
n

Panu Aho

AN OPEN SOURCE DIGITAL TWIN
FRAMEWORK

Faculty of Engineering and Natural Sciences
Master’s thesis

November 2019

 i

ABSTRACT

Panu Aho: An Open Source Digital Twin Framework
Master’s thesis
Tampere University
Degree Programme in Management and Information Technology
November 2019

In this thesis, the utility and ideal composition of high-level programming frameworks to facili-

tate digital twin experiments were studied. Digital twins are a specific class of simulation artefacts
that exist in the cyber domain parallel to their physical counterparts, reflecting their lives in a
particularly detailed manner. As such, digital twins are conceived as one of the key enabling tech-
nologies in the context of intelligent life cycle management of industrial equipment. Hence, open
source solutions with which digital twins can be built, executed and evaluated will likely see an
increase in demand in the coming years.

A theoretical framework for the digital twin is first established by reviewing the concepts of
simulation, co-simulation and tool integration. Based on the findings, the digital twin is formulated
as a specific co-simulation class consisting of software agents that interact with one of two pos-
sible types of external actors, i.e., sensory measurement streams originating from physical assets
or simulation models that make use of the mentioned streams as inputs.

The empirical part of the thesis consists of describing ModelConductor, an original Python
library that supports the development of digital twin co-simulation experiments in presence of
online input data. Along with describing the main features, a selection of illustrative use cases are
presented. From a software engineering point of view, a high-level programmatic syntax is
demonstrated through the examples that facilitates rapid prototyping and experimentation with
various types of digital twin setups.

As a major contribution of the thesis, object-oriented software engineering approach has been
demonstrated to be a plausible means to construct and execute digital twins. Such an approach
could potentially have consequences on digital twin related tasks being increasingly performed
by software engineers in addition to domain experts in various engineering disciplines. In partic-
ular, the development of intelligent life cycle services such as predictive maintenance, for exam-
ple, could benefit from workflow harmonization between the communities of digital twins and ar-
tificial intelligence, wherein high-level open source solutions are today used almost exclusively.

Keywords: Digital Twin, Co-Simulation, Tool Integration, Intelligent Life Cycle Management,

Open Source

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

 ii

TIIVISTELMÄ

Panu Aho: Avoimen lähdekoodin ohjelmistokehys digitaalisille kaksosille
Diplomityö
Tampereen yliopisto
Johtaminen ja tietotekniikka
Marraskuu 2019

Diplomityössä tutkittiin korkean tason ohjelmointikehyksiä, jotka mahdollistaisivat digitaalisten

kaksosten suunnittelun sekä niihin liittyvien simulointitehtävien ajamisen. Digitaaliset kaksoset
ovat erityinen luokka simulaatioita, jotka peilaavat jonkin fyysisen maailman laitteen tai prosessin
toimintaa erityisen tarkasti. Digitaalisia kaksosia pidetään eräänä älykkäiden
elinkaarenhallintapalveluiden tärkeimmistä mahdollistavista teknologioista. Näin ollen on
luultavaa, että kysyntä avoimen lähdekoodin ratkaisuille, jotka mahdollistavat digitaalisten
kaksosten rakentamisen, suorittamisen ja arvioinnin tulee lähivuosina lisääntymään.

Työssä rakennetaan ensin teoreettinen viitekehys digitaalisille kaksosille tutkimalla
simuloinnista, co-simuloinnista ja työkaluintegraatioista julkaistua kirjallisuutta. Tuloksiin
pohjautuen muotoillaan digitaaliselle kaksoselle malli. Mallissa digitaalinen kaksonen käsitetään
co-simuloinnin erikoistapaukseksi, jossa erikoistuneet ohjelmistoagentit kommunikoivat joko
fyysisten laitteiden tai simulaatiomallien kanssa, välittäen fyysisiltä laitteilta tulevaa mittausdataa
simuloinnin syötteiksi.

Työn empiirinen osuus koostuu ModelConductor -kirjaston kuvauksesta. Kyseessä on uusi
Python-kirjasto joka tukee reaaliaikaisella syötedatalla varustettujen digitaalisten kaksosten
kehittämistä. Pääominaisuuksien kuvaamisen lisäksi työssä esitellään joukko kuvaavia
esimerkkikäyttötapauksia. Esimerkkien kautta demonstroidaan myös kirjaston korkean tason
ohjelmointisyntaksia, joka mahdollistaa nopeat kokeilut useilla erityyppisillä digitaalisilla
kaksosilla.

Työn päätuloksena esitetään, että digitaalisten kaksosten rakentamiseen soveltuvien
työkalujen luonti on mahdollista toteuttaa olioparadigmaan perustuen korkean tason
ohjelmointikielillä. Kyseisellä lähestymistavalla voi tulevaisuudessa olla vaikutuksia siihen,
minkälaiset organisaatiot ja henkilöt digitaalisiin kaksosiin liittyviä tehtäviä suorittavat.
Tärkeimpänä mainittakoon havainto, että ohjelmistokehykseen pohjautuva ratkaisu voisi tuoda
digitaalisten kaksosten kehittämisen lähemmäs ohjelmistoalan ammattilaisia, sen lisäksi että sitä
tekevät useiden perinteisempien insinöörialojen asiantuntijat. Tämä pitää erityisesti paikkansa
älykkäiden elinkaarenhallintapalveluiden, kuten prediktiivisen kunnossapidon, konteksissa, missä
jo nyt pitkälti käytetään samantyyppisiä avoimen lähdekoodin ratkaisuja koneoppimis- ja
tekoälytehtävissä.

Avainsanat: Digitaalinen kaksonen, co-simulointi, työkaluintegrointi, älykäs elinkaaren

hallinta, avoin lähdekoodi

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

 iii

PREFACE

As it is the case with all major undertakings in life, the realization of this thesis would

have been considerably harder without the valuable support from numerous advice giv-

ers, colleagues, friends and family members. I wish to extend my gratitude to prof. Tarmo

Lipping and prof. Sami Hyrynsalmi at TUNI Pori for meticulously scanning through vari-

ous revisions of the text and giving insightful improvement suggestions, both of the sci-

entific and technical variety. I also want to thank Dr. Eero Immonen and Mr. Mika Lauren

at Turku University of Applied Sciences (TUAS) for providing the initial idea, helping

shape the research question to fit academic standards and always being available for

discussion when work seemed to be hitting the brick wall.

Kudos also go out to Mr. Krister Ekman, Mr. Toomas Karhu and Mr. Miika Laivola at

TUAS Internal Combustion Engine Laboratory for helping with extracting the raw data

required for the thesis’ empirical part and for being such great co-workers for all these

years. Lassi Roininen (LUT University), Tommi Karhela (Semantum Oy), Juha Korte-

lainen (VTT), Karri Penttilä (VTT) and Petteri Kangas (VTT) are to be thanked for pointing

me to new, interesting directions in various discussions throughout the process. Sadly,

Petteri passed away during the finalization of the thesis; my thoughts are with his friends

and family.

Finally, I want to express my deepest love and gratitude for my wife, Susanna, and my

son, Niilo. As You know, three years ago I chose the extremely difficult path of pursuing

a master’s degree while also working full-time for the most part. While I do feel relieved

and proud that this endeavor is now coming to an end with the finishing of this thesis, I

am also painstakingly aware that during this process I have not been able to be the

husband and father You deserve. Words do not exist to thank you enough for your sup-

port, patience and (still) being there for me. Now it’s my turn to return all the support and

encouragement, for which ever paths You might choose to follow in your lives.

Turku, 25th November 2019

Panu Aho

 iv

CONTENTS

1. INTRODUCTION ... 1

2. PROBLEM SPACE AND METHODOLOGY ... 4

2.1 Problem background ... 4

2.2 Research methodology ... 7

3. CO-SIMULATION BACKGROUND AND RELATED WORK 12

3.1 Simulation ... 12

3.2 Co-simulation concepts and challenges .. 15

3.3 Tool integration methodology .. 19

3.3.1 Generic modes of integration .. 20

3.3.2 Functional Mock-up Interface ... 24

3.4 The Digital Twin .. 29

4. MODELCONDUCTOR ONLINE CO-SIMULATION LIBRARY 34

4.1 Overview ... 34

4.2 Structure and description of internal data types .. 36

4.3 Behavior and interactions ... 39

4.4 Auxiliary components .. 43

4.4.1 Result logging ... 44

4.4.2 Measurement validation .. 44

4.5 Distribution, installation & licensing ... 45

5. EXAMPLE USE CASES... 47

5.1 Internal Combustion Engine Laboratory .. 47

5.2 Prediction of engine power using FMU Simulink model 49

5.3 Online prediction of engine NOx emissions by machine learning 53

5.4 Real-world engine test data simulation with GT-SUITE 61

5.4.1 Access to input data .. 61

5.4.2 Engine modeling preliminaries .. 65

5.4.3 Dynamic engine simulation model ... 67

5.4.4 Setting up and running the experiment .. 70

6. DISCUSSION .. 73

6.1 Contribution .. 74

6.2 Limitations and future work ... 75

REFERENCES ... 78

APPENDIX A: Prediction of engine power using FMU Simulink model

APPENDIX B: Online prediction of engine NOx emissions by machine learning

APPENDIX C: Real-world engine test data simulation with GT-SUITE

 v

LIST OF FIGURES

Figure 1. Framework for Evaluation in Design Science Research (FEDS),
adapted from [28] .. 11

Figure 2. An illustrative excerpt of Formalism Transformation Graph, adapted
from [34], [37] ... 17

Figure 3. An example co-simulation timeline depicting the communication points
between the simulation units, adapted from [38] ... 17

Figure 4. A generic Tool Integration Architecture based on an integrated data
model, adapted from [46] .. 20

Figure 5. Concept of the Integrated Data Model, adapted from [46] 22
Figure 6. Workflow-based tool integration architecture, adapted from [46] 23
Figure 7. Functional Mock-up Interface for a) Model Exchange b) Co-Simulation,

adapted from [54] .. 26
Figure 8. FMU Co-Simulation with tool coupling, adapted from [21] 27
Figure 9. State machine representation of co-simulating a single FMU,

reproduced under CC BY-SA 4.0 from [21] ... 29
Figure 10. The timeline of simulation paradigm’s evolution in engineering

organizations, adapted from [15] ... 32
Figure 11. An early design phase use case diagram of ModelConductor 35
Figure 12. The general ModelConductor scope ... 35
Figure 13. Specification-level class diagram of the ModelConductor library. 36
Figure 14. Class diagram of MeasurementStreamHandler and descendant

classes ... 38
Figure 15. Class diagram of ModelHandler and descendant classes 39
Figure 16. The main data receiving loop of Experiment.. 40
Figure 17. The main model loop of Experiment .. 41
Figure 18. An illustrative sequence diagram of a one-to-one experiment use case

in ModelConductor .. 42
Figure 19. A generic many-to-many use case in ModelConductor 43
Figure 20. A simplified schematic of an engine test stand similar to that used at

TUAS ICEL ... 48
Figure 21. The input signals for FMU ModelConductor experiment 50
Figure 22. The Simulink model for testing ModelConductor 50
Figure 23. ModelConductor one-to-one Experiment results 52
Figure 24. Distribution of NOx concentration during the NRTC cycle 54
Figure 25. Simulation results .. 56
Figure 26. Distribution of durations of the database write operations 56
Figure 27. Simulation real-time performance, poll-based experiment 57
Figure 28. Wall-clock time elapsed vs. samples written, poll-based experiment 58
Figure 29. Real time performance when streaming input data over TCP socket

from a remote client .. 59
Figure 30. The beginning of real time performance in streaming experiment 60
Figure 31. An excerpt of table scheme at TUAS ICEL’s MySQL database 61
Figure 32. Simplified example of IncomingMeasurementBatchPoller operation 63
Figure 33. Input signals to GT-SUITE FMU simulation (y-axes values

undisclosed for NDA restrictions) .. 64
Figure 34. Example of a simple one cylinder engine model in GT-SUITE built for

another project carried out at TUAS ICEL [71] .. 66
Figure 35. The implemented GT-SUITE model of the target engine 68
Figure 36. The simulation results compared with real-world control

measurements .. 71
Figure 37. The passing of simulated time vs. real time during the simulation 72

 vi

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence
API Application Programming Interface
BTDC Before Top Dead Center
CAN Controller Area Network
COM Component Object Model
CORBA Common Object Request Broker Architecture

CSV Comma Separated Values
DL Deep Learning
DSML Domain-Specific Modeling Language

DSR Design Science Research
ECU Engine Control Unit
FEDS Framework for Evaluation in Design Science Research
FIFO First In, First Out
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
FOM Federation Object Model
FTG Formalism Transformation Graph
GUI Graphical User Interface
HILS Hardware-In-Loop Simulation
HLA High-Level Architecture
I/O Input/Output
ICEL Internal Combustion Engine Laboratory
IDM Integrated Data Model
IEEE Institute of Electrical and Electronics Engineers
IMS Integrated Model Server
IoT Internet of Things
JSON JavaScript Object Notation
MAE Mean Absolute Error
ML Machine Learning
MQTT Message Query Telemetry Transport
MVP Minimum Viable Product
NASA National Aerospace and Space Administration
NOx Nitrogen Oxides
NRTC Non-Road Transient Cycle
ODE Ordinary Differential Equation
OEM Original Equipment Manufacturer
OMT Object Model Template
OOP Object Oriented Programming
OTI Open Tool Integration
PM Particulate Matter
REST Representational State Transfer
RTI Runtime Infrastructure
SOM Simulation Object Model
SQL Structured Query Language
TA Tool Adaptor
TCP Transmission Control Protocol
TDC Top Dead Center
TUAS Turku University of Applied Sciences
XMI XML Metadata Interchange

XML Extensible Markup Language

 vii

Τ𝑖 i-th tool in a set of tools
𝐴𝑛 Injector nozzle total area

𝐶𝑑 Discharge coefficient
𝑃𝑜𝑢𝑡 Break output power of an internal combustion engine

𝑅𝐷𝑇 A digital twin relation
𝑚𝑓 Injected fuel mass

𝑝𝑒𝑥ℎ Exhaust back pressure (before turbine)
𝑝𝑖𝑛𝑡 Boost pressure

𝑡𝑥 , 𝑡𝑖, 𝑡𝑓 Individual time instants in 𝒯

𝜃0,𝐸 Injection timing flag

𝜃0 Start of injection timing, crank degrees BTDC

𝜌𝑓 Fuel density

𝜔[𝑡𝑖,𝑡𝑓] An input function evaluated over a closed interval, 𝜔([𝑡𝑖, 𝑡𝑓])

Δ𝑥̃𝑁 Left Riemann Sum approximate for displacement

Δ𝑥𝑇 The one-dimensional displacement of a body during elapsed time T
Δ𝑝 Pressure drop across nozzle

Ω Set of input functions
𝑁 Target engine speed
𝑃 A set of process agents

𝑄 Set of system states
𝑆 A set of simulation agents

𝑇 Torque
𝑋 Set of input states

𝑌 Set of outputs
𝑛 Revolution rate

𝑝 A process agent
𝑞, 𝑞𝑖 A system’s internal state (at time instant i)

𝑠 A simulation agent
𝑡 Simulation time
𝑣(𝑡) The velocity function

𝑥 An input state

𝑦 An output state
𝒯 Set of time instants
𝛿 Transition function

𝜆 Output function
𝜏 Wall-clock time

𝜔 An input function (Chapter 3), Angular velocity (Chapter 5)

1

1. INTRODUCTION

The industrial paradigm is gradually shifting from product-centric to service-centric. In-

stead of simply selling products to customers, an increasing number of businesses are

now putting the emphasis on development of long-term partnerships with their custom-

ers, wherein the physical product plays a necessary but insufficient role. From the per-

spective of the manufacturer, this implies that revenue streams can be extended to span

the whole life chain of a product, including design, manufacturing, delivery, operational

use and retirement. Simultaneously, this allows for the customer to keep focus on their

core competences, when many of the utilities and assets once perceived as physical

hardware are now available for procurement in “as a service” manner.

With the advent of Internet of Things (IoT), the very concept of what might constitute an

industrial service is also transforming [1]. Of particular interest are the services that a

manufacturing company might provide during the operational lifetime of a physical asset.

Depending on the particular field of industry, the basic idea of providing maintenance

services for installed production equipment is, of course, nothing new. However, techno-

logical advancements in areas such as sensor and actuator technology, low-latency net-

work connectivity and Artificial Intelligence (AI) are opening up unforeseen avenues for

applications regarding predictive maintenance, fault detection, implementation of dy-

namic lifetime optimization strategies, and more [2]. Intelligent life cycle services, along

with the adoption of other smart manufacturing strategies, show considerable potential

to foster businesses’ productivity and competitiveness [3].

As applications of the discussed variety become more mainstream, the requirement for

high quality process models and numerical simulation capabilities becomes evident. For

illustration, let us consider a complex engineering system with dynamic multi-input, multi-

output characteristics, e.g., an internal combustion engine or a nuclear power plant. If an

agent (be that human or a machine) is to make inferences about such a system’s behav-

ior in the future, scarcely good results can be expected if no other information is available

than the system’s behavior in the past. Instead, state-of-art process models are com-

monly used, for which future trajectories of crucial quantities of interest can be approxi-

mated by numerical methods. Simulation is the process of solving a dynamic model’s

state trajectory with respect to time, given a certain set of preconditions, e.g., the sys-

tem’s state history and other model-specific attributes. Whereas a model can be consid-

ered an approximation and an abstraction of a well-defined portion of reality, simulation

is the act of observing that model’s behavior in time.

2

When conducting dynamic system simulation, it is common to divide a complex engi-

neering system to multiple submodels. In industrial practice, the submodels are often

developed in isolation from one another; by different people, using different modeling

tools with various internal formalisms. While this approach might result in a set of sub-

models that can be considered accurate within their respective domains, integration com-

plexities are likely to arise when these submodels are coupled to perform system-level

simulations. With the recent emergence of IoT based life cycle services, an increasing

demand for such complex model interoperability is identified, stemming from the need

for extremely accurate system models. This has motivated substantial scholarly activity

in the field of co-simulation, which refers to solving state trajectories for complex coupled

models regardless of the individual submodels’ formalisms [4]. High-Level Architecture

(HLA) [5] and, more recently, Functional Mock-up Interface (FMI) [6] are some concrete

attempts aiming to promote this kind of modeling tool interoperability.

An extreme use case for (co-)simulation emerges with the introduction of digital twins,

software representations of physical hardware that coexist with and mirror the evolution

of their physical counterparts in a particularly detailed manner [7]. If the target system is

of any considerable complexity, a multidisciplinary approach is herein mandatory, en-

forcing the requirement for interoperability between various simulation tools and model-

ing paradigms. Often digital twin simulations need also to be augmented with online real-

world sensor data to reflect the changes occurring in the target system over time. Hence

digital twin technology can, arguably, provide fertile ground for the development of IoT-

based life cycle applications. A prerequisite for this, however, is that a specific class of

middleware software exists; one that would take care of low-level tasks such as facilitat-

ing communication between individual sub-simulations and provide means for the phys-

ical and digital product to exchange data.

Traditionally, tool integration capabilities are often built-in to proprietary “tool suites”,

such as the MATLAB Simulink package. Open source solutions, while certainly not with-

out their flaws, are preferred in many cases for better extensibility, workflow integration,

transparency and lower costs. This premise holds true in some of the most interesting

domains that intersect the present discussion about IoT life cycle applications. Most

prominently, the deep learning community is herein referred to, where open source code-

base is used almost exclusively as opposed to proprietary solutions [8], [9]. Modern open

source deep learning frameworks have gained substantial traction recently as they gen-

erally provide an intuitive high-level interface for fast experimentation and prototyping of

a variety of deep learning scenarios. Meanwhile the frameworks of this category (e.g.,

Tensorflow or PyTorch) have evolved to be powerful enough to support production-grade

3

applications, with strong user communities able to provide the required level of develop-

ment and support.

In the empirical part of the present thesis, a software engineering approach to the digital

twin application development process is proposed. It is a valid argument that many con-

temporary simulation tool suites already offer the functionality to develop tool integration

solutions suitable for digital twins [10]. However, the workflows incorporated into these

pieces of software are generally aimed at the domain experts of the particular engineer-

ing discipline, rather than at the software engineer. The interrelation between the dis-

cussed developments in the AI community and intelligent industrial life cycle services

suggests that future digital twin implementations might require more and more coordi-

nated efforts between the two expert domains. This sparks the driving motivation of the

present work: a suggestion that a demand exists for high-level open source programming

interfaces in the domain of simulation tool and sensor data integration. Specifically, the

present work aims to address the following questions:

 What kind of standards, theoretical constructs and/or “best practices” are re-

ported to facilitate the development of digital twin middleware solutions?

 What features should such a solution entail and how should they be implemented

in order to facilitate rapid prototyping and experimentation?

The remainder of this thesis is organized as follows. Chapter 2 discusses the background

of the research objectives in a finer detail and, correspondingly, describes and gives

rationale for the chosen research methodology. In Chapter 3, literature in the closely

related fields of co-simulation and tool integration is investigated, in an attempt to estab-

lish a concise conceptual space for the empirical part of the work. Based on the findings,

a general digital twin framework meta-model is proposed that is utilized throughout the

work’s empirical part. Subsequently in Chapter 4, the main outcome of the constructive

part, ModelConductor, is described: an original Python library to support rapid develop-

ment of digital twin experiments integrated with online measurement data. A handful of

illustrative use cases are presented in Chapter 5. Finally, in Chapter 6 some concluding

remarks and ideas for further study are presented.

4

2. PROBLEM SPACE AND METHODOLOGY

In this chapter, the justification for an open source digital twin framework is established

by synthetizing, based on literature review, a set of features that characterize digital

twins. The mapping of these features to the functional requirements of an envisioned

software environment that would facilitate the construction of digital twin applications is

discussed. Moreover, it is described how the present work is motivated by recent devel-

opments in closely related fields in the intelligent industrial service space, namely artifi-

cial intelligence and deep learning. Finally, the chosen constructive research methodol-

ogy, including the artefact evaluation strategies utilized, is elaborated.

2.1 Problem background

Agile practices in software engineering have been actively developed since the 1990’s

and today they have practically replaced the traditional waterfall model [11]. In general,

they are valued over traditional methods for their potential to create customer value in-

crementally in rapid development cycles. While not implying a causal relationship be-

tween the two, it is an interesting observation that the earliest adoptions of agile methods

loosely coincide with the introduction of the first wide-spread object-oriented program-

ming languages such as C++ (first appeared 1983, ISO-standardized in 1998) and Java

(1996). This supports the idea of an interconnection between the two; that the availability

of high-productivity tools might, at least indirectly, promote the uptake of high-productivity

industrial practices and vice versa.

The motivation of the present work is to study the existence, utility and ideal composition

of high-level, high-productivity software frameworks in the context of the emerging tech-

nology of digital twins. Although similar ideas have been proposed earlier1, the term “dig-

ital twin” is predominantly cited to appear first in Glaessgen’s and Stargel’s article com-

missioned by NASA and the U.S. Air Force [7]. While the formal definitions are deferred

to Chapter 3.4, the main findings from recent literature (e.g. [7], [10], [12]–[17]) can be

summarized as digital twins being a specific class of simulation artefacts that exhibit

traits of the following guidelines:

 Representativity: Each digital twin is a digital artefact that has a corresponding

paired physical artefact. The digital counterpart is expected to be representative,

1 See, e.g., [72], or [55] for more of a metaphysical approach.

5

in the context of an experimental frame (Chapter 3.1), of the physical one. Gen-

erally, this means that reliable conclusions can be made of the physical system’s

behavior by observing the digital twin’s response to artificial excitation signals.

 Inspectability: At any time, any attribute entailed in the digital twin should be

easily accessible by an appropriately authorized agent. This can be viewed as a

principle of transparency, where digital twins typically expose their input and out-

put signals, but also the internal state of the simulation unit that could be hard to

measure by conventional means from the corresponding physical equipment.

 Contemporality: The existence of a digital twin should, in the most general case,

extend to span the whole life cycle of its physical counterpart. Active efforts

should be taken by the twin itself and/or an encapsulating middleware layer to

reflect changes occurring during the lifetime.

The key observation underlying the rationale of the present work is an idea that the real-

ization of a digital twin requires bridging the gap between two distinct domains, i.e., sen-

sory measurement data derived from real-world objects (IoT) and, on the other hand, the

complex compositions of high-fidelity simulation models (co-simulation). Conceptually,

this can be viewed as being related to Hardware-In-Loop Simulation (HILS), a generic

set of techniques that is commonplace in numerous disciplines such as power electronics

[18], civil engineering [19] and biomedicine [20] only to name a few. It is observed, how-

ever, that the general HILS paradigm, as viewed in a large portion of published work, is

rooted in the strict segregation between the digital and physical realms. In a coupled

HILS system, some parts may exist in a digital and some in a physical form, without

significant overlap. Moreover, the connections between the subsystems are usually se-

quential in nature, with clearly defined input-output relations between the subsystems. In

this regard, a digital twin is very different. In order to support the design goal of repre-

sentativity, it is actually desirable to make the digital-physical overlap as large as possi-

ble. Similarly, in a digital twin, it is clear that signals are exchanged between the physical

and digital counterparts (contemporality), but without any clear-cut static definitions re-

garding what are the data sources and data consumers.

Clearly, the implications of above discussion are multitudinous regarding the extended

pool of use cases that could be envisioned for a digital twin versus a HILS setup of more

conventional nature. Perhaps even more importantly, a myriad of questions arises re-

garding the imposed functional requirements for the middleware between the digital and

physical realms. This is emphasized by the fact that in the most general envisioned use

case the data sources (i.e., the physical objects producing the sensory data) and data

6

consumers (the executable simulation units) can be distributed in terms of their physical

locations and/or computational environments. One could argue that in very simple cases

digital twin setups could be successfully constructed, utilized and evaluated using an

approach that is more or less ad hoc in nature. However, more complex setups, wherein

qualities such as input-output validity, stability, real-time performance and scalability are

of interest, seem to create a demand for more rigorous digital twin software frameworks

that are developed and tested against the best available software engineering practices.

On a high abstraction, a complex digital twin could be realized as an ensemble of soft-

ware agents communicating with artefacts either in the physical or digital domain. Cor-

respondingly, any framework that is conceived to support the building of such configura-

tions should be able to appropriately curate these intricate many-to-many connections.

For general usability, it would need to be considered that the involved physical/digital

artefacts might be accessible through a variety of technologies, e.g., REST APIs,

SQL/NoSQL database queries, or a more sophisticated IoT communication protocol

such as the Functional Mock-up Interface (FMI) [21] or Message Queuing Telemetry

Transport (MQTT) [22]. The appropriate resolving of the varying formalisms to provide a

coherent environment for the envisioned network of digital and physical systems would

be one of the core functions of a digital twin framework.

At this point, a legitimate question is: What exactly do statements like “appropriately cu-

rate” or “the appropriate resolving of the varying formalisms” mean? The answer is that

these refer to fulfilling the non-functional requirements of representativity, inspectability

and contemporality. As it is proposed, representativity translates to the functional re-

quirement of co-simulation: the act of coordinating the parallel execution of multiple state-

of-art simulation models that might require distinct tools and computational environments

to run. Inspectability, on the other hand, can be interpreted so that the system should

entail a sufficient level of transparency. In practice, this could mean that up-to-date infor-

mation is, to the extent possible, made available to the user near real-time about the

state of physical and digital assets.

The third design criterion, contemporality, is perhaps the hardest one to grasp in terms

of easily explainable functional requirements. One possible standpoint is that one could

think of it referring to ensuring the concurrent existence of a physical object and its digital

counterpart throughout the whole product life cycle including planning, manufacturing,

delivery, operational use and retirement. Obviously, if the digital twin is to be live through-

out each and every phase alongside the physical product, this places considerable im-

plications on making the phase-specific computational infrastructure available at each

point in time. Even if one only considers the more realistic use case of using the digital

7

twin only during the operational life of a product, issues regarding persistence and fault

tolerance would still need to be resolved.

In the design of digital twin applications, the notion of expansibility needs also to be con-

sidered. When the operational lifetime of a product might span tens of years, it is con-

ceivable that add-ons will be augmented to the physical product that cannot be ade-

quately replicated within the original experimental frame of the twin. Hence, the digital

twin framework should, ideally, provide convenient means to make adjustments to the

experimental frame and add new model components as the physical counterpart

evolves. An additional design point, as will be illustrated in Chapter 4.4, is that a user-

centric design point is essential for such a software to gain significant popularity. Hence,

the software should ideally be intuitive enough so that it can accommodate fast prototyp-

ing, as well as flexible enough to accommodate extensibility and deployability for real-

world applications.

2.2 Research methodology

The methodology of choice in seeking answers to questions outlined in Chapter 1 pre-

dominantly falls to the category of action research. More accurately, to position the pre-

sent study in the space of research approaches and to give rationale for the selected

methods, the works of Myers & Avison [23, pp. 7–8] and, further, Rapoport [24] are re-

ferred to. Therein, action research is postulated as a qualitative instrument well suited to

situations where the researcher wishes to accomplish two distinct goals, i.e., i) solve a

contemporary problem encountered in an organization and ii) contribute to the

knowledge pool that can be later utilized by others in order to solve instances of the same

problem class.

The initial inspiration for this thesis resulted from the author’s employment as a member

of the Smart Machines research group in Turku University of Applied Sciences (TUAS),

thus fulfilling the first criterion. At TUAS, the idea of using state-of-art process models to

create digital twins of internal combustion engines and various types of vehicles and

heavy-duty machines was recently contemplated2. Initially, this motivated the search for

the middleware components of the discussed variety in the context of an isolated use

case. The main motivation for this thesis, however, stems from the apparent extensibility

of potential results, hence fulfilling the second criterion.

2 At the time this thesis is published, the employment of digital twins in this context remains an
active investigation within the e3Power project funded by Business Finland and various industrial
partners [73].

8

Following the taxonomy proposed by Järvinen [25], action research can also be viewed

as a subclass of artefact building / artefact evaluating research approaches, wherein the

building and evaluation phases are executed in a cyclical manner. In the field of Design

Science Research (DSR), it is an established idea that the simple3 act of building things

and observing their performance, sometimes even in a post-hoc manner, has great po-

tential to contribute both to direct technological advancements as well as the scientific

knowledge base [26], [27]. Accordingly, in the present work, the constructive approach

is selected with the intent of gaining a deeper understanding on the process of designing

and executing digital twin experiments in the context of various continuous-time pro-

cesses. The main part of present work’s contribution resides in the Minimum Viable Prod-

uct (MVP) prototype of a software environment that supports this goal. More specifically,

the proposed solution will be an object-oriented library, written in Python, that seeks to

create abstractions for various low-level digital twin functionalities. It is further observed

that the cyclical artefact building / artefact evaluating research approach is obviously akin

to the various modes of agile software development practices (e.g., Scrum and the likes).

As such, it seems like an appropriate choice for the present work, the empirical part of

which essentially boils down to rather standard software engineering project.

The chosen approach is further reasoned by observing the interconnection between the

digital twins and some of the most interesting contemporary research topics in the space

of data science. Today Machine Learning (ML), Deep Learning (DL) and Artificial Intelli-

gence (AI) are practiced in increasing numbers by software engineers. This is contrary

to what used to be the case until early 2010’s, when these duties were predominantly

handled by personnel with rigorous training in applied mathematics and statistics. An

important contributing factor behind this transformation is the availability of modern open

source deep learning libraries (e.g., Tensorflow, PyTorch, Keras) that are highly acces-

sible to the general developer population in terms of their abstraction level. With

ML/DL/AI technologies playing a crucial role in some of the future’s most interesting dig-

ital twin applications (e.g., predictive maintenance), it is plausible that a subset of future

developers will be involved in projects of both fields. Hence arises the notion of tool har-

monization. This is an idea that improved productivity could be achieved in such endeav-

ors if the programming interfaces in both domains would, at least approximately, support

similar workflows. To the author’s knowledge, no attempts to implement such tools in the

digital twin domain have previously been reported.

3 By “simple”, only the general methodological concept is referred to, and not the process of ac-
tually constructing artefacts that could be of arbitrary complexity.

9

In a routine design operation, it is usually acceptable to simply conclude that the devel-

oped artefact “works” (or, that it “does not work”, for that matter) with respect to the im-

mediate circumstances in which the development took place. On the contrary, design

can obviously only become research when the evaluation part is applied with an ade-

quate level of rigor — in such a manner that the research outcomes are somehow made

generalizable to a wider class of problems. In formulating the evaluation strategy for the

artefact(s) produced within the scope of the present work, the work reported in [28]–[30]

is referred to. Therein, the authors describe a generic framework that can be utilized to

examine the (software) artefacts that emerge from conducting a DSR project. The FEDS

(Framework for Evaluation in Design Science Research) discusses an evaluation epi-

sode as the basic unit of evaluation, several of which might take place during a given

DSR project. The evaluation episodes are mapped onto a 2-dimensional plane with one

dimension representing the functional purpose of the evaluation (formative/summative),

and one dimension representing the paradigm of the evaluation study (artificial/natural-

istic). While the discussion about the particularities in the original work is rather involved,

a rough interpretation for the two dimensions can be summarized as follows:

 Whereas artificial evaluation emphasizes controlled experiments in isolated en-

vironments, naturalistic evaluation tends to involve real users, real organizations

and real problems.

 Whereas formative evaluation is concerned with producing suggestions how the

evaluand can be improved, summative evaluation tends to produce information

regarding the utility of the evaluand in the context of the evaluand’s envisioned

applications.

An evaluation strategy is formulated by plotting consecutive evaluation episodes and

development iterations in the (artificial–naturalistic , formative–summative) plane (Fig-

ure 1). The selection of an evaluation strategy for a given DSR project is, among other

things, related to the analysis of risks involved in the development of the artefact. If there

is little to no ambiguity involved in the choice of technologies used to produce the arte-

fact, and there is strong a priori evidence that those technologies will function well in the

scope of the project, the project can be considered having a low technological risk. If, at

the same time, there is considerable uncertainty regarding how will the targeted users

actually use the artefact and whether the design provides an appropriate social fit to the

target organization, the project can be considered having high human risk. The same

applies conversely, and it is the balance between the assessed risks on the human-

technology continuum that can act as the guiding principle of selection of an appropriate

evaluation strategy for each DSR undertaking. Obviously, this is merely a guideline and

10

in practice, additional constraints apply: for instance, it could be very costly, or for prac-

tical reasons impossible to evaluate a given artefact with real users or real problems.

[28]–[30]

Some examples of plausible evaluation strategies based on [28] are depicted in Figure

1, also introducing the applied strategy for ModelConductor, the main outcome of the

empirical part of the thesis. In the present work, the evaluation continuum is built on top

of three use case examples, as they are documented in Chapter 5, specifically:

 Combining a synthetic data stream to a Simulink-based simulation model. The

purpose of this is to provide a proof of concept on the basic input-output function-

alities of ModelConductor as well as auxiliary functions such as logging. This ex-

periment tends towards the artificial-formative corner of the FEDS spectrum,

since no real users or organizations are involved and the data is generated arti-

ficially.

 Combining real-world measurement data with a machine learning model. In this

experiment, the data is real, but it is relayed through a dedicated intermediary

database specifically engineered to accommodate the experiment. Hence, the

experiment can be viewed as being somewhat closer to the naturalistic end.

 Combining real-world measurement data to a GT-SUITE based internal combus-

tion engine simulation model. Herein the data originates directly from the target

organization’s productional database, onto which ModelConductor interfaces.

Hence, the experiment is very much involved with real problems occurring in a

real organization. Furthermore, this evaluation episode tends to the summative

end of the FEDS spectrum since the goal here will be to gather all the accumu-

lated knowledge, based on which suggestions and limitations regarding future

ModelConductor applications can be discussed.

11

Figure 1. Framework for Evaluation in Design Science Research (FEDS), adapted
from [28]

The presentation of the thesis will advance in a sequential manner from description of

the research problem, establishing the underlying theoretical framework, describing the

main features of the developed software and finally evaluating its performance and dis-

cussing the results. This approach is chosen merely for convenience, with simultane-

ously acknowledging that the empirical part of the work has in fact been carried out by

following the iterative practices widely adapted in modern software engineering. Follow-

ing the agile philosophy [31], a conscious effort is made throughout this text to keep the

focus on the results and their applicability, rather than describing in detail what was done

in each and every iteration. Fortunately, however, modern software engineering prac-

tices, if applied correctly, produce code that is self-documentative in nature. The inter-

ested reader will, consequently, find the version history of the proposed MVP’s public

GitHub repository a valuable resource [32].

12

3. CO-SIMULATION BACKGROUND AND RE-

LATED WORK

The objective of this chapter is to establish a conceptual space within which various

aspects of a digital twin can be examined in an appropriate context. Since there are

surprisingly few published works that aim to establish a concise theoretical framework

for digital twins, the subject is instead approached indirectly by reviewing literature in the

closely related fields of simulation, co-simulation and tool integration. Specifically, the

discussion aims to build up an argument that a digital twin can be viewed as a special

occurrence of co-simulation, wherein agents representing physical measurement data

from real-world objects and those representing various simulation models interact in a

coordinated arrangement.

3.1 Simulation

It is a long-lived engineering tradition that the input data for a design process can gener-

ally be obtained by two orthogonal approaches, i.e., i) conducting experiments in the

physical world and quantifying the made observations as measurement data and ii) by

means of numerical simulation. As discussed in Chapter 1, simulation is defined as the

practice of observing a dynamic computational model’s behavior in time. Typically, sim-

ulation is conducted with the objective of achieving some design goal [33]. Also briefly

discussed in Chapter 1, the model is, in this context, understood to be an abstraction of

reality with some degree of representativeness of the target system being modeled.

As it is scarcely possible (or reasonable, for that matter) for a model to capture the full

spectrum of features and interrelations present in complex engineering systems, the nor-

mal approach is that a model is constructed in accordance to some experimental frame

[33]–[35]. An experimental frame is the collection of descriptive attributes regarding the

model’s components (i.e., inputs, internal states, outputs) that is necessary and sufficient

to describe the evolution of a system with respect to some specific design or research

goal [33]. As such, there might be multiple plausible experimental frames for a given real-

world system, the selection of which is ultimately limited only by the hardware the simu-

lation is targeted to run on, e.g., the finite memory space of a computer [33]. Aside from

these technical considerations concerning computational resources, it is usually the case

that other factors, such as model interpretability and workload of implementation become

predominant in model selection. Following the Occam’s Razor principle, one could argue

13

that it is the modeler’s task to find a suitable experimental frame that “just barely” gets

the job done.

From an ontological point of view, a model can be considered an abstract idea that only

becomes a concrete artefact once it is expressed with respect to some established set

of grammar rules — a formalism. To discuss this intricate subject, a systems theory

based approach can serve as a useful starting point. Consider, for instance, the discus-

sion in [34] and [36, pp. 30–31] wherein a generic system meta-model is defined as:

𝑆𝑌𝑆 ≡ 〈𝒯, 𝑋, Ω, 𝑄, 𝛿, 𝑌, 𝜆〉 (1)

wherein

𝒯 ⊂ ℝ≥0 Set of possible time instants

𝑋 ∋ 𝑥 Set of possible input states

Ω = {𝜔|𝜔: 𝒯 → 𝑋} The set of possible input functions

𝑄 ∋ 𝑞 Set of possible system states

𝛿: Ω × 𝑄 → 𝑄 Transition function

𝑌 ∋ 𝑦 Set of possible outputs

𝜆: 𝑄 → 𝑌 Output function

Notice that Equation 1 itself can be viewed as a formalism since it exhaustively defines

the attributes an artefact must entail for it to be considered a valid 𝑆𝑌𝑆. The various

components described in Equation 1 can, subsequently, be expressed in their own inter-

nal formalisms. Most importantly, consider the transition function, which takes in a cur-

rent state, an input segment and produces a new state. According to the specific problem

domain, the transition function might be expressed in a variety of formalisms such as

differential equations, difference equations, bond graphs or finite state automata, for ex-

ample [34], [37]. The selection of formalism used to describe a system should, in princi-

ple, be guided by such questions as the desired abstraction level or the availability of

data that can be used to calibrate the model [34].

To conduct numerical simulation, in addition to a model, a solver is required [38]. In the

context of continuous-time system models, a solver can be defined as an algorithm that

sequentially advances the model time 𝒯 and, at each time step, evaluates the model’s

internal state 𝑞 and, possibly, the output 𝑦, with respect to an input 𝑥. The fact of 𝑦 and

𝑞 being fundamentally separate concepts allows the efficient separation of concerns in

a solver’s implementation [34]. So does also the observation that, in a valid 𝑆𝑌𝑆, transi-

tion function 𝛿 evaluated over the closed interval [𝑡𝑖, 𝑡𝑓] ⊂ 𝒯, with 𝑞𝑖 being the internal

14

state at 𝑡𝑖, can be recursively decomposed to a set of arbitrary sub-intervals (Equation

2) [34].

∀𝑡𝑥 ∈ [𝑡𝑖, 𝑡𝑓] , 𝛿 (𝜔[𝑡𝑖,𝑡𝑓], 𝑞𝑖) = 𝛿 (𝜔[𝑡𝑥,𝑡𝑓], 𝛿(𝜔[𝑡𝑖,𝑡𝑥], 𝑞𝑖)) (2)

A distinction is made in solver algorithms between the time-stepped execution approach

described above and event driven execution. In event driven execution, the simulation

only proceeds when something interesting, in the experimental frame’s context, happens

and triggers the solver to compute the model’s updated state [39, Ch. 2.3]. Each trigger

event that occurs in a simulation must be explicitly tagged with a timestamp defining

when in model time are the associated computations supposed to be executed [39, Ch.

2.3.2]. The realization of such a system typically involves considerations about how to

assert the correct execution order maintaining the incoming events in some kind of a

queue structure [33]. In addition, devising a strategy on how to resolve possible conflicts

arising from simultaneous events might be required [33].

Regardless of whether the time-stepped or event-stepped approach is chosen, a careful

semantic distinction must be made between model time (simulation time) 𝑡 and the phys-

ical time 𝜏 (wall-clock time) that passes in the real world while the simulation is being

executed [4]. For illustration, consider a dynamic model being simulated at the interval

[0, 𝑡] with the program taking [0, 𝜏] in wall-clock time to execute. Obviously, the ratio 𝑡 𝜏⁄

can be considered a performance metric for the simulation algorithm if and only if as-

fast-as-possible execution is desired [40, Ch. 2.1]. In contrast, in some other cases it will

be desirable for the simulation to proceed near real-time, i.e., so that 𝑡 𝜏⁄ ≈ 1 [40, Ch.

2.1]. Most notably, these use cases include those where the simulation algorithm must

interact with external actors with real-time constraints, e.g., human operators or sensors

feeding in measurement data to the simulation [39, Ch. 2.2].

As a result of the simulation, a behavior trace 𝒯 → 𝑄 × 𝑌 of the relevant model variables

is produced, describing the model’s evolution through time [40, Ch. 2.1]. The behavior

trace can then be examined by the simulationist in order to gain insights about the prop-

erties of the simulation’s target system [38]. Furthermore, it is often the case that the

resulting dataset ends up being exported to another simulation tool for the purpose of

conducting additional research on systems that are adjunct to that originally studied. This

practice gives motivation to the discussion about co-simulation and tool integration, top-

ics which will be separately addressed in Chapters 3.2 and 3.3.

The act of simulating many interesting systems is inherently a sequential process [39,

Ch. 2.3.1]. For a simple example, consider a body moving along a straight line in 1-

15

dimensional space. The displacement of the body Δ𝑥𝑇, with respect to the initial position

at time instant 𝑇 is given as:

Δ𝑥𝑇 = ∫ 𝑣(𝑡) 𝑑𝑡
𝑇

0

(3)

If a closed-form expression for the function 𝑣(𝑡) exists and its integral function can be

found, one is guaranteed to find an exact analytical solution for Δ𝑥𝑇. Unfortunately, in

real-world settings such an event would be rare. Instead 𝑣(𝑡) is usually represented by

discretely spaced samples. This becomes eminently true at the very moment one wishes

to represent the velocity function in a computer’s memory. For simplicity, let us assume

the velocity is sampled at uniform intervals. Then, an approximate numerical solution for

the problem could be obtained by partitioning the interval [0, 𝑇] into 𝑁 consecutive steps

of duration 𝑛:

[0, 𝑇] = [0, 𝑛] ∪ [𝑛, 2𝑛] ∪ … ∪ [(𝑁 − 1)𝑛, 𝑁𝑛] (4)

and taking the left Riemann sum:

Δ𝑥𝑇 ≈ Δ𝑥̃𝑁 = ∑ 𝑣(𝑡𝑖) ⋅ 𝑛
𝑁−1

𝑖=0
(5)

wherein 𝑡𝑖 = 𝑖𝑛. As Equation 5 illustrates, there clearly is no way to compute Δ𝑥̃𝑘 before

Δ𝑥̃𝑗 has been computed, given that 𝑘 > 𝑗. Hence, the only way to proceed in the simula-

tion is the sequential process described earlier, which could in this example be formal-

ized as:

Δ𝑥̃𝑖 = Δ𝑥̃𝑖−1 + 𝑣(𝑡𝑖) ⋅ 𝑛 , 𝑖 = 1,2, … , 𝑁 (6)

The requirement for sequential solving imposes certain design constraints on the solver

algorithm. This is particularly true in the context of co-simulation, wherein an ensemble

of individual solver-model configurations must be orchestrated with the goal of simulating

a complex system constituting of various submodels [4], [38], [40].

3.2 Co-simulation concepts and challenges

As has been established, problems usually emerge when one wishes to formulate cou-

pled models out of the individual submodels developed under different formalisms. The

driving motivation of co-simulation is that an integrated set of tools working together

should streamline the design process compared to that carried out by applying the sep-

arate tools for different parts of the process [41]. On a more subtle level, the integrative

approach can also be viewed as enforcing a design team to take into account the inter-

dependences between various modeling domains [42], [43].

16

As proposed in [34], an ensemble of integrated tools could be achieved by means of i)

introducing a superformalism (metaformalism, see [37]) that subsumes all the individual

formalisms, ii) transforming the different submodels to one common formalism or iii) co-

simulating the individual models within specialized, formalism-specific solvers and mak-

ing the integrations only at the trajectory level (i.e., the inputs and outputs of the constit-

uent submodels). In the first approach, challenges might arise with extensive model com-

plexity, accompanied by relatively little gain in expressiveness in terms of the coupled

model. The transforming approach is similar, with the distinction that in the general case

it does not guarantee to keep the perceived expressiveness of the individual models.

[34]

Generally, model integration is involved with finding an appropriate intermediary formal-

ism from a set of possibilities, with the obvious tradeoff between the formalism’s appro-

priateness for the individual models [34]. Herein, the “set of possibilities” can be de-

scribed, as was proposed originally in [37], in terms of a Formalism Transformation

Graph (FTG), an illustrative excerpt of which is depicted in Figure 2. In the FTG, vertices

correspond to formalisms, blue edges correspond to possible mappings from one for-

malism to another, and green edges correspond to possible mappings from formalisms

to possible system behavior traces (state trajectories). The formalism-trajectory transfor-

mations [40, Ch. 2.2] can be thought as simulation realizations, given a model expressed

in some formalism, along with the relevant context, e.g., the input function 𝜔 (Equation

1). Hence, given a set of models and their formalisms, one can traverse the graph, re-

sulting in a subgraph of the FTG. The subgraph will be a tree with the original formalisms

as the leaves and with the common formalism as the root. The FTG’s mappings are

constructed so that the semantic integrity of the models is preserved. Specifically, this

means that the model’s behavior should not change as a result of applying a transfor-

mation. [34], [37]

17

Figure 2. An illustrative excerpt of Formalism Transformation Graph, adapted from
[34], [37]

The third mode of model integration, co-simulation, as proposed in [34] is the one to

which the bulk of this work is devoted to. The obvious challenge, in addition to establish-

ing appropriate data formalism translations, has to do with how should one deal with

synchronizing the time axes of the various models. The states of the different submodels,

simulation units [44], are solved in their respective software environments and possibly

also distributed to multiple workstations. A generic approach that might be utilized in a

simple co-simulation scenario featuring two simulation units (SU1, SU2) is depicted in

Figure 3.

Figure 3. An example co-simulation timeline depicting the communication points
between the simulation units, adapted from [38]

18

Figure 3 essentially describes one possible mode of conservative time synchronization,

as opposed to optimistic synchronization (see [45] for detailed discussion about the dis-

tinction between the two). In this approach, communication between the simulation units

only takes place at distinct communication points defined by a master algorithm. At each

communication point, the master should read the current outputs from the models and

set the new input variables accordingly. Subsequently, the master should ask the simu-

lators to run their respective solvers up until the next communication point. In doing this,

the various models might utilize their own internal time steps (micro steps) [38], [44]. To

add even further complexity, the individual solvers might use iterative approaches in or-

der to try to ensure a convergent solution for each micro step [44]. Since the internal time

steps might be considerably shorter than that of the master, it is not uncommon for co-

simulation models to utilize some form of interpolation of the inputs between communi-

cation steps.

Moving on to more practical considerations regarding co-simulation of software units de-

veloped in varying formalisms, various authors have proposed different variations of

Open Tool Integration (OTI4) architectures [46]–[49]. The target of these, in general, is

to provide a conceptual framework within which co-simulation scenarios of the discussed

variety can be planned, built, executed and evaluated. An OTI architecture that is pow-

erful enough to represent any meaningful real-world integration scenario should be ag-

nostic of the method by which a tool’s data is delivered to the framework. The framework

should only provide the engineer with a rough roadmap in order to design suitable soft-

ware wrappers for tools that might expose their data in various formats, e.g., by means

of file export/import, COM-based API or a GUI command interception mechanism [41].

The data source agnostic principle does not, however, imply that the tools necessarily

are pure black boxes from the framework’s perspective. Instead, in the most general

case the data transmitted from one tool to another could also contain active objects such

as pointers to subroutines which the simulation tool might be willing to expose for remote

invocation [46].

Furthermore, the transformations occurring within the framework should not be limited to

the simple one-to-one translation operation between two syntactic domains. For in-

stance, it is conceivable to have a configuration where the outputs from two different

tools are merged together and then translated to match the expected input format of a

third one. The framework should generally allow arbitrary many-to-many workflows and

4 The naming convention chosen here stems from the work of Karsai et al. [41], [46] but in follow-
ing discussion the term “Open Tool Integration (OTI)” is used quite liberally in referral to sim ilar
architectures proposed by others as well.

19

provide the necessary control services for the translation, transferal and synchronization

between the different operations [41]. As the number of tools increases, it is not hard to

see that the interrelations amongst them can quickly become extremely complex. Some

of the applicable strategies in order to facilitate the orchestrations of these intricate en-

sembles include [41]:

 Batch-based integration. In this approach, the experiment must be arranged in a

topological workflow manner. When a “producer” tool produces a dataset, it is

straightforwardly transferred to the direct “consumer” tool(s) in the chain with the

appropriate semantic/syntactic translations taking place along the way.

 Transaction-based integration. Here a producer tool executes a write operation

to an intermediate database to which all the tools have I/O access. A consumer

tool should execute a read operation to retrieve that data.

 Notification-based integration. In this approach the subscribed consumers are

explicitly notified of changes occurring in producer tools and hence they are able

to update their own internal status correspondingly.

Finally, another key feature of an OTI architecture is that the logic and semantics of

integrating the various tools should be, as far as possible, kept separate from the tools

themselves. This approach is in contrast to various so called tool suites supplied by many

commercial vendors [46]. They usually function well in sharing engineering artefacts be-

tween individual elements contained in the suite, but lack the ability to efficiently build

tool chains with software external to the suite [41], [46].

3.3 Tool integration methodology

For the purposes of the present work, OTI is interpreted as a plausible approach to real-

ize a sufficient level of modeling tool integration to serve engineering design processes

in a co-simulation context. In following sections, two general approaches underlying

many contemporary tool integration architectures are discussed, namely the approach

based on an Integrated Data Model (IDM) and the point-to-point integration approach.

The discussion then proceeds to describe Functional Mock-up Interface (FMI), a con-

temporary co-simulation framework supported by many commercial and open source

tool vendors, which is utilized extensively also in the present work’s empirical part.

20

3.3.1 Generic modes of integration

A useful visualization of a generic approach to tool integration is provided in [46] which

captures the main aspects of a generic OTI architecture (Figure 4). The system consists

of two main components, namely an Integrated Model Server (IMS) and the Tool Adaptor

(TA), sharing a common middleware communication backplate called the Common

Model Interface (CMI). When a tool wants to publish data to be utilized by other tools, it

is the corresponding TA’s responsibility to parse that data from the tool’s native format

in to an intermediate network format; a low-level data structure able to express arbitrary

objects and their relationships, for instance XMI or CORBA IDL. Subsequently, the data

is shipped to the IMS, where it is processed by a semantic translator. In this process, the

data is transformed from the intermediate network format into another form called the

IDM. The IMS serves as a run-time short-term persistence repository for IDM artefacts

produced by the various models. When another tool wants to access the data, the tool’s

TA issues a fetch command to the IMS. This triggers the relevant reverse semantic trans-

lation process, which now transforms the IDM-formatted data back to the network layer.

Finally, the TA itself converts the data back to the tool’s native format. [46]

Figure 4. A generic Tool Integration Architecture based on an integrated data
model, adapted from [46]

An earlier iteration of the backplate-based OTI architecture is suggested in [47]. The

ToolBus system, as the authors have dubbed their implementation, is based on a collec-

tion of processes run in parallel as well as collection of external tools. The ToolBus sys-

tem exchanges both data and control signals with connected tools as well as between

the individual processes. Direct communication between the tools is by definition not

possible. The processes 𝑃1, … , 𝑃𝑛 themselves should not transform the data in any man-

ner but simply provide the necessary communication routes and synchronization be-

tween the external actors. Internally, data must strictly be represented in a predetermined

21

format called the term and the connected tools are expected to consume and/or produce

data in this particular format. Hence, existing third party tools that do not natively have

support for the data types (and control signals) used internally by ToolBus must be en-

capsulated in a custom software adapter in order to permit their use as a part of the

integrated tool solution being developed. [47]

In [45] a multi-agent approach for co-simulation is proposed that conceptually is very

similar to the OTI variants already discussed. During a co-simulation, each simulation

tool is connected to a common message bus via an agent component. During the exe-

cution of a time step, each simulation tool reports the completion of the time step to the

corresponding agent and subsequently pauses its operation. Each agent, in turn, further

sends a message to a clock agent, that is responsible for orchestrating the total simula-

tion. When the clock agent has received reports from all the participating agents, it can

then issue a request to each representing agent to start the simulation of the next time

step. [45]

In a co-simulation session, the specifics of the artefacts produced by a given tool are

explicitly defined in the tool’s metamodel [34]. The purpose of a metamodel is to define

a Domain-Specific Modeling Language (DSML) for the particular tool [46], [50]. The ra-

tionale behind constructing a DSML arises from the practice of Model Driven Engineer-

ing. The DSML can be viewed as a formalism that is tailor-made to support the expres-

sion of concepts in a limited domain as efficiently as possible, as opposed to general-

purpose programming languages. Hence, with the use of a DSML designers should be

able to formalize descriptions of artefacts that are closer to problem domain than the

implementation domain, with the additional benefits of abstracting away the often bur-

densome implementational syntax [51].

In the context of an OTI solution, each tool typically represents a distinct domain whose

DSML must be formulated accordingly. The lingual constructs of a DSML can be utilized

to precisely and exhaustively define the outputs that are anticipated to be produced by a

given tool during the life cycle of an experiment [46]. Furthermore, within the tool-specific

DSML other grammar of that language is included as well, i.e., the description of legal

combinations of data that the tool is expected to consume [46].

Conceptually, the whole process of converting back and forth between the individual

tools’ native data types and the IDM type can be formulated as the relation 𝑅 between

the union of the attributes of individual tools’ metamodels and a composite structure

called the IDM. Within a system consisting of n tools, denoting the i-th tool by Τ𝑖, this

yields:

22

𝑅 = {(𝑎, 𝑏) ∈ ⋃ Τ𝑖
𝑛
𝑖=1 × 𝐼𝐷𝑀|tool attribute a is represented by IDM attribute b } (7)

By definition, all the elements within the 𝐼𝐷𝑀 set should have a corresponding element

in at least one of the tools and, conversely, all the elements in a given tool’s metamodel

should be represented in the IDM [46], as is illustrated in Figure 5. It therefore becomes

possible to formulate tool integration schemes that facilitate the sharing of different sub-

sets of the data within different subsets of tools. One must, however, at all times bear in

mind that the data being transmitted to a given tool must be natively supported by that

particular tool. Equally well, on the other extreme, the framework allows one to conceive

scenarios where the tools work in total isolation from one another. While this might have

limited applications, a specific use case might be one where the goal of the integration

is purely the synchronized execution of different tools, and not sharing of data per se.

Figure 5. Concept of the Integrated Data Model, adapted from [46]

Within the IDM, the attributes are uniquely tagged to facilitate the semantic conversion

to and from the different tools’ native data types. The main implication of this is that given

a particular set of tools, the data inside the IMS is always persisted in a unified manner,

agnostic of the actual tool from where it originated. At runtime, the semantic translators

are able to figure out the correctness of a given dataset using the unique tags that were

created by the TA at the time the data was extracted from the tool. [46]

Karsai et al. [46] proceed to present, among other discussions, an interesting alternative

to OTI development with emphasis on the application-specific workflow from tool to an-

other (Figure 6). Instead of enforcing a predefined internal data model, adapter compo-

nents known as semantic translators are implemented at the points where the data

and/or control flow is transitioned from one tool to another. This point-to-point approach

can be useful in cases where experiment workflows are well defined and data is meant

to be transferred mainly in one-to-one fashion from tool to another. [46]

23

Figure 6. Workflow-based tool integration architecture, adapted from [46]

So far, two main categories of OTI architectures have been identified, namely the ap-

proach based on an Integrated Data Model (Figure 4, Figure 5) and the one based on

point-to-point tool integration (Figure 6). Given that a certain set of prerequisites are met,

the IDM approach has the ability to achieve full integration amongst a set of tools, but on

the downside, the workload can become prohibitive for large integration schemes. The

IDM approach requires one to implement N bidirectional translators for N bidirectional

tools. Consequently, for efficient implementation the tool number should be kept rela-

tively small. The most beneficial use cases for IDM are where a high level of cohesion

exists between the data models of the respective tools. This allows the maximally

streamlined design of the individual tool adapters and translators. [52]

The point-to-point approach does not suffer from the discussed drawbacks. When the

workflow is well-defined, one only generally needs to implement unidirectional translation

between the producer-consumer pairs, dramatically cutting the workload. While this al-

lows for a more manageable approach to handle longer tool chains, a tool integration

solution developed in this manner obviously provides a solution to a more narrow class

of problems. This is because the workflow from tool to another is fixed a priori, unlike in

the IDM approach. [52]

Yet another undertaking towards advancing the purpose of simulation tool interoperabil-

ity is provided by the High Level Architecture (HLA), which originally began as a devel-

opment project of U.S. Department Of Defense [49], and later was adopted as an official

standard of the Institute of Electrical and Electronics Engineers (IEEE) [5]. The main

entities described in the standard are called federates, which represent individual actors

taking part in the simulation task. Subsequently, a collection of federates is denoted as

a federation. The communication between the various participants is realized via a

Runtime Infrastructure (RTI). The purpose of the RTI is to offer generic services to ac-

commodate the synchronized interoperation of the individual participants in accordance

24

to the HLA runtime interface specification. In the HLA specification, the set of artefacts

that are commonly accessible to all participants in a federation are defined in a Federa-

tion Object Model (FOM). Similarly, the set of artefacts exposed to the outside world by

a single federate — which might become a member of multiple federations during its

lifetime — is represented in a structure called the Simulation Object Model (SOM). While

the HLA does not assume any specific semantics within the FOM or SOM, it is however

enforced in that they are documented in a standard format called the Object Model Tem-

plate (OMT). [33], [49], [53]

Similarly to other OTI approaches, the HLA is designed to be agnostic of internal reali-

zation of the individual federates. In fact, in HLA this idea is taken one step further, since

one of the HLA’s most distinctive features arises from the very definition of the possible

participants in an experiment. Specifically, members of a federation are allowed to rep-

resent not only computational simulation tools, but also incoming data from real-world

physical objects, and even passive listener objects that do not publish any data of their

own [49]. This idea would allow the realization of various Hardware-In-Loop and even

Human-In-Loop simulation scenarios.

It should be stressed that while OTI-based solutions generally aim for a high degree of

reusability of generic software components, each realization of architectures similar to

the examples depicted in Figure 4 or Figure 6 should still be treated as a fully separate

software project. The aim is to be able to tailor the general components to construct

collections of tools and processes — tool integration solutions — for a particular engi-

neering task by carefully considering the system’s requirements, and the environment in

which the system will operate. In this process, an OTI framework can assist by construct-

ing useful high-level abstractions out of some of the low-level functionalities involved in

building such a system.

3.3.2 Functional Mock-up Interface

Recently, even commercial vendors have made attempts to ease the development of

custom OTI schemes between various design tools. Case in point is the Functional

Mock-up Interface (FMI), a standard tool coupling methodology whose development was

initially started by Daimler A.G. FMI is a tool independent standard to support model

exchange and co-simulation of dynamic models, using a combination of xml files and

binary libraries exported from various tools implementing a standard set of functions. The

development began in the automotive industry, where it is typical for an OEM (Original

Equipment Manufacturer) to have tens or even hundreds of suppliers, all of which use

25

their own set of design tools. Without any standardization, it is very difficult for the OEM

to perform system-level design operations. [21]

The main idea is very similar to that presented in previous work done in the field of tool

integration (e.g., [46]–[49]) in the sense that FMI co-simulation architecture is envisioned

so that a common backplane is constructed, via standard tool adapters implementing the

FMI standard, into which the individual tools can register. The FMI supports two main

modes of operation, namely, Model Exchange and Co-Simulation [21]. The main use

cases of Model Exchange are the export and import operations of dynamical models

across tools that implement the interface. For instance, let us assume that an engineer

working at an engine manufacturer company designs a dynamical model of a car engine

in tool A. Being satisfied with the results, she then compiles the model (using tool A’s

built-in operations that support the FMI standard) in to a standard format file called the

Functional Mock-up Unit (FMU). Then, a car manufacturer might receive that FMU and

import it to tool B which supports the FMI Model Exchange standard. Now it becomes

possible to perform system-level simulations and get an insight how the engine model

behaves in conjunction with the other components such as the gearbox, clutch, driveline

and the behavior of the (simulated) human driver.

The most important remark concerning the Model Exchange approach described above

is that none of the actual computing takes place in the FMU that is imported to another

tool. FMU units implemented with the Model Exchange variation of the standard cannot

be run in stand-alone fashion. Instead, a target environment (e.g., tool B in the case of

the small example above) is expected to handle, at each time step of the simulation, the

actual solving (see Figure 7a) of the subsystem encapsulated in the imported FMU. The

FMU merely exposes the expected input variables and the equations to be computed,

which might be of the algebraic or differential variety. [21]

The FMI Model Exchange can be characterized as being a useful method for more of an

ad hoc approach to tool integration between a limited set of tools. At the same time, it

lacks many of the qualities of a true OTI architecture. Most importantly, it breaks the tool-

backplane independence rule which states that it should be possible to integrate tools

without interacting with the tools themselves. This clearly is not the case with the FMI

Model Exchange approach, since for every destination tool the engineer must physically

use the tool’s user interface in order to perform the FMU import and the necessary con-

figuration. As the details of this process might significantly vary between individual des-

tination tools, it quickly becomes burdensome when the number of tools is increased.

26

More closely related to an actual OTI architecture is the FMI Co-Simulation standard

(Figure 7b). Herein the subsystems are solved independently from one another by appli-

cation logic that is encapsulated into the FMU package itself as a collection of shared

executable libraries. The control of FMU ensembles takes place by means of a back-

plate-like master algorithm, whose responsibility is to control the data exchange and the

convergence of the total simulation result. In general, what makes this task difficult is the

fact that the individual subsystems might exhibit very different characteristics in terms of

real-world execution times, and the master algorithm must be able to cope with this asyn-

chronous behavior. Furthermore, FMI Co-Simulation only offers a partial solution to the

general OTI problem, since the actual implementation of master algorithm is not explicitly

defined within the FMI specification but instead it is on the large left to the operator’s

hands. [21]

Figure 7. Functional Mock-up Interface for a) Model Exchange b) Co-Simulation,
adapted from [54]

FMI Co-Simulation implicitly supports a third mode of operation, co-simulation with tool

coupling (Figure 8). Herein from the integrator’s perspective, the FMU can still be used

in a very similar manner to the standard co-simulation scenario. The difference is that

the internal implementation of the FMU does not directly contain any means of computing

the model’s state. Instead, it merely acts as a wrapper and provides a custom communi-

cation protocol that is not a part of the FMI specification and must be implemented in a

tool-by-tool fashion. The intent is that as the subroutines defined in FMI specification are

requested from the wrapper component by the master algorithm, the necessary com-

mands are parsed and further relayed to an external tool. As such, the FMU itself actually

has the capability to act as a translator between different semantic domains in the co-

simulation tool chain. The prerequisite for using this approach is, of course, that the ex-

ternal tool that the wrapper targets must be available at runtime. In most cases, this

means that the tool must be installed on the local system or it must be accessible via a

network socket, and the appropriate licenses must be checked out. [21]

27

Figure 8. FMU Co-Simulation with tool coupling, adapted from [21]

The FMU, being the concrete object that implements the FMI standard, encapsulates

both the compiled binaries that can be natively run on the target machine and an XML

description of the input/output arguments of the standard set of FMI subroutines embed-

ded in the binaries. In the file system, the compiled FMU which a simulation tool outputs

is represented as a single file with the .fmu suffix, but the file actually is a zip archive that

can be extracted by standard archiving tools. For FMU’s normal operation, manually ex-

tracting the contents is not usually required. However, as it will turn out in the empirical

part of the present work, this feature becomes very useful for debugging and/or explor-

atory purposes.

An FMU exposes its internal artefacts (variables and operations) by means of a stand-

ardized set of C-functions, which are packaged into a shared library (e.g., a .dll file in a

Windows environment or .so in Linux) nested in the FMU. Alongside with the binaries, a

“modelDescription.xml” file is distributed. The purpose of the modelDescription.xml file

is to provide the target system with a precise description on how the C-functions can be

invoked, which parameter configurations and data types are legal, what are the available

attributes that can be read or written to, and what is the expected output of each and

every function. In addition to model inputs and outputs, the FMI standard supports the

exposition of model’s tuning parameters and variables’ partial derivatives as well, if any

are present, making it possible to build optimization tasks around FMU models. [21]

During an FMU Co-Simulation session, communication between the various FMUs (or

“tools”, in a more generic OTI context) takes place at discrete communication points,

similarly to what was depicted in Figure 3. It is the job of the master algorithm’s (the

“backplane’s”) designer to implement suitable operations for facilitating the data ex-

change between the individual FMUs and, additionally, design the functionality that

properly synchronizes the simulation results of all the subsystems involved, so that the

overall simulation task can proceed from start to finish in a stable manner [21]. A naive,

yet in simple cases effective approach to constructing a master algorithm could be some-

thing like the following. Let 𝑖 ∈ ℕ be an integer designating the index of the current time

step, 𝑖𝑚𝑎𝑥 ∈ ℕ the index of the time step when the simulation is halted and Δ𝑡 ∈ ℝ+ be

the real-world time in seconds that passes between communication points:

28

while 𝑖 ≤ 𝑖𝑚𝑎𝑥 do:

 pause the execution of all the connected slave FMUs

 collect the output 𝑦𝑡 from each of the slaves

based on 𝑦𝑡 figure out what the inputs 𝑢𝑡+1 should be for

each submodel

invoke the respective C-functions to set the input

variables to 𝑢𝑡+1 for each model

unpause the slaves

set 𝑖 ∶= 𝑖 + 1
pause the master algorithm for Δ𝑡 seconds

Listing 1. Pseudocode for a potential master algorithm of a FMU Co-Simulation
scenario, adapted from [21]

Following this discussion, a nontrivial implication for designing FMI Co-Simulation com-

patible tools is that the tool must be able to interrupt and subsequently resume its oper-

ation with updated input data. Moreover, care must be exercised when deciding what

should the global time step size be in the master algorithm. In the general case, it is by

no means guaranteed that computation taking place in the individual FMUs can reach

convergence in a timeframe that is even remotely similar. Hence, the master algorithm

should explicitly define the procedure taken in the case of varying computational com-

plexities and wall-clock running time of the individual FMUs. A more sophisticated master

algorithm could probably include features requiring the individual models output some

kind of convergence criteria, and if need be, repeating the (partially) failed time step with

an increased time window in order to reach simulation stability.

Regarding these implementational details, the designer of the master algorithm has rel-

atively free hands so long as the general allowed call sequences are followed. In general,

the joint entity consisting of a master algorithm and a single FMU can be interpreted as

a state machine in which state transitions are only possible via a predetermined set of

functions (Figure 9). The main simulation loop takes place within the slaveInitial-

ized block which can only be entered and exited through a prescribed set of compound-

ing stages, triggered by a prescribed set of events. It should be remarked that the state

machine behavior is a required, but not sufficient feature of the master algorithm since it

does not tell anything about coordinating the execution of a set of multiple FMUs in rela-

tion to one another.

29

Figure 9. State machine representation of co-simulating a single FMU, reproduced
under CC BY-SA 4.0 from [21]

3.4 The Digital Twin

The act of simulation has been established as observing, in the context of a given exper-

imental frame, the behavior of a dynamic model in time. By this justification one could,

at least informally, envision the experimental frame having some kind of mapping to a

segment of the timeline in the life cycle of the physical system being simulated. By ex-

tension, simulation scenarios where the entire life cycle of a physical system is the ex-

perimental frame are also conceivable. Simulation setups of such nature are, in the con-

text of the present work, referred to as digital twins.

To illustrate the concept, consider the process of designing and manufacturing a physical

product, for instance, a car or a spacecraft. Depending on the exact industry, the prop-

erties of the individual end products coming out of the factory pipeline will have some

degree of variance involved. This could be either due to purposeful customizations im-

posed by the end customer, the intended mission and operating conditions of the product

and/or small, uncontrollable fluctuations occurring in the manufacturing process. Along-

side with delivering the tangible product into existence, a software counterpart, a digital

twin, of that unique product could be instantiated in a computational environment. The

30

semantic appearance of this digital twin should then, to the extent possible, reflect the

variance involved in the design and manufacturing process. [7]

The discussed examples can be considered realizations of mass customization, the no-

tion of establishing manufacturing concepts that are able to achieve low unit costs for

customized products [17]. As today’s design and manufacturing systems already are

highly digitized, each unique instantiation of a product in the physical world leaves behind

a trace in the cyber realm; a digital shadow that entails all the operation, condition, pro-

cess etc. data produced during that instantiation [12]. The digital shadow of an individual

product instance can, then, be linked with a digital master model — another digital arte-

fact that comprises of data and functionality that is common to all instances of a given

product class [12]. In this manner, a new digital twin is born.

Equipped with state-of-art phenomenological models that are able to simulate the vari-

ous subsystems present, the instantiated digital twin should now have the ability to “ex-

perience” every possible event that its physical counterpart might confront during its life-

time. This could include operating conditions that were not originally considered at the

time the initial designs of the product were made. In doing this, the ensemble of simula-

tions which makes up the computational part of the digital twin is continuously fed with

sensor data received from the physical device. In the context of industrial systems that

are prone to component failures, this could allow the development of unforeseen appli-

cations of predictive maintenance, component lifetime forecasting and even the dynamic

activation of various self-healing mechanisms (provided that they exist). [7]

As discussed briefly in Chapter 2, a digital twin has the definitive properties of being

extremely accurate and always up-to-date. This goes to the extent that a digital twin can

be used as a direct surrogate for reasoning about events occurring in the physical world

in real time. As such, the concept has historically inspired texts with a rather generic

(and, arguably, metaphysical) approach (see, e.g., [55]). Be that as it may, one of the

recent attempts to formulate a more technical definition for a digital twin is that of

Glaessgen and Stargel:

“A Digital Twin is an integrated multiphysics, multiscale, probabilistic simulation of an as-

built vehicle or system that uses the best available physical models, sensor updates,

fleet history, etc., to mirror the life of its corresponding flying twin.” [7]

Reportedly, the National Aerospace and Space Administration (NASA) has a long history

of utilizing the twin approach that dates back to the first Apollo missions. Obviously, back

then the computing power was not available to support very accurate digital representa-

tions of space systems, but instead physical replicas were used. This would allow the

31

flight control personnel back on earth to try out various solution scenarios for any issues

that might have occurred in-flight on the actual mission, before relaying the instructions

to the astronauts. Moreover, the twins served an important function in pre-flight training.

With the obvious monetary implications of constructing accurate physical twins of ex-

tremely complex engineering artefacts such as spacecraft, the concept of digital twin

emerged in NASA’s own studies as the availability of computational capabilities to con-

duct numerical simulation improved. [14], [15]

 Another definition of a digital twin is given by Stark et al. as:

‘‘A Digital Twin is the digital representation of a unique asset (product, machine, service,

product service system or other intangible asset), that compromises [sic] its properties,

condition and behavior by means of models, information and data” [12]

Despite the somewhat orthogonal nature of the two definitions, they both have an obvi-

ous overlap between the concepts of representativity, inspectablity and contemporality

discussed in Chapter 2. Most importantly, the notion of a digital twin being a counterpart

of some physical object (“as-built vehicle”, “unique asset”) is highlighted in both defini-

tions. The definition of Stark et al. expands the concept of object somewhat, arguing that

also “intangible assets” such as services could be represented by digital twins. Both def-

initions reflect also the concept of contemporality (“mirror the life…”, “compromises its …

behavior…”). The inspectability property is perhaps harder to interpret directly from these

definitions, but can instead be thought of as an underlying assumption — an intrinsic

property of any digital artefact versus a physical one. Software can, as opposed to phys-

ical machines, be designed in a manner that allows users to freely observe the internal

state of an execution at any point in time without affecting the process itself. Clearly, the

same cannot generally be said for physical machinery, hence providing another argu-

ment for the use of digital twins.

The digital twin concept can be viewed as extending the temporal window of simulation’s

utilization to the whole life cycle of the product. Whereas traditionally simulation was

viewed as a tool for mainly model-based design operations in R&D, the digital twin par-

adigm allows the simulation capabilities to be utilized during the delivery, operational life

and even decommissioning phases as well. This can be viewed as a natural continuum

for how the role, and also, the general user population, of simulation in organizations has

evolved over the recent decades (Figure 10). Specifically, beginning in 1960’s as a highly

specialized set of techniques, computer simulations were mainly conducted by experts

in computer science and mathematics. Today, computer simulations are conducted ex-

32

tensively by engineers in various disciplines, thanks to highly specialized tools that sup-

port model-based design activities. With the introduction of digital twins, instead of solv-

ing individual engineering problems, simulation is envisioned to become a core function-

ality of the organization. This is realized through constructing a ubiquitously connected

network of digital and physical assets that support operation and service with direct link-

age to operation data. [15]

Figure 10. The timeline of simulation paradigm’s evolution in engineering organiza-
tions, adapted from [15]

In context of co-simulation, a digital twin can be characterized as a specific kind of co-

simulation arrangement. Specifically, recall the discussion in Chapter 3.3.1 wherein co-

simulation was described as an arrangement of simulation tools communicating through

a common messaging bus, utilizing tool-specific translator and/or agent components. As

discussed briefly in, e.g., the HLA specification, the participating components of a co-

simulation session could be pure software, but equally well sensory measurement

streams originating from real-world objects. Correspondingly, a description of a software

framework capable of hosting digital twin applications could be realized through defining

two distinct classes of agents, i.e.:

1. Process agents: entities that interact with process data originating from physical

objects or processes and translate that data to and from an intermediate formal-

ism interpretable by other agents.

2. Simulation agents: entities that interact with simulation units and translate their

data to and from an intermediate formalism.

It must be noticed that the representativity criterion does not directly translate into the

functional requirement of a digital twin framework that the connection between process

agents and simulation agents could be always constructed as a simple one-to-one map-

ping [16], [17]. One reason for this emerges from the discussed multidisciplinary nature

of modeling an accurate representation of a complex system. The modeling of an engi-

neering system of any considerable complexity typically involves an array of specialized

simulation tools, resulting in a set of co-simulation units rather than a large monolithic

33

executable. Similarly, it would be an oversimplification to suggest that all data coming in

from a physical entity could be appropriately handled by a single process agent. The

interaction and translation capabilities of process agents obviously would need to be

implemented case-by-case towards the varying interfaces that different portions of that

entity could expose to outside world.

Following this discussion from a software engineering point of view, the generic outline

of a producer-consumer arrangement emerges. Herein a digital twin could be interpreted

as the relation 𝑅𝐷𝑇 between a set of process agents 𝑃 and set of simulation agents 𝑆:

𝑅𝐷𝑇 = {(𝑝, 𝑠)|(𝑝, 𝑠) ∈ 𝑃 × 𝑆 , 𝑠 consumes data produced by 𝑝} (8)

Clearly, the simplified definition given in Equation 8 does not capture the full space of

conceivable interrelations between the co-simulation units in 𝑆. In the general co-simu-

lation scenario, it is obvious that simulation agents may not only receive data from the

process agents in 𝑃, but from other simulation agents equally well. Similarly, in this dis-

cussion control-oriented approaches are omitted, i.e., those where nodes in 𝑃 may re-

ceive data from some subset of nodes in 𝑆 in addition to transmitting it. Nevertheless,

with these restrictions in mind, Equation 8 serves as a mental backplane for the software

architecture discussed in the empirical part of the work, wherein an object-oriented ap-

proach is proposed to represent and implement the generic behavior patterns of process

and simulation agents, respectively.

34

4. MODELCONDUCTOR ONLINE CO-SIMULA-

TION LIBRARY

This chapter describes the main outcomes of the empirical part of the work, wherein a

constructive approach was utilized in order to gain insights to the research objectives.

Following the conclusions established in Chapter 3.4 regarding the general ontology of

a digital twin, a prototype software solution is described which is aimed at allowing the

orchestrating of arbitrary many-to-many relations between two distinct types of software

agents, i.e., those interacting with physical processes and those interacting with simula-

tion models.

4.1 Overview

A prototype of a Python digital twin library called ModelConductor [32] was developed

during the work. The library is a Minimum Viable Product (MVP) in the sense that it cap-

tures the main functionalities along with the relevant unit tests, but has not yet been

rigorously integration tested against all possible use scenarios. The software architecture

is based fully on an Object Oriented Programming (OOP) approach, so that the high-

level classes can easily be extended to support even more different kinds of input

streams and models.

An early draft of a use case diagram for the developed software is presented in Figure

11, which describes the system and its actors. Not all the features were implemented

during the scope of the thesis, but the figure illustrates the software architecture’s main

paradigm at high level, based on the co-operation of three distinct classes of actors:

 Data sources (the MeasurementStreamHandler class) representing physi-

cal assets and process data streams originating therein.

 Data consumers (The ModelHandler class) representing digital asset models

that simulate or make inferences of the behavior of their corresponding data

sources.

 The human operator.

35

Figure 11. An early design phase use case diagram of ModelConductor

In particular, the proposed MVP provides a solution to the problem of concisely building

online data pipelines between the data sources and data consumers, providing the nec-

essary formalism translations along the way (Figure 12). Specifically, this is realized via

a variable length queue object containing measurement objects originating from a data

source, waiting to be processed. The solution allows a degree of temporal independence

between the data sources and data consumers, which can be operated in an asynchro-

nous manner to accommodate the co-operation of components that might have very dif-

ferent data throughput rates.

Figure 12. The general ModelConductor scope

36

4.2 Structure and description of internal data types

As discussed, in general, between the data sources (physical assets from which meas-

urements are derived) and data consumer asset models a many-to-many relationship

exists. In OOP terms, this relationship is constructed via a separate Experiment entity

which is responsible for, among other things, storing the data routes from measurements

to models for a given invocation of the software (Figure 13).

Figure 13. Specification-level class diagram of the ModelConductor library.

Within ModelConductor, all data that is to be exchanged from one data source / data

consumer to another, is asserted to exists in one of two possible formats: i) a Meas-

urement object that denotes a timestamped data structure that is received from a phys-

ical asset, best understood as a snapshot of the asset’s state at a given time or ii) a

ModelResponse object that similarly denotes a timestamped data structure that is re-

ceived from a digital asset, a snapshot of the model’s virtual state at a given time.

Generally, for each Measurement object that is generated from data received from a

physical object, exactly one ModelResponse object is generated in the paired digital

object(s). Concretely, both Measurement and ModelResponse are key-value collec-

tions. A variable (a key) may (but is not required to) belong to one or more variable

categories based on the variable’s purported function inside the ModelConductor eco-

system. In the current version, the following categories are implemented:

 Input keys: The subset of keys in Measurement object corresponding to the

keys that are expected as inputs by the relevant ModelHandler.

 Target keys: The keys that are expected to be output from a ModelHandler

instance onto a ModelResponse object.

37

 Control keys: A subset of keys in Measurement that is not intended to be used

as an input to a ModelHandler, but rather as a validation variable against the

ModelHandler output.

 Timestamp key: A key denoting the instant when the relevant Measurement or

ModelResponse instance was created.

In practical applications (most prominently when working with FMU models), simulation

models might counterintuitively choose to output their inputs, as well as the actual model

responses to the input signals. In these instances, the ModelResponse object may ac-

tually contain the model’s internal representation of some subset of the relevant Meas-

urement object that was given to that model. This is a useful feature since it allows one

to validate that the input variables are perceived in the model’s world in a coherent man-

ner. However, this can also create confusion. Situations can occur where a subset of

keys intersects Measurement and ModelResponse, but they represent two fundamen-

tally different things, or more accurately, two separate representations of the same thing.

Obviously, if the model works correctly, the difference should not be very large.

In an attempt to keep behavior consistent between different subclasses of Model-

Handler, the code implementation asserts in a helper method that each ModelRe-

sponse contains as a subset either the original Measurement data or, alternatively, a

representation thereof obtained directly from the simulation model. While this approach

definitely has some pitfalls involved, it turns out that advantages can be gained in, e.g.,

the simplified implementation of logging functionalities, as will shortly be illustrated.

At an implementational level, the MeasurementStreamHandler and ModelHandler

are parent classes that only provide low-level services for input-output functionality. In

practice, this means that they must be extended separately for each technology for which

interfacing is desired, similarly to the semantic translator concept discussed in Chapter

3.2. An example is provided in Figure 14, depicting the inheritance hierarchy of Meas-

urementStreamHandler. Currently, the two main modes of getting the measurement

data into ModelConductor are periodically polling a database and instantiating a TCP

socket connection between a remote client and ModelConductor. As it is observed, both

of these modes have their separate implementations, i.e., MeasurementStream-

Poller and IncomingMeasurementListenerClasses.

38

Figure 14. Class diagram of MeasurementStreamHandler and descendant classes

A similar hierarchical structure to that depicted in Figure 14 is present in the Model-

Handler class. Currently, the simulation of models exported as Functional Mock-up

Units (Chapter 3.3.2) from a compliant modeling tool [6], as well as machine learning

models implemented with the scikit-learn library are supported. Figure 15 illustrates the

ModelHandler structure.

39

Figure 15. Class diagram of ModelHandler and descendant classes

4.3 Behavior and interactions

From an early stage in development, it was clear that the two main portions (i.e., Meas-

urementStreamHandler and ModelHandler classes) needed to be designed to ac-

commodate asynchronous and parallel operation between each other. The reasons for

this become evident when one considers how real-world data might actually be collected

from a physical process and, on the other hand, how the computational complexity and,

hence, execution time might vary between various types of process models. Basically,

this means that in order for the software to have any potential for general applicability, it

should be flexible enough to accommodate for situations where the arrival rate of data is

very different from the rate with which that the data can be used.

From the discussion above, a multitude of design constraints arise. Most importantly, if

a model is meant to replicate a real-world process as closely as possible using sensor

40

data as input, a simulation step can only be performed when the necessary data is avail-

able in its entirety. For a given model, the format of this data must be explicitly defined

in order for the software to understand whether this criterion is met at a given point in

time or not. Conversely, even if input data is available, it cannot be fed forward to the

model while the model is occupied computing a simulation step for a previous input.

Consequently, the solution was constructed so that model inference operates on a “pull”

manner at the command of the associated model, additionally constrained on the fact

that new input data is available at the time issuing the command.

The most simplistic use case occurs when exactly one measurement source is paired

with exactly one model. Essentially, this boils down to two loops that are executed in

parallel threads. In the first loop depicted in the sequence diagram of Figure 16, the

receive method of the MeasurementStreamHandler object is called starting the exe-

cution of the main loop of the data receiving thread.

Figure 16. The main data receiving loop of Experiment

On the abstract level, at each iteration the loop now checks whether there is new data

available on the associated input data stream, and, if yes, puts the data into a buffer,

which is concretely a FIFO (First In, First Out) queue object. The implementation of

checking the “new measurement available” rule will vary according to the concrete data

source, which could be, e.g., a database or a stream of incoming data via a REST API.

For instance, if the method of getting the data is to periodically poll a database, such an

implementation might choose to suspend the thread for a predefined time at each itera-

tion of the polling loop in order to limit the number of queries executed. Finally, just before

41

putting the data in to the queue, the implementing classes might choose to do some

additional pre-processing, e.g., remove parts of the data that are unnecessary for the

experiment at hand. The data itself is treated as a simple key–value collection called

Measurement by extending it from Python’s native dict class and adding some ad-

ditional application-specific methods, such as converting the key–value pairs to plain

numerical arrays, which can be utilized in some models, most importantly of the machine

learning variety.

Simultaneously, another thread depicted in Figure 17 is executed which is set up to listen

to incoming data in the buffer.

Figure 17. The main model loop of Experiment

At each iteration the loop checks whether there is at least one element in the buffer. If

that is true and also the model is in “ready” state so that new data can be fed in to the

model, a Measurement element is removed from the buffer in FIFO manner and used

to make an inference from the associated model. The result — a ModelResponse ob-

ject — is then appended to another list, an attribute of the Experiment object.

Putting it all together, Figure 18 illustrates what a single invocation of a one-source-to-

one-model online experiment might look like. Most importantly, before the main loops

can be executed it is the responsibility of the operator to make sure that the appropriate

stream and model objects exist, that they are in a “ready” state, and to set up various

experiment parameters such as the running time. Subsequently, at the simple call of the

42

run method, the experiment will run for a predetermined time, after which both of the

threads are terminated and the final results list is returned.

Figure 18. An illustrative sequence diagram of a one-to-one experiment use case
in ModelConductor

The ModelConductor framework is designed so that it can be extended to support arbi-

trarily complex multi-input, multi-output scenarios by means of nested threaded execu-

tions between the source–model tuples, as Figure 19 will illustrate. Concretely, the con-

currence implied by the par frame in the program is achieved by utilizing Python’s native

Thread module [56], [57].

43

Figure 19. A generic many-to-many use case in ModelConductor

4.4 Auxiliary components

ModelConductor includes components that are not viewed as being part of the core func-

tionality of setting up input-output mappings between physical assets and simulation

units, but are (at least) equally important from a user experience point of view. Specifi-

cally, herein result logging and input data validation strategies are briefly discussed, as

they are implemented in the current MVP.

44

4.4.1 Result logging

Crucial points of interest in the timeline of a ModelConductor Experiment are the in-

stants when the ModelResponse object is returned, concluding a single iteration of the

model loop depicted in Figure 17. At this point, the contents of ModelResponse of the

time step are written to an external file as comma separated values, ordered in the fol-

lowing manner:

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 , 𝑖𝑛𝑝𝑢𝑡_𝑘𝑒𝑦𝑠 , 𝑡𝑎𝑟𝑔𝑒𝑡_𝑘𝑒𝑦𝑠 , 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑘𝑒𝑦𝑠

Consider the following pseudocode example, which governs a single modelLoop cycle

from the moment the Measurement object becomes available to the moment when result

logging takes place:

input_keys = [‘a’, ‘b’]

target_keys = [‘c’]

control_keys = [‘sum’]

initialize_log_file(input_keys, target_keys, control_keys)

measurement = {‘a’: 3, ‘b’: 5, ‘irrelevant_key’: 18, ‘sum’: 8}

model_input = []

for key in input_keys:

 model_input.append(measurement[key])

model_response = model_function(model_input)

assert(model_response == {‘a’: 3, ‘b’: 5, ‘c’: 8, ‘sum’: 8})

write_to_log(model_response, log_file)

As a result of calling initialize_log_file and write_to_log the following lines

will appear in log_file:

timestamp, a, b, c, sum

dd.mm.YYYY HH:mm:ss, 3, 5, 8, 8

While the actual ModelConductor logging implementation is somewhat more involved,

this simplified example serves the purpose of understanding the outline of main function-

alities. From this example, it is also noticed that it is allowed for a measurement object

to contain redundant information that is not used in any way by the experiment.

4.4.2 Measurement validation

Real-world data is noisy. In general, simulation models that could be used in conjunction

with ModelConductor are not guaranteed to have tolerance against faulty inputs, but in-

stead each Measurement should, in principle, be validated against a set of application

specific rules before it is passed on to the ModelHandler instance. Currently, this func-

tionality in ModelConductor is very limited in the sense that it can only check against

45

missing values represented as None objects in the Python syntax. Two alternative strat-

egies are currently implemented to deal with the None values found, i.e., i) revert to the

latest value that is historically known to be valid in the experiment’s context ii) do nothing

and hope for the best — most likely ending up in the simulation crashing. The following

pseudocode provides an illustration of the first approach:

validation_strategy = ‘latest_datapoint’

model_input1 = {‘a’: 3, ‘b’: 5}

Selection of initial values is application-specific

a = 0

b = 0

def model_function(model_input):

 # input validations

 a = previous_a if model_input[‘a’] is None else \

model_input[‘a’]

 b = previous_b if model_input[‘b’] is None else \

 model_input[‘b’]

 return {‘sum’ : a + b}

model_input1 = validate(model_input1, validation_strategy)

model_response1 = model_function(model_input1)

assert(model_response1 == {‘sum’: 8})

model_input2 = [‘a’ : 3, ‘b’: None}

model_response2 = model_function(model_input2)

assert(model_response2 == {‘sum’: 8})

4.5 Distribution, installation & licensing

The current development version of ModelConductor prototype is distributed as a MIT-

licensed Python package repository, allowing comparatively liberal use, modification or

distribution of the software for any purpose, including commercial purposes. The current

version at the time of writing the thesis has been tested with Python version 3.7.4. The

core structure of the project is spread across six Python modules (nine including those

used for unit tests) and is outlined as follows:

| LICENSE

| README.md

| setup.py

| requirements.txt

|

\---modelconductor

 \---testresources

 train.py

 __init__.py

 exceptions.py

 experiment.py

 measurementhandler.py

 modelhandler.py

 server.py

 tests.py

 test_utils.py

46

 utils.py

 __init__.py

Listing 2. The ModelConductor Project structure

In the scope of the present work, no efforts have been made to make the library officially

available from Python’s package index [58], but instead the source repository can be

cloned directly from [32], wherein the latest stable version is maintained in the reposi-

tory’s master branch. Subsequently, the library can be installed locally from sources us-

ing pip [56] by navigating to the project’s root directory (i.e., the one where setup.py)

is located and running:

pip install .

Alternatively, to install ModelConductor and all the dependencies on one go, the follow-

ing approach can be used:

pip install -r requirements.txt

47

5. EXAMPLE USE CASES

In the following subchapters, the organizational context in which the experimental part of

the work was carried out is briefly discussed, i.e., the TUAS Internal Combustion Engine

Laboratory (ICEL), by whom the thesis was commissioned. Subsequently, the developed

Python library’s utility is demonstrated by implementing a set of different measurement–

model configurations, running the associated experiments and briefly examining the re-

sults.

5.1 Internal Combustion Engine Laboratory

At TUAS ICEL, experimental internal combustion engine studies are routinely carried

out. The laboratory provides engine testing and measurement services mainly for indus-

trial customers in the field of non-road mobile machinery such as in agriculture, forestry,

construction or other similar areas. In a typical project, a heavy-duty diesel engine is

fitted to an engine test stand by the laboratory’s research personnel. The laboratory’s

four engine test stands are equipped with eddy current engine dynamometers that are

designed to accommodate engines of up to roughly 250 kW peak output power. Con-

cretely, the engine’s flywheel is connected to the dynamometer via a specifically de-

signed rigid clutch mechanism (Figure 20). The dynamometer then essentially acts as a

brake, allowing the emulation of various static and dynamical loading profiles that would

be imposed on the engine while the adjunct mobile machinery is being operated5. The

dynamometer’s loading throughout time can be controlled by a pre-set profile (such as

the NRTC, see Chapter 5.2) or manually by the research personnel (a common approach

when steady-state testing is desired). Specifically, the controlling is done utilizing Lab-

View based software running on a remote workstation in a nearby control room.

5 For in-depth discussion about various engine dynamometer types’ working principles, as well
as internal combustion engine testing practices in general, the interested reader is referred to the
comprehensive text by Martyr & Plint [74].

48

Figure 20. A simplified schematic of an engine test stand similar to that used at
TUAS ICEL

The dynamometer provides means to measure engine speed (Revolutions Per Minute,

RPM) and torque, which are registered to a MySQL database throughout the test runs.

Simultaneously, various other measurements are registered as well. The engine test

stands are equipped with various sensors and other devices for the measurement of,

e.g.:

 Air intake and fuel consumption rates.

 Temperatures and pressures at various locations of the intake and exhaust man-

ifolds and the engine body.

 Atmospheric conditions such as temperature, pressure and humidity.

 Environmental pollutant’s concentrations in exhaust gases such as carbon diox-

ide, carbon monoxide, hydrocarbons, nitrogen oxides and particulate matter.

 Various attributes regarding engine auxiliaries such as the turbocharger or ex-

haust gas after-treatment devices.

 Attributes read directly from the Engine Control Unit (ECU) via CAN bus, such as

various parameters regarding fuel injection strategy dependent on engine oper-

ation conditions.

In addition to these primary measurements, various derivative values are also recorded

at experiment time. For instance, as will be subsequently illustrated in Chapter 5.2, the

engine’s output power is not measured directly, but instead computed as the product of

49

torque and angular velocity. Altogether, some 150–200 separate measurement channels

are registered to the database depending on the particular project configuration.

5.2 Prediction of engine power using FMU Simulink model

For this demonstration, the data used was the Non Road Transient Cycle (NRTC) used

for emission testing of heavy duty off-road diesel engines [59]. The raw data is repre-

sented as a 1238 x 3 matrix with the first column corresponding to elapsed time in sec-

onds, second column corresponding to normalized engine speed (percentage of maxi-

mum), and the third column corresponding to normalized engine torque (percentage of

maximum). For the purposes of this experiment, the relative values were converted to

absolute values by using 2600 rpm and 540 Nm for the maximum values of speed and

torque, respectively. Subsequently, the data was augmented with a simulated noisy

power measurement. The output power from a reciprocating engine is given as the prod-

uct of the angular velocity of the crankshaft and the torque:

𝑃𝑜𝑢𝑡 [W] = ω [
rad

s
] ⋅ 𝑇 [Nm] (9)

where

ω [
rad

s
] =

𝑛

60
 [s−1] ⋅ 2𝜋 (10)

wherein 𝑛 is the revolution rate expressed in Revolutions Per Minute (RPM) [60]. Be-

cause the objective is to demonstrate a configuration which generates online evaluations

of a system and is able to compare the results against a stream of incoming measure-

ment data, some gaussian noise was added on top of the computed power. The final

input data obtained in this manner is depicted in Figure 21. Here, the “power” time series

is computed utilizing Equations 9 and 10 and adding random gaussian noise with 0 mean

and a standard deviation of 5 kW, hence simulating a noisy measurement.

In the model side, the computation of power was implemented as a simple Simulink

model (Figure 22), having an input vector consisting of speed and torque values and,

correspondingly, a single scalar output 𝑃𝑜𝑢𝑡 based on Equations 9 and 10.

50

Figure 21. The input signals for FMU ModelConductor experiment

To allow the running of the model developed in Simulink (Figure 22) within a co-simula-

tion session instantiated with ModelConductor, the model was exported using MATLAB’s

project functionality [61] as an FMU.

Figure 22. The Simulink model for testing ModelConductor

As discussed in Chapter 3.3.2, an FMU is an archive file which implements the Func-

tional Mock-up Interface [54]. At the very core of the produced FMU is the modelDe-

scription.xml file, an excerpt of which is outlined in Listing 3. The utility of modelDe-

scription.xml is to act as a resource from which an external tool supporting the FMI

(in our case, the ModelConductor library) will get all the necessary information about how

to invoke the binaries. In this instance, it can be verified by examining the file that the

variables exposed for FMI operations by the packaged Simulink model are clearly de-

scribed (highlighted in bold text), along with some additional metadata (Listing 3).

51

...

<ModelVariables>

 <ScalarVariable causality="input"

 description="Input Port: Speed"

 name="Speed"

 valueReference="0"

 variability="discrete">

 <Real start="0"/>

 <Annotations> ... </Annotations>

 </ScalarVariable>

 <!--Index = 1-->

 <ScalarVariable causality="input"

 description="Input Port: Torque"

 name="Torque"

 valueReference="1"

 variability="discrete">

 <Real start="0"/>

 <Annotations> ... </Annotations>

 </ScalarVariable>

 <!--Index = 2-->

 <ScalarVariable causality="output"

 description="Output Port: Output"

 initial="calculated"

 name="Output"

 valueReference="2"

 variability="discrete">

 <Real/>

 <Annotations> ... </Annotations>

 </ScalarVariable>

 <!--Index = 3-->

</ModelVariables>

...

Listing 3. An excerpt of the modelDescription.xml file contained in the FMU. Seg-

ments denoted by … are omitted for brevity

Running the Simulink-generated FMU requires a valid Simulink license on the work-

station which the FMU model checks out automatically provided that an FMU session

has been invoked in MATLAB. The process could be automated but for the purposes of

this experiment, an instance of MATLAB was manually started up, followed by issuing

the relevant command which starts the co-simulation session [61].

ModelConductor currently supports the loading and co-simulation of FMUs by imple-

menting a wrapper class for the open source FMPY library [62]. According to the

ModelConductor architecture, the experiment consists of periodically polling a database

for new data, and whenever new data is available it is fed forward to the connected

model. However, as in this case the raw data resides in a plain csv file, a separate mech-

anism was developed to simulate periodical measurements being written to a database.

The Python implementation of a function called simulate_writes is given in Appen-

dix A.

52

Essentially, upon calling simulate_writes the code begins going through the input

data csv file row by row at an interval defined by the function’s only argument, writing the

rows to a test database along the way. This is meant to approximate the process of

measurements coming in from an actual physical process. At each round of the data

receiving loop, the database is polled for the most recent entry. In the context of this

artificial example, the “most recent” entry is naively interpreted as the one having the

largest integer primary key auto-generated by simulate_writes which hasn’t yet

been utilized by the experiment.

Now, with the MATLAB FMU session in place along with a means to simulate incoming

measurement data, a ModelConductor experiment can be set up. Closely approximating

the one-to-one use case behavior described in Figure 18, the purpose will be to watch

out for the incoming data and to make inferences from the FMU model. The process is

rather straightforward utilizing the built-in methods contained in ModelHandler classes,

as illustrated by Jupyter notebook snippet in Appendix A. When the notebook is run, the

Simulink instance is activated programmatically and the user is able to visually inspect

that simulation steps are actually taken by viewing the simulation results in a real-time

plotter window. Similarly, it can also be verified that the model works by examining the

debug output from the ex.run method (Appendix A). On a final note, the results are

saved to an output csv file for later examination and/or post-processing with arbitrary

tools. Figure 23 displays a plot of the final results produced in MATLAB environment.

Figure 23. ModelConductor one-to-one Experiment results

53

5.3 Online prediction of engine NOx emissions by machine

learning

The simplified development process of an internal combustion engine can essentially be

viewed as an optimization problem of maximizing thermal efficiency, i.e., the ratio of me-

chanical energy obtained from the crankshaft to the energy input contained in the fuel

consumed during the same period. The set of feasible engine configurations is con-

strained by various factors, such as the tolerance of the materials used against mechan-

ical and thermal stress. Perhaps most importantly, an engine manufacturer needs to

consider the maximum acceptable emission levels imposed by the authorities. The tools

the development engineer has at hand to approach this problem include, but are not

limited to, the selection of an appropriate fuel injection strategy as well as implementing

various types of exhaust gas aftertreatment devices.

In particular, in diesel engines it has proven a challenging task to control Nitrogen Oxides

(NOx) levels while also maintaining an acceptable level of Particulate Matter (PM) emis-

sions and adequate fuel efficiency. In order to implement optimal emission control strat-

egies, using fast-running real-time models in the ECU to estimate NOx from engine pa-

rameters has attracted plenty of discussion recently (see, e.g., [63]–[67]). This serves as

a motivation behind our following example of ModelConductor digital twin instantiation,

the main features of which are highlighted in subsequent discussion. Moreover, the ex-

periment’s second part is documented in a Jupyter notebook format in Appendix B.

Along with the other emission components such as carbon monoxide and particulate

mass, the NOx levels are routinely registered during the engine test runs conducted at

TUAS ICEL. In this experiment, real-world engine measurement data is utilized, taken

from a NRTC cycle ran on a 4.9 liter heavy duty diesel engine, the key characteristics of

which are given in Table 1.

Attribute Description

Engine type In-line, 4-cylinder, 4-stroke, turbocharged &

intercooled

Displacement (dm3) 4.9

Bore (mm) 108

Stroke (mm) 134

Max. Torque (Nm) 860

Rated power (kW) 148

Fuel type and fuel injection

system type

Diesel, common rail

Table 1. Key characteristics of the target engine for simulation

54

The raw data was manually extracted from the laboratory’s MySQL database using a

LabView based export tool routinely used by the research personnel in the laboratory to

perform basic data analysis tasks. The tool in question is developed for the laboratory

by a third party contractor with its source code undisclosed. Consequently, many details

regarding data pre-processing and the actual query made towards the database remain

unclear. This by no means is an optimal situation, but can still be considered acceptable

for the purposes of the example.

Eventually, the export process resulted in a data set of 12,390 samples of 158 variables,

with each sample corresponding to a snapshot of the variables’ values over an averaging

window of 0.1 seconds. Hence, the total duration of the cycle is inferred to be 1,239

seconds, matching the value given in the official NRTC specification [59]. A preliminary

exploratory analysis of the data was performed, with the intent of finding the most inter-

esting independent variables in terms of predicting the dependent variable ‘NOx_Left’,

the distribution of which is presented in Figure 24.

Figure 24. Distribution of NOx concentration during the NRTC cycle

As a result of a semi-formal pre-processing phase including, e.g., the examination of

linear correlations of paired variables as well as applying common domain knowledge

about internal combustion engines, the data was eventually narrowed down to 49 varia-

bles showing most potential. Subsequently, the data was randomly split into training and

test sets using a 67/33 split and various machine learning models were fitted to the data

for quick comparison utilizing the scikit-learn library. The results obtained from the vari-

ous models trained are summarized in Table 2 as Mean Absolute Error (MAE) computed

for the training and test sets.

55

Model type Training Error6 (MAE) Test Error7 (MAE)

Linear regression 93.7 96.5

Polynomial regression (2nd order) 35.6 43.5

Random forest (100 trees, maximum depth 25) 4.6 12.1

For brevity, the models themselves are treated as generic black-box learning agents and

any further discussion about the implementational technicalities involved is omitted, as

well as the possible reasons why some models might perform better than others. The

fact is also disregarded that obviously the data faces an overfitting problem as the model

complexity is increased, manifested specifically in the case of the random forest by the

large difference between training and test error8.

For further developments, the random forest model was the obvious choice, since the

provided data fit can be, at least for the contemporary purpose, considered excellent.

This is perhaps best illustrated by observing from Figure 24 that the target variable

roughly ranges between 150 ppm and 1200 ppm, while the model on the average only

makes an error of 4.6 (12.1) ppm in the training set (test set). It bears repeating, however,

that for any industrial or scientific applications beyond demonstrative purposes the obvi-

ous overfitting issue would definitely be something the data scientist should look into,

perhaps by introducing some sort of regularization technique [68, Ch. 7].

Two separate experiments were conducted with the chosen model. The first one utilized

an SQLite database as means for getting the input data by issuing periodical SQL polls,

at intervals defined by a polling_interval attribute9 of the IncomingMeasure-

mentPoller class. Meanwhile, a mechanism similar to that described in Chapter 5.2

(function simulate_writes in Appendix A) is used to simulate the measurements be-

ing concurrently written to the same database. The second experiment, on the other

hand, utilized a continuous data stream over a TCP socket. For both experiments, the

simulation results in comparison to the measured NOx values (Figure 25) were asserted

to be identical.

6 Rounded to nearest single decimal point.
7 Rounded to nearest single decimal point.
8 For a thorough discussion on these topics, the interested reader is referred to the comprehen-
sive presentation in [68].
9 The meaning of polling_interval will be discussed in more detail in Chapter 5.4.

Table 2. Results from training various ML models for the NOx prediction problem

56

Figure 25. Simulation results

For the database experiment, the SQLite file was initially empty, and physically stored

on a commodity SSD disk with a maximum reading speed of 540 MB/s and a writing

speed of 250 MB/s as reported by the manufacturer10. A baseline for database write

speed was first established by executing only the write loop without any concurrent read

operations being executed towards the database. By setting the delay parameter (see

definition of simulate_writes in Appendix A) to 0.1 seconds, the whole dataset was

iterated in 1886 seconds, resulting in the duration distribution for a single write operation

plotted in Figure 26.

Figure 26. Distribution of durations of the database write operations

After setting up a baseline, the actual concurrent read/write experiment was then re-

peated with various values of polling_interval parameters while the write interval

was, to the extent possible, maintained constant. As explained in Chapter 4.4.1, a

timestamped entry is written to an output log file each time a ModelResponse object is

received from the SklearnModelHandler instance. Having a priori knowledge about

how much the simulated time advances between two consecutive ModelResponses (in

this case, 0.1 seconds) allows to define the following:

10 A performance benchmark conducted shortly after the experiment with a tool provided by the
manufacturer reported a reading speed of 505 MB/s and a writing speed of 180 MB/s.

57

𝑡 = simulated time elapsed since beginning of the experiment (11)

𝜏 = wall-clock time elapsed since beginning of the experiment (12)

𝑡 𝜏⁄ = real-time performance coefficient (13)

The ratio 𝑡/𝜏 becomes an important performance metric11 for these types of experiments

and is utilized extensively also in subsequent examples of the present work. As it is illus-

trated in Figure 27, the real-time performance in terms of 𝑡 𝜏⁄ was, in the database ex-

periment, modest at best. However, the data suggests that best results are obtained by

setting polling_interval just slightly larger than the write rate.

Figure 27. Simulation real-time performance, poll-based experiment

An additional viewpoint to the experiment’s performance is obtained by looking at Figure

28 where the effect of various polling_interval values on the SQLite’s ability to

write data is compared.

11 Situations exist when 𝑡/𝜏 can not be considered a valid performance metric — see Chapter 3.1
for complementary remarks.

58

Figure 28. Wall-clock time elapsed vs. samples written, poll-based experiment

The second test utilized a client–server approach. Specifically, it consisted of setting up

a remote data stream simulation using a Raspberry Pi unit and a corresponding receiver

component using ModelConductor library components. On the client side, the data was

read from a csv file row by row and subsequently transmitted using the approach outlined

in Listing 4. The result will be a stream of JSON-formatted strings (JavaScript Object

Notation), discretely spaced in time by call to Python’s time.sleep method inside the

main loop. Each message is prepended with a fixed-length header portion containing

information about the message’s length, allowing the messages to be correctly parsed

at the receiving end.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

"""Script for simulating IOT measurement stream to

ModelConductor experiment."""

#---Import statements omitted for brevity

#---Get the raw data

data = pandas.read_csv('nrtc1_ref_10052019.csv',

 delimiter=';')

#---Connection parameters

HOST = "192.168.1.5"

PORT = 33003

ADDR = (HOST, PORT)

client_socket = socket(AF_INET, SOCK_STREAM)

client_socket.connect(ADDR)

#---Main loop

def send(my_msg, event=None):

 """Handles sending of messages."""

 client_socket.send(bytes(my_msg, "utf8"))

 if my_msg == "{quit}":

 client_socket.close()

for _, row in data.iterrows():

 my_msg = row.to_json()

 # add message length to header

59

29

30

31

32

33

 my_msg = "{:<10}".format(str(len(my_msg))) + my_msg

 print(my_msg[0:50], "...") # debug

 send(my_msg)

 sleep(0.1)

Listing 4. The client side Python script utilized in TCP streaming experiment

At the receiving end, the IncomingMeasurementListener class [32] assumes the

responsibility of establishing the TCP connection to the client and parsing the JSON

strings to Measurement objects. Herein, an original high-level protocol for parsing the

messages was implemented in the handle_client function of the server module

[32], the purpose of which is to ensure that exactly one JSON string received from the

client ends up being interpreted as exactly one Measurement object that is added to the

buffer. The TCP layer fortunately takes care of low-level tasks such as data ordering and

ensuring the uniqueness of each transmitted segment [69], making this task substantially

simpler.

The experiment was repeated with two different network configurations: One with the

Raspberry in the same local network set up via Ethernet, and one where the data was

transmitted over the Internet by connecting the Raspberry to a 4G hotspot hosted from

an Android phone. As it is illustrated in Figure 29, both approaches resulted in 𝑡/𝜏 values

close to 1, which can be considered an excellent result. As was expected, on the red line

in Figure 29 slight artefacts from the network’s unpredictable behavior can be observed.

Although the overall data throughput did remain satisfactory in this instance, this obvi-

ously might not always be the case.

Figure 29. Real time performance when streaming input data over TCP socket
from a remote client

In the very beginning of the “internet” experiment (and, to a lesser extent, LAN

experiment also) the performance appears to fluctuate wildly. As illustrated by a zoomed-

in version of the graph (Figure 30), in the internet experiment 𝑡 𝜏⁄ initially peaks at

approximately 1.4 and then oscillates for a brief moment over and under 1 before

60

stabilizing. In other words, in terms of simulated time, it appears that the data is

momentarily being utilized faster in computations than what it takes in real time to send

and receive the datapoint over the TCP socket, convert it to ModelConductor’s internal

datatype and append to buffer, re-convert to another data format that is expected by the

model, send it to connected Sklearn ModelHandler and return the result. Herein the word

appears is emphasized, since carefully examining the experiment’s composition reveals

that this cannot actually be true. For illustration, consider that in the client side main send

loop (Listing 4) the execution is paused at each iteration for 0.1 seconds. This also

happens to be exactly the same interval by which the simulation time advances between

two consecutive time steps. Hence, one is able to arrive at the logical conclusion that at

any given time 𝑡 𝜏⁄ can be at most 1, even without the unavoidable overhead resulting

from network delay.

Although it could not be confirmed in the scope of the present work, it is argued that the

observed counter-intuitive fluctuations in the beginning are mainly consequences of the

real-time properties of the start-up phase of the experiment when it is run by the Python

interpreter. Specifically, in the run method of OnlineOneToOneExperiment the data

receiving loop is instantiated before the data utilizing loop. A situation could hence occur

that the buffer already has some data at the time the ModelHandler component is

initiated and has access to that data. As a result, it obviously becomes questionable

whether 𝑡 𝜏⁄ , as it has been defined, can be considered a completely valid performance

metric, specifically in the beginning phase of an experiment. It is, however, argued that

𝑡 𝜏⁄ still provides an useful estimate as the experiment progresses. Since 𝑡 𝜏⁄ is computed

from cumulative values of simulated and real time passed, the fluctuations are expected

to eventually even out.

Figure 30. The beginning of real time performance in streaming experiment

61

5.4 Real-world engine test data simulation with GT-SUITE

The two previous examples used data that was created and/or accessed in an artificial

manner. With respect to FEDS (Chapter 2.2), the third and last example brings us closer

to a naturalistic approach in the chosen evaluation strategy. Specifically, a demonstration

is presented of integration of the ModelConductor framework to a database that is in

productional use in the thesis’ target organization.

5.4.1 Access to input data

The data resulting from the engine test runs conducted at TUAS ICEL is persisted in a

MySQL database on a server maintained locally on TUAS premises. On the MySQL

server, each of the four test cells in the engine lab are represented as a separate data-

base. As for the parts relevant for the purpose of the contemporary work, the database’s

table scheme is depicted in Figure 31.

Figure 31. An excerpt of table scheme at TUAS ICEL’s MySQL database

According to Figure 31, the raw data originating from sensors and other equipment con-

nected to a test engine is warehoused in a single ‘data’ table. Each record is uniquely

identified by a composite primary key consisting of a timestamp (further split into a string

of the format DD-MM-YYYY HH:mm:ss plus an integer millisecond part) and a measid

integer identifier of the measurement channel (variable). At query time, if the actual hu-

man-interpretable identifier of the measured variable is desired, it must be resolved sep-

arately for each record in ‘data’ via a join operation to another table called ‘measure-

ments’. Furthermore, since all the variables are independent in terms of their time axes,

getting the data into a more usable format requires some further preprocessing steps.

Listing 5 displays an illustrative example of such a query.

62

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

select meastime as Time,

sum(case when measid = 191 then meas_avg end) 'Torque',

sum(case when measid = 156 then meas_avg end) 'Speed',

from

(

 select data.meastime, data.measid, measurements.measname,

 avg(data.meas_value) as meas_avg

 from data

 inner join measurements

 on data.measid = measurements.measid

 where meastime >= '2019-08-20 10:25:00'

and meastime < '2019-08-20 11:00:00'

 group by data.measid, data.meastime

) as measwindow

group by meastime

Listing 5. An example query

The example query, which will be used as a template for the actual experiment, results

in a multivariate time series with an interval of one second, similar to that depicted in

Table 3.

Time Torque Speed

2019-08-20 10:25:00 84.00 1499.99

2019-08-20 10:25:01 83.99 1500.03

…

2019-08-20 10:59:59 121.23 1600.34

The query is quite costly even with only a few variables; in the example case of Listing 5

the query took approximately 76 seconds. Therefore, the number of executions should

be limited during experiment time. Such functionality is implemented in the Incoming-

MeasurementBatchPoller class, which provides means to stepwise iterate through

SQL tables with predetermined “window” and “interval” arguments, as well as global

start/stop arguments. Figure 32 illustrates a generic use case. While this simplified ex-

ample omits some further complexities involved in the general use case of transforming

the table data into the desired format, it is useful for understanding the basic functionality.

The data is taken in as windowed batches of four records, dynamically injecting the re-

quired timestamps in to the SQL query strings at each iteration. The resulting rows are

then transformed into Measurement objects (ModelConductor’s internal data format)

and put to the FIFO buffer queue. An additional parameter polling_interval allows

the user to fine-tune the stepping process as it defines the minimum wall-clock time in-

terval at which queries are to be executed. The actual interval between two consecutive

queries is, then, taken as the maximum of the first query’s runtime and polling_in-

terval.

Table 3. Example result from query at MySQL database at TUAS ICEL

63

Figure 32. Simplified example of IncomingMeasurementBatchPoller operation

By varying the composition of polling_interval, polling_window, start_time

and stop_time, a wide selection of real-time data reading configurations can be real-

ized. Most importantly, the relationship between polling_interval and poll-

ing_window should be chosen accordingly to whether the experiment’s data throughput

is constrained on the data receiving or data utilizing end of the framework. If the rate at

which data is being written to the target database is known a priori, this could be used

as a good starting point for polling_interval and polling_window. As explained,

the query complexity also has implications to actual performance.

For the actual experiment, a dynamic engine cycle occurring on October 3rd, 2019 with

a duration of roughly 45 minutes was chosen. The actual ModelConductor experiment

was preceded by an exploratory study of the input data, where the complete dataset was

obtained in offline manner from in a single query made to the MySQL database. The

main findings are summarized in Table 4 and Figure 33. For non-disclosure restrictions,

the numerical values of the different attributes are not published within the thesis. In

general, it can be said however that the data was found to be of good quality and no

further preprocessing was done at the online experiment phase, except for treating the

missing values in the InjPressure variable (Table 4) and making the necessary unit con-

versions. For the first purpose, ModelConductor’s Experiment class implements a

strategy to store the last valid values of each variable as a backup in case NaN values

64

are confronted during runtime. Unit conversions were handled in the SQL query (Listing

6).

In
jQ

u
a

n
ti

ty

E
C

U
T

im
in

g

In
jP

re
s

s
u

re

B
o

o
s

tP
re

s
s

u
re

E
x

h
B

a
c

k
P

re
s
s

u
re

P
o

w
e

rM
e

a
s

u
re

d

S
p

e
e

d
C

o
n

tr
o

l

T
o

rq
u

e
C

o
n

tr
o

l

Count 2700 2700 2470 2700 2700 2700 2700 2700

NaN 0 0 230 0 0 0 0 0

Illustrated in Figure 33 is the data’s highly dynamic nature. Save for a brief warm-up

period, the operation characteristics of the engine are constantly fluctuating.

Figure 33. Input signals to GT-SUITE FMU simulation (y-axes values undisclosed
for NDA restrictions)

During the online experiment, input variables were periodically read from the MySQL

database as moving average values with a window of one second using the query out-

lined in Listing 6. Along with the input variables, the measured engine power is recorded

for future reference and result validation. In a couple of cases, slight preprocessing is

applied to accommodate for the necessary unit conversions.

Table 4. Descriptive statistics of input data to the experiment (NDA restrictions apply)

65

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

select meastime as Time,

sum(case when measid = 211 then meas_avg end)

'InjQuantity',

sum(case when measid = 197 then meas_avg end) * -1

'EEMTiming',

sum(case when measid = 222 then meas_avg end) * 10

'InjPressure',

sum(case when measid = 137 then meas_avg end)

'BoostPressure',

sum(case when measid = 135 then meas_avg end)

'ExhBackPressure',

sum(case when measid = 141 then meas_avg end)

'PowerMeasured',

sum(case when measid = 156 then meas_avg end)

'SpeedControl',

sum(case when measid = 191 then meas_avg end)

'TorqueControl'

from

(

 select data.meastime, data.measid, measurements.measname,

 avg(data.meas_value) as meas_avg

 from data

 inner join measurements

 on data.measid = measurements.measid

 where meastime >= '{}' and meastime < '{}'

 group by data.measid, data.meastime

) as measwindow

group by meastime

Listing 6. SQL query used in the experiment

As explained earlier (p. 63), on row 26 of Listing 6 curly braces are used to denote the

placeholders for injecting the query window’s starting and ending timestamps at execu-

tion time. The resulting online data stream will, after the experiment has concluded, total

up to a 9-column matrix similar to that depicted in Table 3, with starting and ending

timestamps:

𝑡𝑠𝑡𝑎𝑟𝑡 = 2019-10-03 10:15:00

𝑡𝑒𝑛𝑑 = 2019-10-03 11:00:00

5.4.2 Engine modeling preliminaries

In the present example use case, a dynamic engine model was built in GT-SUITE soft-

ware and supplied with a stream of inputs originating from real-world measurements to

demonstrate the digital twin experiment capabilities of ModelConductor. GT-SUITE is a

proprietary multiphysics modeling and simulation tool provided by Gamma Technologies,

Inc. used extensively in, e.g., automotive, marine and off-road mobile machinery indus-

tries [70]. At TUAS ICEL, it is routinely utilized for engine modeling and simulation tasks

66

that supplement experimental measurements conducted at the laboratory’s engine test

stands. Figure 34 provides an illustration of what a dynamic model map in GT-SUITE’s

GUI might look like.

Figure 34. Example of a simple one cylinder engine model in GT-SUITE built for
another project carried out at TUAS ICEL [71]

In typical automotive (or similar) applications, a one-cylinder engine such as the one

being modeled in Figure 34 would be a rare occurrence. Nevertheless, it provides a use-

ful starting point for understanding how GT-SUITE can be used in the industry as a de-

sign tool for understanding the implications of various engine configurations and choice

of key parameters. This particular model’s experimental frame (Chapter 3.1) could be

summarized as follows. The main components being modeled are the intake and exhaust

ports, the intake and exhaust valves, the cylinder, the injector and the crankshaft. At the

intake side, the system boundary is placed at the point where the intake air enters the

intake port, after being compressed by the turbocharger and subsequently cooled down

by an air-to-water intercooler. Since in this simplified model the detailed descriptions of

the turbocharger-intercooler assembly are omitted, the pressure and temperature of air

entering the intake ports are variables that must be experimentally determined. On the

model map, they are represented by the specific components ‘A1’ and ‘A2’. Similarly, on

the exhaust side, the system boundary is placed right before exhaust gases would enter

the turbine side of turbocharger in the real engine. The thermodynamic conditions at this

point must, again, be described by the user within the ‘AE1’ component.

A full working cycle of a 4-stroke reciprocating engine consists of intake, compression,

work and exhaust strokes, corresponding to two full revolutions of the crankshaft. During

intake stroke, the piston is moving downwards, and a pressure differential causes fresh

air to be introduced into the cylinder via the intake valves (I1, I2) that open and close in

relation to the rotation of the crankshaft at times pre-determined by the user. During

compression, piston moves up, causing the pressure and temperature of air to increase.

When the piston is nearing the top end of the cylinder (Top Dead Center, TDC), a fine-

grained spray of liquid fuel is introduced via the injector component, which then mixes

67

with the air and ignites due to the high temperature. During the working stroke, the pres-

sure in the cylinder rapidly rises due to combustion. The pressure is transferred as me-

chanical energy to downwards movement of the piston, the rotation of the crankshaft

and, consequently, the power output of the engine. Finally, the burnt gases are expelled

from the cylinder by the upwards momentum of the piston via the exhaust valves (E1,

E2) that open and close during the exhaust stroke according to a predetermined process.

When the above process is being simulated, the main governing inputs are the target

RPM of the engine and the fuel injection parameters such as quantity (mg / work cycle)

and the timing when injection is started (expressed as crankshaft degrees before reach-

ing TDC, BTDC). It should be noted that fuel injection is not a discrete event, but rather

a process that has a finite duration. An injection rate expressed in mg/s is dynamically

being computed from the input parameters. According to Heywood [60] an approximate

estimate for the duration of the injection in crankshaft degrees Δ𝜃 can be obtained from

the equation:

𝑚𝑓 = 𝐶𝑑𝐴𝑛√2𝜌𝑓Δ𝑝
Δ𝜃

360𝑁
(14)

Where 𝑚𝑓 is the injected fuel quantity, 𝐴𝑛 is the injector nozzle area, 𝐶𝑑 is a flow dis-

charge coefficient, 𝜌𝑓 is the fuel density, Δ𝑝 is the pressure drop across the nozzle and

𝑁 is the revolution rate in RPM. Consequently, when the total injected quantity is supplied

to the simulator, it is able to infer the required static injection rate. This approximation

results in a simple box-shaped injection profile as a function of the crank angle, an ide-

alized version of injection strategies used in actual modern engines. While this approxi-

mation is sufficient for the example’s purposes, it will not produce accurate estimates of

exhaust emission characteristic. For this reason, the present example strictly examines

only the output power of the engine and not the emissions.

5.4.3 Dynamic engine simulation model

The engine model implemented for the purposes of this experiment is a model of a four

cylinder heavy duty diesel engine, similar to that described in Table 1. An overview of

the engine’s corresponding model on the GT-SUITE map is depicted in Figure 35.

68

Figure 35. The implemented GT-SUITE model of the target engine

As Figure 35 illustrates, the four cylinder components and their flow paths are separately

modeled, as well as the fuel injectors connected to each one separately. In the upper left

corner, the FMUExport component is displayed, the main functionality of which is to de-

scribe the model’s I/O mappings, i.e., what data is to be exchanged with the outside

world. The FMUExport component also facilitates the actual compiling of the FMU mod-

ule utilizing GT-SUITE’s internal subroutines which, unfortunately, are not disclosed in

any further detail by the software vendor.

The control strategy of the model is as follows. At each time step, the model receives as

inputs:

 Injection quantity 𝑚𝑓 (mg / work cycle).

 Target engine speed 𝑁 (min-1).

 Boost pressure 𝑝𝑖𝑛𝑡, i.e., intake air pressure at the beginning of the intake ports

(bar, abs.).

 ECU timing 𝜃0,𝐸, i.e., injection timing flag originating from the ECU (°BTDC).

69

 Injection pressure Δ𝑝, i.e., the fuel pressure in the common rail system (bar, abs.).

 Exhaust back pressure 𝑝𝑒𝑥ℎ, i.e., pressure in the exhaust line just before the tur-

bocharger’s turbine (bar, abs.).

The outputs are defined in a similar fashion. For the purposes of this experiment, a min-

imalistic approach is taken. At each time step, the following variable values are exposed

to outside agents utilizing the model:

 Engine power (kW).

 Engine speed (min −1).

 Simulated time (s) — cumulative model time from the beginning of the experi-

ment.

 Simulation time step (s) — the mean internal time step used by the ODE solver.

GT-SUITE utilizes ordinary differential equations (ODEs) to dynamically solve the state

trajectory (flow and mechanical energy output) of the engine with respect to the inputs.

The control logic of the ODE solver works by computing the actual start of injection time

𝜃0 at each working cycle as:

𝜃0 = 𝜃0,𝐸 + 𝐴𝑁 − 𝐵 (15)

where 𝐴, 𝐵 are coefficients experimentally determined at TUAS ICEL. Subsequently, the

duration of injection Δ𝜃 is given as

Δ𝜃 [°] =
𝜔 [

°
s] ⋅ 𝑚𝑓 [kg]

𝐶𝑑𝐴𝑛[m2]√2 ⋅ 𝜌𝑓 [
kg
m3] ⋅ Δ𝑝 [

𝑁
𝑚2]

(16)

where

𝜔 =
𝑁

60
 [

1

s
] ⋅ 360 [°] (17)

Hence, a basic box-shaped injection profile is obtained with start point 𝜃0, end point 𝜃0 +

Δ𝜃 and a constant injection rate 𝑚𝑓 Δ𝜃⁄ expressed in SI-terms as 𝑘𝑔 °⁄ . The obtained

injection profile is then superimposed for each cylinder in turn, which causes the crank-

shaft to rotate and the engine to produce power via the mechanisms discussed in Chap-

ter 5.4.2. The power output by the simulation model can then be compared with that

measured from a real engine process, constituting a proof of concept scenario for the

contemporary ModelConductor experiment.

70

5.4.4 Setting up and running the experiment

The inputs that GT-SUITE model expects are described in the FMUExport component’s

(Figure 35) properties, also allowing the tweaking of some additional settings such as

initial value of each variable and the duration the initial value is held, as well as input

data interpolation options. No interpolation was used in the contemporary experiment,

and the duration at initial output was set to “ignore”, with the presupposition that appro-

priate initial values are provided to the model at runtime.

The export options allow the selection of the compiler to be used alongside with the target

environment of the binary executable to be nested in the FMU (Windows 64-bit, Windows

32-bit and Linux are available), as well as selecting the FMI standard version. Addition-

ally, selection between standalone FMU and one requiring a valid GT-SUITE license is

provided. Standalone version was selected since it provides more freedom to run exper-

iments on more powerful workstations as well, although it does come with the drawback

of not being able to utilize GT-SUITE’s GUI and post-processing capabilities at simulation

time.

During the export process, stability issues were encountered that required manually al-

tering the FMU built by GT-SUITE’s internal subroutine. The first issue was the incorrect

placement of a boolean needsExecutionTool attribute inside the modelDescrip-

tion.xml file. The FMI specification explicitly defines that this attribute should be lo-

cated in either the ModelExchange [21, p. 89] or CoSimulation [21, p. 109] node

depending on the operating mode of the FMU. Instead, it was observed that the GT-

SUITE process output the attribute directly to parent node fmuModelDescription,

preventing the FMU to be loaded by external tools such as the FMPY library on which

ModelConductor heavily depends. Fortunately, this issue could easily be resolved by

simply manually editing modelDescription.xml and then recompressing the archive

and changing the filename suffix to .fmu.

The apparent second issue was identified to be that two required files *.dat and *.sim

were missing from the resources directory in the compiled FMU package. Instead, they

were erroneously written to the root of the working directory during the export process

and auto-deleted after exiting the process. Eventually, it turned out to be possible to work

around the problem by copying the files to a temporary location while the export process

was still running and then appending the files to the compiled FMU after the process had

exited. Together with the process described earlier to manually alter modelDescrip-

tion.xml, a stable version of the FMU was produced in this manner.

Subsequently, a Python script was developed in a Jupyter notebook environment that

71

was used to invoke the necessary ModelConductor components and start the FMU Co-

Simulation session. The script is given in its entirety in Appendix C. Without delving into

the details, the script consists of setting the data source, data model and experiment

parameters, and finally calling an Experiment.run method to start the asynchronous

operation of the receive and model loops (Chapter 4.1). While still working in develop-

ment mode without a GUI to visualize the experiment’s progression, ModelConductor’s

standard debug output is observed during runtime instead which confirms that data is

being successfully fetched from the database, fed to the FMU simulation and the model

responses are received. For each time step, the values of all the variables (i.e., those

denoted by target_keys, input_keys, control_keys and timestamp_keys) are

written to a plain csv file for further processing. Figure 36 depicts the experiment results,

i.e., the engine power simulated by the GT-SUITE based FMU, compared with the control

values obtained from the MySQL database.

Figure 36. The simulation results compared with real-world control measurements

The simulation successfully went through the whole duration expected by the global

starting and ending boundaries, i.e., from 2019-10-03 10:15 to 11:00 during little more

than 11 hours of wall-clock time. The experiment was run on a commodity laptop work-

station (Intel Core i5 2.30 GHz) so the ODE solver performance was not expected to be

great and, indeed, it was not. In total, the simulation of this 2700-second experiment took

11 hours, 6 minutes and 53 seconds to finish, making the simulation roughly 15 times

72

slower than real time. Figure 37 illustrates the proceeding of both time axes during the

simulation along with 𝑡/𝜏 parameter similarly to what was discussed in Chapter 5.3.

Figure 37. The passing of simulated time vs. real time during the simulation

73

6. DISCUSSION

The aim of the work reported in this thesis was to seek out the essence of software tools

that could be used to build, run and evaluate digital twin experiments. The objective was

to tackle two distinct research questions, specifically:

 What kind of standards, theoretical constructs and/or “best practices” are re-

ported to facilitate the development of digital twin middleware solutions?

 What features should such a solution entail and how should they be implemented

in order to facilitate rapid prototyping and experimentation?

During the process, the subject was discovered to be considerably more elaborate than

one would think. A major reason is that the very definition of a digital twin varies wildly

across different engineering disciplines. For some, even a simple static CAD model could

constitute a digital twin, for some it means an extremely accurate dynamic model of some

complex machinery, and some authors even include services and other intangible assets

as plausible targets for digital “twinning”. Obviously, it follows that only a very narrow

segment in the space of all the possible digital twin variants can be appropriately ad-

dressed in the scope of a thesis.

Regarding the first research question, an initial demarcation was made to strictly con-

sider dynamical models or ensembles thereof. By this, such digital artefacts are referred

to that are able to produce behavior traces by means of simulation, as opposed to static

models which do state the structure, but not the behavior of an entity. The review of

published literature on digital twins revealed that while research activity on the topic has

definitely increased recently, most of the published work can be classified as i) ontolog-

ical discussions on what digital twins are and what are their implications for organizations

or ii) descriptions of specific applications claiming to be digital twins, with varying inter-

pretations of the term itself. To date, few authors have directly attempted to establish a

concise theoretical space on digital twins that could directly be utilized in designing digital

twin tools. Correspondingly, the subject was, in the theoretical part of the thesis, ap-

proached in an indirect manner through the concepts of simulation, co-simulation and

tool integration.

The second research question was, to a large extent, addressed via a constructive ap-

proach, with Chapter 4 documenting the main features of the empirical work’s outcome,

namely the ModelConductor library. Subsequently, in Chapter 5 evidence was provided

of the developed framework’s utility through demonstrating it in action across a variety

74

of use cases, beginning from a simple artificial setup and ending with a complex dynam-

ical model being used in conjunction of a data stream originating from a productional

database. Arising as an intrinsic property of the chosen research methodology (i.e., ac-

tion research), the organizational context of these examples obviously reflects the au-

thor’s professional affiliation during the period that the work was conducted. However, at

the same time the use of general-purpose technologies such as the FMU or MySQL

gives rationale for the result’s extensibility, at least to some degree.

In the final remaining sections, the main contributions and limitations of the present work

are reflected, and consequently some ideas for further study are proposed.

6.1 Contribution

Initially, the work reported in the work’s empirical part was necessitated by the require-

ments of TUAS ICEL to develop tools for sensor data integration onto high-fidelity inter-

nal combustion engine simulation models. A prototype of such a tool has now been de-

veloped and demonstrated to function satisfactorily in the target organization’s context.

By no means is the work complete, but specifically the demonstration discussed in Chap-

ter 5.4 does provide strong evidence that the objective of creating an MVP solution has

indeed been achieved. The main building blocks for what such a solution should entail

have now been laid out, providing a good standpoint for further developments.

On the other hand, the architecture of the developed software MVP demonstrates that

the object-oriented approach is suitable for constructing digital twin experiments that

make use of online data. A proof of concept has been established that the process and

simulation agents, as they were discussed, can be expressed in terms of parent classes

that only implement high-level abstractions for the most generic functionalities. The ex-

tensibility arising thereof to support a multitude of technologies of individual assets/sim-

ulations has been demonstrated by implementations of a few selected cases targeted

towards the example experiments. From a software engineering point of view, this im-

plies that similar solutions could, in the future, be built also by professionals with a back-

ground in coding, rather than exclusively by domain experts. Furthermore, the example

use cases have demonstrated that having implemented the required syntax for the rele-

vant formalisms, the basic tasks of designing, configuring, and running digital twin ex-

periments are straightforward. The script syntax exemplified in notebook examples of

Appendices A–C solidifies the justification by which something similar to ModelConduc-

tor could become a valuable asset in, e.g., the contemporary machine learning engi-

neer’s toolkit.

75

Finally, it is pointed out that the conducted literature survey and the synthesis con-

structed of the findings can possibly provide a basis for further theoretical considerations

as per how should digital twin frameworks be constructed, used and evaluated. The main

contribution of the thesis, in this regard, is the idea of viewing a digital twin as a network

of interconnected agents interacting either with physical assets or simulation models.

While similar ideas have been proposed before, for instance in the context of High Level

Architecture, in the present work it has been described how the discussed theoretical

constructs can be derived directly from the theory of co-simulation and tool integration.

6.2 Limitations and future work

Regarding the developed MVP, it is obvious that the software is still in a very early pro-

totype phase. Although reasonable effort was made in the present work to, e.g., ensure

that most of the codebase is unit tested, there still are gaps and definitely not all the

exceptional situations have been appropriately addressed. While a good level of stability

was observed throughout the experiments reported in the work’s empirical part, the soft-

ware should still be considered experimental. While rudimentary readme-files and exam-

ples have been provided in the accompanying GitHub repository, anyone considering to

use the framework as a part of their project should have a reasonable familiarity with

Python syntax in order to ensure the code’s suitability for their purposes.

Moreover, it is obvious that the empirical experiments carried out in scope of the thesis

represent only the simplest use cases amongst all the conceivable real-world configura-

tions. Most importantly, the functioning of the many-to-many use case has not yet been

confirmed by experimental studies, although the MVP architecture in principle does allow

this operation mode by means of nested threading. For instance, in the architecture it

remains an open question how should communication from one simulation unit to an-

other be facilitated, considering the most general use case where the computations of

various submodels could be distributed to multiple workstations. Clearly, this sort of op-

erability would be a prerequisite for moving on to more complex co-simulation setups in

the study of online digital twins.

A possible line for future work could be to consider both simulation agents (i.e. the

ModelHandler class) and process agents (the MeasurementStreamHandler class)

a subclass of an even more generic Node class, which could implement some high-level

interface for node communication by utilizing ModelConductor’s internal data model, re-

gardless of the nodes’ types. This would allow the discussed complex co-simulation ap-

proaches with multiple computation environments, but perhaps even more importantly

76

the development of control-oriented applications wherein data is not only fed from phys-

ical assets to simulation models, but also the other way around. This is motivated by

recalling that the discussion in this thesis originated from the requirements for intelligent

life cycle services, heavily interconnected with disciplines such as AI and deep learning.

Following this discussion, future research efforts should definitely aim for proof of con-

cept demonstrations that a framework such as ModelConductor can be utilized in real-

world scenarios in a closed-loop manner. Specifically, evidence is still required from sce-

narios where the accumulated data over time makes the simulation models more repre-

sentative and, hence, they are able to provide useful recommendations to their physical

counterparts, resulting in some measurable improvement in the physical process.

A somewhat parallel issue is that it still remains unclear how can the contemporality

feature discussed in Chapter 2 be realized in practice. In the general case this would

mean that the experimental frame of a digital twin experiment is not fixed in the beginning

of an experiment. Rather, it should be flexible in the sense that simulation agents can be

added, maintained, modified and removed similarly to what can be done for physical

machinery. Regarding this, a nontrivial open question for a digital twin framework is how

this functionality can be implemented in a manner that is both stable and user friendly in

terms of providing a high-level syntax similar to the examples provided in the Appendices

A–C. This issue should be addressed in further study in order to provide a more solid

basis for digital twin frameworks.

Since physical assets’ lifetime could extend to years, open questions remain also regard-

ing the persistence and fault tolerance of a digital twin instantiation within the ModelCon-

ductor framework. For obvious reasons, such long-term experiments are challenging to

carry out during the scope of a master’s thesis. Future study should consider validating

the contemporality behavior by running a long digital twin experiment, possibly introduc-

ing artificial anomalous situations which could interfere with the process, and making

sure that the system is robust enough to recover from those anomalies. Clearly, this

would be an enormous task to undertake in a manner that establishes rigorous proofs,

but a proof of concept could be realistic to achieve within some specific digital twin con-

text.

The purpose of this thesis has been to shed light on the notion of how digital twins can

be built. On final note, it is observed that further theoretical work is required in order to

better understand why should they be built. Arguably, the construction of any digital ar-

tefact can only be justified by its means to improve some physically measurable perfor-

77

mance metric, or by its merit to otherwise improve the general well-being in society (in-

cluding, but not limited to, e.g., educational or entertainment value). In an industrial con-

text it is clear that for digital twin frameworks to gain substantial popularity, a sound the-

oretical basis should exist that allows practitioners to accurately define digital twins as

closed-loop optimization problems with respect to the physical processes’ performance,

constrained by the associated simulation models’ complexity. By extension, such a the-

ory should consider the general many-to-many case, where a multitude of physical pro-

cesses could be executed, and via the simulation parts of the experiment, optimized in

tandem. If developed, such a theoretical tool could be a valuable asset for the research

of intelligent fleet management applications, as well as for the more traditional intelligent

life cycle services.

78

REFERENCES

[1] Pricewaterhouse Coopers, “Industry 4.0: Building the digital enterprise,” 2016.

[2] A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion and machine
learning for industrial prognosis: Trends and perspectives towards Industry 4.0,”
Inf. Fusion, vol. 50, no. October 2018, pp. 92–111, 2019.

[3] M. Rüßmann et al., “Industry 4.0: The future of productivity and growth in
manufacturing industries,” 2015.

[4] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, “Co-
Simulation: A Survey,” ACM Comput. Surv., vol. 51, no. 3, pp. 49:1--49:33, 2018.

[5] IEEE Standards Association, “IEEE 1516-2010 - IEEE Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA)-- Framework and Rules,” 2010.
[Online]. Available: https://standards.ieee.org/standard/1516-2010.html.

[6] Modelica Association, “Functional Mock-up Interface,” 2019. [Online]. Available:
https://fmi-standard.org/. [Accessed: 01-Aug-2019].

[7] E. Glaessgen and D. Stargel, “The Digital Twin Paradigm for Future NASA and
U.S. Air Force Vehicles,” in 53rd AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference - Special Session on the Digital
Twin, 2012, pp. 1–14.

[8] G. Nguyen et al., “Machine Learning and Deep Learning frameworks and libraries
for large-scale data mining: a survey,” Artif. Intell. Rev., vol. 52, no. 1, pp. 77–124,
2019.

[9] J. Hale, “Deep Learning Framework Power Scores 2018,” Towards Data Science,
2018. [Online]. Available: https://towardsdatascience.com/deep-learning-
framework-power-scores-2018-23607ddf297a. [Accessed: 02-Aug-2019].

[10] B. Rodič, “Industry 4.0 and the New Simulation Modelling Paradigm,”
Organizacija, vol. 50, no. 3, pp. 193–207, 2017.

[11] R. Hoda, N. Salleh, and J. Grundy, “The Rise and Evolution of Agile Software
Development,” IEEE Softw., vol. 35, no. 5, pp. 58–63, 2018.

[12] R. Stark, S. Kind, and S. Neumeyer, “Innovations in digital modelling for next
generation manufacturing system design,” CIRP Ann. - Manuf. Technol., vol. 66,
no. 1, pp. 169–172, 2017.

[13] K. Ponomarev, N. Kudryashov, N. Popelnukha, and V. Potekhin, “Main principals
and issues of digital twin development for complex technological processes,” Ann.
DAAAM Proc. Int. DAAAM Symp., pp. 523–528, 2017.

[14] J. S. DAVID, “Development of a Digital Twin of a Flexible Manufac- Turing System
for Assisted Learning,” Master Thesis, no. February, 2018.

[15] R. Rosen, G. Von Wichert, G. Lo, and K. D. Bettenhausen, “About the importance

79

of autonomy and digital twins for the future of manufacturing,” IFAC-
PapersOnLine, vol. 28, no. 3, pp. 567–572, 2015.

[16] F. Tao et al., “Digital twin-driven product design framework,” Int. J. Prod. Res., vol.
57, no. 12, pp. 3935–3953, 2019.

[17] B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack, “Shaping the digital twin for
design and production engineering,” CIRP Ann. - Manuf. Technol., vol. 66, no. 1,
pp. 141–144, 2017.

[18] K. Upamanyu and G. Narayanan, “Improved Accuracy, Modelling and Stability
Analysis of Power Hardware In Loop Simulation with Open-Loop Inverter as
Power Amplifier,” IEEE Trans. Ind. Electron., vol. PP, no. c, pp. 1–1, 2019.

[19] S. Huang, W. Wang, M. R. Brambley, S. Goyal, and W. Zuo, “An agent-based
hardware-in-the-loop simulation framework for building controls,” Energy Build.,
vol. 181, pp. 26–37, 2018.

[20] J. C. Yepes, M. A. Portela, Á. J. Saldarriaga, V. Z. Pérez, and M. J. Betancur,
“Myoelectric control algorithm for robot-assisted therapy: A hardware-in-the-loop
simulation study,” Biomed. Eng. Online, vol. 18, no. 1, pp. 1–29, 2019.

[21] Modelica Association, “Functional Mock-up interface of Model Exchange and Co-
Simulation.” pp. 1–126, 2014.

[22] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “MQTT Version 5.0,” 2019.
[Online]. Available: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.
[Accessed: 06-Oct-2019].

[23] M. D. Myers and D. E. Avison, Qualitative Research in Information Systems : A
Reader. London, UNITED KINGDOM: SAGE Publications, 2002.

[24] R. N. Rapoport, “Three Dilemmas in Action Research,” Hum. Relations, vol. 23,
no. 6, pp. 499–513, 1970.

[25] P. Järvinen, “Research Questions Guiding Selection of an Appropriate Research
Method Pertti Järvinen Research Questions Guiding Selection of an Appropriate
Research Method,” in Proceedings of European Conference on Information
Systems 2000, 3-5 July., 2000.

[26] V. Vaishnavi, B. Kuechler, and S. Petter, “Design Science Research in Information
Systems,” no. 1, pp. 1–66, 2004.

[27] R. Baskerville, A. Baiyere, S. Gregor, A. Hevner, and M. Rossi, “Design science
research contributions: Finding a balance between artifact and theory,” J. Assoc.
Inf. Syst., vol. 19, no. 5, pp. 358–376, 2018.

[28] J. Venable, J. Pries-Heje, and R. Baskerville, “FEDS: A Framework for Evaluation
in Design Science Research,” Eur. J. Inf. Syst., vol. 25, no. 1, pp. 77–89, 2016.

[29] J. Venable, J. Pries-Heje, and R. Baskerville, “A Comprehensive Framework for
Evaluation in Design Science Research BT - Design Science Research in
Information Systems. Advances in Theory and Practice,” 2012, pp. 423–438.

[30] J. Pries-Heje, R. Baskerville, and J. R. Venable, “Strategies for Design Science
Research Evaluation,” in European Conference on Information Systems, 2008.

80

[31] K. Beck et al., “Manifesto for Agile Software Development,” Manifesto for Agile
Software Development, 2001. [Online]. Available: http://www.agilemanifesto.org/.

[32] P. Aho, “ModelConductor,” 2019. [Online]. Available:
https://github.com/donkkis/modelconductor.

[33] S. Raczynski, Modeling and Simulation : The Computer Science of Illusion.
Somerset, UNITED KINGDOM: John Wiley & Sons, Incorporated, 2006.

[34] H. Vangheluwe, J. de Lara, and P. Mosterman, “An introduction to multi-paradigm
modelling and simulation,” Proc. AIS’2002 Conf., 2002.

[35] B. P. Zeigler, Theory of Modeling and Simulation. 1984.

[36] W. A. Wymore, A mathematical theory of systems engineering: The elements.
New York: Wiley., 1967.

[37] H. L. M. Vangheluwe, “DEVS as a Common Denominator for Multi-formalism
Hybrid Systems Modelling,” in Proceedings of the 2000 IEEE International
Symposium on Computer-Aided Control System Design, 2000.

[38] C. Thule, K. Lausdahl, C. Gomes, G. Meisl, and P. G. Larsen, “Maestro: The
INTO-CPS co-simulation framework,” Simul. Model. Pract. Theory, vol. 92, no.
January, pp. 45–61, 2019.

[39] R. Fujimoto, Parallel and distributed simulation. 2000.

[40] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, “Co-
simulation: State of the art,” no. February, 2017.

[41] G. Karsai, “Web-Based Open Tool Integration Framework,” 2006.

[42] J. Sztipanovits, T. Bapty, X. Koutsoukos, Z. Lattmann, S. Neema, and E. Jackson,
“Model and Tool Integration Platforms for Cyber-Physical System Design,” Proc.
IEEE, vol. 106, no. 9, pp. 1501–1526, 2018.

[43] J. Sifakis, “System Design Automation: Challenges and Limitations,” Proc. IEEE,
vol. 103, no. 11, pp. 2093–2103, 2015.

[44] C. Gomes, J. Denil, H. Vangheluwe, and P. G. Larsen, “Co-simulation of
Continuous Systems : A Tutorial,” no. ii, pp. 1–32, 2018.

[45] T. Jung and M. Weyrich, “Synchronization of a ‘plug-and-Simulate’-capable Co-
Simulation of Internet-of-Things-Components,” Procedia CIRP, vol. 79, pp. 367–
372, 2019.

[46] G. Karsai, A. Lang, and S. Neema, “Design patterns for open tool integration,”
Softw. Syst. Model., vol. 4, no. 2, pp. 157–170, 2005.

[47] J. A. Bergstra and P. Klint, “The discrete time ToolBus — A software coordination
architecture,” Sci. Comput. Program., vol. 31, no. 2–3, pp. 205–229, 1998.

[48] G. A. Papadopulos, “Distributed and parallel systems engineering in MANIFOLD,”
Parallel Comput., vol. 24, pp. 1137–1160, 1998.

[49] J. S. Dahmann, “High level architecture for simulation,” Proc. - IEEE Int. Symp.

81

Distrib. Simul. Real-Time Appl. DS-RT, pp. 9–14, 1997.

[50] T. Clark, A. Evans, S. Kent, and P. Sammut, “Middlesex Middlesex University
Research Repository :,” in First Workshop on Language Descriptions, Tools and
Applications (LDTA 2001), 2001.

[51] J. E. Rivera, “On the Semantics of Real-Time Domain Specific Modeling
Languages,” University of Malaga, 2010.

[52] G. Karsai, A. Lang, and S. Neema, “Tool Integration Patterns,” in Proceedings of
Workshop on Tool Integration in System Development, European Software
Engineering Conference, 2003, pp. 33–38.

[53] J. S. Dahmann and M. K. L. Morse, “High Level Architecture for Simulation: An
Update Dr. Judith S. Dahmann,” Update, 1998.

[54] Modelica Association, “Functional Mock-up interface 2.0.” 2014.

[55] D. H. Gelernter, Mirror Worlds : Or the Day Software Puts the Universe in a
Shoebox... How It Will Happen and What It Will Mean. Cary, UNITED STATES:
Oxford University Press, Incorporated, 1993.

[56] Python Software Foundation, “threading - Thread-based parallelism,” 2019.
[Online]. Available: https://docs.python.org/3/library/threading.html.

[57] Stackoverflow, “Multiprocessing vs Threading Python,” 2014. [Online]. Available:
https://stackoverflow.com/questions/3044580/multiprocessing-vs-threading-
python.

[58] Python Software Foundation, “Python Package Index,” 2019. [Online]. Available:
https://pypi.org/.

[59] Dieselnet, “Nonroad Transient Cycle (NRTC),” 2019. [Online]. Available:
https://www.dieselnet.com/standards/cycles/nrtc.php.

[60] J. B. Heywood, Internal combustion engine fundamentals. New York : McGraw-
Hill, [1988] ©1988, 1988.

[61] Mathworks, “Export a Model as a Tool-Coupling FMU,” 2019. [Online]. Available:
https://se.mathworks.com/help/simulink/ug/export-model-as-tool-coupling-
fmu.html.

[62] Dassault Systèmes, “FMPY,” 2019. [Online]. Available:
https://fmpy.readthedocs.io/en/latest/.

[63] S. d’Ambrosio, R. Finesso, L. Fu, A. Mittica, and E. Spessa, “A control-oriented
real-time semi-empirical model for the prediction of NOx emissions in diesel
engines,” Appl. Energy, vol. 130, pp. 265–279, Oct. 2014.

[64] R. Vihar, U. Ž. Baškovič, and T. Katrašnik, “Real-time capable virtual NOx sensor
for diesel engines based on a two-Zone thermodynamic model,” Oil Gas Sci.
Technol. – Rev. d’IFP Energies Nouv., vol. 73, p. 11, Apr. 2018.

[65] J. Chung, H. Kim, and M. Sunwoo, “Reduction of transient NOx emissions based
on set-point adaptation of real-time combustion control for light-duty diesel
engines,” Appl. Therm. Eng., vol. 137, pp. 729–738, 2018.

82

[66] R. Finesso, E. Spessa, and Y. Yang, “Fast estimation of combustion metrics in di
diesel engines for control-oriented applications,” Energy Convers. Manag., vol.
112, pp. 254–273, 2016.

[67] S. A. Provataris, N. S. Savva, T. D. Chountalas, and D. T. Hountalas, “Prediction
of NOx emissions for high speed DI Diesel engines using a semi-empirical, two-
zone model,” Energy Convers. Manag., vol. 153, pp. 659–670, 2017.

[68] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. .

[69] DARPA Internet Program, “Transmission Control Protocol.” 1981.

[70] Gamma Technologies, “GT-SUITE Overview.” [Online]. Available:
https://www.gtisoft.com/gt-suite/gt-suite-overview/. [Accessed: 01-Sep-2019].

[71] E. Immonen, M. Lauren, L. Roininen, and S. Särkkä, “Multiobjective optimization
of the diesel injection rate profile by machine learning methods,” Unpubl.
Manuscr., 2019.

[72] K. Främling, J. Holmström, T. Ala-Risku, and M. Kärkkäinen, “Product Agents For
Handling Information About Physical Objects,” 2003.

[73] Turku University of Applied Sciences, “e3Power - A systems engineering
approach to designing and optimizing hybrid/electric powertrains and vehicle
management,” 2019. [Online]. Available: http://www.e3power.fi.

[74] A. J. Martyr and M. A. Plint, Engine Testing. The Design, Building, Modification
and Use Of Powertrain Test Facilities, 4th editio. Butterworth-Heinemann, 2012.

APPENDIX A: Prediction of engine power using FMU Simulink model

APPENDIX A: Prediction of engine power using FMU Simulink model

APPENDIX B: Online prediction of engine NOx emissions by machine learning

APPENDIX B: Online prediction of engine NOx emissions by machine learning

APPENDIX C: Real-world engine test data simulation with GT-SUITE

APPENDIX C: Real-world engine test data simulation with GT-SUITE

	1. Introduction
	2. Problem space and methodology
	2.1 Problem background
	2.2 Research methodology

	3. Co-simulation background and related work
	3.1 Simulation
	3.2 Co-simulation concepts and challenges
	3.3 Tool integration methodology
	3.3.1 Generic modes of integration
	3.3.2 Functional Mock-up Interface

	3.4 The Digital Twin

	4. Modelconductor online co-simulation library
	4.1 Overview
	4.2 Structure and description of internal data types
	4.3 Behavior and interactions
	4.4 Auxiliary components
	4.4.1 Result logging
	4.4.2 Measurement validation

	4.5 Distribution, installation & licensing

	5. Example use cases
	5.1 Internal Combustion Engine Laboratory
	5.2 Prediction of engine power using FMU Simulink model
	5.3 Online prediction of engine NOx emissions by machine learning
	5.4 Real-world engine test data simulation with GT-SUITE
	5.4.1 Access to input data
	5.4.2 Engine modeling preliminaries
	5.4.3 Dynamic engine simulation model
	5.4.4 Setting up and running the experiment

	6. Discussion
	6.1 Contribution
	6.2 Limitations and future work

	REFERENCES

