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ABSTRACT
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The study of ultrafast instabilities in optics is one of the key research area in nonlinear science.
Optical fibers constitute an excellent testbed for the study of complex dynamics and instabilities
because of the controlled environment and large repetition rate of thousands or millions laser
pulses per second. One of the best known and most studied example of these instabilities is
modulation instability which describes the exponential amplification of a small periodic modulation
on top of continuous background signal. Modulation instability is a nonlinear process governed by
the nonlinear Schrödinger equation and it can be observed in various nonlinear systems such as in
fluids dynamics, plasma physics and Bose-Einstein condensates. Modulation instability can also
be seeded by noise. The noise-driven dynamics lead to the emergence of high intensity temporal
structures with random statistics, and it has been suggested that modulation instability may lead to
the emergence of extreme events or rogue waves with high temporal intensities. The initial spectral
broadening associated with noise-seeded modulation instability can further seed supercontinuum
generation dynamics by which an initially narrowband spectrum is transformed into a broad spectral
continuum via various nonlinear effects. Because of the noise-seeded dynamics, the generated
supercontinuum spectra show large shot-to-shot fluctuations between subsequential pulses. Under
particular conditions the noise-driven dynamics may lead to the generation of a small number of
extreme red-shifted rogue solitons associated with long-tailed ”rogue wave” statistics.

The study of ultrafast noise-seeded dynamics must be conducted in real-time, i.e. on a single-
shot basis, since average measurements will wash out any dynamical features of the system. In
general, current real-time techniques often provide only partial information excluding information
about the phase of the light field which precludes the possibility for directly relating the spectral and
temporal properties of laser light. Methods for direct ultrafast time-domain measurements of the
electric field do exists but the associated experimental setups are generally complex and remain
limited in various ways. This thesis provides a new approach to the study of nonlinear instabilities
and shows how machine learning can overcome these restrictions to yield time-domain information
of noise-seeded dynamics based only on spectral intensity measurements.

Specifically, to correlate the spectral and temporal properties of modulation instability, numerical
simulations of the generalized nonlinear Schrödinger equation are used for training a supervised
neural network which is further applied to experimental modulation instability spectra to obtain the
probability distribution for the maximum temporal intensity of the instability field. The maximum
temporal intensity from the simulations is predicted with high accuracy, given that the spectral
dynamic range is sufficiently high. For the experimental spectra, a real-time high dynamic range
experimental setup based on spectral windowing and differential attenuation is introduced. The
statistics of modulation instability are well reproduced by applying the simulation-trained neural
network to the experimental spectra. Additionally, an unsupervised clustering analysis is used for
classifying the spectra into classes with distinct temporal characteristics. Finally, the analysis is
extended to the extreme case of supercontinuum generation and it is shown how a neural network
model can be used for obtaining temporal information on rogue solitons. In particular, the temporal
intensity and the Raman-induced temporal shift of the extreme red-shifted rogue solitons are
predicted with excellent accuracy. The results of this thesis open up new perspectives for the study
and prediction of time-domain characteristics of ultrafast noise-seeded dynamics.

Keywords: extreme events, modulation instability, rogue waves, machine learning
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TIIVISTELMÄ
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Diplomityö
Tampereen yliopisto
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Lokakuu 2019

Ultranopeiden epästabiiliuksien tutkimus optiikassa on yksi keskeisimmistä epälineaarisen
tieteen tutkimusalueista. Optiset kuidut tarjoavat erinomaisen mahdollisuuden tutkia monimutkaisia
systeemejä sekä epästabiiliuksia laserien suuren toistonopeuden ja helposti kontrolloidun ympäris-
tön johdosta. Yksi tunnetuin ja tutkituin esimerkki näistä epästabiiliuksista on modulaatioepästabii-
lius, joka kuvaa jatkuvan signaalin päällä olevan heikon jaksollisen moduloinnin eksponentiaalista
vahvistusta. Modulaatioepästabiilius on epälineaarinen prosessi, jota voidaan kuvata epälineaari-
sella Schrödingerin yhtälöllä ja se voidaan havaita monissa epälineaarisissa systeemeissä, kuten
hydrodynamiikassa, plasmafysiikassa ja Bose-Einstein kondensaateissa. Modulaatioepästabiilius
voi myös syntyä kohinasta, mikä johtaa hetkellisiin korkean intensiteetin piikkeihin, jotka käyttäy-
tyvät kaoottisesti. On myös ehdotettu, että modulaatioepästabiilius voi johtaa ääri-ilmiöiden tai
roistoaaltojen syntymiseen, joiden hetkellinen voimakkuus on erityisen suuri. Modulaatioepästabii-
liudesta johtuvaa spektrin levenemistä voidaan käyttää superjatkumon luomiseen, jossa alun perin
kapeakaistainen laservalo muunnetaan laajaksi jatkuvaksi spektriksi epälineaaristen ilmiöiden kaut-
ta. Kohinalähtöisestä dynamiikasta johtuen generoidut superjatkumospektrit vaihtelevat paljon eri
pulssien välillä. Erityistilanteissa kohina voi johtaa pieneen määrään äärimmäisen punasiirtyneitä
roistosolitoneja.

Kohinasta syntyvien ilmiöiden tutkimus on suoritettava reaaliaikaisesti, toisin sanoen yksittäisten
laserpulssien pohjalta, koska keskiarvoon perustuvat mittaukset eivät anna tietoa systeemin
dynaamisista ominaisuuksista. Nykyiset reaaliaikaiset optiset tekniikat antavat kuitenkin usein vain
osittaista tietoa jättämällä valokentän vaiheen huomioimatta, mikä estää mahdollisuuden linkittää
suoraan laservalon spektrin ja ajalliset ominaisuudet. Menetelmiä suoriin sähkökentän aikatason
ultranopeisiin mittauksiin on olemassa, mutta ne ovat kokeellisesti monimutkaisia sekä monin tavoin
rajoitettuja. Tämä työ esittää uuden menetelmän epälineaaristen epästabiiliuksien tutkimiseen ja
osoittaa, miten koneoppiminen voi voittaa kokeelliset rajoitukset ja antaa tietoa kohinalähtöisen
dynamiikan aikatasosta ainoastaan taajuustason intensiteettimittauksien pohjalta.

Tarkemmin sanottuna modulaatioepästabiiliuden taajuus- ja aikaominaisuuksien korreloimiseksi
käytetään ohjattuun oppimiseen perustuvaa neuroverkkoa, joka on koulutettu käyttäen numeeri-
sia simulaatioita perustuen yleistettyyn epälineaariseen Schrödingerin yhtälöön. Neuroverkkoa
käytetään ennustamaan todennäköisyysjakauma hetkellisen intensiteetin maksimille kokeellisista
modulaatioepästabiiliusspektreistä. Korkein hetkellinen intensiteetti ennustetaan simulaatioista
suurella tarkkuudella, kunhan spektrien dynaaminen alue pidetään riittävän korkeana. Kokeelliset
spektrit mitataan reaaliaikaisella ja korkeaan dynaamiseen alueeseen kykenevällä laitteistolla, joka
perustuu spektrien ikkunointiin ja differentiaaliseen vaimennukseen. Modulaatioepästabiiliuden
tilastollinen käyttäytyminen toistetaan tarkasti soveltamalla simulaatiodatalla koulutettua neuroverk-
koa kokeellisiin spektreihin. Lisäksi ohjaamattomaan oppimiseen perustuvaa ryhmittelyanalyysiä
voidaan käyttää spektrien luokitteluun eri dynaamisiin luokkiin, jotka osoittavat aikatasossa tun-
nusomaisia piirteitä. Analyysi laajennetaan ääri-ilmiöihin superjatkumon generoinnissa, ja työssä
näytetään, kuinka neuroverkko voi ennustaa roistosolitonien hetkellisen intensiteetin ja Raman-
ilmiön aiheuttaman ajallisen siirtymän erinomaisella tarkkuudella. Tämän työn tulokset avaavat
uusia näkökulmia ja mahdollisuuksia ultranopean kohinasta syntyvän dynamiikan aikatason omi-
naisuuksien tutkimiseen ja ennustamiseen.

Avainsanat: ääri-ilmiöt, modulaatioepästabiilius, roistoaallot, koneoppiminen
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1 INTRODUCTION

The increase in computational power has enabled the development of novel machine
learning algorithms and their use in various scientific applications is a quickly emerging
trend [1]. In this thesis, machine learning is applied to analyse and predict extreme events
in ultrafast fiber instabilities.

In the linear regime of propagation, the phase and amplitude of the light field may be
affected but its spectrum remains unchanged. However, as the intensity of the light
field is increased, the propagation becomes nonlinear, leading to the creation of new
spectral components through various nonlinear effects. Modulation instability (MI) is
a nonlinear process whereby a weak periodic modulation on top a continuous wave
(CW) signal is exponentially amplified [2,3]. In the spectral domain, this process can be
described as a four wave mixing (FWM) process where energy is transferred to spectral
sidebands symmetrically on both sides of the central frequency [4]. In addition to a periodic
modulation, MI can be seeded by noise, leading to the formation of temporal breather
structures that display chaotic behavior. Noise-seeded MI has been shown to lead to the
formation of rare extreme events or rogue waves (RW) with high peak intensity compared
to the average intensity of the temporal structures present in the chaotic MI field [5,6].

A highly incoherent noise-seeded MI field can act as a seed for supercontinuum (SC)
generation, a broadband laser source generated via various nonlinear effects from nar-
rowband laser light [7]. In this case, the temporal breather structures emerging from the
MI stage lead to the formation of fundamental solitary waves or solitons that separate
from the residual MI field [8] as a result of the Raman-induced soliton self-frequency shift
(SSFS) that shifts the central wavelength of the solitons towards the longer wavelengths [9].
Correspondingly in the time-domain, the group-velocity dispersion separates the solitons
from the initial MI field. The statistics of these red-shifted solitons in SC generation have
been studied experimentally by using a long-pass spectral filter that captures only the
most red-shifted spectral components [10]. Interestingly, large shot-to-shot fluctuations
of the SC long-wavelength edge were observed highlighting the randomness of the soli-
ton dynamics when noise triggers the SC generation process. A very small number of
extremely red-shifted rogue solitons (RS) was observed, with a highly skewed "L-shaped"
intensity distribution similar to that of rogue waves observed at the ocean surface.

A long-standing problem in ultrafast optics is to relate the spectral and temporal properties
of light, which typically requires the knowledge if the complex field (intensity and phase)
in either domain. While real-time spectral intensity measurements are straightforward to
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conduct, measuring the phase on a single-shot basis is much more complex, such that
directly relating the spectrum with the temporal properties is generally very difficult. Direct
time-domain measurements of instabilities are however possible [11] but the measure-
ments are typically complex and remain limited in various ways (power, bandwidth and
resolution). The goal of this thesis is to overcome these limitations and show that ma-
chine learning can be used to relate the spectrum (no phase information) to the temporal
characteristics of a chaotic field. This thesis concentrates on two highly chaotic cases:
noise-seeded MI and rogue solitons in long pulse SC generation. For the MI case, the goal
is to infer the maximum temporal intensity associated with a given single-shot spectrum.
As it will be shown, concentrating on the maximum peak power only allows capturing the
emerging extreme events or rogue waves with extremely high peak power from solely
spectral intensity measurements. In the case of SC, the goal is to predict both the peak
power and Raman-induced temporal shift of rogue solitons from the spectral intensity
profile without any phase information.

Chapter 2 introduces the reader to propagation of light in a nonlinear medium and de-
scribes the most common nonlinear effects in silica fibers. A method for modeling the
propagation is introduced as well. Chapter 3 describes the process of modulation instability
in details along with the statistics of extreme events or rogue waves that may arise from
the background noise. Chapter 4 gives an introduction to different dynamical regimes
of supercontinuum generation. The statistics of extremely red-shifted rogue solitons are
described in details. Chapter 5 introduces different machine learning techniques that are
subsequently applied to the predictions of extreme events in MI and SC fiber-optic systems
in Chapter 6. Finally, Chapter 7 gives a conclusion about the results obtained in this thesis
along with thoughts on future work.
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2 NONLINEAR PULSE PROPAGATION IN OPTICAL
FIBERS

Similarly to all electromagnetic phenomena, the propagation of light in an optical fiber is
governed by Maxwell’s equations. To describe the electric field associated with a laser
pulse, it is often convenient to use the complex form. In this formalism, the electric field E
(or E-field) can be written in the complex form as

E(r, z, t) = F (r)A(z, t) e−iω0t, (2.1)

where F (r) describes the modal amplitude distribution inside the fiber, A(z, t) is the
temporal envelope of the pulse and the exponential term represents the carrier wave
with carrier frequency ω0 = 2πc/λ0. The carrier wave is a rapidly oscillating field that
modulates the (slowly-varying) envelope, such that one is generally only interested in the
temporal envelope of the electric field. In single-mode fibers where the propagation of
only one fundamental mode is supported, the modal distribution can be considered as
constant along the propagation. The modal distribution of the fundamental mode can be
approximated as a Gaussian distribution [2], and one can generally write the electric field
as a function of time and propagation distance only. The propagation coordinate in this
thesis is defined as z.

The temporal and spectral properties of a light field are related by the Fourier transform,
such that in the spectral domain the electric field Ẽ(z, ω) can be obtained from the Fourier
transform of the temporal field by [2]

Ẽ(z, ω) = F{E(z, t)} =

∫ +∞

−∞
E(z, t) eiωt dt, (2.2)

where F denotes the Fourier transform and ω the angular frequency. From an experimental
point of view, one typically measures only the optical power P where the phase information
of the field is lost. The optical power can be presented as the modulus squared of the
electric field

P (z, t) = |E(z, t)|2. (2.3)

Similarly in the spectral domain, the spectral intensity or spectrum is defined as

S(z, ω) = |Ẽ(z, ω)|2. (2.4)
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We stress that the fact that in general the phase information is lost is an important limitation
since the spectral and temporal properties cannot be directly related anymore via simple
Fourier transform and this thesis provides an alternative method for relating those two
despite the lack of phase information.

2.1 Linear propagation regime

In linear regime, the propagation dynamics are independent from the intensity of the
propagating light. A monochromatic wave propagates with a phase velocity of vp = c/n,
where c is the speed of light in vacuum and n is the refractive index of the propagation
medium. In the case of a short laser pulse, however the field is not monochromatic
and the spectrum consists of a continuous range of frequencies. Because the refractive
index of the medium is dependent on the frequency n(ω) in general, the different spectral
components travel with different speeds inside a medium. This phenomenon is known as
dispersion.

Another linear effect is attenuation which leads to loss of energy. The attenuation coefficient
α measures the total power losses per unit distance, given by

P (z) = P0 e
−αz, (2.5)

where P0 is the input power, z is the propagation coordinate and α is the (linear) attenuation
coefficient. It is common to use unit of dB/km where decibels (dB) are defined as

R (in dB) = 10 log10R. (2.6)

The fibers used in telecommunications, exhibit total loss of as small as 0.2 dB/km [12].
After propagation of 100 km, the total loss is 20 dB which corresponds to 1% power at the
output compared to the initial power.

2.1.1 Dispersion

Dispersion is a general feature of wave propagation. It describes the frequency depen-
dence of propagation speed for optical waves, water waves or acoustic waves. In optics,
the frequency dependence of the refractive index of a medium is known as chromatic
dispersion, or material dispersion. Fundamentally, the chromatic dispersion originates
from the characteristic resonance frequencies of the medium [2]. The refractive index of a
bulk medium can be expressed using the Sellmeier equation [13]

n(ω)2 = 1 +
m∑
j=1

Bjω
2
j

ω2
j − ω2

, (2.7)
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Figure 2.1. Refractive index in blue and group index in orange for fused silica.

where ωj is the j th resonance frequency of the material with strength Bj . Figure 2.1 shows
the refractive index for fused silica [14] commonly used as the material for optical fibers.

However, material dispersion is not the only factor affecting the refractive index "seen" by
the light field. The fiber dimensions and refractive index difference between the core and
cladding also affect the frequency-dependence of the effective refractive index. Indeed,
short wavelengths are more confined into the core than longer wavelengths such that they
effectively experience a higher refractive index. Dispersion plays a significant role in the
pulse propagation dynamics.

An optical pulse propagates in a fiber at the group velocity given by vg = ∂ω/∂β, where β
is the propagation constant. Due to the frequency dependent nature of the refractive index,
the propagation constant varies across the frequency band of the pulse, and is therefore
given by β(ω) = n(ω)ω/c. The propagation constant can be expanded around the central
frequency ω0 using a Taylor series expansion

β(ω) = β(ω0) + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 +
1

6
β3(ω)(ω − ω0)

3 + · · · , (2.8)

where βn = ∂nβ/∂ωn|ω0 .

The parameters β1 and β2 have a particular significance. The parameter β1 corresponds
to the inverse of the group velocity that describes the propagation velocity of an optical
pulse or wave packet. It is given by

β1 =
1

vg
=
ng
c

=
1

c

(
n+ ω

∂n

∂ω

)
(2.9)

where ng is the group index. Similarly to the refractive index for bulk medium, the group
index determines the propagation velocity of different spectral components. The group
index for fused silica is shown in Figure 2.1. The parameter β2 represents the frequency
dependence of β1 and it is referred to as the group-velocity dispersion (GVD). For short
laser pulses consisting of a large band of spectral components, dispersion induces
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Figure 2.2. Group velocity dispersion parameter β2 in blue and dispersion parameter D in
orange for bulk-fused silica.

temporal broadening as the different wavelengths travel at a different speed [15].

The parameter β2 determines the dispersion of the group velocity, and it is given by

β2 =
∂β1
∂ω

=
1

c

(
2
∂n

∂ω
+ ω

∂2n

∂ω2

)
. (2.10)

β2 describes the rate of temporal broadening experienced by the optical pulse. The group
velocity dispersion for fused silica is shown in Figure 2.2. In the same figure, the dispersion
parameter D, defined as

D =
∂β1
∂λ

= −2πc

λ2
β2 (2.11)

is also shown. D describes how much the different spectral components are separated in
time during the propagation along an fiber and it is often used by fiber manufacturers to
quantify the dispersion properties. Higher-order dispersion coefficients (β3, β4, · · · ) can
also cause distortions to the optical pulse but in general the effect is less profound except
in the case of pulses with vary large bandwidth where they must be included for better fit
the Taylor series approximation [15]. Figure 2.2 plots the dispersion for bulk silica. For
optical fibers, the dispersion slightly deviates from the bulk due to the doping of the fiber
core and the confinement of light inside the fiber core.

From Figure 2.2 one can observe that, for a specific wavelength, the dispersion crosses the
zero line. This is known as the zero dispersion wavelength (ZDW). Around this wavelength,
the temporal broadening of the pulse is minimum. For bulk silica it is around 1270 nm.
However, for optical fibers the ZDW is shifted towards longer values due to the doping
and confinement of light. Typical values range from 1300 nm to 1580 nm [12]. Using a
special fiber design known as photonic crystal fiber (PCF) [16] the ZDW can be lowered
significantly. PCF consists of a small core of fused silica or air surrounded by a lattice of
air holes. Ranka et al. [17] obtained ZDW of approximately 780 nm. A schematic of a
photonic crystal fiber is shown in Figure 2.3.
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Figure 2.3. Schematic of a photonic crystal fiber. Variable d describes the diameter of the
holes in the crystal while Λ describes the period of the structure. Image by NKT Photonics
[18].

The value of the central wavelength respect to the ZDW of the fiber defines an important
feature of the light propagation dynamics. Depending on the sign of β2 the dynamics of
the propagation vary significantly. In the case of positive β2, the dispersion is normal.
For negative β2, on the other hand, the dispersion is anomalous. In the case of normal
dispersion, the longer wavelength components propagate with higher speed, such that the
leading edge of a propagating pulse consists of the low frequencies (or long wavelengths)
while the frequency increases towards the trailing edge of the pulse. This is known as up-
chirp or positive chirp. On the contrary, anomalous dispersion causes short wavelengths
to travel faster, such that the frequency decreases towards the trailing edge of the pulse
causing a down-chirp or negative chirp.

2.2 Nonlinear effects

In the case of extremely high intensity light, the propagation medium (atoms, molecules)
does not response to the electric field in a linear manner anymore. In the linear regime (i.e.
when the intensity of the light field is small), light can experience dispersion, attenuation,
delay or deflection but no new frequencies are created during the propagation [15].
However, when the intensity of the light is increased, the material response becomes
nonlinear in similar manner to a spring that is stretched too much and the restoring force
required is not proportional to the displacement anymore.

For optical fields, the source of nonlinearity is the nonlinear polarization. It originates from
the anharmonic oscillation of the bound electrons in the dielectric material. In the linear
propagation regime, the material polarization is given by

PL(t) = ϵ0χ
(1)E(t), (2.12)

where PL(t) is the linear polarization of the material, ϵ0 is the vacuum permittivity and χ(1)

is the linear susceptibility [4]. Therefore, the material polarization scales with the electric
field E(t). But in the nonlinear regime, the oscillation of the bound electrons does not



8

follow the sinusoidal oscillation of the E-field and higher-order susceptibility components
lead to creation of new spectral components through various nonlinear processes.

2.2.1 Nonlinear polarization

In the presence of a high intensity light field, the polarization response of a dielectric
material is not proportional to the electric field acting on it. The induced polarization
consists of both linear and nonlinear components given by

P(t) = PL(t) +PNL(t)

= ϵ0χ
(1)E(t) + ϵ0χ

(2)E2(t) + ϵ0χ
(3)E3(t) + · · · , (2.13)

where χ(k)(k = 1, 2, ...) is the k th-order susceptibility. It must be noted that the value of the
susceptibility is dependent on the wavelength (χ(k) = χ(k)(ω)). Also, susceptibilities are
tensors in general, as the E-field is a vector quantity [4]. The linear polarization accounts
for linear propagation processes such as dispersion and attenuation described earlier.
The linear susceptibility is related to the refractive index n by [4]

n2(ω) = 1 + χ(1). (2.14)

Note that attenuation can be explained from the complex value of the susceptibility.

The higher-order terms in Equation 2.13 are significant only in the presence of an intense
electric field. This is because the higher-order susceptibilities are many orders of magni-
tude smaller compared to the lower orders, which must be compensated for by the electric
field amplitude. The term χ(2) vanishes in the case of centrosymmetric material, such as
silica. And as noted, the susceptibilities decrease quickly in magnitude when the order is
increased, and thus extremely high intensity of light would be required to observe those
components such as in general χ(3) is the most important nonlinear term when considering
nonlinear propagation in silica fibers [2].

2.2.2 Nonlinear processes

The nonlinear polarization seeds the emergence of various nonlinear processes. The
magnitude or strength of the nonlinear effects is determined by the nonlinear coefficient
(in units of W-1m-1) given by [2]

γ =
ω0n2
cAeff

, (2.15)
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where n2 is the nonlinear refractive index discussed in the following section and Aeff is
the effective mode area given by

Aeff =

(∫ ∫∞
−∞ |F (x, y)|2 dx dy

)2∫ ∫∞
−∞ |F (x, y)|4 dx dy , (2.16)

where F (x, y) is the modal distribution introduced earlier. The effective area describes the
area of the mode confined inside the core. The effective area depends on the core diameter
and the refractive index difference between the core and cladding. For a Gaussian intensity
distribution, the area can be approximated as Aeff = πw2, where w is the mode width
parameter. Typical values for effective area range from 1 to 100 µm2 for single-mode
fibers [2]. The following sections describe the most typical effects in nonlinear fiber optics
associated with the third-order nonlinear susceptibility χ(3).

Optical Kerr effect

The optical Kerr effect arises from the intensity dependence of the refractive index. Con-
sider an electric field E = A e−iω0t+A∗ eiω0t = A e−iω0t+ c.c.. The notation c.c. refers to
the complex conjugate. Neglecting the vectorial nature of the E-field, the polarization
induced in a third-order nonlinear medium is given by [15]

Ptotal = PL + PNL

= ϵ0

[
χ(1)E(t) + χ(3)E3(t)

]
= ϵ0E(t)

[
χ(1) + χ(3)

(
A2 e−2iω0t+A∗2 e2iω0t+2|A|2

)]
= ϵ0χ

(1)
(
A e−iω0t+ c.c.

)
+ ϵ0χ

(3)
(
A3 e−3iω0t+|A|2A e−iω0t+2|A|2A e−iω0t+ c.c.

)
= ϵ0χ

(1)
(
A e−iω0t+ c.c.

)
+ ϵ0χ

(3)
(
3|A|2A e−iω0t+ c.c.

)
+ ϵ0χ

(3)
(
A3 e−3iω0t+ c.c.

)
.

(2.17)

The first term on the last line of Equation 2.17 is the linear polarization PL. The last two
terms originate from the nonlinear polarization due to third-order nonlinear susceptibility.
The last term oscillating with (angular) frequency of 3ω0 is known as the third harmonic
generation (THG). Three photons are absorbed from the fundamental field by the medium
and one photon is generated with three times the fundamental frequency. However, the
THG field is not sustained in general. To effectively sustain the THG field, the refractive
indices of the fundamental and the THG fields must be equal (i.e. n(ω0) = n(3ω0)). This
is known as the phase matching condition [4]. This is not the case in general since the
refractive index is dependent on the wavelength.

One can notice that the second term on the last line of the Equation 2.17 oscillates at the
fundamental frequency ω0. Therefore, the total polarization oscillating at the fundamental
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frequency is given by

P (ω0) = PL(ω0) + PNL(ω0)

= ϵ0χ
(1)A e−iω0t+3ϵ0χ

(3)|A|2A e−iω0t

= ϵ0A e−iω0t
(
χ(1) + 3χ(3)|A|2

)
= ϵ0A e−iω0t χ

(1)
eff . (2.18)

Here, we have defined the effective linear susceptibility χ
(1)
eff = χ(1) + 3χ(3)|A|2. Since

the refractive index is related to the linear susceptibility through Equation 2.14, we can
define a similar relation for the effective susceptibility. Assuming the effective susceptibility
induced a small change ∆n in the refractive index, we can derive the effective refractive
index

n2eff = (n+∆n)2

= n2 + 2n∆n+∆n2

≈ n2 + 2n∆n, (2.19)

where we have neglected ∆n2. By noting n2eff = 1 + χ
(1)
eff , we get

n2eff = 1 + χ
(1)
eff

= 1 + χ(1) + 3χ(3)|A|2

= n2 + 3χ(3)|A|2, (2.20)

where we have utilized Equation 2.14. By comparing Equations 2.19 and 2.20, we can
extract the refractive index change caused by the E-field:

∆n =
3χ(3)|A|2

2n
=

3χ(3)I

4ϵ0n2c
= n2I, (2.21)

where n2 = 3χ(3)

4ϵ0n2c
and we have used the relation I = 2nϵ0c|A|2 for intensity. Using the first

two terms from Taylor series expansion of Equation 2.19, we get the effective refractive
index

neff =
√
n2 + 2nn2I = n

√
1 + 2n2I/n ≈ n (1 + n2I/n) = n+ n2I. (2.22)

From Equation 2.22, we see that the refractive index of a third-order medium is modified by
the intensity of an incoming (intense) light field. The intensity dependent refractive index
is responsible for most of the nonlinear effects introduced in this Chapter. The physical
process of light altering the refractive index of a medium is known as the optical Kerr effect.
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Self-phase modulation

Due to the Kerr effect, an optical field can modulate its own phase. This process is know as
self-phase modulation (SPM). A high intensity optical pulse induces a change to the refrac-
tive index which in turn induces a nonlinear phase-shift φNL [4]. Consider a (high intensity)
monochromatic propagating wave with associated E-field E(z, t) = A ei(βz−ω0t)+ c.c.. The
wave "sees" the effective refractive index of the medium, and therefore, the propagation
constant can be expressed as β = neff

2π
λ . Inserting the effective index into the E-field, we

can clearly notice the induced nonlinear phase-shift:

E(z, t) = A ei(βz−ω0t)+ c.c.

= A exp

[
i

(
neff

2π

λ
z − ω0t

)]
+ c.c.

= A exp

[
i

(
n
2π

λ
z + n2I

2π

λ
z − ω0t

)]
+ c.c.

= A exp [i (φL + φNL − ω0t)] + c.c., (2.23)

where φL = n2π
λ z = nω0

c z is the linear phase-shift and φNL = n2I
2π
λ z = n2

|A|2
Aeff

ω0
c z is the

nonlinear phase-shift. As we can see, the phase of the pulse is dependent on its own
intensity.

Since the intensity of a pulse is time-dependent (for example Gaussian or hyperbolic
secant), the induced phase-shift also depends on time. The time-varying phase causes
changes to the pulse spectrum, typically making it broader [4]. The temporal intensity
however remains unchanged.

To further describe the temporal properties of different spectral components, it is convenient
to introduce the concept of instantaneous frequency ω(t) [4]. The frequency component
arriving at time t is given by

ω(t) = ω0 + δω(t) = ω0 −
∂φNL

∂t
(2.24)

where δω(t) describes the variation to the instantaneous frequency. The frequency chirp
caused by SPM is positive and quasilinear for the central (temporal) region of the pulse [2].
Self-phase modulation is especially important for ultra-short pulses [4]. If the maximum
value of the induced frequency shift exceeds the spectral width of the pulse, the pulse is
significantly broadened in the spectral domain.

Similarly to SPM, the phase of an optical field may be modulated by a strong external
field. This is known as cross-phase modulation (XPM) highlighting the fact that it is
another field modulating the phase of a given field [2]. XPM adds an additional term to the
nonlinear polarization given in Equation 2.17, and thus modifies the nonlinear phase-shift
in Equation 2.23.
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Four wave mixing

Four wave mixing (FWM) is a parametric process that results from the mixing of four differ-
ent optical fields with distinct frequencies [4]. Four photons are destroyed or annihilated
during this process. Similarly to the case of self-phase modulation, the origin of FWM is
the nonlinear polarization induced by the third-order nonlinear susceptibility and which
includes a term that oscillates with a frequency given by the summation (or subtraction) of
the incident fields.

To efficiently transfer energy at a specific frequency, two conditions must be fulfilled [2].
Similarly to self-phase modulation, the total energy of the light fields with frequencies
ω1, ω2, ω3 and ω4 is conserved in the FWM process such that ω1 + ω2 = ω3 + ω4. In
this case, photons at frequency ω1 and ω2 would be destroyed and photons at frequency
ω3 and ω4 would be created, or vice versa. Limitation to this process comes from the
phase-matching. To efficiently amplify the creation of photons at ω3 and ω4, we must have
∆k = β(ω1) + β(ω2)− β(ω3)− β(ω4) = 0, where β(ωi) = n(ωi)ωi/c. The phase-matching
insures the conservation of momentum.

Modulation instability

Modulation instability (MI) describes a nonlinear process where a weak periodic perturba-
tion on top of a continuous signal is exponentially amplified. It is present in many nonlinear
systems that show dispersive and nonlinear effects such as fiber optics, water waves and
plasma physics. In fiber optics, MI leads to the break-up of a continuous time-domain
signal, resulting into a periodic train of short high-intensity sub-pulses [2].

Modulation instability is one of the main topics of this thesis. A more comprehensive
analysis of MI is given in Chapter 3.

Solitons

In the case of anomalous dispersion, the nonlinear and dispersive effects may cancel out
each other [2]. The specific solutions are referred as solitary waves or solitons. They
propagate undistorted in a fiber, or follow specific periodic structures in time and remain
undistorted due to the down-chirp induced by the anomalous dispersion and up-chirp
induced by SPM and XPM. This is the case for, so called, fundamental solitons. There are
also higher-order solitons that are very sensitive to any perturbations and may thus break
up into fundamental solitons. Solitary waves were first observed for water waves in 1884
by Scott Russel [19]. Solitons will be discussed in more details in Chapters 3 and 4.
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Figure 2.4. Normalized Raman gain for silica. After Ref. [21].

Stimulated Raman scattering

Raman scattering results from the interaction between the vibrational states of a molecule
and light, effectively leading to energy transfer between two optical fields by which the
frequency of the incident light is typically down-shifted towards longer wavelengths. The
transfer is caused by inelastic scattering of photons from the molecules, and it is known
as the Raman effect [20]. However, the spontaneous Raman scattering is a rather weak
process since it is triggered by noise and the emission is in the form of dipole radiation [4].
Therefore, the Raman effect is often observed in the form of stimulated Raman scattering
(SRS), such that the scattering process is stimulated by a weak co-propagating light
field with the same frequency as that of the scattered photon. The stimulated process is
typically much stronger than the spontaneous one and the emission is in a narrow cone
shape [4].

Higher-frequency photons (with energy ℏωp) interact with molecules exciting them to a
higher vibrational state. As a result, the photon is converted to a lower-frequency photon
with energy ℏωs. The optical field at frequency ωs is known as the Stokes field. In the
process, an excited vibrational state of a molecule can also be released. In this case, a
photon with higher frequency ωa compared to the fundamental field is emitted. This field is
known as the anti-Stokes field but it is typically much weaker than the Stokes field as the
probability of thermal excitation to higher energy state is low [4].

The strength of the Raman effect is given by the Raman gain. The Raman gain (gR) for
silica is shown in Figure 2.4. The maximum gain is achieved for a frequency detuning
about 13.2 THz from the pump. However, the Raman gain spans up to approximately
30 THz, such that in principle fields with detuning within the Raman gain bandwidth can
be amplified. Given that pump intensity is sufficiently large, the resulting Stokes wave is
exponentially amplified [2].
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2.3 Propagation equation

The starting point for a general propagation equation is the Maxwell’s equations. From
Maxwell’s equation, one can obtain the wave equation [2]

∇×∇×E = − 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2

= − 1

c2
∂2E

∂t2
− µ0

∂2PL

∂t2
− µ0

∂2PNL

∂t2
(2.25)

where µ0 is the vacuum permittivity and P is the total induced polarization introduced in
Chapter 2.2.1 that can be separated into linear and nonlinear terms according to Equation
2.13. Using the vector calculus identity ∇ × ∇ × E = ∇(∇ · E) − ∇2E and relation
∇ ·D = ∇ ·E = 0 (due to the spatial independence of refractive index [2]) one obtains

∇2E− 1

c2
∂2E

∂t2
= µ0

∂2PL

∂t2
+ µ0

∂2PNL

∂t2
. (2.26)

By noticing that the linear polarization is related to the E-field through Equation 2.13, one
can write

∇2E− 1

c2
∂2E

∂t2
= µ0

∂2ϵ0χ
(1)E

∂t2
+ µ0

∂2PNL

∂t2
. (2.27)

To make the derivation easier, it is convenient to continue in the spectral domain. Since
the electric field is expressed in the form E(z, t) = A(z, t) e−iωt (the modal distribution
neglected here), the Fourier transform of the second time derivative yields an additional
coefficient of (−iω)2 = −ω2. Therefore, Equation 2.27 can be written in the form

∇2Ẽ+
ω2

c2
Ẽ = −µ0ϵ0ω2χ̃(1)(ω)Ẽ− µ0ω

2P̃NL

∇2Ẽ = −ω
2

c2
Ẽ− ω2

c2
χ̃(1)(ω)Ẽ− ω2

ϵ0c2
P̃NL

∇2Ẽ = −ω
2

c2

(
1 + χ̃(1)(ω)

)
Ẽ− ω2

ϵ0c2
P̃NL, (2.28)

where the relation ϵ0µ0 = 1/c2 is used. The notation for electric field in the spectral domain
is relative to the central frequency, i.e. Ẽ = Ẽ(ω − ω0). Notation P̃NL refers to the Fourier
transform of the nonlinear polarization. Now we can use Equation 2.14, leading to

∇2Ẽ+ n2(ω)
ω2

c2
Ẽ = − ω2

ϵ0c2
P̃NL

∇2Ẽ+ β2(ω)Ẽ = − ω2

ϵ0c2
P̃NL. (2.29)

Equation 2.29 is still very general in nature. In the case of no nonlinearities, it is written in
the form

∇2Ẽ+ β2(ω)Ẽ = 0, (2.30)

which is known as the Helmholtz equation.
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The propagation equation can be used for modeling the propagation of optical field in
a fiber. It includes all the linear and nonlinear processes that take place during the
propagation. Some of the processes can be solved analytically but to include all the
nonlinear processes numerical methods are needed due to high complexity. Those will be
explained in Section 2.3.2.

2.3.1 Generalized nonlinear Schrödinger equation

Equation 2.29 can be further developed provided that several assumptions are made.
First, let us assume that the transverse modal distribution of the field remains constant
along propagation. It can be assumed to be a Gaussian function for the fundamen-
tal mode as mentioned before [2]. We can then write the E-field as a scalar variable
(Ẽ = F (x, y)Ã(z, ω − ω0) e

iβ0z + c.c.) and solve the equation in 1+1D (propagation + time).
Due to the tensor nature of χ(3), it is possible to have up to 81 nonzero elements describing
the polarization response of different E-field components [4]. Yet, typically only few of the
components are independent, and thus is it reasonable to make a scalar approximation
with only one tensorial element with a maintained single polarization state.

Neglecting the transverse modal distribution, the Laplace operator ∇2 can be replaced by
a second derivative along the propagation coordinate ∂2/∂z2, and Equation 2.29 can be
written as

∂2Ẽ

∂z2
+ β2(ω)Ẽ = − ω2

ϵ0c2
P̃NL(

∂2Ã

∂z2
+ 2iβ0

∂Ã

∂z
− β20Ã

)
eiβ0z +β2(ω)Ã eiβ0z + c.c. = − ω2

ϵ0c2
P̃NL. (2.31)

To further simplify the expression above, a slowly-varying envelope approximation can be
made [2]. The approximation states that the second derivative is negligible compared to
the second term in Equation 2.31. Physically, it means that the relative change of E-field
envelope amplitude over a propagation distance comparable to the wavelength is small:

∂2Ã

∂z2
≪ β0

∂Ã

∂z
=⇒ ∂Ã

Ã
≪ 2π

λ
∂z. (2.32)

Equation 2.31 can now be written in the more convenient form:(
2iβ0

∂Ã

∂z
+ (β2(ω)− β20)Ã

)
eiβ0z + c.c. = − ω2

ϵ0c2
P̃NL. (2.33)

Assuming that the refractive index of the fiber varies slowly vs. wavelength, the term
β2(ω)− β20 can be further approximated as 2β0(β(ω)− β0) [2]. By writing the propagation
constant as a Taylor series expansion as done in Equation 2.8 and including the three first
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terms, one obtains(
2iβ0

∂Ã

∂z
+ 2β0β1(ω − ω0)Ã+ 2β0

β2
2
(ω − ω0)

2Ã

)
eiβ0z + c.c. = − ω2

ϵ0c2
P̃NL. (2.34)

Switching back to the time-domain yields another convenient form for the propagation
equation:[

2iβ0
∂A

∂z
e−iω0t+2β0β1

(
−1

i

∂A

∂t
e−iω0t

)
+ 2β0

β2
2

(
−∂

2A

∂t2
e−iω0t

)]
eiβ0z + c.c.

=
1

ϵ0c2
PNL, (2.35)

which simplifies to(
∂A

∂z
+ β1

∂A

∂t
+ i

β2
2

∂2A

∂t2

)
ei(β0z−ω0t)+ c.c. = − i

2β0ϵ0c2
PNL. (2.36)

The only unknown term left in the equation above is the nonlinear polarization. This term
depends on the nonlinear medium where light propagates. The nonlinear polarization for
a third-order nonlinear medium (such as silica) has been derived in Equation 2.17, and
the second time-derivative can be written as

∂2PNL

∂t2
=

∂2

∂t2
(

P (t)  
ϵ0χ

(3)3|A|2A ei(β0z−ω0t)+ c.c.)

=

(
∂2P (t)

∂t2
− 2iω0

∂P (t)

∂t
− ω2

0P (t)

)
ei(β0z−ω0t)+ c.c.

≈ −ω2
0P (t) e

i(β0z−ω0t)+ c.c., (2.37)

where the time derivatives of the polarization have been neglected (slowly-varying envelope
approximation). Equation 2.36 can now be separated into two separate equations that are
complex conjugates of each other. The exponential term can be also simplified, resulting
in

∂A

∂z
+ β1

∂A

∂t
+ i

β2
2

∂2A

∂t2
= i

ω2
0

2β0ϵ0c2
P (t)

= i
ω2
0

2β0ϵ0c2
ϵ0χ

(3)3|A|2A

= i
3χ(3)ω0

2nω0c
|A|2A

⇒ ∂A

∂z
+ β1

∂A

∂t
+ i

β2
2

∂2A

∂t2
= iγ|A|2A, (2.38)

where γ is the nonlinear coefficient introduced earlier in Equation 2.15.

Equation 2.38 is known as the nonlinear Schrödinger equation (NLSE). To further simplify
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the notation, is it convenient to introduce the retarded or co-moving frame of reference.
This means that the time coordinate is chosen in a way that it moves along the propagation
coordinate at the group velocity of the pulse envelope. The new co-moving time coordinate
is given by T = t− β1z. The nonlinear Schrödinger equation in the co-moving frame of
reference is given by [2]

∂A

∂z
+ i

β2
2

∂2A

∂T 2
= iγ|A|2A. (2.39)

The unit of the electric field amplitude is normally V/m but however it is convenient to
normalize the amplitude in a way that |A|2 represents the optical power. Therefore, the
unit of A is typically given as W1/2. The nonlinear coefficient has unit of W-1m-1.

Equation 2.39 is typically sufficient to model the propagation of an optical pulse. It includes
the nonlinearities arising from self-phase modulation, cross-phase modulation and four
wave mixing. However, in the general case it may be necessary to include higher-order
dispersion as well as stimulated Raman scattering. The Raman gain amplifies the low-
frequency components of a pulse at the cost of higher frequencies shifting the pulse
towards low frequencies [2]. This phenomenon is known as intrapulse Raman scattering
and it can play important role in the propagation of solitons, for example, causing the
soliton self-frequency shift [9].

Including the higher-order nonlinear terms, the generalized nonlinear Schrödinger equation
(GNLSE) governing the evolution of the electric field amplitude A(z, T ) (in units of W1/2

and co-moving frame of reference) can be written as [2,7,22,23]

∂A

∂z
+
α

2
A−

∑
k≥2

ik+1

k!
βk
∂kA

∂T k
= iγ

(
1 + iτshock

∂

∂T

)
×

(
A

∫ +∞

−∞
R(T ′)|A(z, T − T ′)|2 dT ′

)
. (2.40)

Left side of the GNLSE accounts for the linear effects, including attenuation (α) and
dispersion. Attenuation arises from the imaginary part of the linear susceptibility by
α(ω) = ω

nc Im{χ(1)} [2]. Higher-order dispersion terms are also included. On the right
side, the various nonlinear effects are included. The nonlinear coefficient γ describes the
strength of the nonlinear effects in the medium. The term τshock describes the frequency
dependence of the nonlinear coefficient. It results from the frequency dependence of both
the nonlinear refractive index n2 and the effective mode area Aeff . In practice however, a
reasonable and often used approximation is τshock = 1/ω0 [2]. The time derivative following
τshock models the dispersion of the nonlinearities, which is associated with the phenomena
of self-steepening and shock formation [7].

The nonlinear response function R(T ) includes the both instantaneous electronic contribu-
tion (Kerr effect) and delayed Raman response hR (Raman scattering) [7].

R(T ) = 1− fR + fRhR (2.41)
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Figure 2.5. Schematic of split-step Fourier method with step size h. After Ref. [2].

The Raman contribution fR is measured to be 0.18 for silica [24].

2.3.2 Numerical modeling

The GNLSE (Eq 2.40) is a nonlinear differential equation that is not generally solvable
in analytic form except for some special cases. Therefore, the equation needs to be
solved numerically. An often used method for this purpose is the split-step Fourier method
(SSFM) [2]. A schematic of the this method is shown in Figure 2.5. A more complete
description of the method can be read from References [2,7], for example. In this work,
the attenuation of the pulse is not included but it can be added in a straightforward manner.
Other methods such as finite-element methods exist but the SSFM is the most simple and
computationally fast for pulse propagation modeling.

The split-step Fourier scheme utilizes the fact the temporal and spectral domain are
connected to each other by Fourier transforms. The basic idea is the following: over a
small distance h, the linear terms on the left hand side of Equation 2.40 (D̂) and nonlinear
terms on the right hand side (N̂ ) can be assumed to be independent of each other and
estimated separately. The GNLSE can then be simply written as ∂A/∂z = (D̂ + N̂)A.
The fiber is thus divided into elementary steps of size h and the two steps of linearity and
nonlinearity are sequentially solved along the propagation.

Solving the linear part is trivial in the frequency domain [2]. The spectral field after a small
step h can be calculated from exponential integration

A(z0 + h, ω) = ehD̂A(z0, ω). (2.42)

The nonlinear term is more challenging. For that, a second-order Runge-Kutta algorithm is
applied but other algorithms are also possible. In the second-order Runge-Kutta scheme,
the derivative of the spectral field amplitude is evaluated at initial point z = z0. The
Runge-Kutta algorithm is mostly carried out in the frequency domain as the convolution
term can be simply calculated as a multiplication. After multiplication with the A(z, ω),
shock-term and the nonlinear coefficient, the derivative ∂A/∂z at z0 is obtained, from which
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(A) (B)

Figure 2.6. Example of a simulated 2 ps pulse evolution over a propagation distance of
85 cm. The initial pulse has a peak power of 400 W and it is injected into the anomalous
dispersion regime of a photonic crystal fiber. (A) shows the evolution of the spectral
intensity (spectrum) of the pulse in dBs while (B) shows the evolution of the temporal
intensity. The insets on top of the evolution show the output of the fiber.

A(z0 + h/2, ω) is calculated. Again, the derivative is evaluated but now at the mid-point
z = z0 + h/2, using the mid-point amplitude calculated at the first step Runge-Kutta step.
Derivative at the mid-point (k2) is then used to estimate the E-field amplitude at point
z = z0 + h using

A(z0 + h, ω) = A(z0, ω) + k2h. (2.43)

The linear and nonlinear terms are then combined, i.e. dispersion is let to affect the field
calculated from the nonlinear interactions. The corresponding temporal field amplitude is
calculated by the inverse Fourier transform of the spectral field

A(z, t) = F−1{A(z, ω)} =
1

2π

∫ +∞

−∞
A(z, t)e−iωt dω. (2.44)

An example of simulated evolution of a single pulse propagating in a nonlinear optical fiber
is shown in Figure 2.6.
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3 MODULATION INSTABILITY

Modulation instability (MI) is a nonlinear process governed by the nonlinear Schrödinger
equation that results from the interplay between linear and nonlinear effects. MI is a
process by which a small initial periodic perturbation on top of a (quasi-) continuous
wave (CW) signal is exponentially amplified. MI manifests itself as the break-up of the
continuous time domain signal into a train of short temporal sub-pulses. Correspondingly
in the spectral domain, the growth of frequency sidebands are observed symmetrically
around the CW component. Anomalous dispersion is required for observing MI [2]. In
addition to fiber optics, MI has been observed in water waves or fluids [25–27], plasma
physics [28] and for Bose-Einstein condensates [29], to name a few.

Apart from a coherent periodic modulation, MI can also be seeded by noise. This re-
sults into highly complex and chaotic dynamics. It has been shown that noise-seeded
or spontaneous MI can be associated with the formation of extreme events or rogue
waves [5,6].

3.1 Stability analysis

The stability analysis done in this Chapter assumes a CW signal but the analysis is valid
for quasi-CW signals, i.e. also in the long pulse regime (≳ 1 ps). Let us consider the pure
NLSE derived in Section 2.3.1

i
∂A

∂z
=
β2
2

∂2A

∂T 2
− γ|A|2A, (3.1)

which includes group velocity dispersion and Kerr nonlinearity. The CW corresponds to
field A(0, T ) =

√
P0, where P0 is the incident power. Since A does not depend on time,

Equation 3.1 can be readily solved as

A(z, T ) =
√
P0 e

iϕNL , (3.2)

where ϕNL = γ|A|2z = γP0z is the nonlinear phase shift induced by self-phase modulation.

To analyse the stability of the propagation dynamics, let us add a small perturbation to the
continuous wave signal such that

A(z, T ) =
√
P0 + a(z, T ) eiϕNL , (3.3)
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where a(z, T ) is a small perturbation to the steady-state, i.e. |a(z, T )|2 ≪ P0. Injecting A
to the NLSE and neglecting all the small second-order terms (a2), one obtains the equation
governing the evolution of the small perturbation:

i
∂a

∂z
=
β2
2

∂2a

∂T 2
− γP0(a+ a∗). (3.4)

The equation can be solved using an Anzatz solution of the form

a(z, T ) = a1e
i(Kz−ΩT ) + a2e

−i(Kz−ΩT ), (3.5)

where a1 and a2 are coefficients, K and Ω are the wavenumber and frequency of the
perturbation, respectively. It must be noted that both the wave number and frequency are
relative to the CW field, i.e. the actual wavenumber and frequency of the perturbation are
β0 ±K and ω0 ± Ω, respectively. Injecting a into the Equation 3.4, one obtains

iKa1 e
iϕ− iKa2 e

−iϕ− iΩ2β2
2
a1 e

iϕ− iΩ2β2
2
a2 e

−iϕ = iγP0

(
Ka1 e

iϕ+Ka2 e
iϕ+ c.c.

)
,

(3.6)
where ϕ = Kz − ΩT . Since Equation 3.6 must hold for all z and T , one can separate the
equation into two term (with eiϕ and e−iϕ canceling out)

Ka1 − Ω2β2
2
a1 = γP0(Ka1 +Ka2)

−Ka1 − Ω2β2
2
a1 = γP0(Ka1 +Ka2),

(3.7)

which can be written in a matrix form⎡⎣K − Ω2β2/2− γP0 −γP0

−γP0 K − Ω2β2/2− γP0

⎤⎦⎡⎣a1
a2

⎤⎦ = 0. (3.8)

A nontrivial solution exists when the determinant of the matrix in Equation 3.8 is equal to
zero. Thus we can solve for K, leading to [2]

K = ±|β2|Ω
2

√
Ω2 +

4γP0

β2

= ±|β2|Ω
2

√
Ω2 + sgn(β2)Ω2

c , (3.9)

where sgn(β2) is the sign of β2 (= ±1) and Ω2
c = 4γP0/|β2| = 4/(|β2|LNL), with

LNL = 1/(γP0) the nonlinear length. Physically, LNL describes the propagation distance
over which the nonlinear effects cannot be neglected anymore [2].

From Equation 3.8 one can observe that depending on the sign of the group velocity
dispersion, K can be either real or complex. In the case of positive β2 (normal dispersion),
Ω2 + sgn(β2)Ω

2
c is always positive and thus K is real valued. Inserting real valued K to

the equation of the perturbation (3.5), the exponential terms will not grow in amplitude.
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Figure 3.1. MI power gain curve for NL-PM-750 fiber (NKT Photonics) at 825 nm.
Blue and orange curves are with peak powers of 170 and 300 W, respectively.
β2 = 1.03 × 10-26 s2m-1, γ = 0.1 W-1m-1.

Therefore, the steady state is stable against small perturbations in the normal dispersion
regime. However, in the anomalous dispersion regime this is not the case. If |Ω| < Ωc, the
perturbation is form of

a(z, T ) = a1 exp

(
−|β2|Ω

2

√
Ω2
c − Ω2z

)
exp (−iΩT )

+ a2 exp

( |β2|Ω
2

√
Ω2
c − Ω2z

)
exp (iΩT )

= a1 exp

(
−1

2
g(Ω)z

)
exp (−iΩT ) + a2 exp

(
1

2
g(Ω)z

)
exp (iΩT ) . (3.10)

We observe exponential growth with power gain

g(Ω) = |β2|Ω
√
Ω2
c − Ω2 = |β2|Ω

√
4γP0

|β2|
− Ω2. (3.11)

Therefore, the steady state is not stable in the anomalous dispersion regime but the
weak perturbations are exponentially amplified. This is process is known as modulation
instability. The maximum gain is achieved for a frequency separation (from pump) of

Ωmax = ± Ωc√
2
= ±

√
2γP0

|β2|
, (3.12)

resulting in the maximum value for the power gain

gmax = g(Ωmax) =
|β2|
2

Ω2
c = 2γP0. (3.13)

However, not only the frequencies with maximum gain are amplified, but all of the frequen-
cies that fall inside the gain curve will be amplified. Few examples of MI (power) gain
curves with different pump powers are shown in Figure 3.1.
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Figure 3.2. Schematic of MI evolution. A continuous wave signal with a small sinusoidal
modulation of amplitude p is broken up into high intensity structures in time, while the
growth of multiple sidebands is observed in the spectral domain. The gray line illustrates
the continuous power. Adapted from Ref. [30].

In the frequency domain, MI can be interpreted as a degenerate four wave mixing process
for frequencies that fall under the MI gain curve, i.e. 2ωp = ω1 + ω2, where ωp is the
frequency of the pump and ω1 = ωp − ωmod and ω2 = ωp + ωmod are the generated
frequencies [2]. An example of MI evolution for periodically modulated CW signal is shown
in Figure 3.2. One can observe that the time domain signal breaks up into a train of high
intensity sub-pulses. The period of the structures is determined by the inverse of the
modulation frequency ωmod as Tmod = 2π/ωmod. As the modulation is further amplified, one
can observe an increasing number of sidebands in the frequency domain, each separated
by the modulation frequency ωmod. These sidebands are the result of a degenerate four
wave mixing process between the pump and/or other sidebands, known as cascaded
FWM. For a single-mode fiber, the phase mismatch for MI process is given by

κ = 2γP0 + 2

∞∑
m=1

β2m
(2m)!

Ω2m, (3.14)

where β2m are the even-order dispersion terms [7]. Therefore, perfect phase match-
ing (κ = 0) in a NLSE system is achieved with the frequency of maximum growth
Ωmax =

√
2γP0/|β2|. The phase matching is achieved due to the combination of anoma-

lous dispersion (negative GVD) and nonlinear phase shift induced by the SPM.

As the sidebands grow in amplitude, the undepleted pump approximation done in the
stability analysis does not hold after the initial exponential growth stage, and the gain
derived in Equation 3.11 does not lead to exponential growth anymore. One can see
from Figure 3.2 that after the point of 100% contrast in the temporal intensity, energy
starts flowing back to the pump component, essentially leading to the restoration of the
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initial state. This kind of periodic energy exchange between the pump and the modulation
sidebands is a common behavior for many nonlinear systems and it is known as the
Fermi-Pasta-Ulam recurrence [31].

3.2 Spontaneous modulation instability

In the absence of a weak periodic modulation on top the continuous wave signal considered
so far, MI can still develop as the result of noise amplification. Noise can be considered
as a small perturbation to the CW signal instead of a well-defined periodic modulation.
In general, the noise is broadband, spanning a large continuous range of frequency
components. The noise can then seed MI and all the noise components within the MI
gain are exponentially amplified simultaneously. This process of exponential growth of
broadband noise is known as spontaneous or noise-seeded modulation instability.

The maximum MI gain is achieved for a frequency ω0 ± Ωc/
√
2 = ω0 ±

√
2γP0/|β2| as we

saw earlier, and this means that the time domain will be mainly modulated with a frequency
corresponding to the maximum gain, i.e.

√
2γP0/|β2|. Since all of the frequencies under

the MI gain curve are amplified, however, the time domain modulation is not perfectly
periodic but rather consists of irregularly spaced high intensity peaks. In the frequency
domain, one observes sidebands that are not at located at discrete frequencies (compare
to Figure 3.2) but that fills the entire MI gain curve. Cascaded FWM subsequently transfers
energy to higher-order sidebands. The resulting triangular-shaped spectrum (in logarithmic
scale) is the result of the cascaded energy transfer to frequencies further away from the
pump [32]. Part of the energy is also eventually flowing back to the pump but this process is
not identical to the case of periodic modulation, as the phase coherence is not maintained
and the initial state is then never restored. A numerical NLSE simulation in Figure 3.3
illustrates the dynamics.

When seeded by noise, MI shows complex dynamics and the process is chaotic in nature
such that the output spectrum after propagation in a fiber is highly dependent on the initial
conditions [5,33]. Without noise (or periodic modulation), MI does not occur. Therefore,
the initial random noise essentially determines the intensity profile at the output of the
fiber. From an experimental point of view, noise can also manifests along the propagation
due to inhomogeneities in the fiber for example, but in typical numerical simulations the
initial noise condition determines the output in a deterministic way. The output spectrum
shows large shot-to-shot variation between different pulses that have the same initial CW
background but different noise [33]. In numerical simulations, the background noise is
typically implemented by adding one photon with random phase in each frequency bin [7].
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Figure 3.3. Chaotic MI field. The noise on top of a long pulse (10 ps, 170 W peakpower)
is exponentially amplified to create sidebands that further develop into a triangular shaped
spectrum due to cascaded FWM. The left and right panels show the temporal intensity (I)
and spectrum (S) for propagation distances of 0.4 and 1.2 m. respectively. λ0 = 825 nm,
β2 = 1.03 × 10-25 s2m-1, γ = 0.1 W-1m-1.

3.3 Breather formalism

The analytic form of the breather structures emerging from MI can be derived using the
inverse scattering transform (IST) [34–36]. This is more convenient to be done in the
dimensionless form of the NLSE using the following notations [2]

U =
A√
P0
, ξ =

z

LD
=
z|β2|
T 2
0

, τ =
T

T0
, N2 =

LD

NNL
=
γP0T

2
0

|β2|
, (3.15)

where U , ξ and τ are the normalized amplitude, propagation coordinate and time, respec-
tively. The variable LD = T 2

0 /|β2| is the dispersive length that describes the propagation
length over which dispersion becomes significant for the pulse propagation (similarly to
nonlinear length LNL for the nonlinear effects). The variable T0 is the incident pulse width
(related to the full width at half maximum (FWHM) of the pulse) and N is the soliton
number. The NLSE can be thus written as

i
∂U

∂ξ
= sgn(β2)

1

2

∂2U

∂τ2
−N2|U |2U, (3.16)

which can be further simplified by assuming anomalous dispersion and defining new
unitless amplitude ψ = NU . The dimensionless canonical form the the NLSE in the
anomalous dispersion regime can thus be written as [2]

i
∂ψ

∂ξ
+

1

2

∂2ψ

∂τ2
+ |ψ|2ψ = 0. (3.17)
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(A) (B)

(C) (D)

Figure 3.4. Analytical breather solutions. (A) shows the Akhmediev breather with a = 0.25,
(B) shows the Kuznetzov-Ma soliton with a = 0.7, (C) shows the Peregrine soliton with
a = 0.5, and (D) shows a collision of two ABs with a1 = 0.2 and a2 = 0.3.

There are an infinite number of solutions to the NLSE. The periodic evolution of a CW
signal with small periodic modulation of top of it (as it is the case with MI) is called the
Akhmediev breather (AB) [37]. Other important solutions include the Peregrin soliton (PS)
[38] and the Kuznetsov-Ma soliton (KM soliton) [39]. All of these solutions belong to the
family of solutions that evolve from a CW field, and they are known as solitons on finite
background (SFB). These SFB solutions are shown in Figure 3.4.

The generic solution of the SFBs can be written in the dimensionless form as

ψ(ξ, τ) =

[
1 +

2(1− 2a) cosh(bξ) + ib sinh(bξ)√
2a cos(ωaτ)− cosh(bξ)

]
eiξ, (3.18)

and it is governed by a single variable a. Other variables are related to a as b =
√
8a(1− 2a)

and ωa = 2
√
1− 2a. Depending on the magnitude of a different SFBs are observed.

For 0 < a < 0.5, the solution is the Akhmediev breather (AB), where maximum localization
(highest amplitude and minimum temporal width) is observed for a = 0.25. As seen from
Figure 3.4A, an AB manifests as a localized pulse train along ξ, first growing and then
decaying back to the initial state. Maximum localization is observed at ξ = 0. For a = 0.25,
the maximum peak intensity along propagation is approximately |ψAB|2max = 5.8.

For a > 0.5, the NLSE yields the Kuznetsov-Ma soliton that is, unlike AB, localized in time
and periodic along propagation.
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In the limit a→ 0.5, one obtains the Peregrine soliton (PS) which can be written as [38]

ψPS(ξ, τ) =

[
1− 4(1− 2iξ)

1 + 4τ2 + 4ξ2

]
eiξ . (3.19)

As seen from the Figure 3.4C, the Peregrine soliton is localized both in time and the
space dimensions. It also possesses the highest peak intensity among all the SFB
solitons with a maximum normalized intensity of |ψPS |2max = 9. It must be noted that the
KM soliton can exhibit higher instantaneous peak power using this formalism but after
proper normalization, the peak intensities of KM do not reach 9 [36]. Peak intensities over
9 can be obtained only as the result of collision of two SFBs. An example of collision of
two ABs is illustrated in Figure 3.4D.

Similar structures to these analytical solutions can also be seen in Figure 3.3 where the
MI process is seeded from noise. One can see structures that are localized in time but
grow and decay periodically over the propagation, similar to the dynamics of KM soliton.
Akhmediev breather -like structures can be observed as well, and single high intensity
peaks can be seen with localization characteristics resembling that of the Peregrine soliton.
The observed structures are not of course perfectly matching to the SFB solutions but
comparing the analytical solutions to the case of noise-seeded dynamics gives an insight
to the physical processes that occur during MI, and during nonlinear pulse propagation in
general. We can see as well that breathers may interact with each other, leading to the
collision of two or more breathers.

3.4 Extreme events in modulation instability

The chaotic MI-field seeded by noise exhibits a large number of localized temporal struc-
tures (as seen in Figure 3.3, for example). Similarly, the spectral bandwidth of the field
fluctuates significantly along the propagation. On rare occasions, the chaotic evolution
may also lead to temporal structures with extremely high instantaneous power. These
extreme events, known as rogue waves, seem to emerge from nowhere and disappear
fast [40]. Since under specific conditions deep ocean waves are also governed by the
NLSE, these extreme waves have been suggested to be the optical counterpart of the
giant waves that can occur in an oceanic context. Due to the chaotic evolution of oceanic
or optical waves, the study of rogue waves is extremely difficult and one can only often
resort to the statistics to study these events. The physics behind rogue wave formation is
still not well understood but it is suggested that it is a combination of linear and nonlinear
mechanisms that drive the emergence of rogue waves [41]. Their prediction is even more
difficult, and it is one of the topic of this thesis.

The study of extreme events in optics is rapidly developing due to the recent developments
in real-time experimental approaches [42,43]. Measurements in real-time are crucial
in order the understand the fundamental physical processes that occur during ultrafast
dynamics since average measurements typically wash out any dynamical feature of
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the system. The development of the dispersive Fourier transform (DFT) technique has
enabled the measurements of breather spectra on a single-shot basis [10,33]. The method
relies on stretching the field though a dispersive element (such as a fiber) that separates
the wavelength components enough to be measured with an oscilloscope in real-time.
Another significant development in real-time measurements is the time-lens system [43]
that has enabled the study of picosecond breathers directly in the time domain [11].
Nevertheless, the study of ultrafast instabilities in real-time (i.e. tens of femtosecond
duration) is still very challenging, and the measurements remain limited in several aspects
(power and bandwidth for example). It is important to bear in mind that conventional
measurements are limited to the spectral intensity only (no phase information), and
therefore inferring the spectral properties from temporal properties is impossible, or vice
versa, is generally not possible. Additionally, the dynamic range that describes the ratio of
the minimum measurable signal compared to the maximum measurable signal, is limited
to approximately 20–25 dB for single-shot spectral measurements in a fiber DFT system
[44]. This is a major limitation to the study of breathers in the spectral domain since the
extreme events in MI are associated with an increased spectral bandwidth that is only
visible below -40 dB [45,46].

The study of the breathers in this work is limited to a fixed distance after propagation
in a fiber. Figure 3.5 shows the dynamics of early MI stage. In A and B, a typical
evolution of a single realization (pulse) is shown. As seen before, the evolution begins
with the growth of distinct first-order sidebands and small temporal envelope fluctuations,
evolving with the emergence of higher-order sidebands and the complete breakdown of
the pulse envelope into various breather structures. Figures 3.5C and D show examples
of corresponding spectral and temporal intensity profiles where we can observe large
variation in both spectral and temporal profiles due to the random noise background.
For some of the realizations we observe one extremely high intensity temporal peak
with broadened spectral profile. The maximum temporal intensity is highlighted with a
blue circle. For an "average" case however, the temporal profile consists of multiple
breathers with relative small intensities for each of them. The top panels show the average
spectrum and temporal intensity calculated over 50,000 realization. We can see that
the averaged temporal profile is essentially smooth, highlighting the randomness of the
breather dynamics. All of the dynamic features are washed away when averaging such
dynamics, and therefore real-time measurements are extremely important when trying to
understand the underlying physics.

Figure 3.5E shows the calculated probability density function (PDF) of the breather
intensities from an ensemble 50,000 distinct simulations with different random noise seeds.
The solid blue line shows the peak power distribution of all breathers that appear inside a
1.5 ps time window centered at zero time. The red dashed curve shows the PDF of the
largest breather intensity for each realization. For both cases, we can observe the long
extended tail towards the high intensities that is typical behavior for MI [11,47]. As we
are interested in the extreme events with the highest intensities, it should be clear from
Figure 3.5E that these correspond to the tail of the PDF which is identical to the PDF of
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Figure 3.5. Simulated dynamics of picosecond pulse propagation. (a) and (b) shows
the evolution of a single realization in the spectral and temporal domain, respectively. (c)
and (d) show a few selected examples of corresponding single-shot spectra and temporal
intensity profiles, respectively. The top panels show the average spectra and temporal
intensity calculated over 50,000 distinct realizations. The maximum temporal intensity for
each realization is highlighted with blue circles. (e) shows the calculated probability density
function of all breather intensities (within 1.5 ps time window) in blue and the maximum
intensity in each realization in red. IRW is the rogue wave threshold defined as twice the
mean intensity of the highest third of the breather intensities. Taken from Ref. [48].

the maximum intensity in each realization. The vertical dashed black line in Figure 3.5E
indicates the rogue wave threshold intensity defined as IRW = 2I1/3 where I1/3 is the
mean intensity of highest third of the all breather intensities.

As noted in Section 3.3, the highest intensity of the elementary breather solutions is
obtained with the Peregrine soliton. Event with higher intensities can only be obtained
as the result of breather collisions. Therefore, we can anticipate that the extremely high
intensities observed in MI would be the result of an emergence of Peregrine soliton or
higher-order ABs emerging from the chaotic dynamics.
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4 SUPERCONTINUUM GENERATION

Supercontinuum (SC) refers to the generation of ultra-broadband light from narrowband
laser light via various nonlinear processes [7]. Since the first report of generation of SC in
bulk glass in 1970 [49,50], studies of SC generation in various media have been reported
[51,52]. In general, SC generation in bulk media involves complex coupling between
spatial and temporal effects [7]. As intriguing this type of physics is, from an application
view point it is common to use nonlinear optical fibers delivering a single Gaussian mode
and where the spatial effects can be neglected. In multimode fibers, however, the spatial
effects cannot be neglected as higher-order modes can contribute significantly to the
observed dynamics and spectral broadening [53]. Over the last few decades, the use of
photonic crystal fibers (PCFs) has gained large interest due to the possibility of dispersion
engineering [7]. Large effort has been put into the development of SC sources in the
ultraviolet or infra-red. Applications of supercontinuum sources range from spectroscopy
and remote sensing to imaging applications.

The properties of SC are highly sensitive on the input field parameters, the dispersion
regime and the nonlinear coefficient. This Chapter gives a brief introduction to the different
dynamic regimes of SC generation. The main focus is on the highly incoherent long pulse
and anomalous dispersion regime where the SC generation is seeded by an initial stage
of chaotic MI as described in the previous Chapter.

4.1 Supercontinuum dynamics

Supercontinua can be generated in various ways. The methods can range from the
use of ultrashort mode-locked laser pulses to continuous wave lasers at various wave-
lengths [7]. In addition to the pump source, various fibers can be used from soft glass
and telecommunication fibers to PCFs which all have different dispersion and nonlinear
properties.

The different regimes of SC dynamics can be coarsely divided into four categories de-
pending on the pump pulse duration (short/long) and the dispersion regime of the pump
(normal/anomalous). The dominant effects for each regime are show in Table 4.1. The
limit between short and long pulses is somewhat arbitrary because the dynamics are
dependent on other variables as well in principle, but 500 fs can be considered as a good
approximation [30].



31

Table 4.1. Different dynamical regimes of supercontinuum generation with dominating
nonlinear effects. After Ref. [15].

Short pulses Long pulses

Anomalous Soliton dynamics
Modulation instability

Soliton dynamics

Normal
Self-phase modulation

Four wave mixing

Raman scattering

Four wave mixing

4.1.1 Short pulse regime

In the short pulse regime, it is the pulse spectral components that seed the SC generation.
We begin by describing the dynamics in the anomalous dispersion regime. The domi-
nating effects include soliton dynamics and dispersive wave generation. As mentioned
before, optical solitons are solutions of the Schrödinger equation where the SPM-induced
nonlinear phase-shift is compensated by the anomalous dispersion induced down-chirp.
They can propagate undistorted over long propagation distances [54]. A fundamental
sech-type soliton can be analytically expressed as

A(z, T ) =
√
P0 sech

(
T

T0

)
, (4.1)

with T0 = TFWHM/1.763, where TFWHM is the FWHM of the intensity profile [2]. The
requirement to excite a fundamental soliton is that the input parameters should fulfill the
condition

N =

√
γP0T 2

0

|β2|
= 1 ⇔ P0 =

|β2|
γT 2

0

. (4.2)

The variable N is the soliton number or soliton order used in Equation 3.15.

Fundamental solitons are not, however, the only solitonic solution of the NLSE, and higher-
order solutions also exist where the soliton number N can take any positive integer value.
These higher-order solitons do not propagate undistorted during propagation but they
show periodic variations in both the spectral and temporal domain [2].

Higher-order solitons are highly sensitive to perturbations such as higher-order dispersion
and Raman scattering [55]. Since the bandwidth of ultrashort pulses is relative broad by
nature, higher-order effects cannot be neglected (GNLSE regime). A N th-order soliton will
eventually break up into N fundamental solitons who will propagate independently and
separate temporally due to different group velocities. The peak powers and durations of
the ejected fundamental solitons An(z, T ) =

√
Pn sech(T/Tn) are given by [7,55]

Pn = P0
(2N − 2n+ 1)2

N2
(4.3)

Tn =
T0

2N − 2n+ 1
, (4.4)
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Figure 4.1. Short pulse (100 fs duration, 1 kW peak power) SC in the anomalous
dispersion regime. Left panel shows the SC evolution in time, and right panel in spectrum
over the propagation distance of 50 cm. The ZDW of the fiber is 750 nm, while the pump
wavelength is 810 nm. The white dashed line indicates the position of the dispersive wave
in the normal dispersion regime.

where n = 1, 2, ..., N . This process whereby a higher-order soliton breaks up into funda-
mental solitons is known as soliton fission. The propagation distance after which soliton
fission typically occurs is approximately given by zfiss ≈ LD/N = NLNL [7], where LD

and LNL are the dispersive and nonlinear length, respectively. Figure 4.1 shows simulated
(GNLSE) evolution of a N = 5, 100 fs pulse injected into the anomalous dispersion regime.
One can see how soliton fission occurs approximately after a distance of 6 cm following
the maximum temporal compression (and spectral expansion) of the pump.

In the presence of higher-order dispersion, soliton fission is modified in two ways [7].
Firstly, the fundamental solitons are shifted towards longer wavelengths due to the Raman
effect. This is known as the soliton self-frequency shift (SSFS) as mentioned previously.
One can see this from Figure 4.1 where the ejected high intensity solitons start red-shifting
towards longer wavelengths, and in time, the trajectory of the solitons start to curve,
separating from the pump residue at increasing rate. Secondly, one often sees that part of
the spectrum is extended into the normal dispersion regime. This part of the spectrum
is known as the dispersive wave. The higher-order soliton radiates part of its energy
as Charenkov radiation. The frequency of the dispersive wave can obtained from the
phase-matching condition between the soliton and the dispersive wave, given by

ωDW = ω0 + 3
|β2|
β3

− γP0

2
, (4.5)

where, respectively, ω0 and P0 are the central frequency and peak power of the soliton
[56]. Figure 4.1 shows the position of the dispersive wave marked as a dashed white line.

In the normal dispersion pumping, soliton dynamics do not occur. The dominating effects
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Figure 4.2. Short pulse (100 fs duration, 1 kW peak power) SC in normal dispersion
regime. Left panel shows the SC evolution in time, and right panel in spectrum over
the propagation distance of 50 cm. The ZDW of the fiber is 750 nm, while the pump
wavelength is 650 nm.

are thus self-phase modulation and four wave mixing of the pump spectral components.
Figure 4.2 shows these dynamics. The figure shows how the initial broadening by SPM
stabilizes as the pulse spreads in time due to dispersion. This is because of the nonlinear
nature of SPM. The nonlinear phase-shift, and thus the instantaneous frequency, induced
by SPM are dependent on the peak power. As the peak power decreases along the
propagation due to dispersion, the spectral broadening decreases rapidly. Since the
spectral broadening occur during the first centimeters, there is no need for long fibers,
unlike in the anomalous dispersion regime where the soliton self-frequency shift broadens
the spectrum along the propagation. In general, the spectra generated in the normal
dispersion regime are very flat in contrast with that obtained in the anomalous regime [15].

4.1.2 Long pulse regime

The dynamics governing long pulse SC generation differ from that in the short pulse regime.
This is because the input spectrum is relatively narrow and the dynamics in this case are
not seeded by the pump itself but rather by the noise outside the pump bandwidth.

In the normal dispersion regime, the dominating nonlinear mechanisms are Raman
scattering and four wave mixing. Essentially all dynamics in the long pulse regime are
seeded by noise. The noise can be amplified by stimulated Raman scattering causing a
broadband peaks on the long-wavelength side of the spectrum. All the noise components
under the Raman gain curve shown in Figure 2.4 are amplified. FWM with the pump and
cascaded Raman peaks can cause additional spectral components, leading to cascaded
FWM.
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Figure 4.3. Long pulse (2 ps duration, 500 W peak power) SC in anomalous dispersion
regime. Left panel shows the SC evolution in time, and right panel in spectrum over
the propagation distance of 85 cm. The ZDW of the fiber is 750 nm, while the pump
wavelength is 810 nm. The soliton number for this case is 72, compared to 5 in the case
of fs-SC in Figure 4.1.

In the anomalous dispersion regime, long pulse SC generation is generally seeded
by spontaneous modulation instability described in details in Section 3.2. Spontaneous
MI leads to the emergence of chaotic high-intensity temporal breathers along with the
broadened triangular-shaped spectrum. This chaotic process triggers the SC generation.
As spontaneous MI exhibits large shot-to-shot variation, the generated SC spectra also
show significant fluctuations. This mechanism is different compared to short pulse SC,
where the soliton fission occurs in a deterministic way from the pump spectral components
rather than from the noise-seeded dynamics. An example of SC generated from long
pulses is shown in Figure 4.3.

Due to perturbations to the pure NLSE regime, such as the Raman effect and higher-order
dispersion, the AB-like breathers generated in the MI phase subsequently evolve into
fundamental solitons that separate from the pump residues [8]. Similarly to SC generated
in the short pulse regime, the fundamental solitons experience the Raman induced self-
frequency shift and dispersive wave generation. The solitons that are created close to
the center of the pulse envelope typically have the largest intensity. These high intensity
solitons undergo the largest rate of soliton self-frequency shift [57], and are thus highly
red-shifted. Soliton collisions may increase the rate of frequency-shift [58,59].

In the spectral domain, one can see the spectral wings of MI after propagation of ap-
proximately 20 cm which initiate the spectral broadening. The formation of solitons (at
around 25 cm of propagation) further increases the spectral bandwidth, leading to multiple
dispersive waves on the short-wavelength side and extension to longer wavelengths due
to the soliton self-frequency shift. Different initial noise, however, would lead to different
output spectrum as we will see in the next section.
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4.2 Coherence of supercontinuum

An important feature of SC for many applications is its coherence. Coherence essentially
describes how much the output fields of the fiber resemble each other, both in amplitude
and phase. This is known as temporal coherence, describing the coherence properties
at a given spatial location but at different time instances. Similarly, spatial coherence
measures the correlation of electric field at a given time but at different spatial locations.
For single-mode fibers, however, the spatial coherence is perfect and, thus is not discussed
further in this work.

A common approach to analyse the stability of SC spectra is to use the (modulus of)
complex degree of first-order coherence at each wavelength defined as

|g(1)12 (λ)| =
⏐⏐⏐⏐⏐ ⟨E∗

1(λ)E
∗
2(λ)⟩√

⟨|E1(λ)|2⟩⟨|E2(λ)|2⟩

⏐⏐⏐⏐⏐ , (4.6)

where the angular brackets denote an ensemble average over many pairs of generated
SC spectra [60]. The maximum value is 1 and minimum 0, corresponding to completely
coherent and incoherent cases, respectively. The complex degree of first-order coherence
measures the stability of phase only, and does not directly give information about intensity
fluctuations of the E-field. However, the phase and intensity fluctuations are closely
related, and therefore, the complex degree of first-order coherence is a good parameter for
describing the stability of supercontinua [7]. In the case of identical output complex spectra,
the complex degree of first-order coherence would be one over the whole SC bandwidth.
Conversely, if the SC spectra are generated with fully random phase, coherence would be
zero.

The stability of SC highly depends on the pump and fiber parameters. In the short
pulse regime, SC generated in the normal dispersion are generally coherent if the pump
wavelength is far from the ZDW since the chaotic MI and soliton dynamics are excluded
[7]. Secondly, the effect of pulse duration is demonstrated in Figure 4.4. As mentioned
previously, SC generation in the anomalous dispersion regime and with long pulses is
seeded by the chaotic MI field. The nature of these random dynamics manifests in the
coherence of the generated supercontinua as well.

In the anomalous dispersion regime, the soliton number can also be used to provide an
estimate of the expected coherence of the generated SC [7]. In the case of low soliton
number (N < 10), the supercontinuum exhibits high coherence close to unity. Other the
other hand, large soliton number (N > 30) leads to incoherence in general. For the cases
in Figure 4.4, the soliton number corresponding to the coherent femtosecond SC in (A) is
low (N = 5) while the incoherent picosecond SC in (C) is generated with a high soliton
number (N = 72).
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(A) (B)

(C) (D)

Figure 4.4. (A) and (C) show the mean spectrum over an ensemble of 200 simulated
realizations in blue for femtosecond and picosecond supercontinua, respectively. The
individual realizations are shown as gray dashed lines. The complex degree of first-order
coherence |g(1)12 | corresponding to femtosecond (A) and picosecond SC (C) is shown in (B)
and (D), respectively. We can observe the high coherence for the short pulse SC while the
SC generated in the long pulse regime shows high shot-to-shot fluctuations, leading to
low coherence.

4.3 Optical rogue waves

The term optical rogue wave was first introduced in 2007 by Solli et al. [10], who studied
shot-to-shot characteristics of incoherent long-pulse SC spectra. They observed that on
rare occasions, the SC spectra was extended far to the long wavelengths. Interestingly,
similar dynamics have also been observed with relatively short (200 fs) pulses as well
[61]. A conventional method to study the statistics of optical rogue waves is to use fast
detectors to measure the energy of a limited bandwidth of the supercontinuum, which is
typically chosen as the long-wavelength edge that contains the highly redshifted solitonic
components. However, recent developments in real-time measurement techniques (as we
will see in Chapter 6) have made it possible to measure relatively broadband spectra in
real-time, which enables new possibilities in the characterization of rogue waves.

A characteristic feature of optical rogue waves (in SC generation context) is the highly
skewed statistical distribution of the long-wavelength edge energy of an incoherent super-
continuum. The so-called "L-shaped" distribution has been observed in both experiments
and numerical simulations [5,10,62–64]. Figure 4.5 shows an example of this distribu-
tion. The figure shows the energy distribution over 30,000 SC realizations filtered with
a long-pass filter inserted at the long-wavelength edge of the supercontinua. One can
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Figure 4.5. "L-shaped" supercontinuum long-wavelength edge energy distribution. The
histogram shows the energy distribution over 30,000 simulated long pulse supercontinua
using a long-pass filter. The distribution extends far to large energies indicating emergence
of rogue waves. The inset shows the histogram in logarithmic scale.

observe that the large majority of the realizations exhibit nearly zero energy after addition
of the filter. Occasionally, however, a relatively large portion of the pulse energy passes
the long-pass filter. These rare events can be observed in Figure 4.4C as well. For some
of the realizations, the long-wavelength edge is significantly extended. These events
of extremely broad spectrum are referred as optical rogue waves. The fluctuations on
the long-wavelength edge are also reflected on the short-wavelength edge, through the
coupling between solitons and dispersive waves [61]. It must be noted that the selection of
the cut-on wavelength of the long-pass filter alters the energy distribution. By setting the
cut-on wavelength closer to the pump, the distribution is no longer "L-shaped" but rather a
Gaussian [61].

The use of a long-pass filter to analyse rogue waves isolates solitons that are red-shifted
more compared to the average case. This is well illustrated in Figure 4.6, where examples
of a rogue wave and an average case are shown using the spectrogram representation
(which is obtain by X-FROG [65,66], for example). The spectrogram representation
reveals how the different spectral components are spread in time, and vice versa. The
solitons appear as distinct localized structures, both in time and wavelength, on the the
long-wavelength side, while the dispersive waves appear in the short-wavelength side in
the spectrogram. The residual of the pump can be seen as a vertical line at the pump
wavelength. The rogue wave case corresponds to emergence of an extremely red-shifted
soliton, referred to as rogue soliton (RS), while for the average case none of the solitons
are red-shifted significantly (i.e. on average basis).

Since SC generation with long pulses is highly chaotic, there is possibility for another
spectral broadening mechanism in addition to the soliton self-frequency shift. As seen in
Figures 3.3 and 4.3, the collision of solitons leads to significant instantaneous spectral
broadening. Extending the analysis from extremely red-shifted rogue solitons to the "full
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(A) (B)

Figure 4.6. Spectrogram representation of noisy supercontinua generated in the anoma-
lous dispersion regime with long pulses. In (A), one can notice a highly red-shifted rogue
soliton that escapes the long-pass filter indicated with white dashed line. (B) shows an
average realization where none of the solitons pass the virtual long-pass filter.

field" reveals interesting insight to the chaotic SC dynamics [63]. In fact, the highest
instantaneous intensities in the long pulse SC do not typically result from rogue solitons
but from the collision of two solitons that have not red-shifted in a rogue soliton manner.
The "full field analysis" here refers to identifying the maximum temporal intensities over
the full temporal intensity window. The term rogue wave has also been used for describing
extremely high peak powers in general, similarly to the cases seen in spontaneous MI.
The difficulty of predicting such extreme events lies in the multiple contributions from rogue
solitons and soliton collisions taking place in the chaotic MI field, or even from collisions
of two already red-shifted solitons. Extremely large bandwidths associated with soliton
collisions may contribute to the energy distribution in Figure 4.5, as well, depending on
the location of the long-pass filter. Nevertheless, soliton collisions are essentially always
involved in the formation of rogue waves, was it purely about extremely high instantaneous
intensities or the emergence of rogue solitons.

The "full field" peak power distribution of 30,000 SC simulations (approximately 550,000
peaks retrieved in total) is shown in Figure 4.7 along with the distribution obtained after
applying the long-pass filter (rogue solitons). The distribution of the highest peak power
associated with each realization is also shown, and one can clearly see that in fact
rogue solitons are actually not the events with the largest intensity. Instead, the rogue
events correspond to the collisions of two (or even three) solitons. Figure 4.7B shows
the spectrogram of such event exhibiting extremely high intensity and significant spectral
broadening. It must be noted that the spectral filter used for capturing the rogue solitons
may decrease their actual peak power but in any case their intensity is below that of soliton
collisions in general.

One needs to keeps in mind that the term rogue wave refers to a wave with unusually
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(A) (B)

Figure 4.7. Full field analysis of rogue waves in supercontinuum generation. (A) shows
the probability density function (PDF) calculated from the full temporal intensity trace in
blue and its maximum for each realization in red, along with the peak powers of the rogue
solitons (RS) in yellow where the long-pass filter at 1000 nm is applied. The rogue wave
threshold IRW for all of the temporal peaks is indicated with the dashed vertical line. (B)
shows a spectrogram of a soliton collision associated with extremely high peak power
(7.7 kW). In fact the extreme end of the distribution in (A) is populated with such soliton
collisions only.

high amplitude. This does not necessarily mean that the amplitude or intensity of rogue
waves would be extremely large. Yet, compared to an average wave (i.e. typical to specific
conditions), the rogue waves are enormous.
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5 MACHINE LEARNING

Machine learning (ML) is currently one of fastest growing fields of science. It describes an
ensemble of computational and statistical methods that can generate predictive models or
find patterns from a set of data without relying on predetermined physical models. The
applications of ML are vast, ranging from computer vision and speech recognition, to
language processing and data-driven diagnostics in medicine, to name a few [1]. Perhaps
one of the most striking application of ML is the AlphaGo Zero -algorithm [67] that has
allowed to beat the world champion in an ancient Chinese game of Go, a task that was
thought to be impossible for a machine. The massive increase in the use of ML can be
explained by two factors. Firstly, the computational power, especially using the graphics
processing units (GPUs), has massively increased during the last decade. This in turn has
enabled the development of new algorithms for machine learning such as convolutional
[68] and recurrent neural networks [69].

One can find in the literature different terms to describe machine learning including deep
learning (DL) and artificial intelligence (AI). The difference between these terms has
somewhat become vague and the main focus in machine learning has shifted to artificial
neural networks (NN) introduced in Section 5.1.4. But roughly speaking, AI describes all
algorithms that are "intelligent". It is the broadest class of these three. ML is therefore
a subclass of AI. Essentially ML provides to the computational and statistical tools or
methods to realize AI. On the other hand, DL involves the use of large neural networks,
and is thus a special subclass of ML.

The use of machine learning in physics has also gained significant interest during the last
few years, including in optics. The use of ML for medical imaging applications [70,71] is
common nowadays but other unconventional imaging and spectroscopy applications have
been demonstrated such as imaging through scattering media [72] or ML-based ghost
imaging [73]. Also, various ultrafast optical applications have been demonstrated including
laser optimization [74] and ultrashort pulse characterization [75].

The tasks of machine learning are typically separated into two categories: supervised
and unsupervised learning tasks. In supervised learning, one has the knowledge of the
inputs and outputs of a specific system. The goal is to build a predictive model that can be
utilized for classification or regression tasks. In unsupervised learning, the task is to find
natural patterns from an ensemble of data, typically for classification purposes. These two
main classes will be explained in details in the following sections with emphasis on the
neural networks that fall into the supervised learning category.



41

5.1 Supervised learning

The supervised learning methods are the most used nowadays [1]. The goal is to create a
model that can be used for mapping outputs (Y ) from input variables (X). The training of
the model is realized by introducing corresponding pairs of inputs and output training data
(Xn, Yn). The predictions from the derived model, noted by Ŷ , are compared to the actual
values (Y ) corresponding the input and the model is adjusted in a way that the prediction
error over the training ensemble is minimized.

Input data (X) may be in a form of vectors, or they may be more complex such as images
or text. Outputs (Y ) can take various forms as well, from a single floating number that
corresponds to a regression problem to an integer value for a classification problem.
Similarly to the input, the output of the model may be complex in the form text or image.

5.1.1 Least squares and nearest neighbors

Least squares is a regression method used to fit a data set. For simplicity, let us consider
a linear fit yn = axn + b+ en to two-dimensional data (xn, yn). Here, a is the first order
coefficient, b is the constant term and en is error of the fit for individual data points. For a
set of data, the problem can be written in a matrix form⎡⎢⎢⎢⎢⎢⎢⎣

y1

y2
...

yN

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
x1 1

x2 1
...

...

xN 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣a
b

⎤⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
e1

e2
...

eN

⎤⎥⎥⎥⎥⎥⎥⎦ ⇔ y = Xθ + e. (5.1)

Given that XTX is not singular, the solution for coefficients a and b that minimizes the
squared error eTe is given by [76]

θ̂LS = (XTX)−1XTy. (5.2)

Similar methods can be readily applied for arbitrarily shaped fits by changing the matrix X.

Nearest neighbor is an extremely simple and fast classification method. The method is
based on defining a set of different classes that depend on the nearby samples in the
input space. Nearest neighbor simply extracts the class label of the most similar training
sample. For K-nearest neighbor method, the class is selected as a "majority vote" among
K nearest neighbors. The class label for point x in a two-class case (0 or 1) can be thus
simply calculated from

ŷ(x) =
1

k

∑
xi∈Nk(x)

yi, (5.3)

where Nk(x) is the neighborhood of x defined by k closest points (xi) in the training data
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set [76]. The neighborhood is typically determined by the Euclidean distance.

5.1.2 Linear classifiers

Linear classifiers have been widely used before the development of neural networks and
are still often used. The classification rule for a two-class case can be written as

F (x) =

⎧⎨⎩Class 1, if wTx < b

Class 2, if wTx ≥ b,
(5.4)

where the weights w are determined from the training data and b is the class threshold.

Linear discriminant analysis finds the best possible linear projection for high dimensional
data [76]. In other words, one is looking for a projection RN → R that maximizes the
separation of the classes.

One of the most common methods during early 2000s was the support vector machine.
The goal is to find support vectors that separate two classes in an optimal way, i.e. maxi-
mize the margin M between two parallel planes separating the classes. The optimization
problem can be written as

maximize
w,b,∥w∥

M

subject to yi(xT
i w) + b ≥M, i = 1, · · · , N, (5.5)

where yi ∈ {−1, 1} are the class labels [76]. This process is illustrated in Figure 5.1. In the
case of non-separable classes, similar method can be used but the samples on the wrong
side of the decision border need to be penalized. Using the kernel trick, the margins may
be nonlinear as well.

Another commonly used linear classifiers is the logistic regression, a probabilistic model
that gives the probability for a sample to belong to a specific class. Essentially, the logistic
regression maps a linear projection through a logistic function to give a probability for the
prediction [76].

5.1.3 Ensemble methods

Ensemble methods are different from the methods introduced so far. They consist of an
ensemble of weak classifiers and the classification is done as a "majority vote" from the
predictions of the weak classifiers [77]. The advantage is that, even though the individual
classifiers are not as accurate as many other methods, the averaged predictions decrease
the error.

Perhaps the most popular of the ensemble methods is the random forest. As the name
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Figure 5.1. Schematic of support vector machine. The two classes are shown with
different colors and the support vectors have a white circle around them. The decision
boundary is shown with solid line and the margins are shown with dashed line.

suggests, random forest classifiers consist of many decorrelated decision trees [76]. This
is because the tree structures often overlearn the training data. Therefore, the trees
are trained with hiding some of the information from the training data. Most of the other
ensemble methods are based on variation of random forests, such as AdaBoost and
gradient boosted trees.

5.1.4 Neural networks

Neural networks (NNs) are widely used nowadays for various machine learning applica-
tions. In particular, the use of convolutional neural networks has revolutionized image
recognition where they are now widely used. The more traditional feed-forward neural net-
works that are used in this work still constitute an essential aspect of the machine learning
field. This section gives the theoretical background about the training and predictions
made by feed-forward NNs.

NNs can be considered as highly nonlinear transfer functions that relate the inputs and
outputs of the network. They consist of one or more computing layers that are connected
to the previous and following layers with varying importance between the computational
units, called nodes or neurons, which create each layer. The prediction of the NN (forward
prediction) is obtained by feeding the input to the network, which is the spectral intensity
profile in our case. Training of the network is done by a process called backpropagation.
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Forward prediction

The machine learning problem in our case is essentially a regression problem. A given
vector input is mapped into a scalar output that describes the input vector. The task is to
find a transfer function that maps the inputs and outputs over a set of input and output
pairs.

As mentioned before, a feed-forward neural network (also known as the vanilla network)
is used in this work. The NN consists of nonlinear computational units called nodes or
neurons that are arranged into layer structures. The layers include an input layer, hidden
layer(s) and an output layer. The input layer is not involved in the training of the network.
Its task is to preprocess the inputs of the network, for example by normalizing the data.
The data are then passed to the hidden layers. Each of the hidden nodes are connected
to the nodes in the previous and the following layers with adjustable importance or weights.
In case of a fully connected network, i.e. where all of the hidden nodes are connected
to all of the nodes in the previous and following layers, the network is called dense. The
last layer is the output layer that produces the response of the network to a given input,
i.e. the prediction of the network. A schematic illustration of a feed-forward NN is shown
in Figure 5.2. The input is the spectral intensity profile in this case and the output is the
corresponding temporal intensity maximum. Figure 5.2B shows the operation of a single
hidden neuron n(k)i , where i indicates the position of the neuron in layer k.

The output of a generic kth layer h(k) ∈ RM is calculated as the weighted sum of the
outputs from the previous layer h(k−1) ∈ RD. Here, k denotes the index of the layer, and
M and D are the dimensions of the output vectors for layers k and k− 1, respectively. The
weighted sum for layer k is calculated by

g(k) = W(k)h(k−1) + b(k), (5.6)

where W(k) ∈ RM×D is a matrix of weights between the layers k − 1 and k. The vector
b(k) ∈ RM contains the bias terms for each node in layer k. The weighted sum is then
followed by a nonlinear activation function f()

h(k) = f(g(k)), (5.7)

producing the output of the layer k that is passed onto the next layer or out from the
network as the output. In this work, hidden layers were connected by hyperbolic tangent
sigmoid activation function f(x) = 2/[1 + exp(−2x)]− 1. A single node with linear activa-
tion function was used for the output layer. Therefore, the output of a generic node in layer
k can be written as

h
(k)
i = f

⎛⎝Nk−1∑
j=1

w
(k)
ij h

(k−1)
j + b

(k)
i

⎞⎠ . (5.8)

Here w
(k)
ij are the weights between nodes i and j in layers k and k − 1, respectively.
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(a)

(b)

Figure 5.2. Schematic of a feed-forward neural network. (A) Spectral intensity vector
Xn = [x1, x2, . . . , xN ] is fed to a feed-forward neural network consisting of 2 hidden layers
and a single output neuron. Output of the network Yn is the maximum instantaneous
intensity. The arrows between the neurons correspond to the weights w(k)

ij that connect

the neuron n(k)i in layer k and neuron n(k−1)
j in layer k − 1. During backpropagation, the

weights are adjusted towards the negative gradient of the error function ε by a step size η.
(B) Operation of a single neuron n(k)i in layer k that is connected to Nk−1 neurons in layer
k − 1. Taken from Ref. [48].

Variable b(k)i is the bias term associated with node n(k)i . The summation includes all the
Nk−1 nodes in layer k − 1.
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Backpropagation

The NN is trained in a process called backpropagation [78]. The goal of training is to
minimize the prediction errors of the network. In this work, the error function (also called
cost function) that is used for determining the accuracy of the predictions is the mean
squared error function defined as

ε =
1

N

N∑
n=1

(Yn − Ŷn)
2, (5.9)

where Yn is the target value, Ŷn is the prediction of the NN and N is the number of training
samples.

The error of the prediction builds up from all of the weights and biases in the network.
Both weights and biases are initially set randomly, and therefore large prediction errors
are expected in the beginning of the training phase. The network variables are typically
adjusted by a conjugate backpropagation algorithms such as stochastic gradient descent.
The algorithm used in this work is the conjugate gradient backpropagation with Fletcher-
Reeves updates [79,80]. In order to minimize the prediction error, a partial derivative
respect to each weight and bias must be calculated, ∂ε/∂w(k)

ij and ∂ε/∂b
(k)
i . Let us

consider the case of a single prediction for simplicity. The backpropagation algorithm is
performed by averaging predictions from multiple samples, and the network variables are
then adjusted. The predicted value is denoted as ŷi and the correct, desired value as yi.
The error function is then ε = (yi−ŷi)2. The output of the network (layer K) is calculated as
a weighted sum g

(K)
i = w

(K)
i1 h

(K−1)
1 + w

(K)
i2 h

(K−1)
2 + · · ·+ w

(K−1)
iNK−1

h
(K−1)
NK−1

+ b
(K)
i , followed

by an activation function, as explained earlier, which produces the output (prediction) of
the network ŷi = h

(K)
i = f(g

(K)
i ).

To calculate the partial derivative of the error function respect to weight w(K)
ij , the chain

rule for derivatives is applied. This can be written as:

∂ε

∂w
(K)
ij

=
∂g

(K)
i

∂w
(K)
ij

∂h
(K)
i

∂g
(K)
i

∂ε

∂h
(K)
i

= h
(K−1)
j f ′(g

(K)
i )

∂ε

∂h
(K)
i

. (5.10)

The first term on the right-hand side, h(K−1)
j , is derived from the derivative of the weighted

sum g
(K)
i respect to the weight w(K)

ij , resulting output of the jth node in layer K − 1.

This value is known. The second term on the right-hand side, f ′(g(K)
i ), is simply the

derivative of the of the activation function (∂f(g(K)
i )/∂g

(K)
i ), and it can be easily calculated

since we know the equation for the activation function and the weighted sum. The last
term of the chain rule depends on the layer we are interested in. For the output layer,
∂ε/∂h

(K)
i = 2(yi − ŷi) in case of a mean squared error function. For a hidden layer, the

chain rule must be extended further inside the network until the output layer is included
to the chain, i.e. the error is backpropagated to each of the weights inside the network.
Similar procedure is used for updating the bias terms.
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The weights and biases are adjusted relative to their current state by taking partial
derivatives from the error function. The "speed" of the adjustment can be chosen by
the step size η, also known as the learning rate. The adjustment of the weight w(k)

ij is
always towards the negative gradient of the error function, and the change is given by
∆w

(k)
ij = −η∂ε/∂w(k)

ij . After adjustment, more samples are fed to the network, and the
weights and biases are again adjusted. Once all of the input and output pairs (Xn, Yn) in
the training set are passed through the network (forward prediction and backpropagation)
one epoch has passed. Depending on the problem at hand, the network may be trained for
hundreds or thousands of epochs until convergence of the error function is achieved. The
network is then tested with a separate test or validation set that is not used in the training
phase to get a realistic evaluation of the performance of the network. Potential issues in
the training phase such as overlearning will be discussed further in the Section 5.3.

5.2 Unsupervised learning

Unlike supervised learning used for the neural network, unsupervised learning refers to
label free machine learning methods where the data is not categorized or labeled by any
additional information, for example, the maximum instantaneous intensity. The learning is
thus more exploratory and the goal is to find inherent patterns, similarities or dissimilarities
from the input data. Therefore, no "correct" labels or predictions exist.

An important, and actually one of the most popular subclass of unsupervised learning is the
cluster analysis, or data clustering, where the goal is to find similarities (or dissimilarities)
and natural grouping in data [81]. The goal in this work is to use a cluster analysis to
classify the spectral intensity profiles into different clusters depending on their overall
shape. Here, a variation of a well-known data clustering algorithm k-means [82], called
k-means++ [83], is used. The principle of k-means algorithm is to find k cluster means,
referred as centroids, in a such manner that it minimizes the squared Euclidean distance
between the data points and the closest centroid [81]. The main steps in the k-means
algorithm are:

1. to (randomly) initialize the centroids

2. to classify the data points to the closest centroid

3. to compute the new k centroids as a mean of the samples classified to the cluster

Steps 2 and 3 are iterated until the centroids are stabilized, i.e. repeating steps 2 and 3 do
not change the cluster populations.

5.3 Generalization and regularization

Generalization is one of the most important features of machine learning. It refers to a
process where the machine is not only copying the predictions from the training data but it
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can make accurate predictions from previously unseen data. The ability of performing well
on new, unobserved data is referred as generalization, and the strategies to achieve it are
collectively known as regularization [84].

Overlearning is a common problem in machine learning. One may notice that there is
a large difference between the accuracy of the predictions for the training and test data
sets. Poor generalization is often caused by overlearning where the ML model learns the
training data too well and loses the ability to adapt to new data. On the other hand, the ML
model may sometimes be too simple for complex problems and even the training data is
not well learnt. This is known as underlearning. The tendency to over- or underlearning is
determined by the capacity of the model [84]. The larger learning capacity, the bigger the
chance of overlearning is. An easy way the understand the meaning of capacity for ML
model is to consider a polynomial fit. The larger learning capacity, the higher the order of
the polynomial is.

To tackle difficult ML problems, the network should have high capacity. Dropout [85] is an
easy way to avoid overlearning. It is a process where some of the nodes are randomly
dropped out during the forward prediction and backpropagation, resulting to a "thinned"
network created from the original network. Training of the network is done by training large
amount "thinned" networks, and in this way, overlearning can be avoided.

Perhaps an even more simple, yet not always easy, approach is to increase the amount
of training data [84]. Large amount of training data increases the optimal capacity of ML
model which can therefore learn more complex tasks. However, it must be noted that the
increase of the amount of training data does not automatically increase the accuracy of
the predictions. Equally important is the quality of the training data; it should represent the
data correctly, including also extreme cases in the data, not average cases only.

Lastly, one may regulate the ML model weights w. One of the most popular methods is to
add a squared penalty for the weights. This promotes the use of small coefficients and
reduces the probability for overlearning. Let us consider a linear regression problem

yn = wTxn + en, (5.11)

where yn ∈ R are the outputs, xn ∈ RP are the inputs, w ∈ RP are the weights and en ∈ R
are the errors to the linear model. Instead of finding the least squares solution for the
regression problem as done in Section 5.1.1, a squared penalty is added

minimize
w

(
N∑

n=1

(yn −wTxn)
2 + λwTw

)
, (5.12)

where λ is a positive regularization constant and N is the number of samples. This
regularization method is known as the Tikhonov or L2 regularization. Similarly, one may
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use an absolute penalty

minimize
w

(
N∑

n=1

(yn −wTxn)
2 + λ ∥w∥1

)
, (5.13)

where ∥w∥1 =
∑P

p=1 |wp|. This is known as the LASSO or L1 regularization.
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6 APPLICATION OF MACHINE LEARNING TO
MODULATION INSTABILITY &
SUPERCONTINUUM GENERATION

In this work, machine learning was applied to analyse temporal properties of modulation
instability and rogue solitons in supercontinuum generation from solely spectral intensity
data. For the modulation instability case, the simulation-trained neural network was also
applied to single-shot experimental spectra.

The following sections describe the main results and parameters used in the simulations
and experiments. Section 6.1 consists of results on the maximum temporal intensity
predictions from MI numerical simulations, and Section 6.2 focuses on the application of a
numerically trained neural network to experimental MI spectra. Section 6.3 shows results
from highly incoherent SC simulations and predictions of the associated rogue soliton
peak power and temporal shift. Finally, predictions of the maximum breather or soliton
peak power in the entire SC field are also analysed.

6.1 Predicting extreme events from modulation instability
spectra

The numerical simulations of MI are performed using the generalized NLSE, including
the Raman effect, self-steening and higher-order dispersion. Hyperbolic secant pulses
with 3 ps pulse duration (FWHM), 175 W peak power and 825 nm central wavelength
are injected into the anomalous dispersion regime of a 68 cm long photonic crystal fiber
(PCF). The dispersion coefficients are shown in Table 6.1 and they are extracted from the
data provided by the manufacturer (NKT Photonics NL-PM-750). The nonlinear coefficient
and zero-dispersion wavelength of the fiber are γ = 0.1 W-1m-1 and 750 nm, respectively.
These parameters correspond to those of the experiments to which the trained NN will be
applied.

The simulations use 4096 spectral/temporal grid points with a temporal window of 12 ps.
The noise is added in the frequency domain by adding one photon with random phase
to each frequency bin to trigger the MI noise-seeding. To compensate the input pulse
shot-to-shot fluctuations due to the use of acousto-optic modulator in the experimental
part (see Section 6.2), ± 5% variation was added to the peak power. A total number of
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Table 6.1. Fiber dispersion coefficients for modulation instability at 825 nm for NKT
Photonics NL-PM-750.

β2 = -1.03 × 10-26 s2 m-1

β3 = 4.74 × 10-41 s3 m-1

β4 = 2.35 × 10-56 s4 m-1

β5 = -1.17 × 10-70 s5 m-1

β6 = -9.07 × 10-85 s6 m-1

50,000 simulations were carried out. An example of simulated evolution and few selected
realizations along with the peak power distribution are shown in Figure 3.5. Since the goal
is to apply the NN to experimental MI data, the simulation data is processed to match
the spectral resolution of 1 nm and dynamic range of 60 dB obtained in the experiments
introduced in the next section. The input for the neural network (NN), i.e. the single-shot
spectral intensity, consists of 121 uniformly distributed intensity bins. The NN consists of
two hidden layers, with 30 and 10 hidden nodes each, and a single output node yielding
the maximum temporal intensity associated with the input spectrum fed to the NN.

The results of the NN predictions for the simulation data are shown in Figure 6.1. The NN
is trained with a training set of 30,000 distinct realizations, and the results are obtained
from a testing set of 20,000 realizations that were not used in the training step. Figure 6.1A
shows the NN predictions for the maximum temporal intensity when single-shot spectra are
fed with a dynamic range of 60 dB. Notice the logarithmic scale for better visualization. We
can see excellent agreement between the predicted and actual values from the simulations
around the one-to-one relation (x = y) shown as the white dashed line. The variable
ρ is the Pearson correlation coefficient, and a correlation of ρ = 0.92 is achieved by the
network confirming the good visual agreement between the predicted and desired values.
Figure 6.1B shows the probability density function of the ML predictions (red) and that from
the actual values taken from the simulations (blue). The PDFs show excellent agreement,
including for the long-extending tail that contains temporal structures of extreme intensity.
It is rather remarkable that the statistics that span over two orders of magnitude are well
predicted.

To examine the effect of a reduced dynamic range for the spectral intensity used as the
network input, simulations with a dynamic range of 25 dB were used for the predictions,
which corresponds to a typical fiber dispersive Fourier transform setup (see inset in
Figure 6.4). The results are shown in Figure 6.1C and D similarly to the higher dynamic
range in A and B. One can observe a clear drop in the accuracy of the predictions. The
correlation is now reduced to ρ = 0.69, and the PDF of the predictions fails to reproduce
the slope of the distribution tail, such that a high dynamic range is essential for accurate
predictions and capturing the rare high-intensity events in MI.

In addition to the supervised NN predictions, unsupervised k-means clustering analysis
was applied to further study the MI process. The goal in this case was to classify single-
shot MI spectra into various dynamic classes that can be related to the emergence of
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(a) (b)

(c) (d)

kw-2

kw-2

Figure 6.1. Results of the supervised learning on simulated modulation instability spec-
tra. (A) and (C) show the predicted peak powers respect to the actual values from the
simulations for dynamic ranges of 60 dB and 25 dB, respectively. The figures show the
predictions as a logarithmic histogram. Variable ρ is the Pearson correlation coefficient,
and the yellow dashed line shows the linear fit to the predictions along with a perfect
correlation x = y in white. (B) and (D) show the probability density function (PDF) of the
machine learning predictions in red and the actual values from the simulations in blue for
60 dB and 25 dB dynamic ranges, respectively. Taken from Ref. [48].

specific breather structures in the time-domain. It is expected that the spectral clusters
close to the mean spectrum would correspond in the time-domain to the emergence of
Akhmediev breathers at the maximum MI gain, while breathers with spectral clusters
with the broadest spectral bandwidth would correspond to extreme confinement in the
time-domain (i.e. Peregrine solitons and/or breather collisions). Despite the complex and
low-amplitude fine structures, the clustering analysis can very well separate the spectral
profiles with respect to the emergence of specific breather subclasses in the time-domain,
as shown in Figure 6.2. An ensemble of 50,000 simulated MI spectra were used for the k-
means algorithm with 9 clusters (use of 5-30 clusters yielded similar results). Figures 6.2A
and B show the spectral cluster with average spectral shape and the corresponding highest
intensity breather structure in the time-domain, respectively. The blue curves show the
individual spectra and time-domain profiles associated with the cluster, and the black curve
is the cluster mean (both in spectrum and time). As expected, the extracted time-domain
maxima match well with the analytical Akhmediev breather plotted in yellow in Figure 6.2B.
In fact, the clusters close to the mean spectrum have the largest population and the
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(a) (b)

(c) (d)

Figure 6.2. Results of the unsupervised clustering analysis of 50,000 modulation instability
spectra. (A) shows the cluster closest to the mean spectrum. The blue curves show the
individual simulated spectra in the "average" cluster along with the mean in black and
mean of the "average" experimental cluster. The corresponding temporal intensity profiles
(blue) of the maximum breather is shown in (B) along with the mean (black) and analytical
Akhmediev breather (yellow). (C) shows the cluster with the broadest spectral bandwidth
and (D) the corresponding temporal profiles along with the analytical Peregrine soliton
(yellow). Taken from Ref. [48].

time-domain maxima are close to the maximum of the peak power PDF (see Figure 3.5).
In Figures 6.2A, the "average" cluster of the experimental spectra (see Section 6.2) is also
shown by a red dashed line and found to be in good agreement with the one from the
numerical simulations.

Similarly, Figures 6.2C and D show the spectral cluster and associated time-domain
maximum peaks for the broadest spectral bandwidth. The yellow curve in Figure 6.2D
plots the analytical Peregrine soliton and we can observe good agreement with the
extracted cluster mean. One can also see few extremely high peak powers that are the
result of first-order breather collisions. Even though the clustering analysis does not
directly yield the temporal intensity maximum, it offers an easy tool for identifying the
spectra associated with the emergence of time-domain extreme events in MI.

6.2 Application to experimental modulation instability spectra

Time-domain information about ultra-fast instabilities is generally difficult obtain experi-
mentally due to the short time-scale of emerging structures, and as shown in this section,
a simulation-trained neural network may offer a convenient solution to obtain time-domain
information from only single-shot spectra. To apply the NN to the experimental noise-
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Figure 6.3. Experimental setup. Ti:Sapphire: Titanium-sapphire mode-locked laser, AOM:
acousto-optic modulator, MO: microscope objective, PCF: photonic crystal fiber, M: mirror,
ND: neutral density filter, NF: notch filter, CCD: charge-coupled device. Top and side views
of a Czerny–Turner spectrograph are shown. Taken from Ref. [48].

seeded MI spectra, high dynamic range spectral intensity measurements are required, as
discussed in the previous section.

The experimental setup used in this work is shown in Figure 6.3. Similarly to the numerical
simulations, the noisy MI field is generated by injecting 3 ps pulses (FWHM) centered at
825 nm from Titanium-sapphire 80 MHz mode-locked laser into the anomalous dispersion
regime of a PCF (NKT Photonics NL-PM-750) with the ZDW at 750 nm. The repetition rate
of the laser is reduced to 150 kHz using an acousto-optic modulator. A rapidly-rotating
mirror (200 rev/min) is used for focusing (lens with focal length of f = 150 mm) consecutive
pulses to different vertical positions of a Czerny-Turner spectrograph using a grating with
300 lines/mm and 500 nm blaze (ThorLabs GR25-0305). The spectra are captured using
highly sensitive electron-multiplying charged-coupled device (EMCCD) camera (Andor
Ixon 3) with a spectral resolution of 1.1 nm.

This setup can capture single-shot MI spectra with a dynamic range of ca. 48 dB. To further
increase the dynamic range, spectral windowing and differential attenuation are used. The
beam path is divided into two arms where in one the high intensity central spectral region
(20 nm bandwidth) is attenuated by a 40 dB notch filter and in the other a neutral density
filter is used. Essentially, one arm is used for measuring the low intensity spectral wings
and the other arm measures the high intensity central region, respectively. The arms are
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Figure 6.4. Recorded experimental single-shot modulation instability spectra. (A) shows
one sweep of the mirror on the CCD camera with about 50 recorded spectra. (B) shows the
comparison of the average spectra from optical spectrum analyser (yellow), simulations
(blue) and the real-time technique (red). The inset shows comparison between fiber-DFT
(black) and the real-time technique (red). (C) shows two selected single-shot spectra in
red compared with the average spectrum of the real-time measurements (black). Taken
from Ref. [48].

combined with a delay of 200 ps to avoid spectral interference and the full spectrum is
obtained by post-processing. This method yields an effective dynamic range of more than
50 dB, a 3 orders of magnitude improvement compared to conventional fiber dispersive
Fourier transform method. Figure 6.4 shows examples of the recorded spectra. In (A),
one sweep of the rotating mirror is shown with around 50 recorded spectra where one
can clearly see the large shot-to-shot fluctuations associated with noisy MI. Figure 6.4B
shows the comparison between average measurements using OSA (yellow), the real-time
spectral windowing method introduced above from 3,000 measured spectra (red) and
that from 50,000 simulations (blue). The inset shows comparison between the real-time
spectral windowing method (red) and convention fiber dispersive Fourier transform method
(black). One can see how the dynamic range of the real-time measurement approach is
indeed exceeding 50 dB. Figure 6.4C highlights the large spectral fluctuations of the MI
field from selected realizations (red) against the mean spectrum (black), both measured
using the real-time spectral windowing method.

We can see that the measured spectra are in good agreement with the simulations,
excluding the discrepancy on the long-wavelength edge due to the reduced throughput
efficiency of the measurement setup. The same simulation-trained neural network was then
applied to the experimental MI spectra, and the results are shown Figure 6.5. The PDF of
the maximum peak power predictions from 3,000 experimental MI spectra are plotted in red
while that from the simulations is plotted in blue. One can see excellent agreement between
the simulations and the predicted PDF from the experiments. Especially significant is
the good agreement on the long tail of the distribution that contains the emergence of
structures with high intensity. This shows that the NN trained on the simulation data
can therefore be used for predicting the temporal domain properties using only spectral
intensity measurements that are relative easy to perform compared to real-time time
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Figure 6.5. Probability density function (PDF) of the peak power predictions from exper-
imental modulation instability spectra in red compared with the PDF extracted from the
numerical simulations in blue. Taken from Ref. [48].

domain measurements or full-field measurements where the phase of the electric field is
measured as well.

In addition to the supervised NN-based predictions, k-means clustering analysis with
the same amounts of 9 clusters was applied to an ensemble of 3,000 experimental
noisy MI spectra. The results are plotted in Figure 6.2 along with the results obtained
from the numerical simulations. Figure 6.2A shows the cluster closest to the average
spectrum while (C) shows the cluster associated with the broadest spectral bandwidth.
The experimental clusters are shown with red dashed lines and one can observe the close
resemblance to the simulation results. Again, the majority of the clusters are found to have
a spectral profile close to the mean spectrum while the population of the clusters with
increased spectral bandwidth is decreased. Similarly to the results from the simulations,
the clustering analysis can be used for fast classification to identify the emergence of
extreme events in MI.

6.3 Analysis of rogue solitons in supercontinuum generation

To study extreme events in the supercontinuum generation, an ensemble of 30,000
simulations was generated from the generalized NLSE. Hyperbolic secant pulses with
2 ps pulse duration (FWHM), 400 W peak power and 810 nm central wavelength are
injected into the anomalous dispersion regime of an 85 cm long PCF. The fiber that is
used here is the same as that used for the MI simulations. The dispersion coefficients
at the pump wavelength are shown in Table 6.2. The nonlinear coefficient of the fiber is
γ = 0.1 W-1m-1. Compared to the simulations of MI, the pulse duration is slightly reduced
and the peak power is increased. The pump wavelength is also shifted towards the ZDW
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Table 6.2. Fiber dispersion coefficients for supercontinuum generation at 810 nm for NKT
Photonics NL-PM-750.

β2 = -1.24 × 10-26 s2 m-1

β3 = 8.94 × 10-41 s3 m-1

β4 = -2.54 × 10-56 s4 m-1

β5 = -7.01 × 10-70 s5 m-1

β6 = 2.28 × 10-84 s6 m-1

β7 = -2.21 × 10-99 s7 m-1

of the fiber to enhance soliton dynamics after the initial stage of MI and efficiently seed the
SC generation process.

The simulations use 16384 spectral/temporal grid points with a temporal window of 20 ps.
The noise is added in a similar manner to the MI simulations to trigger the initial MI state
of the SC generation. An example of simulated propagation dynamics can be seen in
Figure 2.6. The simulation data is processed to a spectral resolution of 1 nm and dynamic
range around 60 dB (even though no experiments have yet been conducted in this case).
To estimate the rogue soliton peak power, a super Gaussian long-pass filter at around
950 nm is used to capture the highly red-shifted spectral components. The rogue soliton
peak power is then obtained by inverse Fourier transform of the highly red-shifted spectral
field components. The input for the neural network is the single-shot spectral intensity
of the entire SC in this case, consisting of 801 uniformly distributed intensity bins. The
size of the NN is increased to compensate the increased number of spectral points to 80
and 20 hidden nodes for the first and second hidden layer, respectively. A single output
node is used to yield the rogue soliton peak power and temporal shift associated with a
given SC spectrum. Two independently trained NNs are used for the peak power and
Raman-induced temporal shift.

The results of the rogue soliton predictions are shown in Figure 6.6. In (A), the predicted
RS peak power is plotted against the actual value from the simulations. We can see
excellent visual clustering around the perfect x = y relation. Also the Pearson correlation
coefficient gives nearly perfect correlation of ρ = 0.99 confirming the very high accuracy
of the NN predictions. It must be noted here that there is some correlation between the
RS peak power and the long-wavelength edge of the supercontinuum. As the long-pass
filter is shifted towards longer wavelengths, the spectral bandwidth of the long-wavelength
edge correlates more with the RS peak power. However, when the long-pass filter is
placed at around 950 nm, the spectral bandwidth is only weakly correlated with the rogue
soliton peak power. Altogether, the accuracy of the neural network predictions always
clearly exceeds the accuracy of the predictions based on a single parameter such as
spectral bandwidth regardless of the filter position. The overall shape and the fine details
of the spectrum carry significant information about the temporal properties that cannot be
estimated by conventional methods. Figure 6.6B shows the predictions of the temporal
shift of the rogue soliton. One can see that the temporal shift is also well predicted with a
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(A) (B)

Figure 6.6. Results of the rogue soliton peak power (Pp) and temporal shift predictions.
(A) and (B) show the predicted soliton peak powers and temporal shifts respect to the
actual values from the simulations, respectively.

(A) (B)

Figure 6.7. Results of the rogue soliton peak power (Pp) and temporal shift predictions
with ± 50% variation to the input pulse duration and peak power. (A) and (B) show the
predicted soliton peak powers and temporal shifts respect to the actual values from the
simulations, respectively.

correlation of ρ = 0.92.

As the rogue soliton peak power and the temporal shift are very well predicted, the next
step is towards more general case. To this end, a large ± 50% variation to the input
pulse duration of 2 ps and peak power of 400 W was induced. This results into diverse
dynamics from pure MI to broad octave-spanning SC. Other simulation parameters are
kept identical. The results shown in Figure 6.7 demonstrate the ability of the network to
still predict very well the most red-shifted soliton peak power with a correlation of ρ = 0.99
between the predicted and actual values. In the case of the temporal shift, the network
also performs well, and the accuracy of the predictions is actually increased compared
to Figure 6.6B where no variation is added to the input pulse parameters. The Pearson
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Figure 6.8. Results of the maximum soliton peak power (Pp) and temporal shift predictions
with ± 50% variation to the input pulse duration and peak power. (A) and (B) show the
predicted soliton peak powers and temporal shifts respect to the actual values from the
simulations, respectively.

correlation coefficient is increased up to ρ = 0.97. In this case, some of the "rogue solitons"
are observed in the pure MI field (to close zero temporal shift) despite the use of the super
Gaussian long-pass filter. This highlights the fact that for lower input peak powers no
solitons emerge from the MI stage and the Raman-induced temporal shift is then very
weak. On the other hand, some realizations (corresponding to high input peak power)
exhibit extreme red-shift and large temporal shift (up to 10 ps). Despite the large variety
of the underlying dynamics, the statistics of rogue solitons are predicted with excellent
accuracy.

To further generalize the analysis of extreme events in supercontinuum generation, the
long-pass filter was removed. Now the contribution from the MI field becomes more
significant as it contains high intensity structures which are mostly filtered out. Figure 6.8
shows the predictions of the total temporal intensity maximum. The breather or soliton
with the highest peak power can be found either in the noisy MI field or in a fully developed
SC a highly red-shifted rogue soliton. In Figure 6.8A, the predictions for the maximum
peak power are shown. One can see how the accuracy is reduced with a correlation of
ρ = 0.88. The majority of the peak powers are predicted fairly well but the extremely high
peak powers (that are the result of a breather collision in the MI field) are not well captured
by the neural network. Similarly, Figure 6.8B shows the predictions of the temporal shift
of the soliton associated with the maximum peak power. The contribution from the MI
field also significantly reduces the prediction accuracy of the temporal location. Perhaps a
more complex NN architecture or a combination of different ML algorithms are required to
accurately estimate the full temporal characteristics of an incoherent supercontinuum.
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7 CONCLUSION

Machine learning is becoming an essential part of our daily life and the use of neural
networks has become a central in many commercial products for data analysis, in particular
for image and voice recognition. The use of different machine learning techniques has
also started to spread in many research fields. This thesis belongs to that trend. The use
of machine learning in ultrafast optics is still at its infancy but an increasing number of
papers have recently appeared showing the potential of machine learning techniques for
obtaining additional information from only partial measurements.

In this thesis, the basic concepts of linear and nonlinear optics were explained in Chapter 2
along with the numerical methods used for modeling the propagation of light. The linear
propagation of light is the starting point of all optical phenomena. The increase of the light
field intensity may however affect the response of the propagation medium leading to the
generation of new spectral components. This thesis explained the most common nonlinear
effects that take place in a third-order nonlinear material such as silica that is commonly
used to manufacture optical fibers. The combination of linear and nonlinear effects may
lead to interesting phenomena such as modulation instability and the generation of optical
solitons. Modulation instability was described in details in Chapter 3. Modulation instability
may be used as a seed for a extreme broadband light sources known as supercontinuum,
and due to the high sensitivity of MI to changes in the initial conditions, i.e. background
noise, it may lead to the (rare) formation of extreme events. The different dynamical
regimes of supercontinuum generation were explained in Chapter 4 with a focus on the
highly incoherent long-pulse supercontinua where soliton dynamics play a dominant role.
The emergence and statistics of extremely red-shifted rogue solitons were discussed.
Chapter 5 described the most common machine learning techniques with a focus on
feed-forward neural networks that were used in this thesis.

The first part of this thesis concentrated on modulation instability dynamics. The noise-
seeded MI leads to the emergence of high intensity temporal structures that exhibit highly
chaotic dynamics. The extreme temporal confinement of light may be harmful for sensitive
applications and estimating the peak intensity of these structures is thus of significant
interest. However, conventional measurement techniques cannot currently measure these
ultrafast dynamics due their extremely short duration. In this thesis, the method for
estimating the temporal intensity maximum of MI utilized a feed-forward neural network to
establish a nonlinear transfer function that relates the spectral intensity of MI with the time-
domain intensity maximum. The neural network is able to accurately predict the maximum
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temporal intensity based only on spectral intensity profile without any phase information
which is a significant advantage from an experimental point of view since the single-shot
spectral intensity measurements can be routinely conducted. Remarkably, the rare and
high intensity rogue wave events that occur in the chaotic MI field are well predicted by the
neural network. It was also noticed that the dynamic range of the measurements plays a
crucial role in the accuracy of the predictions. Another significant contribution of this work
is the demonstration of the use of unsupervised clustering analysis to identify specific
subclasses of temporal structures associated with a chaotic MI field.

Experimental MI measurements were subsequently conducted using a specifically devel-
oped approach allowing for capturing single-shot spectra with a 60 dB dynamic range,
exceeding the dynamic range of a typical fiber-based dispersive Fourier transform method
by nearly four orders of magnitude. The high dynamic range was critical since the low
intensity spectral wings carry important information about the temporal characteristics of
the noisy MI field. The experimental approach introduced in this thesis is straightforward
and can be applied to all wavelength ranges where suitable spectrometers exist, and it
can be applied to study various ultrafast optical phenomena. The high dynamic range then
allows to use the simulation-trained neural network to yield accurate temporal statistics
from the experimental MI spectra.

The last part of this thesis focuses on supercontinuum generation in the long pulse regime.
Supercontinuum developing from an initial stage of chaotic MI which may lead to the
formation of optical solitons that are shifted towards long wavelengths due to the Raman
effect and separate in time from the MI field. Occasionally, extremely red-shifted rogue
solitons are created as a result of a collision between two solitons. In order to estimate
the temporal characteristics of these rogue solitons, a neural network was used to relate
the SC spectrum with the rogue soliton peak power and associated temporal shift. Again,
no phase information was used. The predictions made by the neural network are very
accurate, and even adding large variation to the input pulse duration and peak power the
accuracy of the predictions was found to be preserved.

In addition to rogue solitons, this thesis includes predictions about the temporal intensity
maximum in long pulse SC. Estimating the temporal intensity maximum of full SC field
includes the contributions from both the noisy MI field and the rogue solitons which
makes it a complex task. However, the results show potential for more general temporal
characterization of SC based only on spectral intensity measurements and may allow
for more comprehensive control of both spectral and temporal properties of SC. More
generally, machine learning can bring new insight into the study and prediction of nonlinear
dynamics where direct time-domain measurements are difficult.
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