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Abstract

Motivation: Incorporating gene interaction data into the identification of ‘hit’ genes in genomic ex-

periments is a well-established approach leveraging the ‘guilt by association’ assumption to obtain

a network based hit list of functionally related genes. We aim to develop a method to allow for

multivariate gene scores and multiple hit labels in order to extend the analysis of genomic screen-

ing data within such an approach.

Results: We propose a Markov random field-based method to achieve our aim and show that the

particular advantages of our method compared with those currently used lead to new insights in

previously analysed data as well as for our own motivating data. Our method additionally achieves

the best performance in an independent simulation experiment. The real data applications we con-

sider comprise of a survival analysis and differential expression experiment and a cell-based RNA

interference functional screen.

Availability and implementation: We provide all of the data and code related to the results in the

paper.

Contact: sean.j.robinson@utu.fi or laurent.guyon@cea.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput genomic experiments allow for measurements to

be taken on thousands of genes relating to particular biological

processes such as gene expression or exhibition of a phenotype of

interest. Such experiments generally concern an overly large number

of genes and where ‘hit’ genes in the experiment, those with signifi-

cant expression or scores, are subsequently identified for further

analysis. The hit gene list is a smaller and more easily analysable

subset of genes that is used to inform follow up studies and as a

general aide for interpretation of the biological question of interest.

One classical strategy is to decipher mechanisms of action between

hit genes in the form of modelled cellular pathways (Wang et al.,

2011).

Based on a mathematical graph object, genomic networks are

made up of vertices corresponding to genes and edges between verti-

ces possibly corresponding to physical, regulatory or signalling in-

formation, for example (Kim et al., 2016). Protein–protein

interaction (PPI) networks, where there is an edge between vertices
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if the corresponding genes are known or inferred to have proteins

that interact, have been previously used as the basis of network ana-

lysis of genomic screening data, including from RNA interference

(RNAi) screens (Hao et al., 2013; Kumar et al., 2013).

Although there is a large body of work on biological network

analysis in general (Pavlopoulos et al., 2011), overlaying additional

genomic data leads to further considerations in the analysis. For ex-

ample, an initial approach is to investigate the distribution of scores

or hits within the PPI network to find structures or areas of interest

(Kumar et al., 2013). Network-based tests for differential expression

(Jacob et al., 2012) and extensions of Fisher exact tests for enrich-

ment or depletion of functional/gene ontology (GO) annotations

(Dong et al., 2016) have also been proposed, along with methods to

quantify the clustering of functional/GO annotations in the network

(Cornish and Markowetz, 2014). Further sophisticated approaches

include network inference and gene functional prediction (Ma et al.,

2014) and using a PPI network as the basis of a meta-analysis of

multiple screening data sets (Amberkar and Kaderali, 2015; Hao

et al., 2013; Kumar et al., 2013).

Our aim is to incorporate PPI networks and the observed gen-

omic data to determine a network based hit list by making use of the

‘guilt by association’ assumption (Cornish and Markowetz, 2014;

Ma et al., 2014; Wang et al., 2009). It has been commented on that

by visualizing a PPI network overlaid with hit results from an RNAi

screen, genes that are just below a simple hit threshold but con-

nected to many other hit genes in the network could be fruitfully

considered as a hit themselves (Kumar et al., 2013). Besides, to fa-

cilitate the interpretation of gene hit lists, taking into account

known or inferred functional relations between proteins would help

in deciphering gene relationships important in the phenotype of

interest (Markowetz, 2010). There are a number of proposed

approaches to turn this ad hoc notion into a mathematically formu-

lated network determination of hit genes concerning RNAi screen-

ing data (Cornish and Markowetz, 2014; Jiang et al., 2015; Wang

et al., 2009) as well as gene expression data (Beisser et al., 2010;

Dittrich et al., 2008) among others.

The Knode (Cornish and Markowetz, 2014), NePhe (Wang

et al., 2009) and NEST (Jiang et al., 2015) methods all calculate

additional network based scores for each gene. Table 1 lists the pro-

posed ways in which the PPI network is incorporated into these

methods. Then the NePhe and NEST scores are simply calculated by

summing or averaging the original scores weighted by the similarity

matrix. For example, considering the ‘shortest paths’ similarity ma-

trix and ‘average’ summation, the network score for each gene is the

average of all the other original scores weighted by the inverse dis-

tance of the shortest path between the vertices. The summing pro-

cedure for the Knode method is based on a network adaptation of

Ripley’s K-function (Ripley, 2004) and hence ‘Knode’. A hit list in

these cases is a certain number of genes with the highest network

based scores.

The BioNet method (Beisser et al., 2010; Dittrich et al., 2008)

aims to find a subgraph of hits. Compared to similar approaches

(Chuang et al., 2007), BioNet is guaranteed to find the maximum-

weight connected subgraph in the network. This subgraph is antici-

pated to be generally made up of the genes with the most significant

scores but genes with non-significant scores may also be contained

within the subgraph. That is, even though individual genes with non-

significant scores will themselves contribute a suboptimal weight in

the subgraph, they may allow for other more significantly scored

genes to be included through their edges, which can give a more opti-

mal overall weight. The list of genes in the maximum-weight con-

nected subgraph can then be taken as the hit list of interest.

Our proposed approach is based on Markov random fields

(MRFs), mathematical models where associations in the data can be

considered in an efficient way. Such models have been previously

used for network-based classification of gene expression data

(Stingo and Vannucci, 2011), finding differentially expressed genes

in specified pathways (Wei and Li, 2007) and modelling gene ex-

pression over a network (Wei and Pan, 2008, 2010). Instead of aim-

ing to model genomic data and the underlying network, we broadly

consider the same approach to using MRFs for digital image seg-

mentation (Blake et al., 2011; Robinson et al., 2015). That is, the

genomic data are not modelled over the network but rather ‘hit’ and

‘non-hit’ genes are labelled taking the network into account. In this

way, we determine a network based hit list comparable to previ-

ously proposed methods (Beisser et al., 2010; Cornish and

Markowetz, 2014; Dittrich et al., 2008; Jiang et al., 2015; Wang

et al., 2009).

We consider a number of different data sets including from a

simulated experiment, a lymphoma study with measurements based

on differential expression and survival analysis, and from our own

motivating RNAi screen. We compare to previously proposed meth-

ods to show that our MRF based method performs the best in a

simulation study and is able to provide increased pathway enrich-

ment and a greater determination of the hit genes in the previously

analysed lymphoma study. For our motivating RNAi screening data,

the MRF method is able to find pertinent network hits that are

otherwise not discovered by thresholding the multivariate scores,

suggesting useful possibilities for further analysis. We show that the

major advantages of our MRF based method are that multivariate

scores for genes as well as multiple hit labels are easily available in

the method.

2 Materials and methods

2.1 Network scoring of hit genes
Consider that we have a collection of genes with an associated gene

network and that each gene is indexed by a scalar i. Let the vertex

set V be the set of gene indices and let the edge set E ¼ feij � 0 j eij

¼ eji; for all i; j 2 Vg be the set of all edges between every pair of

vertices where genes i and j are neighbours in the network if and

only if eij>0. Let the degree of gene/vertex i be

@i ¼
X
j2V

eij:

Note that if the graph is not weighted (that is eij 2 f0;1g for all

i; j 2 V), then @i is just the number of neighbours of vertex i.

Let the (possibly multivariate) random variable Zi be the data

derived from the genomic experiment for gene i and let the random

variable Xi be the unobserved label of interest. In the most general

case, the labels will be ‘hit’ and ‘non-hit’ but it is also possible to

Table 1. The proposed similarity matrices for calculating the Knode

(Cornish and Markowetz, 2014), NePhe (Wang et al., 2009) and

NEST (Jiang et al., 2015) scores

Knode NePhe NEST

Adjacency X X

Common neighbours X

Mean steps between X

Shortest path X X

Diffusion kernel X X

Determination of functionally related hit genes with Markov random fields i171
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have more than 2 hit labels. Let the collection of these random vari-

ables be a conditional MRF with the associated energy function

E xð Þ ¼
X

i

X
l

ui;lIfxi ¼ lg þ
X

i;jð Þ

X
l

X
k

wij;lkIfxi ¼ l; xj ¼ kg (1)

for vertices i and pairs of vertices (i, j) with labels l and k. The min-

imum energy labels are

bx ¼ argmin
x

E xð Þ:

The unary potentials ui;l are defined to be

ui;l ¼ �log pl zið Þð Þ (2)

where zi is the observed data for gene i and pl is the probability dens-

ity function corresponding to label l. The pairwise potentials wij;lk

are defined to be

wij;lk ¼ b
eij if l 6¼ k

0 if l ¼ k:

(
(3)

When b¼0, the minimum energy labels are simply given by the

unary potentials. That is, each gene i has minimum energy label

based on the observed data zi and unary potentials (Equation (2))

only, independent of the network. This is equivalent to labelling the

genes based on thresholding the scores at the interception points of

the densities corresponding to each label. When b>0, the pairwise

potentials (Equation (3)) impose a penalty in the energy function be-

tween pairs of neighbouring vertices without the same label. Hence

neighbouring vertices are impelled to have the same label in order

that the total labelling has the minimum possible energy. Although

this is balanced against the unary potentials, there exists a value b*

above which all of the vertices have the same minimum energy label.

This ‘dominant’ label is the label such that the energy is minimized

when all vertices are given this label compared to all other labels. That

is, the dominant label l is the label such that
P

i2Vui;l <
P

i2V ui;k for

all other labels k. Note that a toy example is presented below.

In practice we need to set the value of b as well as the probability

density function pl for each label l. We first consider setting the

value of b, while setting the underlying densities pl for each label l is

considered in Section 2.3. Let bx bð Þ be the minimum energy labels

for a given value of b. We define the MRF score for vertex i under

label l as

si;l ¼ @i

X
b2B

Ifbxi bð Þ ¼ lg (4)

where B ¼ f0; 1=nð Þb�; 2=nð Þb�; . . . ;b�g, n is the resolution and b*

is the minimum value of b such that the minimum energy labelling is

the dominant label for all vertices. That is, the score for each vertex,

for each label, is the number of values of b for which the vertex is as-

signed the label, scaled by the degree of the vertex. Since the value of

b is bounded by 0 and b*, and the score is defined as a summation

over a range of values of b between these bounds, we are not

required to actually set the value of b.

2.2 Toy example
In order to explain the proposed score, Figure 1 presents a toy

example. The graph seen in Figure 1a is made up of two complete

subgraphs of nine vertices, each with an additional leaf vertex and a

single edge bridging the two subgraphs. In this case, all of the edges

have the same weight. The unobserved labels in the network are

‘blue’ and ‘red’, each with an associated Gaussian distribution

centred at �1 and 1, respectively, with a standard deviation of 2

(Fig. 1b). The vertices 1; 2; . . . ; 10 on the left of Figure 1a are true

‘blue’ vertices while the vertices 11;12; . . . ; 20 on the right are true

‘red’ vertices. The colour of the vertices in Figure 1a corresponds to

the observed value from the associated distribution.

Figure 1c shows the minimum energy labels for different values

of b. When b¼0 there is no edge information in the energy function

and each vertex is labelled as either ‘blue’ or ‘red’ based only on its

observed value. That is, whether the observed value is above or

below the intercept point of the two densities at 0 (Fig. 1b). For

increasing values of b, the minimum energy labelling increasingly

(a)

(b)

(c)

(d)

Fig. 1. Toy example. (a) Original observations and underlying label (‘blue’ or

‘red’) for each vertex. The vertices 1; 2; . . . ; 10 on the left are true ‘blue’ verti-

ces while the vertices 11; 12; . . . ; 20 on the right are true ‘red’ vertices, indi-

cated in the vertex labels. The observed value for the vertex is indicated in

the colour of the vertex itself. (b) Densities corresponding to both the ‘blue’ or

‘red’ labels. (c) Minimum energy labels for a range of values of b. (d) The MRF

scores
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‘smooths out’ up to the point where every vertex is assigned the ‘red’

label when b ¼ b� ¼ 1.

Figure 1d shows the scaled difference in MRF scores

(si;‘red’ � si;‘blue’) for each vertex. Comparing the final scores to the

minimum energy labels for any single value of b, the MRF scores

allow for greater determination of the labelling. For example, when

b ¼ 0:9 the vertices 1; 2; . . . ;10 have the correct minimum energy

label ‘blue’, but we can see in the final MRF scores that vertices 4

and 6 are the strongest ‘blue’. That is, rather than requiring the

value of b be determined, we simultaneously sidestep this problem

and increase the labelling information for each vertex.

In this toy example the densities associated to each label are sym-

metric and so it is just by chance that the dominant label is ‘red’. That

is, it happened to be the case that
P20

i¼1 u
i;‘red’ <

P20
i¼1 u

i;‘blue’. We

can see that the leaf vertex 20 holds out from the dominant ‘red’ label

much longer than the initially ‘blue’ vertex 13 with a higher observed

value. This is because vertex 13 is much more connected than 20,

which is on the periphery of the graph and will therefore hold onto its

initial label much longer with increasing b. It is this tendency that we

account for by scaling the MRF score by vertex degree. Hence both

the leaf vertices 1 and 20 are labelled ‘blue’ for as many values of b as

vertices 8 or 9 (Fig. 1c) but do not have as high a final MRF score

since they are less connected in the graph. Although we considered

other graph centrality measures such as betweenness, closeness, har-

monic and eigenvector centrality (Pavlopoulos et al., 2011), none of

them was as consistently suitable or were as computationally feasible

as simply using vertex degree.

2.3 Setting the underlying densities
In the toy example of Figure 1, we knew the true densities associated

to each label and so were able to use them whereas this is not the

case in practice. However, in all of our applications the observed

data are associated to a P-value as derived from a screen or other ex-

periment. Hence for the ‘non-hit’ label, we use a standard uniform

density and for the ‘hit’ label we use an exponential density. We

chose an exponential density as it is peaked at 0 but does not asymp-

tote at the y axis and decays much slower than a truncated Gaussian

density. In the general ‘hit’ and ‘non-hit’ scenario we suggest an ex-

ponential density that intercepts the standard uniform density at 0.3

(Supplementary Fig. S1).

3 Results and discussion

3.1 The MRF method allows for the network analysis

of multivariate RNAi data and finds pertinent

functional/GO enrichment
We consider data from an RNAi screen aiming to identify genes

implicated in DNA repair after induction of oxidative DNA damage

(Guyon et al., 2015). Briefly, in the context of this screen, HeLa cells

specifically engineered to express OGG1 [the initiating enzyme of

the base excision repair (BER) of oxidized guanine] fused to a

Green Fluorescent Protein (GFP), were systematically transfected

with siRNAs targeting the ‘druggable’ subset of genes from human

genome (3 siRNAs/gene; 7218 target genes). Three days post-

transfection, 8-oxo-7,8-dihydro-guanine (8-oxoG) DNA base le-

sions were induced by cell exposure to potassium bromate (KBrO3)

and the recruitment of chromatin-bound OGG1-GFP was quantified

(subsequently the fluorescence intensity is averaged in each nucleus)

by computer-assisted imaging performed on an automated epifluor-

escence microscope (Operetta, Perkin Elmer).

Each observation was converted to a U-score (Guyon et al.,

2015), which has a standard Gaussian distribution under the null

hypothesis that we observe no phenotypic difference in the gene

knock-down condition. We only consider the negative phenotype

and hence a low P-value is associated to a negative siRNA score cor-

responding to a decrease of chromatin bound OGG1 upon siRNA

transfection. For each gene, we converted either the known RefSeq

gene ID or gene symbol to Entrez gene ID using bioDBnet

(Mudunuri et al., 2009) (latest release bioDBnet 2.1; May 6, 2015),

which was subsequently converted to STRING ID (Szklarczyk et al.,

2014), resulting in 4006 genes. Hence our RNAi screening data set

is made up of 4006 genes each with 3 scores/P-values (hereafter

OGG1 data).

The STRING database (Szklarczyk et al., 2014) compiles known

and inferred PPI information from experimental sources as well as

text mining the literature. The strength of evidence for each inter-

action is calculated from these multiple sources (Von Mering et al.,

2005) and is given as a weight on the corresponding edge. Table 2

gives the proportion of edges in the 4006 vertex ‘combined’ PPI net-

work for the OGG1 data that have a contribution from each source.

Also shown are the proportion of edges that have a unique contribu-

tion from a source although note that otherwise Table 2 does not

give the extent of contribution, just that the source contributed.

Previous analysis has shown that a confounding factor between

the way gene annotation is carried out and the construction of PPI

networks has resulted in a ‘circular’ way of optimizing and validat-

ing algorithms for gene function prediction (Gillis and Pavlidis,

2011). In this case, considering functional/GO annotation enrich-

ment will be problematic due to an ‘annotation bias’ (Gillis et al.,

2014), where highly studied genes both have more known protein

interactions (edges in the PPI network) as well as more functional/

GO annotations.

Table 2 shows that ‘text mining’ is the most prominent source of

interaction evidence, which is also the most likely source to be asso-

ciated to an annotation bias. In this case, PPI evidence is automatic-

ally extracted from abstracts in the literature, which likely furthers

the issue that well studied genes with many known functional/GO

annotations have many known or inferred protein interactions and

hence edges in the network. Not only does ‘text mining’ contribute

to �93% of all edges, but it is the unique source of information for

�54% of edges in the ‘combined’ network. Both ‘experimental’ and

‘database’ concern interaction information gathered from other PPI

databases which are also likely to be affected by an ‘annotation bias’

among others (Gillis et al., 2014).

The ‘co-expression’ evidence concerns genes found to have been

co-expressed in a variety of experiments and across a number of dif-

ferent species (Stuart et al., 2003; Von Mering et al., 2005).

Conservation of co-expressed genes over multiple species implies a

selective advantage and hence that the genes are functionally related

Table 2. Proportion of edges with contributions from different sour-

ces in the overall ‘combined’ PPI network for the OGG1 data

Contribute Uniquely contribute

Text mining 0.9268 0.5364

Experimental 0.3294 0.0295

Co-expression 0.1134 0.0095

Database 0.0722 0.0236

Neighbourhood 0.0161 0.0006

Co-occurrence 0.0119 0.0015

Fusion 0.0005 0.0000

Determination of functionally related hit genes with Markov random fields i173
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(Xulvi-Brunet and Li, 2010). This is one source in the STRING data-

base that we expect not to be influenced by an annotation bias

(Gillis et al., 2014) and with a low unique contribution, this evi-

dence additionally conforms to that from the other sources.

Supplementary Figure S2 shows the vertex degree and the num-

ber of functional/GO annotations from DAVID (Huang et al.,

2009a, b) for the 4006 genes in both the ‘combined’ and ‘co-expres-

sion’ networks. In the combined network we can see a high linear

correlation while in the co-expression network vertex degree does

not seem to be correlated to the number of terms at all. Although it

is known that some functional/GO annotation terms are inferred

from expression patterns, this potential issue does not appear to be

present in the same way as the ‘annotation bias’ (Supplementary Fig.

S2) for the OGG1 data. Note that each edge in both networks is

weighted by the strength of evidence for that interaction and hence

vertex degree is not simply the number of neighbours. Hence, we

use the co-expression PPI network for the network analysis of the

OGG1 data. The network is made up of 4006 vertices and 43 097

weighted edges (density¼0.0054).

Recall that for the OGG1 data there are three scores and hence

three P-values for each gene. However, there is no natural or intrin-

sic way to order the siRNAs for each gene so that the data can be

considered as trivariate. Correspondent trivariate data are achieved

by ordering the three P-values so that the first data dimension is the

lowest P-value, the second data dimension is the median P-value

and the third data dimension is the highest P-value for each gene.

Figure 2 presents the density schematic for the OGG1 data. Here,

there are four labels of interest, a given number of negative siRNAs,

as well as the dominant ‘no negative siRNAs’ label. Note that the

densities in each dimension intercept at increasingly significant P-

values. This is necessary as due to the ordering of the P-values, the

lowest are skewed towards 0 and require a lower intercept so that

the ‘no negative siRNAs’ label remains the dominant label. Hence a

gene is guaranteed to have a non-zero MRF score for the ‘1 negative

siRNA’ label if its lowest P-value is below 0.1, the ‘2 negative

siRNAs’ label if its lowest P-value is below 0.1 and its median P-

value is below 0.2, and the ‘3 negative siRNAs’ label if its lowest P-

value is below 0.1, its median P-value is below 0.2 and its highest P-

value is below 0.3. It is the consideration of multiple siRNAs for

each gene that aims to address the variability of the P-values. Then

when we consider our MRF score, we consider all dimensions so

that ‘hits’ have either 2 or 3 negative siRNAs.

Figure 3 shows the log10(P-values) for Fisher exact tests of en-

richment or depletion in functional/GO annotation terms for the top

200 hits for the MRF method (s
i;‘2 negative siRNAs’ þ s

i;‘3negative siRNAs’)

against the top 200 hits obtained by ordering the genes by median

P-value. These hit lists are comparable in that if the median P-value

is below a certain threshold, at least 2 of the P-values are below the

threshold and hence we consider both the ‘2 negative siRNAs’ and

‘3 negative siRNAs’ labels from the MRF method. A greater func-

tional/GO enrichment can be generally observed in the MRF based

hit lists.

Supporting the pertinence of the network based hits, we consider

those with the increased enriched ‘nuclear lumen (GO:0031981)’

annotation (Fig. 3), where BER takes place. Nuclear lumen

corresponds to the localization of genes comprised in the whole vol-

ume inside the nuclear inner membrane, including ‘nuclear chromo-

some (GO:0000228)’, ‘nucleoplasm (GO:0005654)’ and ‘nucleolus

(GO:0005730)’. Figure 4 shows TOP3A and its neighbours that are

also present in the MRF hit list. Genes with the ‘nuclear lumen

(GO:0031981)’ annotation have diamond vertices. Neither TOP3A

with P-values (0.03, 0.03, 0.05), nor POLR1C with P-values (0.01,

0.05, 0.12) are strong hits when ordered by their median P-value

with ranks 500 and 576 respectively. However, both of these genes

can be seen to be likely hits based on a consensus judgment of their

P-values and are much more highly ranked with the MRF method.

Neighbours of TOP3A also in the MRF hit list include other

DNA repair proteins such as RAD50 and ERCC4, which belongs to

a pathway previously shown to be involved in the repair of oxidized

bases (Parlanti et al., 2012). The presence of TOP3A and POLR1C

in this cluster, both proteins involved in transcription, supports the

link between transcription and the repair of the oxidized guanine.

Moreover, ERCC4 is known to participate in the repair of actively

transcribed genes and more globally in transcription, consistent with

Maximum
P-value

Median
P-value

Minimum
P-value

P-value

Fig. 2. Schematic diagram of the construction of the trivariate densities cor-

responding to each label for the OGG1 data. In each dimension there are two

possibilities and an associated univariate density: ‘null case’ (U(0, 1)) and

‘negative siRNA’ (g�). Trivariate densities are defined for each of four labels of

interest and are schematically represented by encompassing a single

possibility in each dimension. The four labels are: ‘3 negative siRNAs’ (3 low

P-values), ‘2 negative siRNAs’ (2 low P-values), ‘1 negative siRNA’ (1 low

P-value) and ‘no negative siRNAs’ (no low P-values). Note that the ordering of

the P-values limits the possible combinations of trivariate densities across

the three dimensions in this case

Fig. 3. Log10(P-values) for Fisher exact tests of enrichment or depletion in

functional/GO annotations for the hits lists obtained from the MRF method

and median P-value. The annotation term ‘nuclear lumen (GO:0031981)’ has

been highlighted
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the hypothesis of a preferential repair of 8-oxoguanine present in ac-

tive regions of the genome (Amouroux et al., 2010).

We additionally investigated the functional/GO enrichment for

hit lists based on vertex degree. Supplementary Table S1 shows

that the vertices with the highest degree are indeed the most en-

riched in exceptional terms of interest such as ‘Pathways in cancer

(hsa05200)’. However, for the co-expression network degree, these

exceptional terms are not the most enriched but rather a number of

terms associated with nucleotide and nucleoside binding in par-

ticular. This suggests that our choice to use the co-expression PPI

network was well founded and allows us to avoid the previously

identified annotation bias clearly present in the combined PPI

network.

To investigate the extent of the influence of the network on the

MRF hit list we permuted the gene scores (maintaining the co-

expression PPI network structure) and considered which genes are

present in the MRF hit list. This was carried out 100 times and

Supplementary Figure S3 shows the proportion of times that each

gene was present in the hit list plotted by its vertex degree. It appears

that genes with a higher degree are generally more often present in

the hit list and in the extreme case, genes with no neighbours will

never be in the hit list. However, it is clear that simply because a ver-

tex has a high degree, the corresponding gene is not automatically

present in the hit list.

Here we have demonstrated the flexibility of our MRF based net-

work scoring method that allows for multivariate densities corres-

ponding to multiple labels of interest to be readily defined. We

considered functional/GO enrichment as a guide for interpretation

that has allowed for the formation of further relevant hypotheses for

specifically identified genes. We took particular care to account for

the previously observed annotation bias and also investigated the

direct influence of the PPI network on our results.

3.2 The MRF method finds greater pathway enrichment

and allows for more detailed determination of

hit genes in a lymphoma study
We consider data from a study of diffuse large B-cell lymphoma pre-

viously analysed using both the BioNet and Knode methods. For

each gene, risk association was obtained from a survival analysis

and differential expression was measured between the lymphoma

subtypes ABC and GCB (Beisser et al., 2010; Dittrich et al., 2008).

Hence there are 2 P-values for each gene corresponding to survival

analysis (S) and differential expression (T). A method for combining

multiple P-values using order statistics was also proposed with

BioNet (Dittrich et al., 2008; Beisser et al., 2010). As can be seen in

Supplementary Figure S4, the low combined P-values are those that

have both low S and T P-values and if one of the P-values is high,

then the combined P-value is high.

The PPI network for the lymphoma data was sourced from the

Human Protein Reference Database (Prasad et al., 2009), which is

no longer maintained. We could have considered obtaining another

PPI network from a more contemporary source and also attempted

to account for the previously identified ‘annotation bias’. However,

the aim of this section is not to analyse the lymphoma data for its

own sake but rather to compare the MRF output to the previously

published output from the BioNet and Knode methods. The PPI net-

work is made up of 2034 vertices and 15 512 unweighted edges

(density¼0.0038).

We consider the lymphoma data to show a general advantage of

the MRF method in that we both find greater pathway enrichment

and are able to more generally determine the hit genes as against the

BioNet analysis. In this experiment, there are many genes with one

high and one low P-value resulting in a high combined P-value

(Supplementary Fig. S4). Assuming that interest lies not only when

both P-values are low but when one or the other is, we can achieve

such output with the MRF method by defining bivariate densities

for these labels. Figure 5 shows the construction of the bivariate den-

sities where the 4 labels are ‘S and T hit’, ‘S hits only’, ‘T hits only’

and ‘no hits’. The P-values in the T dimension are generally much

lower (Supplementary Fig. S4b) and approximately half of them are

below 0.2. In order that the ‘no hits’ label remains dominant, we set

the intercept of the exponential density and the standard uniform in

the T dimension to be 0.2 (Fig. 5).

Recall that the BioNet output is a binary labelling for each gene

and the hit list is the list of genes in the maximum-weight connected

subgraph. Since the subgraph obtained from BioNet contains 46

genes, following the Knode analysis (Cornish and Markowetz,

2014), we also consider the top 46 genes as the hit list for each other

method. In this case, we obtain 3 hit lists from the MRF output

based on ranking the genes for each of the three labels of interest, ‘S

and T hit’, ‘S hits only’ and ‘T hits only’. Figure 6 shows the overlap

in the top 46 genes for each method. Firstly, there is no overlap be-

tween the top 46 genes for each of the lists from the MRF method as

expected. Similarly, the BioNet hit list does not intersect with either

the ‘S hit only’ or ‘T hit only’ lists but does overlap with the ‘S and T

hits’ list. This again makes sense since the ‘S and T hits’ label is the

closest to BioNet since both P-values being low is necessary for the

combined P-value used by BioNet to be low (Supplementary Fig.

S4). There is reasonable overlap between the vertex degree hit list

and all the other lists except ‘S hits only’. This makes sense for the

MRF hit lists as vertex degree is explicitly present the MRF score

(Equation (4)). This is also not surprising for BioNet since vertices

with high degree are likely to be included in the maximum-weight

connected subgraph since they allow access to the most number of

other vertices through their edges.

Also shown in Figure 6 are genes associated with the carcino-

genic NFjB pathway (Hoesel and Schmid, 2013), originally used to

evaluate the BioNet output for the lymphoma data (Dittrich et al.,

2008). We can see that most of the NFjB genes contained in the

BioNet list are also present in the ‘S and T hits’ list, while there are

additional such genes in the ‘T hits only’ list. The ‘S hits only’ list

does not have any NFjB genes (although it is not significantly

depleted) which is interesting in itself. Although the vertex degree

hit list has eight NFjB genes in total, only two of them are exclusive

and there are an additional five genes the MRF lists contain that are

Fig. 4. TOP3A and neighbours present in the top 200 MRF hits. Vertices are

coloured based on median score/P-value. Diamond vertices correspond to

the genes with the ‘nuclear lumen (GO:0031981)’ annotation. The network

was visualized in Cytoscape 3.3.0 (Shannon et al., 2003) using the yFiles

Organic layout
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not in the degree list. Hence we are able to find additional enrich-

ment in the NFjB pathway as previously reported for BioNet while

gaining further insight into the lymphoma study by demarcating

such genes as ‘S and T hits’ or ‘T hit only’, as well as that we find no

NFjB genes for ‘S hit only’.

A general advantage of the MRF method that it readily allows for

more than a single hit list for multiple labels of interest. The add-

itional information available in this way is not possible to determine

after the P-values have been combined as was done for input into the

BioNet method. The output from Knode (Supplementary Fig. S5)

generally conforms to the above discussion. Although multivariate

P-values do not appear to be a problem in principle for either the

BioNet or Knode methods, it is not clear how multiple labels beyond

binary ‘hit’ and ‘non-hit’ could also be achieved. The output of the

NePhe and NEST methods, as well as simply ordering by combined

P-value is also provided in the supplementary MATLAB code.

3.3 The MRF method performs the best in an

independent simulation experiment
We consider the simulation experiment used to evaluate the Knode

method against BioNet (Cornish and Markowetz, 2014). A scale

free network with 1000 vertices was simulated with 3 ‘clusters’ of

designated hits resulting in a total of 30 ‘true hit’ vertices. The hit

vertices have P-values simulated from a truncated Gaussian distri-

bution centred at 0 while the non-hit vertices have P-values simu-

lated from a standard uniform distribution. Rather than using

the original standard deviation of 10�6 for the hit distribution, we

consider a standard deviation of 0.05. This greatly increased value is

necessary because under the original simulation set-up, the dens-

ity was too peaked at 0 and simply taking the top 30 vertices

ordered by lowest P-value finds the highest proportion of true hits

(Supplementary Fig. S6).

For the MRF method, we used our general exponential density

scheme (Supplementary Fig. S1), rather than the known densities

since this information is not available for the other methods we are

comparing to. For the BioNet method, the input FDR parameter

was set to 0.8 in order that the maximum-weight connected sub-

graph could be found. The similarity matrix used for the Knode

method was the diffusion kernel, the same as was used originally

(Cornish and Markowetz, 2014). We considered the NePhe score

with the shortest path similarity matrix and average summation

method, the best performing pair of options. We additionally con-

sidered the NEST score (Jiang et al., 2015) along with simply order-

ing the vertices by vertex degree (highest) and P-value (lowest). The

hit lists are the top 30 vertices obtained from each method.

Figure 7 shows box plots of the proportion of true hits vertices

for each method obtained over 1000 simulation runs. Since it is

known that there are 30 true hits, as originally presented (Cornish

and Markowetz, 2014), we consider the proportion of true hits in

each hit list of size 30. We can see that simply ordering the vertices

by degree performs very poorly, while ordering by P-value is better

but still relatively poor. The NEST, NePhe and Knode scores per-

form quite similarly while BioNet has a lower median performance

and a much greater spread. The MRF method clearly gives the best

performance and when using the known true hit density rather than

our general exponential scheme, the MRF method gives even better

results, with a median proportion just below 0.8 and a similar

spread (not shown).

There were 30 simulated runs where BioNet obtained a propor-

tion correct>0.8 and for 12 of those runs, the proportion correct

was 1. However, for the BioNet method there is no guarantee that

the maximum-weight connected subgraph contains only 30 vertices

and in these cases, the minimum number of vertices in the returned

subgraph was 43 while the median was 91. Overall, the median size

of the BioNet hit list was 27 vertices (mean 39.53) with a maximum

size of 251 vertices. So even without accounting for the false

P P

Fig. 5. Schematic diagram of the construction of the bivariate densities cor-

responding to each label for the lymphoma data. In each dimension there are

two possibilities and an associated univariate density: ‘non-hit’ (U(0, 1)) and

‘hit’ (f�). Bivariate densities are defined for each of four labels of interest and

are schematically represented by encompassing a single possibility in each

dimension. The four labels are: ‘S and T hits’ (low P-value in both dimen-

sions), ‘S hits only’ (low P-value in S dimension), ‘T hits only’ (low P-value in

T dimension) and ‘no hits’ (no low P-value in either dimension)

Fig. 6. Venn diagram of the hit lists for the lymphoma data overlaid with

genes associated with the NFjB pathway. There are 46 genes in each hit list

(black) along with the genes associated with the NFjB pathway (grey and

listed at the sides in blue). The NFjB annotation was obtained from KEGG

(Kanehisa et al., 2016). Below each method is the P-value for the Fisher exact

text for enrichment or depletion of the NFjB terms in the hit list. The Venn

diagram is based on the layout from http://bioinformatics.psb.ugent.be/webt

ools/Venn/

i176 S.Robinson et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/33/14/i170/3953959 by guest on 09 D
ecem

ber 2019

Deleted Text: p
Deleted Text: p
Deleted Text:  
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: &hx2009;
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/


positives in the BioNet hit lists, the number of true positives found is

still generally worse than other methods, which was also the case in

the original simulation experiment (Supplementary Fig. S6).

Simulating a biological network is particularly difficult as even

characterizing network topologies is a challenging problem

(Pavlopoulos et al., 2011). Here, the simulated scale free networks

were trees whereas this is an unlikely attribute of a 1000 vertex PPI

network. Additionally, simulating genomic data are equally difficult

and recent tools, for example to simulate gene expression based on

RNA sequencing (Benidt and Nettleton, 2015; Frazee et al., 2015),

do not then further consider the simulated data over a network. We

have just used an independent simulation experiment to compare

our MRF score to a number of other previously proposed methods.

Such a comparison with known ‘true hits’ is otherwise not possible

for any real data application.

3.4 Model fitting discussion
The intercept of the underlying densities in our general set-up

(Supplementary Fig. S1) has an interpretation as the P-value below

which genes are guaranteed to have a non-zero MRF score. We

found that an intercept of 0.3 generally gave reasonable results. This

value is near the maximum possible intercept point while still being

reasonably peaked at 0 (Supplementary Fig. S1). Under this general

scheme, all genes with P-values<0.3 will therefore be a ‘hit’ at b¼0

and hence will have a non-zero MRF score. Genes with P-val-

ues>0.3 may be a hit for some other value of b dependent on their

P-value and neighbours, it is just not guaranteed they will have a

non-zero score. The consideration here is that the intercept should

be as high as possible so that many genes are scored, while maintain-

ing that the ‘non-hit’ label is the dominant label and so the final

MRF scores are therefore a measure of the strength of the hit. Note

that the hit density is not a model for the observed ‘true hit’ P-values

but simply a discriminative element in our MRF based method.

A general trade-off in a network based hit list is the loss of infor-

mation relating to screening data that does not conform to the net-

work. In the most extreme case, if a vertex does not have any

neighbours then the corresponding gene cannot be a network based

hit. This is equally true for any of the other previously proposed

methods we have compared to. Hence the network based hit list

should never be considered by itself but rather as an additional net-

work ‘grouped’ or ‘smoothed’ hit list that is considered in relation to

the original threshold hit list. In our case, by using a co-expression

PPI network for the OGG1 data, our network based hit list favours

functionally related (Stuart et al., 2003; Xulvi-Brunet and Li, 2010)

moderate to strong hits at the expense of strong isolated hits. This

directly facilitates the investigation of mechanisms of interest for the

selected phenotype. The full ‘combined’ PPI network may also be of

interest to investigate well studied groups of genes in other biolo-

gical contexts. For example, co-expression PPI networks may not in-

clude important interactions such as those involving house-keeping

genes. It would also be of interest to investigate PPI networks

inferred from single specific studies (Huttlin et al., 2015; Rolland

et al., 2014), rather than inferred from a collection of many dispar-

ate studies such as the PPI data collated by STRING.

PPI networks are the most common genomic networks utilized

in such analysis. However, in general there are known issues with

the accuracy of PPI network data (Mahdavi and Lin, 2007; Pan

et al., 2015) as well as the fact that proteins that may not physically

interact but that still act on the same cell or molecular function are

not taken into consideration. Furthermore, as opposed to regulatory

networks, it is not known whether any given interaction represents a

positive or negative effect, for example. It is possible that such add-

itional information could be incorporated within a network based

analysis. More generally, such an approach could also be considered

with directed network data from other sources, for example signal-

ling or metabolic pathway information, and this could be a fruitful

subject for future work.

3.5 Implementation in MATLAB and computational

expense
The MATLAB code to reproduce the results presented in the paper

is given as Supplementary Material. Our MRF based network scor-

ing method was implemented in MATLAB on a mid-2012 MacBook

Pro with a 2.6 GHz Intel Core i7 processor (quad-core) and 16 GB

of RAM. The minimum energy labels were found using the a-expan-

sion algorithm (Boykov et al., 2001; Boykov and Kolmogorov,

2004; Kolmogorov and Zabih, 2004). Running over n¼1000 values

of b took �1.3 s for the simulated data (1000 vertices, 2 labels),

�20 s for the lymphoma data (2034 vertices, 4 labels) and �70 s for

the OGG1 data (4006 vertices, 4 labels). Due to the heterogeneous

nature of the genomic data and networks, our MRF-based method is

currently not suitable for a graphical user interface. For example,

the flexibility to consider multivariate P-values as well as multiple

labels of interest beyond just binary ‘hit’ and ‘non-hit’ is best

achieved using a command line input as available in MATLAB.

4 Conclusion

We have proposed a network based method to determine hit genes

using an MRF and have shown the effectiveness of the method using

a broad range of different data sets. The multiple advantages of the

MRF method are that it easily allows for multivariate gene scores in

addition to multiple labels of interest beyond binary ‘hit’ and ‘non-

hit’. The intercept of the underlying densities can be considered as a

parameter with an interpretation and for which we have provided

general advice on setting. We have provided the MATLAB code and

data to reproduce the results presented in the paper, which is freely

available for modification.

Fig. 7. Box plots of the proportion of true hit vertices identified for each

method in the ‘3 cluster’ Knode simulation scheme (1000 simulation runs)

(Cornish and Markowetz, 2014)
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We have shown that our MRF method gave the best results in a

simulation experiment originally used to evaluate Knode and

BioNet. We have additionally shown that we were able to find

greater pathway enrichment as well as further determine hit genes in

a lymphoma study concerning survival analysis and gene expression,

whereas the multiple observed P-values for each gene were com-

bined for input into the BioNet method. For the OGG1 screening

data we have shown that the MRF method allows for the analysis of

the multivariate scores and is able to find relevant functional/GO

annotation. For the study of genomic data with an associated net-

work where the ‘guilt by association’ assumption is appropriate, we

have shown that our proposed MRF based method gives an advanta-

geous way to determine network based hit genes as against previ-

ously proposed methods.

We also noted a major pitfall using functional/GO enrichment

for validation when it is strongly correlated with vertex degree in

the PPI network and confounded by an ‘annotation bias’. We con-

sidered a network of only co-expression PPI evidence to account for

this issue and also took this into consideration when evaluating our

results. This issue does not appear to have been given enough atten-

tion in the literature, especially when there are so many papers uti-

lizing both PPI networks as well as functional/GO enrichment

analysis.
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