mice with keratinocyte-

specific knockouts for β1 integrin exhibit severe skin blistering and hair defects (352). In detail,

a massive failure of basement membrane organization was observed, hemidesmosomes were

instable and hair follicle keratinocytes failed to remodel the basement membrane. Also,

Brakebusch et al. generated mice with a keratinocyte-restricted deletion of the β1 integrin using



the cre-loxP method (56). This resulted in hair loss and hair follicle abnormalities, and the

epidermis of the skin became hyperthickened. The loss of β1 also caused a reduced α6β4

expression in basal keratinocytes and a decreased number of hemidesmosomes. Moreover,

disruption of the basement membrane and blister formation were observed at the dermal-

epidermal junction.

Integrins have also been a target for drug development for skin diseases. Efalizumab (Raptiva)

is a recombinant humanized monoclonal antibody designed to treat autoimmune diseases (462),

that was originally authorized for the treatment of psoriasis by EMEA 2004 and FDA 2003

(168). Efalizumab binds to the integrin αL subunit of the αLβ2 integrin specific for leukocytes

(189). However, the marketing of efalizumab was suspended 2009 due to side effects such as

Guillain-Barré and Miller-Fisher syndromes, encephalitis, encephalopathy, meningitis, sepsis

and opportunistic infections.

While integrin activation by intracellular proteins is discussed elsewhere in this review, in the

context of skin diseases, it is relevant to pinpoint the connection between kindlin and skin

diseases. The best-known disease associated with kindlins is Kindler syndrome, involving the

loss of kindlin-1 expression in epidermis (402). Gene knockout of Fermt1, the gene encoding

kindlin-1, in mice caused skin atrophy and lethal intestinal epithelial dysfunction (444).

Cancer

Integrins have a central role in cancer, as reviewed previously (107, 374), and it is not possible

to give a comprehensive overview within this article. Instead, we provide here selected

examples of the importance of integrin activation in cancer.

Felding-Habermann et al. (134) demonstrated activated integrin avb3 mutant D723R to support

tumor cell arrest in the circulation through the interaction with platelets. This activated αvb3

was found to be expressed by metastatic human breast cancer cells, leading to metastatic

lesions. Expression of the constitutively activated integrin mutant αvb3-D723R promoted

metastasis in a mouse model. These results support a model where breast cancer cells can

exhibit a platelet-interactive and metastatic phenotype controlled by the activation of integrin

αvb3. Beside this mechanism, αvb3 integrin might have additional and parallel modes of action

supporting cancer progression and metastasis. Several studies indicated that αvb3 integrin and



VEGF receptor signaling act synergistically to promote angiogenesis (101, 274), an important

part of tumor progression. This link between αvb3 integrin and VEGF signalling motivated

clinical trials with Cilengitide, a specific inhibitor of αvb3 and αvb5 integrin. Also glioblastoma

express avb3 integrin, in contrast to the healthy surrounding tissue, making αvb3 integrin

inhibition a promising strategy for the treatment of this cancer. Accordingly, orphan designation

for Cilengitide (EU/3/03/184) was granted by the European Commission on 14 January 2004

to Merck KGaA, Germany, for the treatment of glioma. Unfortunately, the drug was later

removed from the market, as the phase 3 study showed no positive effect in glioblastoma

treatment (415). A mechanism explaining the failure of Cilengitide in this clinical trial is still

missing, although it was recognized later on that a low dosing of Cilengitide activates

angiogenesis in mice rather than preventing it (362). This surprising effect might be explained

by systemic effects, but the partial agonism of high-affinity integrin inhibitors like Cilengitide

might still challenge this therapeutic strategy. In fact, we recently showed that the correlation

of the different ectodomain conformations of integrins with immobilized ligand binding is still

challenging. We revealed that αvb3 integrin binds vitronectin in the extended-closed

conformation, but fibronectin only in the extended-open conformation (31). Thus, rational drug

design could benefit from further research efforts focusing on integrin-ligand interactions that

take into account the conformational flexibility of the integrin ectodomain. Furthermore, this

research should be performed appreciating the non-redundancy of these interactions.

Chronic myeloproliferative neoplasia comprises several sub-entities, including polycythemia

vera (PV), essential thrombocytosis (ET), primary myelofibrosis (PMF) and others (436).

Chronic myeloproliferative neoplasia caused by the V617F mutant of Janus kinase 2 (JAK2)

commonly displays abnormal integrin expression on platelets, erythrocytes and leukocytes

(118). A recent study found JAK2-V617F to trigger constitutive activation of the integrin

inside-out signaling molecule Rap1, resulting in translocation to the cell membrane (118). In

transgenic mice expressing this JAK2-V617F protein in hematopoietic cells JAK2+/VF

granulocytes showed increased binding of 9EG7 antibody, indicating the conformational

activation of β1 integrins. Moreover, increased expression of both β1 and β2 integrins was

observed (118). The researchers also demonstrated the neutralizing anti–α4 (anti-VLA-4) and

anti–β2 integrin antibodies to suppress the pathologic thrombosis observed in JAK2+/VF mice.

Additionally, the aberrant homing of JAK2+/VF leukocytes to the spleen was inhibited by the

neutralizing anti-β2 antibodies or alternatively pharmacologic inhibition of Rap1. These

findings suggest that JAK2-V617F, a mutation commonly associated with myeloproliferative



disorders (214), leads to integrin activation, promoting pathologic thrombosis and abnormal

trafficking of leukocytes to the spleen (118).

Cancer-associated fibroblasts (CAFs) are the most abundant cells in a tumor (216). Attieh et al.

found that CAFs isolated from the tumor of colon cancer patients secrete and assemble

fibronectin more efficiently compared to noncancer-associated fibroblasts from the neighboring

healthy tissue (25). Importantly, the amounts of secreted and assembled fibronectin correlated

with the invasion index of the tumor. This study suggests mechanical signals to be important

for CAF-mediated cancer cell invasion, as they induce fibronectin assembly. The authors

propose that contractility of CAFs is necessary for downstream activation of the integrin-αvβ3

and assembly of fibronectin puncta. α5β1 becomes critical only at later stages of fibronectin

assembly. In summary, Attieh et al. (25) revealed that fibronectin-depositing CAFs enable

cancer cells to invade the matrix and this process is independent of matrix metalloproteinases.

LAD-III: Kindlin-3 is essential for proper integrin activation

A rare autosomal leukocyte adhesion deficiency syndrome called LAD-III is characterized by

severe bleeding and impaired adhesion of leukocytes to inflamed endothelia. A hallmark of this

recessive disease is the impaired activation of β1, β2 and β3 integrins on platelets and

leukocytes (12).

Malinin et al. described a kindlin-3 point mutation causing serious bleeding, frequent infections

and osteopetrosis at an early age (277). They found the symptoms to be caused by an integrin

activation defect in hematopoietic cells, including platelets and leukocytes. The lymphocyte

cell line established from the patient was phenotypically rescued by expression of wild-type

kindlin-3, proving the association of the disease to the defective kindlin-3. The inactivation of

kindlin-3 was caused by a point mutation creating a premature stop codon at the amino acid

position 16. Importantly, all the clinical symptoms of the subjects were resolved by an allogenic

bone marrow transplantation. Also another study by Svensson et al. (421) found a link between

kindlin-3 and LAD-III,  identifying two independent mutations causing decreased KINDLIN3

messenger RNA levels and loss of protein expression.

During the last years it has become evident that integrins are not only activated by talin, but

also in coordination with kindlin binding to the second NxxY motif (335). As kindlin-3 is

expressed exclusively in hematopoietic cells, it is clear now that LAD-III is caused by



insufficient integrin activation due to the lacking kindlin contribution. Moser et al. 2008 (295)

found kindlin-3 to interact with β1 and β3 integrin tails both in the presence and absence of

talin-1, with the F3 subdomain of kindlin-3 being sufficient for this direct interaction. Later,

Moser et al. 2009 (294) showed that kindlin-3 binds the cytoplasmic domain of β2 integrin.

They proposed kindlin-3 to be essential for neutrophil adhesion and spreading on β2 integrin-

dependent ligands such as intercellular adhesion molecule-1 and the complement C3 activation

product iC3b.

Autosomal dominant polycystic kidney disease

Integrins are highly important for the kidney development, and a comprehensive overview on

the phenotypes associated with various integrin mutations in mouse models has been provided

by Mathew et al. (282).

Autosomal dominant polycystic kidney disease (ADPKD) is a disorder involving the

development of bilateral renal cysts, accumulation of extracellular matrix and tubulointerstitial

fibrosis (440). The disease is caused by the mutation of the PKD1 or PKD2 genes encoding

polycystin-1 (PC1) or polycystin-2 (PC2), respectively (184). Interestingly, the cystic epithelia

express higher levels of integrins (246).

A recent study (246) showed that depletion of PC1 in immortalized renal collecting duct cells

elevated the levels of integrin-β1 and fibronectin and displayed increased integrin-mediated

signaling in the presence of Mn2+ compared to wild-type cells. Conditional inactivation of

integrin-β1 in collecting ducts of mice resulted in a dramatic inhibition of Pkd1-dependent

cystogenesis with a concomitant suppression of fibrosis and preservation of normal renal

function. These results suggest functional integrin-β1 to be required for the early events leading

to renal cystogenesis in ADPKD.

Integrins and liver diseases

Chronic injury in liver is characterized by intense production of collagens and other ECM

components accompanied with their decelerated degradation, leading to net matrix

accumulation (reviewed in (389)). Several clinical studies have found changes in integrin

expression to be associated with chronic liver diseases. Nejjari et al. (306) studied patients with

chronic hepatitis C and found an increase in b1 labeling intensity in 83 out of 94 patients

(88.2%). Moreover, also expression of α1, α5 and α6 integrins were pronounced (306). Popov



et al. (340) extracted total RNA from explant livers of patients undergoing liver transplantation.

They found β6 integrin mRNA transcript levels to be significantly elevated in patients with

chronic hepatitis B and C, primary biliary cirrhosis, primary sclerosing cholangitis and alcohol-

induced liver injury. This suggests integrin overexpression to be an etiology-independent factor

associated with liver fibrosis.

Atherosclerosis

Atherosclerosis is a chronic inflammatory disease involving accumulation of lipids, cell debris

and extracellular matrix proteins as well as monocyte-derived macrophages at the inflamed

vascular wall. The M1/M2 macrophage ratio can be considered a determinant of plaque stability

(reviewed in (325)). A study by Cho et al. revealed that M1 macrophages are exclusively found

in plaques of symptomatic patients and elevated in unstable plaques (87). Aziz et al. (27) studied

the role of αDb2 integrin in atherosclerosis using both mouse and human samples. In this study

the retention of macrophages was linked to a significant upregulation of integrin αDb2 in M1

macrophages in vitro and in macrophages in atherosclerotic lesions. The findings suggest that

αDb2 contributes to the development of chronic inflammation via regulation of macrophage

migration. Interestingly, our study focusing on human arterial plaques showed upregulation of

integrin b2, while all other studied integrins (ITGA1, ITGAV, ITGB3, ITGB5) were

downregulated (315).

Integrins and smoking

Pulmonary emphysema, largely attributable to tobacco smoke exposure, is a worldwide

challenge. Morris et al. observed elevated expression of matrix metalloproteinase 12 in mice

lacking the integrin avb6, that developed progressive spontaneous emphysema. The

emphysema was prevented by transgenic b6 integrin expression, which, however, was

dependent on the ability of b6 to bind and activate latent TGF-b. Importantly, the pathological

characteristics of mice lacking avb6 integrin resemble those observed in young cigarette

smokers (310).

Overbeek et al. (319) studied the effect of cigarette smoke on neutrophil migration and β2-

integrin activation. CD11b-expressing neutrophils appeared in the lungs of mice after exposure

to cigarette smoke for 5 days. To interpret this finding further, they exposed freshly isolated

human neutrophils to cigarette smoke extract (CSE). CSE activated αMβ2 on the neutrophils,

leading to firm adhesion to fibrinogen. In response to CSE the neutrophils transmigrated



through endothelium via the activation of β2-integrins, and the functional block of CD11b and

CD18 decreased this transmigration.

Although e-cigarettes could be considered a “healthy” choice compared to traditional cigarettes,

a recent study revealed that platelets from e-cigarette-exposed mice are hyperactive, show

enhanced aggregation and granule secretion. Importantly, also these platelets showed increased

activation of the αIIbβ3 integrin (351).

Chapter 9: Integrins and TGF-b activation at the onset of fibrosis

In recent years cancer cells were demonstrated to cooperate extensively with cancer-associated

fibroblasts, shaping the tumor microenvironment (67). These CAFs rearrange the tumor-

surrounding ECM, increase its stiffness and promote cancer cell invasion (25, 67). This

pathological ECM stiffening, called fibrosis, is not restricted to cancer, but rather constitutes a

pathology of its own. In a simplified way fibrosis can be described as excessive scar formation.

While scars preserve the mechanical integrity of the tissue, they fail to support normal organ

function, such as gas exchange in the lung or the beating of the heart. Ultimately fibrosis can

lead to organ failure and death and is estimated to contribute to more than 40% of deaths in the

developed world (468). The onset of fibrosis is characterized by the transformation of cells into

contractile myofibroblasts, mediated by signaling molecules of the transforming growth

factor b (TGF-b) family (190). Interestingly, cells do not secrete TGF-b in a soluble form, but

rather as a complex with the latency associated peptide (LAP). This LAP/TGF-b complex is

anchored to the ECM via latent TGF-b binding protein (LTBP), preventing TGF-b from

binding to its receptor (190). The release of TGF-b from this complex requires the binding of

integrins to an RGD sequence in LAP and mechanical load on the ECM-(LAP/TGF-b)-integrin

axis (299). In fact, replacing the RGD sequence in LAP by RGE prevents integrin binding to

LAP and in mice leads to a phenotype comparable to a complete TGF-b knockout (481). This

highlights the importance of integrin binding in the process of TGF-b release and subsequent

transformation of cells into myofibroblasts. For the same reasons, integrins are also interesting

drug targets for the treatment of fibrosis, where complete TGF-b inhibition causes too many

adverse side effects (240).



A survey of the literature suggests that the complete group of αV integrins, including αVb1,

αVb3, αVb5, αVb6 and αVb8, binds to LAP. However, TGF-b activation appears to be

mediated only by αVb8 integrin and especially αVb6 integrin (368), while a recent work

indicates that also αVb1 integrin might be relevant (361). Whether these integrins compensate

each other or whether they act in a tissue- and development-specific context remains to be

explored. Dong and colleagues (113) published structural data for the binding of LAP/TGF-b

to aVb6 integrin and revealed that the binding interface of aVb6 integrin and LAP/TGF-b is

highly interdigitated and larger than other integrin-ligand interfaces. This spatial arrangement

of integrin and ligand might help to ensure the proper alignment of the force with the TGF-b

activation axis, when mechanical load is applied to the complex. Additionally, the unusually

large interface between aVb6 integrin and LAP/TGF-b might help to increase the mechanical

stability of the integrin-ligand bond. It also explains why b3 and b5 integrins cannot be

receptors for the LAP/TGF-b complex. Thus, the binding of aVb6 integrin and LAP/TGF-b

offers an example of a specific structural and molecular arrangement supporting biological

functions with consequences for the complete organism.

The importance of integrins in fibrosis is not limited to TGF-b activation. The interplay of

physical and biochemical parameters in fibrosis increased the interest in this pathology as a

promising in vivo example for the relevance of mechanobiology. Many healthy tissues have a

stiffness (measured as Young’s modulus E) below 5 kPa, but exceed this value during fibrosis.

For example, lung tissue switches from 2 kPa in a healthy state up to 17 kPa in fibrosis, while

liver stiffness increases from below 1 kPa and less up to 12 kPa and more (461).

As discussed in Chapter 6, mechanotransduction for many processes is regulated by an on/off-

mechanoswitch that is triggered around a substrate stiffness of 5 kPa. Therefore, fibrotic tissue

stiffness above 5 kPa might cause a constant on-switch of YAP/TAZ-dependent proliferation,

contributing to the positive feedback loop of YAP activation and tissue stiffening (67).

Chapter 10: Outlook and perspectives

Starting with Abercrombie (1), the research of integrins and integrin-mediated adhesions has a

history of 40 years. We are not aware of many other fields in biology that attracted so constant

interest for such a long time. One reason might be the technical accessibility of integrin-



mediated adhesions, making it an easy target for the newest microscopic techniques or

proteomic studies. At the same time, integrins and cell matrix adhesions proved repetitively

that they are not passive ‘gluing’ structures fixing cells to the ECM. Instead, they are tightly

regulated, integrating many intracellular and extracellular signals to create very diverse cellular

processes ranging from adhesion, migration or ECM organization to proliferation. The

multitudes of direct integrin-adapter interactions in the cell (Table 1 and Figure 4) reflect these

diverse integrin functions. This complexity of integrin-mediated signaling clearly justified the

ongoing interest in cell adhesion over the years. Whether the current interest in integrins and

cell adhesions will last for another 40 years is hard to predict. But we feel that there are plenty

of open questions remaining:

Integrin-mediated mechanosensing

We highlighted already the relevance of mechanical integrin regulation (Chapter 6) additional

to the established influence of biochemical signaling. This is currently a vibrating area of

research, and we expect the mechanobiology of cell adhesions to also have a profound impact

on the development of integrin-targeted therapies (Chapter 8). The increasing number of

examples for mechanical regulation of integrin conformation and thereby integrin activation

(Chapter 2) imply, that this mechanical regulation has to be considered in the development of

drugs targeting cell adhesion. For example, a drug binding to only one integrin conformation

or a drug leading to allosteric head-piece opening may be more difficult to use in the clinic than

a drug that acts as an integrin antagonist, blocking the conformation of integrins in the extended

closed conformation upon binding (5). Alternatively, mechanical forces on integrins can affect

its conformation and by this the binding affinity of the drug. Such an example has been

documented for imatinib (Gleevec), which suppressed c-Kit kinase activity when stimulated

with a soluble Kit-ligand, but failed to inhibit c-Kit signaling mediated by a mechanically

anchored Kit-ligand (424). We assume that mechanical forces on the ligand-bound c-Kit

rendered the binding pocket unavailable for imatinib, in contrast to the situation with soluble

Kit-ligand, where the competitive inhibitor imatinib could bind and inhibit, c-Kit. Other

examples include bacterial adhesins, giving rise to fibronectin-binding peptides that recognize

only relaxed fibronectin fibrils (20). Such a load-dependent binding might be disadvantageous

in a therapy, limiting the activity of the drug or antibody. At the same time, it is clear that

integrins are a promising and powerful drug target, with successful therapies for thrombosis

and emerging therapies for multiple sclerosis and other immune system-related diseases

existing (165). In fact, immune suppression by targeting a4b1 integrin (natalizumab) or aLb2



integrin (efalizumab) is too effective, causing progressive multifocal leukoencephalopathy by

activating the human polyomavirus JVC in some patients (276). However, conformation-

and/or mechanical load-specific therapies might one day offer a less toxic, but more selective

approach in therapies targeting cell adhesion.

Integrins and therapies

The safety and ultimate clinical success of integrin-targeting drugs remains still to be evaluated

(Chapter 8). Nevertheless, it is indisputable that the failure of the aVb3 integrin inhibitor

cilengitide in phase III trials (including Merck giving up on further trials for this inhibitor)

dampened the enthusiasm about chemotherapies targeting integrins. Are there more general,

fundamental problems with drugs targeting integrins? Above, we mentioned the influence of

mechanical forces on the integrin-ligand binding pocket and potential consequences for drug

development. However, we also tried to raise awareness for the specificity of integrins, their

ligands, and their adapters throughout this review. In other words, we might just not know

enough about integrins for a faithful generalization. Structure-function relationship (Chapter

2), RIAM-dependent vs. -independent integrin activation (Chapter 3), reticular adhesions vs.

focal adhesions (Chapter 3), or the relevance of aVb1 integrin in fibrosis (Chapter 9) are

examples where established findings were recently challenged. Kindlin as integrin activator is

much less understood than talin, kank is still emerging as potentially important adapter, and all

of them have isoforms that withstood evolutionary selection while we tend to ignore them to

keep things simple. But maybe we still have to add more trees before we can clearly see the

forest. In the end, integrin targeting therapies are most successful in intensively studied systems

such as platelets and integrins in the immune system.

Cell adhesion and metabolism

The research of metabolism seems to expand very rapidly at the moment, and it is linked to an

increasing number of topics including integrin research and the interplay between cell

metabolism and cell adhesion. This is strikingly demonstrated by the effects of diabetes on

ECM and integrin organization (21). Interestingly, the metabolic sensors mTOR (355) and

AMPK (156) are both shown to act via tensins on fibrillar adhesions and endocytosis, thus

organizing the ECM (Chapter 3). This link between integrin-dependent ECM organization and

metabolism might also explain the correlation of fibrosis (Chapter 9) and obesity. Moreover,

there are first indications that integrin and integrin adapters are targets of metabolism-



dependent posttranslational modifications like acetylation (89, 460), potentially establishing a

close link between metabolism and cell adhesion.
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Figures and figure legends

Figure 1 Integrins, their ligands, and cellular distribution.
As reviewed by Hynes (129), integrins are organized in 24 different heterodimers, indicated by
the link between a- and b-subunits in the figure. Integrins can be classified by structural
features, their ligands, and their tissue and cellular expression. Based on these criteria, we
grouped integrins into nine classes indicated by the color of their background. Typical cell types
expressing the respective integrins are mentioned, as well as common ligands for these
integrins. We also highlighted integrins with an a-I domain (I; purple circle), those binding to
RGD ligands (RGD; red square), and those with changes to the conserved GFFKR sequence in
the membrane-proximal part of the a-subunit (black triangle indicates integrins with sequence



deviating from CGFFKR). The integrin cartoon in the lower part of the figure gives an overview
about the integrin structure and is reused in the following figures. It also indicates the location
of the aI domain and the GFFKR sequence in the respective integrins. Please note that aI
domain integrins bind ligands (e.g. collagen) via this I-domain, while other integrins bind
ligands (e.g. fibronectin) in binding pockets formed by both a- and b-subunits.



Figure 2 Structural features of the integrin heterodimer.
Integrins consist of a- and b-subunits, and both of the subunits are membrane anchored. The
integrin subunits non-covalently associate in the extracellular domain via the insertion of a
conserved lysine residue of the b-I-like domain (blue) into the aromatic core of the a-propeller
domain (red) (upper left; respective amino acids are indicated by their structure instead of a
cartoon-like representation), locking the subunits tightly together. There are also more dynamic
interactions occurring at the transmembrane (outer and inner membrane clasp) and
juxtamembrane regions (inner membrane clasp) of the two subunits. Conserved glycine-motifs
in both transmembrane domains allow the tight association of the transmembrane domains at
the outer membrane clasp, while the inner membrane clasp is stabilized by aromatic
interactions. Sequence on the lower right: a-subunit: FF; b-subunit: W) and a juxtamembrane
salt bridge. Sequence on the lower right: a-subunit: R; b-subunit: D); both interactions are
highlighted on the lower left by showing the respective structures of the amino acids.



The cytoplasmic domains contain binding epitopes for a number of proteins, discussed further
in Figure 4. The interface between the a-propeller in the integrin head piece and metal ions
bound to the b-I-like domain, form a binding site for integrin ligands such as RGD (upper right
zoom-in; metal ions from left to right: SyMBS (synergistic metal binding site), MIDAS (metal
ion-dependent adhesion site), ADMIDAS (adjacent MIDAS)). In contrast, integrins with an a-
I domain in the a-subunit bind their ligand only with the a-I domain (purple circle in the central
cartoon; see also Figure 1). Ligand affinity is modulated by the coordination of the metal ions
that includes amino acids of the integrin as well as the ligand (see Fig. 3C for details). Structural
information regarding the lysine insertion into the a-propeller is from PDB 3VI4 (a5b1 integrin
(302)), for the MIDAS site from PDB 3ZE2 (aIIbb3 integrin (501)), and for the transmembrane
domains from PDB 2K9J (aIIbb3 integrin (242)).



Figure 3 Ligand-induced conformational changes and sequence specific variations in the
integrin ectodomain.

Ligne claire drawing of a prototypical integrin headpiece and mechanisms of atomic (C),
small (A,B,D) and large (E) scale conformational changes. A) Closed, ligand-free state of the
integrin headpiece stabilized by the ADMIDAS (adjacent to MIDAS; see also Figure 2) Ca2+

ion, linking the N-terminal end of the “broken” or “bent” a1/a1’-helix with the b6-a7helix
loop, by coordination (large, bold arrows). In the closed conformation/state, the a7-helix
(piston) is tethering the hybrid-domain to form a small bI-like/hybrid-domain angle.
Experimental N-glycosylation at N303 (b3) has been used to prevent the formation of the
closed integrin head-piece (90, 272). The closed head-piece conformation is further
maintained by flexible associations of the lower leg domains (see E) by the membrane clasp,
as indicated by a spring. Residues relevant for integrin isoform specific RGD-ligand binding
of the a-propeller domain are shown by arrows (see also Figure 5). Conserved residues
involved in MIDAS (metal ion depending adhesion site) coordination are labeled according to
human b3 (small arrows). Ligand binding specificity in the b-chain is achieved by the



specificity-determining loop 2 (SDL2) and residue Y122 (small arrows). For example, SDL2
makes contact with the internal ligand “IEGT” in aI-domain containing integrins (D)(aXb2;
(391)), with MadCAM in a4b7 (489), or with the RGDL motif in the TGF-b binding
integrins avb6 and avb8, while simultaneously avoiding steric clashes with TGF-b due to an
Ala-residue at the Y122 position (113, 321)(see Fig. 5B). Integrin headpiece opening is
induced by the Asp-residue binding of RGD at the MIDAS site, which leads to the movement
of the ADMIDAS ion and a1-helix straightening towards the MIDAS Mg2+ ion (large arrow),
as well as progressively stronger association of the Arg-side chain of the RGD peptide with
the a-domain. ADMIDAS, S123 side-chain and backbone movement towards the MIDAS ion
are linked to a rotation of the carboxyl-group of the RGD, Asp-residue and stabilization by H-
bonds (thick dotted green lines in C). Due to this movement, the b6-a7 loop detaches from
the ADMIDAS  Ca2+ ion and induces the piston-like downward shift of the a7-helix, pushing
the hybrid domain outwards. The hybrid domain swing-out and opening of the interdomain
angle is facilitated by a flexible domain connection at the N-terminus of the b1-strand of the
b-I-like domain. RGD-ligand binding and cytoplasmic adapter-mediated link to the actin
cytoskeleton result in a tension vector parallel to the hybrid-domain (see also E). C) Close-up
view of the SyMBS , MIDAS, and ADMIDAS coordination and their changes during integrin
opening. In the closed state, the incoming RGD-ligand coordinates with the MIDAS ion,
forming a single H-bond with the backbone amine of Y122. Rotation of the carboxyl side-
chain establishes additional H-bonds that progressively induce the movement of S123 and
backbone-associated ADMIDAS Ca2+ ion to directly coordinate MIDAS or D251,
respectively. These changes in MIDAS and ADMIDAS coordination further stabilize RGD-
ligand coordination as well as the detachment of the b6-a7-loop to induce a7-helix pistoning.
D) I-domain-containing integrins show a similar mechanisms of acidic residue binding at the
MIDAS (internal ligand peptide: IEGT), but an additional hydrophobic interaction at a
preceding Ile-residue ((391), PDB: 4NEN). A similar binding mode, centered around a
glutamic acid or aspartic acid residue, has been proposed for laminin-binding integrins (348,
429), as well as for a4b1-binding of the LDV-motif in the IIICS alternatively spliced domain
of fibronectin, and the I/L-D-T/S consensus sequence in MAdCAM-1 and VCAM-1 binding
to a4b1/7 (489). However, and in contrast to RGD-binding integrins, the binding groove of
a4-binding integrins is vertical, binding parallel to the smooth, ligand-facing a-propeller
surface for the latter integrins (D). E) Ligand-induced conformational changes in the integrin
head-piece are proposed to be associated with the head-piece opening of the integrin. The
ligand can be external (e.g. fibronectin) or, in the case of the aI-domain containing integrins,
be the aI-domain serving as an internal ligand for the integrin headpiece (289). However,
physiological ligands might also be recognized in cis, as proposed for Thy-1 (136) or b2
integrins and ICAM (131). Alternatively, Adair et al. have demonstrated FN type III9-10
binding to the bent conformation of avb3 (3). For a5b1, the synergy site on the a-propeller
surface enhances the FN on-rate (302). A recent survey of integrin ectodomain conformations
by electron microscopy demonstrated that the b1-class of integrins are more extended in the
inactive state compared to avb3 (289).  This, however, underlines the importance of the
intracellular integrin adapters, as they can either prevent integrin activation, like in the case of
sharpin, filamin and LCP1 (264, 359, 441), or induce leg separation and integrin extension
(484), that should subsequently facilitate ligand binding, and full head-piece opening. Note
that (a) to (c) indicate a temporal order. An ultimate regulation of the open head-piece
conformation could be achieved by mechanical tension, changing the conformational
equilibrium of the bound integrins (31, 347, 422).



Figure 4 Structural features of integrin ligand binding – intracellular ligands.
Cytoplasmic integrin tails comprise only a short part of the complete integrin, but interact
with a wide number of adapters (or intracellular ligands; see also Table 1). Here, structures of
integrins binding to cytoplasmic adapters are shown together with the amino acid sequence of
integrins highlighted in red (a-subunit) or blue (b-subunit), indicating the involved amino
acids in the binding of the respective adapter. Integrin inhibitors like ICAP or Filamin
compete with integrin activators like kindlin or talin for binding to the same domains of the
cytoplasmic integrin tail (compare structure A to structure E and structure B to structure D).



Kindlin binding arranges the membrane-distal part of the b-integrin tail, potentially priming
the integrin for talin binding (30). Talin binding to the membrane-proximal part facilitates the
separation of a- and b-subunit (380) and thereby integrin activation. The respective sequences
in the b-subunit (indicated with blue letters) are highly conserved among integrins. Inactive
integrins are stabilized by the interaction of a conserved sequence in the transmembrane part
of the a-subunit (GFFKR) with the b-subunit. Integrin inactivation can occur by Tyr-
phosphorylation of the NPXY-motifs, or alternatively by Ser/Thr-phosphorylation of the
inter-NPXY-region, which reduce talin and kindlin association (14, 45), while allowing
regulatory and recycling adapter recruitment to the integrin receptors. Alternatively, integrins
can be internalized bound to their extracellular, but proteolytically fragmented ligands (see
Chapter 3; (142, 293, 328)). A) ICAP1 + b1 integrin: PDB 4DX9 (267). B) Filamin-A +
αIIbb3 integrin: PDB 2MTP (264). C) Src + b3 integrin: PDB 4HXJ (469). D) Talin2 + b1D
integrin: PDB 3G9W (16). E) Kindlin2 + b1A integrin: PDB 5XQ0 (253). F) 14-3-3ζ + b2
integrin (cyan and blue): PDB 2V7D (428); 14-3-3ζ + α4 integrin (light brown and red): PDB
4HKC (48). G) Shc + b3 integrin: PDB 2L1C (108). H) AP-2 complex subunit µ2 + α4
integrin: PDB 5FPI (141).



Figure 5 Structural features of integrin ligand binding – extracellular ligands.
Integrin-ligand interactions are shown on the left for α-I domain containing integrins with the
indicated ligands and on the right for integrins without the α-I domain. Please note that in the
first case only the α-I domain (purple) makes contact to the ligand (green), while in the latter
the heads of both the α- and the β-subunit (red and blue, respectively) contact the ligands
(green). The overview of different RGD ligands with relevant integrins (right hand side)
highlights the structural diversity within this group for both integrins as well as RGD ligands.
It is noteworthy that in α-I domain integrins only one metal ion site is present (MIDAS),
potentially favoring a stricter on-off binding regime due to the missing fine tuning by the
ADMIDAS site. The binding pocket for ligands is also more accessible compared to integrins
without α-I domain (compare e.g. the orientation and peptide presentation of ICAM3 to
fibrinogen binding to aIIbb3). The accessibility might also have an impact on fibronectin
binding, requiring the presentation of the RGD peptide in a short loop to integrins. High-affinity
binding to a5b1 is facilitated by auxiliary binding of fibronectin to the synergy binding site on
a5 (302). Lack of this auxiliary binding might contribute to conformation-specific binding of
aVb3 integrin to fibronectin. The accessibility is also expected to influence TGFb binding; the
RGD peptide in LAP/TGFb is surrounded by a bulky a-helix. Steric hindrance with Tyr122
prevents binding to b3 integrins, in contrast to b6 and b8 (Ala) and b5 (Leu) (see also Fig. 2).
Structures shown: a2b1 + collagen: PDB 1DZI (124); aLb2 + ICAM3: PDB 1T0P (408);
aMb2 + C3d: PDB 4M76 (33); a5b1 + RGD: PDB 3VI4 (302); aIIbb3 + fibrinogen: PDB
2VDO (409); aVb3 + fibronectin: PDB 4MMX (5); aIIbb3 + RGD: PDB 3ZE2 (501); aVb6
+ LAP/TGFb: PDB 5FFO (113).



Figure 6 Protein interplay within integrin-mediated adhesion. This schematic figure
highlights how protein interactions in cell-matrix adhesions are controlled by conformational
regulation of the adhesion proteins. The integrin cytoplasmic domain acts as a binding
platform for several proteins. Talin (yellow) binds with its head domain to the cytoplasmic
domain of the b-subunit and with its tail connects it to the actomyosin machinery. The talin
tail with its rod domains contains actin binding sites (ABS) for initial integrin-actin linkage
(ABS3). Under mechanical load cryptic binding sites of talin open for one or more vinculins
(light pink), as well as F-actin (ABS2) reinforcing the mechanical connection between
integrin and actin (24). Vinculin (the head domain binds talin, the tail domain binds actin) can
also recruit additional adapters and thereby contribute to adhesion signaling (71). Kindlin
(green) co-operates with talin in integrin activation and adapter recruitment as for example
paxillin (335). Paxillin (purple) is an important scaffolding protein, recruited to focal
adhesions via its LIM domains and organizing Rho-GTPase signaling via Paxillin LD
domains. This signaling (indicated by a yellow lightning symbol) is modulated by FAK-Src
(orange, light blue)-mediated phosphorylation. FAK consists of a focal adhesion targeting
domain binding to paxillin, a kinase domain and a FERM domain binding to the lipid
membrane. Interactions in this web are very dynamic, with binding and unbinding events in
quick succession. Accordingly, a one-to-one pairing is not to be expected. Instead, a mutual
connectivity between the tension-defined ECM-integrin-talin-actin axis and perpendicular
interactions based on the paxillin/FAK/talin signaling axis will reinforce and stabilize the
adhesion-structure (slanted fence model; see Chapter 4).



Figure 7 Interplay between focal adhesion and microtubules. Ligand-bound integrins
are in closer proximity to the substrate compared to the surrounding membrane. The core of
integrin-mediated adhesions is densely populated and might differ from the ‘outer shell’.
Microtubules and focal adhesions are linked via Kank proteins at this outer shell, which
directly interacts with the talin rod domain (52). While kank can destabilize the talin
association with F-actin (420), it also links talin to CLASP proteins and the liprin scaffold.
CLASP is important for recruitment of microtubules to adhesion sites, which in turn controls
the localized release of proteases (410). The link of kank-proteins to the liprin scaffold directs
vesicular trafficking to the cell periphery, involved in directed fibronectin release at sites of
adhesion to mediate fibrillogenesis (278), as well as to induce cell spreading during cancer
cell migration (86).



Figure 8 Integrin activation cycle. Integrins show the inactive, bent conformation in
absence of intra- or extracellular adapters. The transmembrane domains are closely associated
to support this bent structure (BC = Bent-Closed conformation). The activation process may
involve both extracellular (ligand) and intracellular (talin, kindlin) triggers, leading to
extension (EC = Extended-Closed) and priming (EP = Extended-Primed) of the integrin,
which facilitates early adhesion events (see also Figure 3). For full activation, integrin legs are
separated and arranged in the direction of the actomyosin force-vector (EO = Extended-Open
conformation). The activation of integrins is accompanied by the recruitment of signaling
(paxillin, FAK) and structural (talin, vinculin) adapters. Recycling of integrin-mediated
adhesions can occur via integrin inactivation (as shown in Figure 4), with integrin
phosphorylation being an important step. The release of talin allows binding to endocytosis
adapters like Dab2, and subsequent recycling via the sorting nexin 17 (SNX-17) (35, 265).
Integrins can also be internalized together with their ligands (397, 398) potentially influencing
their capacity to signal from the endocytotic pathway (11) .



Figure 9 Mechanoregulation of cell adhesion. Many of the proteins participating in cell
adhesion have an autoinhibited state. Shown here is fibronectin, which has a globular
conformation when the protein is in the soluble state. Inactive integrin shows a closed, bent
conformation. Also the intracellular protein talin exists in an autoinhibited state, where the rod
domain is in contact with the head domain (163). The first step in the activation process is called
“chemical activation”, where conformational changes take place, leading to insoluble fiber
formation and collagen binding in the case of fibronectin. Integrin activation can be triggered
both by extracellular and intracellular signals, such as metal ions (289), RGD-ligand proteins
(427) and talin (484). Talin may become activated by lipid-mediated triggers, such as increased
PIP2 concentration (262, 380). Some of the ligands such as RIAM (170, 244) and DLC1 (491)
bind only to relaxed talin. For full maturation, the adhesion complex requires mechanical
signals. This leads to changes in the properties of ECM, controlling e.g. the binding of growth
factors (317). In the case of integrin, mechanical load is needed for the complete activation,
where leg separation takes place (500). The mechanosensory role of talin is studied widely and
it involves the exposure of binding sites for other adapter proteins, including vinculin (206,
365). Additionally, mechanical tension also leads to dissociation of certain binding partners
such as RIAM and DLC1 (170, 178). Finally, to recycle the adhesion, cells may utilize several
molecular mechanisms. Proteolytical cleavage of ECM and intracellular proteins may be
involved in the adhesion disassembly (4, 144, 221). Phosphorylation of integrin can be used to
tune the binding affinity towards various intracellular partners (14).


