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ABSTRACT 
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Bitcoin is a cryptocurrency that can be traded online. Some of the online Bitcoin trading platforms allow traders 
to give trust ratings to each other. Trust ratings are meant to indicate with whom to trade. Given and received 
trust ratings between Bitcoin traders form a Bitcoin trader peer review network. Understanding the functionality 
of Bitcoin peer review networks is crucial due to counter-party risk in Bitcoin transactions. This work studies 
the social aspects of Bitcoin trading. Trust rating data from two online Bitcoin trading platforms, Bitcoin OTC 
and Bitcoin Alpha, is used. 

Bitcoin trader behaviour in peer review networks is reduced to five behavioural features: attention, reputation, 
activity, fairness and goodness. The first three are derived from the data in a straightforward way. The last two 
are determined by using a state-of-the-art algorithm designed for trust/distrust networks. Trader types are 
extracted by clustering the traders based on the behavioural features. Due to timestamped data it is possible 
to define how the behaviour of Bitcoin traders evolve over time. Bitcoin peer review networks are represented 
as chronological aggregated snapshots of the underlying temporal system. Per each aggregated network, 
traders are clustered based on their behaviour. Cluster transitions provide information about how Bitcoin trader 
behaviour evolves over time. This work focuses especially on adverse behaviour. Adverse behaviour refers to 
giving unfair trust ratings to others or being distrusted by other traders, especially fair ones. The impact of 
receiving unfair ratings on a trader's behaviour is studied. In addition, it is studied if adversely behaving traders 
form communities. A community is a group of traders who have been rating each other. Behavioural clusters 
are also studied in relation to the most and the least central traders. The most central traders substantially 
contribute to the peer review network while the impact of the least central ones is negligible. 

The behavioural clusters show clear similarities between the datasets. There are trader types for which 
behaviour is exceptionally persistent. For well behaving traders it is common to remain as they are. Distrusted 
traders are likely to remain distrusted or disappear from the network, which can partly be explained by unfair 
negative treatment. Unfairly negatively rated traders can react to unfair treatment by becoming unfair 
themselves. Some of the most reputable traders have received their reputation from unfair positive ratings. 
Active and noticed traders with medium reputation behave in various ways in the future and are likely to stay 
in the network. In addition, it is observed that communities of unfairness and distrust emerge in Bitcoin peer 
review networks the same time with a burst of negative trust ratings. Surprisingly, the results on centrality show 
that the most well behaving traders become the least central. The most central traders in Bitcoin peer review 

networks are active and noticed traders who do not behave adversely. 
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Bitcoin on yksi kryptovaluutoista, ja niitä voidaan ostaa ja myydä internetissä. Osa internetissä olevista Bitcoin 
kaupankäyntialustoista tarjoaa mahdollisuuden antaa luottamusarvoja toisille Bitcoin kaupankäyjille. 
Luottamusarvot on tarkoitettu osoittamaan, kenen kanssa kannattaa käydä kauppaa. Saadut ja annetut 
luottamusarvot Bitcoin kaupankäyjien välillä muodostavat vertaisarviointiverkon. Bitcoin vertaisarviointiverkon 
ymmärtäminen on tärkeää, koska kaupankäyntiin liittyy vastapuoliriski. Tässä työssä tutkitaan Bitcoin 
kaupankäynnin sosiaalisia puolia. Työssä käytetään luottamusarvodataa kahdelta Bitcoin 
kaupankäyntialustalta, Bitcoin OTC:ltä ja Bitcoin Alpha:lta. 

Kaupankäyjien käyttäytyminen on redusoitu viiteen käyttäytymisominaisuuteen: huomio, maine, aktiivisuus, 
reiluus ja hyvyys. Ensimmäiset kolme on suoraviivaisesti johdettu datasta. Jälkimmäiset kaksi on määritetty 
käyttäen viimeisintä menetelmää edustavaa algoritmia. Kaupankäyjätyypit on määritetty ryhmittelemällä 
kaupankäyjät klustereihin käyttäytymisominaisuuksien perusteella. Aikamerkityn datan johdosta on 
mahdollista määrittää, kuinka Bitcoin kaupankäyjien käyttäytyminen muuttuu ajan myötä. Ajan kanssa 
muuttuva vertaisarviointiverkko on esitetty kokoamalla verkko kronologisiksi tilannekatsauksiksi. Jokaista 
koottua verkkoa kohden kaupankäyjät on ryhmitelty käyttäytymisen perusteella. Klusterisiirtymistä saadaan 
informaatiota käyttäytymisen muuttumisesta. Työssä keskitytään erityisesti epäsuotuisaan käytökseen. 
Epäsuotuisa käytös tarkoittaa, että kaupankäyjä antaa epäreiluja luottamusarvoja tai on epäluotettu erityisesti 
reilujen kaupankäyjien mielestä. Tässä työssä tutkitaan epäreilujen luottamusarvojen vastaanottamisen 
vaikutusta kaupankäyjän käytökseen. Lisäksi, työssä tutkitaan muodostavatko epäsuotuisasti käyttäytyvät 
kaupankäyjät yhteisöjä. Yhteisöllä tarkoitetaan kaupankäyjien ryhmää, jossa kaupankäyjät ovat antaneet 
toisilleen luottamusarvoja. Käyttäytymisklustereita tutkitaan myös keskeisimpiin kaupankäyjiin nähden. 
Keskeisimmät kaupankäyjät vaikuttavat merkittävästi vertaisarviointiverkkoon, kun taas vähiten keskeisten 
kaupankäyjien vaikutus on merkityksetön. 

Käyttäytymisklustereissa on selkeitä samankaltaisuuksia datajoukkojen välillä. Osa käyttäytymistyypeistä on 
poikkeuksellisen pysyviä. Hyvin käyttäytyville on yleistä säilyä sellaisina. Epäluotetuille kaupankäyjille on 
todennäköistä pysyä epäluotettuina tai lähteä verkosta. Osaltaan se voidaan selittää epäreilulla negatiivisella 
kohtelulla.  Epäreilun negatiivisesti arvioidut kaupankäyjät voivat reagoida epäreiluun kohteluun muuttumalla 
itse epäreilummiksi. Osa maineikkaimmista kaupankäyjistä on saanut maineensa epäreilun positiivisista 
luottamusarvoista. Aktiiviset ja huomioidut kaupankäyjät, joiden maine on keskivertoa, käyttäytyvät eri tavoin 
tulevaisuudessa ja heille on todennäköistä pysyä verkossa. Lisäksi, epäreilujen ja epäluotettujen yhteisöjä 
ilmenee samanaikaisesti negatiivisten luottamusarvojen ryöpyn kanssa. Yllättävästi, suotuisimmin käyttäytyvät 
kaupankäyjät päätyvät vähiten keskeisiksi. Keskeisimmät kaupankäyjät ovat aktiivisia ja huomioituja 

kaupankäyjiä, jotka eivät käyttäydy epäsuotuisasti. 
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1. INTRODUCTION

Interacting with strangers has become more common due to the internet. On the internet,

there are platforms where transactions are made between anonymous participants. To

approach the risk of fraudulent behaviour in such systems, many online platforms allow

participants to give feedback to each other. The feedback a participant has received on

a platform forms the participant’s reputation. This kind of reputation system is stated to

introduce trust between participants and to encourage participants to behave well. [2, 3] In

this work, a group of participants who give feedback to each other is called a peer review

network.

Emotions and intuition play a role in human reactions. In a peer review network a

participant can give feedback to someone who has given feedback to the participant. This

allows one to retaliate negative or unfair feedback by giving back negative feedback.

Previous studies provide results on reactions to unfairness and low reputation. Restaurants

with low reputation are more likely to create fake reviews on an online customer review

platform than restaurants with good reputation [4]. Cheating in a game is more likely

for those who experience unfair treatment in the game [5]. In a game where accepting

an offer is always economically beneficial, people tend to reject strictly unfair offers but

accept offers that are only slightly unfair [6]. In an organization, a group of employees can

react to unfair treatment by dishonest behaviour, if the one behind the unfair treatment is

external to the group [7].

This work studies how participants in peer review networks give and receive feedback. The

peer review networks studied in this work are formed by Bitcoin traders, who have given

trust ratings to each other on online Bitcoin trading platforms. Due to anonymity, a counter-

party risk is present in Bitcoin transactions. To avoid trading with distrustful traders, some

Bitcoin trading platforms allow traders to give trust ratings to each other. Time-stamped

trust ratings can be used to describe Bitcoin trader behaviour and its evolution. In this

work, trader behaviour refers to giving and receiving feedback in a Bitcoin peer review

network. Data on actual trades is not used, and trader behaviour does not refer to how

Bitcoin traders buy and sell Bitcoins. The trust ratings are used to define behavioural

features: attention, reputation, activity, fairness and goodness, using simple methods and a

state-of-the-art algorithm.

The focus of this work is on adverse behaviour. By adverse behaviour it is meant that a

trader is distrusted by others or gives unfair trust ratings to other traders. Based on the

above listed behavioural features, traders are divided into clusters. A cluster is a group of

similarly behaving traders. In this work, a behavioural cluster refers to a group of traders

whose behaviour in terms of giving and receiving feedback is similar. Behavioural clusters
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are used to study how trader behaviour evolves over time and how the traders react to

unfairness. This work searches for answers to the following questions about Bitcoin trader

behaviour:

1. What kind of behavioural clusters are formed from Bitcoin traders?

2. How does a trader’s behaviour in a Bitcoin peer review network change over time?

3. What is the impact of receiving unfair ratings on a trader’s behaviour in a Bitcoin

peer review network?

In addition, topological matters of Bitcoin peer review networks are studied in this work.

If a trader receives unfair or negative ratings from another trader, a reaction might be to

give back similar ratings. This would indicate mutual distrust or retaliation. To examine if

adversely behaving traders have been rating each other, traders are divided into commu-

nities. A community of traders is a group of traders who have been densely rating each

other while rating only few traders from other groups. Communities differ from clusters

in that they are related to network topology, while clusters are related to the behavioural

features. Another network topology related quantity studied in this work is centrality.

Centrality is a measure of a trader’s importance. The most central traders in a peer review

network substantially contribute to the network while the impact of the least central ones

is negligible. This work searches for answers to the following questions about Bitcoin peer

review network topology:

1. Are there communities of adversely behaving traders in Bitcoin peer review networks?

2. How does centrality relate to traders’ behaviour in Bitcoin peer review networks?

The main results show that trader behaviour does not change drastically over time. Traders

who are distrusted by others remain distrusted or disappear from peer review networks.

This type of behaviour can partly be explained by unfair negative feedback. Trusted traders

remain as they are exceptionally often. Traders who actively give trust ratings and receive

many ratings from other traders in a network can behave in various ways in the future but

are likely to stay in the network. In addition, peer review networks contain communities of

adversely behaving traders. When the proportion of highly negative trust ratings increases,

it is observed that unfair and disreputable traders form communities. Furthermore, the

results on centrality are partly counter-intuitive. That is, the most well behaving traders

become the least important unusually often in Bitcoin peer review networks. To become

and remain an important contributor in Bitcoin peer review network one needs to be active,

noticed and not behaving adversely.

1.1 Social Networks

A network is a set of components called nodes and connections or links between them,

called edges. Also the word vertice can be used in place of the word node, the latter

being chosen to be used in this work. There are many structures, phenomena and systems



1.2 Bitcoin Peer Review Networks 3

in real life that can be represented as a network, one of the most common of which is

the internet. In the internet, computers or groups of computers are represented by nodes

whereas physical links between them are represented by edges. [8]

One type of a network is a social network. A social network is a network where actors,

e.g. individuals, groups or communities, are connected to each other according to some

relationship [9]. This relationship could be for example friendship, co-authorship or

employment, just to mention some. As the name suggests, social networks model social

phenomena. Nodes in a social network represent actors or groups of actors, and edges

represent interactions or relationships between the actors. [8] Typical examples of social

networks are systems such as Facebook and Twitter. Yet the topic covers also networks

that are not necessarily designed to be social networks. [9] For example, online platforms

where people can buy and sell currencies are not related to social relationships as such. All

the same, human interaction is present in such buyer-seller networks, and these networks

can be categorized as social networks. Social networks facilitated by the internet are called

online social networks. Online social networks have gained a lot of attention as a result of

increased supply of data. [9] Networks studied in this thesis can be categorized as online

social networks.

Social network analysis can be divided into two parts: structural analysis and content-based

analysis. Structural analysis refers to understanding arrangement and linkage of the net-

work, including but not limited to investigating communities and centrality. Communities

and centrality are explained in more detail in the next chapter. Also, the evolution of the

network over time can be part of structural analysis. In comparison to structural analysis,

content-based analysis is related to additional information of the network. Many social

networks include large amount of information that can be advantageous for understanding

the nature of the network. For example, a social network platform such as Facebook

contains pictures, text and games that provide a lot of additional data into the analysis.

[9] It is common to combine structural and content-based analysis [9]. Both topological

and social aspects can be taken into account [10, e.g.], which is the approach taken in this

work.

1.2 Bitcoin Peer Review Networks

Cryptocurrency means digital money that is secured by cryptographic procedures. One of

the cryptocurrencies is Bitcoin. Bitcoin was created 2008 by Satoshi Nakamoto and it is

currently probably the most known cryptocurrency [11]. Cryptocurrencies have gained a

lot of attention due to their relatively recent upcoming and revolutionizing nature. There

are other cryptocurrencies than Bitcoin such as Etherium and XRP, yet data used in this

work is related to Bitcoin. Bitcoins are formed in a process where complex mathematical

problems are solved by a network of computers. This is called Bitcoin mining. Those who

lend their computational power to the system are called Bitcoin miners. [12] People who in

turn buy and sell Bitcoins are referred to as Bitcoin traders. In this thesis social networks
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of Bitcoin traders are examined.

Unlike traditional digital currencies and central banking systems, Bitcoin trading does not

have any third party intermediary assuring appropriate handling of transactions. Instead,

Bitcoin is implemented using distributed ledger technology, more specifically block-chain.

In addition, Bitcoin traders are anonymous in a sense that they are not identifiable by other

traders. Thus, Bitcoin trader network functionality is based on a peer-to-peer network,

where transaction history is maintained and verified by Bitcoin miners using block-chain

technology [12, 13, 14]. A known vulnerability of such system is ’51% attack’ where a

group of Bitcoin miners covering more than half of the computational power of the Bitcoin

mining network would be able to control transactions [15].

Technology-wise, Bitcoins cannot be ’double spent’. This is due to a time-stamp server

storing blocks of irreversible transactions to keep track on transaction history verified

by Bitcoin miners. The concept of trust in block-chain based finance is far from being

trivial. It is considered to be shifted instead of excluded in such systems. [12] It is crucial

to understand how trust is embedded in Bitcoin peer review networks. The topic being

extensive, this work is scoped to focus on social aspects. Consequently, technological

matters are not included in the analysis.

There are many platforms where Bitcoins can be traded, of which Bitcoin OTC and Bitcoin

Alpha are the ones whose data is used in this thesis. The two datasets used in this work

are referred to as Bitcoin OTC and Bitcoin Alpha according to the source of the data. On

these platforms traders can give ratings based on how they trust other traders. This type

of rating system is a way to tackle the problem of hiding fraudulent behaviour behind

anonymity. In other words, it gives information about with whom to trade. Naturally there

is a risk of fraudulent traders affecting Bitcoin trading by giving false trust ratings to other

traders. The nature and evolution of Bitcoin peer review networks can be studied from

time-stamped trust rating data. This is important as both technical and social aspects need

to be studied in order to guarantee proper functionality of Bitcoin trading. To approach the

latter, this thesis continues the work of [16, 17] by studying in more detail the behaviour

of Bitcoin traders. Trader behaviour is captured into features derived from trust rating data.

The evolution of trader behaviour over time is possible to analyze due to time-stamped data.

Because other type of data such as executed trades is not included, trader behaviour in

this work is related to given and received trust ratings in a peer review network of Bitcoin

traders. Other type of behaviour is outside the scope of this work.

Datasets used in this work are available online in [18, 1] and introduced in [16, 17].

Links to the actual trading platforms where the datasets are from are provided in [18, 1].

Unfortunately, the link to Bitcoin Alpha trading platform is no longer valid. The datasets

used in this work are considered valid as they are used in previous publications. Both

datasets contain traders numbered by positive integers and trust ratings ranging from −10

up to 10 with a step 1 excluding 0. Rating value 10 represents the highest possible trust,

while −10 means severe distrust. In the datasets there are no repeating ratings meaning
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Table 1.1. The number of traders and trust ratings in Bitcoin OTC and Bitcoin Alpha

datasets are shown in the first columns. ’Time Range’ presents the first and the last

time-stamp in the data. The average number of received, µin, and given, µout, ratings as

well as their variances (σ2
in,σ

2
out resp.) rounded to the closest integer are shown in the last

columns.

Dataset Traders Ratings Time Range µin σ2
in µout σ2

out

Bitcoin OTC 5881 35592 2010-11-08 - 2016-01-25 6 313 8 533

Bitcoin Alpha 3783 24186 2010-11-08 - 2016-01-22 6 271 7 378

that trader ni gives a trust rating to trader n j once if ever in the data. A trader cannot

give a trust rating to himself/herself. The total number of nodes and edges as well as the

time ranges covered by the datasets are presented in Table 1.1. The mean and variance of

the number of received and given ratings over the traders are also presented in the table.

Accordingly, datasets cover 6 years in total and include thousands of Bitcoin traders. The

number of given and received trust ratings varies significantly between traders.
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2. MATHEMATICAL METHODS

Mathematical methods used in answering the research questions are explained in this

chapter. In the first section, the concept of network is introduced with examples. Properties

of networks, and quantities related to nodes are discussed. After that, the concepts of

clustering, community detection and centrality are presented. The methods chosen in this

work are described in more detail. There are many other methods and algorithms related

to the topics of this chapter yet they are left outside the scope of this work. Comparing

for example clustering methods is considered a natural and interesting extend to this work.

The methods used in this work are chosen by their efficiency and suitability, and they are

considered to be a reasonable start for a more elaborate research.

2.1 Network Theory

Networks can be applied to multiple scientific fields ranging from biological food chains

and chemical reaction networks to internet and power grids. The approach in network

theory is to model the underlying system as a network, and to use mathematical methods to

understand its nature. [8] Recently, the study of complex networks has gained importance

due to increased supply of data and computational power. Complex networks are used to

model large, complex systems that change over time. The study of complex networks has

been developed in the context of real networks. [19] The word complex in this context

usually refers to the size of the network but also to the complex nature of the underlying

system. Network components can include additional information, for example there can be

multiple types of edges or various attributes associated to nodes. Complex networks can

be used to model large complicated systems.

Definition 2.1.1 (Network) A network G = (N,E) is a collection of nodes ni ∈ N =

{n1,n2, ...,nk} and edges ei, j ∈ E ⊆ N ×N. An edge ei, j = (ni,n j) represents a connection

from node ni to n j. Nodes ni and n j are called adjacent if (ni,n j) ∈ E or (n j,ni) ∈ E.

Definition 2.1.2 (Undirected Network) An undirected network is a network G = (N,E)

such that

(ni,n j) ∈ E ⇐⇒ (n j,ni) ∈ E.

Definition 2.1.3 (Weighted Network) Let G = (N,E) be a network. G is weighted if

there exists a mapping h : E −→ R

h((ni,n j)) = wi, j,

that assigns a weight for each edge.
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(a) Undirected, weighted network (b) Directed network

Figure 2.1. An illustration of (a) an undirected, weighted network and (b) a directed

network using real data from Bitcoin OTC trading platform [1].

Mathematical definition of a network is presented in Def. 2.1.1. An edge e is defined by

two nodes, ni,n j, representing that there is a connection from ni to n j. Nodes that have

an edge between them are called adjacent. A network can be directed or undirected. In

a directed network, an edge has a direction, i.e. it is going from one node to another. A

network is directed by definition. In an undirected network, connections work both ways as

defined in Def. 2.1.2. Some networks include additional information on top of nodes and

edges. One type of network that is often used is called weighted network. In a weighted

network every edge has a weight associated to it as expressed in Def. 2.1.3. Weight of an

edge or edge weight is usually a real number. Sometimes it is particularly noted that an

edge can have a negative weight. Such networks are called signed networks. Edge weight

can represent for instance the strength of the connection. [8] Networks studied in this work

are directed, signed and weighted.

An example of an undirected, weighted network is shown in Fig. 2.1(a). In the figure,

numbered spheres represent nodes, and lines between them represent edges. Fig. 2.1(b)

presents an example of a directed network. Examples of real world directed networks

include World Wide Web in computer science, protein-protein metabolic network in

biochemistry, citation network in scientific research, and pray-predator food network in

ecology. Collaboration network and road maps are examples of undirected networks.

Some networks can be interpreted as directed or undirected depending on the aspect the

phenomenon is studied from. [8] For instance, a network where people are linked if they

are friends might be considered undirected but could also be interpreted as directed.

Networks are used to model systems related to various scientific fields, as demonstrated by

the above listed examples. It is beneficial to develop general methods and quantities that

can be applied to networks in various contexts. One commonly used quantity of a node in

a network is its degree.

Definition 2.1.4 (Degree) Let G = (N,E) be a network. The degree of a node n, d(n), in
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an undirected network is the number of edges adjacent to that node,

d(n) = |{γ : (n,γ) ∈ E}|,

where | · | is the number of elements in a set. In a directed network, the in-degree of a node

n is the number of in-going edges,

din(n) = |{β : (β ,n) ∈ E}|,

whereas the out-degree of a node n is the number of out-going edges,

dout(n) = |{γ : (n,γ) ∈ E}|.

The degree of a node in a network is defined in Def. 2.1.4. In an undirected network, the

degree of a node can be thought as the number of its neighbors. In a directed network there

are two types of degrees: in-degree and out-degree. The in-degree of a node is the number

of edges coming to the node. Analogously, the out-degree of a node is the number of edges

going from that node to other nodes. [8]

Definition 2.1.5 (Self Loop) Let G = (N,E) be a network. A self loop at node n ∈ N is

(n,n) ∈ E.

A basic property of a network is whether it contains self loops or not. A self loop at a node

means that the node is connected to itself, as defined in Def. 2.1.5. A network that contains

no self loops and has at most one edge from any node ni to another node n j is called a

simple network. [8] Networks studied in this work are simple networks.

Networks can be used to model both static and dynamic systems. Static networks are

networks that do not change over time. They are often used to model systems that

evolve over time relatively slowly. Networks that model slowly changing systems can

be represented as a sequence of static networks. In such an approach, chronological

aggregated snapshots of the network are used to model the underlying slowly evolving

system. Networks that evolve over time are called dynamic or temporal networks. Temporal

networks allow studying how the structure and properties of the underlying dynamic system

changes over time. [9]

In network theory there are various quantities to describe the nodes of a network. Many

times it is necessary to order nodes based on how important and central they are in a

network. This type of node hierarchy can be used for example in finding the most cited

publications in a citation network. Accordingly, one quantity in network analysis is the

centrality of a node. Centrality is a measure of a node’s importance in terms of how

connected the node is to other nodes in a network. Centrality measures are often based on

the degree of a node. In its simplest form, degree can be used as a centrality measure. In

many networks there are a small number of nodes that have exceptionally high degrees.

Such nodes are called hubs. Recent empirical and theoretical studies argue that the hubs of
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a network can have an excessive impact on the behaviour of the network. [8] In a directed

network, centrality can be separated into two types: being central in terms of out-going

and in-going edges. This division allows extracting important source nodes and destination

nodes. An important source node points to many important nodes. Important source node

is called a hub in this context. Important destination node, a so called authority, is pointed

at by many hubs. [20] Centrality is further discussed in section 2.4.

Networks are applied to various problems such as link prediction [16, 21, 22, 23], anomaly

or fraud detection [17, 24, 25, 26] and complex contagion [27, 28, 29]. Link prediction

refers to predicting the emergence, signs and weights of edges in a network [16]. Anomaly

and fraud detection refers to detecting anomalous or fraudulent nodes in a network. For

example, in [26] a method for finding users who give false reviews on an online commerce

platform is developed. Complex contagion is a phenomenon where connected nodes

have an influence on each other. It can mean for example rumours or news spreading

in a network of people [29]. One of the typical tasks related to networks is community

detection. In community detection, nodes are partitioned into groups so that nodes within

a group are highly connected, while nodes in different groups share only few links [8].

Community detection is discussed in more detail in section 2.3.

Systems that are modeled by complex networks usually include a large number of compo-

nents and connections [19]. Such systems are not feasible to analyze without increasing

the level of abstraction. Complex networks are a mathematical tool and thus an abstraction

of the underlying system. Higher abstraction level allows applying general methods and

quantities to a wide range of systems.

2.2 K-Means Clustering

Clustering means grouping samples based on their similarity. It is used to recognize

patterns in data. Clustering is applied in various contexts such as biological analysis, image

processing, and data compression [30, 31, 32]. There are many methods for clustering,

yet on a general level they apply the same idea. At first, a similarity measure needs to be

defined. For instance, Euclidean distance can be used as a similarity measure. Samples are

then partitioned into groups called clusters so that similar samples are placed into the same

cluster. The goal is to find a partition of the samples so that the samples within a cluster

are similar to each other and differ from the samples in other clusters. Representing the

samples in a dataset by clusters is a simplification and thus part of the information is lost

in clustering. [33]

There are various types of clustering such as probabilistic clustering and hierarchical

clustering. In this work, clustering refers to partitioning relocation clustering. In this type

of clustering, samples are grouped into disjoint subsets and the optimal set of subset is

found in an iterative way. Starting from some initial set of subsets, clustering algorithm

reassigns each sample into a cluster based on some criterion. In each iteration the clusters
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are modified based on the reassigned samples. In this way the clustering result is gradually

improved. [33]

The most popular partitioning relocation clustering method is called K-means clustering.

[32] K-means clustering is a fast and simple method that is usually the first one to apply

due to quick implementation [31]. It scales well to large datasets and it is guaranteed

to converge. K-means clustering is technically applicable only with numerical features

[33]. In K-means clustering, samples are divided into k clusters, C1,C2, ...,Ck, where k is

a predefined positive integer. Each cluster is represented by a so called centroid that is

the center of the cluster. Each cluster center lies in the same space with the samples but

is not necessarily any of the samples. Initial cluster centers can be randomly chosen or

defined based on a more advanced technique. Each sample is clustered based on the closest

cluster center to the sample. After dividing the samples into clusters, each cluster center is

changed to be the mean of the samples in the cluster. The approach in K-means clustering

is to minimize the squared distance of samples to their closest cluster center. [34]

A commonly used solution for finding a local minimum in K-means clustering is introduced

in [35] and referred to as Lloyd’s algorithm. In Lloyd’s algorithm cluster centers are

initialized by randomly uniformly choosing k samples from the total sample set. The

procedure in Lloyd’s algorithm can be described by the following steps [34]:

1. Define the number of clusters, k.

2. Initialize the cluster centers, µ
(0)
k .

3. Consider the j:th iteration. Assign each sample z to the cluster of its closest cluster

center:

z ∈Ck = argmin
Ck

||z−µ
( j−1)
k ||,

where || · || is a distance measure.

4. Update each cluster center to be the mean of the samples in that cluster:

∀k : µ
( j)
k =

1

|Ck|
∑

z∈Ck

z,

where |Ck| is the number of samples in cluster Ck.

5. Repeat steps 3 and 4 until the cluster centers do not change significantly:

∑
k

⃓

⃓

⃓
µ
( j)
k −µ

( j−1)
k

⃓

⃓

⃓
< ε,

where ε is a predefined tolerance.

The above described algorithm can be efficiently run with different values for initialization

parameters and the best result can be picked in order to avoid ending up in a poor local

minimum [31, 30]. Also, more advanced cluster center initialization methods have been

developed as random initialization may lead to a poor clustering result [32]. Initialization
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method introduced in [34] increases the speed and the accuracy of K-means algorithm.

This modified version of K-means is referred to as K-means++. In K-means++ cluster

centers are initialized according to specific probabilities. That is, a sample is chosen as

a cluster center with a probability proportional to the distance from the sample to the

existing cluster centers. The first cluster center is arbitrarily chosen among the samples.

This initialization method is used in this work.

Definition 2.2.1 (Within Cluster Sum of Squares) Denote a list of M samples by Z =

(z1,z2, ...,zM). Let the samples be clustered into K clusters, C1,C2, ...,CK . Within cluster

sum of squares, W, is

W =
K

∑
k=1

∑
zi∈Ck

||zi −µk||
2,

where µk is the cluster center of the k:th cluster and || · || refers to a chosen distance/simi-

larity measure.

Clusters are not defined in advance. It is not known beforehand how the samples should

be divided into clusters. K-means clustering can end up in a different local minimum

depending on the initialization, which points out that there are multiple ways to cluster the

samples. Hence there needs to be a way to measure the validity of the clustering result. One

way to measure the similarity of samples within clusters is within cluster sum of squares

(WCSS). WCSS is defined in Def. 2.2.1. The smaller the value for WCSS, the more

similar the samples within clusters are. K-means clustering is designed to minimize WCSS

[31, 32]. By design of the K-means method, WCSS decreases as the number of clusters

increases. Increasing the number of clusters comes with a cost of complexity. Because

the goal of clustering is to simplify data, increasing the number of clusters complicates

analysis and interpretation. The need to define the number of clusters in advance is one of

the drawbacks in K-means clustering. One way to decide k is to plot WCSS against the

number of clusters. Usually the curve drops rapidly at the beginning but decreases only a

little when the values for k increase. Based on the curve, one can see the trade off between

accuracy and complexity. The number of clusters can then be decided on a case-by-case

basis.

2.3 Community Detection

Community detection is one of the most central topics in the study of complex networks

[36]. Community detection means partitioning nodes in a network into groups or com-

munities based on their linkage. The idea is that nodes within a community are highly

linked to each other while nodes in different communities share only few links. Com-

munity detection is used to discover structurally related units not known in advance. [9]

An example of a community is a group of friends in a social network of acquaintances.

In community detection nodes are divided into disjoint subsets, a subset representing a

group of actors or items that are densilty connected to each other. Community detection
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algorithms are designed to discover the optimal set of subsets based on some criterion.

A common criterion is to maximize a so called modularity. Modularity is a measure of

how inter-connected communities are compared to the connections between communities.

Optimizing modularity is known to be computationally hard. Consequently, approximation

algorithms are used for modularity based community detection for large networks. [37]

One of the often used modularity based community detection method is Louvain commu-

nity detection. This method was first introduced in [37] to detect communities in large,

weighted, undirected networks. There are solutions for other types of networks too, e.g.

signed network community detection is discussed in [38]. In this work, the signs, weights

and directions of edges are dropped in community detection. This is to extract commu-

nities of traders purely from the structural perspective. Knowledge of given trust ratings

is discarded and edges are used to represent interactions between traders. In other words,

peer review networks of Bitcoin traders are simplified to show which traders interact with

each other without referring to the type of the interaction. Dropping the edge weights

means in practice that each edge has a weight 1. Due to this simplification, more complex

community detection methods are not needed. Louvain community detection is chosen in

this work based on its efficiency, suitability and easy implementation.

Consider an arbitrary undirected, weighted network G = (N,E,h((·, ·))), where h is a

mapping that assigns a weight for each edge (see Def.2.1.3). In our case

∀(ni,n j) ∈ E : h((ni,n j)) = wi, j = 1.

Denote the number of nodes by |N|. Louvain community detection has two iterative phases.

First, each node is assigned to a different community. Hence there are |N| communities at

the beginning. The following notations are used in defining modularity:

• ωi: the community of node ni,

• δ (ωi,ω j): a function having value 1 if ωi = ω j and 0 otherwise,

• η : the sum of all the edge weights, η = ∑(ni,n j)∈E wi, j,

• ∑G,ni
: the sum of the weights of the edges between node ni and its adjacent nodes in

network G.

Modularity is calculated as Q = 1
2η ∑i, j

[︄

wi, j −
∑G,ni

∑G,n j

2η

]︄

δ (ωi,ω j).

Per each node ni ∈ N the gain in modularity is calculated in cases of moving the node to

the communities of its adjacent nodes. Node ni is then moved to the community of the

adjacent node that maximizes modularity gain. If modularity cannot be increased, node ni

is left in its current community. [37]

The above described notations together with the following notations are used in defining

the gain in modularity:
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• Ω: a community,

• ∑Ω: the sum of the edge weights within community Ω,

• ∑G,Ω: the sum of the weights of the edges in network G that are incident to the nodes

in community Ω,

• ∑Ω,ni
: the sum of the weights of the edges between node ni and its adjacent nodes in

community Ω.

The gain in modularity, ∆Q, when a node ni is moved to community Ω, can be calculated

efficiently by

∆Q =

[︄

∑Ω+∑Ω,ni

2η
−

(︄

∑G,Ω+∑G,ni

2η

)︄2]︄

−

[︄

∑Ω

2η
−

(︄

∑G,Ω

2η

)︄2

−

(︄

∑G,ni

2η

)︄2]︄

.

After moving each node according to the maximum modularity gain, the process starts

again. Iterations stop when no more modularity gain can be achieved. In this way, a local

maximum for modularity is found in the first phase. [37]

In the second phase, a new network is formed. In the new network nodes are the communi-

ties constructed in the first phase. Edge weights between the nodes in the new network are

formed by summing up the weights of the edges between the communities. Since each

community contains inter-connections, the new network contains self loops. The weight

of the self loop edge of community Ω is the sum of the weights of the inter-connections

in Ω. Using the above notations, the self loop weight of community Ω is ∑Ω. The first

phase is then applied to the new network. That is, communities of communities are formed

by making single changes at a time and stopping when modularity cannot be increased

anymore. The two phases together are referred to as a pass. Louvain community detection

iterates the passes until modularity changes no more. In this way, a local maximum for

modularity is achieved in an iterative way. Louvain community detection is applicable

to large datasets due to its efficiency. One of the drawbacks in Louvain community de-

tection is that the communities formed in the first phase are sensitive to the order of the

nodes. The impact of the order of the nodes on modularity is stated to be insignificant but

computational time is assumed to be affected. [37]

2.4 Centrality

Centrality is a quantity that describes how important a node is in a network. Nodes can

be ranked by centrality, and the received node hierarchy can serve as a tool for network

analysis. Especially in social networks, centrality is used to highlight the most influential

nodes. There are many ways to define centrality. Degree centrality refers to determining

a node’s importance based on how connected it is to other nodes. Eigenvector centrality

advances degree centrality by considering how connected a node is to important nodes.

[8] Some of the centrality methods have been developed in the context of internet search
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engines. Search engines rank web pages based on how well they fit the entry given by a

web user. Algorithms such as Hyperlink-Induced Topic Search (HITS) [20], Page Rank

[39] and its relatively recently modified version Quantum Page Rank [40] have all been

developed for search engines. Yet, they are used as centrality measures in other contexts

too [41, 42, e.g.]. There are also centrality measures that use other information in addition

to network structure to define the most central nodes. For example, in the context of

internet search engines, a modified version of Page Rank and HITS methods includes web

page topics into centrality method [43].

In this work, only the directed edges are used to rank Bitcoin traders by their importance.

The underlying rationale is that highly connected traders have the greatest influence on

the peer review network because they have given and/or received many trust ratings.

Incorporating edge weights, namely trust rating values, is not desired as the aim is to see

how structural matters relate to the behaviour of the traders. Centrality measures that

include additional content are not relevant in this case. Many centrality measures such

as Page Rank assign one centrality value per each node in a network but HITS centrality

measure divides centrality into two categories: hubs and authorities. Because the networks

in this work are directed, HITS centrality method is suitable in this context. HITS is

considered to be more informative than e.g. Page Rank because it provides two types of

centrality measures.

HITS is introduced in [20] as a method for ranking web pages according to an input

given by an internet search engine user. The idea behind HITS algorithm is that there

are two types of important web pages: authorities that contain relevant information and

hubs that point to authorities, i.e. tell where to find the information [9]. In the context of

Bitcoin peer review networks authorities are traders that have received many trust ratings,

especially from hubs. Authorities are known traders and a lot of information about their

trustworthiness is available. Hubs in Bitcoin peer review networks are traders that have

given ratings to many others, especially authorities. Hubs are traders that considerably

contribute to the discussion of "with whom to trade".

HITS algorithm defines an authority and a hub values for each node in a network in an

iterative way. The higher the hub (authority) value of a node is the more important hub

(authority) the node is. Denote the hub value of node ni by φ(ni) and the authority value

by θ(ni). Denote by Nni,out the set of nodes node ni points to, and by Nni,in the set of nodes

that point to node ni. A predefined threshold ε determines the upper limit for how much

the values can change between consecutive iterations for the algorithm to stop. With these

notations the HITS procedure finds hub an authority values per each node in a network the

following way:

• Consider a directed network G = (N,E).

• Initialize all hub and authority values to 1:

∀ni ∈ N : φ (0)(ni) = θ (0)(ni) = 1.
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• Consider the k:th iteration. Per each node ni ∈ N, the authority value of ni from the

k−1:th iteration is increased by the hub values of the nodes in Nni,in:

∀ni ∈ N : θ (k)(ni) = θ (k−1)(ni)+ ∑
n j∈Nni,in

φ (k−1)(n j).

• Per each node ni ∈ N, the hub value of ni is increased by the new authority values of

the nodes in Nni,out:

∀ni ∈ N : φ (k)(ni) = φ (k−1)(ni)+ ∑
n j∈Nni,out

θ (k)(n j).

• Before the next iteration, the hub (authority) values of the nodes are normalized by

dividing the values by the current maximum hub (authority) value.

• The algorithm iterates until the values change less than a certain tolerance ε . When

the stopping criterion is met, hub (authority) values are normalized by the sum of

the hub (authority) values over all nodes. The output of the HITS algorithm is the

normalized hub and authority values from the most recent iteration.

Above described HITS procedure is presented after NetworkX Python package’s implemen-

tation of HITS algorithm [44]. HITS algorithm that includes normalization is guaranteed

to converge [45].

2.5 Hyper-Geometeric Test

Hyper-geometric test is a statistical test related to hyper-geometric distribution. Hyper-

geometric distribution is a discrete distribution that presents probabilities for a number of

successes. Following the example in [46], hyper-geometric distribution can be explained

by considering an urn of k balls of which m are blue and k−m are white. If K balls are

drawn without replacement, the number of blue ones, M, is a a hyper-geometric random

variable with parameters k,m and K. The probability of M successes, namely M blue balls,

is

P(X = M) =

(︁

m
M

)︁(︁

k−m
K−M

)︁

(︁

k
K

)︁ .

The probability of observing M blue balls signals how exceptional the result is. In this

sense, hyper-geometric distribution can be used to point out exceptional observations.

Hyper-geometric test refers to testing over-representation or under-representation of a

certain type of objects under the null-hypothesis of random occurrence [47] In case of

over-representation, hyper-geometric distribution is used to determine the probability of

having at least M successes,

P(M ≤ X) = 1−
M−1

∑
i=0

P(X = i) = 1−
M−1

∑
i=0

(︁

m
i

)︁(︁

k−m
K−i

)︁

(︁

k
K

)︁ .
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In the example, hyper-geometric test has the null-hypothesis that at least M blue balls are

observed as a result of randomly sampling K balls without replacement from an urn that

contains m blue balls and k balls in total.

In statistical tests, a significance level, α , is the tolerance for falsely rejecting a null-

hypothesis. For instance, α = 0.05 means that there is less than 5% chance the null-

hypothesis holds true even if it is rejected. Comparing probability P(·) to a given sig-

nificance level determines if the null-hypothesis is rejected or not. In this example,

P(M ≤X)< 0.05 would result in the rejection of the null-hypothesis. Under-representation

is tested in a similar manner by calculating the probability of observing at most M samples

of a certain type,

P(X ≤ M) =
M

∑
i=0

P(X = i) =
M

∑
i=0

(︁

m
i

)︁(︁

k−m
K−i

)︁

(︁

k
K

)︁ .

Hyper-geometric test can be used to determine if a result is statistically significant. Statisti-

cal significance in this context means rejecting the null-hypothesis that the observed result

is due to random sampling from the population.

In case there are multiple hyper-geometric tests of the same event, it is crucial to adjust the

significance level accordingly. This is to avoid falsely rejecting null-hypotheses. There are

multiple ways to adjust the significance level, one of which is Bonferronig correction. [48]

In Bonferroni correction the significance level, α , is divided by the number of tests [47].

In case the above described example is repeated 5 times, Bonferroni corrected significance

level, α̂ , would be

α̂ =
0.05

5
= 0.01.

Bonferroni correction is stated to be conservative [47] in a sense that it quite significantly

decreases α with respect to the number of tests. In this work the focus is on strong evidence

due to the large extend of the topic. Research questions are answered from the perspective

of highly exceptional observations. Therefore, Bonferroni correction is considered suitable.



17

3. FEATURE EXTRACTION

In this chapter the representation of the peer review networks and features derived from

the trust rating data are explained. The features are used to assess the behaviour of Bitcoin

traders in peer review networks. More advanced features are explained in more detail. The

research methodology used in this thesis is explained and the methods introduced in the

previous chapter are put into the context of answering the research questions.

3.1 Aggregated Network

One of the main questions in network analysis is whether the network is considered

static or dynamic. Having time-stamped data does not necessarily mean that a dynamic

interpretation would be the most suitable. The majority of social network analysis uses

static networks. If a network is evolving over time relatively slowly it might be useful

to interpret it as consecutive snapshots of the changing network. [9] That is, consecutive

events of edges and nodes emerging and disappearing would be batched into a snapshot

representing a dynamic network as a static aggregation over a certain time interval. A

reason to choose such an approach is that analysis of slowly changing networks might not

benefit from incorporating its dynamics to the extend to which it adds complexity.

In this work, it is decided to aggregate the time-stamped data per half a year and represent

the evolution over time of the network as a sequence of snapshots. In this way, both

datasets cover 12 time-steps in total, starting from the second half of 2010 and ending after

the first half of 2016. For example, aggregated data on date 2012-12-31 includes all ratings

given from the 1st of July 2012 until and including 31st of December 2012. The time-steps

are enumerated from 1 to 12. Each time-step corresponds to a time-stamp. For instance,

the fifth time-step has a time-stamp 2012-12-31. In this way, the 12 aggregated networks

correspond to non-overlapping time periods denoted by the end dates of the time periods.

Definition 3.1.1 (Aggregated Network) Aggregated network corresponding to a time-

stamp t is defined by

Gt = (Nt ,Et ,ht),

where Et is the set of edges and Nt is the set of traders present in the peer review network

on a half a year time period ending at date t. Mapping ht((ni,n j)) assigns a rating value

for each edge (ni,n j) ∈ Et .

Aggregated network is defined in Def. 3.1.1. The concept of weighted network (see

Def.2.1.3) is applied in defining aggregated network. That is, there is a function associated

to the network that maps each edge to a trust rating. In other words, ht((ni,n j)) is the
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(a) Bitcoin OTC (b) Bitcoin Alpha

Figure 3.1. The sub-figures present the rating distributions on each time-step in (a) Bitcoin

OTC and (b) Bitcoin Alpha. Trust ratings are integer numbers from -10 to 10 with a step

of 1 excluding 0. The titles of the sub-figures show the number of traders, the number of

ratings and the time-stamp of the aggregated network.

rating value given by trader ni to trader n j in an aggregated network corresponding to a

time-stamp t. As the two datasets used in this work are handled separately, there are two

sequences of 12 aggregated networks.

Figure 3.1 shows the rating distribution in each aggregated network. It is evident that the

overall rating behaviour does not change dramatically over time although the number of

traders varies significantly. For example, in Bitcoin OTC there are less than 50 traders at

the lowest and around 1800 at the highest. Highly negative values, namely -10 ratings,

start to appear after the first half a year, increasing quite remarkably during the second

half of 2012. In Bitcoin OTC −10 ratings cover nearly 20 percent of all the ratings during

the second half of 2013 as seen in Fig. 3.1(a). In Bitcoin Alpha, the proportion of −10

ratings stays below 10% over all time-steps according to Fig.3.1(b). Slightly positive

values, namely +1 and +2, seem to dominate in both datasets covering always more than

50 percent of the ratings.

3.2 Feature Vector

The datasets used in this thesis contain nodes and time-stamped weighted edges. Therefore

they provide only the basic information to build the networks in the first place. However,

there is a way to derive additional information from weighted edges. In recent studies,

node behaviour is reduced to two novel features defined by the in-going and out-going

weighted edges of a network. The same datasets that are used in this work are studied in the
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context of fraudulent user detection and link prediction. [16, 17] This work builds on top

of the existing research by adding more features into the analysis. This thesis contributes

to the research on online social networks by studying how the features evolve over time

and relate to the topological quantities of peer review networks.

Features are derived from the trust rating data to extract trader behaviour. Trader behaviour

refers to how traders rate each other and get rated by others in a peer review network. The

numbers and the values of given and received ratings are used to describe the behaviour

of the traders. Trader behaviour consists of five features, and the features are calculated

separately for each trader in each aggregated network.

First, the lists of given and received ratings are defined.

Definition 3.2.1 (Given and Received Ratings) Consider an aggregated network Gt =

(Nt ,Et ,ht). Let n be an arbitrary trader, n ∈ Nt . Denote the traders who have given ratings

to n by β
(1)
n ,β

(2)
n , ...,β

(Mn)
n , where Mn = din(n) (see Def. 2.1.4). The list of ratings n has

received from other traders is

Xn,t = (ht((β
(1)
n ,n)), ...,ht((β

(Mn)
n ,n))).

Denote the traders who have received ratings from n by γ
(1)
n ,γ

(2)
n , ...,γ

(Kn)
n , where Kn =

dout(n) The list of ratings n has given to other traders is

Yn,t = (ht((n,γ
(1)
n )), ...,ht((n,γ

(Kn)
n ))).

Definition 3.2.1 presents how the lists of given and received ratings are denoted. These

lists are used in defining some of the features. One of the five features is attention.

Definition 3.2.2 (Attention) Consider an aggregated network Gt = (Nt ,Et ,ht). Let n be

an arbitrary trader, n ∈ Nt . The attention of trader n is defined by the number of ratings n

has received,

at(n) = din(n).

The attention of a trader is defined by the number of ratings the trader has received as

presented in Def. 3.2.2. Attention is used to describe how noticed a trader is by other

traders. A trader with a high attention value has got feedback from many others about

how trusted the trader is. Attention is zero at the lowest and |Nt |−1 the highest, where

|Nt | is the number of traders in Gt . In case trader n has only given ratings to others and

not received any, at(n) = 0. If trader n has been rated by all other traders in the network,

at(n) = |Nt |−1.

Another feature based on the received ratings is reputation. Reputation describes how

trusted a trader is by other traders.
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Definition 3.2.3 (Reputation) Consider an aggregated network Gt = (Nt ,Et ,ht). Let n

be an arbitrary trader, n ∈ Nt . Let Xn,t be the list of ratings n has received as defined in Def.

3.2.1. The reputation of trader n is defined by the average of the ratings n has received,

rt(n) =

{︄

1
din(n)

∑x∈Xn,t
x, if din(n) ̸= 0

0, otherwise.

The reputation of a trader, defined in Def.3.2.3, is the average of the ratings the trader has

received. As the rating values range from -10 to 10, reputation is -10 the lowest and 10 the

highest. The higher the reputation the more trusted the trader is. If a trader has no received

ratings, reputation is set to zero.

Per each aggregated network all the ratings given by a trader define the trader’s activity.

Activity measures how actively a trader gives ratings to others.

Definition 3.2.4 (Activity) Consider an aggregated network Gt = (Nt ,Et ,ht). Let n be an

arbitrary trader, n ∈ Nt . The activity of trader n is defined by the number of ratings n has

given,

ct(n) = dout(n).

As defined in Def.3.2.4, the activity of a trader is the number of ratings the trader has given

to other traders. Activity is zero the lowest and |Nt |−1 the highest. In case a trader has

only received ratings, activity is zero.

The above described features are intuitive in a sense that they are easy to calculate and

interpret, and they provide information about traders’ behaviour in peer review networks.

In addition to attention, reputation and activity, more advanced features are used to capture

how in line the rating behaviour of a trader is with other traders. Fairness and goodness

reflect how a trader’s received and given ratings associate to the general opinion [16]. The

general opinion in this context means taking all the ratings in an aggregated network into

account. The underlying assumption is that the wisdom of crowd is not biased. In other

words, taking all the ratings into account, it is assumed to be possible to extract how fair

and good the traders are.

Definition 3.2.5 (Fairness and Goodness) Consider an aggregated network Gt =(Nt ,Et ,ht).

Let n be an arbitrary trader, n ∈ Nt . Let Xn,t ,Yn,t be the lists of received and given ratings

respectively as defined in Def. 3.2.1. In accordance with Def. 3.2.1, the number of elements

in Xn,t and Yn,t is Mn and Kn respectively. Let the ratings be scaled to range from −1 to 1.

The fairness, ft , and the goodness, gt , of n are defined by [16]

ft(n) = 1−
1

Kn

Kn

∑
i=1

⃓

⃓

⃓
ht((n,γ

(i)
n ))−gt(γ

(i)
n )

⃓

⃓

⃓

2
,

gt(n) =
1

Mn

Mn

∑
i=1

ft(β
(i)
n )ht((β

(i)
n ,n)).
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Fairness and goodness are defined in 3.2.5. Fairness measures how fairly a trader has given

ratings to other traders. Goodness presents fairness weighted reputation. By definition the

value range for goodness is from -1 to 1 and for fairness from 0 to 1 due to scaled rating

values. As shown in the definition, fairness is used to define goodness and the other way

around. These features are calculated in an iterative way from one another. [16]

The algorithm for calculating fairness and goodness values is presented in [16] and its

Python implementation can be downloaded from [49]. In this work, the ratings are scaled to

range from -1 to 1, and the algorithm takes an aggregated network as input. The algorithm

returns the fairness and goodness of each trader in a network. At the beginning, all traders

are given the maximum fairness value. Therefore, the underlying procedure is to interpret

traders as maximally fair unless otherwise can be stated based on the given ratings. The

goodness of a trader is initialized by the average of the ratings received by the trader. If

a trader has only given ratings and not received any, the value for goodness is zero. In

this way, the initial values for goodness equal reputation, when reputation is calculated

using scaled ratings. The algorithm iterates until the sums of the differences of fairness and

goodness values to the values on the previous iteration are less than a predefined tolerance,

ε . In this work, ε = 10−6.

Per each iteration, goodness of trader n is the average over the ratings n has received

weighted by the raters’ fairness from the previous iteration. The updated goodness values

are then used to update each trader’s fairness. That is, each rating trader n has given is

compared to the goodness values of the rated traders. The fairness of trader n is then

the maximum fairness value, namely 1, decreased by the average amount of which the

ratings given by n differ from the goodness values of the rated traders. The goodness of a

trader captures how trusted the trader is especially by fair traders. The fairness of a trader

describes how in line with the general opinion the trust ratings given by the trader are. In

case a trader has no received ratings, goodness is set to zero, thereby in line with reputation.

In case a trader has not given any ratings, fairness is set to 1.

The above described five features are gathered per each trader in an aggregated network to

form traders’ feature vectors.

Definition 3.2.6 (Feature Vector) Consider an aggregated network Gt = (Nt ,Et ,ht). Let

n be an arbitrary trader, n ∈ Nt . The feature vector of trader n is:

zt(n) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

at(n)

rt(n)

ct(n)

ft(n)

gt(n)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where at(·), rt(·), ct(·), ft(·) and gt(·) are the attention, reputation, activity, fairness and

goodness of the trader respectively.
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(a) Bitcoin OTC

(b) Bitcoin Alpha

Figure 3.2. The sub-figures present the unscaled feature values over all traders and time-

steps for (a) Bitcoin OTC and (b) Bitcoin Alpha. The feature value distributions are shown

separately per each feature: reputation, goodness, fairness, activity and attention starting

from left. The captions show the names, and the minimum and maximum values of the

features. The feature values are shown on the x-axis and the number of traders is shown

on the y-axis.

Feature vector is defined in Def. 3.2.6. If a trader is present on more than one of the

time-steps, there is a sequence of chronological feature vectors that represent how the

trader’s behaviour evolves over time. Representing traders by feature vectors serves as a

method to study how the traders behave with respect to each other and how their behaviour

evolves over time.

The unscaled feature values over all traders and all 12 aggregated networks are shown

in Fig. 3.2. Based on Fig. 3.2, the most of the traders share similar feature values.

First impression is therefore, that the most of the traders behave similarly. Yet, it is the

combination of features that describes trader behaviour. Also, there are values pointing

out differing and adverse behaviour. That is, based on e.g. Fig. 3.2(b) traders with highly

negative goodness are observed in the data. In addition, a small group of traders are notably

more active than the rest. This is also the case with attention.

Trader behaviour is reduced to a 5 dimensional feature vector (Def. 3.2.6) derived from the

trust rating data. Due to anonymity and having data only on trust ratings this is a problem

of partially hidden information. As there is no ground truth available about the behaviour

of the traders, the analysis is based on relative rather than absolute values. Feature value

quantiles are used to extract different types of traders. For instance, unfair traders are

those among the lowest with respect to fairness. Active traders in turn are those among the

highest with respect to activity. Dividing feature values into quantiles is discussed more in

the next chapter.
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3.3 Feature Correlations

As a first step to address the behavioural features, feature correlation is calculated. This is

to see if there exists linear dependence between the features.

Definition 3.3.1 (Pearson Correlation between Features) Denote the lists of the values

of two features by Vi = (vi,1,vi,2, ...,vi,M) and Vj = (v j,1,v j,2, ...,v j,M). Pearson correlation,

ρ , between the features is

ρ(Vi,V j) =
∑

M
k=1(vi,k −µi)(v j,k −µ j)

σvi
σv j

,

where µi and µ j are the means,

µi =
1

M

M

∑
k=1

vi,k,

and σi, σ j are the standard deviations,

σi =

⌜

⃓

⃓

⎷

M

∑
k=1

(vi,k −µi)2,

of the feature values in Vi and Vj respectively.

Pearson correlation, defined in 3.3.1, is a continuous measure ranging from −1 to 1. It

represents how much variables linearly depend on each other. Correlation value 0 means

that the variables do not show any linear relationship. Velues 1 and −1 refer to the highest

possible positive and negative linear dependency respectively. Pearson correlation does

not uncover nonlinear relationships. [50]

Feature correlations on the same time-step, averaged over all time-steps, are shown in

Fig. 3.3. The correlations are similar between the datasets. Reputation correlates highly

positively with goodness, which is expected from the way goodness is constructed. Also,

attention and activity show high positive correlation, yet correlation between them varies

the most. Interestingly, the mean correlation between fairness and the other features is

negative. Negative correlation between fairness and activity might stem from construction

since traders with no given ratings are given the maximum fairness.

Correlations of the current feature values with the previous ones are shown in Fig. 3.4. The

correlation values are calculated per each time-step by taking the traders who exist also

on the next time-step and averaging correlations over time. As shown in the Fig. 3.4, the

current feature values mainly correlate with their own previous values. The correlations

with other features do not differ significantly from the correlations in Fig. 3.3 that show

the current feature correlations. The fact that the a features on time-step i correlate with

their own values on time-step i+ 1 indicates that trader behaviour is persistent as the

corresponding time periods are not overlapping. Due to averaging over all traders and
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(a) Bitcoin OTC

(b) Bitcoin Alpha

Figure 3.3. Correlation between the features is calculated per each of the 12 time-steps.

Heat maps show the mean (left) and the standard deviation (right) of the correlations over

the time-steps for (a) Bitcoin OTC and (b) Bitcoin Alpha. The color bars next to each

sub-figure show how the colors correspond to the correlation values.

time-steps, correlation can only be thought as the first glimpse into the behaviour of the

traders. To conclude, based on the correlations, most of the features do not depend linearly

on each other. An exception that does not stem from the way the features are constructed,

is that attention positively correlates with activity. The results are similar between the

datasets.

3.4 Methodology

Modeling can be about explaining or predicting [51]. The focus of this thesis is on

explaining. This work contributes to the research on social trust and distrust networks.

These types of networks have been studied in the context of for example link prediction

[16, 52] and fraud detection [17, 26]. One a general level, the focus of this work is

on studying human behaviour in the context of receiving and giving feedback. More

specifically, this work analyzes Bitcoin trader behaviour in peer review networks. The

analysis focuses on observing how trader behaviour, especially adverse behaviour, evolves

over time. By adverse behaviour it is meant that a trader gives unfair ratings to others

or receives negative ratings from other traders, especially from fair traders. The main



3.4 Methodology 25

(a) Bitcoin OTC

(b) Bitcoin Alpha

Figure 3.4. Correlation between feature values on consecutive time-steps is shown for (a)

Bitcoin OTC and (b) Bitcoin Alpha. The columns show how each feature correlates with

the previous values of the features. Suffix ’_lag1’ is added to the names of the previous

features. The sub-figures show the mean (left) and the standard deviation (right) of the

correlations. The color bars next to each sub-figure show how the colors correspond to the

correlation values.

trader types are extracted by clustering the feature vectors using K-means clustering. A

behavioural cluster is assigned to each trader in each aggregated network. Clustering serve

as a method to raise abstraction level in order to understand trader types without explaining

individual cases. Part of the information is lost in clustering as a trader belonging to a

certain cluster might not be fully represented by the properties of the cluster. Yet, this

method allows to extract more general observations on trader behaviour.

The consequences of traders’ behaviour in Bitcoin peer review networks are analysed

from the perspective of the behavioural clusters. Over the aggregated networks, traders

can move from one cluster to another, stay in the same cluster or leave the peer review

network. Per each trader a cluster pattern, that is a chronological sequence of cluster

transitions, is recorded. The consequences of trader behaviour are then analyzed from the

perspective of exceptional cluster transitions. Exceptional cluster transitions are found

using hyper-geometric test. For example, a consequence of adverse behaviour could be

that an unfair trader loses his/her own reputation. This would indicate that unfairness is

punished by reputation lost. The functionality of Bitcoin peer review networks can be

questioned in case the results show no consequences for adverse behaviour.

It is also studied how receiving unfair ratings from others impacts a trader’s behaviour. The

difference between a trader’s reputation and goodness is used to determine if the trader is
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comparably unfairly rated. Exceptional cluster transitions among the unfairly rated traders

are then analysed to see how these traders react to unfair treatment. A reaction could be

for example that an unfairly rated trader rates others more unfairly afterwards. This would

indicate that unfairly rated traders are likely to retaliate unfairness. In an online Bitcoin

trading platform traders only see the given trust ratings, which provide information about

traders’ reputation. Based on the trust ratings, a trader can then decide with whom to trade.

Fairness of a trader cannot be seen from the trust ratings as clearly as reputation, which

in a sense makes it a hidden feature for traders. It is interesting to explore, how receiving

unfair ratings affects a trader’s behaviour, as it points out the impact of unfair traders.

In addition, it is studied how the behavioural clusters relate to certain topological quantities

of peer review networks. An emotional and intuitive response of a trader to receiving

unfair or negative ratings could be that the trader gives back similar ratings. Reasons

for such a reaction could be mutual distrust or the need to retaliate undesired treatment.

It is explored if there are communities of adversely behaving traders, as it would mean

these traders have been rating each other. A community of adversely behaving traders

would indicate that unfair or negative ratings go both ways. In case adversely behaving

traders do not form communities, the datasets would not provide evidence for mutual

distrust or retaliation. Communities are extracted per each of the 12 aggregated network

using Louvain community detection algorithm. The fourth research question: ”Are

there communities of adversely behaving traders in Bitcoin peer review networks?”, is

answered by analyzing how traders in the clusters of adverse behaviour are divided into

communities. Hyper-geometric test is used to highlight the communities with exceptional

cluster proportions. For example, consider a cluster C j contains highly disreputable traders.

In case a community containing unusually many traders from C j existed in a network, a

community of mutual distrust would be found in the network.

It is also studied how centrality relates to the behavioural clusters. HITS centrality

algorithm is used to define hub and authority values per each trader in each aggregated

network. The impact of a trader’s previous behaviour on centrality in the next time-step is

assessed by studying the cluster proportions among the most and the least central traders.

By this way it is possible to evaluate if a certain type of behaviour serves as a strategy

to gain centrality. For instance, one could expect that reputable traders would end up

among the highest in centrality unusually often. Also, the current clusters of traders

with the highest and the lowest possible hub and authority values are studied to see how

centrality relates to traders’ current behaviour. By construction, traders with high activity

and attention values are likely to be the hubs and the authorities in the network. It is

interesting to see what kind of a role for example fairness and goodness play in centrality.

Consider that clusters Ci and C j contain active traders so that traders in Ci are ungood and

traders in C j are good. If the hubs in a network were unusually often from cluster C j but

not so for cluster Ci, it would indicate that goodness is positively related to centrality. The

fifth research question: ”How does centrality relate to traders’ behaviour in Bitcoin peer

review networks?”, is answered by finding the over-represented clusters among the most
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and the least central traders.

In short, trust rating data is used to extract features that form a trader’s feature vector. The

feature vectors are used in clustering the traders based on their behaviour. The focus of

this work is mostly on adversely behaving traders and unfairly rated traders. Clusters in

aggregated networks provide a way to analyze exceptional cluster transitions. Communities

in each aggregated network are extracted. Cluster proportions in communities are reviewed

to see if there exists communities of adversely behaving traders. Cluster proportions are

also studied to see if a certain type of behaviour leads to being among the most or the least

central traders. Statistical significance of the results is tested using hyper-geometric test.

In the next chapter, the implementation of the methods is explained, and the results are

presented.
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4. TRADER BEHAVIOUR IN BITCOIN PEER RE-

VIEW NETWORK

The results of clustering the traders in the peer review networks based on their feature

vector values are presented and discussed in this chapter. Transition matrices are formed

from the cluster patterns of the traders to see how the behaviour of the traders change over

time. Hyper-geometric test is used to highlight exceptional cluster transitions. The results

stem from the two datasets, Bitcoin OTC and Bitcoin Alpha, introduced earlier.

4.1 Trader Clustering

The concept of clustering is previously discussed in section 2.2. In this section, clustering

is applied in practice. As mentioned earlier, clustering is about grouping samples based on

their similarity according to a similarity measure. Euclidean distance is used as a similarity

measure in this work.

Definition 4.1.1 (Features’ Within Cluster Sum of Squares) Calculate a feature vector

(see Def. 3.2.6) per each trader in each aggregated network. Let Z = (z1,z2, ...,zM) be the

list of all feature vectors enumerated from 1 to M. Denote the j:th component in the i:th

feature vector by zi, j. Let the feature vectors be clustered into K clusters, C1,C2, ...,CK .

In accordance with Def. 2.2.1, within cluster sum of squares, W, is

W =
K

∑
k=1

∑
zi∈Ck

5

∑
j=1

(zi, j −µk, j)
2,

where µk, j is the average of the j:th feature of the traders in cluster Ck.

The value for WCSS is used to decide the number of clusters. WCSS is defined in the

context of the feature vectors in Def. 4.1.1. In Def. 4.1.1 WCSS is defined using squared

Euclidean distance measure as done in [53].

To answer the research question:

What kind of behavioural clusters are formed from Bitcoin traders?,

K-means clustering is applied to extract behavioural clusters among traders. All the

features in this work are numerical and thus K-means clustering can be used. K-means

clustering is not applicable to very high dimensional data due to convergence of distance.

In this case, data is five dimensional, thus K-means can be used. In the rest of this work,

K-means clustering with K-means++ initialization is used and referred to as K-means.
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Figure 4.1. The curves show WCSS averaged over all samples with respect to the number

of clusters. Different curves correspond to different values for random state as presented

in the legend. The results are derived using Bitcoin Alpha dataset.

(a) Bitcoin OTC (b) Bitcoin Alpha

Figure 4.2. Labeled feature value quantiles in (a) Bitcoin OTC and (b) Bitcoin Alpha.

Feature values are scaled to range from -1 to 1.

To decide the number of clusters, k, multiple values for k are tried. Also the value for

random state parameter, that affects cluster center initialization, is varied. Due to K-

means++ initialization method it is expected that the random state parameter does not

have a significant impact on clustering result. WCSS is calculated per each clustering

result. As expected and shown in Fig. 4.1, WCSS decreases as the number of clusters

increases, while random state does not have an effect. Increasing the number of clusters

complicates analysis and decreases distinctiveness of the clusters. After trying various

numbers of clusters, 10 clusters are considered to provide sufficient amount of information

while maintaining easy interpretation.

Clustering is done separately for both datasets. In each aggregated network, a feature

vector is calculated for each trader according to Def. 3.2.6. All the feature vectors are used

in clustering. The features are scaled to range from −1 to 1 as K-means is sensitive to

feature value ranges. Without scaling, features such as attention and activity would end up

having the most impact on the clustering result due to their larger value range compared to

the other features.

In order to describe each cluster, the cluster centers are labeled using labeled feature value
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(a) Bitcoin OTC (b) Bitcoin Alpha

Figure 4.3. K-means results with 10 clusters for (a) Bitcoin OTC and (b) Bitcoin Alpha.

The clusters are enumerated from 0 to 9. Cluster centers with respect to each five features

are labeled based on the labeled quantile values in Fig. 4.2. ’Number’ shows the number

of traders in each cluster over all time-steps.

quantiles. Figure 4.2 shows how the quantile values correspond to the labels. Consider the

j:th feature and the k:th cluster. Cluster center labeling is done the following way:

• Cluster center value µk, j is given the label ’medium’, if it is greater than or equal to

the 0.25 quantile and lower than or equal to the 0.75 quantile of the j:th feature.

• Cluster center value µk, j is given the label medium low, if it is lower than the 0.25

quantile and greater than or equal to the 0.15 of the j:th feature.

• Cluster center value µk, j is given the label low, if it is lower than the 0.15 quantile

and greater than or equal to the 0.05 quantile of the j:th feature.

• Cluster center value µk, j is given the label very low, if it is lower than the 0.05

quantile of the j:th feature.

• Cluster center value µk, j is given the label medium high, if it is greater than the 0.75

quantile and lower than or equal to the 0.85 quantile of the j:th feature.

• Cluster center value µk, j is given the label high, if it is greater than the 0.85 quantile

and lower than or equal to the 0.95 quantile of the j:th feature.

• Cluster center value µk, j is given the label very high, if it is greater than the 0.95

quantile of the j:th feature.

If there are repeating quantile values, as is the case for the 0.05 and 0.15 quantiles of

activity in Bitcoin OTC (see Fig. 4.2(a)), the milder label is used. In other words, the label

corresponding to the quantile that is closer to the 0.5 quantile of the feature is used. In this

example, cluster center labels for activity cannot have the label very low in Bitcoin OTC,

and the label for value −1 is low. This is to assure that the labels corresponding to the top

and the least most quantiles do mean extreme feature values. In the rest of the analysis of

the clusters, being disreputable refers to belonging to a cluster which label for reputation is

’medium low’, ’low’ or ’very low’. Being reputable refers to belonging to a cluster which
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(a) Bitcoin OTC (b) Bitcoin Alpha

Figure 4.4. Proportion of traders in each cluster in (a) Bitcoin OTC and (b) Bitcoin Alpha.

The color of each cluster is shown in the color bars.

label for reputation is ’medium high’, ’high’ or ’very high’. Similar logic applies to other

features too, e.g. being ungood versus good. Because none of the clusters have fairness

label ’medium high’, ’high’ or ’very high’, traders in the clusters of medium fairness are

called not unfair to distinguish then from unfair traders. The labeled cluster centers as well

as the number of traders in each cluster are shown in Fig. 4.3. To better illustrate the sizes

of the clusters, pie chart representations are shown in Fig. 4.4.

As can be seen in Figure 4.4, in both datasets there is one main cluster into which roughly

half of the traders belong to. The four largest clusters cover more than 75% of the traders.

The clusters show similarities between the two datasets. Expectedly, the largest cluster has

medium labels. The largest cluster is referred to as the main cluster and traders belonging

to it are referred to as medium traders. As seen in Fig. 4.3, the second largest cluster in both

datasets includes active, unfair traders who gain attention. The third largest cluster contains

reputable and good traders but differs a bit in terms of attention between the datasets. In

Bitcoin OTC, this cluster has traders who gain attention, while in Bitcoin Alpha, cluster

center for attention is ’medium’. Again, the fourth largest cluster has ungood, disreputable

traders in both of the datasets. Interestingly, the cluster centers lie on the low side of the

fairness values. Considering the number of possible cluster centers given that there are 7

labels and 5 features, the cluster centers as substantially similar between the datasets.

To illustrate the clustering result, some of the features are plotted against each other in

Fig. 4.5. In the figure, samples belonging to the same cluster have the same color. The

main cluster is excluded from the figure to add clarity and to introduce trader types that

differ from the medium behaviour. As can be seen in Fig. 4.5, the most of the clusters are

relatively distinct from each other, yet some overlapping can be seen e.g. in Fig.4.5(a).

Due to 5-dimensional feature vectors it is not possible to draw the clustering result in total.

Based on the labeled cluster centers in Fig. 4.3, the clusters are distinct in both datasets.



32 4. Trader Behaviour in Bitcoin Peer Review Network

(a) Fairness and goodness, Bitcoin OTC (b) Fairness and goodness, Bitcoin Alpha

(c) Activity and reputation, Bitcoin OTC (d) Activity and reputation, Bitcoin Alpha

(e) Attention and reputation, Bitcoin OTC (f) Attention and reputation, Bitcoin Alpha

Figure 4.5. K-means clustering result with respect to the features denoted in the sub-figure

captions. The main cluster that contains medium traders is excluded.

To compare the clusters between the datasets in terms of fairness and goodness, they are

ordered by size and shortly described in Table 4.1. This is to extract interesting clusters

from the perspective of adverse behaviour. In this way, it is easier to see that the six largest

clusters have similar trader types in terms of goodness and fairness. That is, there are

clusters of unfair, ungood and good traders. Although the remaining four clusters differ

by the order between the datasets, one can see from the table that similar trader types are

present. Due to describing the clusters on a high level this is somewhat expected. The

table is used to facilitate interpretation of the cluster transition results presented in the next

section.

4.2 Cluster Transitions

Cluster transition means that a trader switches from a cluster to another or stays in the

same cluster. Consider an arbitrary trader n who is present in a peer review network on

time-steps i and j so that i < j. Trader n is in cluster Ck on the i:th time-step and in cluster

Ck′ on the j:th time-step. There is then a cluster transition from cluster Ck to cluster Ck′ .

Note that it is possible that k = k′.

To see how the behaviour of the traders evolves over time, cluster transition matrix is
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Table 4.1. Clusters ordered by size are shortly described in terms of fairness and goodness

separately for Bitcoin OTC and Bitcoin Alpha datasets. Column ’Number’ shows how

many traders there are in the cluster. ’Description’ shortly outlines the type of traders in

the clusters so that ’ungood’ and ’unfair’ refer to having the labels ’very low’, ’low’ or

’medium low’ for goodness and fairness respectively. ’Good’ and ’fair’ refer to having the

label ’medium high’, ’high’ or ’very high’. Medium labels are left unnoted.

Dataset Cluster Number Description

Bitcoin OTC 1 4399 -

8 2001 Unfair

3 906 Good

9 702 Ungood

2 367 Ungood

5 315 Unfair

4 313 Unfair and ungood

7 150 Unfair and good

0 139 Unfair and ungood

6 84 -

Bitcoin Alpha 0 3266 -

4 1236 Unfair

8 680 Good

7 504 Ungood

2 174 Ungood

6 146 Unfair

9 141 Ungood

5 125 -

3 124 Unfair and good

1 43 Unfair and ungood

formed by taking each trader’s sequence of clusters and recording the transitions. Each

trader n is present on τ(n) of the 12 time-steps. For each trader there is therefore a cluster

pattern length ranging from 1 to 12, that illustrates how the behaviour of the trader evolves

over time. If the last time-step a trader is seen in the data is not the last time-step of the data,

the trader is interpreted to disappear from the network. Disappearing from the peer review

network can be considered to indicate disappearing from the trading platform. All the

same, it could be that a trader continues to trade Bitcoins without receiving or giving any

further ratings. For that matter, it is noted that leaving the peer review network only means

not being part of the with whom to trade -discussion anymore. Disappearing is denoted

as if it would be a cluster represented by the number −1. The number of transitions are

normalized to illustrate probabilities to move from one cluster to another.

Figure 4.6 shows the cluster pattern lengths over all traders. It is clear that the most of

the traders are present only once, meaning that all the ratings they have received and

given have happened during one half a year time period. There are significantly less

traders that are seen in more than one of the aggregated networks. Consequently, it is

expected that disappearing from the network dominates the cluster transitions. Transition

matrices are also formed by not taking disappearance into account to illustrate better how
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(a) Bitcoin OTC (b) Bitcoin Alpha

Figure 4.6. A histogram of the cluster pattern lengths is shown for (a) Bitcoin OTC and

(b) Bitcoin Alpha. The cluster pattern length of a trader is the number of time-steps the

trader is present in a peer review network. The value range for cluster pattern length is

from 1 to 12. Y-axis shows the number of traders, and x-axis shows the cluster pattern

length.

the traders change between the behavioural clusters. In addition, transition matrices are

formed by including only traders who are present on more than one of the time-steps.

This is to see how trader behaviour changes over time. Disappearance is included in

these transition matrices, because it is interesting to see the clusters with the highest and

the lowest disappearance probability among traders who are present on at least 2 of the

time-steps.

Fig. 4.7 presents the cluster transition results. As mentioned above and clearly seen in

4.7(a) and (b), disappearing from the network dominates the transitions in both datasets.

Interestingly, clusters 0,2,4 in Bitcoin OTC (see Fig. 4.7(a)) have the highest probabilities

for disappearing. These clusters include traders with low or very low reputation and

goodness. In Bitcoin Alpha, the highest disappearance probability is seen in clusters 9 and

1 both of which include traders with very low goodness. Worth mentioning is also that

cluster 0 in Bitcoin OTC and cluster 1 in Bitcoin Alpha have the label very low for fairness

too. The clusters from which there are significantly less disappearance, cluster 6 in Bitcoin

OTC and 5 in Bitcoin Alpha, are the clusters with very high attention and activity with

all else feature labels being medium. Also, the clusters of the second least disappearance

probability, cluster 8 in Bitcoin OTC and cluster 4 in Bitcoin Alpha, include active and

noticed traders.

In Figure 4.7 (c)-(d), disappearance is not taken into account. In the datasets, comparably

notable proportion of transitions from the cluster of very unfair and ungood traders, cluster

0 in Bitcoin OTC and cluster 1 in Bitcoin Alpha, are to the cluster of very low goodness and

medium fairness, cluster 2 in Bitcoin OTC and cluster 9 in Bitcoin Alpha. This gives the

impression that unfair behaviour is punished by being distrusted by other traders. It also

indicates that very unfair traders can become more fair afterwards. Figures 4.7(e)-(f) show

the transition matrices of the traders present on at least two of the time-steps. The figures

highlight even further the fact that active and noticed traders with medium reputation

remain in the network while ungood and unfair traders disappear or remain distrusted.
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(a) Transitions with disappearance, Bitcoin OTC (b) Transitions with disappearance, Bitcoin Alpha

(c) Transitions without disappearance, Bitcoin OTC (d) Transitions without disappearance, Bitcoin Alpha

(e) Traders present more than once, Bitcoin OTC (f) Traders present more than once, Bitcoin Alpha

Figure 4.7. Transition proportions in Bitcoin OTC (left) and Bitcoin Alpha (right). Each

cell in the heat-maps presents the proportion of transitions from the cluster on the y axis

that ended up in the cluster on the x axis. Rows sum up to 1, and can be interpreted as

cluster transition probabilities. In (a),(b),(e) and (f), -1 column represents disappearing

from the peer review network. In (c) and (d) disappearance is not taken into account. In

(e) and (f), transitions are recorded for traders present on at least two of the 12 time-steps.

Note that Bitcoin OTC figures cannot be compared to Bitcoin Alpha figures because the

clusters are not the same.



36 4. Trader Behaviour in Bitcoin Peer Review Network

Interestingly, clusters of good and reputable traders who are not unfair, namely cluster 3 in

Bitcoin OTC and cluster 8 in Bitcoin Alpha, have almost exactly the same disappearance

probabilities in Fig. 4.7(a)-(b) and 4.7(e)-(f).

Due to normalization it is not shown in Fig. 4.7 how the number of transitions varies

between the clusters. Therefore, in order to find exceptional transition probabilities, over-

representation and under-representation of transitions from one cluster to another are tested

using hyper-geometric test. The null-hypothesis in this case is that the observed number of

cluster transitions is a result of random sampling from the cluster distribution. Consider

there are τ observations of switching from cluster A to cluster B, size of which are denoted

by |A| and |B| respectively. In case of over-representation, hyper-geometric distribution

is used to get the probability that there are at least τ transitions from A to B when |A|

elements are sampled from the overall transition distribution. For under-representation,

hyper-geometric distribution gives the probability that there are at most τ transitions.

Significance level α = 0.01 is used. As there are 10 clusters and 11 possible outputs when

taking disappearance into account, Bonferroni corrected significance level α̂ is:

α̂ =
0.01

10×11
≈ 9.09×10−5.

The results of the hyper-geometric tests are shown in Figure 4.8, where the rejection of the

null-hypothesis is denoted by 1. The last columns in the matrices in Fig. 4.8 show from

which clusters there are unusually many or unusually few disappearances. In both datasets,

traders in the main cluster are likely to disappear. Active and noticed traders with medium

reputation disappear from the network exceptionally rarely. In Bitcoin OTC, traders in

clusters 0 and 4 disappear exceptionally often. As seen in Table 4.1, these are the only

clusters in Bitcoin OTC that contain both unfair and ungood traders. Also, cluster 2 that

is the only cluster with ’very low’ reputation and goodness shows over-representation in

disappearance in Bitcoin OTC. For traders who are reputable, good and not unfair it is

unlikely to disappear in Bitcoin OTC. The results indicate that certain type of adverse

behaviour leads to disappearance while well behaving traders stay in the network. In

Bitcoin Alpha, there are exceptionally many disappearances from cluster 9 that is the

only cluster in Bitcoin Alpha that contains inactive traders. While traders in cluster 9 are

also ungood and disreputable this is the case in other clusters too that do not show any

exceptional cluster transitions.

Looking into the diagonals in Fig.4.8(a)-(b), there are similarities between the datasets.

The diagonals represent staying in the same cluster. In the datasets, reputable and good

traders who are not unfair (cluster 3 in Bitcoin OTC, 8 in Bitcoin Alpha) are likely to

remain as they are. For clusters of active and noticed traders (6,8 in Bitcoin OTC, 4,5

in Bitcoin Alpha) it is also common to remain in the same cluster. Considering cluster 2

in Bitcoin OTC, it seems that very disreputable and ungood traders remain distrusted. In
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(a) Over-representation, Bitcoin OTC (b) Over-representation, Bitcoin Alpha

(c) Under-representation, Bitcoin OTC (d) Under-representation, Bitcoin Alpha

Figure 4.8. Exceptional cluster transitions are denoted by 1. Significance level α = 0.01

is used. Figures (a) and (b) show the over-representation results, i.e. the probability of the

observed number of transitions from the cluster on the y axis to the cluster on the x axis

is under Bonferroni corrected α in hyper-geometric tests. Figures (c) and (d) show the

under-representation results. Note that Bitcoin OTC figures cannot be compared to Bitcoin

Alpha figures because the clusters are not the same.

Bitcoin Alpha, staying in the cluster of very low fairness and goodness is over-represented,

indicating that severe adverse behaviour is persistent. Based on the results, there are trader

types for which behaviour is unusually persistent.

Considering the transitions from one cluster to another, it is observed that active and

noticed traders with medium reputation switch to varying types of clusters. This type of

traders can behave adversely afterwards but can also end up among the reputable and good

ones. In both datasets, medium traders switch to other behavioural clusters exceptionally

rarely. Considering the consequences of adverse behaviour it is observed that reputation

is unlikely to be recovered. In Bitcoin OTC, switching from clusters 0 and 4 to cluster 2

is over-represented. This means that for unfair and ungood traders it is probable to lose

reputation even further and to become more fair afterwards. In addition, these traders

change to cluster 8 exceptionally rarely. Changing to cluster 8 would mean reputation

recovery for these traders. Also, there are under-represented cluster transitions from the

clusters of very low goodness but medium fairness in both datasets. These traders change

exceptionally few times to the main cluster. It is also unusual that these traders would

switch to the cluster of active and noticed traders with medium reputation. In Bitcoin OTC,

it is unlikely that these traders become reputable and good afterwards. The results point

out that it is unlikely that severely distrusted traders would recover their reputation.



38 4. Trader Behaviour in Bitcoin Peer Review Network

4.3 Clusters of Unfairly Rated Traders

It is interesting to study how receiving unfair ratings from others affects a trader’s own

behaviour. The difference between a trader’s goodness and reputation is used to measure

how unfairly the trader is rated. Goodness can be thought as fairness corrected reputation.

The reason for this is that the importance of the ratings received from unfair traders is

decreased while the importance of the ratings received from fair traders is increased. If a

trader has received ratings only from traders with maximum fairness, reputation is equal to

goodness. This type of unfair treatment measure would then have the value zero. Unfair

treatment is divided into two types: positive and negative unfair treatment. A trader whose

reputation is greater than his/her goodness has received unfairly positive ratings. The

same way, a trader whose goodness is greater than his/her reputation has received unfairly

negative ratings.

In each aggregated network, the difference between the reputation and goodness of each

trader is used to extract occasions where a trader has received comparably unfair ratings.

In more detail, using quantile values, traders among the highest in

max(0,r(n)−g(n)),

where r(·) is reputation and g(·) is goodness, are considered to be comparably unfairly

positively rated. Similarly, traders among the highest in max(0,g(n)− r(n)) are taken as

comparably unfairly negatively rated.

Transition matrices of positive and negative unfair treatment cases are formed for both

datasets. From the transition matrices, the over-representations of cluster transitions are

calculated in order to extract the most anomalous results. The number of certain transitions

among unfairly rated traders is compared to the overall transition counts to see if there are

exceptionally many such transitions. More concretely, consider there are M transitions

from cluster A to B among the unfairly rated traders. Denote the number of such transitions

among all the traders by K. Hyper-geometric distribution is used to get the probability of

observing at least M such transitions given the total number of cluster transitions among

the unfairly rated traders and the total number of cluster transitions among all the traders.

It is denoted by 1, if the Bonferroni corrected value of significance level α = 0.01 is

greater than the probability. In other words, rejected null-hypotheses are denoted by 1

while those that are not rejected are denoted by 0. The source clusters of the cluster

transitions represent the behaviour of the unfairly rated traders on the same time-step they

are unfairly rated. Destination clusters show how these traders behave afterwards. The

cluster transitions in this case are used to interpret reactions to unfair treatment.

As mentioned above, unfair treatment is divided into positive and negative unfair treatment.

The above described tests are done separately for the two cases. Over-representation results

are shown in Figure 4.9 Comparing Fig. 4.9 to the cluster center labels in Fig.4.3 and the

cluster descriptions in Tab.4.1, it is seen that exceptionally many of the cluster transitions
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(a) Unfairly positively rated, Bitcoin OTC (b) Unfairly positively rated, Bitcoin Alpha

(c) Unfairly negatively rated, Bitcoin OTC (d) Unfairly negatively rated, Bitcoin Alpha

Figure 4.9. Over-representations of the cluster transitions of unfairly rated traders are

denoted by 1. ’Unfairly positively rated’ refers to having better reputation than goodness,

while ’unfairly negatively rated’ refers to the opposite. The quantile value used in taking

the most unfairly rated traders is 0.95. In the hyper-geometric tests, the Bonferroni

corrected value of significance level α = 0.01 is used. Note that Bitcoin OTC figures

cannot be compared to Bitcoin Alpha figures because the clusters are not the same.

among unfairly positively rated are from the clusters of reputable and good traders. That

is, clusters 3 and 7 in Bitcoin OTC and clusters 3 and 8 in Bitcoin Alpha are the source

clusters of 10/12 and 7/10 respectively of the over-represented cluster transitions. In both

datasets, the remaining over-represented cluster transitions are from the clusters of ungood

traders. Based on the over-represented cluster transitions, unfairly positively rated traders

behave in various ways afterwards. Some of them retain or improve their reputation but

some of them lose their reputation.

Among the unfairly negatively rated traders, all the over-represented cluster transitions are

from clusters of ungood traders as shown in Fig. 4.9(c)-(d). The cluster transitions are

mostly to the clusters of ungood and disreputable traders in both datasets. Disappearing

from the network after being disreputable and ungood is unusually common among

the unfairly negatively rated traders. Remaining with very low reputation is also over-

represented. The results indicate that receiving unfairly negative ratings can partly explain

remaining disreputable and disappearing from the network. In both datasets, one of the

over-represented cluster transitions is from being ungood to being active, noticed and

unfair. This indicates that a reaction to unfair negative treatment is to actively give unfair

ratings to others. Also, reputation and goodness are improved in these cluster transitions

(from 9 to 8 in Bitcoin OTC, and from 7 to 4 in Bitcoin Alpha). The results show that some
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of the unfairly negatively rated traders are able to recover their reputation while retaliating

unfairness by becoming unfair themselves.

The clusters of reputable and good traders dominate the over-representation results of the

unfairly positively rated traders. The same way, clusters of ungood and disreputable traders

include all the unfairly negatively rated cases. While the results might seem intuitive, it is

not due to construction. As shown in Fig. 4.9(a)-(b), a trader in a cluster of ungood and

disreputable traders might still be unfairly positively rated. Similarly, it could happen that

a reputable and good trader would be unfairly negatively rated. It is interesting that this is

not the case in either of the datasets. According to the similarities between the datasets,

some of the reputable traders have achieved their comparably high reputation from unfair

raters. Low reputation can also be due to unfair ratings. However, goodness is quite in line

with reputation in all the clusters. Based on the cluster centers, there are no cases where a

comparably good trader would have a comparably low reputation. Thus, reputation is not

a notably misleading and incorrect way to judge with whom to trade. All the same, the

results indicate that trader behaviour is affected by unfair negative treatment and support

the assumption that a trader can retaliate unfairness.
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5. BITCOIN TRADER COMMUNITIES AND CEN-

TRALITY

In this chapter topological quantities of Bitcoin peer review networks are studied with

respect to the behavioural clusters introduced in the previous chapter. This is to answer the

following research questions:

Are there communities of adversely behaving traders in Bitcoin peer review

networks?

How does centrality relate to traders’ behaviour in Bitcoin peer review net-

works?

Edge weights are not taken into account in community detection and centrality. In Louvain

community detection networks are interpreted undirected. It is studied how network

structure related matters relate to the behavioral clusters. Therefore, the analysis combines

structural and content-based analysis.

5.1 Cluster Proportions in Communities

After clustering the traders based on their behaviour, it is interesting to see who trades

with whom. An edge between two traders can be thought to indicate that these traders

traded or tried to form a deal with each other. Dividing traders into communities enables

exploring what type of traders have been interacting with each other. To divide traders

into communities, Louvain community detection algorithm is run with various values for

random state parameter. Random state defines the seed for the random number generator,

and the final result is sensitive to it. Figure 5.1 shows the number of communities per

Figure 5.1. The number of communities on each of the 12 time-steps using Bitcoin OTC

dataset. The curves refer to the different values of ’random state’ parameter in community

detection algorithm. The values of the random state parameter are shown in the legend.
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(a) 2012-12-31, Bitcoin OTC (b) 2013-12-31, Bitcoin OTC

(c) 2014-06-30, Bitcoin OTC (d) 2014-12-31,Bitcoin OTC

(e) 2012-12-31, Bitcoin Alpha (f) 2014-06-30, Bitcoin Alpha

Figure 5.2. The figures show how traders in each of the behavioural clusters are divided

into communities. The timestamps of the aggregated networks are shown in the sub-figure

titles. The number of communities and the number of traders are also shown in the titles.

Communities are denoted by integers on the x axis. The proportion of traders is shown

on the y axis. The black dashed line shows the 50% limit. The legends of the sub-figure

legends show how the colors map to the clusters. The number of traders in each cluster on

the time-step is also shown in the legend.

each 12 time-steps for Bitcoin OTC. Based on the figure, the number of communities

differs depending on the value of the random state parameter. All the same, the results are

interpreted not to alter drastically. The existence of communities of adversely behaving

traders is considered not to be sensitive to minor changes. Therefore, this algorithm is used

for community detection with arbitrarily chosen random state value. For robustness check,

community detection is run with various random state values to assure the below presented

results are not only due to a particular parameter value. In other words, the communities of

adversely behaving traders found from the data exist also with other random state values

despite the number of communities varies with respect to that parameter.

Per each aggregated network, it is calculated how the traders in each behavioural cluster

are divided into communities. Consider an aggregated network and the traders in it that

belong to a cluster Ck. If the traders are mainly in one community, it indicates that this

type of traders have been rating each other. In this way it is explored if communities of

adversely behaving traders are found in the networks. Figure 5.2 shows how the clusters

are divided into communities on time-steps when interesting communities appear in the

network. A curve showing 50% limit is drawn in the sub-figures, to make it easier to
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(a) OTC, 2012-12-31, 104 traders (b) OTC, 2013-12-31, 87 traders (c) OTC, 2014-06-30, 87 traders

(d) OTC, 2014-12-31, 45 traders (e) Alpha, 2012-12-31, 27 traders (f) Alpha, 2014-06-30, 75 traders

Figure 5.3. Pie charts show how the traders are divided into the behavioural clusters

in a certain community. The chosen communities are the ones where adverse behaviour

dominates. In all of the pie charts, disreputable, ungood or unfair traders cover the

majority of the traders in the community. The color bars next to each sub-figure show how

the colors map to the clusters. The sub-figure captions present the dataset, the time-stamp

and the number of traders in the community. ’OTC’ refers to Bitcoin OTC and ’Alpha’

refers to Bitcoin Alpha.

observe the clusters whose traders belong to a small number of communities. In Fig. 5.2,

the clusters are relatively evenly divided into communities. It seems that in general traders

do not form peer review communities of similarly behaving traders. Yet there are clusters

whose traders are split only into few communities.

Communities that are chosen for further examination are required to be statistically sig-

nificantly dominated by adversely behaving traders. The communities discussed below

are such that the majority and unusually many of the traders belong to a cluster of adverse

behaviour. Only the communities of at least 20 traders are studied in order to focus on the

main events. The statistical significance of the cluster proportions in the communities is

tested using hyper-geometric test. Hyper-geometric distribution is used to get the proba-

bility of observing at least the number of traders in a certain cluster within a community,

when the total number of traders in that community is randomly sampled among all the

traders in the aggregated network. The Bonferroni corrected value of significance level

α = 0.01 is used. All the presented results are statistically significant. Figure 5.3 show

how the traders in the chosen communities are divided into the behavioural clusters. Per

each of the aggregated networks presented in the sub-figures in Fig. 5.2, there is a pie chart

representation in Fig. 5.3 of one of the communities in the network. The pie charts present
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the communities that most clearly indicate that communities of adversely behaving traders

exist.

An interesting observation present in the datasets is that when the proportion of −10

ratings increases, a community of adversely behaving traders appears. In Figure 3.1, the

proportion of −10 ratings increases significantly during the second half of 2012 (the 5th

time-step) in comparison to the previous time-steps. On the 5th time-step, a community of

ungood and disreputable traders appears in both datasets as shown in Figure 5.2(a) and

5.3(a) for Bitcoin OTC and 5.2(e) and 5.3(e) for Bitcoin Alpha. A year later, the proportion

of −10 ratings increases up-to nearly 20% of all the ratings in Bitcoin OTC according to

Fig. 3.1(a). Simultaneously, a community of unfair and ungood (cluster 0) and disreputable

and ungood traders (cluster 2) appears as shown in Fig. 5.3(b). While it is expected that

disreputable traders exist on a time-step when there is a burst of −10 ratings it is not as

self-evident that unfair ones would appear. It is also intriguing that the majority of these

traders have been rating each other.

In both datasets, during the year 2014 the proportion of slightly negative ratings increases

compared to all of the previous time-steps as shown in Fig.3.1. At the same time, commu-

nities of disreputable and ungood traders appear in both trading platforms. Worth noticing

is that these traders have medium fairness. In other words, the majority of the traders

clustered as ungood and not unfair are gathered in the same community in both datasets.

To sum up, there are time-steps when communities of adverse behaviour emerge both in

Bitcoin OTC and in Bitcoin Alpha. Based on the communities with exceptionally many

adversely behaving traders, it can be concluded that communities of distrust and unfairness

are present in Bitcoin peer review networks. The results indicate that traders can react

to unfair and negative feedback by giving back similar feedback. Retaliating unfairness

and reacting to negative feedback by adverse behaviour is in line with previous studies on

human behaviour [4, 5, 7].

5.2 Behaviour of the Most and the Least Central Traders

To answer the research question:

How does centrality relate to traders’ behaviour in Bitcoin peer review net-

works?,

HITS algorithm is run separately per each aggregated network. Each trader in an aggregated

network is given a hub and a authority value. The values are scaled to range from −1

to 1. Cluster proportions among the highest and the lowest hub and authority values are

calculated to see how the most and the least central traders behave. First, it is studied

how the previous behaviour of the traders relates to centrality. In this way it is possible

to analyse if a certain type of behaviour leads to being among the most important traders.

Similarly, it is studied if a certain type of behaviour is related to becoming the least central
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(a) Bitcoin OTC

(b) Bitcoin Alpha

Figure 5.4. Distributions of the previous clusters of traders with the minimum and the

maximum hub and authority values are shown for (a) Bitcoin OTC and (b) Bitcoin Alpha.

The hub and authority values are scaled to range from -1 to 1. The black dashed line

shows the cluster proportions over all the traders. Note that Bitcoin OTC figures cannot

be compared to Bitcoin Alpha figures because the clusters are not the same.

in the network. It is also studied how the current behaviour of the traders relates to the

maximum and the minimum hub and authority values.

Centrality in this context is a measure of how much a trader contributes to a peer review

network. The authorities in a peer review network are traders who have received many

ratings especially from traders that have rated other authorities too. The hubs in a peer

review network are traders that have actively rated others especially the authorities in the

network. Traders with the maximum hub and authority values can be considered the key

contributors in the discussion of with whom to trade. The impact of the traders with the

minimum hub and authority value on the discussion can be considered negligible.

Per each aggregated network starting from the second time-step, traders with the maximum

and the minimum hub and authority values are extracted. Among these traders, only

those that exist in the network before are included. It is then calculated how these

traders are divided into the behavioural clusters. The number of traders in each cluster is

summed up over the time-steps to get the overall cluster proportions of such traders. These

cluster proportions are shown in Fig. 5.4(a) for Bitcoin OTC and Fig. 5.4(b) for Bitcoin

Alpha. Hyper-geometric test is used to extract exceptional cluster proportions to focus

on statistically significant results. The over-representation of traders in a certain cluster

is tested separately for each of the four cases: the maximum hub value, the maximum

authority value, the minimum hub value, the minimum authority value. These results
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(a) Bitcoin OTC (b) Bitcoin Alpha

Figure 5.5. The over-represented previous clusters of the traders with the maximum and

the minimum hub and authority values are shown for (a) Bitcoin OTC and (b) Bitcoin

Alpha. The y axis shows the clusters and x axis the different cases. Note that Bitcoin OTC

figures cannot be compared to Bitcoin Alpha figures because the clusters are not the same.

are shown in the heat-maps in Figure 5.5. The Bonferroni corrected significance level

of α = 0.01 is used in the hyper-geometric test. Similar figures are made for the current

cluster distributions. This is to see how the most and the least central traders behave in

peer review networks. Figure 5.6 shows the current cluster proportions of the traders with

the maximum and the minimum hub and authority values. Over-representation is again

tested by hyper-geometric test. The results are shown in figure 5.7.

As seen in Fig. 5.4 the most of the traders with the maximum hub and authority values

have previously been in the clusters of active and noticed traders. These clusters are 4 and

5 in Bitcoin Alpha and 6 and 8 in Bitcoin OTC. According to Fig. 5.5(a), clusters 6 and 8

are not over-represented among the most central traders in Bitcoin OTC. In Bitcoin Alpha,

there are exceptionally many traders with the highest possible hub value that have been in

cluster 5. Cluster 5 contains highly active and noticed traders. Interestingly, cluster 4 is

over-represented among the lowest in authority although it also contains active and noticed

traders. The traders in cluster 5 are more active and noticed but also more fair than the

traders in cluster 4. This indicates that unfair behaviour is punished by losing authority.

Being active, noticed and not unfair is the way to become one of the main hubs in Bitcoin

Alpha. The same cannot be said about the traders in Bitcoin OTC.

An interesting result present in both datasets is that exceptionally many traders have ended

up with the lowest possible hub value after being reputable, good and not unfair (cluster

3 in Bitcoin OTC and 8 in Bitcoin Alpha). Considering the goodness and fairness, these

clusters can be stated to include the most well behaving traders. It is quite counter-intuitive

that such traders do not gain importance afterwards. The results indicate that the most well

behaving traders have the most negligible impact on the peer review network and have a

lower need to rate others than the rest.

Analysing the current clusters, Fig. 5.6 indicates that the most of the hubs and the

authorities are in the clusters of active and noticed traders. Also, medium traders seem

to be the least central. According to the over-representations shown in Fig. 5.7, highly

active and noticed traders that are not unfair are over-represented among the traders with

the maximum hub and authority values.
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(a) Bitcoin OTC

(b) Bitcoin Alpha

Figure 5.6. Distributions of the current clusters of traders with the minimum and the

maximum hub and authority values are shown for (a) Bitcoin OTC and (b) Bitcoin Alpha.

The hub and authority values are scaled to range from -1 to 1. The black dashed line

shows the cluster proportions over all the traders. Note that Bitcoin OTC figures cannot

be compared to Bitcoin Alpha figures because the clusters are not the same.

(a) Bitcoin OTC (b) Bitcoin Alpha

Figure 5.7. The over-represented current clusters of the traders with the maximum and the

minimum hub and authority values are shown for (a) Bitcoin OTC and (b) Bitcoin Alpha.

The y axis shows the clusters and x axis the different cases. Note that Bitcoin OTC figures

cannot be compared to Bitcoin Alpha figures because the clusters are not the same.
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Based on how HITS algorithm works, it is expected that active traders have high hub

values and traders who gain attention have high authority values. However, active and

noticed traders who are unfair are not over-represented among the hubs and the authorities.

This is the case in both datasets. In both datasets, there are many over-represented clusters

among traders with the minimum hub value. Hence, traders with the minimum hub value

can behave in various ways. Interestingly, the two over-represented clusters among traders

with the minimum authority value are similar between the datasets. Traders who are either

unfair or ungood with medium activity and attention are the least authorities in the network.

To sum up, the most well behaving traders become the least contributors in the peer

review networks exceptionally often. The current behaviour of traders with the minimum

hub value varies significantly. Expectedly, highly active and noticed traders are over-

represented among the hubs and the authorities. Yet, it seems not to be enough to be

active and noticed to end up among the most central traders. Traders who do not behave

adversely are unusually often the hubs and the authorities in the networks. Being unfair

leads exceptionally many times to having the minimum authority value in Bitcoin Alpha.

The results can be interpreted so that fairness pays back in terms of becoming central while

behaving well shows the opposite.
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6. CONCLUSION

In this chapter, the research questions are shortly answered by summarizing the results

presented in the previous chapters. Limitations and future prospects of this work are

discussed. The last section discusses the contribution of this work.

6.1 Answers to the Research Questions

The first research question: what kind of behavioural clusters are formed from Bitcoin

traders, is answered by clustering the traders into 10 clusters based on their behaviour. The

results show clear similarities between the datasets. Roughly half of the traders belong to a

behavioural cluster where all the cluster center labels are medium. Based on the labeled

cluster centers, the clusters are distinct in both datasets. In both datasets, there is a cluster

containing the most well behaving traders and a cluster containing the most adversely

behaving traders in terms of goodness and fairness.

The second research question: how does a trader’s behaviour in a Bitcoin peer review

network change over time, is answered by extracting statistically significant cluster tran-

sitions. The results show some similarities between the datasets. The medium traders

disappear form the network unusually often and switch to many other behavioural clusters

unusually seldom. Active and noticed traders with medium reputation behave in various

ways but disappear from the network unusually seldom. There are trader types for which

the behaviour is unusually persistent. The most well behaving traders stay in the same

cluster exceptionally often. For active and noticed traders with medium reputation it is

common to remain that way. In Bitcoin Alpha, the most adversely behaving traders are

likely to stay as they are. In Bitcoin OTC, highly disreputable traders remain the same

way. Moreover, certain types of adverse behaviour seem to be punished. It is unlikely that

severely distrusted traders would recover their reputation. In Bitcoin OTC, traders who are

both ungood and unfair are prone to end up among the lowest in reputation or disappear

from the network. In Bitcoin Alpha, ungood and inactive ones are likely to disappear from

the network.

The third research question: what is the impact of receiving unfair ratings on a trader’s

behaviour in a Bitcoin peer review network, is answered by studying the over-represented

cluster transitions among unfairly rated traders. The results indicate that some of the most

reputable traders have received their comparably high reputation from unfairly positive

ratings. Also, some of the disreputable traders have received unfairly positive ratings.

There is no clear pattern of how the behaviour of unfairly positively rated traders evolve

over time. Some of the unfairly positively rated traders retain or improve their reputation
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but some of them lose their reputation. Unfair negative treatment can be interpreted to

partly explain disappearance from the network after being distrusted by other traders.

Interestingly, one of the over-representations in both datasets shows that unfairly negatively

rated traders can become more unfair themselves. Although thorough explanation for the

change in behaviour cannot be stated based on the cluster transitions, the results indicate

that some of the unfairly negatively rated traders start to rate others more actively and

unfairly, while receiving more ratings and improving their own reputation.

The fourth research question: are there communities of adversely behaving traders in

Bitcoin peer review networks, is answered by finding communities where adverse be-

haviour statistically significantly dominates. The results show that on time-steps where the

proportion of negative ratings increases compared to the previous time-steps, communities

of adverse behaviour are found. In other words, there are groups of unfair and ungood

traders who have mainly been rating each others. This together with the result of unfairly

negatively rated traders becoming unfair themselves gives the impression that traders react

to negative feedback and unfair negative ratings by giving similar ratings to others.

The last research question: how does centrality relate to traders’ behaviour in Bitcoin

peer review networks, is answered by calculating the cluster proportions among traders

with the maximum hub value, the maximum authority value, the minimum hub value and

the minimum authority value. Both the previous and the current clusters of such traders

are analysed. Surprisingly, in both datasets the most well behaving traders end up having

the minimum hub value exceptionally often. Expectedly, being highly active and noticed

is a way to become and remain a key contributor in the peer review networks. Yet, it is

not enough to be active and noticed. The most central traders are also medium fair while

active, noticed but unfair traders end up with the minimum authority value unusually often

in Bitcoin Alpha.

6.2 Limitations and Future Prospects

The results presented in this work are based on the trust rating data from two online

Bitcoin trading platforms. Due to excluding other types of data, the results are considered

preliminary. Data from other Bitcoin trading platforms and Bitcoin transaction data could

be added to further analyse Bitcoin trader behaviour. Also, the research topic could be

extended to include data about other types of peer preview networks. In the future, it would

be interesting to add more data to study if the results show similarities with the results

presented in this work.

Considering the mathematical methods chosen in this work, it is outside the scope of this

work to compare different methods. Although the methods are deliberately decided, it

limits the generality of the results that the analysis is not done by comparing the methods.

Analysing trader behaviour based on the behavioural clusters is considered a reasonable

approach to find the main trader types and the clearest patterns in trader behaviour. It
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is noted, however, that clustering simplifies the data. The cluster centers do not fully

represent the traders in the clusters, and the results are considered indicative. For future

research it would be interesting to compare for example different clustering algorithms.

Future research could also include testing various models to explore how trader behaviour

changes over time. Moreover, cluster transitions and feature relations could be analyzed

even further as the scope of this work left many behavioural questions outside.

In accordance with the previous studies, the traders are given the maximum fairness value

in case there are no given trust ratings. It can be argued that such a choice is not the most

reasonable. For example, traders with no given ratings could be given the average of the

fairness values over the traders who have been rating others. Alternatively, clustering

could be modified to exclude fairness of traders with no given ratings. Also, giving the

reputation and goodness value zero to traders with no received ratings can be questioned.

Traders with zero reputation are considered comparably distrusted in Bitcoin OTC, which

can be argued to be a false interpretation of traders with no received ratings. However, it

would also be misleading to give positive or negative reputation and goodness for such

traders because there is a clear meaning for the signed rating values. Giving the value 0 is

considered a natural choice to represent that a trader’s trustworthiness is unclear. In that

way, reputation is in line with how goodness is designed. The impact of the choice on

clustering result could be removed by excluding the reputation and goodness of the traders

with no received ratings. The choices made in this work are not considered to notably

affect the results. Yet, alternative ways to interpret the cases of no given and no received

ratings could be studied further.

6.3 Contribution

This work continues the state-of-the-art research on online social networks by analysing

trader behaviour in Bitcoin trader peer review networks. Previous studies on the same

datasets concentrate on more general topics: link prediction and fraudulent user detection.

This work builds on top of the existing research by taking a specific view and a deeper look

into Bitcoin OTC and Bitcoin Alpha trust rating datasets. To the best of my knowledge

this is the first research that models Bitcoin trader behaviour using peer review network

data. For this reason the results are interesting as cryptocurrencies and online interactions

between strangers become more popular every day. This work also contributes to the study

on interactions between humans by providing results on how humans rate each other in

peer review networks and how they react to unfairness. To assess unfair treatment, the

features developed in previous studies are used to derive a measure for how unfairly a

trader is rated in a peer review network. This work builds on top of the existing research

and provides results on the functionality of peer review networks.

In this work, methods and quantities related to the study of complex networks are combined

with techniques of exploratory data science. The study of complex networks is applied

in deriving the features from the signed, weighted edges. Clustering the feature vectors
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in turn is a typical approach in exploratory data science. Also, network structure related

matters, communities and centrality, are studied in relation to the behavioural clusters.

This work contributes to the research on online social networks by applying mathematical

methods from multiple scientific fields. In its specificity, this work contributes to Bitcoin

trading by providing observations of Bitcoin trader behaviour in peer review networks.

In its generality, the results contribute to the research on social networks and analysis of

human behaviour. The same approach can easily be applied in the analysis of other peer

review networks and other types of social networks.
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