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Metamaterials are artificial structures consisting of nanoscale building blocks that exhibit prop-
erties not found in nature. They have recently shown potential for utilizing nonlinear processes
such as second-harmonic generation (SHG) and spontaneous parametric down-conversion (SPDC)
in nanoscale applications. Despite the constant progress, metamaterials still lack in terms of
conversion efficiency when compared with conventional nonlinear materials that benefit of long
propagation lengths and gradual increase of signals via phase matching.

In previous studies of plasmonic metamaterials, the nonlinear properties of metal nanoparti-
cles are enhanced with localized surface plasmon resonances (LSPRs). These resonances have
rather short lifetimes leading to high losses typical to metal nanoparticles. Therefore, alternative
approaches to realize efficient metamaterials are required.

In this thesis, we present two enhancement methods that are rather well known and studied but
not yet fully utilized in nonlinear nanophotonics. The first methods is to utilize collective responses
of periodic nanoscale structures known as surface lattice resonances (SLRs) and guided-mode
resonances (GMRs). They are associated with narrow spectral features implying the presence
of strong local fields and thus enhanced nonlinear responses. Another method to enhance local
fields is to couple relevant fields to an external cavity. This method is used in various nonlinear
applications such as in optical parametric oscillators (OPOs) and it has been studied also in
nanoscale processes.

Here, we investigate how SLRs and microcavities could be used to improve nonlinear meta-
materials. First, we perform proof-of-principle studies showing that utilization of GMRs can dra-
matically enhance SHG occurring in sub-wavelength dielectric gratings. We measure linear and
SH response of two silicon nitride gratings and compare the results with simulations based on the
nonlinear scattering theory (NLST). As our experiments agree with simulations, we then propose
two novel plasmonic metamaterial structures designed for SPDC. The first structure is a meta-
surface consisting of L-shaped aluminum nanoparticles arranged in a rectangular lattice. The
metasurface exhibits SLRs at pump and signal wavelengths resulting in a strong enhancement
for the SPDC process where the pump and signal have orthogonal polarizations. Thus, the meta-
surface mimics a type-I SPDC-crystal which are widely used in quantum optics as photon-pair
sources.

Our second design consists of a singly-resonant plasmonic metasurface that is placed inside
a microcavity formed with two distributed Bragg reflectors. The cavity is designed to resonate with
the pump while the SLR of the metasurface is designed to enhance the local field at the signal
wavelength. Our simulations demonstrate a polarization-independent operation where the SPDC
is dramatically enhanced at the operation wavelength. This design then can act as either type-0,
type-I or type-II nonlinear material, which are all used in quantum optics.

The simulations presented here demonstrate a clear path towards efficient photon-pair gener-
ation with nanoscale structures via SPDC. In addition to SHG and SPDC, our structure designs
and methods could be utilized also for other nonlinear processes such as cascaded third-harmonic
generation or difference-frequency generation. These approaches could pave the path towards
development of nanoscale light sources operating in ultraviolet and terahertz regions.

Keywords: nonlinear optics, plasmonics, metasurfaces, surface lattice resonance, optical res-
onators, distributed Bragg reflectors, nonlinear scattering theory
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Metamateriaalit ovat keinotekoisia rakenteita, joilla on luonnosta löytymättömiä ominaisuuksia.
Metamateriaalit koostuvat yleensä nanoskaalan rakenteista kuten metallinanohiukkasista. Viime-
aikainen kehitys nanorakenteiden valmistuksessa on mahdollistanut epälineaaristen ilmiöiden, ku-
ten taajuudenkahdennuksen tai parametrisen fluoresenssin (eng. spontaneous parametric down-
conversion, SPDC) tutkimisen metamateriaaleissa. Jatkuvasta kehityksestä huolimatta metama-
teriaalien epälineaariset vasteet ovat huomattavasti heikompia kuin perinteisten epälineaaristen
materiaalien, jotka hyödyntävät vaihesovitusmenetelmiä.

Tässä työssä esitellään kaksi menetelmää, joita on tutkittu ja sovellettu laajasti, mutta joiden
mahdollisia nanoskaalan sovelluksia on vasta hiljattain alettu tutkimaan. Ensimmäinen menetel-
mä hyödyntää hilaresonansseja, jotka ovat jaksollisten rakenteiden vasteita. Hilaresonanssien
viritystilat ovat tyypillisiä materiaalivasteita huomattavasti pitkäikäisempiä. Tämän seurauksena
epälineaariset vasteet voimistuvat niitä käyttämällä paljon enemmän ja paljon kapeammalla kais-
tanleveydellä, kuin aikaisemissa tutkimuksissa. Toisena menetelmänä käsitellään oleellisten kent-
tien kytkemistä optisiin resonaattoreihin, joita on jo pitkään hyödynnetty useissa epälineaarisen
optiikan sovelluksissa, kuten optisissa parameterisissa oskillaattoreissa.

Tässä työssä tutkitaan kuinka hilaresonanssien ja optisien resonaattoreiden avulla voidaan
vahvistaa metamateriaalien epälineaarisia vasteita. Työn ensimmäisessä osassa osoitettiin hi-
laresonanssien vaikutus mittaamaalla taajuudenkahdennusta resonanteista piinitridihiloista. Mit-
taustuloksia vertailtiin simulaatiotuloksiin, jotka perustuivat epälineaariseen sirontateoriaan. Mit-
taukset ja simulaatiot yhtenäisesti osoittivat hilaresonanssien toimivuuden, mikä kannustaa suun-
nitelemaan uusia metamateriaalirakenteita mainittujen menetelmien avulla.

Työn toisessa osassa esitellään kaksi resonanttia metamateriaalirakennetta, jotka on suunni-
teltu mahdollisimman tehokkaaseen fotoniparien muodostukseen SPDC:n avulla. Ensimmäisenä
materiaalina tutkittiin alumiininanopartikkeleista muodostettua metamateriaalia. Partikkelit asetet-
tiin suorakulmaiseen hilaan siten, että näytteellä oli hilaresonanssit sekä pumppu- että signaaliaal-
lonpituuksilla. Tällöin huomattiin huomattava vahvistus SPDC-vasteessa, kun pumppu ja signaali
ovat kohtisuorasti polarisoituneita. Täten metamateriaali voisi toimia fotoniparilähteenä kvanttiop-
tiikan sovelluksissa.

Toinen ehdotettu rakenne koostuu metamateriaalista, joka on asetettu mikroskaalan resonaat-
toriin. Suurin SPDC:n vahvistus saadtiin kytkemällä pumppu Bragg-hiloista muodostettuun reso-
naattoriin samalla, kun hilaresonanssit vahvistavat paikalliskenttiä signaaliaallonpituudella. Sig-
naalien arvioitiin olevan yhtä voimakattaita kaikille sallituille polarisaatioyhdistelmille, mikä kuvas-
taa kyseisen metamateriaalin toiminnan joustavuutta ja soveltuvuutta moniin eri käytttötarkoituk-
siin.

Työssä esitetyt simulaatiot kannustavat resonanttien metamateriaalien kehittämiseen nanos-
kaalan fotoniparimuodostusta varten. SPDC:n ja taajuudenkahdennuksen lisäksi työssä esiteltyjä
rakenteita voidaan käyttää myös muiden epälineaaristen ilmiöiden kuten taajuudenkolmennuk-
sen tai erotustaajuden muodostuksen vahvistamiseen metamateriaaleissa. Tämän työn tulokset
voisivat siten olla lähtökohta tutkimukselle, jonka tavoitteena olisi ultravioletti-ja terahertsialueilla
toimivien nanoskaalan valonlähteiden kehittäminen.

Avainsanat: epälineaarinen optiikka, plasmoniikka, hilaresonanssi, metamateriaalit, optinen reso-
naattori, Bragg-hila, epälineaarinen sirontateoria

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

Nonlinear optics is a sub-field of physics that studies the interaction between matter and
intense light. In nonlinear processes, the material response is no longer linearly depen-
dent on the fundamental field which can lead to the generation of new frequency com-
ponents. The most studied and well known nonlinear process is called second-harmonic
generation (SHG) in which the fundamental frequency of a laser is converted to the dou-
bled frequency via three-wave mixing. SHG was first detected by Franken et. al. in 1961
[1] and since then other nonlinear processes have been studied and utilized in different
laser applications. One widely used nonlinear process utilized for down-conversion of the
fundamental frequency is called difference-frequency generation (DFG) which is widely
utilized in tunable laser sources operating in ultraviolet, visible and infrared regions [2,
3]. Another example of a second-order nonlinear process, that is the reverse process of
SHG, and the spontaneous counterpart of DFG is called spontaneous parametric down-
conversion (SPDC) [4, 5]. Unlike DFG, SPDC is mostly used in fundamental research of
quantum optics in order to generate coherent photon pairs [6, 7].

An everyday problem in nonlinear optics is that the nonlinear processes in materials are
intrinsically weak. Conventionally, this issue is overcome with phase-matching schemes
that enable the growth of the nonlinear signal over long enough propagation lengths in
the nonlinear medium. This approach is utilized in almost all nonlinear materials varying
from quasi-phase-matched crystals to nonlinear optical fibers [3, 8].

In many optical devices, the nonlinear processes are further enhanced by coupling the
relevant electromagnetic waves into optical resonators [3]. They are optical systems that
can store a part of the energy of an electromagnetic wave, when the resonance conditions
are fulfilled. The most traditional optical resonators consist of two highly reflective mirrors
separated by a specific distance. For this Thesis, we call such systems as optical cavities.
In addition to their nonlinear applications, optical cavities are widely used in laser systems
and spectroscopy due to their highly wavelength-selective operation.[9]

Recent progress in micro- and nanoscale photonics has created a growing demand for
the miniaturization of optical components capable of linear and nonlinear processes alike.
Novel material type called metamaterials have shown the potential for answering this de-
mand. Metamaterials are artificial structures that typically consist of nanoscale structures
such as thin films or metal nanoparticles. They exhibit optical properties not found in
natural materials such as strong optical activity, epsilon-near-zero behaviour, nanoscale
phase-engineering, and magnetism at optical frequencies [10–15]. Studying this type of
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novel structures could pave the way towards technologies capable of e.g. optical cloak-
ing, nanoscale lensing, and high-speed optical switching [16, 17].

In addition to their linear properties, the nonlinear properties of metamaterials have been
investigated in many studies [18–21]. Especially, plasmonic metasurfaces consisting
of metal nanoparticles have recently shown great potential for realizing more efficient
nanoscale nonlinear materials. Metal nanoparticles support oscillations of the conduc-
tion electrons, known as localized surface plasmons. In resonant conditions, these os-
cillations increase the local electric field close to the particle. As nonlinear processes
scale with higher powers of the local electric field, resonant plasmon oscillations result in
a dramatic enhancement of the nonlinear responses of metamaterials.[22, 23]

Despite the recent progress, metamaterials still lack in conversion efficiency when com-
pared against conventional materials. One promising method to improve the efficiency
of nonlinear metamaterials is to take advantage of the collective responses of periodic
structures known as surface lattice resonances (SLRs). They are associated with narrow
spectral features known as Rayleigh Anomalies (RA), detected for the first time from a
metallic diffraction grating by Wood in 1902 [24]. The narrow linewidths of SLRs imply the
presence of the strong the local fields resulting in dramatically enhanced nonlinear pro-
cesses [25, 26]. The enhancement of nonlinear processes using SLRs has been shown
for both plasmonic and dielectric metamaterials [19, 27], and recently, utilizing SLRs in
multiresonant conditions has shown potential as a method to reach conversion efficien-
cies of practical values [28].

However, the multiresonant operation based on SLRs has its drawbacks. For example,
the multiresonant conditions are restrictive in terms of polarization of the relevant electric
waves. These types of restrictions are undesirable for many nanophotonic applications
motivating the search for alternative enhancement methods.

In this Thesis, we propose a novel structure capable of a more flexible multiresonant
operation. This design consists of two parts: An optical cavity formed with two distributed
Bragg reflectors (DBRs) and a SLR-exhibiting plasmonic metasurface placed inside the
cavity. The structure is designed to generate coherent photon pairs via SPDC or to up-
conversion of the fundamental frequency via SHG. Furthermore, the operation of the
structure is flexible in the term of the polarizations of the relevant field. The responses
that corrseponding to the allowed polarization combinations are equally strong. Thus, the
metamaterial can mimic a conventional nonlinear crystal of type 0, type I, or type II. This
property is useful for quantum optics where crystals of type I and especially II are used
to generate coherent photon pairs.

Here, we use the finite-domain time-domain (FDTD) method and nonlinear scattering
theory (NLST) to estimate both the linear and nonlinear properties of our sample de-
signs. To validate our simulation methods, we first perform proof-of-principle experiments
on fully dielectric waveguide gratings (RWGs) and compare the results with simulations
conducted on the same structures. We then simulate the properties of a multiresonant
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metasurface which we can compare to the results presented in [28], and further validate
our simulation methods. Then we repeat the process for the singly-resonant-in-cavity
design and compare the results with the multiresonant design.

This Thesis consists of six chapters, this introduction being the first. After this chapter, we
introduce the reader to the theoretical background of linear and nonlinear optics. In the
third chapter, we will describe the basic properties of optical cavities and metamaterials
and how to use them to enhance nonlinear processes. The fourth chapter demonstrates
the proof-of-principle studies that we performed on dielectric RWGs. Then, in the fifth
chapter, we present novel designs for plasmonic metasurfaces designed for an efficient
photon-pair generation with SPDC. In the sixth and final chapter, we conclude by sum-
marizing our results and revealing some future actions.
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2 NONLINEAR OPTICS

In this chapter, we examine the basic properties of electromagnetic waves and give an
introduction to the basic principles of nonlinear optics. We start by writing down Maxwell’s
equations of electromagnetism followed by the description of electromagnetic waves.
Then, we introduce nonlinear optics via material polarization and focus on second-order
nonlinear processes such as second-harmonic generation (SHG) and difference-frequen-
cy generation (DFG). From there, we move to describe the classical properties and en-
hancement methods of the second-order processes. We conclude this chapter with a
description of a quantum mechanic nonlinear process called spontaneous parametric
down-conversion.

2.1 Maxwell’s Equations

In classical physics, light-matter interactions are governed by Maxwell’s equations [29].
For macroscopic materials, they can be written as [3, 30]

∇ · D̃ = ρ̃f , (2.1)

∇× Ẽ = −∂B̃

∂t
, (2.2)

∇ · B̃ = 0 , (2.3)

∇× H̃ = J̃f +
∂D̃

∂t
, (2.4)

where Ẽ is the electric field, B̃ is the magnetic flux density, D̃ is the electric displacement,
H̃ is the magnetic field, ρf is the free charge density and Jf is the free current density.
The divergence ∇· and the curl ∇× are the vector operators which use the dot and cross
products of vectors, respectively. The nabla operator is defined as ∇ = î ∂

∂x + ĵ ∂
∂y + k̂ ∂

∂z ,
where î, ĵ and k̂ are the unit vectors along the Cartesian coordinates.

By definition, D̃ and H̃ are described by equations [30]

D̃ = ϵ0Ẽ+ P̃ , (2.5)

H̃ =
B̃

µ0
− M̃ , (2.6)

where ϵ0 and µ0 are the vacuum permittivity and permeability, respectively. Here, the po-
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larization field P̃ and the magnetization field M̃ are the material responses to the electric
and magnetic fields, respectively. From now on, we use tilde (∼) to denote quantities with
rapid time variations.

In vacuum, where there are no free currents (ρ̃f = 0 and Jf = 0) or material responses
(P̃ = 0 and M̃ = 0). Then, we can write the electric displacement and the magnetic field
as D̃ = ϵ0Ẽ and H̃ = B̃/µ0. Now, we can rewrite Equation (2.4) as

∇× B̃ = ϵ0µ0
∂Ẽ

∂t
. (2.7)

Next, we take the curl of the left-hand side of Equation (2.2). With vector calculus identi-
ties and by substituting with Equation (2.1), we then get

∇×∇× Ẽ = ∇(∇ · Ẽ)−∇2Ẽ = −∇2Ẽ. (2.8)

By taking the curl of the right-hand side of Equation (2.2) and substituting with Equation
(2.7), we get

−∇× ∂B̃

∂t
= − ∂

∂t
∇× B̃ = −ϵ0µ0

∂2Ẽ

∂t2
. (2.9)

As Equations (2.8) and (2.9) are the curls of the left- and right-hand sides of the same
equation, we can combine them and get the electromagnetic wave equation

∇2Ẽ = ϵ0µ0
∂2Ẽ

∂t2
. (2.10)

The equation above is of a similar structure than the general wave equation

∇2Ψ =
1

v2
∂2Ψ

∂t2
, (2.11)

where Ψ is the wave function and v is the propagation speed of the wave. By comparing
Equations (2.10) and (2.11) we can define the vacuum speed of light as [31]

c0 =
1

√
ϵ0µ0

. (2.12)

2.2 Electromagnetic Waves

In addition to the classical wave nature, light is also described as massless particles
called photons. A photon is associated with a quantified energy Ep = hν and momentum
p = h

λ , where h is the Planck’s constant, and ν and λ are the frequency and wavelength
of the corresponding electromagnetic wave, respectively. Now, it is convenient to define
light as a monochromatic plane wave propagating along the z-axis. Then, the electric
field can be written as

E(z, t) = E0e
i(kz−ωt) + c.c. , (2.13)
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where E0 is the field amplitude, k = 2π
λ is the propagation number, z is the position along

the z-axis, ω = 2πν is the angular frequency, t is time and c.c. denotes the complex
conjugate of the first term. The speed of such a wave is given by equation

c =
ω

k
=

ω

nk0
=

c0
n
, (2.14)

where n is the refractive index of the medium and k0 is the propagation number in vacuum.

We now move to describe the electric field in three dimensions by introducing the propa-
gation vector

k = kx̂i+ ky ĵ+ kzk̂ . (2.15)

The propagation number is equal to the absolute value of k and is hence connected to
the Cartesian components through equation

k = |k| =
√

k2x + k2y + k2z . (2.16)

Now, the electric field becomes a vector quantity written as a function of the position
vector r:

Ẽ(r, t) = E0e
i(k·r−ωt) + c.c. = E0p̂e

i(k·r−ωt) + c.c. (2.17)

Here, the field amplitude E0 = E0p̂ is also a vector quantity whose direction is defined by
the unit vector p̂, also known as the polarization vector (not to be confused with the ma-
terial response to the electric field). Hence, p̂ defines the direction in which Ẽ oscillates
with respect to space and time.

Next, we define the oscillation direction of the electric field with respect to the axis of
propagation. We assume an isotropic material where the electric field is divergenceless
(∇ · Ẽ(r, t) = 0). We apply this assumption to the electric field defined in Equation (2.17)
and get the equation

∇ · Ẽ(r, t) = iE0k · p̂ei(k·r−ωt) + c.c. = ik · Ẽ(r, t) = 0. (2.18)

This illustrates that the electric field is perpendicular to the propagation direction, which
means that the plane wave Ẽ(r, t) is transverse in isotropic media.

Next, we construct a connection between the electric and magnetic field components of
the electromagnetic wave. We start by substituting the electric field from Equation (2.17)
into Equation (2.2) and rewriting it as

∇× Ẽ(r, t) = ik× Ẽ(r, t) = −∂B̃(r, t)

∂t
. (2.19)

Now, integrating both sides over time results in

B̃(r, t) =
k

ω
× Ẽ(r, t). (2.20)

From Equations (2.18) and (2.20) follows that electric and magnetic fields are mutually
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perpendicular, making planar electromagnetic waves transverse. Additionally, their am-
plitudes are connected by equation⏐⏐⏐B̃(r, t)

⏐⏐⏐ = B0 =
n

c0
E0, (2.21)

where n is the refractive index of the medium.[31, 32]

2.3 Irradiance

Our ability to detect electromagnetic waves is based on their capability to transfer energy
and momentum. Therefore, the conventional measured quantity of light is its energy flow
per unit time per unit area, also know as irradiance [31], sometimes called intensity. The
power transferred with the electromagnetic wave is described with the Poynting vector
[31]

S̃ = c2ϵ0Ẽ× B̃. (2.22)

Its magnitude S̃ is the power per unit area through a surface perpendicular to S̃, and it
can be written as

S̃ = c2ϵ0

⏐⏐⏐Ẽ× B̃
⏐⏐⏐ , (2.23)

whose time average is the irradiance of light. Next, we use Equations (2.21) and (2.23)
to calculate the irradiance with equation

I = ⟨S⟩T =
nc0ϵ0
2

E2
0 , (2.24)

which we use later to describe properties of laser systems and nonlinear interactions.[31]
Furthermore, Equation (2.24) connects irradiance to the amplitude of the electric field.
Thus, we can neglect the magnetic interactions and focus on the material responses
to the electric field component of light. In most cases, this selection is justified, as the
magnetic interactions typically have negligible impact on the light-matter interactions.

2.4 Nonlinear Polarization in Materials

When light enters a medium, its electric field induces electric dipoles into the material.
The total sum of the induced dipole moments is the polarization field P̃(r, t) [8]. Typically,
P̃(r, t) is linearly dependent on the incident electric field and is thus given by the following
integral [33]:

P̃(r, t) = ϵ0

∫ ∞

−∞

∫ ∞

−∞
χ̃(1)(r− r′, t− t′) · Ẽ(r′, t′)dr′dt′, (2.25)
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where χ̃(1)(r − r′, t − t′) is the linear susceptibility which is a tensor of rank two. The
convolution above can be simplified by defining the Fourier transforms over space

F{f(r)} =

∫ ∞

−∞
f(r)eik·rdr (2.26)

and time
F{f(t)} =

∫ ∞

−∞
f(r)e−iωtdt. (2.27)

By recalling the convolution theorem, Equation (2.25) is now written as

P(k, ω) = ϵ0χ
(1)(k, ω) ·E(k, ω), (2.28)

where
χ(1)(k, ω) = F{χ̃(1)(r, t)} (2.29)

and
E(k, ω) = F{Ẽ(r, t)}. (2.30)

The susceptibilities and electric fields are usually independent of spatial quantities r and
k [33]. Hence, we focus on t and ω domains and rewrite Equation (2.28) as

P(ω) = ϵ0χ
(1)(ω) ·E(ω), (2.31)

which indicates that polarization oscillates at the same frequency as the incident field.
Furthermore, the form in Equation (2.31) allows us to describe the material dispersion
conveniently by recalling that

n2 = 1 + χ(1). (2.32)

For weak enough incident fields, Equations (2.25) and (2.31) describe the material re-
sponse with adequate accuracy. However, with strong enough incident fields, P̃(t) should
be written as a power series of Ẽ(t) by equation [33]

P̃(t) =ϵ0

(∫ ∞

−∞
χ̃(1)(t− t′) · Ẽ(t′)dt′

+

∫ ∞

−∞
χ̃(2)(t− t1; t− t2) · Ẽ(t1) · Ẽ(t2)dt1dt2

+

∫ ∞

−∞
χ̃(3)(t− t1; t− t2; t− t3) · Ẽ(t1) · Ẽ(t2) · Ẽ(t3)dt1dt2dt3 + · · · ,

(2.33)

where χ(n) is the nth-order susceptibility tensor with rank n + 1. Usually, Ẽ(t) can be
expressed as a group of monochromatic plane waves

Ẽ(t) =
∑
i

E(ωi), (2.34)

which is essentially the Fourier transform of Ẽ(t). Similarly, the Fourier transform of
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Equation (2.33) gives

P(ω) = P(1)(ω) +P(2)(ω) +P(3)(ω) + · · · , (2.35)

with nonlinear polarization [33]

P(n)(ω) = ϵoχ
(n)

(
ω =

∑
i

ωi

)∏
i

E(ωi). (2.36)

The nonlinear processes related to P̃(n≥2) are intrinsically weak. Thus, the traditional
nonlinear applications utilize the second- and third-order nonlinear effects [3, 9]. In this
Thesis, we focus on the second-order effects and leave other effects for future studies to
cover.

2.5 Second-order Nonlinear Processes

In second-order processes, new frequencies are created in a nonlinear medium via three-
wave mixing interactions. In order to explain the different wave mixing processes, we
consider a situation where an electric field consisting of two monochromatic field com-
ponents is incident upon a second-order nonlinear material. The two components have
distinct frequencies ω1 and ω2, and thus the incident electric field is given by

Ẽ(t) = E1e
−iω1t +E2e

−iω2t + c.c. = E(ω1) +E(ω2) + c.c. (2.37)

Now, the second-order polarization is given by

P̃(2)(t) = ϵ0χ
(2)Ẽ2(t), (2.38)

and also by
P̃(2)(t) =

∑
n

P(ωn)e
−iωnt. (2.39)

In the frequency domain, the various second-order polarization components can be writ-
ten as [3]

P(2)(2ω1) = ϵ0χ
(2)(2ω1;ω1, ω1)E

2
1 , (2.40)

P(2)(2ω2) = ϵ0χ
(2)(2ω2;ω2, ω2)E

2
2 , (2.41)

P(2)(ω1 + ω2) = 2ϵ0χ
(2)(ω1 + ω2;ω1, ω2)E1E2 , (2.42)

P(2)(ω1 − ω2) = 2ϵ0χ
(2)(ω1 − ω2;ω1,−ω2)E1E

∗
2 , (2.43)

P(2)(0) = 2ϵ0

(
χ(2)(0;ω1,−ω1)E1E

∗
1 + χ(2)(0;ω2,−ω2)E2E

∗
2

)
. (2.44)

Here, the complex conjugates are connected to the frequency components with negative
frequencies by E∗(ω) = E(−ω). Thus, we can omit the negative frequency counterparts
of Equations (2.40)–(2.43), since they are the complex conjugates of the mentioned equa-



10

tions.

P(2)(0) corresponds to optical rectification, a process where a static electric field is cre-
ated into the medium but is not a subject of interest here. The other four polarization
components in Equations (2.40)–(2.43) correspond to the physical processes where new
frequency components are created and thus are much more relevant for this Thesis.
P(2)(2ω1) and P(2)(2ω2) correspond to SHG, P(2)(ω1 + ω2) to sum-frequency generation
(SFG), and P(2)(ω1 − ω2) to DFG. Next, we will describe the photon interactions of these
processes and visualize them with energy diagrams shown in Figures 2.1–2.3. In the
energy diagrams, the solid and dashed lines represent atomic ground states and virtual
levels, respectively. The upward and upward arrows illustrate the excitation and relaxation
of the system, respectively.

2ω1

SHG

ω1

ω1

Figure 2.1. The energy diagram of second-harmonic generation (SHG). Two incident
photons with frequency ω1 excite the system to a virtual state. The system immediately
relaxes from the virtual state, and a photon with doubled frequency 2ω1 is generated.

In SHG, the two fundamental photons with frequency ω1 are absorbed in to the nonlinear
medium. The system is then excited to a virtual state with the combined energy of the
two incident photons. When the system relaxes from the virtual state, a photon with the
doubled frequency of 2ω1 is generated. As the relaxation from the virtual state is instant,
the generated photon is coherent with the fundamental photons.

In the proper circumstances, SHG leads to a full frequency conversion from ω1 to 2ω1.
Thus, SHG is widely used to convert laser power to a different spectral region. The most
common example is a typical laser pointer where an infrared emission from the laser is
converted to the visible region via SHG.[3]

ω2

ω1

ω1+ω2

SFG

Figure 2.2. The energy diagram of sum-frequency generation (SFG). Two photons with
frequencies ω1 and ω2 interact with the system resulting into a emission of a photon with
frequency ω1 + ω2.
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The mechanism of SFG is very similar to SHG, as is shown in Figure 2.2. The only dif-
ference is that the two incident photons have distinct frequencies of ω1 and ω2. Thus, the
generated photon has the frequency ω1 + ω2. Unlike SHG that is typically used for fre-
quency conversion of fixed-frequency lasers, SFG is used to realize tunable light sources.
For example, illuminating a nonlinear medium with two visible-region lasers leads to the
generation of ultraviolet light via SFG. When one of the incident lasers is frequency-
tunable, the result is a frequency-tunable laser operating in the ultraviolet region.

 

ω1
ω1-ω2

DFG

ω2

Figure 2.3. The energy diagram of difference-frequency generation (DFG). An incident
photon with frequency ω1 excite the system to a virtual state. The other incident photon
with frequency ω2 initiates stimulated emission resulting in gain at the input frequency ω2.
The remaining energy is emitted as a third photon with frequency ω1 − ω2.

DFG differs from the other two processes as of the two incident photons only one is
absorbed in the process. The other of the incident photons causes stimulated emission
and thus gain at the frequency ω2. In addition, a new photon is generated at the frequency
ω1 − ω2. Similar SFG, DFG is also used to create tunable laser sources. Via DFG,
illuminating a nonlinear medium with two visible-region lasers leads to the generation of
infrared light. If one of the input laser is again frequency-tunable, the result of DFG is
a frequency-tunable laser operating in the infrared region. This methods is used e.g. in
optical parametric oscillators which we describe in more detail in Section 3.2.

For all the processes described above, the emitted electric field at the generated fre-
quency is proportional to to the second-order polarization P̃(2). Thus e.g. for SHG,
the emitted irradiance ISHG can be written to be proportional the irradiance I0 of the
fundamental field and the second-order susceptibility tensor χ(2)(2ω1;ω1, ω1) resulting in
equation [32]

ISHG ∝ I20

⏐⏐⏐χ(2)(2ω1;ω1, ω1)
⏐⏐⏐2. (2.45)

The square-dependence on I0 is one of the basic characteristics of SHG, which is widely
used to identify a generated signal as SHG [19, 34].

2.6 Second-order Susceptibility

The Lorentz model describes atoms as systems where light electrons are connected to
much heavier nuclei with a spring. When an electromagnetic field interacts with the atom,
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it induces displacement x̃(t) to the electrons creating an atomic dipole moment p(t) =

−ex̃(t). When the incident field is assumed to be monochromatic, the displacement can
be written as [3]

x̃(t) = x(1)(ω)e−iωt. (2.46)

The amplitude x(1)(ω) is defined as

x(1)(ω) = − e

m

E(ω)

D(ω)
, (2.47)

where e is the charge and m is the mass of the electron. The denominator function D(ω)

is defined as
D(ω) = ω2

0 − ω2 − 2iωγ, (2.48)

where ω0 is the resonance frequency of the material and γ is the damping constant that
is related to the linewidth of the material resonance.

The amplitude of linear polarization is given as the total sum of atomic dipole moments.
This sum can be calculated by defining the average number density of atoms as N ,
allowing to write the polarization as

P (1) = −Nex(1)(ω) . (2.49)

With Equations (2.31), (2.47), and (2.49) we discover that the linear susceptibility is given
by

χ(1)(ω) =
N(e2/m)

ϵ0D(ω)
. (2.50)

Similar analogy can be used for P (2), and thus, the second-order susceptibility corre-
sponding to the process of SHG can be written as [3]

χ(2)(2ω;ω, ω) =
N(e3/m2a)

D(2ω)D2(ω)
, (2.51)

where a is a nonlinear parameter for the Lorentz’s model and of the order of the size of
the atom (a ∼ 10-10) [3].

By comparing Equations (2.50) and (2.51), we find that χ(2)(2ω;ω, ω) is also given by

χ(2)(2ω;ω, ω) =
ϵ20ma

N2e3
χ(1)(2ω)

[
χ(1)(ω)

]2
. (2.52)

The quantity ϵ20ma
N2e3

is nearly a constant for all condensed matter [3]. Now, we mark this
constant as ∆ and solve it from Equation (2.52) as [3, 33]

∆ =
χ(2)(2ω;ω, ω)

χ(1)(2ω)
[
χ(1)(ω)

]2 . (2.53)

The constant ∆ is commonly known as Miller’s delta, and the equality in Equation (2.53)
as the Miller’s rule. With Equations (2.48), (2.50), and (2.53) we can now draw two
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conclusions. The first conclusion is that at non-resonant conditions (ω0 >> ω), where
the material is rather lossless, the second-order processes are quite weak as χ(2) ≃
6.9 × 10−12 m/V [3]. As the second consequence, we notice that in resonant conditions
(ω0 ≈ ω) highly refractive materials have high values for χ(2). This latter consequence
we exploit later when we describe some enhancement methods for SHG in nanoscale
structures.

2.7 Birefringence and Second-harmonic Generation

As we mentioned before, χ(1) is a second rank tensor whose components are defined by
the oscillation directions of P(1)(ω) and E(ω). Thus, it is convenient to rewrite Equation
(2.31) for the amplitudes of different field components as

P
(1)
i (ω) = ϵ0

∑
j

χ
(1)
ij Ej(ω), (2.54)

where indices i and j mark the field components. In the linear regime, the formed dipoles
are for most materials aligned with the fundamental field. Therefore, Equation (2.54)
simplifies to

P
(1)
i (ω) = ϵ0χ

(1)
ii Ei(ω). (2.55)

Next, we apply a similar analogy to χ(2) which is a third rank tensor. Then, it is convenient
to write an equation for a second-harmonic field component as

P
(2)
i (2ω) = ϵ0

∑
jk

χ
(2)
ijkEj(ω)Ek(ω). (2.56)

Now, we can rewrite the Miller’s rule as [33]

∆ijk =
χ
(2)
ijk(2ω;ω, ω)

χ
(1)
ii (2ω)χ

(1)
jj (ω)χ

(1)
kk (ω)

, (2.57)

where the notation χ(2ω;ω, ω) clarifies the fact that the nonlinear material response de-
pends both of the input frequency ω and of the signal frequency ω. Here, we notice that
Equations (2.32) and (2.57) connect χ(2)

ijk(2ω;ω, ω) to the material birefringence, i.e. to
the polarization dependence of the refractive index.

2.8 Symmetry Requirements of Second-order Effects

As a third rank tensor, χ(2) consists of 27 different Cartesian components. For some
crystal point-groups, defined by group theory, all the components can be non-zero and
independent of each other. In most materials, the number of allowed tensor components
is significantly reduced by permutation and symmetry properties of χ(2). For simplicity,
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we demonstrate this for the SHG tensor χ
(2)
ijk(2ω;ω, ω) but note that similar restrictions

apply also for other second-order processes.[3]

First, we note that the fundamental field factors in Equation (2.56) are both identical and
interchangeable. Thus, the permutation of the last two indices will not change the process
in any way and we can write that [3]

χ
(2)
ijk(2ω;ω, ω) = χ

(2)
ikj(2ω;ω, ω). (2.58)

As mentioned before, the conventional nonlinear materials are lossless at the operating
frequencies ω and 2ω. As a consequence, we can permute all of the indices of the SHG
tensor as long as we permute the corresponding frequencies as well. In other words, we
can write that

χ
(2)
ijk(2ω;ω, ω) = χ

(2)
jik(ω; 2ω,−ω), (2.59)

which holds as long as the first frequency argument is the sum of the latter two. This
equality is called the full permutation symmetry which can be used even further, if ω and
2ω are significantly smaller than the lowest resonant frequency of the material. Then, we
can neglect the frequency dependencies and permute all of the indices of the SHG tensor
freely:

χ
(2)
ijk = χ

(2)
jik = χ

(2)
kji = χ

(2)
ikj = χ

(2)
jki = χ

(2)
kij , (2.60)

which is also known as Kleinman symmetry [35]. Even though the frequency-independent
behaviour is not fulfilled in the results presented in this work, Kleinman symmetry is still
a valid example to illustrate the properties of the SHG tensor.

Last, the SHG tensor components are restricted by the symmetry properties of the non-
linear medium. If the medium has inversion symmetry with respect to r, then the trans-
formation r −→ r′ should not impact χ(2). We now consider the situation where the sign
of r is reversed. Now, the electric field E and the polarization field P are polar vectors
that are odd under the inversion transformation. Therefore, also change their signs in the
inversion operation. In other words, we apply the following transformations:

r −→ −r, (2.61)

E −→ −E, (2.62)

P −→ −P. (2.63)

Next, we assume that the nonlinear polarization is written as

P = ϵ0χ
(2)E2. (2.64)

Now, by applying the inversion operator and the transformation properties of E and P on
the above situation, we can write the following equality:

−P = ϵ0χ
(2)(−E)2 = ϵ0χ

(2)E2 = P, (2.65)
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which can only hold true if P vanishes identically. From here we can conclude that [3]

χ(2) = 0. (2.66)

Equation (2.66) has a powerful consequence: For any second-order processes to oc-
cur, the inversion symmetry must be broken which forbids all second-order processes in
centrosymmetric media. However, the inversion symmetry is broken at interfaces and in
some crystal structures, in which case the symmetry requirements drastically limit the
number of non-zero components. Conventionally, the number of non-zero and indepen-
dent tensor components is less than ten for SHG. [3]

2.9 Local-field Enhancement and Phase-matching Effects

The conventional nonlinear crystals used in second-order processes are practically loss-
less at the operating frequencies. According to the Miller’s rule, they have then low values
for χ(2) and thus weak second-order responses. Fortunately, it is possible to enhance
nonlinear processes with local electric fields. This effect is called local-field enhance-
ment which is usually phenomenologically described by using the local-field Eloc(ω).
Now, we can replace the linear susceptibilities in Equation (2.52) by Eloc(2ω)χ

(1)(2ω)

and Eloc(ω)χ
(1)(ω) [33]. Then, the SHG irradiance ISHG should scale as [36]

ISHG ∝ |Eloc(2ω)|2
⏐⏐E2

loc(ω)
⏐⏐2. (2.67)

In conventional nonlinear materials, the local electric field is enhanced with the fields
generated in the previous parts of the nonlinear medium. This, however, requires con-
structive interaction between the relevant electric fields. This, on the other hand, requires
vanishing or compensation of wavevector mismatch ∆k. For SHG, ∆k is defined with
equation

∆k = 2k1 − k2, (2.68)

with [3]

ki =
n(ωi)ωi

c
. (2.69)

The perfect phase-matching (∆k = 0) requires that n(ω1) = n(2ω1), which is impossible
for traditional dispersive materials where the refractive index increases monotonically with
frequency. Conventionally, this is overcome with the use of birefringent or quasi-phase-
matched crystals. For phase-matched materials, the SH irradiance becomes square-
dependent on the propagation length in the material. [3] If the phase-matching condition
is not fulfilled, the SH irradiance oscillates as a function of propagation length in the
nonlinear medium [3, 37].

For second-order processes, there are three different types of phase-matched materials,
named as type 0, type I and type II. As is shown in Figure 2.4, these three types differ
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(a) (b) (c)

type 0

E1

E2

E3 type I
E3 type II E3

E2E2

E1 E1

Figure 2.4. Three different types of phase-matched crystals used to convert input fields
E1 and E2 to an output field E3 via second-order nonlinear processes. (a) In type 0, all the
relevant field have the same polarization. (b) In type I material or crystal, E1 and E2 have
the same polarization which is orthogonal to the polarization of E3. (c) In type II, E3 has
the same polarization than one of the input fields which have orthogonal polarizations.

in the polarizations of the interacting fields. Type 0 crystals are phase-matched for pro-
cesses where the incident and generated fields have the same polarization. For type I,
the incident field is orthogonal to the generated, and for type II the two generated fields
have orthogonal polarizations. Especially, crystals of types I and II are widely used in
nonlinear applications such as in optical parametric oscillators and photon-pair sources
for quantum optics.[3]

2.10 Spontaneous Parametric Down-conversion

So far, we have introduced SHG, SFG and DFG which all are classical stimulated pro-
cesses. The stimulation occurs with the frequencies that were generated in earlier in
the nonlinear medium and the signal is enhanced as described in Section 2.9. These
processes have their corresponding spontaneous quantum processes where only the
fundamental photons are present [5]. For DFG, the corresponding quantum process is
called spontaneous parametric down-conversion (SPDC), also known as parametric flu-
orescence [3].

The mechanism of SDPC, as is shown in Figure 2.5, is similar to DFG with a difference
that only the pumping frequency ω3 = ω1 + ω2 is present in the beginning of the process.
This makes SPDC a reverse process of SFG, and thus it follows the phase-matching con-
dition of SFG (k1+k2 = k3) rather than that of DFG (k1−k2 = k3) [38–40]. Furthermore, it
is more convenient to describe SPDC with the susceptibility of SFG (χ(2)(ω1+ω2;ω1, ω2))
than with the DFG-tensor (χ(2)(ω1−ω2;ω1,−ω2)). Consequently, by investigating the pro-
cesses of SHG, DFG and SFG occurring in a material, one can also deduce information
of the SPDC response of the material [5].

Like any spontaneous processes, SPDC is relatively weak in comparison with stimulated
processes. In phase-matched crystals, the stimulated processes are square-dependent
on the propagation length L while SPDC irradiance typically scales as ISPDC ∝ L

3
2 [5].

Thus, SPDC is not usually used in nonlinear applications such as in optical parametric
oscillators. However, degenerate SPDC where the generated photons have the same
frequency, i.e. the reverse process of SHG, is a reliable process to generate coherent
photon pairs. Therefore, degenerate SPDC is widely used in quantum optics as a photon-
pair source [6, 7, 41]. There, two types of phase-matched crystals are used: Type I to



17

(a) (b)

 

DFG

ω2

(c)

ω1+ω2

ω1

SFG

ω2ω2

SPDC

ω2,vacuum

ω1-ω2

ω1
ω1-ω2

ω1

Figure 2.5. Energy diagrams of (a) spontaneous parametric down-conversion (SPDC),
(b) difference-frequency generation (DFG), and (c) sum-frequency generation (SFG).
DFG and SFG are the stimulated and reversed processes of SPDC, respectively.

generate photon pairs with polarization orthogonal to the pump, and type II to generate
photon pairs where the two signal photons have orthogonal polarization to each other.

In the applications of quantum optics however, the common difficulties arise from the
bandwidth of the nonlinear crystal and the resulting inaccuracies of the photon-pair co-
herence. Later in this Thesis, we will propose a novel nanoscale structure as a solution
to this issue. In our structure, SPDC will be enhanced using methods that are shown to
be effective for SHG [19, 27] and are described in detail in the next chapter.
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3 OPTICAL RESONATORS IN NONLINEAR OPTICS

In this chapter, we give a short introduction to optical resonators and their applications
that use nonlinear optics. Optical resonators are systems that can store the energy of the
incident electromagnetic field. From now on, we shall focus on two types of resonators:
optical cavities formed with two or more mirrors, and resonant metamaterials with high-
quality material responses. We start our treatment with an example of a macroscale
cavity and its properties, followed by a design of a similar microcavity formed with dis-
tributed Bragg reflectors (DBRs). Then, we give an illustrative example of an optical
parametric oscillator (OPO) that uses an optical cavity to enhance DFG of a nonlinear
material. From there, we move to metasurfaces and introduce their most relevant ma-
terial responses: localized surface plasmon resonances and surface lattice resonances.
For these resonances, we then define the same properties that were introduced with
macroscale cavities. As a conclusion to this chapter, we demonstrate how these lattice
resonances have been used to enhance SHG from metasurfaces.

3.1 Optical Cavities

We start our description of optical resonators with a widely used and relatively simple cav-
ity design called Fabry–Pérot etalon (FP), illustrated in Figure 3.1. This type of cavity is
formed with two highly reflective plane mirrors, with reflectances R1 and R2. The mirrors
are separated by a distance L in a medium with a refractive index of n. Traditionally, FP
etalons are used as laser cavities and as wavelength-selective elements in spectroscopy
and nonlinear optical devices, but more recently, cavities with spherical mirrors are pre-
ferred due to their superior stability. Nevertheless, a FP etalon is a simple and illustrative
example to define many useful properties for optical resonators.[3, 9]

For efficient coupling, the fundamental light in the cavity must be self-consistent. This
turns into a requirement that the round-trip phase shift

∆ϕ = −2kL+ ϕ, (3.1)

where −2kL arise from the propagation and ϕ from the internal phase shifts, must be an
integer multiplier of 2π. We assume a lossless medium and that the reflections from the
cavity mirrors induce a total phase shift of 2π. We can now derive a connection between
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R1 R2

L

I0 I0

n

Figure 3.1. A FP etalon formed with two planar mirrors with reflectances R1 and R2. The
mirrors are separated by the distance L in a medium with refractive index n. The etalon
is designed to transmit irradiance I0 when the coupling conditions are fulfilled.

the effective length L′ = nL of the cavity and the fundamental wavelength λ as

L′ = m
λ

2
, (3.2)

where m is an integer.[9]

The spectral properties of optical cavities are commonly described in terms of frequencies
rather than in wavelengths. As a start, we define the mode frequency νm that can be
trivially derived from Equation (3.2) as follows

νm = m
c

2L′ . (3.3)

The adjacent cavity modes are then separated by the free spectral range [9]

∆νfsr =
c

2L′ . (3.4)

Note, that ∆νfsr is also the smallest possible value for νm and thus corresponds to the
longest possible coupled wavelength.

Even though these cavity modes are self-consistent, they experience losses during every
round-trip due to the transmission through the cavity mirrors. This leads to exponential
decay in the field intensity described by equation

I(t) ≃ e−t/τcI(0). (3.5)

The cavity photon lifetime τc can be described in terms of cavity parameters as given by

τc = − 2L′

c ln (R1R2)
. (3.6)

Note, that τc has always positive values since ln (R1R2) ≤ 0. [9]

Now, the Fourier transform of Equation (3.6) gives the linewidth ∆νc of the cavity modes
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as
∆νc =

1

2πτc
. (3.7)

By combining Equations (3.4), (3.6) and (3.7) we can also write that

∆νc = −
∆νfsr ln (R1R2)

2
. (3.8)

With typical reflectance values (0.9 ≤ R1,2 ≤ 1) this indicates that ∆νfsr ≫ ∆νc which is
required to avoid mode overlapping.[9] The spectral properties of a FP etalon are illus-
trated in Figure 3.2.
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Figure 3.2. The spectral properties of a FP etalon. The mode frequency νm, the free
spectral range ∆νfsr and the cavity mode linewidth ∆νc are defined with the cavity pa-
rameters shown in Figure 3.1.

We can now introduce a cavity quantity called quality factor, or Q-factor, which describes
the energy storage capability of an optical resonator. Q-factor is formally defined as

Q = 2π
energy stored

energy loss during a single pass
. (3.9)

For a certain frequency ν, and wavelength λ, Q-factor can be written in terms of cavity
photon lifetime and cavity linewidth using

Q = 2πντc =
ν

∆νc
=

λ

∆λ
, (3.10)

which with Equations (3.6) and (3.7) connects Q-factor to the cavity parameters.[9] For
laser cavities, typical Q-factors can be on the order of 106–108. For example, with typical
cavity parameters R1 = 0.99, R2 = 0.95 and L = 10 cm, we get Q-factor of ∼4×107.
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3.1.1 Distributed Bragg Reflector Cavities

Traditional cavity lengths in laser systems and nonlinear optical devices vary from cen-
timeters to few meters, making them incompatible for micro-scale devices [3, 9]. For-
tunately, use of layered thin film structures such as distributed Bragg reflector (DBR)
cavities has decreased the sizes of optical systems down to millimeters [42–44]. There-
fore, DBR cavities are often used in semiconductor lasers and other photonic integration
applications.[45–48].

DBRs are periodic structures designed to reflect wavelengths close to a target wavelength
λB. As Figure 3.3(a) shows, one DBR grating period consists of a pair of layers of high
and low refractive index materials.[45] In order to achieve high reflectance at λB, the
length of one grating period Λ must uphold the Bragg condition

mλB = 2neffΛ, (3.11)

where neff is the effective refractive index of the grating and m is an integer [42].
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Figure 3.3. (a) A schematic drawing and (b) reflectance spectrum of distributed Bragg
reflector designed to reflect the wavelength λB = 550 nm. The grating is constructed
with titanium dioxide (TiO2, n1 = 2.5) and silicon dioxide (SiO2, n2 = 1.45) resulting in a
grating period Λ ≈ 150 nm. For grating of eight layer pairs, reflectance band has a clean
top-hat profile (red line) around λB while with three layer pairs (blue line) relfectance is
lower and the band profile deformed. Here, the material dispersion is neglected.

The Bragg condition is typically fulfilled by setting layer thicknesses to an integer multiplier
of λB/4. Then, the reflectance of DBR can be accurately estimated by using equation [45]

R =
1− (n1/n2)

2N n2
1/n

2
0

1 + (n1/n2)
2N n2

1/n
2
0

, (3.12)

where n1 and n2 are refractive indices of high index and low index materials, respectively,
n0 is the refractive index of the surrounding medium, and N is the number of the layer
pairs.
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From Equation (3.12) follows that R increases with N , and also with the quantity ∆n =

|n1 − n2|. Thus, with large ∆n fewer layers are required for high reflectance values.
It is noticeable though, that larger ∆n leads to a wider reflection band structure and
stronger sidebands [45]. The sidebands can be reduced with several methods such as
chirping or apodization of the grating [49]. These methods are worth of consideration
when fabricating DBRs but are however beyond the scope of this Thesis.

λB

L=mλB/4

Figure 3.4. A schematic drawing of a FP etalon formed with two distributed Bragg re-
flectors separated by distance L. The etalon is designed to operate around the Bragg
wavelength λB which requires that L must be an integer multiplier of λB/4.

As was mentioned earlier, DBRs can be used to form sub-wavelength FP etalons, as is
demonstrated in Figure 3.4. For DBR cavities, the condition for cavity length is [43, p.219]

L = m
λB

4
, (3.13)

which differs from the previous cavity length condition of Equation (3.2).

In typical applications of DBR cavities, the sizes of DBRs and cavity lengths are of the
order of few millimeters [43]. As Equations (3.4), (3.10) and (3.12) imply, this leads to
extremely high Q-factors (Q ∼ 108) for such cavities. However, Q-factor of around a few
thousands is quite adequate for our research. This enables the use of DBR cavities with
dimension of the order of few micrometers in this Thesis.

3.2 Optical Parametric Oscillator

Next, we describe an application of optical cavities and nonlinear optics called optical
parametric oscillators (OPOs). As Figure 3.5 illustrates, the two main components of
an OPO are the nonlinear crystal and the optical cavity around it. The phase-matched
DFG in the crystal and the mode-locking capabilities of the cavity result in an efficient
conversion of pump frequency ωp to signal frequency ωs, and sometimes also to idler
frequency ωi.[3] of [3].

As was mentioned earlier, the frequency conversion in OPO is achieved with DFG. For
crystal length of a few millimeters, efficient DFG requires phase matching throughout the
crystal. Similar to SHG (see Equation (2.68)), phase matching is dependent on wavevec-



23

R1 R2

Lc

ωp

L

χ(2)

ωi

ωs

Figure 3.5. A schematic drawing an OPO. A nonlinear crystal with length L and second-
order susceptibility χ(2) is inserted into an optical cavity. The cavity has length Lc and
mirror reflectances R1 and R2. OPO is pumped with a pump frequency ωp which gener-
ates an idler frequency ωi and a signal frequency ωs, via the process of DFG.

tor mismatch ∆k which we write for DFG as [3]

∆k = ki − ks − kp, (3.14)

where propagation constants ki, ks and kp are defined by Equation (2.69).

Let us now assume a phase-matched crystal in which frequency conversion is relatively
efficient for a frequency band ∆ωs, also known as the gain linewidth of the nonlinear
medium. The crystal is now placed between two mirrors with high reflectances, resulting
in a laser cavity of sorts with a nonlinear gain medium. As is shown in Figure 3.6, ∆ωs

is much larger than the linewidth ∆νc and the free spectral range ∆νfsr of the cavity.
Thus, there are several values for ωs with high enough material gain that can be coupled
into the cavity. However, only the ωs closest to the perfect phase-matching condition, i.e.
∆k = 0, is strongly enhanced and is selected as the output frequency. As the cavity
mode frequencies depend on the cavity, ωs can be accurately tuned by changing the
cavity length.[3]

OPOs are widely used as tunable laser sources in ultraviolet, visible and infrared re-
gions. They are used to produce nano-, pico- and femtosecond laser pulses as well as
continuous-wave lasers. [50, 51] In this Thesis, however, we are not using an OPO as a
light source. We are more interested in the operating principles of an OPO which we will
apply to some extent in our sample design.

3.3 Metasurfaces

Metamaterials are artificial materials consisting of nanoscale structures such as metal
nanoparticles or dielectric gratings. They can exhibit optical properties that are not found
in nature such as strong optical activity, epsilon-near-zero behaviour, nano-scale phase-
engineering, and magnetism at optical frequencies [10–15]. Due to the growing demand
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Figure 3.6. The spectral profiles of the material gain of the nonlinear material (dotted line)
and the optical cavity (solid line) of an OPO. The cavity mode frequency that is closest
to the perfect phase-matching condition (∆k = 0, dashed line) is selected as the signal
frequency ωs.

for miniaturization of nonlinear photonic devices, numerous studies have investigated also
the nonlinear properties of metamaterials. [18, 20, 21, 26, 27, 52].

Figure 3.7. A plasmonic metasurface consisting of L-shaped metal nanoparticles. The
metasurface is designed to convert fundamental frequency (red wave) to doubled fre-
quency (green wave) via SHG.

Metamaterials may consist of only one layer of nanostructures, in which case they are
often called metasurfaces. Here, we focus on plasmonic metasurfaces consisting of L-
shaped metal nanoparticles (NPs), illustrated in Figure 3.7. The L-shape was selected
to fulfill the symmetry requirements of SHG, which has been experimentally verified in
the past [22, 53]. We start with a description of the material response of a single NP
called localized surface plasmon resonance (LSPR). Then, we describe the response
of a periodic lattice of metal nanoparticles called surface lattice resonance (SLR). Both
resonances can be used to couple light into metasurfaces. From this point of view, meta-
surfaces can be thought to act as an optical resonator.
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3.3.1 Localized Surface Plasmon Resonance

The optical properties of metals are governed by their electronic structure. The most
common model to understand the properties of metals is the free electron gas model
where valence electrons are assumed to move freely between positively charged metal
ions [54]. Therefore, metals to conduct heat and electric charge better than most solids,
and due to this fact these electron are called conduction electrons. When a metal is illu-
minated with light, the electromagnetic interactions induce oscillations in the conduction
electrons. The oscillations are called plasmons, and they have a specific frequency called
plasmon frequency. When the incident light and plasmons are in resonance, the light is
coupled into the metal structure causing an electronic excitation. In NPs, the excitation
is restricted to the particle dimensions, and thus the particle exerts an effective restoring
force on the oscillating particles which enhances the local electric field near the particle.
This resonance is LSPR and it occurs at the resonance wavelength λ0. [36]

+ -

-

+ +

(a) (b)

y

x

Figure 3.8. The current distributions associated with effective electric dipoles in an L-
shaped metal nanoparticle for (a) x-polarized and (b) y-polarized incident light [23]. The
associated local fields give rise to LSPRs. Here, the resonance wavelength is longer for
x-polarized than for y-polarized light.

The spectral location of LSPR, i.e. value of λ0 depends on many parameters. First
of all, the choice of material affects λ0 significantly. For example, silver has typically
shorter resonance wavelength than gold [55]. Second, the particle size impacts as well,
as λ0 increases monotonically with particle dimensions. Connected to the previous, the
polarization of the incident light also has an impact on λ0. The induced dipoles are
parallel to the incident polarization, and thus the resulting electric current follows a path
in the particle that connects the two poles of the induced dipole (marked with black arrows
in Figure 3.8). Now, λ0 increases with the length of the mentioned path. Therefore for L-
shaped NPs, λ0 is larger for the x-polarized incident light than for the y-polarized incident
light. Finally, the refractive index of the surrounding medium and the neighbouring NPs
also have a shifting impact on λ0.[36] The inter-particle coupling of plasmons can also
impact the resonance linewidth, as was demonstrated by Czaplicki et al. [27]. Next, we
will describe the impact of the efficient inter-particle coupling in a periodic metasurface
illustrated in Figure 3.9.



26

3.3.2 Surface Lattice Resonance

When NPs are organized in a periodic lattice, they act as a diffraction grating. The incident
light is then diffracted from the grating in accordance with equation [25]

nsub sin(βi) = nsup sin(θ)± iλp, (3.15)

where i is the diffraction order, λ is the wavelength of the incident beam, p is the grating
period, θ is the incident angle, and nsub and nsup are the refractive indices of transmitted
(substrate) and incident (superstrate) medium, respectively. In typical experiments, the
tuned θ is the incident angle in air. Then, according to Snell’s law, we can set nsup = 1

even if the grating is covered with a superstrate material.

At a certain wavelength or a certain incident angle, the diffracted wave starts to propagate
along the grating surface, i.e. βi = 90°. Then, the induced dipoles in NPs start to couple
efficiently giving a rise to a collective response known as a SLR. The spectral features of
SLRs, also known as Rayleigh anomalies, can be extremely narrow and sensitive which
makes them ideal for e.g.sensing applications. Furthermore, the grating material itself
does not impact the diffraction from the grating. Thus, also fully dielectric structures
exhibit resonances similar to SLRs that are called guided-mode resonances (GMR) [56–
59].

We can now rewrite Equation (3.15) and derive an equation for the spectral location of a
SLR as [60]

λi = p

(
nsub

|i|
− sin(θ)

i

)
. (3.16)

It is worth mentioning that SLRs arise only if the incident light is polarized perpendicular
to the grating period. As much is illustrated in Figure 3.9 where two SLR modes of a
plasmonic metasurface propagate in the direction perpendicular to their polarization.
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Figure 3.9. Surface lattice resonance modes for a periodic plasmonic metasurface.
When light is polarized along either x- or y-coordinate, the resonance wavelengths de-
pend on the lattice constant (py or px) perpendicular to the polarization.
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We have now introduced two typical resonances of periodic plasmonic metasurfaces,
LSPR and SLR. They both have been successfully used as to enhance and engineer
linear and nonlinear optical processes alike. However, the coupling efficiency has a sub-
stantial difference between the two resonances. As is shown in Figure 3.10, the Q-factor
of a SLR can be as high as a few thousand but for LSPR Q-factor is usually remark-
ably lower (Q < 10). The low Q-factor indicates the high losses of LSPR, which also
explains the high heating impact of the resonance, and thus the low damage thresholds
of metal nanoparticles. With this remark, SLRs with high Q-factors seem superior for any
applications that require strong electric fields, such as nonlinear processes.
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Figure 3.10. An illustrative transmission spectrum of a periodic metasurface with reso-
nance peaks and Q-factors for localized surface plasmon resonance (LSPR) and surface
lattice resonance (SLR).

When designing an SLR-exhibiting metasurface, it is worth recalling that LSPR and SLR
can impact each other. If LSPR and SLR resonance wavelengths are close to each other,
their resonance lineshapes are distorted: LSPR becomes a Fano-type resonance with
narrowed linewidth, and SLR linewidth increases significantly [27]. To avoid this problem,
it is beneficial to design these two resonances adequately apart from each other.

3.4 Second-harmonic Generation from Metasurfaces

In this section, we outlay the basic principles of SHG from plasmonic metasurfaces. As
is shown in Figure 3.8, the L-shaped particles have only one symmetry axis coinciding
with the y-axis of the surface coordinate system. When the particles are organized in a
rectangular lattice, the metasurface belongs to the point group C3v [61]. When incident
light propagates along the z-axis, we have only three independent non-zero second-order
tensor components: χ(2)

yyy, χ(2)
yxx, and χ

(2)
xxy(= χ

(2)
xyx) [3].

Traditionally, SHG is enhanced with singly-resonant metasurfaces where LSPR coincides
with the fundamental wavelength [22, 23, 26, 53]. This creates strong local electric fields
at fundamental frequencies enhancing the SH-signal in agreement with the local-field
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model described in Section 2.9. The singly-resonant use of SLR has also been experi-
mentally demonstrated for dielectric and plasmonic metamaterials alike [19, 62]. In the
latter, the SH-enhancement is far greater with SLRs than with LSPRs, when compared to
the off-resonance signal. When we compare the linewidths of these two resonances and
consider the Miller’s rule (2.53), this result is quite expected.

An experimental study performed by Celebrano et al. [63] shows that SH-signal can be
improved even further with multiresonant metamaterials. In a multiresonant design, ma-
terial resonances occur both the fundamental and at the SH-wavelengths which, again
following the local-field model, enhances the SH-signal. However, the utilization of mul-
tiresonant design requires that the fundamental and SH-fields have orthogonal polariza-
tions which then connects the SH-signal to the tensor component χ(2)

yxx. In recent numer-
ical studies [28, 64], Huttunen et al. demonstrate multiresonant sample designs which
utilize several SLRs and could achieve reasonable conversion efficiencies with second-
and third-order processes.

(a) (b)Miller's rule NLST

(2) P(2ω)

(1)
(3)

Figure 3.11. Two methods to evaluate the nonlinear response of plasmonic metasur-
faces. (a) Miller’s rule consists of evaluation of the linear properties at fundamental and
second-harmonic wavelengths. (b) Nonlinear scattering theory (NLST) has three evalua-
tion steps: (1) The excitation by the fundamental field; (2) calculation of SH-polarization;
and (3) the evaluation of the overlap integral between the SH-polarization and the local-
field induced by a wave propagating from the detector and oscillating at the SH-frequency.

Even though the Miller’s rule predicts correctly superiority of SLR over LSPR, it is not
accurate enough to describe nonlinear responses of metasurfaces [65, 66]. Instead, the
nonlinear scattering theory (NLST) [67], illustrated in Figure 3.11, should be used. NLST
evaluates the SH-emission Enl(2ω) with three steps. The first step is the material excita-
tion by the fundamental field. The second step is the calculation of the SH-polarization.
As a final step, we evaluate the overlap integral be between SH-polarization and the local-
field induced by a wave propagating from the detector and oscillating at the SH-frequency.
Then, the SH-emission is evaluated by using the following overlap integral:

Enl(2ω) ∝
∫∫

χ(2)E2(ω)E(2ω)dS, (3.17)

where dS indicates the integration over the metasurface. E(ω) and E(2ω) are dependent
on the local-fields at the fundamental and SH frequencies, respectively.



29

4 RESONANT WAVEGUIDE GRATINGS

In this chapter, we demonstrate proof-of-principle studies performed on fully dielectric
resonant waveguide gratings (RWGs) made from silicon nitride (SiN). We start with a
description of our samples and measurement conditions. Then, we will describe the ex-
perimental setup used for the linear and nonlinear measurements. Next, we will explain
the simulation methods used to estimate the second-harmonic response of our RWGs.
In the second and third sections, we demonstrate a clear agreement between our sim-
ulations and experiments. We start by comparing the simulated and measured linear
properties of our RWGs. Then, we present our results for the measured and simulated
SH emission from our samples. We conclude this chapter with the evaluation of our
simulation methods and with some proposals for future studies.

4.1 Samples and Research Methods

The RWGs studied here consisted of SiN. We used ion-beam-sputtering (IBS) [68] to
fabricate 90–100 nm thick SiN gratings (ng = 1.9) on fused silica (ns = 1.457) and to
cover them with silicon dioxide (SiO2 , nc = 1.49). Here, we set the grating periods p

of our samples to 500 and 600 nm and labelled them accordingly as S500 and S600.
The widths of the SiN grooves in the RWGs were half of the grating period, and thus,
both samples had the same amount of active material (SiN). The differences in optical
properties should then be a consequence of the different grating periods. An illustrative
drawing of a SiN RWG is shown in Figure 4.1.
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Figure 4.1. Schematic drawing of a resonant waveguide grating made of silicon nitride
(SiN, ng = 1.9). The gratings are fabricated on fused silica (ns = 1.457) and covered with
a silicon dioxide cladding (SiO2, nc = 1.49). SiN lines have thickness d = 90 – 100 nm,
and width a which is half of the grating period p. The grating is illuminated with laser light
centered at wavelength λ = 1064 nm at an incident angle θ.



30

As is shown in Figure 4.1, our RWGs are centrosymmetric. In order to fulfill the symmetry
requirements for SHG, the incident angle θ had to be tuned. The tuning of the incident
angle helps us to efficiently excite GMRs, as they are also angle dependent (see Equation
(3.16)). Now, it is useful to rewrite Equation (3.16) for the first-order (i = ±1) resonance
angles as

θ±1 = asin

(
±
(
ns −

λ

p

))
, (4.1)

where wavelength λ is set to 1064 nm. In this case, the first-order RAs appear at the inci-
dent angles of 42.5° and 18.6° for p = 500 nm and 600 nm, respectively. The wavelength–
angle correspondence for the first-order RAs is illustrated in Figure 4.2.
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Figure 4.2. The resonance wavelength as the function of the incident angle for the first-
order RAs. For fundamental wavelength of 1064 nm (red dashed line), the RA angles of
order i = –1 are 42.5° and 18.6° for samples S500 and S600, respectively. The corre-
sponding angles for RAs of order i = 1 at SH wavelength of 532 nm (green dashed line)
are 22.7° and 34.2°.

In order to measure the transmittance and SH response of our RWGs, we used the setup
illustrated in Figure 4.3. As a light source, we used a pulsed Nd:YAG (Ekspla PL 2200)
laser with a wavelength of 1064 nm, pulse duration of 60 ps and a repetition rate of 1 kHz.
To avoid possible sample damage, we limited the input power of the laser to 3 mW with a
half-wave plate (HWP) and a linear polarizer (LP). In order to efficiently excite GMRs, we
then used another HWP to set the polarization along the SiN lines of the RWGs. Then,
another LP was used to select the correct polarization of the generated SH signal. To
ensure efficient coupling to the GMR modes, the laser beam as weakly focused on the
sample using a lens with a focal length f = 400 mm. The sample itself was placed on
a rotating stage allowing us to measure the transmittance and the SHG as the functions
of the incident angle. Furthermore, we put the sample between a long-pass filter (LPF)
and a short-pass filter (SPF). This ensured that the detected SHG emission was only
due to the sample emission. As the SH responses of nanoscale structures are typically
very weak, we used a photomultiplier tube (PMT) to detect the SH signal. In linear mea-
surements, we turned LPF aside and used a photodiode to measure transmission of the
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fundamental wavelength 1064 nm.

Nd:YAG Laser
1064 nm 

60 ps @ 1 kHz HWP1 LP1L1 L2LPF SPFHWP2 PD or
PMT

Sample LP2

Figure 4.3. Schematic drawing of the experimental setup. The focal lengths of the lenses
are 400 mm (L1) and 50 mm (L2). HWP = Half-wave plate, LP = Linear polarizer, LPF
= Long-pass filter and SPF = Short-pass filter. The sample was put on a rotating stage
allowing us to change the incident angle. In the nonlinear measurements, the SH sig-
nal was collected using a photomultiplier tube (PMT). In linear measurements, SPF was
turned aside and the transmission was measured with a photodiode (PD).

In order to connect the nonlinear scattering theory (NLST) to the experiments, we also
performed numerical simulations based on our RWGs. We performed the first part of our
simulations using a commercial Lumerical FDTD Solutions software which uses the finite-
domain time-domain (FDTD) [69] method to evaluate electromagnetic fields present in the
structure. We performed two-dimensional simulations for a structure illustrated in Figure
4.1. As an excitation source in our simulations, we used a plane wave with a wavelength
of 1064 nm which we polarized along the SiN grooves. To gather the required data for the
calculation based on the NLST, we used three monitors in our simulation system. One
monitor measured transmission T of fundamental light.The other two measured electric
field profiles Efund and ESH near the SiN gratings at the fundamental and SH wave-
lengths, respectively. By performing an angle sweep, we gained values for T , Efund and
ESH as the functions of the incident angle θ. Then, we inserted the gained field profiles
to Equation (3.17) and got an estimation for the scattered SH field. By then transforming
the scattered SH field into irradiance we were able to compare the numerical predictions
with the experimental results.

4.2 Linear Properties

We investigated the linear and nonlinear optical properties of SiN RWGs with two different
grating periods (p = 500 and 600 nm). First, we measured and simulated the transmission
of the fundamental wavelength 1064 nm as a function of the incident angle θ. As is shown
in Figure 4.4, we performed experiments over the range θ = 0° – 50° but we limited the
simulation range closer to the theoretical RA angles given by Equation (4.1).

The first glance at Figure 4.4 reveals that the simulations and experiments agree rather
accurately on the angular locations of the GMRs. The small differences between theoret-
ical and experimental values can be plausibly explained by the uncertainties associated
with the experimental setup. It is also worth mentioning that all resonances correspond
to the diffraction order i = –1 and that the resonance angles θexp and θsim decrease with
p.
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Figure 4.4. Experimental (solid lines) and simulated (dashed lines) transmission as func-
tion of incident angle for samples (a) S500 (red) (b) and S600 (black). The resonance
angles are around 18° and 42° for S500 and S600, respectively.

Another difference between the experimental and simulated results is in the strengths of
the resonance peaks. The experimental peaks have practically equal amplitudes, which is
a rather expected result since both samples have the same amount of SiN. The simulated
transmission peaks, however, have slightly different amplitudes for our samples. It is then
likely that our simulations did not cover the most optimal coupling conditions. This implies
that the spectral simulation resolution was slightly inadequate, especially in the simulation
for S600. However, improving the simulation conditions is quite time consuming and
would, in the end, lead to results with spectral features much narrower than those of the
light sources and fabricated samples used in experimental work.

The mere locations and strengths of the resonance peaks do not offer much information
that is needed to evaluate the nonlinear properties of our samples. The angular linewidths
∆θsim and ∆θexp are more relevant since they are connected to the spectral linewidth by
equation

∆λ = p cos(θ)∆θ, (4.2)

and thus, also to the Q-factor through Equation (3.10). As the emitted SH irradiance
scales as ISHG ∝ Q4, angular linewidths help us to estimate the SH responses of our
samples. The relevant results of our linear experiments are listed in Table 4.1.

Table 4.1. Linear results for samples S500 and S600. The angle θRA is the theoretical
incident angle of the Rayleigh anomaly, and θsim and θexp are the simulated and experi-
mental resonance angles, respectively. ∆θsim and ∆θexp are the angular linewidths and
Qsim and Qexp are the Q-factors of the simulated and measured resonances, respectively.

Sample θRA θsim θexp ∆θsim ∆θexp Qsim Qexp

S500 42.5° 42.4° 41.7° 0.1° 0.4° 1650 410
S600 18.6° 19.5° 17.5° 0.1° 0.3° 1080 350
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The experimental linewidths ∆θexp are significantly larger than their simulated counter-
parts ∆θsim. This is most likely a consequence of the differences between the light
sources used in simulations and experiments. In the simulations, the light source is a
perfect plane wave without divergence, while the laser beam used in the experiments
has a slight divergence. The experimental Q-factors are thus reduced when compared
with the Q-factors of the simulation results. When we compare these results against the
predictions based on the Miller’s rule, the GMR-enhanced SHG would be stronger for
S500 based on experiments and simulations alike. Since the SH emission scales as
ISHG ∝ Q4, the experimental Q-factors now imply that S500 should have three times
stronger SH response than S600. Alternatively, based on simulated Q-factors, the SH-
response of S500 should be seven-fold to the response of S600.

4.3 Second-harmonic Generation from Resonant Waveguide
Gratings

Next, we studied the SH response of our samples using the setup shown in Figure 4.3.
We performed measurements over incident angles θ = 0° – 70° and obtained the results
plotted in Figure 4.5. The values for the emitted SH power shown in the graph are rough
estimations due to the inaccuracies of our detection devices. First, the noise levels of
our PMT might vary significantly between the measurements. Moreover, the power meter
used for power calibration had a noise level of the order of 10 fW. Combined, these
inaccuracies result in error terms up to 30 fW for our experiments. Nevertheless, the
order-of-magnitude should be correct, and thus we estimate conversion factors on the
order of 10-11 for both samples.
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Figure 4.5. Measured SH power as a function of incident angle for samples S500 (red)
and S600 (black). The strongest signals are measured at the experimental resonance an-
gles defined in the transmission measurements. The resonance enhancement compared
with the off-resonance signals are 650 and 100 for S500 and S600, respectively.
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The results shown in Figure 4.5 further confirm that the GMRs enhance the local fields
present in the SiN RWG. coincide well with the measured resonance angles, and are devi-
ated only by around 0.1°. The linewidths of the SH peaks are also equal to the linewidths
∆θexp of the SLR peaks. As was expected based on the measured Q-factors, S500 has
a SH response that is roughly four times stronger than the emitted SH power of S600.
However, this relation may be inaccurate since the absolute values for the emitted power
may slightly vary between separate measurements. Another, and possibly more accurate
method to evaluate the role of the resonance enhancement would be to compare the
resonant signals with the off-resonance signals, illustrated with double arrows in Figure
4.5. These enhancements are 650 and 100 for S500 and S600, respectively. This result
agrees rather well with the simulated Q-factors based on which we estimated a seven-fold
difference between the two samples. Considering the results so far, we conclude that the
simulations define the linear properties accurately.

In order to validate the NLST method as a reliable basis for simulation, we need to con-
sider our results beyond the simulated Q-factors. The incident light induces dipole mo-
ments into the SiN grating that are then amplified by the propagating GMR mode. This
gives rise to the local fields at the fundamental wavelength, and according to NLST, also
to the SH emission. As is shown in Figure 4.6, the local field has a 12-fold increase at the
resonance angle (42.4° for S500) when compared with the off-resonance electric field.
For S600, the local-field enhancement is roughly ten-fold and occurs at the simulated
resonance angle 19.5°. For the vacuum field term in Equation (3.17), we also simulated
local fields at the SH wavelength. As the first-order RA-angles for λ = 1064 nm and λ =

532 nm differ quite significantly for both of our samples (see Figure 4.2), the local field at
λ = 532 nm remains constant over the simulated angles.
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Figure 4.6. Simulated transmission and the local electric field Efund for the sample S500.
The local electric field is normalized to the field amplitude next to the resonance. At the
resonance angle 42.4°, the local field is 14-fold when compared with the off-resonance
field.

Next, we inserted the gained field profiles at the fundamental and SH wavelength to
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the Equation (3.17). From there, we obtained simulated angle-dependence for the SH
power emitted from our RWG structures. For visual comparison between simulated and
experimental results, shown in Figure 4.7, we normalized all data sets to the maximum
value of each individual set. We can then compare the resonance enhancements and
peak locations of simulation with the experimental results.
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Figure 4.7. Emitted SHG signal based on the experiments (solid lines) and simulations
(dashed lines) for samples (a) S500 and (b) S600. The signal enhancements compared
to the off-resonant values are 1000 and 150 for S500 nm and S600, respectively. All data
sets are normalized to the maximum signal of each individual set. Thus, the graphs do
not display information about the signal strengths relative to the other sets.

For both samples, the simulated SH emission peaks locate at the same incident angles
and have the same linewidths than the corresponding GMR peaks. This further confirms
the role of GMR as an effective field-enhancing response. Also, the simulated resonance
enhancement factors agree with the experimental results. Once again, the enhancement
factor of S500 is seven-fold to the factor of S600. This agrees with the Q-factor-based
estimation we made in Section 4.2. Relevant results from SHG measurements and sim-
ulations are listed in Table 4.2.

Table 4.2. Nonlinear results for samples S500 and S600. The SH emission peaks lo-
cate at the incident angles θsim and θexp for simulations experiments, respectively. They
have angular linewidths ∆θsim and ∆θexp. At these resonant angles, the SH emission is
enhanced by factors Esim and Eexp in simulations and experiments, respectively.

Sample θsim θexp ∆θsim ∆θexp Esim Eexp

S500 42.4° 41.7° 0.1° 0.4° 1000 650
S600 19.5° 17.5° 0.1° 0.3° 150 100

Overall, our results confirm the reliability of FDTD and NLST as simulation methods.
Both linear and nonlinear simulations agree with experimental results with adequate ac-
curacy. The differences between the experiments and simulations can be explained with
the uncertainties associated with our experimental setup and with the limitations of our
simulations. For example, by improving the collimation of our laser beam, we should
reach better agreement between the experimental and simulated results.
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More importantly, our results validate utilizing GMRs as an effective method to engineer
and enhance the SHG in dielectric materials. Our results motivate to design fully dielectric
structures suitable for other nonlinear processes such as SPDC, DFG, and cascade third-
harmonic generation. The processes could be used to realize nanoscale photon-pair
generation and light sources opertaing in THz and ultraviolet regions.
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5 RESONANT PLASMONIC METAMATERIALS

In this chapter, we propose two novel plasmonic metamaterials designed to emit coher-
ent photon pairs via SPDC. For both designs, the building blocks are L-shaped aluminum
nanoparticles placed in a homogeneous dielectric medium, such as in glass. The first
sample is a multiresonant metasurface exhibiting SLRs both at the pump and the sig-
nal wavelengths for orthogonal polarizations. The second sample consists of a singly-
resonant metasurface sandwiched between two distributed Bragg reflectors. In this sam-
ple, the multiresonant conditions are achieved by coupling the pump wavelength to the
cavity mode and the signal wavelength to the SLR. For both designs, we used FDTD and
NLST in order to evaluate their SPDC-response.

5.1 Simulation Methods

In order to evaluate different enhancement methods, we simulated SPDC-response of
two different types of plasmonic metamaterials. Both structures, described in detail later,
consisted of L-shaped aluminum nanoparticles embedded in a homogeneous medium
(ns = 1.45), visualized in Figure 5.1. The particles had an arm length L = 90 nm, an
arm width w = 45 nm and a thickness d = 30 nm. Here, the particle dimensions and the
material were chose to exhibit LSPRs at lower wavelengths (λLSPR ≤ 600 nm). LSPRs
would not then interact with the SLR modes, which ensures the high-quality resonances
at the pump and signal wavelengths. As in many previous studies [22, 23, 26, 27, 53],
the L-shape was selected to fulfill the symmetry requirements of second-order nonlinear
processes making χ

(2)
yyy, χ(2)

yxx, and χ
(2)
xxy(= χ

(2)
xyx) the allowed tensor components.

y

x L

w

d

Figure 5.1. L-shaped aluminum nanoparticle used as a building block in our sample
designs. Particle arm length L = 90 nm, arm width w = 45 nm, and thickness d = 30 nm
were selected for LSPRs to locate at low enough wavelengths (λLSPR ≤ 600 nm).

To evaluate the SPDC response of the sample designs, we used FDTD and NLST in a
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very similar manner as already described in Chapter 4. We started by simulating trans-
mission and local fields at pump and signal wavelengths. Unlike in Chapter 4, we had a
broadband plane-wave source at the normal incidence polarized first along x-coordinate
and then along the y-coordinate of the sample coordinates. We then used NLST to pre-
dict the spectral behaviour of SPDC signals corresponding to the tensor components
χ
(2)
yyy, χ(2)

yxx, and χ
(2)
xxy(= χ

(2)
xyx). As SPDC and SHG are each other’s reverse processes,

we could use the same overlap integral as we used in Chapter 4.

5.2 Multiresonant Metasurface

The first sample design, illustrated in Figure 5.2, is a multiresonant metasurface consist-
ing of aluminum nanoparticles as described above. The nanoparticles were arranged in
a lattice with lattice periods px = 414 nm and py = 828 nm along the x− and y−directions
in the sample coordinates, respectively. Periods px and py were selected to give rise to
SLRs at the pump wavelength (λp = 600 nm) and signal wavelength (λs = 1200 nm).

z
	

px

SLRx
SLRy

x

y py

Figure 5.2. Schematic drawing of a multiresonant metasurface consisting of L-shaped
aluminum nanopartilces. Periodicities px and py are set so that x-polarized SLR is
at signal wavelength (λSLR,x = λs = 1200 nm) and y-polarized at pump wavelength
(λSLR,y = λp = 600 nm).

With the selected parameters, the strongest enhancement should occur for the process
corresponding to the tensor component χ

(2)
yxx, i.e. to the process where the pump is

y−polarized and signal x−polarized. Multiresonant design would then mimic type I non-
linear crystals which are widely used in quantum optics [40]. The relevant sample param-
eters and enhancement methods for multiresonant design are listed in Table 5.1.

Table 5.1. Metasurface parameters, the designed signal wavelength λs, enhancement
resonances for pump and signal wavelengths, and optimal tensor components for the
multiresonant design. Periods px and py are the lattice constants in x- and y-coordinates,
respectively.

Sample λs (nm) px (nm) py (nm) pump resonance signal resonance tensors
MR 1200 414 828 SLRy SLRx yxx

As a start for our evaluation, we simulated the transmission spectra for x- and y-polarized
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incident light. The spectra shown in Figure 5.3 confirms the presence of first-order SLRs
at the pump (λp = 600 nm) and signal wavelength (λs = 1200 nm) for y-polarized and
x-polarized light, respectively. The x-polarized SLR peak has some noise around it which
indicates slightly divergent simulations. The other sharp spectral features correspond
to the higher-order SLRs, which we will not utilize in this Thesis. The broader spectral
features correspond to the LSPRs at 600 nm and 500 nm for x- and y-polarized light,
respectively. As was designed, LSPRs do not overlap with the first-order SLRs which
confirms that the particle parameters were correctly designed. However, the particles are
too small for efficient inter-particle coupling leading to the relatively weak transmission
peaks.
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Figure 5.3. Spectral transmission for the multiresonant sample design. With x-polarized
(blue) and y-polarized (red) light, we detect sharp SLR peaks at the signal wavelength
λs = 1200 nm and at the pump wavelength λp = 600 nm.

Yet again, the strengths of the resonance peaks are not the most essential information
when considering the nonlinear properties of the designed metasurfaces. Rather the
spectral linewidths ∆λ and the corresponding Q-factors are more relevant. From the
spectra in Figure 5.3 we observe that ∆λ are roughly 2 nm for both polarizations leading
to Q-factors of 430 and 550 for y- and x-polarized light, respectively. For y-polarization,
the resonance peak is broadened due to mode coupling with the LSPR. This point illus-
trates well that it would be difficult to design SLRs to occur at shorter wavelengths than
considered here. The LSPRs do not impact the x-polarized resonance peak, but it still has
the same linewidth of 2 nm and noise around it due to the before mentioned simulation
divergence.

The next step in our simulations was to compute local-field enhancements Eloc,p and
Eloc,s at the pump and signal wavelengths, respectively. As is shown in Figure 5.4, the
spectral behaviours of the field profiles confirms that the local fields are considerably
enhanced due to SLRs. At the signal wavelength, the local electric field is constant for y-
polarized light, while for x-polarized light a strong peak occurs at 1200 nm. Here, one can
again see the impact of diverged simulations as small oscillations around the resonance.
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Figure 5.4. Normalized local electric fields close to the (a) pump wavelength λp = 600
nm and (b) to the signal wavelength λs = 1200 nm. The local fields are SLR-enhanced
with y-polarized (red) and x-polarized (blue) incident light at λp and λs, respectively.

Close to the pump wavelength, the spectral behaviour of the local field is different. For
y-polarized input, a strong resonance peak locates at 600 nm, and the impact of a higher-
order SLR is noticeable at the shorter wavelengths. The x-polarized light gives rise to the
LSPR at these wavelengths. Consequently, SLR acts as a damping resonance, which
can be seen as a dip in the local field at 600 nm.

From the results listed in Table 5.2, we can now predict the SPDC responses correspond-
ing to different tensor components. Based on the Miller’s rule and the estimated Q-factors,
or by using the NLST method and subsequent local field analysis, χ(2)

yxx should result in
the strongest signal of the three components as it utilizes the multiresonant conditions
most efficiently. Consequently, the other two should give rise to a much weaker response
since they utilize only one of the SLRs.

Table 5.2. Simulated results for the multiresonant metasurface with x- and y-polarized
light sources. The wavelength λ, the linewidth ∆λ, and Q-factor for the utilized SLRs.
Eloc,p and Eloc,s are the normalized local field factors at the pump and signal wavelengths,
respectively.

Polarization λ (nm) ∆λ (nm) Q Eloc,p Eloc,s

y 602.8 1.4 430 26 5
x 1203.8 2.2 550 2 20

As a next step, we used NSLT to evaluate the SPDC response of our metasurface. We
calculated the responses over the signal wavelength band of 1180–1220 nm, and studied
only the generation of photon pairs with equal wavelengths. The results were normal-
ized to the signal peak of the least efficient process corresponding to χ

(2)
xxy(= χ

(2)
xyx). As

was expected based on linear results, and is shown in Figure 5.5, the strongest signal
corresponds to χ

(2)
yxx and is roughly 400 times stronger than the peak of the weakest sig-

nal. The signal corresponding to χ
(2)
yyy is only slightly stronger (four-fold) than the one

corresponding to χ
(2)
xxy.
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The spectral locations of the peaks also illustrate the impact of SLR on the photon-pair
generation. For χ(2)

yyy, where all fields are y-polarized, only the local field at λp = 603 nm
is enhanced by the SLR, and thus the strongest signal is generated at λ = 1206 nm.
Similarly for χ(2)

xyx, only the x-polarized signal field is enhanced by the SLR, and thus the
signal peak is located at λs = 1203 nm. As mentioned before, the process of χ(2)

yxx utilizes
SLRs at both pump and signal wavelength resulting in the strongest response of the three
allowed processes. The overlap between Eloc,p and Eloc,s then shifts the signal peak to
1205 nm, since y-polarized SLR wavelength (603 nm) is not exactly half of the x-polarized
SLR wavelength (1204 nm). This result implies, that by iteratively improving the design in
order to better spectrally overlap the two SLRs, even stronger signal enhancement could
be expected.
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Figure 5.5. Spontaneous parametric down-conversion (SPDC) as a function of the signal
wavelength. The signals illustrated with (a) red, (b) black and blue curves correspond to
processes described by the tensor components χ

(2)
yxx, χ(2)

yyy, and χ
(2)
xxy(= χ

(2)
xyx), respec-

tively. The responses are normalized to the weakest signal peak in our simulation band.

When considering quantum optics and other applications of coherent photon pairs, our
results here are quite two sided. On the other hand, the relatively narrow linewidths
(∼2 nm) of our signal bands illustrate the high coherence of the generated photon pairs.
Furthermore, our results suggest that y-polarized illumination on our sample would result
in an efficient generation of x-polarized photon pairs. Thus, the metasurface mimics a
type I nonlinear crystal commonly used in quantum optics. On the other hand, however,
the process corresponding to χ

(2)
xyx would be most useful for quantum optics, since it would

result in the generation of an entangled photon pair with orthogonal polarizations. For
this process, the multiresonant design is not beneficial but rather disadvantageous even.
It would be more useful to utilize singly-resonant conditions where the SLRs enhance
the signal fields for both polarizations. However, this would require other enhancement
methods for the pump wavelength. As one solution, we propose utilization of a DBR
cavity, which we demonstrate in the next section.
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5.3 Singly-resonant Metasurface in Bragg Cavity

As the second option, we studied a singly-resonant-in-cavity (SRC) design, shown in Fig-
ure 5.6. Here, a singly-resonant metasurface, consisting of the same aluminum nanopar-
ticles as the earlier sample design, is placed in the center of a DBR cavity. Now, the
nanoparticles are arranged in a square lattice (px = py = 793 nm) giving a rise to a SLR
at λs = 1150 nm for both x- and y- polarized light. The DBRs consist of ten layer pairs
of titanium dioxide (TiO2, n = 2.5) and silicon dioxide (SiO2, n = 1.45), and they are
designed to reflect light around λB = 550 nm.

λc=λSLR/2

L=8λc

...
...

y

x

z

px

pySLRx
SLRy

Figure 5.6. Schematic drawing of a sample consisting of a DBR cavity and a singly-
resonant metasurface. DBRs are formed with ten layer pairs of titanium dioxide (TiO2,
n = 2.5) and silicon dioxide (SiO2, n = 1.45) and they are designed to reflect light around
λB = 550 nm. The DBR cavity is used to enhance the field at the pump wavelength
(λc = λp = 575 nm) and SLRs are used to enhance the local field at signal wavelength
(λSLR = λs = 1150 nm).

Unlike the typical DBR cavities, we selected our cavity wavelength λc = λp = 575 nm
to differ from λB = 550 nm. This selection helped us to have lossless propagation for
the generated signal and to avoid overlapping of SLR-peaks with the DBR-transmission
sidebands. Therefore, we should obtain strong local field enhancements close to the
metasurface using cavity coupling and SLRs at λp and λs, respectively. Since the op-
eration of the DBR is independent of the input polarization, and SLRs have the same
wavelength for x- and y-polarized light, the SRC design should give equal enhancement
for all allowed second-order tensor components. In theory, SRC design could then mimic
crystal types 0, I and II, which is a clear advantage over the conventional phase-matched
materials. χ

(2)
xxy = χ

(2)
xyx is especially a subject of interest since it corresponds to the

process where the generated photons have orthogonal polarizations. Now, we can list
relevant sample parameters and enhancement methods for the SRC sample design in
Table 5.3.

Like in the previous simulations, we started by defining the linear properties with FDTD.
The transmission spectrum shown in Figure 5.7 is very similar to the typical transmission
spectrum of a uniform DBR (see Figure 3.3). The wide reflection region around λB =

550 nm and the strong sidebands (marked with black arrows in Figure 5.7) are the con-
sequences of a relatively small number of layer pairs and the high difference between the
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Table 5.3. Metasurface parameters, the designed signal wavelength λs, enhancement
resonances for pump and signal wavelengths, and optimal tensor components for singly-
resonant-in-cavity (SRC) design. Periods px and py are the lattice constants in x- and
y-coordinates, respectively.

Sample λs (nm) px (nm) py (nm) pump resonance signal resonance tensors
SRC 1150 793 793 cavity mode SLRy, SLRx xxy, yxx, yyy

refractive indexes of TiO2 (n = 2.5) and SiO2 (n = 1.45). There are many methods to
make the reflection band narrower and to reduce the strengths of the sidebands, but they
are beyond the scope of this Thesis. Here, we are more interested in the properties of
the cavity and the metasurface.
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Figure 5.7. Transmission spectrum of the SRC design. A SLR peak is detected at 1168
nm, marked with the red circle, otherwise the spectrum looks typical for a uniform DBR.
Here, the sidebands typical for an uniform DBR are marked with black arrows. There is
also a small transmission peak at 583 nm, marked with the green circle, but due to the
scaling of the y-axis it is not visible here.

The spectrum in Figure 5.7 shows the influences of the cavity modes and the SLR. The
resonance peak for cavity mode locates at λ = 583 nm while the SLR peak is seen at
λ = 1168 nm. The resonance wavelengths differ slightly from the designed values. Fortu-
nately, they differ roughly by a factor of two, and thus we should still get the multiresonant
conditions fulfilled for SPDC. Furthermore, peaks have relatively low amplitudes, and
thus, they are re-plotted for clarity in Figure 5.8. We also note that the spectra for x- and
y-polarized light are almost identical, as was intended. We can thus limit our visualization
to the x-polarized input.

Now, we can again estimate the linewidths and Q-factors of our resonances. The cavity
resonance at 583 nm has the linewidth ∆λ = 0.12 nm and thus Q-factor of value 4850.
For the SLR at 1168 nm, the corresponding values are ∆λ = 0.35 nm and Q = 3340.
These Q-factors are now an order-of-magnitude larger than the SLR Q-factors of the pre-
vious design. However, this is a consequence of a higher simulation resolution required
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for the SRC simulations.
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Figure 5.8. Transmission spectrum of the SRC design close to (a) the pump wavelength
and (b) signal wavelength. The cavity mode resonance is detected as a peak in the
spectrum at 538 nm, and the SLR as a dip at 1168 nm.

The next step in our study was, yet again, the evaluation of the local field profiles visual-
ized in Figure 5.9. As was expected , the field profiles, which are again normalized to the
incident field, have very narrow spectral features at the resonance wavelengths. The SLR
induced enhancement is of similar strength than with multiresonant design (see Figure
5.4). Same can not be said for the local field at the cavity resonance, which is surprisingly
low. This might result from slightly inaccurate simulations, which also impacts the ampli-
tude and the Q-factor of the resonance peak. For example, the Q-factor of a FP etalon
with our cavity length should be roughly ten times larger to the simulated value. Keeping
this in mind, we continue our evaluation with the relevant linear properties listed in Table
5.4.
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Figure 5.9. Normalized local electric fields in the SRC design close to (a) the pump
wavelength and (b) signal wavelength.

Next, we applied NLST methodology to calculate the SPDC spectrum shown in Figure
5.10. Unlike the SPDC spectrum for the multiresonant design, there are now two dis-
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Table 5.4. Simulation results for the cavity mode resonance and SLR for the SRC design.
The resonances locate at wavelengths λ, have linewidths ∆λ, quality factors Q and the
maximum local field enhancement factors Eloc.

Resonance λ (nm) ∆λ (nm) Q Eloc

Cavity mode 583 0.12 4850 2.5
SLR 1168 0.35 3340 21

tinguishable and narrow peaks. The stronger peak locates at the SLR wavelength 1168
nm and the other, a slightly weaker peak at 1165 nm, which is exactly twice the cavity
mode wavelength. This once again illustrates the enhancing impact of high-Q-factor res-
onances. The fact that there are two peaks is the consequence of the overlap integral
that is being used in the NLST method to estimate the signal strength. The linewidths
of the two resonance peaks are so narrow that they do not properly overlap. Thus, the
signal is enhanced at two separate wavelengths instead of one. By better overlapping
between these two resonances, we should have only one signal peak with a dramatically
larger enhancement factor.
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Figure 5.10. Spontaneous parametric down-conversion spectrum of the SRC design.
The emission peaks at 1165 nm and 1168 nm result from field enhancements by coupling
to the cavity mode and SLR mode, respectively.

When considering the local-field enhancements listed in Table 5.4, the two peak ampli-
tudes are surprisingly close to each other. Especially when we recall that SLR enhances
two of the relevant fields, while the cavity mode enhances only one. Here, it is worth
recalling that the values listed Table 5.4 are for the single unit volume, where the field
was at maximum. Moreover, the overlap integral of NLST covers the whole simulation
volume. SLR indeed creates a stronger local field near the nanoparticles. However, the
coupling into the cavity mode causes an equally strong field over the whole simulation
volume. Therefore, the cavity mode enhancement is of the same order-of-magnitude
than the SLR enhancement.
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Again, it is worth to mention that the SPDC spectrum is very close to the one shown in
Figure 5.10 for all allowed tensor components. Thus, we display only the results corre-
sponding to χ

(2)
xxy = χ

(2)
xyx (type II process) since it is the most useful for applications in

quantum optics. We also note that the two other processes, corresponding to χ
(2)
yyy (type

0) and χ
(2)
yxx (type I), would be more useful for SHG. This multi-functionality, however, was

designed and is the main advantage of the SRC design over the multiresonant design.
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6 CONCLUSION

In this Thesis, we demonstrated how the utilization of high-quality-factor resonances
improves the nonlinear optical properties of metamaterials. Here, we focused on two
second-order processes: Second-harmonic generation (SHG) and spontaneous para-
metric down-conversion (SPDC). We successfully performed experiments that confirm
the impact of high-quality-factor resonances and also validate our simulation methods.
We then proceeded to design two novel plasmonic metamaterial structures that rely on
two types of high-quality-factor resonances.The first resonance is a collective response
of periodic structures known as surface lattice resonance (SLR) and guided-mode reso-
nance (GMR) in plasmonic and dielectric metamaterials, respectively. The second reso-
nance rises from the coupling of the incident light into an optical cavity.

First, we characterized linear and nonlinear optical properties of fully dielectric resonant
waveguide gratings (RWGs) made of silicon nitride. We studied two RWGs with different
grating periods and noticed the enhancing impact of GMRs with both samples. In the
transmission spectra, we detected narrow spectral features at predicted locations with
relatively high Q-factors of ∼ 400. At the same spectral locations, we measured strong SH
responses with up to 650-fold enhancement when compared against the off-resonance
signal.

Next, we used the finite-difference time-domain (FDTD) method to simulate the linear
properties of our RWGs. The simulated transmission spectra had GMR peaks close to
the experimental locations with Q-factors up to 1600. With FDTD we also simulated the
local fields at fundamental and SH wavelength on the grating surfaces. Then based on
nonlinear scattering theory (NLST), we used the simulated field profiles to numerically
evaluate SH emission from our samples. Now, the SH emission was up to 1000-fold
enhanced when compared against the off-resonance values.

The proof-of-principle studies summarized above confirm two things. First, utilizing GMRs
in fully dielectric materials improve their nonlinear properties. In the future, realizing the
multi-resonant conditions with GMRs in RWGs could enable the enhancement of other
nonlinear processes. For example, realizing cascaded third-harmonic generation could
pave the way towards efficient UV light source in nanoscale. Second, the simulations
agree rather well with experiments validating the chose simulation methods of FDTD and
NLST to predict the nonlinear responses of metamaterials. The differences between
experiments and simulations can be explained with the inaccuracies of our experimental
setup. Thus, we can use the presented simulation methods to design metamaterials for
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future investigations.

Next, we designed two plasmonic metamaterials for efficient SPDC. The basic building
blocks for both designs were L-shaped aluminum nanoparticles surrounded by a homo-
geneous medium, such as glass. This particle symmetry enables three types of SPDC
processes. One where pump and signal have the same polarization (type 0), one where
they have orthogonal polarizations (type I), and one where the two signal photons have
orthogonal polarizations (type II). The two latter processes are used in quantum optics
for coherent photon-pair generation. The SPDC responses were enhanced by design-
ing high-quality-factor resonances at both pump and signal wavelengths, i.e. by utilizing
multi-resonant conditions.

The first sample design was a metasurface where the nanoparticles were arranged in a
rectangle lattice. Then, the design gave rise to SLRs at the pump and signal wavelengths
for orthogonal polarizations. For the SLRs, the FDTD simulations gave Q-factors of 430
and 550 at the pump and signal wavelengths, respectively. As expected, the type I pro-
cess, for which the multi-resonant conditions were the most utilized, was the strongest of
the three processes. It had more than 100-fold enhancement for the SPDC signal when
compared against the other two processes, which enhanced only one of the relevant local
fields. For all allowed processes, the SPDC signal was enhanced inside a relatively nar-
row wavelength band. This implies that the generated photon pairs are highly coherent,
which is a significant advantage over the traditional nonlinear crystals.

For the second sample design, we placed a singly-resonant metasurface into a cav-
ity made of two distributed Bragg reflectors. Now, the multi-resonant conditions were
achieved by coupling the pump into the cavity and enhancing the local fields at the sig-
nal wavelength by using a SLR. An advantage of this configuration was that the linear
response of the structure is independent of the polarization. This way, the sample de-
sign can act as type 0, type I and type II nonlinear material, depending on the input
polarization. With FDTD, we simulated Q-factors of 3300 and 4800 for the SLR and the
cavity mode, respectively. The SLR does not coincide exactly with the doubled cavity
mode wavelength. Thus, the SPDC is enhanced at two wavelengths: At the doubled cav-
ity mode wavelength and at the SLR wavelength. By better overlapping between these
two signal peaks, we should get even more enhanced SPDC responses with extremely
narrow linewidths.

Both sample designs show great potential for dramatically enhancing second-order non-
linear responses in the nanoscale. The results here encourage to fabricate the presented
sample designs. For this, however, the modest initial step should be considered, since
the multi-resonant conditions are highly sensitive of the input wavelength. As a start, we
should realize the multi-resonant condition in a single metasurface. As a first step for the
DBR-based structures, we should realize a cavity-enhanced SHG using a metasurface
that utilizes a broader type of resonance, e.g. localized surface plasmon resonance or a
SLR of lower Q-factor value.
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We conclude this Thesis by noting that the enhancement methods and sample designs
presented here are not limited to improving only SHG and SPDC. Other linear and non-
linear processes could also be investigated. Field enhancements at fundamental and SH
wavelengths, which are achievable with SLRs and cavity modes alike, should also give
rise to cascaded third-harmonic generation. Another example process is DFG, which
could lead to efficient emission of THz waves. With these two example processes, and
with numerous others, we could find novel approaches towards nonlinear applications in
the nanoscale.
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