
Petrus Kivi

RAY TRACING METHODS FOR POINT
CLOUD RENDERING

Faculty of Engineering and Natural Sciences
Masters thesis

November 2019

i

ABSTRACT

Petrus Kivi: Ray tracing methods for point cloud rendering
Masters thesis
Tampere University
Degree Programme in Science and Engineering
November 2019

State of the art scanning and capturing devices are able to produce surface point cloud models
of a wide range of real world objects. The visualization and rendering of enormous point clouds
with millions or billions of points is demanding. VR- and AR-applications can utilize embedded
real world objects in generating visually pleasing and immersive virtual worlds. In order to achieve
convincing real life equivalents in VR, rendering techniques that can replicate realistic material and
lighting effects are needed. This can be achieved by utilizing ray tracing methods to render the
virtual world onto a monitor or a head-mounted display.

Virtual reality applications need real-time stereoscopic rendering with high frame rates and
resolution to produce a realistic and comfortable experience. This sets high demands on a point
cloud ray tracing pipeline, which needs efficient intersection testing between rays and point cloud
models. An easily intersectable global surface can be reconstructed from the point cloud model
with, e.g., triangle mesh reconstruction. However, this can be computationally demanding and
even wasteful if parts of the model are out of view or occluded. Direct point cloud ray tracing
methods consider local features of the point cloud to generate intersectable surfaces only when
needed.

In this thesis, we survey and compare different methods for directly ray tracing point cloud
models without global surface reconstruction. Methods are compared with asymptotic complexity
analysis and it is concluded that direct ray tracing of point clouds can be computationally more
efficient compared to global surface reconstruction.

Keywords: point cloud, ray tracing, reconstruction, acceleration structure, rendering equation

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Petrus Kivi: Säteenjäljitysmenetelmiä pistepilvien renderointiin
Diplomityö
Tampereen yliopisto
Teknis-luonnontieteellinen koulutusohjelma
Marraskuu 2019

Nykyaikaiset 3D-ympäristön kuvantamislaitteet pystyvät tuottamaan virtuaalisia pistepilvimal-
leja monenlaisista tosimaailman kappaleista. Miljoonia tai miljardeja datapisteitä sisältävien valta-
vien pistepilvimallien visualisointi ja renderointi on laskennallisesti työlästä. Virtuaalitodellisuusso-
vellukset, kuten VR- ja AR-ohjelmat, voivat upottaa todellisten kappaleiden malleja virtuaalitodel-
lisuuteen, jolla saadaan aikaiseksi visuaalisesti miellyttäviä ja immersiivisiä virtuaalikokemuksia.
Luodakseen uskottavan kopion oikeasta kappaleesta VR-todellisuuteen, renderointitekniikan täy-
tyy tukea realistisia materiaalin ja valon välisiä vuorovaikutuksia. Tämä pystytään saavuttamaan
hyödyntämällä säteenjäljitystä, joka renderoi virtuaalimaailman tietokoneen tai VR-kypärän näy-
tölle.

VR-sovellukset vaativat reaaliaikaista, korkean virkistystaajuuden stereoskooppista renderoin-
tia luodakseen todentuntuisen ja miellyttävän kokemuksen. Tämä asettaa tiukat vaatimukset sä-
teenjäljitysrenderoijalle, mikä tarkoittaa että säteiden ja pistepilven välisten leikkauskohtien etsimi-
nen täytyy olla tehokasta. Helposti säteenjäljitettävä pinnan globaali rekonstruktio voidaan luoda
esimerkiksi kolmiomallirekonstruktion avulla. Globaali rekonstruktio voi kuitenkin olla laskennalli-
sesti vaativaa ja epätaloudellista, jos osa mallista on katsekulman ulkopuolella tai peitossa. Me-
netelmät, jotka suoraan säteenjäljittävät pistepilvimalleja ilman globaalia pinnanrekonstruktiota,
luovat paikallisen säteenjäljitettävän pinnan vain tarvittaessa.

Tässä opinnäytetyössä kartoitetaan ja vertaillaan eri menetelmiä pistepilvimallien suoraan sä-
teenjäljitykseen ilman globaalia pinnan rekonstruktiota. Eri menetelmiä vertaillaan laskennallisen
asymptoottisen kompleksisuuden avulla. Yhteenvetona todetaan, että pistepilvien suora säteen-
jäljitys voi olla laskennallisesti tehokkaampaa kuin globaalin pinnan rekonstruointi.

Avainsanat: pistepilvi, säteenjäljitys, rekonstruointi, kiihdytysrakenne, renderointiyhtälö

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This thesis was done while working as a research assistant in the CPC-VGA group at the
Computing Sciences unit of Tampere University. The making of the thesis was supported
by the EC-SEL JU project FitOptiVis (project number 783162).

Thank you to both of my supervisors Dr. Markku Åkerblom and Dr. Markku Mäkitalo for
guiding me diligently during this thesis. They gave me insight and motivation to continue
with the thesis subject through all its trials and tribulations.

I would also like to thank Prof. Pekka Jääskeläinen for giving the opportunity to work on
this thesis subject. I hope that the trust he has put in me will come to fruition through this
thesis and the contributions following it.

A big thanks goes to all my colleagues in the CPC-VGA group at Tampere University,
especially Matias Koskela for introducing me to the wondrous world of computer graphics.
To my family, friends, and relatives, I want to express my deepest gratitude for making me
the person capable of facing and conquering even the scariest obstacles in life. Mom,
Dad, and Sohvi, thank you!

Riina, without you I wouldn’t have made it this far. You held the fort when I couldn’t, as
always. Thank you, my love!

Tampereella, 4th November 2019

Petrus Kivi

iv

CONTENTS

1 Introduction . 1

2 Challenges in real-time point cloud rendering . 6

2.1 Intersection testing . 7

2.2 Surface definition . 7

2.3 Advanced lighting effects . 8

3 Mathematical theory . 10

3.1 Set theory . 10

3.2 Metric spaces . 11

3.3 Vector spaces . 11
3.3.1 Vector analysis . 14

3.4 Polynomial functions . 14
3.4.1 Multivariate polynomials . 15
3.4.2 Examples of intersections . 17

3.5 Probability and statistical theory . 18
3.5.1 Distributions . 19
3.5.2 Importance sampling . 19

3.6 Approximation and estimation . 20
3.6.1 Linear interpolation . 20
3.6.2 Weighted average . 21
3.6.3 Least squares methods . 21
3.6.4 Newton’s method . 22

4 Physically based rendering . 23

4.1 Lighting interactions . 23
4.1.1 Bidirectionality . 24

4.2 Object materials . 24
4.2.1 Surface microstructure . 25
4.2.2 Bi-directional surface distribution functions 26

4.3 The rendering equation . 26
4.3.1 Sampling the integral . 27

4.4 Path tracing . 28

5 Efficient point cloud ray tracing . 30

5.1 Surface reconstruction . 31
5.1.1 Mesh generation methods . 31
5.1.2 Moving least squares . 32

5.2 Intersection evaluation . 33
5.2.1 Splatting . 34

v

5.3 Surveyed methods . 35

5.4 Accelerating intersection testing . 38

5.5 Comparing the surveyed methods . 40
5.5.1 Generic ray tracing algorithm . 41
5.5.2 Asymptotic computational complexity 44

5.6 Limitations of the analysis . 51

6 Results . 53

7 Conclusions . 55

References . 57

vi

LIST OF SYMBOLS AND ABBREVIATIONS

· Dot product in Rn

a, b, c,u,v Vector-valued variables

B Number of recursive ray bounces

C Complex numbers

Cm×n Complex-valued m× n dimensional matrices

C−1 The set of piece-wise continuous functions

C0 The set of continuous functions

Cn The set of n-times differentiable functions

O Big O asymptotic complexity

δij Kronecker delta

En Orthonormal basis of Rn

k Number of points in a regularly sampled interval

I Number of iterative steps

K Number of objects within a neighborhood

M Number of pixels on a virtual screen

N Natural numbers

N Number of points in a point cloud

P(X) Probability of outcome X

R Real numbers

Rn n-dimensional Euclidian space

Rm×n Real-valued m× n dimensional matrices

T j
i Execution time of line i in Algorithm j

θ Weighting function R→ R

V An arbitrary vector space

Z+ Non-negative integers

2D Two-dimensional

3D Three-dimensional

AO Ambient occlusion

vii

BRDF Bidirectional reflectance distribution function

BSDF Bidirectional scattering distribution function

BTDF Bidirectional transmittance distribution function

BVH Bounding volume hierarchy

CSM Caustic sample map

EWA Elliptical weighted average

fps Frames per second

GI Global illumination

GPU Graphics processing unit

k-NN k nearest neighbors

LIDAR Light detection and ranging

LOD Level of detail

LTE Light transport equation

MLS Moving least squares

NEE Next event estimation

PBR Physically based rendering

PDF Probability density function

RGB Red-green-blue

RGB-D Red-green-blue-depth

SDF Signed distance function

spp Samples per pixel

1

1 INTRODUCTION

Rendering in computer graphics is the process of producing two-dimensional (2D) images
of a virtual scene onto a monitor. The analogous process in the real world is taking a
photograph: a camera has a small hole and a lens that capture the light bouncing off
or passing through three-dimensional (3D) objects onto a sensor or film. The different
parts of the camera have a certain location and angle with respect to each other and
the world, which determine how the 3D world is projected onto the film or sensor. In
computer graphics rendering, the virtual camera, especially its center, is the abstraction
used for the camera hole or lens through which the light passes. The virtual screen is the
counterpart to the sensor or film of a real camera. The real world camera has the sensor
setup behind the camera hole or lens where as in rendering, the virtual screen is in front
of the virtual camera, which is depicted in Figure 1.1 [49, pp. 5–6].

The rendering pipeline describes the different parts of the process of generating a 2D im-
age of a 3D virtual scene within a single image frame of a continuous stream of rendered
images. A generic rendering pipeline consists of three stages: the application, geome-
try and pixel stages. The application stage sets up the objects and lights within a virtual
scene for the current frame. The geometry stage transforms objects, lights and the virtual
camera into the same coordinate system, then applies the scene lighting to the geometry
of the objects, and projects the objects onto the virtual screen. Lastly, the pixel stage
resolves which projected objects are visible in each pixel and applies a texture color, i.e.,
the main color of an objects to the pixels [4, pp. 11–27].

In this thesis, we mostly focus on the geometry stage, especially the process of lighting
objects and projecting them onto the virtual screen with perspective projection. Figure 1.2
shows the overview of the geometry stage, which encompasses the two main categories
for projecting 3D geometry onto a 2D virtual screen: rasterizing methods and ray tracing
methods. Rasterizing methods iterate through all possibly visible geometry and project
them onto the virtual screen with perspective projection. Lighting is produced on the
possibly visible objects by using approximate shading techniques like Phong shading [4,
pp. 20–22].

Ray tracing methods go through all the virtual screen pixels casting a ray from the virtual
camera through the pixels and resolving either the closest or multiple ray-object inter-
sections in the scene. Lighting can be calculated in a similar fashion to rasterizing with
approximate shading, or by casting more rays from the closest intersection towards the
scene lights and other geometry. Rays casted from the virtual camera center through the

2

Figure 1.1. The conceptual difference between the process of taking a photograph with
a real camera (top) and rendering a 2D image of a virtual object (bottom) is the position
of the sensor or film. In a pinhole camera model, light (black lines) passes through a
pinhole (yellow dot) in both a real and virtual scene, but the sensor or film (short blue
line) is located behind the pinhole whereas the virtual screen (long blue line) is situated
in front of the virtual camera with respect to the scene. This setup makes the photograph
(top right) flipped on both axis and the rendered 2D image (bottom right) appear as seen
by the naked eye.

pixels produces a perspectively correct projection of the 3D scene onto the virtual screen
[49, pp. 4–15].

In the turn of the millennium, the rapid development of dedicated rendering hardware,
namely graphics processing units (GPU), advanced the possibilities of real-time1 render-
ing [4, p. 29]. Design decisions had to be made for good use of the limited hardware
resources, and GPU rendering pipelines started to form into efficient fixed pipelines. To
use the pipeline efficiently assumptions about the basic building blocks of rendering had
to be made. The triangle was established as the rendering primitive of choice, which is
highly prevalent in computer graphics to date. Rendering primitive refers to the lowest
level geometric model from which the objects are constructed in a rendering pipeline.

Point cloud rendering

This thesis focuses on the various methods used for geometry processing in a ray tracing
rendering pipeline for point clouds. Point clouds are a set of points in 3D space, which is
mathematically defined as a set P = {p1, . . . ,pn} with each pi being a point in 3D space.

1In this thesis, real-time refers to rendering systems achieving at least 1 frame per second (fps) on con-
sumer hardware.

3

Figure 1.2. An overview of the rendering pipeline and the geometry stage in particular
are depicted. In the geometry stage, objects in the scene, including the virtual camera,
are first transformed to the same coordinate system. Then, either the lighting is resolved
on the object surfaces or the objects are projected onto the virtual screen first.

Each point may have additional information attached to it such as local point orientation
and color. The mathematical properties of such a set are discussed in Chapter 3 and
applied in Chapter 5.

The point cloud rendering research started in 1985 when Levoy and Whitted suggested
using points as a basic building block for generating 2D images out of 3D virtual objects
[40]. They argued that the increase in the complexity and size of virtual scene models
would favour the use of points instead of triangles in rendering. Before this, triangles
and other polygons arranged in a mesh structure were considered the main rendering
primitive.

During the 2000s, several publications covering new point cloud ray tracing methods
reported the growing interest in point-based rendering methods. It was argued that the
growing complexity of object geometry was leading to triangle primitives being projected
onto smaller areas than one pixel on the virtual screen, which was wasteful compared to
using points [2, 55]. Furthermore, the availability of high detail point cloud models from
3D scanning devices afforded the possibility of high quality direct rendering of points
without producing a connected set of triangles or other global surface reconstructions
prior to rendering [63]. The subject of surface reconstruction and a survey of the different
methods for efficient point cloud ray tracing are presented in Chapter 5.

Ray tracing

In 1980, Whitted improved the early version of ray casting into an alternative rendering
method for rasterization known as Whitted ray tracing [65]. Instead of projecting all po-
tentially visible models from the 3D scene onto the screen in rasterized graphics, in ray

4

tracing the idea is to follow single light rays and their interactions in the virtual scene and
use the information to deduce the color of each virtual screen pixel. Whitted’s ray trac-
ing algorithm only considered direct lighting (shadow rays), perfect reflections (reflection
rays) and refractions (refraction rays). The ray tracing algorithm is discussed in Chapter
4.

The benefit of ray tracing, compared to traditional rasterizing, is the more realistic mod-
elling of light interactions in a scene. Ray tracing has the potential to render images of
virtual scenes that look photorealistic. Since Whitted, ray tracing algorithms have evolved
to support more global effects of light. An advanced version of ray tracing, path trac-
ing, approximates the complex paths of single light rays in a scene. Traditional Whitted
ray tracing considers only single rays with predetermined ray paths where as path trac-
ing extends the ray paths by stochastically generating new directions for the rays. This
produces photorealistic effects like soft shadows, reflections and global illumination (GI).
However, it is computationally impractical to follow the path of each individual light ray
in a scene, thus only a subset of light rays are sampled and used as a representation
of the contribution of all rays to the final image [4, pp. 443–445]. This is further dis-
cussed in Chapter 4. Furthermore, in Section 3.5, we discuss the mathematical theory of
probability, distributions and sampling.

Even though the ray tracing technique has been available for more then half a century,
the use of high quality ray tracing in a real-time rendering pipeline has become plausible
only a few years ago [36, 56]. Real-time ray tracing pipelines can generally afford only a
few samples per pixel (spp), thus the produced noisy rendered images have to be filtered
in a suitable manner. The limited sample budget is due to the expensive nature of finding
an intersection between a ray and a virtual scene consisting of up to hundreds of millions
of rendering primitives [4, p. 818].

To ease the search for the closest or any intersection hierarchical data structures have
been utilized [4, pp. 817–818]. These methods are usually referred to as acceleration
structures. The main idea in any acceleration structure is to divide the virtual scene
into relevant sub-sections which can be traversed. This is illustrated in Figure 1.3. The
traversal phase consists of deciding whether it is possible that the ray has passed through
a certain area of the scene or not. This means recursively sub-dividing the geometry into
easily intersectable objects that encapsulate the finer detailed geometry and models.
Usually these data structures lower the asymptotic complexity of intersection testing from
O(n) to O(log n) for each individual intersection test [4, p. 819].

Structure of the thesis

This thesis aims to answer the following research questions:

• Is it possible to ray trace point clouds directly in real-time without producing an
explicit global surface reconstruction?

5

Figure 1.3. The closest intersection between a viewing ray (solid line from the eye) and
the face of an octree structure is depicted. An octree hierarchically sub-divides a subset
of 3D space into eight equally sized cubes at multiple levels recursively. Intersection is
first tested between the viewing ray and the top level (outer black cube) or level-0. If
an intersection is found, then the next lower level (inner black cubes) or level-1 is tested
for intersections, and the intersection testing is continued iteratively inside the intersected
level-1 cube (red cube) until the lowest level of the octree structure is found (yellow cube).

• What are the benefits (if any) of ray tracing point clouds directly?

• What are computationally the most efficient methods for point cloud ray tracing?

The methodologies used are surveying the scientific literature for methods on efficient
point cloud ray tracing and analyzing the efficiency of the methods by asymptotic com-
plexity analysis. Additionally this thesis gives a mathematical perspective to the subject
of rendering point clouds in general.

We discuss and review the challenges in point cloud rendering in general and ray tracing
point based models in specific in Chapter 2. Mathematical theory and notation used in this
thesis are established in Chapter 3. Techniques for photorealistic and physically based
rendering are reviewed in Chapter 4 with the main focus on ray tracing techniques. In
Chapter 5, we survey methods for efficient ray tracing of point clouds and compare them
to surface reconstruction methods with asymptotic complexity analysis. The results of the
method comparison are summarized and discussed in Chapter 6. Finally, we conclude
the thesis and discuss its limitations and possible future work in Chapter 7.

6

2 CHALLENGES IN REAL-TIME POINT CLOUD
RENDERING

The area of point cloud rendering has been well researched [26, p. 1]. The challenge
has been how to efficiently represent points as primitives and how to project them onto a
monitor with high visual quality. Already in the early days of real-time computer graphics
Levoy and Whitted argued that the rapid growth in model complexity would lead to com-
putational challenges [40]. They suggested the use of points instead of polygons, such
as triangles, as rendering primitives. Their argument was that triangles and other poly-
gon primitives would be projected onto sub-pixel areas on the monitor. In these cases a
triangle primitive could be just as well represented by a single point. Since the publication
by Levoy and Whitted, various methods for making point cloud rendering efficient have
been published, which are discussed and surveyed in Chapter 5.

One key challenge in point cloud rendering compared to polygonal model rendering is
that no explicit surface representation exists in point based geometry. This means that
the surface represented by points has to be deduced by the point locations and possibly
other attributes so that it can be visualized. Surface reconstruction methods for point
based models have been widely proposed to tackle the problem [11]. However, most of
the reconstruction methods surveyed by Berger et al. are not aimed at real-time recon-
struction and thus are not necessarily applicable to real-time rendering.

Research in particle-based simulation has been actively interested in generating real-
time visualizations of their simulations [52]. A simulation particle can be abstracted as
a point with shape, volume, and acting forces, thus point based rendering methods can
be utilized for visualization purposes. The challenge is similar to point cloud rendering in
general: how can simulations with millions or billions of particles be rendered or visualized
efficiently. Recently, efficient solutions to the problem of increasing complexity have been
applied, namely hierarchical level-of-detail (LOD) systems and acceleration structures,
as well as some approximate solutions to improve realistic lighting and the perception of
depth like ambient occlusion (AO) [52]. However, these methods have been developed
earlier in the field of computer graphics and they are further discussed in the context of
physically based rendering (PBR) and efficient point cloud ray tracing in Chapters 4 and
5, respectively.

Compared to PBR, particle simulation visualization is more functional, i.e., it is more
interested in generating illustrative renderings that highlight some parts of a process in

7

molecular or atomic level than producing accurate color and lighting effects on point cloud
models. In this thesis the particle-based visualization methods are not considered further
and the reader is referred to [52] for a state-of-the-art survey on the subject.

2.1 Intersection testing

A raw point cloud model doesn’t explicitly have a surface to intersect because it is a
collection of points without connectivity information. Wald et al. [63] pointed out that
because there is a finite number of points and an infinite number of locations in any
subset of 3D space, the probability of a randomly sampled ray (line) to pass through a
point in 3D space is zero. This is further discussed in Section 3.5.

There are several approaches to making intersection possible between a ray and a point
cloud. Rays can be expanded from mere lines into objects with volume or, conversely,
points can be enlarged to have surface area [63]. Effectively, this means using geomet-
rical objects like cylinders [55] to represent the ray as an object with volume or expand
points into volumes or surfaces to generate, e.g., discs [68].

An intersection between a ray and an object surface can be solved analytically in a closed
form solution or iteratively with numerical methods. Numerical and iterative methods
are discussed in Section 3.6. The analytical methods are usually restricted to surfaces
defined by polynomials of 4th order or lower because there exists no general closed form
solutions to the roots expressed by the parameters of the high order polynomial [53].
Intersection testing as a solution to a multivariate polynomial equation is discussed in
Section 3.4.

Iterative intersection methods for point clouds, such as [14, 63], start with an initial guess
of the intersection usually generated by a simple bounding representation of the surface
patch to be intersected. The initial guess is then fed back to the algorithm to produce
a more refined approximation of the intersection. When some criterion for the accuracy
of the approximation is achieved, the iteration is stopped and the current intersection
is reported. The usefulness of an iterative method in a real-time application is highly
dependent on the iteration count. These algorithms usually guarantee some maximum
iteration count or exit after some amount of iterations to stay in a predefined timing budget
to achieve real-time frame rates.

2.2 Surface definition

A point cloud surface can be defined in many ways (Chapter 5). The problem of recon-
structing a surface out of point-sampled geometry is analogous to the surface definition
itself. As discussed previously, surface reconstruction has been a time consuming pro-
cess and real-time applications haven’t been possible [11]. However, some real-time

8

surface reconstruction methods have been proposed [42, 46, 47], which utilize the read-
ily available red-green-blue-depth (RGB-D) imaging capabilities of modern handheld de-
vices and medical imagery. However, these methods only produce the reconstruction,
which still leaves the rendering to be done. Many surface reconstruction methods use
approximation and estimation methods, which are further discussed in Section 3.6.

Surface definition is tightly linked with intersection testing because the defined surface
has to be intersected when ray tracing. The traditional surface representation for real-
time rendering of point clouds has been the splatting technique [54, 68], in which points
are represented by flat linear surfaces like discs, which can be elliptically shaped. Further-
more, splats can be oriented by normal directions or be aligned with the viewing direction,
where the trade-off is between image quality and rendering speed. More advanced splat-
ting techniques define the size of elliptical discs by the local density [51] or curvature
[41] of the point cloud to produce a more faithful representation of the sampled surface.
Splats produce a piece-wise continuous and linear definition of the surface. Furthermore,
splats are simple to intersect (see Section 3.4) making them a viable representation for
real-time ray tracing of point clouds.

2.3 Advanced lighting effects

After finding an intersection between a ray and a surface, the lighting and color informa-
tion at the intersection point have to be evaluated. Rasterization methods traditionally
rely on approximate shading to produce diffuse and specular effects as well as shad-
ows on surface primitives projected on to the screen, which produces various amounts of
approximation error [4, p. 433].

Instead of using the traditional methods of rasterizing point clouds, it is possible to use
more sophisticated rendering techniques to produce realistic lighting effects on point
cloud models. The traditional Whitted ray tracing considers the effect of reflecting and
refracting light. Furthermore, path tracing is an all purpose method of recursively produc-
ing effects of real life GI in various lighting conditions. These kind of effects are important
in photorealistic rendering and PBR, which are commonly used in the movie industry [13,
17].

Generating advanced lighting effects with ray tracing is costly [4, p. 445]. Efficient meth-
ods for ray tracing and path tracing have been well researched [62] and many publications
in point cloud ray tracing have also been published (Section 5.3). Nowadays, real-time
ray tracing is mostly limited to a strict ray budget which means that only a few rays can be
traced through each virtual pixel, and furthermore, the scattered light at each ray-surface
intersection can only be sampled a limited number of times [36, 56]. It is important that
the rays that will be sampled are used efficiently, for example, by sampling directions
with the most impact on the final color of a pixel. This equates to taking representative
samples of an underlying probability distribution and approximating the mean of the dis-

9

tribution based on a weighted sum of the samples. See Section 3.5 for further details on
distributions and sampling.

10

3 MATHEMATICAL THEORY

In this chapter we define the necessary mathematical notations and properties needed in
point cloud ray tracing and path tracing. We present the relevant results from set theory,
vector and matrix calculus, probability and statistical theory, approximation and estimation
theory, and polynomial functions and root finding. These are later applied in Chapters 4
and 5 to rendering in general and efficient ray tracing of point clouds in specific.

3.1 Set theory

A set is a collection of elements, namely

A = {a1, a2, . . . , an},

where ai, i = 1, . . . , n are elements. Set A is said to be finite if n ∈ N. If n → ∞, then A

is said to be infinite and by construction numerable. We can also define a set consisting
of elements satisfying some property:

A = {x : F (x)}, (3.1)

where A is the set to be defined and F is a formula which is satisfied by an element x of
the set. As stated in [60, p. 105] this notation means logically x ∈ A ⇔ F (x), where the
binary relations ∈ and /∈ indicate the membership and non-membership of an element to
a set, respectively.

Basic set relations include equality (=) and subset (⊆) which are defined in the following
way:

A = B ⇔ (x ∈ A⇔ x ∈ B) (3.2)

A ⊆ B ⇔ (x ∈ A⇒ x ∈ B). (3.3)

11

3.2 Metric spaces

A metric space defines the notion of "distance" for a set of elements. A metric is defined
in the following way [20, p. 27]:
Definition 3.1. A metric is a mapping d : E ×E → R on the elements of a set E with the
following properties for all a, b, c ∈ E:

(i) d(a, b) ≥ 0

(ii) d(a, b) = 0⇔ a = b

(iii) d(a, b) = d(b, a)

(iv) d(a, c) ≤ d(a, b) + d(b, c)

The metric attached to the point cloud set P defines the abstract concept of distance
which will be further developed into a norm in a vector space.

3.3 Vector spaces

We define a vector space in n-dimensional Euclidian space Rn, following the definitions
in [43, pp. 11–17].
Definition 3.2. A non-empty subset V ⊆ Rn together with addition and scalar multipli-
cation is called a vector space if for all elements a, b, c ∈ V and scalars α, β ∈ R the
following hold:

(i) (a+ b) + c = a+ (b+ c)

(ii) α(βa) = (αβ)a

(iii) a+ b = b+ a

(iv) α(a+ b) = αa+ αb

(v) a(α+ β) = aα+ aβ

(vi) ∃ 0 ∈ Rn : a+ 0 = a

(vii) ∃ −a ∈ Rn : a+ (−a) = 0

The term vector is adopted to mean the element of a vector space i.e. an element of a
set which completes definition 3.2 with appropriate addition and scalar multiplication.
Remark 3.3. The set Rn with element-wise addition and scalar multiplication is a vector
space.

Definition 3.2 is an abstract construction of a vector space over the field of real numbers.
It is convenient to introduce a way of constructing a vector space from a basis. The
concept of linear dependence is needed.

12

Definition 3.4. The set {ai}i=1,...,m ⊂ V is linearly dependent if there exists αi ∈ R, i =
1, . . . ,m and at least one αi ̸= 0 s.t.

m∑
i=1

αiai = 0. (3.4)

Conversely, if the equation (3.4) holds only with αi = 0 for all i, then we say that the set
of vectors is linearly independent.
Definition 3.5. The set B = {bi}i=1,...,m is a basis of a vector space V ⊃ B if for all v ∈ V
there exists αi ∈ R such that

v =
m∑
i=1

αibi (3.5)

and B is linearly independent.

By definition we require that the basis of a given vector space is linearly independent and
thus the zero element cannot belong to the basis of any vector space.

The basis of a specific vector space V can be denoted BV for clarity. The representation
of equation (3.5) is unique in a given basis, i.e., the coefficients αi are unique for a given
element of V. We omit the full proof but refer to [27, pp. 193–194] for a justification.
Finally we show that the standard basis of the vector space Rn is truly a basis. We use
the notation from [27, p. 195], particularly the Kronecker delta:

δij =

⎧⎨⎩1 if i = j

0 otherwise.

Theorem 3.6. The set {ei}i=1,...,n, ei = (δ1i, . . . , δni), is a basis of Rn.

Proof. Clearly {ei}i=1,...,n ⊂ Rn. Let v = (v1, . . . , vn) ∈ Rn. Now we have
∑n

i=1 viei =∑n
i=1 vi(δ1i, . . . , δni) = (v1, 0, . . . , 0) + · · · + (0, . . . , vn) = (v1, . . . , vn) = v so we have

coefficients to satisfy Equation (3.5). Suppose {ei}i=1,...,n is linearly dependent so we
have

∑m
i=1 αiei = 0 and there exists i s.t. αi ̸= 0 for some i = j = 1, . . . , n. Now∑m

i=1 αiei = (α1, 0, . . . , 0)+· · ·+(0, . . . , αj , . . . , 0)+· · ·+(0, . . . , αn) = (α1, . . . , αj , . . . , αn).
Because αj ̸= 0 also (α1, . . . , αj , . . . , αn) ̸= 0 which contradicts linear dependency. Thus
{ei}i=1,...,n is linearly independent.

We can express the whole Rn vector space with the linear combination of the basis
{ei}i=1,...,n which we denote with En.

Finally a definition for a norm in a vector space is introduced. With this we can define
a normed vector space which is the space that is used as the starting point for vector
analysis. It can be shown that a norm is a metric and furthermore a normed vector space
is a metric space. We use a definition of norm adapted from [20, p. 88] and [43, p. 22].
Definition 3.7. Let V ⊆ Rn be a vector space. The mapping ∥ · ∥ : V→ R is a norm if for
all a, b ∈ V and α ∈ R the following hold:

13

(i) ∥a∥ ≥ 0

(ii) ∥a∥ = 0⇔ a = 0

(iii) ∥αa∥ = |α|∥a∥

(iv) ∥a+ b∥ ≤ ∥a∥+ ∥b∥.

A vector space with a norm is called a normed vector space. The vector space Rn

together with the Euclidian norm

∥x∥2 =

√ n∑
i=1

x2i , (3.6)

is a normed vector space. The Euclidian norm satisfies the properties 3.7 (i), (ii) and (iii),
and the triangle inequality property 3.7 (iv) follows from the First Minkowski’s inequality
[19, p. 98]. From now on, we will use the general norm notation ∥ · ∥ to refer to the
Euclidian norm in Equation (3.6) and state explicitly if we are using some other norm.

We define the dot product [37, pp. 408–410].
Definition 3.8. The operator · : Rn × Rn → R defined as

·(u,v) := u · v =

n∑
i=1

uivi,

where u = (u1, . . . , un) ∈ Rn and v = (v1, . . . , vn) ∈ Rn, is called the dot product.

Even though the dot product is defined in n-dimensional vector space, it has an inter-
esting property in three-dimensional space. More accurately the property is on the two-
dimensional plane which is spanned by the vectors u and v. The smallest angle α ∈ [0, π]

between two vectors in Rn on the plane that the vectors span is linked to the dot product
by the identity

u · v = ∥u∥ ∥v∥ cosα. (3.7)

Sometimes the definition of angle is given as a modified version of (3.7) in the form

cosα =
u · v
∥u∥ ∥v∥

, (3.8)

which gives a standard notion of angle in higher dimensions. If for u,v ̸= 0 and u · v =

0, then cosα =
π

2
and we say that u and v are orthogonal or perpendicular to each

other, denoted u ⊥ v. Furthermore, if additionally ∥u∥ = ∥v∥ = 1, then we call them
orthonormal. Now we can show that the basis described in Theorem 3.6 for n = 3,
namely E3, is an orthonormal basis in R3.
Theorem 3.9. E3 ⊂ R3 is an orthonormal basis.

Proof. Equation (3.5) establishes that E3 is a basis, e1 · e2 = e2 · e3 = e3 · e1 = 0 and

14

∥e1∥ = ∥e2∥ = ∥e3∥.

The elements of E3 define the canonical x, y and z axis in a Cartesian Coordinate system.

3.3.1 Vector analysis

We define the gradient of a multi-variable scalar valued function f : Rn → R denoted
f(x1, . . . , xn) := f(x) in the domain of Euclidian space Rn [37, pp. 446–450].
Definition 3.10. The gradient of a scalar valued function f : Rn → R is

∇f(x) =
(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)
,

where
∂f(x)

∂xi
is the partial derivative with respect to variable xi for any i. This is evaluated

by differentiating f(x) with respect to xi, while treating the other variables xj , j ̸= i as
constants in the differentiation. The gradient ∇f(x) at point x ∈ Rn is a vector in the
domain of f that points to the direction of greatest increase in the value of f(x) at a small
neighborhood of x.

For the domains R3 and R2 with the Cartesian coordinates x, y and z as their basis, the
gradients are

∇f(x, y, z) =
(
∂f(x, y, z)

∂x
,
∂f(x, y, z)

∂y
,
∂f(x, y, z)

∂z

)
∇f(x, y) =

(
∂f(x, y)

∂x
,
∂f(x, y)

∂y

)
,

respectively.

3.4 Polynomial functions

Polynomial functions can be categorized according to their degree and number of vari-
ables. Informally the degree of a polynomial describes the expressiveness of the function,
i.e., how many points are needed to represent the polynomial uniquely. For example a
polynomial function p(x) = ax3 + bx2 + cx+ d is of degree 3 and is defined uniquely by 4

points.

Another important categorization for polynomials and functions is the form they are rep-
resented in. The explicit form expresses a function with polynomial variables and their
coefficients, and it can be geometrically interpreted by setting the variables and the func-
tion value as coordinates in space. The parametric form makes the space and coordi-
nates explicit by setting each coordinate dependent on some polynomial with bounded
variables and their coefficients. Finally the implicit form defines a set of points by set-

15

ting a condition that an implicit polynomial has to satisfy. Examples of these forms are
presented later.

A single variable real-valued polynomial function p : R→ R is of the following explicit form
[10, p. 1]:

p(x) =
n∑

i=0

aix
i,

where ai ∈ R for i = 1, . . . , n. The degree of p is n, if an ̸= 0. The roots of a single
variable polynomial cannot be solved analytically if the degree of the polynomial is larger
than 4 [10, p. 126].

In this section we consider real valued polynomials with up to two variables in explicit
form and three in implicit form. These polynomials are of special interest because they
define a surface in R3. Surfaces can be represented geometrically in R3, thus they have
an application in computer graphics. Finding the intersections and distances between
lines and surfaces are used for generating projected images in R2 of surfaces in R3.

3.4.1 Multivariate polynomials

A general formulation of a multivariate real valued polynomial can be given as [50, p. 148]

p(x1, . . . , xn) =
∑
ki≤m

ak1...knx
k1
1 . . . xknn ,

where the sum is over all possible combinations of ki ≤ m ∈ N, i = 1, . . . , n and m is the
highest degree of a single monomial term. Restricting the number of variables up to two
yields bivariate polynomials of the form

p(x, y) =
∑

α,β≤m

aαβx
αyβ , (3.9)

where α, β ∈ N.

Setting z = p(x, y) in a Cartesian coordinate system yields a definition for a surface in R3.
For example, take z = x2 + y2 + xy and x, y ∈ [−1, 1], which is presented in Figure 3.1.

Parametric form

The parametric form of a polynomial function defines the geometric interpretation of the
function explicitly. Each coordinate parameter is expressed by variables that connect the
parameters. For a two variable polynomial in R3 the form is expressed in the following
way:

16

Figure 3.1. A polynomial surface intersected by a ray in R3. The ray (blue line) intersects
the polynomial surface at two points (red crosses) which are in bounds of the ray origin
(blue square) and end point (blue triangle).

p(u, v) =

⎡⎢⎢⎢⎣
px(u, v)

py(u, v)

pz(u, v)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∑

α,β≤mx
aαβu

αvβ∑
α,β≤my

bαβu
αvβ∑

α,β≤mz
cαβu

αvβ

⎤⎥⎥⎥⎦ ,

where aαβ , bαβ , cαβ ∈ R, u, v ∈ R and mx,my,mz ∈ N are the degrees of the polynomials
px, py, pz, respectively.

The parametric form of a line segment in R3 is

[rx(t), ry(t), rz(t)]
T := r(t) = o+ dt = [ox + dxt, oy + dyt, oz + dzt]

T , (3.10)

where t ∈ [a, b] ⊂ R and o,d ∈ R3 are the starting point and direction of the line segment,
respectively. This is used as the abstraction for a ray in the rest of the work, thus it is
referred to as a ray from now on and the interval is denoted [a, b] := [tmin, tmax].

Implicit form

Setting a polynomial to fulfill a condition or equation defines the implicit form of a polyno-
mial function. For surface definitions in R3 we restrict ourselves to three variable polyno-
mials with the implicit function p : R3 → R with the surface points satisfying the zero-level
function, namely

17

p(x) = p(x, y, z)
(3.9)
=

∑
α,β,γ≤m

aαβγx
αyβzγ = 0,

where x = [x, y, z] ∈ R3 defines a surface in R3. Transforming a polynomial from explicit
form to implicit form is straight forward but the converse is necessarily not.

Let us consider the implicit form of a plane s ∈ R3. For a plane with a vector n orthogonal
to the plane and a point p on the plane, the implicit function s(x) defining all the points x

on the plane is given by

s(x) = n · (x− p) = 0⇒ x ∈ S. (3.11)

By taking the ray r(t) from Equation (3.10), evaluating s(r(t)) and solving for t we get

t× =
n · (p− o)

n · d
∧ t× ∈ [tmin, tmax] ⊂ R⇒ r(t×) ∈ s, (3.12)

where t× is the value of t at the intersection. If n · d = 0, then the ray is parallel to s and
there is no intersection between the ray and the plane, i.e., t× /∈ R.

Equation (3.12) is a slightly different derivation than in [4, p. 966], where t× = (−d − n ·
o)/(n ·d). However, by setting d = −(n ·p) they define the same plane and the equations
are equivalent.

3.4.2 Examples of intersections

We present two examples of ray-surface intersections important for point cloud ray trac-
ing. These include intersections with second order polynomial surfaces and spheres.

Polynomial surface patch

Let’s examine the intersection between a ray r(t) and a surface s defined by a second
order polynomial of a form s(x, y) = z = a1x

2+ a2y
2+ a3xy+ a4, where a1, a2, a3, a4 ∈ R,

x ∈ [xmin, xmax] and y ∈ [ymin, ymax]. Place the ray parameters from Equation (3.10) to
x, y and z variables to obtain

oz + dzt = a1(ox + dxt)
2 + a2(oy + dyt)

2 + a3(ox + dxt)(oy + dyt) + a4.

Solving for t gives us two roots

t =
−3dxoy + dz − 3dyox − 2a1dxox − 2a2dyoy ±

√
D

2(a1d2x + 3dxdy + a2d2y)
, (3.13)

18

where

D =d2z + 9d2xo
2
y + 9d2yo

2
x − 12a4dxdy + 12dxdyoz − 6dxdzoy − 6dydzox − 4a1a4d

2
x

− 4a2a4d
2
y + 4a1d

2
xoz + 4a2d

2
yoz − 18dxdyoxoy − 4a1a2d

2
xo

2
y − 4a1a2d

2
yo

2
x

− 4a1dxdzox − 4a2dydzoy + 8a1a2dxdyoxoy.

The ray and the surface patch intersect, if t ∈ [tmin, tmax] ⊂ R, ox + dxt ∈ [xmin, xmax]

and oy + dyt ∈ [ymin, ymax].

For example, take the surface z = x2 + y2 + xy, x, y ∈ [−11] and r(t) = [−1,−1,−1]T +
1√
3
[1, 1, 1]T t. By Equation (3.13) we get t ≈ 1.73 or t ≈ 2.31, and the intersection points

[0, 0, 0]T and [
1√
3
,
1√
3
,
1√
3
]T , which can be seen in Figure 3.1.

Sphere

Let a sphere be defined by its implicit function f(x) = ∥x− c∥ − r2 = 0, where c ∈ R3 is
the sphere center and r its radius. Now by setting f(r(t)) = 0 and solving for t we find
the possible intersections

t× = −d · (o− c)±
√
D, (3.14)

where D = (d · (o − c))2 − ∥o − c∥2 − r2 [3, p. 739]. From the equation we see that
if D < 0, D = 0, or D > + we have 0, 1 or 2 intersections, respectively. In the double
intersection case, we can choose the smaller t× as the closest intersection.

3.5 Probability and statistical theory

We follow the definition of probability from [12, pp. 329–344]. For a random variable x, the
set of all possible outcomes Ω is called the sample space. The probability of x exhibiting
an outcome X ⊆ Ω is measured by the probability P(x = X) := P(X), where P has the
following properties:

(i) P(X) ≥ 0

(ii) P(Ω) = 1

(iii) P
(∞⋃

i=1
Xi

)
=

∞∑
i=1

(P(Xi)),

where X ⊆ Ω is any outcome and Xi ⊆ Ω are disjoint sets, i.e., Xi ∩Xj = ∅, i ̸= j.

19

3.5.1 Distributions

A probability density function (PDF) expresses the probability density for the different out-
comes of a random variable x. A Gaussian function G : R → R is the continuous PDF of
a normally distributed random variable x ∼ N (µ, σ2) defined as

G(t) = 1√
2πσ2

e
−
(t− µ)2

2σ2 , (3.15)

where t is the outcome of x and µ, σ2 ∈ R are the mean and variance of the normal
distribution, respectively [21, pp. 82–99]. To derive a probability measure for x, we
integrate G over the interval [−∞, x] to obtain

P(x < x) =

∫ x

−∞
G(t) = 1√

2πσ2

∫ x

−∞
exp−(t− µ)2

2σ2
dt, (3.16)

where P(x < x) is the probability of x having an outcome smaller than x [48, p. 103].
Equation 3.16 satisfies the properties of a probability measure.

A continuous joint bivariate density function fX,Y (x, y) [21, p. 211] for random variables
X and Y is defined as

P((X,Y) ∈ B) =

∫ ∫
B

fX,Y (x, y)dydx, (3.17)

where P((X,Y) ∈ B) is the probability of (X,Y) being on some domain B ∈ R2. By
taking B := Ω to be the unit sphere at origin, namely points (x, y) satisfying x2 + y2 = 1

and denoting (X,Y) := l and dydx := dl we obtain the density function f(l) over the unit
sphere

P(l ∈ Ω) =

∫
Ω

f(l)dl, (3.18)

where
∫
Ω

stands for the double integral over the unit sphere.

3.5.2 Importance sampling

Given a function f : R2 → R, x ∈ R2, and a probability density function p : R2 → R, we
can estimate the integral over the domain Ω ⊆ R2 by∫

Ω
f(x)dx = E

{
f(x)

p(x)

}
≈ 1

n

n∑
i=1

f(Xi)

p(Xi)
, (3.19)

where E is the expected value and Xi are uncorrelated samples drawn from the distri-

bution of the density function p. The estimate in Equation (3.19) has a variance of
σ2

N
,

20

where σ2 is the variance of
f(x)

p(x)
[30, p. 854]. We use this result in Section 4.3.1 to derive

an importance sampled version of the rendering equation.

3.6 Approximation and estimation

This section introduces the approximation and estimation methods used in Chapter 5. In-
terpolation methods, weighted average, least squares estimates, and iterative algorithms
for numeric estimation are presented.

3.6.1 Linear interpolation

Let f : R→ R and x ∈ [x1, x2] ⊆ R. For two evaluation points (x1, f(x1)) and (x2, f(x2)),
the Lagrange formula defines a first order polynomial

p1(x) =
(x2 − x)f(x1) + (x− x1)f(x2)

x2 − x1
, (3.20)

which approximates the linearly interpolated value of f(x) ≈ p1(x) [8, p. 134].

Bilinear interpolation extends the linear interpolant to R2. Let g : R2 → R and a =

(x, y) ∈ R2 be bounded by the corner points x1, x2, y1, y2 ∈ R2 such that x ∈ [x1, x2] and
y ∈ [y1, y2]. The bilinear interpolant at point x is defined as

q1(a) =
1

∆x∆y

(
(x2 − x)

(
(y2 − y)f(x1, y1) + (y − y1)f(x1, y2)

)
+ (x− x1)

(
(y2 − y)f(x2, y1) + (y − y1)f(x2, y2)

))
,

where ∆x = (x2 − x1), ∆y = (y2 − y1), and q1(a) ≈ g(a) [3, p. 159].

Lastly, trilinear interpolation linearly approximates a function value in R3. Let h : R3 → R
and b = (x, y, z) ∈ R3 be bounded by the corner points x1, x2, y1, y2, z1, z2 ∈ R3 such that
x ∈ [x1, x2], y ∈ [y1, y2] and z ∈ [z1, z2]. Now,

r1(x) =
1

∆x∆y∆z

(
(x2 − x)

(
(y2 − y)

(
(z2 − z)f(x1, y1, z1) + (z − z1)f(x1, y1, z2)

)
+(y − y1)

(
z2 − z)f(x1, y2, z1) + (z − z1)f(x1, y2, z2)

))
+ (x− x1)

(
(y2 − y)

(
(z2 − z)f(x2, y1, z1) + (z − z1)f(x2, y1, z2)

)
+(y − y1)

(
(z2 − z)f(x2, y2, z1) + (z − z1)f(x2, y2, z2)

)))
,

where ∆x = (x2 − x1), ∆y = (y2 − y1), ∆z = (z2 − z1), and r1(b) ≈ h(b) is the linear
approximation in R3 [9].

21

3.6.2 Weighted average

We use the definitions in [44] to formulate the weighted average. For a set of elements
A = {a1, . . . , ak} ⊆ R, the arithmetic weighted mean is∑k

i=1wiai∑k
i=1wi

,

where wi ∈ R is a weight corresponding to each ai. Instead of an enumerated set of
weights, we can have a continuous weighting function θ : R → R which maps any a ∈ R
to a corresponding weight. This yields another form for the arithmetic weighted mean,
namely ∑k

i=1 θ(ai)ai∑k
i=1 θ(ai)

.

Using the Euclidian norm defined in Equation (3.6), we define the weighted mean dis-
tance from a set of points P = {p1, . . . ,pk} to a given point x ∈ Rn as∑k

i=1 θ(∥pi − x∥)∥pi − x∥∑k
i=1 θ(∥pi − x∥)

. (3.21)

Furthermore, by substituting the latter instance of ∥pi − x∥ in the numerator in Equation
(3.21), we obtain the distance weighted average of the point P locations at point x, i.e.,∑k

i=1 θ(∥pi − x∥)pi∑k
i=1 θ(∥pi − x∥)

. (3.22)

3.6.3 Least squares methods

Least squares methods are methods of minimizing the squared distance between a
model and data. Least squares can be seen as a problem of fitting a model to data.
The minimization problem can be subject to some constraints. We consider the least
squares problem with the Euclidian norm [8, pp. 204–205].

The basic form of a least square problem is the following: find the parameters of the
function f : Rn → Rn such that

∥f(x)− x∥2 =
n∑

i=1

(f1(x1)− x1)
2 = (f(x)− x)T (f(x)− x),

is minimized. The minimization problem with the Euclidian norm is subject to finding
the roots of the gradient with regards to the function f , namely the solutions of the the
following equation:

22

d∥f(x)− x)∥2

df
=

(f(x)− x)T (f(x)− x)

df
= 0.

3.6.4 Newton’s method

Let f : R → R be a Cn, n ≥ 1 continuous function, thus f ′(x) exists for all x ∈ R [8, p.
58]. In order to find a root α for f(α) = 0, an initial guess x0 close to the root is taken. An
iterative estimate

xn+1 = xn −
f(xn)

f ′(xn)
, (3.23)

is the next estimate closer to the root α when some conditions are met. If there exists a
neighborhood of α where f(x), f ′(x), and f ′′(x) are continuous, and f ′(α) ̸= 0, then with
an initial guess x0 sufficiently close to α, the iterates in Equation (3.23) have a quadratic
order of convergence, i.e., for every iterate there exists c ∈ R+ such that ∥α − xn+1∥ ≤
c∥α − xn∥2 [8, pp. 56, 60–61]. We omit the exact definition of sufficiently close and
refer to [8] for further discussion on the initial guess x0. Newton’s method can be trivially
extended to consider intersections between two functions f(x) and g(x) by setting h(x) =

f(x)− g(x) and solving α for h(α) = 0.

We extend the Newton’s method further to R3 by considering the intersection between a
ray r : R → R3 in parametric form r(t) = o + dt and a surface S. The surface is defined
by a signed distance function s(p) indicating the shortest projected distance of any point
p ∈ R3 to a tangent plane of the surface with unit normal nT (x). These define a local
surface plane near p with the implicit form fp(x) = nT · (x− p) + s(p) = 0, where x is a
point on the surface plane.

By solving fp(r(t)) = 0 for t we get t =
nT (p) · (p− o)− s(p)

nT (p) · d
, which gives us the value of

t at the intersection between the ray r(t) and the tangent plane fp(x) = 0. We formalize
this procedure into the form of Equation (3.23): given an initial estimate t0 along the ray
r(t0) = p0 near an intersection α at value tα, the iterative estimate is given by

tn+1 =
nT (r(tn)) · dtn − s(r(tn))

nT (r(tn)) · d
, (3.24)

where n ∈ R and tn+1 is the next estimate closer to tα.

23

4 PHYSICALLY BASED RENDERING

The basis of physically based rendering (PBR) is to model the behaviour of light in a
virtual scene as accurately as possible. The scene can consist of a variety of geome-
try, materials and lights which makes modelling light interactions in the scene complex
[62]. Lighting interactions in PBR are modelled by the behaviour of light on or in different
materials at different angles. In real-time applications this comes down to approximat-
ing the behaviour as faithfully as possible. This means using numerical approximations,
statistical and stochastic sampling, and error, variance and bias control to find the best
approximate solutions in the real-time rendering budget [3, pp. 407–417].

4.1 Lighting interactions

The abstraction for light in PBR is a ray carrying lighting information of a set of light waves
[4, p. 293–297]. It may be a light ray with certain wavelength if considering spectral
rendering [49, pp. 261–263], but generally it is a light ray with direction and light intensity
in some color space like in the red-green-blue (RGB) color space. Another abstraction
needed is the point of interaction between the light ray and the participating surface or
volume material. This material defines how a light ray interacts with the surface or volume,
e.g., how the light ray reflects off a surface or refracts inside a volume.

Incoming and outgoing directions of a light ray have to be known to evaluate the light-
surface interaction. The amount of refracted light is dependent on the angle of the light
ray hitting the surface with transparent objects [49, pp. 442–446]. This is also true for
opaque objects where the incoming angle or incident angle of the light ray affects the
intensity of the reflective light component. The phenomenon is observable in the Fresnel
effect : if light hits an opaque surface in a small incident angle (grazing angle) much of
the light is almost perfectly reflected even on rough surfaces, which normally reflect light
in diffuse angles with larger incident angles [49, pp. 460–462].

Interactions between surface materials and light rays are weighted by a distribution func-
tion called the bidirectional surface distribution function (BSDF). This distribution weights
the contribution of a single light ray based on the incoming and outgoing direction of light.
The distribution can be based on actual measurements of materials in the real world [49,
pp. 462–466]. Certain attributes can also be used to artificially control properties of the
material and the BSDF. These attribute abstractions differ between renderers, but usually

24

abstractions such as specularity, diffuseness and glossiness are used [3, p. 105] [30, p.
353].

4.1.1 Bidirectionality

Bidirectionality is inherent in the BSDF. Bidirectionality means that the result of the ren-
dering equation for a screen pixel is the same whether we inspect the path of a single
light ray starting from a light source or a virtual pixel. The bidirectionality property gives
an important tool for evaluating the rendering equation: we can follow the path of a light
ray to the virtual screen pixel in the reversed order [30, pp. 387–389].

Following the light ray starting from the virtual camera affords faster convergence. This
is due to knowing beforehand that the light ray path will contribute to the final color of the
virtual screen pixel. If we follow the light ray from the other direction, i.e., starting from
the light source, it is not guaranteed that the light ray will contribute to anything visible on
the screen. This is due to the fact that the light ray has to be sampled at every interaction
step and thus the ray direction might end up in a non-visible area.

The use of bidirectionality also needs some guarantees of rays hitting light sources to
ensure proper convergence. This is achieved by using next event estimation (NEE): for
every light ray-surface interaction we always sample the direction of a light source in
addition to the randomly sampled direction [3, pp. 412–413] [30, pp. 851–854]. In a
real-time PBR renderer this is done by sampling one extra direction for every surface
interaction, where the sampled direction is the direction of a random light source. If the
direction from the surface interaction to the random light source is unobstructed, then that
direction contributes the intensity and color of the light source to the integral (weighted
by the BSDF). Obstructed directions will also be beneficial because they can be handled
as shadowed directions, and thus generate shadow effect to the surface interaction point.
This is why the directions sampled by NEE are called shadow rays [30, p. 415].

4.2 Object materials

The photo-realism generated by PBR is based on the accurate modelling of surface and
volume materials and their interaction with light [49]. Materials can be approximately
described by basic attributes like metalness and roughness, which affect the scattering
and absorption of light on the surface. However, to capture the accurate behaviour of
light on materials, we need more complex distribution functions to describe the statistical
behavior of light rays on the surface [30, p. 713].

25

Figure 4.1. The micro-level contours of a surface determine whether light rays (red ar-
rows) reflect (blue arrows) to a similar direction (top-right) or scatter to more random
directions (bottom-right). Two aluminium cans are photographed from the same position
and angle (left): light scatters to the direction of a specular reflection on the smoother
can surface and produces a sharper mirroring effect (top-left) compared to the rougher
can surface that makes the reflections blurrier and the surface more matte (bottom-left).
Adapted from [4, p. 305].

4.2.1 Surface microstructure

Photorealistic material effects are produced by accurate surface representations. In real
life, object surfaces have very intricate surface patterns that produce the visual appear-
ance of the specific material. These patterns might be visible to the naked eye but gen-
erally they are only seen on a microscopic level [30, p. 711].

When a light ray hits a surface it can potentially interact with the surface several times.
The light ray enters the microscopic contours of the surface and bounces around inside
the surface before scattering back into the surroundings as illustrated in Figure 4.1. This
interaction is called micro-surface scattering. Because modelling and rendering accurate
micro-surface geometry is practically impossible, the microscopic structures have to be
abstracted somehow. This is done with the bidirectional reflectance distribution function
(BRDF) which models the distribution of light from a surface depending on the incoming
and outgoing direction of the scattering light [30, p. 712].

26

4.2.2 Bi-directional surface distribution functions

The BSDF defines the interaction between a material surface and light. Light is described
by a probability distribution where the probability varies based on the direction of both
incoming and outgoing light. This is why the distribution is called bidirectional. The
direction can be defined as a direction vector on a unit sphere.

Usually the BSDF is split into two parts: the scattering (BRDF) and transmittance part
(bidirectional transmittance distribution function, BTDF) [30, p. 712]. The scattering part
defines how light is distributed on the hemisphere oriented in the direction of the surface
normal. Conversely the transmittance part defines the distribution inside the surface,
namely on a hemisphere in the opposite direction of the surface normal. This division
makes it easier to define materials, because for opaque materials, which don’t let any
light through, the BTDF part can be omitted. Furthermore the two parts have inherently
different kinds of distributions and so it is easier to have a piece-wise definition of the
whole distribution.

4.3 The rendering equation

In 1986 Kajiya introduced the rendering equation as the basis of physically correct inter-
action between light and surfaces in computer graphics [32]. The idea was to physically
model the contribution of different direct and indirect light sources at individual points on
a surface. This amounted to an integral over all possible directions in 3D-space from the
surface point, namely a surface integral over a sphere’s surface, which is formulated in
the rendering equation as follows:

Io(p,v) = Ie(p,v) +

∫
l∈Ω

f(l,v)Ii(p, l)(np · l)dl, (4.1)

where

p ∈ R3 is the evaluation point on the surface

v ∈ R3 is the unit direction vector of outgoing light

np ∈ R3 is the surface normal unit vector at evaluation point p

l ∈ R3 is the unit direction vector of incoming light

Io(p,v) is the outgoing light intensity from p to direction v

Ie(p,v) is the emitted light intensity from p to direction v

f : R3 × R3 → R is a weighting function

Ii(p, l) is the intensity of incoming light to p from direction l

Ω ⊂ R3 is the unit sphere centered at the origin

27

The integral part of Equation (4.1) is further split into two integrals over the hemisphere
outside the surface (Ω+) and the hemisphere inside the surface (Ω−):

∫
l∈Ω

f(l,v)Ii(p, l)(np · l)dl =
∫
l∈Ω+

f(l,v)Ii(p, l)(np · l)dl+
∫
l∈Ω−

f(l,v)Ii(p, l)(np · l)dl.

With this formulation it is possible to consider the interaction of light inside and outside
an object surface separately. Furthermore, because both np and l are unit vectors, by
Equation (3.7) np · l = cosα, where α is the angle between the two vectors.

4.3.1 Sampling the integral

Generally the evaluation of the rendering equation in analytical form is not possible. This
can be illustrated by analyzing the components of the integral part of Equation (4.1). We
concentrate on the most challenging component of the integral, which is Ii.

To evaluate the value of Ii(p, l) in every direction l ∈ Ω we would need to know where
the light originates from in every direction. The incoming light intensity from direction l is
equal to the outgoing light intensity from the closest surface point pl intersected by the
ray p+ lt to direction −l, i.e., Ii(p, l) = Io(pl,−l) [4]. The outgoing light Io(pl,−l) from pl

is another rendering equation, evaluated in the same manner. This equates to a recursive
function

Io(p,v) = Ie(p,v) +

∫
l∈Ω

f(l,v)Io(pl,−l)(np · l)dl.

The recursion stops for one instance of Io if at some evaluation point for all directions
l ∈ Ω there doesn’t exist an intersection point pl. Then, only the emitting component Ie
has to be evaluated. However, as the integral is over all direction vectors l on the unit
sphere Ω, it is highly probable that some object surface is intersected and the recursion
growth is unbound. The problems of evaluating the rendering equation have been noted
in [30, p. 801, 825].

Numerical methods can be used to approximate the result of the integral part of the
rendering equation [49, p. 12]. One solution category is importance sampling (Section
(3.5.2)). Instead of taking uniformly distributed samples on the unit sphere, we can draw
samples distributed by the BSDF f(l,v). Applying Equation (3.19), we obtain an impor-
tance sampled approximation

Io(p,v) ≈ Ie(p,v) +
1

n

n∑
i=1

Io(pli ,−li)(np · li), (4.2)

where li is distributed by the BSDF at p and outgoing direction v.

28

4.4 Path tracing

GI effects are the hallmark of PBR and give it a photorealistic visual appearance. Unfortu-
nately producing realistic GI is hard with traditional rasterization techniques. Also simple
ray tracing techniques are not enough if only shadow rays and specular reflections are
traced. Path tracing is the technique of recursively ray tracing every relevant direction of
light at each surface-light intersection point.

Ray tracing techniques rely on finding intersections between rays and scene objects.
These intersections can be computed with various methods which can be categorized in
at least two different ways. The first categorization is concerned with whether the method
results in an explicit location of intersection, e.g., by solving the roots of a polynomial, or
whether it implicitly finds a close intersection by deciding if a ray has passed an object
close enough to qualify as an intersection. The latter one can be implemented with ray
marching [4, pp. 217–218] or signed distance field [4, p. 454] techniques.

Intersection testing, namely finding the closest ray-surface intersection, is usually the
most time consuming part of ray tracing [49, p. 192] and for this purpose efficient accel-
eration structures have been developed [3, p. 416]. In general, acceleration structures try
to encapsulate a complex virtual scene in a hierarchical representation which has simpler
intersection computations with a ray which is illustrated in Figure 1.3. When the scene
is divided into hierarchical parts, the intersection testing consists of checking intersection
first with the parent node and then recursively with each child node within it. The recur-
sion stops when it either reaches a leaf node or an empty node (a leaf node also, to be
exact). Then the ray is intersected with a leaf node or declared a miss with an empty
node. Acceleration structures decrease the complexity of brute force intersection testing
up to logarithmic order O(log n) when the hierarchy structure is balanced [3, p. 415].
They also offer early exits for rays which enter empty areas in the virtual scene.

Even though acceleration structures reduce the asymptotic complexity of intersection
testing, they don’t provide reductions to the actual ray-primitive intersection algorithm.
The intersection test implementation and complexity varies significantly based on the
primitives being intersected [49, pp. 107–174].

When ray tracing point clouds, there exists no explicit surface which has to be intersected
faithfully, so it is possible to use approximate intersections. Furthermore, the divisions
made in the acceleration structure hierarchy don’t have to take connectivity and topolog-
ical information into account for points , so the construction of such hierarchies is less
bound [26, pp. 5–6].

Rays are categorized into two groups: primary or camera rays and secondary rays. Pri-
mary rays are the ones cast from the virtual camera center through the virtual screen into
the virtual world. The rays are defined by their origin (camera center) and their direction
(virtual screen pixel and camera center difference). In the case of secondary rays the
origin is the intersection point between an incoming ray and a model surface point it has

29

Figure 4.2. Primary rays (solid line starting from eye) are cast from the virtual camera
position through the pixels of a virtual monitor. Primary rays intersect with the objects
in the scene and secondary rays are generated from the intersection points. Secondary
rays include shadow rays (dashed lines) cast towards light sources, refraction rays cast
inside the objects, and reflection rays (solid line from red ball) stochastically cast based
on the object material BRDF at the intersection.

hit, which is illustrated in Figure 4.2. The direction of the secondary ray is decided by
two factors. Firstly if we want to prioritize direct illumination in favor of faster sample con-
vergence, we cast a shadow ray towards a random light source. This process decides
the direction of the secondary ray. In a scene with only one point light source this would
mean that the direction of the shadow ray would always be fixed towards the point light.

The second factor in determining the direction of a secondary ray is by sampling the
BSDF (Section 4.2.2) of the material of the intersection. The BSDF is a function which
defines the probability distribution of the directions in which a light ray can be reflected
or refracted from a given material. As discussed in Section 4.2.2, the BSDF is further
divided into the BRDF (reflectance part) and the BTDF (transmitted/refracted part). The
inputs of a BSDF are the point of intersection, incident angle of the incoming ray and
the outgoing angle of the ray. The output is a probability value which is used to weigh
the contribution of the particular sample. As can be seen from the rendering equation
(Equation (4.1)), the result of the integral part is the sum of the BSDF weighted samples.

30

5 EFFICIENT POINT CLOUD RAY TRACING

A point cloud is defined as a set of points in 3D space, i.e., a set P = {p1, . . . ,pn} ⊂ R3.
The elements pi ∈ R3 of the point cloud explicitly define their positions in a Euclidian
normed vector space, as defined in Section 3.3. For any element p := [px, py, pz] ∈ P ,
the components are the coefficients for each orthogonal basis vector in E3. These are
the x, y and z coordinates of the point in the scene.

Point cloud points can also have attributes attached to them. The typical ones include
color and surface normal or orientation of the point, but additionally there might be e.g.
material, radius of influence and emittance information. Mathematically the attributes
can be thought of as results of a mapping from the point cloud element to their attribute
domain. For example, surface normals can be defined as a vector valued one-to-one
mapping n : P → R3 which evaluates the surface normal for each element in P . In prac-
tice this means that the points are equipped with predefined attributes and the mapping
is just a pointer or index to the attribute corresponding to the point.

In order to ray trace a point cloud, we need to define what constitutes an intersection
between a point and a ray. A ray can be defined in parametric form (Section 3.4) as
r(t) = o+ dt, where o ∈ R3 is the origin of the ray, d ∈ R3 is the direction of the ray and
t ∈ [tmin, tmax] is the parametric variable defining the beginning and end of the ray path.
The interval [tmin, tmax] can be set to [0,∞], but for efficiency they are set to correspond
to the near and far plane distances.

In this Chapter the asymptotic analysis of the algorithms is based on the tools described
in [66] and [18, pp. 43–64]. Specifically we use the Big O notation which is defined as
follows:
Definition 5.1. Let f : R → R and g : R → R. If there exists c > 0 and n0 ∈ N such that
for all n > n0, |f(n)| < cg(n), then we say that f(n) = O(g(n)).

We use the notation T j
i , i, j = 1, 2, . . . to refer to the execution time of line i in Algorithm

j. The specific measurement of execution time is irrelevant because only the asymptotic
behavior is analyzed. The asymptotic variables considered are the number of pixels M ,
point cloud points N , samples per pixel S, and recursive ray bounces B.

31

5.1 Surface reconstruction

Point clouds can describe an underlying surface or volume of a model with data points
sampled from the surface or volume at certain positions. The sampling resolution, the
average number of points in a given surface or volume area, is mostly dependent on the
instruments and methods used to construct the point cloud. Generally point clouds can be
generated in three different ways: sampling surfaces of real world objects with capturing
devices like light detection and ranging (LIDAR) [45], reconstructing surface points from
images or image sequences like multi-view stereo [11], and representing virtual design
models or graphic models with densely sampled points [26, pp. 9–10]. Regardless of the
point cloud origin the reconstruction benefits from being robust against ambiguous and
undersampled point representations.

5.1.1 Mesh generation methods

The meshing methods fall into the category of explicit surface reconstruction. Explicit sur-
face methods give surface representations which explicitly define the surface in question.
Meshes are a sub-category which represents a surface with continuous piece-wise linear
surface patches. Furthermore, the intermediate attributes within a surface patch are in-
terpolated from the corner vertices (Section 3.6.1), which gives a smooth appearance to
the mesh when rendered.

GPUs have been optimized to process triangle vertex primitives [4, pp. 29–55], which has
contributed to the use of triangles as the typical mesh primitive. A popular triangulation
algorithm type is the Delaunay triangulation [26, p. 103]. For point clouds with N ele-
ments in R3, Fortune [23] reports that the particular algorithmic implementations for 3D
Delaunay triangulation, namely Randomized incremental and Gift wrapping triangulation
methods, have an asymptotic worst case computational complexity of O(N2) and O(N3),
respectively. Furthermore, if the point cloud is uniformly distributed inside a sphere, then
the computational complexity is O(N log(N)) and O(N), respectively. In a later publi-
cation that introduced another 3D triangulation method called the Crust algorithm, the
following was stated: “As has been frequently observed, the worst-case complexity for
the three-dimensional Delaunay triangulation almost never arises in practice” [6].

Even though the asymptotic complexity analysis of the Delaunay triangulation methods
don’t suggest a feasible algorithm for surface reconstruction, a state-of-the-art method for
mesh reconstruction reports a maximum running time of 0.167 seconds for 6.14 105 points
[46]. Combining the methods with massive point clouds with a number of samples in the
order of 106 − 109 makes them undesirable for real-time rendering of unprocessed raw
point clouds. Additionally, generating a mesh on the whole point cloud can be wasteful if
some areas of the point cloud are never rendered due to occlusion or view position [26,
p.106].

32

5.1.2 Moving least squares

One well researched surface reconstruction method is the MLS method [26, pp. 95, 109–
126] [11]. The method describes an implicit projection or field function which maps points
in a local neighborhood to the surface implied by the point cloud. In this way it is not
an explicit surface definition such as a mesh reconstruction. The benefits of the MLS
technique are its robustness against noise in the point data [16]. Alexa et al. coined the
term point set surfaces (PSS) to refer to MLS surfaces [5].

Kobbelt describes the basic MLS surface reconstruction algorithm in his survey [35].
Given a point set P = {p0,p1, ...,pN}, a C0 continuous function f : Rn → Rn, where
f(p) = p for every p ∈ P which are on the surface, is called the point set surface projec-
tion function of the surface SP . In short this means that the function f defines the surface
by including the points which project onto themselves. Finding the surface algorithmically
involves a two step process, where we first find a linear reference domain for a point
close to the assumed surface and then we approximate the local points once more with
a higher order polynomial. The error minimization (least squares) in both approximation
steps is controlled by the distance of local points (weighted appropriately with a positive
monotonic function) to the reference domain and the local polynomial, respectively.

In the reference domain stage in order to find the domain H = {x | ⟨n,x⟩ − D = 0},
namely a plane with normal n and offset D, the following minimization problem is solved:

argmin
n,D

N∑
i

(⟨n,pi⟩ −D)2 θ(∥pi − q∥), (5.1)

where pi are the points in P , θ is the monotonic positive weighting function and q =

⟨n, r⟩ − D is the projection of the evaluation point r on to the domain being approxi-
mated. Effectively this means minimizing the projected squared distance of each point in
P weighted by the distance of the point from the projected point q, which is thought of as
the origin of the new domain H. In a practical implementation only an effective neighbor-
hood of the evaluation point r is considered, because the weighting θ will be negligible
for distant points and make them irrelevant in the minimization.

The local polynomial fitting phase is done in the reference domain defined in the previous
phase. This means that the resulting polynomial approximation is not in the world coor-
dinate domain, so the points in P have to be first projected into the reference domain. In
this phase we solve the following minimization problem:

argmin
g

N∑
i

(g(xi, yi)− fi)
2 θ(∥pi − q∥), (5.2)

where xi and yi are the coordinates of the projection of pi onto the reference domain H,
and fi = ⟨n,pi − D⟩ is the distance of pi to H. As a result we find the polynomial g
defined in the local domain H, and we can project the local approximation of r, namely

33

Figure 5.1. The local MLS surface reconstruction is depicted. The surface is evaluated at
point r by first fitting a local surface H = {x | ⟨n,x⟩ −D = 0} by minimizing the weighted
distances (dashed lines, left) of local points to the surface H. In the second stage, a
polynomial g(xi, yi) defined in the surface H coordinates is fitted to the local points by
minimizing the weighted projected distance (dashed lines, right) of the points along n to
g. Finally, the projected point r̂ = q + g(0, 0)n on the local MLS surface is found (dashed
arrow line, right).

r̂ back to the world coordinate system by calculating r̂ = q + g(0, 0)n. The points r = r̂

then define the local surface. The process is illustrated in 2D in Figure 5.1.

In a practical implementation for ray tracing, the projection from an evaluation point r(t)
along a ray to the local domain H can be set to the nearest point pi ∈ P as shown in [2].
Thus, the distance ∥r̂∥ from a certain evaluation point r near a point pi can be calculated
and deemed to be on the MLS surface if the distance is close enough to zero.

5.2 Intersection evaluation

Intersection evaluation for point clouds is impossible without considering how to represent
points or rays. Points have no volume or area in continuous three-dimensional space so
the probability of intersecting them with a ray with no area or volume, namely a line, is
zero. This is why either points or rays have to be expanded in a way that gives them
an intersectable area or volume. This has been noted in some point cloud ray tracing
publications [24, 34, 63].

Ray tracing techniques that use a radius for the ray primitive are quite common, which is
discussed in Section 5.3. Sphere, cylinder, cone, and cube tracing are some prominent
techniques for finding objects that are at a certain threshold distance from the ray path. If
the threshold is set to small enough, the registration of a close object can be interpreted
as an intersection. The first point cloud ray tracing method used cylinder tracing to find
dense enough areas in the point cloud to be considered as intersections of the underlying
surface [55]. A cone tracing method was proposed by Wand et al. [64] but it was an offline
ray tracing system.

Making points "bigger" by generating a local linear surface around them is known as
splatting. The basic idea is to define a plane with the point on the plane and the normal
direction as either the point’s normal attribute or as the local curvature around the point
neighborhood. The latter normal definition is produced by gradient calculations between
the neighboring point cloud points. Additionally the plane has to be bounded to some

34

locality of the point of origin.

5.2.1 Splatting

A common method of rendering point clouds is splatting [26, p. 247]. Splatting is based
on approximating a point’s local surface with a bound surface element. These surface
elements are typically circular or elliptical oriented discs. The disc parameters, such
as principal axis directions and lengths, are defined based on local surface curvature.
Because no explicit surface exists in a point cloud representation, the curvature has to be
approximated by some a set of points.

Splatting was applied in 2001 by Zwicker et al. [68] and it was used to raster point
clouds with millions of individual points. The publication suggested changing the standard
rendering primitive of triangles to point-based primitives. The benefit was purportedly the
C−1 continuity1 of point primitives, which gives freedom compared to the C0 continuity2 of
triangle or other polygon meshes. The C−1 continuity of the splatting method also poses
problems, one of which are hole artifacts present between splats [14]. When rasterizing,
this is tackled with elliptical weighted average (EWA) filtering which is used for both splat
and texture filtering [68].

In order to be faithful to sharp features, including edges and corners, splat-based ren-
dering has to take into account discontinuities in the underlying surface. Naive imple-
mentation without edge and corner handling will lead to artifacts in edge areas where
splats will incorrectly cross over edges unable to replicate sharp features. Surface splat
clipping methods have been developed to deal with such artifacts. We refer to [31] for
implementation details.

The benefit of splatting is seen especially in rasterization pipelines compared to ray trac-
ing [26, p. 248]. Elliptical discs are easy to project from the world space to the screen
space and with appropriate EWA filtering the end result is qualitatively good. The ellip-
tical representation transfers to ray tracing pipelines as well, because elliptical surfaces
are easy to intersect and check for boundaries. There is also the additional benefit of
not needing to construct an explicit surface beforehand, which would then be intersected
by the rays. In surface reconstruction, some areas of the point cloud model might be
wastefully constructed even though those surfaces might never be intersected due to oc-
clusions. Splatting gives the benefit of only constructing a surface representation when
needed.

1C−1 continuous surfaces are discontinuous at least at one point
2C0 surfaces are continuous but not differentiable at all points on the surface

35

5.3 Surveyed methods

A ray tracing method for direct point cloud rendering without splat or volume primitives
was introduced by Schaufler & Jensen [55]. They used a derivation of ray tracing called
cylinder tracing and used it to register intersections with the point cloud model when
point density was high enough in the ray tube. Point attributes were weighted based on
their projected distance from the ray cylinder center. Furthermore an octree acceleration
structure was used to traverse the point cloud efficiently and find points near the ray
radius.

Adamson and Alexa published a paper few years later introducing a method using moving
least squares (MLS) surface reconstruction for point set surface ray tracing [2]. The point
set surface definition was already introduced by Alexa et al. in 2001 [5] and it differed
from a point cloud definition by the assumption that a set of points was also accompanied
with a surface approximation near the data points for example by an MLS surface. The
MLS surface was computed at rendering time.

A hybrid method combining both point and triangle primitives introduced a way of using a
multi-resolution approach to ray tracing. A lower resolution representation approximated
triangles with points and triangles were used for high resolution detail. The specific ray
tracing method used was cone tracing accompanied with an octree acceleration structure
for faster ray traversal [64].

To address time varying, animated and deforming point clouds Adams et al. suggested a
surfel primitive based method in the context of ray tracing [1]. The surfels were bounded in
a sphere hierarchy for acceleration and were interpolated iteratively based on neighboring
surfels close to the surface-ray-intersection.

Wald and Seidel introduced the first real time ray tracing method for point clouds [63]. The
method used simple Phong shading, hard shadow effects and splat culling by traversing
implicit surfaces and splat primitives in a Kd-tree acceleration structure. It was able to
render up to 20 frames per second (fps) of a point cloud with a million data points on
consumer hardware in 2005.

Methods for ray tracing compressed point clouds were discussed in two publications by
Hubo et al. [28, 29]. The former publication used a Kd-tree and a LOD system to ray
trace splat primitives generated from the point cloud. The latter publication discussed a
compression method for point clouds with random access ability to surface sections with
applications for ray-surface intersections.

Possibly the first GPU-based ray tracer for point clouds achieving real-time frame rates
was published by Tejada et al. [58]. It achieved up to 6.6 fps with reflection rays with
limited depth. The point cloud’s intersectable surface was produced by a MLS estimate,
which approximated a point’s local neighborhood with a bivariate second order polyno-
mial. Primary intersection locations were refined with a two or three step iterative method,
but secondary rays, including reflection and shadow rays, were cast from the non-refined

36

rough intersection locations. The method lacked an acceleration structure for secondary
ray traversal, so the authors followed with an improved method with a grid-based ac-
celeration structure and added support for refracted rays [59]. The authors reported a
performance of 10 fps with shadow rays and non-real-time frame rates with refracted
rays.

In the beginning of the 2010s Goradia et al. and Kashyap et al. published several point
cloud ray tracing methods achieving real-time frame rates [24, 25, 33, 34]. Previous point
cloud ray tracing methods were implemented on the CPU and only one of them achieved
real time frame rates [63].

Kashyap et al. initial paper achieved real-time frame rates of up to 55 fps by introduc-
ing the first GPU-based method for point cloud ray tracing using a textured splat octree
and ray tracing for shadow rays [34]. Each pixel was sampled at 4 samples per pixel
(spp) and 10 bounces for global illumination effects and the octree was constructed as a
preprocessing step.

Goradia et al. followed with a paper that achieved real-time frame rates of up to 13 fps
by introducing a GPU-based method for point cloud ray tracing using Phong shading for
primary rays and ray tracing for shadow rays [24]. A high resolution implementation with
more than one spp wasn’t able to achieve real-time rendering speed.

Kashyap et al. published a method for ray tracing implicit surfaces produced from point
samples. The method was able to produce advanced lighting effects such as reflections
and refractions at real time frame rates of up to 46 fps by using an octree accelerated im-
plicit surface with intersection interpolation. Generating the octree for the implicit surface
representation had to be done before the rendering as a preprocessing step which took
tens of seconds [33].

In the publication by Goradia et al., further advanced lighting effects including specular
reflections and caustics were implemented in a real-time point cloud ray tracer achieving
up to 20 fps with 5 · 106 points and 512 × 512 resolution [25]. The method used implicit
surface octrees similar to [33] to accelerate intersection testing and precalculated caustic
effects into a caustic sample map. Similar to previous publications, the method didn’t
achieve real-time frame rates with higher resolutions and more than one spp.

Splats were used as a point primitive in the publication by Cai et al. [14] which achieved
real-time frame rates of up to 2 fps. A Kd-tree was used to accelerate an iterative pro-
cedure of ray-splat intersections which converged to an average surface normal based
on neighboring splats. Another publication by Cai et al. described a nearest neighbor
approach to point cloud ray tracing [15]. The basic method used sphere tracing to locate
points near a traversing ray. The points were stored in a bounding sphere hierarchy to ac-
celerate the traversal and additionally, an improved method generated triangle primitives
between the points when intersected. Neither the basic or the improved method achieved
real-time frame rates.

37

Categorization of the methods

Based on the survey, seven major method categories were identified. The most important
category for the subject of this thesis is the real-time capability of the methods. In this
thesis, a real-time rendering method is defined as a method achieving at least 1 fps, i.e.,
1 second per frame on consumer hardware. The other categories are intersection accel-
eration structure utilization, point cloud preprocessing utilization, MLS surface definition,
implicit surface definition, direct splat intersection, and iterative intersection refinement
(see Section 3.6.4). Table 5.1 summarizes the major categorization of the methods.

Table 5.1. A categorization table of the surveyed methods. The surveyed methods are
categorized based on their real-time rendering capabilities, the use of intersection accel-
eration structures, and the utilization of additional point cloud preprocessing. Further-
more, the surveyed methods have three major surface definition categories including the
MLS surface, implicit surface, and splat surface, which are intersected with iterative or
non-iterative means.

Method Real-time Acceleration Preprocess MLS
surface

Implicit
surface

Splat
intersection

Iterative
refinement

Schaufler and Jensen 2000 [55] X
Adamson and Alexa 2003 [2] X X X X
Wand and Straßer 2003 [64] X X
Adams et al. 2005 [1] X X X X
Wald and Seidel 2005 [63] X X X X X
Tejada et al. 2006 [58] X X X X
Hubo et al. 2006 [28] X X X
Hubo et al. 2007 [29] X X X X
Tejada et al. 2007 [59] X X X X
Linsen et al. 2007 [41] X X X
Kashyap et al. 2010 [34] X X X X
Goradia et al. 2010 [24] X X X X
Kashyap et al. 2010 [33] X X X X
Goradia et al. 2011 [25] X X X X
Cai et al. 2011 [14] X X X X
Cai et al. 2015 [15] X X X

Real-time methods include [14, 24, 25, 33, 34, 58, 59, 63] and non-real-time methods
include [1, 2, 15, 28, 29, 41, 55, 64]. The observed trend is that the more recent publi-
cations from the mid 2000s to 2010s present real-time methods due to GPU implemen-
tations which massively distribute the work load of the ray tracing algorithm to parallel
computational units. On the contrary, the publications from the early 2000s use serial
implementations of the ray tracing algorithm on the central processing unit (CPU) and
are thus not real-time, except for [63].

Intersection acceleration structures were used by all methods except Tejada et al. [58].
Furthermore, the improved method by Tejada et al. [59] used an acceleration structure
only for secondary rays. Both of the methods used rasterization to find the closest in-
tersection of the primary rays, which doesn’t utilize intersection acceleration structures
designed for ray tracing. See Section 5.4 for details on the intersection acceleration
structures.

There are three major surface definitions for the point cloud model used by the methods.
An MLS surface definition is utilized in [2, 58, 59], an implicit surface definition is used in
[1, 25, 29, 33, 63], and a splat-based definition and intersection is used in [24, 34, 41,

38

64]. Three of the methods use a different approach to the surface definition, namely a
point to ray coordinate projection [55], a height-difference variant of the implicit surface
[14], and a k nearest neighbor (k-NN) surface and normal construction [15].

The intersection testing is iteratively refined in [1, 2, 14, 15, 58, 63]. Hubo et al. don’t
disclose how they find the exact intersection to their weighted implicit surface [29]. The
improved method by Tejada et al. uses the first iterative MLS surface approximation as
the final intersection [59]. The methods using a splat-based definition of the points inter-
sect the splats directly without iterative refinement [24, 34, 41]. The rest of the methods
either regularly sample a trilinearly interpolated implicit function [25, 33] or use a distance
weighted average of point cloud points projected onto ray coordinates [55, 64].

The computational performance of the methods are summarized in Table 5.2. Further-
more, a summary of the prerequisites needed for rendering by the methods is shown in
Table 5.3.

Table 5.2. Rendering times per frame reported by the surveyed methods are shown in
both best case and worst case configurations for rendering time. Note that the execution
times are measured on varying consumer hardware at the time of the publications and
cannot be directly compared.

Method Best rendering time Worst rendering time
Time per

frame
(seconds)

Resolution
(pixels)

Point
cloud
size

(points)

spp Time per
frame

(seconds)

Resolution
(pixels)

Point
cloud
size

(points)

spp

Schaufler and Jensen 2000 [55] 11
minutes

768×512 3.5 · 105 4 61
minutes

1024 ×
1024

2 · 106 4

Adamson and Alexa 2003 [2] - - - - hours N/A 1.0 · 105 N/A
Wand and Straßer 2003 [64] 99 512×512 7.4 · 103 1−?

(adaptive)
1284 640×480 8.7 · 106

triangles,
1.1 · 105

1−?
(adaptive)

Adams et al. 2005 [1] 6 512×384 1.0 · 105
surfels

N/A 20 512×512 2.7 · 105
surfels

N/A

Wald and Seidel 2005 [63] 0.18 512×512 1.3 · 106 N/A 0.5 640×480 2.4 · 107 N/A
Tejada et al. 2006 [58] 0.15 512×512 3.6 · 104 N/A 0.870 512×512 1.1 · 105 N/A
Hubo et al. 2006 [28] 9 512×512 2.3 · 108 N/A 10 512×512 3.7 · 108 N/A
Hubo et al. 2007 [29] - - - - 2 N/A 2.8 · 107 ,

2.8 · 105
patches

N/A

Tejada et al. 2007 [59] 0.10 640×480 3.6 · 104 N/A 4.5 640×480 4.8 · 104 N/A
Linsen et al. 2007 [41] 1 150×150 4.4 · 105 ,

2.9 · 105
splats

N/A 408 1200 ×
1200

6.6 · 105 ,
3.8 · 105

splats

N/A

Kashyap et al. 2010 [34] 0.018 512×512 106 N/A 0.25 512×512 3.8 · 106 10

Goradia et al. 2010 [24] 0.072 512×512 1.0 · 106 1 2.0 512×512 1.3 · 106 16

Kashyap et al. 2010 [33] 0.050 512×512 5 · 106 ,
2.9 · 106
reduced
points

1 0.13 512×512 1.5 · 107 ,
5.7 · 106
reduced
points

4

Goradia et al. 2011 [25] 0.050 512×512 5 · 106 ,
2.9 · 106
reduced
points

1 0.13 512×512 1.5 · 107 ,
5.7 · 106
reduced
points

4

Cai et al. 2011 [14] 0.44 500×400 8.1 · 104
splats

N/A 0.72 500×400 2.0 · 105
splats

N/A

Cai et al. 2015 [15] 7.8 400×500 3.4 · 105 N/A 100 500×400 3.0 · 106 N/A

5.4 Accelerating intersection testing

When a ray passes through a virtual scene, it usually misses most of the geometry with-
out intersecting them. To avoid iterating through all of the points in a point cloud and

39

Table 5.3. Preconditions for ray tracing for the surveyed methods, not including intersec-
tion acceleration structures (see Table 5.4).

Method Point radii Point normals Normal
gradients

k-NN structure Precomputed
MLS surface

Precomputed
implicit
surface

Schaufler and Jensen 2000 [55] X
Adamson and Alexa 2003 [2]
Wand and Straßer 2003 [64] X X X
Adams et al. 2005 [1] X X
Wald and Seidel 2005 [63] X X
Tejada et al. 2006 [58] X X X
Hubo et al. 2006 [28] X
Hubo et al. 2007 [29] X X
Tejada et al. 2007 [59] X X X
Linsen et al. 2007 [41] X X X
Kashyap et al. 2010 [34] X X
Goradia et al. 2010 [24] X X
Kashyap et al. 2010 [33] X X X
Goradia et al. 2011 [25] X X X
Cai et al. 2011 [14] X X
Cai et al. 2015 [15] X

querying for an intersection, yielding O(N) operations, acceleration structures are used.
In general, acceleration structures partition the virtual scene into hierarchies or grids that
bound the scene geometry into easily intersectable objects, like planes or spheres. The
acceleration structures utilized in the surveyed methods are the octree, kd-tree, bound-
ing sphere hierarchy, and grid structures, which are briefly introduced. The asymptotic
computational complexity of constructing and querying intersections from the structures
are presented.

All structures share in common a highest level bounding volume, which encapsulates all
the geometry in the scene. This is a cube or a box in the case of octrees, kd-trees and
grid structures. For bounding sphere hierarchies the whole hierarchy is inside a bounding
sphere.

The kd-tree structure uses axis aligned planes to partition the geometry hierarchically.
It uses a splitting plane to partition the geometry to two sections containing roughly the
same amount of primitives. The two partitions are split again iteratively and this process is
continued until some predefined condition, such as the number of primitives in a partition
or depth of the hierarchy. The construction time of a kd-tree has been shown to have a
theoretical lower bound O(N logN), which has been also achieved in practice [61].

In an octree structure, the topmost bounding cube (root) is split into eight equally sized
smaller cubes (inner nodes), which are further split recursively in the same manner (Fig-
ure 1.3. Similar to the kd-tree, the recursion is stopped when a threshold of the number
of primitives in a cell or recursion depth in an octree node is met. The octree can be
constructed in O(N logN) time [7].

A bounding sphere hierarchy is a special case of a more general bounding volume hier-
archy (BVH), where primitives are encapsulated in volume objects, like boxes or spheres,
with dynamically varying bounds, contrary to the static structure of the octree. The vol-
ume objects are encapsulated from the highest level bounding sphere to the lowest with
a threshold on the number of primitives in the lowest level sphere. Maximum number

40

of levels can be set to limit the height of the hierarchy. The bounding volume hierarchy
construction time in general is O(N log(N)) as stated in [38].

A grid structure places a predefined number G of equally sized grid cells within the highest
level bounding volume. Points within the highest level bounding volume are iterated over
and placed into the correct grid, which yields an O(N) construction time [22, p. 287]. For
a uniformly distributed point cloud, a K = N/G number of primitives are in each grid cell

on average. By choosing G as a fraction of N , say G =
1

c
N, c ≥ 1, we can achieve an

average number of primitives in each grid cell irrespective of N .

Kd-trees, octrees and bounding sphere hierarchies all have a hierarchical structure, which
enables nearest intersection queries down to the leaf node level in O(logN) time com-
plexity on average [3, p. 647]. For grid acceleration, the average querying time complexity
is constant, i.e., O(1) [57]. The surveyed methods using acceleration structures construct
them before ray tracing as a preprocessing step.

Acceleration structures used by the surveyed methods are summarized in Table 5.4.
Methods [58] and [59] don’t use any acceleration structure because they find the intersec-
tion between rays and points by rasterizing the points to virtual pixels. This is discussed
further in the algorithm complexity analysis in Section 5.5.

Other preprocessing algorithms

Most of the surveyed methods have to perform additional preprocessing to the point data
before ray tracing. Splats are assumed or generated from raw point cloud data prior to
ray tracing by methods [14, 24, 33, 34, 41, 63, 64]. Many of the methods use an optimal
splat generation algorithm described in [67] to produce splats from point clouds.

A k-nearest neighbor (k-NN) structure is constructed by the methods [1, 15, 58, 59] for
querying neighboring points or splats when evaluating MLS surfaces or weighted aver-
ages . Cai et al. [15] construct a binary tree with photon mapping , whereas the remaining
methods don’t describe their particular algorithm for the construction.

Other various preprocessing algorithms include patch based compression [29], normal
field evaluation [41, 64], CSM octree [25], and splat octree refinement [24, 34].

The asymptotic analysis of the other preprocessing methods is out of scope in this thesis.
The preprocessing algorithms for the different methods are summarized in Table 5.4.

5.5 Comparing the surveyed methods

The surveyed methods exhibit similarities specifically in their high level ray tracing ren-
dering algorithm. In Section 5.5.1, we describe a generic ray tracing algorithm which
encapsulates the high level functionality for all methods, except [58, 59]. Both meth-

41

Table 5.4. The table shows the acceleration structures used for intersection testing and
the computational complexity of constructing them. Other preprocessing algorithms uti-
lized by the surveyed are also listed.

Method Intersection ac-
celeration

Construction
complexity

Other prepro-
cessing

Schaufler and Jensen 2000 [55] Octree O(N logN) -
Adamson and Alexa 2003 [2] Bounding sphere

hierarchy
O(N logN) -

Wand and Straßer 2003 [64] Octree O(N logN) Splat generation,
normal field

Adams et al. 2005 [1] Bounding sphere
hierarchy

O(N logN) k-NN

Wald and Seidel 2005 [63] Kd-tree O(N logN) Splat generation
Tejada et al. 2006 [58] - O(1) k-NN
Hubo et al. 2006 [28] Kd-tree O(N logN) -
Hubo et al. 2007 [29] Octree O(N logN) patch compres-

sion
Tejada et al. 2007 [59] Grid (for sec-

ondary rays)
O(N) k-NN

Linsen et al. 2007 [41] Octree O(N logN) Splat generation,
normal field

Kashyap et al. 2010 [34] Octree O(N logN) Splat generation,
octree refinement

Goradia et al. 2010 [24] Octree O(N logN) Splat generation,
octree refinement

Kashyap et al. 2010 [33] Octree O(N logN) Splat generation
Goradia et al. 2011 [25] Octree O(N logN) CSM octree
Cai et al. 2011 [14] Kd-tree O(N logN) Splat generation
Cai et al. 2015 [15] Grid O(N) k-NN

ods by Tejada et al. use rasterization to simulate the intersections of rays and the virtual
scene. A generic rasterization algorithm has average complexity of O(MN) [39].

5.5.1 Generic ray tracing algorithm

Algorithm 1 shows in pseudocode the general ray tracing algorithm already discussed in
Chapter 4. We identify the parts of the algorithm which have a varying execution time
depending on the surveyed method.

In Algorithm 1, line 1 is executed S times and lines 2 to 5 are executed SM times in all
cases so

T 1
tot = O(ST 1

1) +O(SMT 1
2) +O(SMT 1

3) +O(SMT 1
4) +O(SMT 1

5). (5.3)

The execution time of T 1
1 and T 1

2 are independent of all the asymptotic variables, thus

42

Data: Virtual screen pixel coordinates pixels, camera origin o, number of samples
per pixel S, number of bounces B, and scene objects and lights objects

Result: Light intensity Io for each pixel
1 for i← 1 to S do
2 for p ∈ pixels do
3 r ← castRay(o,p);
4 x,n← closestIntersection(r, objects, tmin, tmax);
5 Io[p, i]← evaluateRenderingEq(x,n, r, B, objects, tmin, tmax);
6 end
7 end

8 Io[p]←
1

S

∑S
i=1 Io[p, i];

Algorithm 1: A high level algorithm of a general ray tracing algorithm.

T 1
1 = O(1) = T 1

2 . Additionally the function castRay on line 3 calculates the direction of

the ray r by dr =
p− o

∥p− o∥
and the origin or = o, which is independent of the asymptotic

variables, i.e., T 1
3 = O(1). Feeding this back to Equation (5.3) we have

T 1
tot = O(S) +O(SM) +O(SM) +O(SMT 1

4) +O(SMT 1
5) = O(SMT 1

4) +O(SMT 1
5).

In Algorithm 1, the function closestIntersection (line 4) finds the closest intersection be-
tween a ray and the scene. This means iterating through all primitives in the scene and
checking if the ray intersected, which yields O(N) complexity. If an intersection acceler-
ation structure is present (see Section 5.4), then the closest intersection down to a leaf
node can be queried in down to O(logN) time. We denote the query time of the closest
intersection down to a leaf node by Tquery and the final intersection time within the leaf
node by Tint.

If a ray misses all points or primitives inside a leaf node, the intersection query has to
be done again. This yields a worst case scenario where queries are done in the order
of O(N) times and the asymptotic complexity in total for closestIntersection is T 1

4 =

O(N(Tquery + Tint), when an acceleration structure is used. However, this is rare and
requires a low quality acceleration structure and a special configuration of scene objects
. Furthermore, the worst case would dominate the asymptotic behavior of the ray tracing
and make the analysis meaningless. Thus, we assume the average case of O(Tquery)

and deduce T 1
4 = Tquery + Tint.

Recursive rendering equation evaluation

The function evaluateRenderingEq in Algorithm 1 (line 5) evaluates the rendering equa-
tion (Equation (4.1)). As discussed in Chapter 4, the rendering equation has a recursive
integral function which is approximated by generating one random sample direction at
each level of recursion. Furthermore, by importance sampling the random directions

43

from the BRDF, we sample the more contributing directions of the integral. The depth
of the recursion of the integral is defined by the number of bounces B. This amounts to
casting one ray from a previous level intersection point, finding the closest intersection,
and evaluating the rendering equation at the new intersection point, B times recursively.

The pseudocode for the recursive function evaluateRenderingEq is shown in Algorithm
2. It should be noted, that the algorithm doesn’t exhibit shadow, reflective, or refractive
rays. Furthermore, there is no modulation of the texture color of each intersection point.
These details are omitted in both Algorithms 1 and 2 for clarity, because they don’t affect
the asymptotics of either algorithm.

1 Function evaluateRenderingEq(x, n, r, B, objects, tmin, tmax):
2 if B ≤ 0 then
3 return 0;
4 else if x = null then
5 return 0;
6 else if isLightSource(x) then
7 return emittedLight(x, r);
8 else
9 Eo ← emittedLight(x, r);

10 fr ← BRDF (x, r);
11 l← distributedRand(fr);
12 r′ ← castRay(x, l);
13 x′,n′ ← closestIntersection(r′, objects, tmin, tmax);
14 Io ← evaluateRenderingEq(x′,n′, r′, B − 1, objects, tmin, tmax) · dot(n, l);
15 return Eo + Io;
16 end

Algorithm 2: Recursive function for evaluating the rendering equation in Equation (4.1)

In Algorithm 2, lines 2, 4, and 6 are conditions for terminating the recursion in the case
of exceeding the number of bounces B, not finding an intersection at the previous level,
or hitting a light source (function isLightSource), respectively. In the first two cases, 0
intensity is returned (lines 3 and 5). In the case of hitting a light source, only the emitting
component of the light is returned (line 7), as any indirect light intensity at the light source
is negligible compared to the emitted intensity.

The function emittedLight in Algorithm 2 (line 9) evaluates the intensity of the emitted
light at point x in the direction of the incoming ray r and BRDF (line 10) fetches the
distribution function at surface point x with incoming direction from ray r. The function
distributedRand (line 11) produces a random unit direction vector drawn from the BRDF
in fr (importance sampling), and castRay (line 12) is the same function as in Algorithm
1. These functions use the values stored in x, thus, don’t depend on the asymptotic
variables, yielding constant time complexity O(1).

The function closestIntersection (line 11) is identical to the one presented in Algorithm
1 and has the same asymptotic complexity T 2

11 = T 1
4 = Tquery + Tint. The recursive

function call evaluateRenderingEq (line 12) has the parameter B − 1 decremented from

44

the previous recursion level. In total, the function will be called recursively in the order of
O(B) times until the condition B ≤ 0 (line 2) is met in the worst case scenario. This yields
a total asymptotic complexity of T 1

5 = T 2
tot = O(B(Tquery + Tint)) for Algorithm 2.

Combining the asymptotic analysis of Algorithms 1 and 2 gives us

T 1
tot = O(SM(Tquery + Tint)) +O(SMB(Tquery + Tint)) = O(SMB(Tquery + Tint)). (5.4)

In the next section, we proceed to analyze the asymptotic complexity of Tint for the sur-
veyed methods, which is the intersection at the leaf node level of the closestIntersection

function.

5.5.2 Asymptotic computational complexity

We analyze the worst case behavior of the surveyed methods’ intersection algorithms
within the acceleration structure leaf node. In this analysis, we consider the effect of
the number of neighboring points or other primitives K, evaluation points k in regular
sampling methods, and iterations I in iterative refinement algorithms.

At the leaf node level, intersection algorithms presented by the methods fall into six cat-
egories: splat intersections [24, 34, 41], MLS surface intersections [2, 58, 59], implicit
surface intersections [1, 25, 29, 33, 63], projection based intersection evaluation [55]
[64], height-difference based intersection [14], and k-NN intersection [15].

Splat intersection

The general splat intersection algorithm consists of the following procedure: within a
neighborhood of a leaf node L, with K number of splats s, intersect all splats s with a
ray r and produce a weighted average of intersection locations x, normals n and other
attributes based on the weighted distance from the corresponding splat centers. This
amounts to an execution time of O(K).

MLS surface intersection

The general MLS surface intersection algorithm can be seen in Algorithm 3. On lines 2
and 3, the MLS surface is constructed as described in Section 5.1.2, with the projected
point being the bounding sphere center p. On line 4, the constructed polynomial g, which
is a reduced second order polynomial of the form ax2 + bx2 + cxy + d, is intersected by
the ray (Section 3.4). The exit conditions are on lines 5 and 11. Lines 5 to 8 terminate the
while-loop and returns the outputs with no value. Lines 11 to 14 return the intersection
point p′ and the corresponding normal n′ if the intersection point’s projection distance
to the newly evaluated local MLS surface (line 10) is smaller than the threshold value ϵ.

45

Data: Point p with bounding sphere radius r and K number of neighboring points
pi, ray r, threshold ϵ

Result: Intersection point x̂ with accompanying attributes, intersection normal n̂
1 while true do
2 n, D ← solve(argminn,D

∑K
i=1(⟨n,pi⟩ −D)2 θ(∥pi − p∥));

3 g ← solve(argming
∑K

i=1(g(xi, yi)− ⟨n,pi⟩)2 θ(∥pi − p∥));
4 p′ ← intersectPolynomial(g, r);
5 if p′ = null then
6 x̂← null;
7 n̂← null;
8 return;
9 else

10 n′, D′ ← solve(argminn′,D′
∑K

i=1(⟨n′,pi⟩ −D′)2 θ(∥pi − p′∥));
11 if ⟨n′,p′⟩ −D′ ≤ ϵ then
12 x̂← p′;
13 n̂← n′;
14 return;
15 else
16 p← p′;
17 n← n′;
18 end
19 end
20 end

Algorithm 3: A general MLS surface intersection algorithm utilized in [2, 58, 59].

Otherwise the iterative MLS procedure is continued.

The deciding factors in the time complexity of Algorithm 3 are lines 2, 3 and 10, and the
number of iterations of the while-loop in general. Both [2] and [58] report 2 or 3 iterations
for any given ray with reasonably chosen threshold ϵ. In [59], the iterative refinement is
omitted and the first ray-polynomial intersection query is used. The execution time for
intersectPolynomial (line 4) is dependent on the order of the polynomial (see Section
3.4), but not on K. A reduced second order polynomial is used in all methods and the
intersection can be solved with Equation (3.13), which is not dependent on K or the
other asymptotic variables. Finally, the execution times T 3

2 , T 3
3 and T 3

10 relate to solving
the local MLS surface. As discussed in Section 5.1.2, the complexity of the fitting problem
grows linearly to the number of neighbors K considered in the fit, thus the computational
complexity for the whole algorithm is concluded to be O(IK).

Implicit surface intersection algorithms

The implicit surface octree method used by Goradia et al. [25] and Kashyap et al. [33] is
described in Algorithm 4. The first evaluation point is initialized to the octree leaf node
entering intersection point (line 2) with accompanying implicit function value (line 3). The
for-loop (line 5) sub-divides the ray within the leaf node to k equally spaced evaluation

46

points (line 4). An intersection is reported if the values of the implicit function at the
current evaluation point (lines 6 and 7) and the previous evaluation point have different
signs (line 8). Otherwise, the previous evaluation point and implicit function value are
set to the current values (lines 13 and 14) and the evaluation the looping is continued.
The function Lerp (line 9) linearly interpolates the intersection point based on the implicit
function values at the current and previous evaluation points by Equation (3.20). Similarly,
the triLerp function (lines 3 and 7) trilinearly interpolates the implicit function values in
the corners of the octree leaf based on the relative position of the evaluation point inside
the leaf (Section 3.6.1). In the worst case, no intersection is found within the leaf node
and a miss is reported by returning null values as output. This yields k iterations of the
for loop giving a O(k) worst case complexity with respect to the number of evaluation
points k.

Data: Eight octree leaf node corner points p[1− 8] with implicit functions f [1− 8]
and normals n[1− 8], ray r with entering tmin and exiting tmax intersections
with octree leaf node, k marching points

Result: Intersection point x̂ with accompanying attributes, intersection normal n̂
1 tprev ← tmin;
2 xprev ← r(tprev);
3 fprev ← triLerp(xprev,p[1− 8], f [1− 8]);
4 step← (tmax − tmin)/k;
5 for t← tminto tmax step step do
6 xcurr ← r(t);
7 fcurr ← triLerp(f [1− 8],xcurr,p[1− 8]);
8 if fcurr · fprev ≤ 0 then
9 x̂← Lerp(xprev,xcurr, fprev, fcurr);

10 n̂← triLerp(n[1− 8], x̂,p[1− 8]);
11 return;
12 else
13 xprev ← xcurr;
14 fprev ← fcurr;
15 end
16 end
17 x̂← null;
18 n̂← null;

Algorithm 4: An implicit surface marching algorithm used in [25, 33].

Wald and Seidel [63] also utilize a regularly sampled implicit surface intersection ap-
proach which is shown in Algorithm 5. The method regularly samples the ray within the
leaf node k times (inner for loop), but when a sign change is recognized, the interval
between tprev and tcurr is again sampled at k evaluation points (outer while loop). This
iterative procedure is resumed until the implicit function value is within an ϵ threshold of
zero at some evaluation point (lines 12–15) yielding up to I iterative steps. Furthermore,
instead of interpolating precalculated leaf node corner values as in Algorithm 4, a dis-
tance weighted average of all K number of point locations pi and corresponding normals
ni (line 10) within the leaf node are calculated with Equation (3.22). The weighting func-

47

tion θ used in the method is defined as θ(a) = max(1 − a, 0). The distance weighted
averages pcurr and ncurr are used to construct a local plane (line 10) defined by the im-
plicit function fcurr (see Equation (3.11)). In the worst case, the implicit function has to
be evaluated for all evaluation points at each iteration step in order find the interval where
the sign changes yielding a complexity of O(kIK).

Data: Ray r with entering tmin and exiting tmax intersection bounds with the leaf
node, pi and their normals ni within the leaf node, k marching points, ϵ
threshold, θ weighting function

Result: Intersection point x̂ with accompanying attributes, intersection normal n̂
1 while true do
2 tprev ← tmin;
3 xprev ← r(tprev);
4 pprev,nprev ← weightedAvg(xprev,pi,ni, θ);
5 fprev ← dot(nprev, (xprev − pprev);
6 step← (tmax − tmin)/k;
7 x← r(tmin);
8 for t← tminto tmax step step do
9 xcurr ← r(t);

10 pcurr,ncurr ← weightedAvg(xcurr,pi,ni, θ);
11 fcurr ← dot(ncurr, (xcurr − pcurr);
12 if ∥fcurr∥ < ϵ then
13 x̂← xcurr;
14 n̂← ncurr;
15 return;
16 else if fcurr · fprev < 0 then
17 tmin ← tprev;
18 tmax ← t;
19 break ; /* Goes back to beginning of while loop */
20

21 else if t = tmax then
22 x̂← null;
23 n̂← null;
24 return;
25 else
26 tprev ← t;
27 xprev ← xcurr;
28 fprev ← fcurr;
29 end
30 end
31 end

Algorithm 5: An iterative implicit surface intersection algorithm used in [63]

The Newton’s method variant described in Equation (3.24) is utilized by Adams et al. [1].
Algorithm 6 describes the iterative procedure for implicit surface intersection evaluation.
The initial evalution point x is set to the entering intersection point r(tmin) to the leaf node
(line 1). Distance weighted averages of point locations p and normals n are calculated
based on the point locations pi and normals ni within the leaf node (line 3). An implicit

48

function f is constructed to define a plane with point p on the plane and normal n as
the plane normal (line 4). If the value of the implicit function f at evaluation point x

is within threshold distance ϵ of zero, then an intersection is reported at x with surface
normal n (lines 5–8). Otherwise, the plane is intersected by the ray (see Equation (3.12))
and the intersection point is used as the new evaluation point for the next iteration step
(lines 10 and 16). However, the intersection point must be within the leaf node bounds,
otherwise the no intersection is reported within the leaf node (lines 11–14). In the worst
case, I iterative steps have to be taken until convergence and the weighted average for K
number of points within the leaf node has to be evaluated yielding a complexity of O(IK).

Hubo et al. [28] also use the Newton’s method variant of the iterative implicit surface
intersection described in Algorithm 6. For the weighting function θ, the method uses a
Gaussian weighting function (see Equation (3.15)) with zero mean and a variance σ2 to
control the smoothness of the resulting surface. As discussed previously, this yields a
worst case complexity of O(IK).

In the improved method by Hubo et al. [29], the implicit surface construction is var-
ied slightly from Algorithm 6. Instead of constructing a single implicit surface from all
the points within the leaf node, the method uses several precalculated implicit surface
patches inside the node and intersects them separately. Each patch is implicitly de-
fined by the distance weighted average of the subset of points within the leaf node with
Gaussian weighting. If an intersection is found with more than one patch, the inter-
section point values are averaged based on the Gaussian weighted distance from the
intersected patches respective centers. The method of intersecting the patches is the
Newton’s method variant in Algorithm 6. This gives a worst case complexity of O(IK).

Point projection based intersection

Schaufler and Jensen [55] use a projection based intersection described in Algorithm
7. The entering intersection point r(tmin) to the leaf node is used as a projection point x
along the ray (line 1). Each points’ pi distance to the projection point x is calculated along
the points’ normals ni and if all distances are larger than the ray cylinder radius d, then
the ray misses all points within the leaf node (lines 2–5). Otherwise, the weighted average
of locations and normals of all point within the ray radius are calculated using the points’
projected distances and they are used as the intersection point x̂ and the corresponding
normal n̂. The factors determining the complexity in the algorithm are lines 2 and 7 which
iterate through all K number of points once giving a worst case complexity of O(K) in
total.

A variation of Algorithm 7 is used by Wand and Straßer [64]. The rays are represented
by cones instead of cylinders and two radii ud and vd are calculated along orthonormal
vectors u and v (see Theorem 3.9) orthogonal to the ray r(t) = o+ dt. The radii ud and
vd change linearly as a function of the ray parameter t. A single point pi inside the leaf
node is projected onto ray coordinates u, v, and d by upi = (o−pi) ·u, vpi = (o−pi) ·v,

49

Data: Ray r with entering tmin and exiting tmax intersection bounds with the leaf
node, points pi and their normals ni within the leaf node, θ weighting function

Result: Intersection point x̂ with accompanying attributes, intersection normal n̂
1 x← r(tmin);
2 while true do
3 p,n← weightedAvg(x,pi,ni, θ);
4 f(y) := dot(n,y − p);
5 if ∥f(x)∥ < ϵ then
6 x̂← x;
7 n̂← n;
8 return;
9 else

10 t← Intersect(r, f(y));
11 if t > tmax or t < tmin then
12 x̂← null;
13 n̂← null;
14 return;
15 else
16 x← r(t);
17 end
18 end
19 end

Algorithm 6: An iterative implicit surface intersection algorithm used in [1, 28].

and t = (o − pi) · d, respectively. The weight of the point θ(pi) is then calculated as the
distance of the projected point (upi , vpi) in the ray coordinates weighted by a gaussian
function (see Equation (3.15)) with the ray radii u2d and v2d as the variance σ2. Final
intersection location is at the weighted average of the locations of the points inside the
ray cone and the corresponding attributes are averaged with the same weighting. Similar
to Algorithm 7, the points within the leaf node are iterated through once to calculate the
weighted average of attributes which gives a worst case complexity of O(K).

A height-difference implicit surface intersection

Cai et al. [14] assume that radii ri and normals ni are present for the points pi within
the leaf node. Thus, each point defines an oriented circular splat and is bounded by a
sphere with pi center and ri radius. All K number of bounding spheres are queried for
intersections (see Equation (3.14)). The middle point of the two intersections for each
sphere is stored as an initial iteration point r(ti0). Spheres with an initial iteration param-
eter ti0 /∈ [tmin, tmax] are discarded. If all spheres are discarded or missed by the ray, an
intersection was not found within the leaf node. Otherwise, the algorithm continues with
the set of sphere intersection middle points into iterative intersection refinement.

The iterative intersection refinement is done to all valid sphere intersections starting from
the closest, i.e., from the smallest ti. An average normal direction n̄j is calculated from

50

Data: Ray r with entering tmin and exiting tmax intersection bounds with the leaf
node, d ray cylinder radius, points pi and their normals ni within the leaf
node, θd weighting function with cut-off distance at d

Result: Intersection point x̂ with accompanying attributes, intersection normal n̂
1 x← r(tmin);
2 if ∀i : ∥dot(ni,x− pi)∥ > d then
3 x̂← null;
4 n̂← null;
5 return;
6 else
7 p,n← weightedAvg(x,pi,ni, θd);
8 x̂← p;
9 n̂← n;

10 return;
11 end

Algorithm 7: A ray cylinder point projection algorithm used in [1].

all point splat normals ni that are within radius ri distance of the current iteration point
r(tij). The iteration point r(tij) is projected to the splat plane of points at ri distance
along the average normal n̄j . The distance of the projection defines a height difference
from the current iteration point to the near splats. Each height difference is given a weight
calculated by the squared distance of the projected point to the respective splat’s center
pi normalized by the splat radius ri. If the projection point is outside the splat radius, then
the weight is set to zero.

Finally, a weighted average of the height differences is calculated. If the averaged height
difference is within a threshold ϵ of zero, the current iteration point r(tij) and a weighted
average of splat normals are returned as the intersection. Otherwise, tij is incremented
or decremented by the averaged height difference and the iteration continues until con-
vergence or divergence by exiting the bounding sphere of the splats.

The algorithm goes through all K point splats once and iterates maximally I times. Be-
cause there is no k-NN structure present, the algorithm has to query all point splats inside
the leaf node to find the ones considered in this iteration step. This gives K more queries
for each iteration. In total, a worst case complexity of O(KIK) = O(IK2) is established.

A k-NN point intersection

A k-NN based method by Cai et al. [15] intersects leaf node points without point normal
information. Starting from the entering intersection at t0 to the leaf node, nearest neigh-
bors are queried from a precalculated k-NN structure at predefined intervals δt until at
least one neighbor is found. The distance dnear to the nearest point pnear is calculated

and the next interval is set to δ =
di
2

. If a predefined K number of points is found, the
center location p̄ =

∑
pi/k of the k nearest points is calculated. Then the distance dfar

51

to the farthest point pfar from the average location p̄ is calculated and if the distance
from the current evaluation point on the ray to p̄ is larger than dfar, the next interval is
taken. Also, if the distance is larger than the distance to any points’ pi bounding radius,
the next interval is again taken. Otherwise, the algorithm proceeds to surface orientation
evaluation.

Triangles δ(p̄,pi,pj) are drawn between all possible points. The area weighted average
of the triangle normals is calculated and used as the normal n̄ at the current evaluation
point. Projected distance along the normal n̄ from the current evaluation point to pi is
calculated as h. If h/dfar is smaller than a positive threshold ϵ, an intersection is at the
current evaluation point with normal n̄. Otherwise, the new interval is set to δt = h/2 and
the next interval taken. In the worst case, there are up to I iterative steps each having
(K − 1)K/2 = O(K2) triangle evaluations resulting in O(IK2) complexity.

Summary

The asymptotic computational complexities of the intersection methods at the leaf node
level are summarized in Table 5.5. In general, the computational complexity of the in-
tersection methods varies depending on the iterative or non-iterative nature of the algo-
rithms. Almost all methods need to go through the points inside the leaf node at least ones
yielding O(K) complexity for the asymptotically most efficient methods. Similar asymp-
totic efficiency, namely O(k) complexity, is achieved when regular sampling is used to find
the intersection.

5.6 Limitations of the analysis

For the acceleration structure construction complexity analysis, we rely solely on reported
asymptotic complexities in other publications. These analyses may be subject to limi-
tations and preconditions that might not be met by the surveyed methods’ algorithms.
The choice to use the reported complexities was done because not all of the surveyed
methods described how they constructed their acceleration structures. Reviewing the
compatibility of the acceleration structure construction algorithms is out of scope in this
thesis.

The generic ray tracing algorithm (Algorithm 1) and the rendering equation evaluator al-
gorithm (Algorithm 2) are simplified versions of algorithms that might be used in an actual
production grade ray tracer. Advanced ray tracing techniques discussed in Chapter 4 are
not present in either of the algorithms. However, to the best of the author’s knowledge
injecting the following ray tracing techniques into the algorithms doesn’t affect the asymp-
totic complexity: shadow rays, refraction rays, importance sampling, and different camera
models.

Other preprocessing methods discussed previously were not analyzed for asymptotic

52

Table 5.5. Asymptotic complexity of the intersection within the leaf node is summarized
for the surveyed methods. The table shows the worst case asymptotic computational
complexities with the asymptotic variables K (number of neighboring points), k (num-
ber of regularly sampled intervals), and I (number of steps in iterative intersection re-
finement). A reduced analysis based on the most determining input variables is also
presented.

Method Intersection
complexity

Schaufler and Jensen 2000 [55] O(K)

Adamson and Alexa 2003 [2] O(IK)

Wand and Straßer 2003 [64] O(K)

Adams et al. 2005 [1] O(IK)

Wald and Seidel 2005 [63] O(kIK)

Tejada et al. 2006 [58] O(IK)

Hubo et al. 2006 [28] O(IK)

Hubo et al. 2007 [29] O(IK)

Tejada et al. 2007 [59] O(K)

Linsen et al. 2007 [41] O(K)

Kashyap et al. 2010 [34] O(K)

Goradia et al. 2010 [24] O(K)

Kashyap et al. 2010 [33] O(k)

Goradia et al. 2011 [25] O(k)

Cai et al. 2011 [14] O(IK2)

Cai et al. 2015 [15] O(IK2)

complexity. It is plausible that in the asymptotic sense they would dominate the acceler-
ation structure construction time. Furthermore, the asymptotic analysis of the rendering
time complexity (Table 6.1) assumes static point cloud models across rendered frames.
This means that dynamic updates for the acceleration structures or other preprocess-
ing methods are not accounted for in the case of animated geometry. Even though the
method by Adams et al. [1] supports deformation of the point cloud geometry, the analysis
assumes a static point cloud.

The pseudocode algorithms presented in this chapter serve as guidelines for the asymp-
totic complexity analysis and are not replicates of the original surveyed methods. The
algorithms do not depict exact implementation details of the methods and they should
not be used as such when implementing the surveyed methods. The reader is advised
to familiarize themselves with the original publication before implementing the surveyed
methods.

53

6 RESULTS

The surveyed methods and the identified categories are summarized in Table 5.1. Seven
major categories were established. Real-time capabilities were indicated in nine of the
methods. MLS surface, implicit surface, and splat definitions were the three significant
ways of representing the points for intersections. Furthermore, a minor category of pro-
jecting points onto the ray was also established.

Many of the methods used iterative refinement to converge to an exact intersection. A
regularly sampled interval, was also a common method to detect an intersection.

Based on the survey, acceleration structures and preprocessing methods were utilized in
almost all of the ray tracing algorithms present. The usage of acceleration structures in
ray tracing in general is very common, as stated in several relevant books on computer
graphics [4, 30, 49]. Out of the other preprocessing methods, the most popular ones
were the construction of a k-NN structure and the generation of splats (Table 5.4). If
splats weren’t generated by the surveyed method themselves, most of the methods still
needed point radii and normals as a prerequisite for ray tracing (Table 5.3).

Results of the asymptotic complexity analysis for the surveyed methods are presented in
Table 6.1. The biggest differences at the leaf node level intersections were due to the iter-
ative nature of intersection algorithms. However, many methods reported that the number
of iterations I needed for convergence was small enough not to affect the execution time.
Other methods also used regularly spaced evaluation points to approximate the intersec-
tion point, which was present as the number of marching intervals k. The common factor
in all leaf node level intersections was the number of neighboring points K within the leaf
node.

Based on the most determining asymptotic variables, namely the number of pixels M

and points N , there was no significant difference between the methods at rendering time.
The difference between the two methods exhibiting O(MN) complexity and the rest of the
methods with O(M logN) complexity, was whether they used ray tracing with acceleration
or rasterizing without acceleration to find the closest intersection in asymptotic behavior
at rendering time was whether the method used ray tracing and acceleration to find the
closest intersection.

Compared to the mesh generation with Delaunay triangulation, the asymptotic complex-
ity difference depends on the complexity of preprocessing. All but three of the surveyed
methods use some preprocessing (Table 5.4) and the analysis of the preprocessing meth-

54

ods wasn’t done. However, the methods that didn’t preprocess the point cloud have triv-
ially asymptotic complexity of O(1) before acceleration structure construction compared
to triangle mesh construction with asymptotic complexity of O(N3) in the worst case and
O(N) in the best case. Combining this with the acceleration structure construction com-
plexity of O(N logN), the surveyed methods have a better complexity of O(N logN) com-
pared to O(N3) in the worst case for the Delaunay triangulation.

Table 6.1. Asymptotic complexity of the rendering time of a single frame. The table shows
the worst case asymptotic computational complexities with all asymptotic variables M
(number of pixels), N (number of point cloud points), S (spp), B (number of recursive ray
bounces), K (number of neighboring points), k (number of regularly sampled intervals),
and I (number of steps in iterative intersection refinement). A reduced analysis based on
the most determining input variables is also presented.

Method Asymptotic complexity Reduced asymptotic com-
plexity

Schaufler and Jensen 2000 [55] O(SMB(log(N) +K)) O(M logN)

Adamson and Alexa 2003 [2] O(SMB(log(N) + IK)) O(M logN)

Wand and Straßer 2003 [64] O(SMB(log(N) +K)) O(M logN)

Adams et al. 2005 [1] O(SMB(log(N) + IK)) O(M logN)

Wald and Seidel 2005 [63] O(SMB(log(N) + kIK)) O(M logN)

Tejada et al. 2006 [58] O(MNIK + SBNIK) O(MN)

Hubo et al. 2006 [28] O(SMB(log(N) + IK)) O(M logN)

Hubo et al. 2007 [29] O(SMB(log(N) + IK)) O(M logN)

Tejada et al. 2007 [59] O(MNK + SBNK) O(MN)

Linsen et al. 2007 [41] O(SMB(log(N) +K)) O(M logN)

Kashyap et al. 2010 [34] O(SMB(log(N) +K)) O(M logN)

Goradia et al. 2010 [24] O(SMB(log(N) +K)) O(M logN)

Kashyap et al. 2010 [33] O(SMB(log(N) + k)) O(M logN)

Goradia et al. 2011 [25] O(SMB(log(N) + k)) O(M logN)

Cai et al. 2011 [14] O(SMB(log(N) + IK2)) O(M logN)

Cai et al. 2015 [15] O(SMB(log(N) + IK2)) O(M logN)

55

7 CONCLUSIONS

In this thesis, direct point cloud ray tracing methods were surveyed and asymptotic com-
plexity analysis was used to compare the methods’ algorithms for intersection testing.
Three main local surface categories for point cloud ray tracing were identified, namely
the moving least squares (MLS) surface, implicit surface and splat definitions. A minor
category of point projection based intersection evaluation was also established.

The asymptotic complexity analysis concluded that the main differences between the
methods were at the leaf node level and were due to iterative or regularly sampled inter-
section evaluations. The number of pixels and point cloud points dominated the asymp-
totic complexity and showed that the main difference between the algorithms on a higher
level was in the choice of using ray tracing and acceleration structures compared to ras-
terizing without acceleration structures.

Real-time capabilities of direct point cloud ray tracing were demonstrated by Wald and
Seidel and in several other surveyed methods (see Table 5.1). The best methods in
asymptotic computational complexity achieved either O(K) or O(k) complexity with re-
spect to the number of points K within the leaf node and regular sampling intervals k. All
projection based [55, 64] and splat intersection methods [24, 34, 41], and some implicit
surface methods [25, 33] achieved the best asymptotic complexities.

From the perspective of the whole rendering pipeline, using an intersection acceleration
structure in point cloud ray tracing is beneficial if rasterization techniques are not utilized.
As both global surface reconstruction and direct ray tracing methods benefit from this,
the additional utility from direct ray tracing depends on other mandatory preprocessing.
If point normals and radii are present as attributes, many of the surveyed methods don’t
need additional preprocessing making them viable compared to global surface recon-
struction.

The local MLS surface method by Adamson and Alexa [2] only needs point locations for
accurate intersections making it the method of choice for point clouds without additional
attributes. We conclude that in the worst case of ray tracing a single frame, Adamson and
Alexa have a O((N+M) logN) time complexity which is better than the O(N2+M logN)

complexity of mesh reconstruction.

Compared to global point cloud surface reconstruction, direct ray tracing could be ap-
plied to photorealistic visualization of point cloud data that is generated and streamed in
real-time. Furthermore, it is plausible to use direct point cloud ray tracing for partial or in-

56

complete point clouds because only local points have to be considered in the intersection
testing. Combining this with the methods that utilize point cloud compression [25, 28, 29,
33], an application in memory bound point cloud visualization systems could be feasible.

The comparison of computational efficiency of the surveyed methods was limited to
asymptotic analysis in this thesis. Implementations on current hardware weren’t tested
and comparing the reported efficiency in the publications wasn’t feasible, due to publica-
tion dates spanning two decades.

In the future, it may be interesting to implement and compare the absolute efficiency
of the surveyed methods on modern desktop and mobile hardware. Comparing the vi-
sual quality of the methods can give insight into the specific benefits and challenges in
the identified method categories. Additionally, different surface reconstruction methods,
such as mesh reconstruction, could be compared visually and in absolute computational
efficacy to direct point cloud ray tracing.

57

REFERENCES

[1] B. Adams, R. Keiser, M. Pauly, L. Guibas, M. Gross, and P. Dutré. Efficient Ray-
tracing of Deforming Point-Sampled Surfaces. In: Computer Graphics Forum 24.3
(2005), pp. 677–684. DOI: 10.1111/j.1467-8659.2005.00892.x.

[2] A. Adamson and M. Alexa. Ray tracing point set surfaces. English. In: Proceedings
of the Shape Modeling International. 2003, pp. 272–279. DOI: 10.1109/SMI.2003.
1199627.

[3] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-time rendering. 3rd edition.
Taylor & Francis Ltd, 2008, 1025 p. ISBN: 9781568814247.

[4] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-time rendering. 4th edition.
Taylor & Francis Ltd, 2018, 1198 p. ISBN: 9781138627000.

[5] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva. Point Set
Surfaces. In: Proceedings of the Conference on Visualization ’01. 2001, pp. 21–28.
URL: http://dl.acm.org/citation.cfm?id=601671.601673.

[6] N. Amenta, M. Bern, and M. Kamvysselis. A new Voronoi-based surface recon-
struction algorithm. In: SIGGRAPH ’98. ACM, 1998, pp. 415–421. DOI: 10.1145/
280814.280947.

[7] T. Ashton and J. Cantarella. A fast octree-based algorithm for computing rope-
length. In: Physical And Numerical Models In Knot Theory: Including Applications to
the Life Sciences. World Scientific, 2005, pp. 323–341. DOI: 10.1142/9789812703460_
0017.

[8] K. Atkinson. An introduction to numerical analysis. 2. ed. John Wiley & Sons, 1989.
ISBN: 0471624896.

[9] Y. Bai and D. Wang. On the Comparison of Trilinear, Cubic Spline, and Fuzzy Inter-
polation Methods in the High-Accuracy Measurements. In: IEEE Transactions on
Fuzzy Systems 18.5 (2010), pp. 1016–1022. DOI: 10.1109/TFUZZ.2010.2064170.

[10] E. Barbeau. Polynomials. Problem Books in Mathematics. Springer, 2003. ISBN:
9780387406275.

[11] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. el Guennebaud, J. A.
Levine, A. Sharf, and C. Silva. A Survey of Surface Reconstruction from Point
Clouds. In: Computer Graphics Forum 36.1 (2017), pp. 301–329. DOI: 10.1111/
cgf.12802.

[12] F. Bijma. Introduction to Mathematical Statistics. Amsterdam University Press, 2017,
372. ISBN: 9048536111.

[13] B. Burley, D. Adler, M. J.-Y. Chiang, H. Driskill, R. Habel, P. Kelly, P. Kutz, Y. K.
Li, and D. Teece. The design and evolution of disney’s hyperion renderer. In: ACM
Transactions on Graphics (TOG) 37.3 (2018), pp. 33:1–33:21. DOI: 10.1145/3182159.

https://doi.org/10.1111/j.1467-8659.2005.00892.x
https://doi.org/10.1109/SMI.2003.1199627
https://doi.org/10.1109/SMI.2003.1199627
http://dl.acm.org/citation.cfm?id=601671.601673
https://doi.org/10.1145/280814.280947
https://doi.org/10.1145/280814.280947
https://doi.org/10.1142/9789812703460_0017
https://doi.org/10.1142/9789812703460_0017
https://doi.org/10.1109/TFUZZ.2010.2064170
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1145/3182159

58

[14] P. Cai, D. Kong, S. Wang, and B. Yin. A Height-difference-based Ray Tracing of
Point Models. In: Proceedings of the 10th International Conference on Virtual Re-
ality Continuum and Its Applications in Industry. ACM, 2011, pp. 91–98. DOI: 10.
1145/2087756.2087768.

[15] P. Cai, D. Kong, S. Wang, B. Yin, and Y. Huo. A K-neighbor-based Ray Tracing of
Point Clouds. In: Journal of Information & Computational Science 12.13 (2015), pp.
4929–4941.

[16] Z.-Q. Cheng, Y.-Z. Wang, B. Li, K. Xu, G. Dang, and S.-Y. Jin. A Survey of Methods
for Moving Least Squares Surfaces. In: Proceedings of the Fifth Eurographics /
IEEE VGTC Conference on Point-Based Graphics. 2008, pp. 9–23. DOI: 10.2312/
VG/VG-PBG08/009-023.

[17] P. Christensen, J. Fong, J. Shade, W. Wooten, B. Schubert, A. Kensler, S. Fried-
man, C. Kilpatrick, C. Ramshaw, M. Bannister, B. Rayner, J. Brouillat, and M.
Liani. RenderMan: An Advanced Path-Tracing Architecture for Movie Rendering.
In: ACM Transactions on Graphics (TOG) 37.3 (2018), pp. 30:1–30:21. DOI: 10.
1145/3182162.

[18] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms. MIT
press, 2009, 1292 p. ISBN: 9780262033848. URL: https://dl.acm.org/citation.
cfm?id=1614191.

[19] Z. Cvetkovski. Inequalities: theorems, techniques and selected problems. Springer-
Verlag, 2012. ISBN: 9783642237911. DOI: 10.1007/978-3-642-23792-8.

[20] J. Dieudonné. Foundations of modern analysis. Academic Press, 1969, 387 p.
ISBN: 978-0122155505.

[21] E. Dougherty. Probability and statistics for the engineering, computing, and physi-
cal sciences. Prentice-Hall, Inc., 1990. ISBN: 013711995X.

[22] C. Ericson. Real-time collision detection. Elsevier, 2005. ISBN: 1558607323.
[23] S. Fortune. Voronoi diagrams and Delaunay triangulations. In: Computing in Eu-

clidean geometry. World Scientific, 1992, pp. 193–233. DOI: 10.1142/9789814355858_
0006.

[24] R. Goradia, S. Kashyap, P. Chaudhuri, and S. Chandran. GPU-Based Ray Tracing
of Splats. In: Proceedings of the 18th Pacific Conference on Computer Graphics
and Applications. 2010, pp. 101–108. DOI: 10.1109/PacificGraphics.2010.21.

[25] R. Goradia, S. Kashyap, P. Chaudhuri, and S. Chandran. Tracing specular light
paths in point-based scenes. In: The Visual Computer 27.12 (2011), 1083–1097.
DOI: 10.1007/s00371-011-0654-z.

[26] M. Gross and H. Pfister. Point-Based Graphics. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2007. ISBN: 9780080548821.

[27] J. Hocking and G. Young. Topology. Addison-Wesley, 1961, 374 p. ISBN: 978-
0486656762.

[28] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. The Quantized kd-Tree: Efficient
Ray Tracing of Compressed Point Clouds. In: Proceedings of the Symposium on
Interactive Ray Tracing. 2006, pp. 105–113. DOI: 10.1109/RT.2006.280221.

https://doi.org/10.1145/2087756.2087768
https://doi.org/10.1145/2087756.2087768
https://doi.org/10.2312/VG/VG-PBG08/009-023
https://doi.org/10.2312/VG/VG-PBG08/009-023
https://doi.org/10.1145/3182162
https://doi.org/10.1145/3182162
https://dl.acm.org/citation.cfm?id=1614191
https://dl.acm.org/citation.cfm?id=1614191
https://doi.org/10.1007/978-3-642-23792-8
https://doi.org/10.1142/9789814355858_0006
https://doi.org/10.1142/9789814355858_0006
https://doi.org/10.1109/PacificGraphics.2010.21
https://doi.org/10.1007/s00371-011-0654-z
https://doi.org/10.1109/RT.2006.280221

59

[29] E. Hubo, T. Mertens, T. Haber, and P. Bekaert. Self-Similarity-Based Compression
of Point Clouds, with Application to Ray Tracing. In: Proceedings of the Eurograph-
ics Symposium on Point-Based Graphics. 2007. DOI: 10.2312/SPBG/SPBG07/129-
137.

[30] J. Hughes, A. V. Dam, M. McGuire, D. Sklar, J. Foley, S. Feiner, and K. Akeley.
Computer graphics: Principles and Practice. 3. ed. Upper Saddle River, N.J. [u.a.]:
Addison-Wesley, 2014. ISBN: 9780321399526.

[31] R. Ivo, C. Vidal, and J. Bento Cavalcante-Neto. A method for clipping splats on
sharp edges and corners. In: The Visual Computer 28 (2012), pp. 995–1004. DOI:
10.1007/s00371-012-0729-5.

[32] J. Kajiya. The Rendering Equation. In: Proceedings of the 13th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH ’86. ACM, 1986,
pp. 143–150. DOI: 10.1145/15922.15902.

[33] S. Kashyap, R. Goradia, P. Chaudhuri, and S. Chandran. Implicit surface octrees for
ray tracing point models. In: ICVGIP ’10 Proceedings of the 7th Indian Conference
on Computer Vision, Graphics and Image Processing. 2010, pp. 227–234. DOI:
10.1145/1924559.1924590.

[34] S. Kashyap, R. Goradia, P. Chaudhuri, and S. Chandran. Real Time Ray Tracing
of Point-based Models. In: Proceedings of the 2010 ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games. I3D ’10. 2010. DOI: 10.1145/1730804.
1730976.

[35] L. Kobbelt and M. Botsch. A survey of point-based techniques in computer graphics.
In: Computers & Graphics 28.6 (2004), pp. 801–814. DOI: 10.1016/j.cag.2004.
08.009.

[36] M. Koskela, K. Immonen, M. Mäkitalo, A. Foi, T. Viitanen, P. Jääskeläinen, H. Kul-
tala, and J. Takala. Blockwise Multi-Order Feature Regression for Real-Time Path-
Tracing Reconstruction. In: ACM Transactions on Graphics (TOG) 38.5 (2019), pp.
138:1–138:14. DOI: 10.1145/3269978.

[37] E. Kreyszig. Advanced Engineering Mathematics, 8-th edition. John Wiley & Sons,
1999. ISBN: 0471154962.

[38] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH
construction on GPUs. In: Computer Graphics Forum. Vol. 28. 2. 2009, pp. 375–
384. DOI: 10.1111/j.1467-8659.2009.01377.x.

[39] O. Lawlor. Algorithms: Rendering. In: Encyclopedia of Computer Science and Tech-
nology (2017), pp. 116–129.

[40] M. Levoy and T. Whitted. The use of points as a display primitive. Citeseer, 1985.
URL: https://graphics.stanford.edu/papers/points/.

[41] L. Linsen, K. Müller, and P. Rosenthal. Splat-based Ray Tracing of Point Clouds. In:
Journal of WSCG 15 (2007), pp. 51–58. URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.486.4706.

https://doi.org/10.2312/SPBG/SPBG07/129-137
https://doi.org/10.2312/SPBG/SPBG07/129-137
https://doi.org/10.1007/s00371-012-0729-5
https://doi.org/10.1145/15922.15902
https://doi.org/10.1145/1924559.1924590
https://doi.org/10.1145/1730804.1730976
https://doi.org/10.1145/1730804.1730976
https://doi.org/10.1016/j.cag.2004.08.009
https://doi.org/10.1016/j.cag.2004.08.009
https://doi.org/10.1145/3269978
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://graphics.stanford.edu/papers/points/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.486.4706
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.486.4706

60

[42] W. Liu, Y. Cheung, A. Sawant, and D. Ruan. A robust real-time surface reconstruc-
tion method on point clouds captured from a 3D surface photogrammetry system.
In: Medical Physics 43.5 (2016), pp. 2353–2360. DOI: 10.1118/1.4945695.

[43] D. Luenberger. Optimization by vector space methods. Wiley, 1969, 326 p. ISBN:
0-471-55359-X.

[44] A. Madansky and H. Alexander. Weighted standard error and its impact on signifi-
cance testing. In: The Analytical Group, Inc (2017).

[45] C. Mallet and F. Bretar. Full-waveform topographic lidar: State-of-the-art. In: ISPRS
Journal of Photogrammetry and Remote Sensing 64.1 (2009), pp. 1–16. DOI: 10.
1016/j.isprsjprs.2008.09.007.

[46] S. Meerits, V. Nozick, and H. Saito. Real-time scene reconstruction and triangle
mesh generation using multiple RGB-D cameras. In: Journal of Real-Time Image
Processing (2017). DOI: 10.1007/s11554-017-0736-x.

[47] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger. Real-time 3D reconstruction
at scale using voxel hashing. In: ACM Transactions on Graphics (TOG) 32.6 (2013),
pp. 169:1–169:11. DOI: 10.1145/2508363.2508374.

[48] A. Papoulis. Probability & statistics. eng. Prentice-Hall, 1990, 454 p. ISBN: 0-13-
711730-2.

[49] M. Pharr and G. Humphreys. Physically based rendering. 2. ed. Burlington, MA:
Elsevier, 2010. ISBN: 0123750792.

[50] V. Prasolov. Polynomials. Vol. 11. Springer, 2010. ISBN: 3540407146.
[51] R. Preiner, S. Jeschke, and M. Wimmer. Auto Splats: Dynamic Point Cloud Vi-

sualization on the GPU. In: Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization. 2012, pp. 139–148. URL: https://www.cg.tuwien.ac.
at/research/publications/2012/preiner_2012_AS/.

[52] G. Reina, P. Gralka, and T. Ertl. A decade of particle-based scientific visualization.
In: The European Physical Journal Special Topics 227.14 (2019), pp. 1705–1723.
DOI: 10.1140/epjst/e2019-800172-4.

[53] M. I. Rosen. Niels Hendrik Abel and Equations of the Fifth Degree. In: The Amer-
ican Mathematical Monthly 102.6 (1995), pp. 495–505. DOI: 10.1080/00029890.
1995.12004609.

[54] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system for
large meshes. In: Proceedings of the 27th annual conference on Computer graph-
ics and interactive techniques. 2000, pp. 343–352. DOI: 10.1145/344779.344940.

[55] G. Schaufler and H. Jensen. Ray Tracing Point Sampled Geometry. In: Proceedings
of the 11th Eurographics Workshop on Rendering. Rendering Techniques. 2000,
pp. 319–328. DOI: 10.1007/978-3-7091-6303-0_29.

[56] C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C. Chaitanya, J. Burgess, S. Liu, C.
Dachsbacher, A. Lefohn, and M. Salvi. Spatiotemporal Variance-guided Filtering:
Real-time Reconstruction for Path-traced Global Illumination. In: Proceedings of
High Performance Graphics. HPG ’17. 2017, pp. 2:1–2:12. DOI: 10.1145/3105762.
3105770.

https://doi.org/10.1118/1.4945695
https://doi.org/10.1016/j.isprsjprs.2008.09.007
https://doi.org/10.1016/j.isprsjprs.2008.09.007
https://doi.org/10.1007/s11554-017-0736-x
https://doi.org/10.1145/2508363.2508374
https://www.cg.tuwien.ac.at/research/publications/2012/preiner_2012_AS/
https://www.cg.tuwien.ac.at/research/publications/2012/preiner_2012_AS/
https://doi.org/10.1140/epjst/e2019-800172-4
https://doi.org/10.1080/00029890.1995.12004609
https://doi.org/10.1080/00029890.1995.12004609
https://doi.org/10.1145/344779.344940
https://doi.org/10.1007/978-3-7091-6303-0_29
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3105762.3105770

61

[57] J. M. Snyder and A. H. Barr. Ray Tracing Complex Models Containing Surface
Tessellations. In: Proceedings of the 14th Annual Conference on Computer Graph-
ics and Interactive Techniques. SIGGRAPH ’87. ACM, 1987, pp. 119–128. DOI:
10.1145/37401.37417.

[58] E. Tejada, J. Gois, L. Nonato, A. Castelo, and T. Ertl. Hardware-accelerated Extrac-
tion and Rendering of Point Set Surfaces. 2006. DOI: 10.2312/VisSym/EuroVis06/
021-028.

[59] E. Tejada, T. Schafhitzel, and T. Ertl. Hardware-accelerated point-based rendering
of surfaces and volumes. 2007. URL: https://www.semanticscholar.org/paper/
Hardware-accelerated-point-based-rendering-of-and-Tejada-Schafhitzel/

1507fcfc496699bd6c5c061f0e4ec31385d06f86.
[60] G. J. Tourlakis. Lectures in Logic and Set Theory. Cambridge, UK ; New York:

Cambridge University Press, 2003, 575 p. ISBN: 9780511615566. DOI: 10.1017/
CBO9780511615566.

[61] I. Wald and V. Havran. On building fast kd-Trees for Ray Tracing, and on doing that
in O(N log N). In: Proceedings of the Symposium on Interactive Ray Tracing. 2006,
pp. 61–69. DOI: 10.1109/RT.2006.280216.

[62] I. Wald, W. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G. Parker, and P. Shirley.
State of the Art in Ray Tracing Animated Scenes. In: Computer Graphics Forum
(2009), pp. 1691–1722. DOI: 10.1111/j.1467-8659.2008.01313.x.

[63] I. Wald and H.-P. Seidel. Interactive ray tracing of point-based models. In: Pro-
ceedings of the Second Eurographics / IEEE VGTC Conference on Point-Based
Graphics. 2005, pp. 9–16. DOI: 10.2312/SPBG/SPBG05/009-016.

[64] M. Wand and W. Straßer. Multi-Resolution Point-Sample Raytracing. In: Proceed-
ings of the Graphics Interface 2003 Conference. CIPS, Canadian Human-Computer
Communication Society. 2003, pp. 139–148. DOI: 10.20380/GI2003.17.

[65] T. Whitted. An Improved Illumination Model for Shaded Display. In: Communications
of the ACM 23.6 (1980), pp. 343–349. DOI: 10.1145/358876.358882.

[66] H. Wilf. Algorithms and complexity. 2nd ed. A.K. Peters, 2002, 219 p. ISBN: 978-
1568811789.

[67] J. Wu and L. Kobbelt. Optimized Sub-Sampling of Point Sets for Surface Splatting.
In: Computer Graphics Forum 23.3 (2004), pp. 643–652. DOI: 10.1111/j.1467-
8659.2004.00796.x.

[68] M. Zwicker, H. Pfister, J. V. Baar, and M. Gross. Surface splatting. In: Proceedings
of the 28th annual conference on Computer graphics and interactive techniques.
ACM, 2001, pp. 371–378. DOI: 10.1145/383259.383300.

https://doi.org/10.1145/37401.37417
https://doi.org/10.2312/VisSym/EuroVis06/021-028
https://doi.org/10.2312/VisSym/EuroVis06/021-028
https://www.semanticscholar.org/paper/Hardware-accelerated-point-based-rendering-of-and-Tejada-Schafhitzel/1507fcfc496699bd6c5c061f0e4ec31385d06f86
https://www.semanticscholar.org/paper/Hardware-accelerated-point-based-rendering-of-and-Tejada-Schafhitzel/1507fcfc496699bd6c5c061f0e4ec31385d06f86
https://www.semanticscholar.org/paper/Hardware-accelerated-point-based-rendering-of-and-Tejada-Schafhitzel/1507fcfc496699bd6c5c061f0e4ec31385d06f86
https://doi.org/10.1017/CBO9780511615566
https://doi.org/10.1017/CBO9780511615566
https://doi.org/10.1109/RT.2006.280216
https://doi.org/10.1111/j.1467-8659.2008.01313.x
https://doi.org/10.2312/SPBG/SPBG05/009-016
https://doi.org/10.20380/GI2003.17
https://doi.org/10.1145/358876.358882
https://doi.org/10.1111/j.1467-8659.2004.00796.x
https://doi.org/10.1111/j.1467-8659.2004.00796.x
https://doi.org/10.1145/383259.383300

	Introduction
	Challenges in real-time point cloud rendering
	Intersection testing
	Surface definition
	Advanced lighting effects

	Mathematical theory
	Set theory
	Metric spaces
	Vector spaces
	Vector analysis

	Polynomial functions
	Multivariate polynomials
	Examples of intersections

	Probability and statistical theory
	Distributions
	Importance sampling

	Approximation and estimation
	Linear interpolation
	Weighted average
	Least squares methods
	Newton's method

	Physically based rendering
	Lighting interactions
	Bidirectionality

	Object materials
	Surface microstructure
	Bi-directional surface distribution functions

	The rendering equation
	Sampling the integral

	Path tracing

	Efficient point cloud ray tracing
	Surface reconstruction
	Mesh generation methods
	Moving least squares

	Intersection evaluation
	Splatting

	Surveyed methods
	Accelerating intersection testing
	Comparing the surveyed methods
	Generic ray tracing algorithm
	Asymptotic computational complexity

	Limitations of the analysis

	Results
	Conclusions
	References

