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Abstract:  

Phonations into a tube with the distal end either in the air or submerged in water are used for voice 

therapy. This study explores the effective mechanisms of these therapy methods. 

The study applied a physical model complemented by calculations from a computational model, and 

the results were compared to those that have been reported for humans. The effects of tube phonation 

on vocal tract resonances and oral pressure variation were studied. The relationships of transglottic 

pressure Ptrans(t) variation in time vs. glottal area variation GA(t), were constructed.  

The physical model revealed that, for the phonation on [u:] vowel through a glass resonance tube 

ending in the air, the first formant frequency F1 decreased by 67%, from 315 Hz to 105 Hz, thus 

slightly above the fundamental frequency F0 that was set to 90ï94 Hz. For phonation through the tube 

into water, F1 decreased by 91-92%, reaching 26ï28 Hz, and the water bubbling frequency Fbḙ19ï

24 Hz was just below F1. The relationships of Ptrans(t) vs. GA(t) clearly differentiate vowel phonation 

from both therapy methods, and show a physical background for voice therapy with tubes. It is shown 

that comparable results have been measured in humans during tube therapy. For the tube in air, F1 

descends closer to F0, while for the tube in water, the frequency Fb occurs close to the 

acoustic-mechanical resonance of the human vocal tract.  

In both therapy methods, part of the airflow energy required for phonation is substituted by the acoustic 

energy utilizing the first acoustic resonance. Thus, less flow energy is needed for vocal fold vibration, 

which results in improved vocal efficiency. The effect can be stronger in water resistance therapy if the 

frequency Fb approaches the acoustic-mechanical resonance of the vocal tract, while simultaneously F0 

is voluntarily changed close to F1. 

Keywords: Biomechanics of voice; maximum glottal area declination rate (MADR), vocal tract 

acoustics; formant frequencies; phonation into tubes; water resistance voice therapy; water bubbling 

frequency, vocal efficiency. 
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INTRODUCTION  

Phonation into different kinds of tubes is widely used for voice training and therapy (Sovijärvi, 1969; 

Laukkanen, 1992; Titze, Finnegan, Laukkanen, & Jaiswal, 2002; Granqvist et al., 2015; Amarante et 

al., 2016; Guzman et al., 2017). According to practical experience, phonation into a tube may feel 

easier than ordinary vowel phonation, and speech immediately after tube phonation often sounds louder 

and less strained. Voice therapy has exploited phonation through a tube into water ï i.e., water 

resistance therapy ï for treating both hypofunctional and hyperfunctional voice disorders. Two variants 

of tubes have been increasingly widely used in water resistance therapy: a glass tube called a 

ñresonance tubeò (Sovijärvi, 1969; Laukkanen, 1992; Simberg & Laine, 2007) with a length of 24ï28 

cm and an inner diameter of ca. 8ï9 mm, and a Lax Vox tube made of flexible silicon, 35 cm in length 

and 1 cm in inner diameter (Sihvo, 2006; Sihvo & Denizoglu, 2007; Sihvo, 2017).  

During the last two decades, many studies have been carried out to explain the basis of tube training 

and therapy. It is known that artificial prolongation and narrowing of the vocal tract (VT) increases the 

impedance. In particular, phonation through narrow tubes and straws and phonation through a tube into 

water increase supraglottic resistance (air pressure/flow) (Titze et al., 2002; Hor§ļek, Radolf, Bula, & 

Laukkanen, 2014; Amarante et al., 2016). Increased supraglottic resistance offers training for breath 

support (Carroll & Sataloff, 1991) and decreases transglottic pressure ï i.e., the difference between 

subglottic and supraglottic pressure ï which provides the driving force of vocal fold vibration (Titze & 

Laukkanen, 2007). The phonation threshold and amplitude of the vocal foldsô (VFs) vibration decrease; 

thus, the biomechanical loading related to phonation decreases (Titze, 2006b). Simultaneously, 

especially if the first acoustic resonance of the VT plus the tube is lowered effectively close to the 

fundamental frequency (F0) of the VFsô vibration, the positive inertance of the VT may improve the 

voice quality by assisting the VFsô vibration and/or strengthening the amplitude of the harmonics 

(Story, Laukkanen, & Titze, 2000; Fant & Lin, 1987; Rothenberg, 1981). 
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Earlier modelling studies have shown that positive inertance of the vocal tract promotes vocal fold 

vibration as the oscillation of the air pressure above the vocal folds is in phase with the velocity of the 

vocal folds, and the phonation threshold is also reduced (Titze, 2001). There are also findings for a 

female singer showing that the vocal fold vibration is positively affected when F0 is close to F1 

(Rothenberg, 1988). 

Additionally, the increased supraglottic resistance intensifies sensations of resonatory vibrations in the 

VT (Titze, 2006b). Thus, the exercise with tubes and other semiocclusions of the VT offers the trainee 

sensations of more economic and efficient voice production. These sensations may then be a guide to 

establish similar acoustic-mechanical conditions in the VT also after the exercise, since the trainee may 

learn to apply epilaryngeal narrowing as a source of impedance-matching between the glottis and the 

VT (Titze, 2006b). Moreover, water resistance therapy offers the element of water bubbling, which is 

reflected in the oscillation of supraglottic pressure and results in variation of the amplitude of the VFsô 

vibration (Granqvist et al., 2015). This bubbling effect has been reported to feel like a massage of the 

VT and the larynx, and it has been suggested that it could offer similar beneficial effects as massage ï 

e.g., improved blood circulation in the tissue (Mori et al., 2004). 

Although water bubbling has been regarded as relaxing for the muscles and potentially healing for the 

tissues, there are also some results showing that the relative glottal closing speed and the closed time of 

the glottis may increase (Guzman et al., 2017) when the tube immersion depth is high (e.g., 10ï18 cm 

below the water surface) which suggests higher mechanical loading of the VFs. It is also possible for 

the water bubbling frequency to approach the acousticïmechanical resonance of the laryngeal tissues, 

which may increase the effect of bubbling both beneficially and adversely (Hor§ļek, Radolf, & 

Laukkanen, 2017a).  

This study aims to shed more light on the similarities and differences between tube training with the 

distal end of the tube in air and tube training with the distal end of the tube immersed in water. This 

study focuses on the following research questions: 
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1. Are there any essential differences between the glottal area variation in time GA(t) versus 

transglottic pressure Ptrans(t) variation measured for phonation on the vowel [u:] and phonation into 

the resonance tube with the distal end either in air or in water? An important reason for studying 

this relation is the fact that it gives an estimate of the average work done by airflow during vocal 

fold vibration thus allowing estimation of changes in vocal efficiency. Such a study is difficult  to 

realize in humans, although investigations have been conducted with high speed filming of the VF 

using larger tubes (Laukkanen et al., 2007; Guzman et al., 2017) and filming through the nose 

(Granqvist et al., 2015). Both cases obviously result in unnatural VT conditions compared to 

ordinary phonation into a resonance tube.  

2. Are there any important differences between the evaluated glottal area time derivatives for all 

three cases of phonation considered? Our focus is especially on the potential differences in the 

maximum area declination rate (MADR), which is considered to be a measure of the stress loading 

imposed on the VFs during collisions (Titze & Laukkanen, 2007).  

3. What are the effects of the acoustic-mechanical resonance and the first acoustic resonance in 

phonation through the tube in air and in water? Are there any fundamental differences in the 

principles of these two therapy methods? This information would be useful to guide the proper 

choice and use of the tubes.  

In this study, a physical model will  be applied that includes a lung model, artificial VFs, and a 

plexiglass model of the VT (Hor§ļek, Bula, Koġina, & Radolf, 2016a). The results obtained with this 

hard-walled VT model are further compared with (1) those obtained previously in humans and with (2) 

calculations obtained from a computer model, where yielding walls were implemented to better 

resemble the VT of humans.: Yielding walls affect the formant frequencies and also lead to appearance 

of a low-frequency acoustic-mechanical resonance (Radolf, Laukkanen, Hor§ļek, & Liu, 2014; Radolf 

et al., 2016; Hor§ļek et al., 2017a).  
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For simplicity, we use F1  to refer both to the first formant frequencies measured in the model and in 

humans and to the first computed acoustic resonance frequencies. 

METHODS 

Physical model  

A model of the human lungs, which includes the splitting of the airways up to fourth-order branching, 

was built in the subglottic part of the experimental facility (see Figure 1 and more in Hor§ļek, Radolf, 

Bula, & Koġina, 2017b). The air flowed through the model of the lungs to the trachea, which was 

modeled by a metal tube. The total length of the trachea was 23 cm, and the inner diameter was 18 mm.  

The experiments were performed with a 1:1 scaled three-layered vocal fold model with a total length of 

20 mm, vertical thickness 10.3 mm and width 8 mm (Hor§ļek et al., 2016b; Hor§ļek et al., 2017b). The 

middle cross-section of the vocal fold model was based on CT measurements of a female subject 

(Hampala et al., 2015). The layers were formed by a silicon wedge modeling the vocal fold body inside 

the VFs, a 2-3 mm thick water layer modeling the lamina propria, and a silicon cover with the thickness 

slightly below 2 mm. Filling with water lowers the F0 of the VF model to ca. 80 Hz and the phonation 

threshold flow (PTF; i.e., the lowest flow rate to start sustained phonation) to ca. 0.02 l/s, covering also 

the lowest limits of human phonation (see, e.g., Baken & Orlikoff, 2000). 

The fundamental phonation frequency was preset by an initial pre-stressing of the VFs. This was 

accomplished by a slight variation of the distance between the frames enclosing the VFs, followed by 

changing the hydrostatic pressure inside the VFs. After filling the ñlamina propriaò layer in the VFs 

with water and completing the tuning procedure, the model was fixed in a plexiglass frame and 

connected to the model of the subglottal spaces on one side and to the model of the VT on the other 

side. 

The geometrical configuration of the plexiglass model of the vocal tract corresponded to the Czech 

vowel [u:]. It consisted of 46 circular cross-sectional areas, perpendicular to the midline along the VT 

from the VFs up to the lips. These areas were obtained from magnetic resonance images (MRI) 
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recorded during the phonation of a 35-year-old male subject (Vampola, Hor§ļek, & Ġvec, 2008). The 

total length of the VT model was 18.7 cm.  

Set-up and measurements on the physical model 

Measurements were performed for: a) simulated phonation on the vowel [u:], b) phonation with [u:]-

vowel-shaped VT attached to a glass resonance tube (length 27 cm, inner diameter 7.8 mm) ending in 

air, c) phonation with [u:]-vowel-shaped VT attached to the same tube ending in water, and d) blowing 

through the setup mentioned in c) but without the vocal folds vibrating (no phonation). The (d) 

condition was included to compare subglottic pressure, oral (back) pressure, and water bubbling 

frequency with and without phonation. Such a comparison may reveal more on the interplay between 

different types of oscillations of the air pressure occurring simultaneously in the VT during phonation 

into water. 

In the experiments with phonation, flow rates ranged between the PTF and the maximum rate beyond 

which the vibration amplitudes would endanger the material coherence of the artificial VFs. The glottal 

width between the VFs was preset to zero and not changed. In the experiment without phonation, the 

VFs were abducted by deflation, thus simulating the breathing position of the VFs. In this (d) condition 

the glottal width was preset to ca.1 mm. 

The following parameters were measured: 1) mean airflow, Q; 2) phonation threshold flow, PTF; 3) 

mean subglottic air pressure, Psub; 4) phonation threshold pressure, PTP (i.e. the lowest Psub to start and 

sustain phonation); 5) peak-to-peak variation in Psub(t); 6) frequency of the lowest subglottic resonance; 

7) mean oral air pressure, Poral; 8) peak-to-peak variation in Poral; 9) frequency F1 of the lowest oral 

resonance (formant); 10) 3 dB bandwidth B1 of the lowest oral resonance, 11) fundamental frequency 

F0 of phonation (measured from Poral variation); 12) water bubbling frequency, Fb (measured from Poral 

variation); and 13) variation of glottal area, GA(t). The time derivative of glottal area variation dGA/dt 

(representing the speed of glottal opening and closing) was calculated by the method of central 

differences (Mathews, & Fink, 2004). Parameters 1ï13 were measured because the VF vibrations and 
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thus glottal area variation are dependent on aerodynamic variables below and above the glottis. The 

time variation in the pressures, in turn, is related to supra- and subglottic resonances.  

A schema of the measurement set-up is shown in Figure 1. The VFs were excited by airflow coming 

from a regulated central pressure supply. The mean airflow rate was measured by a float flowmeter 

(EMKO type DF3-09K5), and by an orifice flow meter with a pressure sensor (LP1000 DRUCK model 

LPX1812-C1S) using an analogue output. The mean subglottic and oral pressures were measured by 

integrated pressure semiconductor sensors (NXP Freescale MPXV5010GC6U) mounted in the walls of 

the trachea and oral cavity models. The mean subglottic pressure at the entrance to the VFs was 

registered by a digital manometer (Greisinger Electronic, GDH07AN) connected by a short compliant 

tube to the subglottic space of the glottal cavity. A second digital manometer, a Greisinger Electronic 

GMH3151, measured the mean pressure of the water inside the VFs, which was adjusted with a water-

filled syringe.  

The fluctuations of the subglottic and oral pressures were measured by a miniature microphone (Bruel 

& Kjaer 4138, range 6.5 Hzï140 kHz) and by a special microphone probe (B&K 4182, range 1 Hzï

20 kHz), respectively. The spectra of the pressure signals were calculated by an in-house developed 

program in Matlab, and the formant frequencies were estimated from the peaks of the averaged spectral 

data (Hor§ļek et al., 2017a).  

All the measured signals were simultaneously sampled at a frequency of 16.4 kHz and registered by a 

B&K  PULSE type 3560 C measurement system with type 7537A and 3109 Input/Output Controller 

Modules controlled by a personal computer (PC I) equipped with SW PULSE LabShop Version 10. 

A high-speed CCD NanoSense Mk. III camera (maximum resolution 1280 x 1024 pixels) with a Nikon 

AF micro Nikkor 60mm zoom lens was included in the measurement set-up for the analysis of the VFsô 

vibration. The camera was positioned at a 90-degree bend of the trachea model where a glass window 

was installed; this enabled the viewing of the VFsô vibration from the subglottal side. A personal 

computer (PC II) was used for recording the VFsô vibration. During image recording at a frequency of 
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3000 frames/second, three intensive LED lights (2 x 13 W+1 x 35 W) were focused on the vibrating 

VFs. The images recorded by the camera were synchronized with the time records of the pressure 

signals. 

Figure 1. Somewhere here. 

Computational analysis of the measured relations between Ptrans(t) and GA(t) 

The relationship of Ptrans(t) vs. GA(t) measured during regular periodic self-sustained VF oscillations 

can be visualized as a closed, clockwise-oriented cyclic curve (loop). Similar graphs showing the 

relationship between the subglottic pressure and the glottal opening time variation were introduced by 

Miġun, Ġvancara, & Vaġek (2011). They measured these relationships on artificial VFs for various self-

oscillating regimes without any VT. In the present study, we use similar graphs to compare phonation 

on a vowel with phonation through the resonance tube with the distal end in air and in water. By 

computing the average area inside the loop, we get an estimate of a part of the average mechanical 

work done by the airflow per one cycle of the VFsô vibration (i.e. part of the flow energy needed to 

excite the self-sustained VF oscillations). This can be used as a measure of vocal efficiency. We note 

that the acoustic energy is not included in our considerations, because it was not possible to measure 

the airflow volume velocity waveform Q(t) synchronously with the pressure signals.  

The normalized area AD  inside the graph (loop) was computed by an in-house developed program in 

Matlab that uses the following mathematical formula for the counter-integral along the boundary Aµ of 

the area AD : 

()
()

()
()0 0

0 0

1 1
d dt = dt

nT nTeq

eq eq eq trans

A

dGO t dGA t
A F GO F t T P t

n dt n dt
µD

D = =ñ ñ ñ ,   (1) 

where () ( )
eq trans

F t P t T l=  is a roughly estimated force loading the VF surface approximated by the area 

T l ; 10 mmT@  and l=20 mm are the VFsô thickness and length, respectively; () ()/eq
GO t GA t l=  is an 

equivalent glottal width; ()GA t  and Ptrans(t) are the measured glottal area and transglottic pressure, 
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respectively; and n is the number of considered oscillation periods 
0

T =1/F0. In the present study, n=9. 

The higher is the area AD , measured in joules, the higher is the average work done by the airflow per 

one oscillation cycle. The transglottic pressure was substituted by a quasi transglottic pressure 

Ptrans(t)=Psub(t)-Poral(t+t0), where the measured oral pressure signal was shifted by the time t0=ȹL/c0 

corresponding to the time delay of sound propagation between the vocal folds and the pressure sensor 

positioned in the mouth cavity; ȹL=153 mm is the distance between the vocal folds and the pressure 

sensor in the mouth and c0=346 m/s is the speed of sound. 

Computational modeling of the acoustic resonances  

The VT of the physical model used in this study was made of hard plexiglass. The human VT, instead, 

has softer, yielding walls. In the present study, computer modeling was used to calculate what the 

acoustic resonance frequencies of the physical model would be if the vocal tract wall were softer, 

resembling that of the human vocal tract. The effects of the yielding walls in the human VT have been 

estimated by computer modeling for the tube in air (see Story et al., 2000; Radolf et al., 2016) and for 

the tube in water (see Hor§ļek et al., 2017a).  

In the computer modeling included in the present study, the following input parameters were 

considered for air: density r0=1.2 kgm-3; speed of sound c0=353 m/s (corresponds to 36°C) for a human 

VT and c0=346 m/s (corresponds to 24°C) for the VT model with hard walls used in the experiments; a 

dynamic viscosity m=1.8 10-5 Pa s; and ro=998 kgm-3 and co=1500 m/s for water at the tubeôs end. 

The following parameters for the mechanical system representing the yielding walls were calculated 

from the data published by Liljencrants (1985, Table 4.1): the eigenfrequency 2 . 66ww p=  rad/s, the 

damping ratio of the yielding wall wz = 0.99, and the mass 2

01400 0.2wm S= =  gram, which 

corresponds to the mass of the yielding wall. The area S1=3.80 cm2 was considered for the first acoustic 

element at the glottis.  

RESULTS 

Effect of tube phonation on formant  frequencies 
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Figure 2 illustrates the formants for all three cases studied with the physical model. It is possible to see 

that phonation into a tube decreased the first formant frequency F1 (compared to vowel) both when the 

outer end of the tube was in air and when it was in water (Figure 2b and c, respectively). The effect was 

much stronger when the tube was in water. For phonation on vowel [u:] the first formant frequency was 

F1ḙ315 Hz. For phonation through the tube in air it decreased to F1ḙ105 Hz, which was near the 

fundamental frequency of the model (F0= 90 Hz). For phonation through the tube with the distal end 

submerged 10 cm in water the first formant frequency was F1ḙ28 Hz, which in turn was near the water 

bubbling frequency (Fbḙ22 Hz).  

Table 1 shows the formant frequencies obtained with the physical model in comparison to those 

obtained in computational modeling for the hard-walled and soft-walled vocal tract and to earlier 

results obtained for humans. The measured formant frequencies are in good agreement with the 

computational results for the hard-walled vocal tract. The first computed acoustic resonance frequency 

was F1ḙ97 for the VT prolonged by the tube in air, and F1ḙ28 Hz for the VT prolonged by the tube 

with the distal end submerged 10 cm in water. Considering the yielding VT walls, the computation 

resulted in F1ḙ181 Hz for the VT prolonged by the tube in air, and the acoustic-mechanical resonance 

Fa-m appeared at 27 Hz. For the VT prolonged by the tube with the distal end in water, F1 was 143 Hz 

and Fa-m was 9 Hz. The resonance frequencies computed with yielding VT walls are close to those 

previously measured in humans. The 3dB frequency bandwidths B1 measured for the first formant of 

the vowel decreased from 220 Hz to 99 Hz for the tube in air and to ca. 25 Hz for the tube in water. We 

remark, that for the phonations through the tube, the differences between the excitation frequency F0 or 

Fb and the first formant frequencies F1 are much smaller than the formant bandwidths, see Figure 2 and 

Table 1. 

Figure 2d shows that the measured first subglottal resonance frequency Fsub1ḙ720 Hz of the subglottic 

cavities was much higher than the first formant frequencies F1 in the supraglottal cavities (Fig. 2 a-c), 
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and therefore Fsub1 did not interfere with the phenomena studied here. The Fsub1 was practically the 

same for all the sample types studied. 

Figure 2. Somewhere here.  

Table 1. Somewhere here.  

Effect of tube phonation on aerodynamic variables 

The phonation threshold flow (PTF) substantially decreased for phonation through the tube into air 

and into water compared to phonation on the vowel [u:]. Therefore the flow rate intervals were 

different for phonation on [u:] (Q=0.08ï0.25 l/s), and on [u:] with the VT prolonged by the resonance 

tube with the distal end in air and in water (Q=0.02ï0.10 l/s; see Figure 3). Similarly as for PTF, the 

subglottic pressure needed for phonation through the tube in air (phonation threshold pressure; PTP) 

was substantially lower than for phonation on [u:]. For the tube in water, the PTPḙ1.4 kPa was 

naturally higher than for the tube in air, being approximately the same as for phonation on [u:], see 

Figure 3. 

The measured mean subglottic pressure values Psub=0.4ï2.4 kPa were within a physiologically relevant 

range for human voice production (Baken & Orlikoff, 2000). Psub for blowing into water was lower 

than for phonation through the tube into water because no flow energy was needed for VFsô vibration. 

The mean and peak-to-peak values of the subglottic pressure increased in an approximately linear 

manner with the flow rate Q. The peak-to-peak amplitudes of the subglottic pressure Psub_p-t-p remained 

in approximately the same range for all considered cases. The relative amplitudes of Psub_p-t-p related to 

the mean subglottic pressure Psub_p-t-p/Psub increased in the all studied cases, with the flow rate from 

about 6ï16% at the PTF to ca. 45ï65% for the maximum flow rate used in the experiment. The values 

of Psub_p-t-p for blowing into water were much lower than for phonation into water.  

Similar trends were visible for the measured mean oral pressure Poral and peak-to-peak values of the 

oral pressure Poral_p-t-p related to Q. The mean oral pressure for the tube with the distal end submerged 

10 cm in water was much higher than for phonation into air due to the hydrostatic pressure. The 
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magnitudes of Poral_p-t-p for phonation through the tube into air and into water were high and almost the 

same. This high magnitude of the peak-to-peak oscillation of oral pressure results from the fact that F1 

decreased close to F0 for the tube in air and close to the water bubbling frequency Fb for the tube in 

water (see Table 1). The fluctuations of the oral pressure in the case of blowing were much smaller, 

because they were excited only by water bubbling and not supported by the acoustic resonance at the 

frequency F1 that increased above 180 Hz, corresponding to the open VT end at the abducted VFs. 

Therefore, the massage effect for the VFs caused by blowing into water would be much smaller than 

for phonation into water.  

Figure 3. Somewhere here.  

Effect of tube phonation on glottal area variation 

Figure 4 shows the results for the maximum glottal area (maxGA(t)) and the maximum glottal area 

derivative (max(-dGA/dt)) evaluated in the closing phase of the glottis. The latter quantity, which 

corresponds to the maximum glottal closing velocity, is sometimes called the maximum area 

declination rate (MADR; see Titze (2006a). The values of maxGA(t) and max(-dGA/dt) increased 

nearly linearly with the flow rate Q. Considering the same flow rate, e.g., 0.04 l/s, the values of 

maxGA(t) and max(-dGA/dt) for phonation through the tube into water were higher than for phonation 

into air. The magnitudes of maxGA(t) for the tubes were higher than for the vowel, while max(-dGA/dt) 

, i.e. MADR, was roughly in the same range for the tubes and the vowel.  

Figure 4. Somewhere here. 

Effects of flow rate on fundamental and water bubbling frequencies 

Figure 5 shows the measured fundamental frequency of phonation F0 and the bubbling frequency Fb as 

functions of flow rate Q. In the considered range of Q, the fundamental frequency decreased from 

about F0ḙ110ï113 Hz for phonation on [u:] to F0ḙ90ï94 Hz for phonation through the tube into air 

and further to F0ḙ75ï86 Hz for phonation through the tube into water. In the case of no phonation, the 

bubbling frequency increased quickly with Q from zero to the approximate constant Fbḙ20 Hz. The 
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bubbling frequency for phonation through the tube into water was Fbḙ19ï23 Hz for all Q values. This 

indicates that the production of bubbles is not significantly influenced by phonation. 

Figure 5. Somewhere here. 

Measured relationships Ptrans(t) vs. GA(t) 

The relationships Ptrans(t) vs. GA(t) constructed from the measurements on the physical model clearly 

distinguish the vowel phonation from both therapy methods and uncover the physical background of 

the methods (see Figures 6ï9). Such relationships are difficult to obtain from measurements in humans.  

Figure 6 shows the results for phonation on the vowel [u:] for one period of self-sustained VF 

vibration. The cyclic graphs (Ptrans(t) vs. GA(t) and Ptrans(t) vs. dGA(t)/dt) create certain loops, which 

are oriented in the clockwise direction, as marked by the arrows for increasing time. They start in an 

open glottis position (at the time instant marked 1). Then, the glottal area GA increases up to the 

maximum (at the time instant marked 5). Thereafter, during the glottal closing phase, the glottal area 

decreases to the time instant 7, where is the minimum transglottic pressure, and then through the time 

instant 13, which corresponds to the MADR, down to zero (at the time instants 15 and 16). After the 

VFsô collision, the pressure Ptrans(t) increases up to the maximum just before the opening phase of the 

glottis. The area æA=0.031 mJ inside the loop Ptrans(t) vs. GA(t) computed according to equation (1) is a 

measure of the part of the airflow energy consumed by the self-sustained VF oscillations. 

Figure 6. Somewhere here.  

Similarly, Figure 7 shows an example of the relationships Ptrans(t) vs. GA(t) and Ptrans(t) vs. dGA(t)/dt 

measured for phonation into the resonance tube with the distal end in air. The loops start in the opening 

phase of the glottis (at the time instant marked 1) and continue through the time instant 3 to the 

minimum of Ptrans(t) at the time instant 5 and then to the maximum glottal opening (marked as 11). 

However, the closing phase is clearly different from the previous case for phonation on the vowel [u:], 

because the part of the loop Ptrans(t) vs. GA(t) between the time instants 1ï18 is oriented in a 

counter-clockwise direction. This means a negative contribution to the work æA in this phase of the 
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oscillation period. After time instant 18, the closing phase continues in the clockwise-oriented part of 

this loop through the time instant 19 up to the complete glottal closure (marked 21) and then to the end 

of the period (at the time instant marked 33). The maximum transglottic pressure is substantially 

delayed after the moment of glottal closure and the minimum of Ptrans(t) is negative, unlike in the 

phonation on [u:].  

The computed total magnitude of the area æA=-0.054 mJ inside the complete loop is negative, because 

the VFsô vibration for phonation through a tube into air is supported by the first acoustic resonance 

thanks to a near coincidence of the formant frequency F1ḙ105 Hz (see Figure 2 and Table 1) with the 

fundamental frequency F0ḙ94 Hz (see Figure 5). This effect, when the frequency F0 is close to F1, 

results in less flow energy being needed for the self-sustained VF oscillations. This demonstrates the 

principle of vocal exercising and therapy with the resonance tube in air, because this effect makes the 

phonation easier. Because of this, lower subglottic pressure and a lower flow rate are needed for the 

self-sustained VF oscillations. Comparing Figure 7 with Figure 6, it can be concluded that the mean 

transglottic pressure Ptransḙ0.89 kPa, and the mean flow rate Q=0.08 l/s are much lower for phonation 

into the tube than for phonation on the vowel [u:], where the mean transglottic pressure for self-

sustained VF oscillations was about 1.95 kPa and flow rate equaled 0.2 l/s. 

The loop for the derivative of the glottal area (reflecting glottal closing speed) is shown in the lower 

panel of Figure 7. The minimum derivative of the glottal area (MADR), about dGA/dtḙ-7500 mm2/s, 

occurs at the time instant 18 before the contact of the VFs at the time instant 21, where dGA/dt=0. 

Values of MADR are considered to be roughly proportional to the impact stress loading the VFs during 

the collision. However, following the graph for the derivative of the glottal area between time instants 

18 and 21 in Figure 7, it can be clearly seen that in reality the glottal closing speed is noticeably 

reduced just before the VFsô contact. Thus, MADR is not an adequate measure of impact stress, 

whereas the glottal area derivative just prior to glottal closing is. 

Figure 7. Somewhere here.  
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Figure 8 presents an example of the relationships Ptrans(t) vs. GA(t) and Ptrans(t) vs. dGA(t)/dt for 

phonation through the resonance tube with the distal end 10 cm in water for the same mean flow rate 

Q=0.08 l/s as in the previous case for phonation through the tube into air. The measured loops are very 

similar as in the previous case. This suggests that the effect of the near coincidence of the formant 

frequency F1ḙ26 Hz and the bubbling frequency Fbḙ23 Hz is similarly strong as in the case of the near 

coincidence of F0 and F1 for phonation through the tube into air, where the difference F1ïF0 was 11 

Hz. The mean flow rate is again much lower than the flow rate Q=0.25 l/s for the phonation on the 

vowel [u:]; furthermore, as in the previous case, the mean transglottic pressure Ptransḙ0.78 kPa is lower 

than the mean Ptransḙ1.95 kPa for phonation on the vowel [u:]. 

Figure 8. Somewhere here. 

Figure 9 demonstrates that phonation into water is more complicated due to the bubbling process, 

which creates waves on the waterôs surface. When the variation of the glottal area, the derivative of the 

glottal area, transglottic pressure, and the constructed loops are observed for a longer time, the 

irregularities in amplitudes of all quantities caused by the water bubbling are evident. The areas inside 

the loops vary irregularly from one oscillation cycle to the next. Therefore, when studying phonation 

through a tube into water, the energy transfer between the flow and the VFs needs to be investigated for 

a longer time, taking into account more cycles in order to obtain an average value of the area æA. This 

procedure resulted in æAḙ-0.041 mJ which is quantitatively comparable value with that obtained for 

phonation through the tube into air, where the behavior of the system is periodic with only small 

disturbances. The principle of supporting the self-sustained VF oscillations by the effect of the near 

coincidence of the formant frequency F1 with the fundamental frequency F0 or bubbling frequency Fb is 

valid in both cases of phonation into the tube. 

Figure 9. Somewhere here.  

This principle can be documented by the flow power ȹFP=ȹA F0 [W]  that was computed from all the 

loops measured within the airflow rate interval Q=0.02ï0.25 l/s considered in this study. Figure 10 
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shows the measured power ȹFP as a function of the input steady aerodynamic flow power defined as 

the mean subglottic pressure Psub multiplied by mean flow rate Q (Schutte, 1980). The power ȹFP 

measured for the vowel phonation approximates the part of the flow power consumed by the self-

oscillating vocal folds. If ȹFP for phonation with the tube is negative, it implicates that the part of the 

flow power consumed by the self-oscillating vocal folds is smaller.  

The flow power ȹFP, evaluated from the area inside the loops, is the highest for phonation on the 

vowel [u:], for which ȹFPḙ0.8ï7 mW, while in the case of phonation through the tubes ȹFP is lower 

and mostly negative with a minimum ȹFPḙ-8 mW for the tube phonation into air, where the difference 

F1-F0=14-15 Hz between the formant frequency F1=105 Hz and the frequency F0=91 Hz was minimal 

(see Figures 2b and 5, and Table 1). The flow power ȹFP for the tube phonation into water is negative 

having the minimum ȹFPḙ-6 mW at the highest input flow power used in the experiments for tube 

phonation into water where the difference between the formant frequency F1=28 Hz and the bubbling 

frequency Fb was ca. 4-8 Hz (see Figures 2c and 5, and Table 1).  

The experiments on vowel phonation and on tube phonations were performed in only slightly 

overlapping intervals of steady input flow power, because of substantial lowering of the PTF caused by 

the tube. Thus in only one case shown in Figure 10, it was approximately possible to compare directly 

the power ȹFP for phonation on vowel with that for phonation into water. The steady input flow power 

for the vowel was 159 mW and for the tube in water it was 150 mW, which are close values. The 

power ȹFP decreased from 0.8 mW for vowel to -4.2 mW for tube in water. This shows that 5 mW of 

flow power needed for vocal foldsô self-sustained vibration was saved.  

Figure 10. Somewhere here. 

DISCUSSION 

An important finding in the present study is that for phonation through the resonance tube in air, not 

only F1 decreased, but the fundamental phonation frequency F0 also decreased slightly below F1 (see 

Table 1). Similarly, for phonation through the tube into water, F1 decreased further, slightly above the 
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water bubbling frequency Fb. When F1 is close to F0 or Fb, it assists the VFsô vibration, which enables 

easier phonation utilizing the resonance effect of the acoustic system. In practice, it is possible to tune 

the system in order to gain maximum support for phonation when phonating through the tube either 

into air or into water. In the former case it can be accomplished by changing F0, while in the latter case 

by changing Fb. 

The relationships Ptrans(t) vs. GA(t) constructed for vowel [u:] resulted in clockwise-oriented cyclic 

graphs (loops), similar to those measured by Miġun et al. (2011) for artificial VFs without a VT, while 

the loops obtained for both therapy methods are more complicated. They show that less airflow energy 

is needed for phonation because the first acoustic resonance at the frequency F1 is closely above the 

excitation frequency F0 or Fb. This effect reduces the airflow energy needed for the VFsô vibration and 

the excitation of acoustic waves. 

In principle the same situation happens, if the fundamental frequency F0 of ordinary vowel phonation 

gets close to the first formant frequency F1 of the vocal tract and increases the inertance of the 

supraglottic spaces (Titze, 2001).  

Comparison of results from physical modeling, computer modeling, and measurements in 

humans 

The experimental results presented in this paper for phonation through tubes into air and into water can 

be compared to measurements on humans published by Hor§ļek et al. (2017a) for a male subject and 

by Radolf et al. (2014) for a female subject. The main difference between the results is caused by the 

existence of the low frequency acoustic-mechanical resonance in the human VT, whereas in the 

physical model with hard VT walls, such a resonance does not exist. 

The pressure and frequency data measured here on the physical model are compared with 

measurements on humans in Table 1, where the data from the model are carefully chosen according to 

the same magnitudes of the mean subglottic pressure Psub as was measured in humans. From the 

measurement using the model, the values of the mean oral pressure Poral, peak-to-peak oral pressure 
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Poral_p-t-p, the water bubbling frequency Fb, and the fundamental frequencies were interpolated from the 

data given by the graphs shown in Figures 3 and 5, considering the same subglottic pressure Psub as 

measured in humans. The acoustic resonance frequencies computed for the mathematical models with 

yielding and hard walls are also included in Table 1 for comparison with the measured data. 

Good agreement was found between the measurements on human subjects and the experiments with the 

physical model for the mean oral pressure Poral. However, the peak-to-peak fluctuations of the oral 

pressure Poral_p-t-p measured in the model are far higher than in humans. The reason for this is that the 

yielding walls of the human VT may cause a higher damping of the pressure fluctuations, and that the 

difference between the first resonance frequency and the pressure fluctuation frequency, was smaller in 

the model. 

Really, for phonation through the tube with the distal end in air, the differences F1-F0ḙ90 Hz for the 

male and F1-F0ḙ34 Hz for the female are evidently higher than the differences F1-F0ḙ14ï15 Hz for the 

measurement with the VT model (see Table 1). Therefore, the acoustic-structural coupling was stronger 

in the VT model, because the excitation frequency F0 was nearer to the formant frequency F1, and 

consequently the amplitudes of oral pressure fluctuations were higher in the model than in humans. The 

acoustic-mechanical resonance at the computed frequency Fa-mḙ27 Hz is not so important in vocal 

exercises using the resonance tube with the distal end in air, because the frequency Fa-m is considerably 

below the lower limit of F0 for the ordinary human voice (at least when vocal fry is not considered). 

However, at least in theory, the mechanical resonance associated with the yielding walls may raise the 

computed value of F1 for the hard VT from 97 Hz to 181 Hz, which comes close to F1=190 Hz 

measured in humans (see Table 1). This in turn would be beneficial, especially for the female speaking 

voice, since F0 could be easily set close to F1. 

In phonation into water the Fa-m becomes important. For the model, the VF vibrations are supported by 

water bubbling, because the difference F1-Fb ḙ4ï8 Hz between the first formant frequency and the 

bubbling frequency is very small (see Table 1), while the fundamental phonation frequency F0ḙ79ï82 
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Hz is far from the acoustic resonance at F1ḙ28 Hz. We remark that the vibration amplitude of the VF 

in the vertical direction should be essential at the bubbling frequency. It should be proved in a next 

study, e.g. using laser vibrometry.  

In humans, the bubbling frequency Fbḙ11.5ï14 Hz was considerably lower than in the model, where 

Fbḙ20ï24 Hz (see Table 1). The computed frequency of the acoustic-mechanical resonance Fa-mḙ9 Hz 

is very close to the bubbling frequency Fb measured in humans. This means that in humans, the 

acoustic-mechanical resonance can be excited by the water bubbling because the difference of only 2ï5 

Hz can be theoretically estimated between Fa-m and Fb (see Table 1). Moreover, in the case of a female 

subject, also the first acoustic resonance at the frequency F1ḙ150 Hz was excited by the very close 

fundamental frequency F0ḙ149 Hz, which is also close to the acoustic resonance frequency F1ḙ143 Hz 

computed for the VT with the yielding walls (see Table 1). This means that for the female subject, the 

effect of the water voice therapy can be doubled, because Fb can be close to Fa-m, and at the same time 

F0 is close to F1. It is worth noting that according to the measurements on a human subject the 

amplitudes of the bubbling induced vibrations of the larynx were higher than those caused by the 

fundamental frequency of phonation (Laukkanen et al., 2018). 

From a comparison of the results obtained from the model with hard VT walls and the measurements 

made in humans, it can be concluded that the effects of tube phonation in humans and in the model are 

the same, but the situation is more complicated in humans due to the existence of the low frequency 

acoustic-mechanical resonance. The results show that optimized conditions for a maximal utilization of 

the resonances for supporting phonation into the tubes could be found. It would be necessary to tune 

the system. Tuning can be accomplished by changing several parameters: 

¶ the inner diameter and length of the tube following the theoretical results (Hor§ļek et al., 2017a), 

since the tube length and diameter affect the first resonance; 

¶ the fundamental frequency of phonation, within physiological limits, for males and females;  

¶ the airflow rate which changes the bubbling frequency, as shown in Figure 5.  
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The most problematic seems to be to change the bubbling frequency Fb to a wider frequency range 

covering the acoustic-mechanical resonance of the VT (ca. 9 Hz), because an exact theoretical 

modeling of water bubbling is excluded and only special experiments for chosen tubes can be carried 

out, as recently presented in Wistbacka et al. (2017), where for a hard-walled VT, the Fb increased from 

ca. 6 Hz at Qḙ0.001 l/s to ca. 21 Hz at Qḙ0.04 l/s. It is known that the bubbling frequency increases 

with the flow rate very quickly from zero for low flow rates to a limit value over which is not possible 

to cross (see Figure 5 and Davidson & Amick, 1956).  

General discussion 

Our modeling results are in line with the computations of Story et al. (2000) for humans when it comes 

to the lowering of F1 with an artificial prolongation of the VT by a tube in air. Our F1 values were 

lower when a hard-walled VT was considered. However, when the values were calculated considering 

a yielding-walled VT, as Story et al. (2000) did, our results (F1=181 Hz) for tube in air are roughly 

similar to the results by Story et al. for a 30 cm tube with a ca. 1 cm inner diameter (F1 about 210 Hz). 

Their results for the bilabial plosive [b] (F1 about 170 Hz,) in turn, resemble our results for the tube in 

water (F1=143 Hz; see Table 1). The differences can be caused by the different VT and slightly 

different tube length and inner diameter. As far as we know, the present study and the study by 

Hor§ļek et al. (2017a) are the first to calculate F1 for a water resistance exercise showing the effect of 

the low frequency acoustic-mechanical resonance in the VT.  

The Psub and airflow rates considered in the physical modeling were within the range reported for 

humans (Baken & Orlikoff, 2000), and they remained in the same region as the one that has been found 

in humans during tube exercises (Tyrmi et al., 2017; Radolf et al., 2014). The bubbling frequency 

Fb=19ï24 Hz in phonation through a tube into water was close to the 21 Hz reported by Wistbacka et 

al. (2017) for a hard-walled VT. Granqvist et al. (2015) measured Fb in humans in the range 10.5ï

12.7 Hz and Tyrmi et al. (2017) in the range 15.8-16.5. The results agree with our finding that the 

yielding walls in the human VT lower the bubbling frequency (see Table 1).  
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The analysis of the measured relationships Ptrans(t) vs. GA(t) showed the principle of supporting the 

self-sustained VF oscillations by a near coincidence of the first resonance frequency with the 

fundamental or bubbling frequency in both cases of phonation into the tube. The measured 

relationships showed that when F1 was closer to F0 in the tube phonation, less airflow energy was 

needed for the VFsô vibration. Thus, the results are in line with the computer modeling results 

presented by Titze (2006) and Titze & Laukkanen (2007), suggesting improved vocal efficiency with 

the tubes.  

The results of our study are also in line with the computer modeling results of Fant & Lin (1987) and 

Titze (1988) as well as the results of Rothenberg (1986) for a female singer, which showed that the 

condition where F0 and F1 are close improves the VFsô vibration. A further study is warranted to 

quantify, how much the flow energy reduction and thus improvement of VF vibration depends on the 

difference between the fundamental phonation frequency and the first resonance frequency for 

phonation through the tube into air, and on the difference between the bubbling frequency and the first 

acoustic (or the acoustic-mechanical) resonance frequency of the vocal tract for phonation through the 

tube into water. 

Hypothetically, it is possible to obtain an efficiency maximum in tube therapy by varying (a) the 

fundamental phonation frequency, (b) the lowest acoustic resonance frequencies using different tube 

lengths and inner diameters, and (c) the bubbling frequency (through changing the airflow rate). A 

question of interest is whether the enhancement of VF vibration may increase the mechanical loading 

imposed on the VFs. According to the results of the present study, for phonation through the tube into 

air or into water, PTP, PFT and Ptrans decreased, while MADR did not increase, which suggests that the 

mechanical loading of the VFs did not increase. These results are in line with the previous modelling 

study that showed that the impact stress was even smaller during water resistance therapy compared to 

vowel phonation (Horacek et al. 2018).  



23 

On the other hand, Guzman et al. (2017) have found in a high-speed study with humans that in some 

cases of phonation through a tube into water (especially when the immersion depth is deep, 10-18 cm), 

there is an increased amplitude-to-VF length ratio (substitute of maximum glottal amplitude), closing 

quotient (substitute of MADR), and glottal spectral flatness; all of these changes suggesting increased 

impact stress in phonation. Similarly, the high-speed results reported by Laukkanen et al. (2007) 

showed a trend that in phonation with a longer tube compared to a shorter one, the Psub was higher and 

glottal open time shorter (i.e. closed time longer). These observations seem to imply increased 

phonatory effort as a compensation for increased supraglottic resistance. In the present study, the 

method used was modeling. It is possible that in some cases humans increase laryngeal adduction and 

Psub, so that the impact stress may rise somewhat; on the other hand, the human high-speed imaging 

data did not include data for Psub and airflow. The results of the present study suggest that maximum 

glottal area and the area derivative need a reference to Psub and airflow for drawing conclusions 

regarding impact stress. Furthermore, as our results show, maximum area declination rate is not a 

correct parameter for estimating the impact stress; instead, the area declination rate just prior to vocal 

fold collision should be studied in future. 

In any case, during tube voice therapy, the subject him-/herself should avoid phonation that may 

potentially be harmful due to exaggerated enhancement of VF vibration near the first resonance or in 

water resistance therapy when there is a double effect near the first two resonances (F1 and Fa-m). Such 

a situation is likely to be felt as unpleasantly strong vibrations in the vocal tract and larynx. This can be 

expected especially for loud phonation with high subglottic pressure. 

CONCLUSIONS 

The main findings from the modeling of the voice therapy based on phonation through a tube into air 

and into water can be summarized as follows. 

1) Glottal area variation measured simultaneously with the variation of the transglottic pressure 

showed that the airflow energy needed for VF vibration and the excitation of acoustic waves can be 
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noticeably reduced by phonation through a resonance tube into air and into water compared to 

phonation on the vowel [u:]. In both voice therapy methods, part of the airflow energy required for 

phonation is substituted utilizing the first acoustic or acoustic mechanical resonance. 

2) The basic principle in vocal exercises with a resonance tube with the distal end in air and in water 

(water resistance therapy) is the same. For phonation into air, the fundamental phonation frequency 

excites the acoustic resonance at the first formant frequency, and for phonation into water, the bubbling 

frequency excites a low frequency acoustic mechanical resonance in the human VT with yielding walls.  

3) The maximum glottal area time derivative during the glottal closure (so-called maximum area 

declination rate; MADR) is considered a measure of the maximum impact stress between the colliding 

VFs. However, it was found in the present study that the glottal closing speed was noticeably reduced 

just before the VFsô collision. Therefore, MADR does not seem to be an adequate parameter for impact 

stress estimation. The glottal closing speed should be investigated in detail in a future study. 
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FIGURES  

Figure 1. Schema of the measurement set-up for the experimental study on the model. 
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Figure 2. Sound pressure spectrum levels of the measured oral pressure for simulated phonations: a) on 

the vowel [u:] (F0=111 Hz, F1ḙ315 Hz, Q=0.20 l/s), b) through the tube into air (F0=90 Hz, F1ḙ105 

Hz, Q=0.04 l/s), and c) through the tube into water with a detail in the lowest frequency range 

(Fb= 22 Hz, F1ḙ28 Hz, F0=79 Hz, Q=0.04 l/s). Figure 2 d) shows the example of the spectrum of the 

subglottic pressure (measured for the same phonation through the tube into water, Fsub1ḙ720 Hz). The 

formant frequencies F1 were estimated from the peaks of the averaged spectra marked by thick lines. 
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Figure 3. Measured values of: a) mean subglottic pressure (Psub), b) peak-to-peak magnitudes of 

subglottic pressure (Psub_p-t-p), c) mean oral pressure (Poral), and d) peak-to-peak magnitudes of oral 

pressure (Poral_p-t-p) depending on the flow rate Q for: 1) phonation on the vowel [u:], 2) phonation 

through the tube into air, 3) phonation through the tube into water, and 4) blowing through the tube into 

water without phonation. 
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Figure 4. Measured maximum glottal area maxGA(t) and maximum glottal area derivative max(-

dGA(t)/dt) evaluated during the closing phase of the glottis (MADR) as a function of the flow rate Q 

for: 1) phonation on the vowel [u:], 2) phonation through the tube into air, and 3) phonation through the 

tube into water. 
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Figure 5. Measured fundamental frequency F0 and the water bubbling frequency Fb depending on the 

flow rate Q for: 1) phonation on the vowel [u:], 2) phonation through the tube into air, 3) phonation 

through the tube into water, and 4) blowing through the tube into water without phonation. 
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Figure 6. Example of the construction of the relationships Ptrans(t) vs. GA(t) and Ptrans (t) vs. dGA(t)/dt 

for phonation on vowel [u:] for one period of the vocal foldsô self-oscillation showing: glottal area 

GA(t) (upper panel) and glottal area derivative dGA(t)/dt (2nd panel), transglottic pressure Ptrans(t) (3
rd 

panel), and the resulting relationships (lower panel) (Q=0.20 l/s, F0=111 Hz, æA=0.031 mJ, ȹFP=ȹA 

F0 =3.42 mW). ). The numbers along the waveform GA(t) indicate the important time instants marked 

also on the relationships and on the high-speed VF images shown at the bottom. 
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Figure 7. Example of the construction of the relationships Ptrans(t) vs. GA(t) and Ptrans(t) vs. dGA(t)/dt 

for phonation through the resonance tube into air for one period of the vocal foldsô self-oscillation 

showing: glottal area GA(t) (upper panel), glottal area derivative dGA(t)/dt (2nd panel), transglottic 

pressure Ptrans(t) (3rd panel), and the resulting relationships (lower panel), with the images of the 

vibrating vocal folds also shown at the numbered time instants (Q=0.08 l/s, F0=94 Hz, æA=-0.054 mJ, 

ȹFP=ȹA F0 =-5.07 mW ). The numbers along the waveform GA(t) indicate the important time instants 

marked also on the relationships and on the high-speed VF images shown at the bottom. 

 

  


