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ABBREVIATIONS

IHC = Immunohistochemistry

WSI = Whole Slide Image

CNN = Convolutional Neural Network

PD-L1 = Programmed Death-Ligand 1

WSI = Whole Slide Image

BCE = Binary Cross-Entropy

AUC = Area Under Curve

IoU = Intersection over Union

NSCLC = Non-Small Cell Lung Cancer
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The purpose of this Master’s thesis was to teach a convolutional neural network to recognize non-

small cell lung cancer from whole slide images (WSI) and to separate regions of interest from other

tissue. IHC fluoro-chromogenically stained whole slide images under brightfield illumination were

used  as  target  images,  and  the  same  WSIs  with  cytokeratin  masks  applied  under  fluorescent

illumination were used as input images.

An immunohistochemical fluoro-chromogenic dye is done when PD-L1-expressing tumor regions

and PD1-expressing alveolar macrophages need to be distinguished. Cytokeratin-positive carcinoma

regions show clearly in brightfield images. It is important to separate these regions especially when

considering immunotherapy as treatment, because there exist antibody based medications against

both PD1- and PD-L1 expressing tumor- and lymphocyte cells, and the areas surrounding cancer

may cause false positives leading to immunotherapy being poorly targeted.

The method is based on U-net architecture in a convolutional neural network. A CNN is capable of

achieving excellent results in tasks including image recognition, and U-net has been specifically

designed for medical image analysis tasks.

The results show that the neural network used is capable of distinguishing cancer regions from other

tissue with good accuracy (AUC = 0.96).
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Tämän pro gradun tavoitteena  oli  opettaa  konvoluutioneuroverkko tunnistamaan ei-pienisoluista

keuhkosyöpää kudosleikkeistä otetuista kuvista ja erottamaan terveen kudoksen ja syövän alueet.

Materiaalina  käytettiin  immunohistokemiallisesti  ja  fluoro-kromogeenisesti  värjättyjä  leikkeitä;

alkuperäiset leikkeet syötekuvina ja leikkeet sytokeratiinimaskin kanssa tuloskuvina.

Immunohistokemiallinen  fluoro-kromogeeninen  värjäys  tehdään,  kun  halutaan  erottaa  PD-L1-

ekspressoivat  tuumorialueet  ja  PD1-ekspressoivat  alveolaariset  makrofagit  toisistaan.

Immunoterapiaa ajatellen on tärkeää, että nämä alueet erotetaan toisistaan, sillä vasta-ainepohjaisia

lääkkeitä on olemassa sekä PD1- että PD-L1-ekspressoivia syöpä- ja lymfosyyttisoluja vastaan, ja

syöpää ympäröivät alueet voivat ilmentää väärää positiivisuutta. Esimerkiksi TAM-makrofagit ja

kuolleet syöpäsolut  voivat aiheuttaa vääriä  positiivisia tuloksia,  ja  immunoterapia on vaikeampi

kohdentaa.

Menetelmä  perustuu  U-net-arkkitehtuuriin  konvoluutioneuroverkossa.  Konvoluutioneuroverkko

kykenee saavuttamaan hyviä tuloksia kuviin liittyvissä tehtävissä, ja U-net on suunniteltu erityisesti

lääketieteellistä kuva-analyysiä varten.

Tulokset osoittivat, että neuroverkko kykenee erottamaan syöpäalueita muusta kudoksesta hyvällä

tarkkuudella (AUC = 0.96).
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1. INTRODUCTION

This thesis study was conducted working for Pekka Ruusuvuori’s Bioimage Informatics research

group at  Faculty  of  Medicine  and Health  Technology,  Tampere  University.  In  this  chapter  the

work’s purpose will be presented, along with how non-small cell lung cancer operates and a small

summary of the used data and methods. The second chapter will be an overview on the theory

behind used methods, third chapter will present the implementation of the pipeline, the dataset and

other  materials  used.  Fourth  chapter  will  present  the  results,  and discussion  will  take  place  in

chapter five. Conclusions of the study will be in chapter six.  The approach used was a combined

perspective of cellular biology, signal processing and neural network medical image analysis.

Non-small  cell  lung cancer  is  the most  common type of lung cancer  found in humans,  and its

severity is measured in tumor stages I-IV with IV being the most advanced stage of cancer (Table

1).  The  treatment  for  early  stages  of  lung  cancer  is  commonly  surgery,  and chemotherapy  for

patients  whose  lung cancer  tumors  have  already metastasized.  Gefitinib  is  one  of  the  licenced

treatment methods. Carcinoma in situ stands for the precursor to lung cancer, when an actual tumor

is not detected but cancerous cells are. There is a difference in the severity of non-small and small

cell lung cancer: small cell lung cancer tends to be found at a more advanced stage, has a faster

growth rate and thus may have a worse prognosis when first discovered. Despite this, the survival

rate for all types of lung cancer is alarmingly low at 15%. Smoking is the cause of the majority of

lung cancers, and lung cancer is not common for non-smokers, although the risk of lung cancer is

increased when a non-smoker inhales secondhand smoke. Air pollution along with certain processed

foods have been connected to lung cancer as well, but in lesser numbers. The best way to protect

lungs along with not smoking or quitting smoking is to exercise, which has been linked to a lower

risk of developing lung cancer. (Molina et al. 2008)

Table 1. Staging of non-small cell lung cancer. (“Types and Staging of Lung Cancer.”, Lungcancer.org)

Stage Severity Subtypes Spread
0 Not severe - Small local carcinoma in situ, not 

spread
I Local, not advanced - Only lung/lungs
II Local, but increasing in severity - Lung and lymph nodes
III Local, but advanced IIIA and IIIB Lung and chest lymph nodes
IV Very advanced, possibly not local 

anymore
- Both lungs and other parts of the body, 

metastatic. Survival rate low
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Non-small  cell  lung cancer is classified into five subtypes,  different by histology: solid,  acinar,

papillary, micropapillary, and lepidic. The treatment options for each of these depend on the tumor

stage of the cancer, with e.g. solid tumor tissue patterns being associated with a poor prognosis –

not  to  mention  the  different  subtypes  of  lung  cancer  can  be  mixed  together  as histologically

heterogeneous tumors, making diagnosis difficult (Wei et al. 2019).

Slide  scanners  produce  whole  slide  images  that  can  be  viewed  and  analyzed  utilizing  digital

pathology software, much like a modern version of using the microscope to view cells that are too

small for the eye to see. This is obviously a remarkable benefit to the field of pathology, since high

resolution images of slides of tissue can be viewed outside the laboratory on any computer screen

instead of being preserved in glass only available in person, losing its quality over time (Al-Janabi

et al. 2012). Images of these slides can be fed into for example a neural network to automatize the

analyzing process and save time instead of a human viewing each slide individually, and in the case

of this study whole slide images of lung cancer were used as data.
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Figure 1. Immunohistochemical fluoro-chromogenic staining on cropped whole slide images, showing clear patterns of

carcinoma (bright green areas in fluorescent image).

Immunohistochemical fluoro-chromogenic staining is  helpful in discovering true positives when

looking  for  PD-L1  and  PD1  activated  areas  that  are  not  alveolar  macrophages.  The  pipeline

constructed in this study aims to identify the regions where true cancerous tissue lies instead of false

positives that may be generated by other types of tissue, which will be discussed further. The data

used are whole slide images of non-small cell lung cancer stained with IHC fluoro-chromogenic
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staining and cytokeratin mask. Input images are viewed under brightfield illumination and target

images are viewed under fluorescent illumination.

Machine learning can be supervised or unsupervised – labels or ground truth can be fed to a model

during training or  the model  is  not  fed ground truth data  and finds  areas  or other  information

without it. In this study the binary image masks used as ground truth images were generated by

thresholding IHC fluoro-chromogenic stained images. The whole slide images used in this study are

from Prof. Jorma Isola, Satu Luhtala and Teppo Haapaniemi. PD-L1 images are used as input and

target  data  for  the  network:  with  immunohistochemical  fluoro-chromogenic  staining,  under

brightfield and fluorescent illumination (Figure 1.). The images used as ground truth are processed

from IHC fluoro-chromogenic  stain  images  of  non-small  cell  lung  carcinoma  (NSCLC)  under

fluorescent  illumination.  In  the  IHC fluoro-chromogenic  staining  for  the  lung cancer  images  a

technique is used that blocks signaling between the programmed death ligand 1 and programmed

cell  death  protein  1.  This  cytokeratin  mask  step  used  with  fluorescent  illumination  in  itself

decreases the risk of misinterpreting cancer regions from healthy tissue, especially in uncertain and

difficult to interpret cases. (Haapaniemi et al. 2017) The programmed death ligand 1, or PD-L1, is a

transmembrane  protein  that  under  normal  circumstances  suppresses  the  immune  system  when

needed. The secretion of PD-L1 is an immunological event by cancer cells in order to evade and

distinguish T-cell attacks and the function of CD4 and CD8 cells (D’Arcangelo  et al. 2019). The

appearance of PD-L1 in lung cancer can be a sign of a progressed tumor grade, and it can be used as

a biomarker, but a study by D’Arcangelo et al. 2019 concluded that it is not a completely reliable

prognostic factor in at least early stage non-small cell lung cancer.  In any case, it can serve as a

useful tool in selecting patients for immunotherapy due to easier tumor grade assessment. An earlier

study by Mu et al. 2011 had concluded PD-L1 to be linked to overall survival after non-small cell

lung cancer surgery.

Digital pathology is a growing field, helping in analysis such as helping in grading cancer by doing

mitotic count in whole slide images (Wang et al. 2014). Machine learning has become an important

part in image analysis: especially deep learning has achieved astonishing results and allowed some

networks to rival the accuracy of human experts. A learned network is more generalizable than a

manual network and can save time learning by itself how to address other types of data instead of

having to manually create a different network for each different kind of sample (Criminisi 2016).
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The network used in this thesis study was U-Net, which in biomedical image analysis is a state-of-

the-art method of analysing biomedical images. The architecture of U-net, created by Ronneberger

et al. (2015), can be visualized in the shape of the letter U with images entering and exiting through

a symmetric convolutional path.  Multiple modified implementations of U-net exist on Github and

they perform well on different types of segmentation and image classification tasks especially in

medical  analysis  (Liimatainen  et  al. 2019),  so  it  was  chosen  as  network  architecture. Other

convolutional neural networks like AlexNet, Inception v3, recurrent networks or VGG19 could also

have been used, since they are popular choices in medical image analysis. Some popular networks

will be discussed in Chapter 2.5.

The underlying purpose of this pipeline is to bring value to the field of digital pathology. There have

been numerous developments in the field of digital pathology to lessen the time pathologists spend

on viewing real life samples and easing their workload whilst improving the accuracy of diagnosis.

A tool  to  help  in  diagnosis  making  could  prove  to  be  useful  when  considering  PD-L1/PD1

immunotherapy treatment options for patients. 
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2. THEORY OF USED METHODS

In  this  chapter  the  theory  of  used  methods  will  be  presented  and further  explained.  The used

machine learning model is explained along with other state-of-the-art solutions to similar problems

and data preprocessing. 

2.1. PD-L1 marker and lung cancer

Tumor cells and tumor-associated macrophages can be difficult to distinguish from each other, but

immunohistochemical fluoro-chromogenic staining has been developed as a tool for it. The value of

IHC  fluoro-chromogenic  staining  lies  in  immunotherapy:  when  the  interaction  between

programmed death receptor-1 and programmed death ligand-1 (PD-1 and PD-L1) is suppressed by

antibodies, T-cells start attacking tumor cells. However the distinction between actual tumor cells

and  the  surrounding  area  is  important  as  tumor  cells  express  PD-L1  and  tumor-associated

macrophages  (TAM),  along  with  dead  tumor  cells,  express  PD1.  This  type  of  immunotherapy

medicine is based either on PD-L1 or PD1. Lymphocytes near the tumor can express PD1, but also

the unwanted macrophages may express it. This can lead to false positives in searching for PD-L1

expression, because targeted immunotherapy needs to be very precisely applied to the tumor area,

not to TAMs or necrotic tumor cells. (Haapaniemi et al.  2018) Fluoro-chromogenic labelling has

also been used with e.g. breast cancer exhibiting Minichromosome Maintenance Protein 2 (MCM2)

expression (Luhtala et al. 2018). Immunohistochemical fluoro-chromogenic staining combined with

cytokeratin  mask  is  an  effective  method  of  making  regions  of  interest  clearly  visible  under

fluorescent light. Studies concerning both PD-L1 and deep learning are scarce at the moment. 

There have been reproducibility problems with pathologists estimating PD-L1 and PD1 areas, and

an automated method would be a benefit to the field. An automated quantitative score system Optra

has been validated in a study by Taylor et al. 2019 with an AUC score of 0.73 for immune cells and

0.87 for  tumor  cells.  The medicine  Pembrolizumab,  for  example,  requires  an  over  50% tumor

proportion score of PD-L1 expression to achieve good performance. Identifying PD-L1 expressing

areas  challenges  pathologists  without  IHC  fluoro-chromogenically  stained  WSIs  to  help  in

confirming the decision areas. (Taylor et al. 2019)
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2.2. Machine learning in image analysis

Machine learning is taking an increasingly large role in modern society whilst achieving impressive

results in medical applications. Especially convolutional neural networks have been on the rise and

keep setting the bar higher and higher, even outperforming pathologists at their tasks (Nirschl et al.

2018). 

It is known that machines generally excel at specific, repetitive tasks whereas humans are better at

tasks  that  require  combining  information  and  making  complex  or  intuitive  decisions.  Machine

vision may feel like a daunting task  at first glance, but in reality it only consists of many very

specific tasks stacked together. Neural networks are based on biological neural networks present in

the mammalian brain, and in the same fashion consist of layers of neurons, in which individual

neurons are able to transmit a signal onto other neurons in the following layer. In simplicity, a

neural network consists of nodes, edges and weights, and layers of nodes are commonly called

input, hidden and output layers. A neural network is commonly called deep if the number of hidden

layers is high. The network is fed input and target data, and predictions (generally confidence maps)

are evaluated against the target data. Bias can also be present in a network.

A good machine learning model is generalizable yet accurate without overfitting. Overfitting means

improving in accuracy for one type of data at the cost of being able to classify a different type of

data  in the validation phase of estimating model  performance.  Underfitting,  on the other  hand,

stands for poor overall performance of a model in classifying any of the data. Metrics to examine

how well a model is doing also have to be chosen carefully because of different types of data used.

For example in a binary classification case where the data are images that only have 1% of target

class and the rest is 99% background, the basic accuracy metric would be very misleading. The

model could predict only background for all images and still yield a 99% accuracy.

Computer vision is an efficient tool for image analysis. The extent of the capabilities of computer

vision is ever-increasing: self-driving cars, algorithms able to assist in analyzing medical imagery,

facial  recognition,  augmented  reality,  handwriting  recognition  and  more  (Danuser,  2011).  For

example virtual or augmented reality can be used to assist surgeons during surgery and training for

surgery (Bernhardt et al. 2017). Computer vision does not necessarily replace the human eye, but is

able to assist in attentive or difficult tasks. There are benefits to using computer vision instead of the

human eye; the analysis can be automated and it  can access features in the data that would be

invisible to a human, for example. Humans, on the other hand, base their analysis of the image on
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previously learned interpretation of similar images, and can potentially miss nuances in the data.

When using computer vision, bias can be combatted. The ability of a human brain to associate seen

signals with previous information and effortlessly find patterns can present a challenge to compute;

this is called the association paradigm. However, association can lead to overlooking information

that a machine could pick out – this is called the integrator paradigm. (Danuser, 2011) The human

eye may find patterns where there are none, and draw false conclusions. A computer, thus, can

outperform human vision in delicate tasks such as seeing tiny differences in data and producing

reliable information without bias that would change from person to person.

Convolutional neural networks can also be used to output a result image the exact same size as the

input – these are called fully convolutional networks. A study by Long  et al. 2015 used popular

convolutional networks to apply full convolutionality with transfer learning and end-to-end training.

This sort of approach can be useful in e.g. semantic segmentation, where we want to label areas in

the image as named objects like internal organs in CT scan images.  Layers in a convolutional

network are three-dimensional arrays, consisting of image height, width and the number of colour

channels.  Operations  are  performed  on  these  layers,  such  as  max  pooling,  convolution  and

activation  functions  yielding  outputs  that  are  fed  to  following layers.  Upsampling,  simply  put,

means backwards convolution or in layman’s terms deconvolution. This enables a network such as

U-net to learn by “expanding” feature maps and concatenating them.
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2.3. Convolutional neural network

Deep learning has been a rising star in the field of machine learning for a while now – it entails

neural networks with more layers than in previous systems to allow for more accurate predictions.

The emergence of GPUs has also improved the processing times of neural networks, allowing the

networks to  get  deeper  and more reliable.  For example a convolutional neural  network usually

consists  of   combinations  of  convolution,  data  reduction  and  pooling  layers.  Medical  image

interpretation by humans can be subjective as it is affected by the variance between interpreters and

even  their  fatigue  levels,  so  automatizing  analysis  and  analysis  support  systems  is  beneficial.

(Greenspan et al. 2016)

Convolutional neural network, ConvNet or CNN stands for a neural network that is composed of

layers of perceptrons and is often used for image classification or segmentation tasks, such as for

medical imagery (LeCun et al.  2015). A great benefit of CNNs is that they don’t require as much

preprocessing as some other types of machine learning algorithms. Convolutional neurons enable

the  network  to  operate  on  images  with  less  neurons  than  would  be  required  for  e.g.  a  fully

connected feedforward neural network, yet still keeping the depth of the architecture. Parameters of

layers are the amount of elements that a filter can learn, and the layers that have parameters in a

neural  network are convolutional  and fully  connected.  Pooling layers reduce the dimensions of

neural networks and dropout layers reduce the amount of activated neurons per iteration, neither

having parameters. Filter shape is usually 5x5 or 3x3, dropout is commonly 0.5 and max pooling

layers tend to be 2x2. 

CNNs have been making a significant foothold in the field of machine learning since the 70’s, most

importantly in computer vision and image analysis. CNNs are the most successful type of deep

learning algorithm for medical image analysis to date. They consist of layers which use convolution

filters to perform linear transformations on the input image, and can be applied to 1D, 2D and 3D

data. For example 3D CNN applications could be used to analyze voxels in 3D medical scans. Sets

of kernels are used to undergo convolution operations on each layer. One application of CNNs is U-

net, which is a widely used U-shaped fully convolutional neural network for medical image analysis

and performs well  on e.g.  segmentation tasks (Ronneberger  et  al.  2015).  A fully  convolutional

network requires input images to be the same size and has a receptive field in the last layer. U-net

uses upsampling to increase image size and downsampling to return to the input size, outputting an

image of approximately  the same size.  In transfer learning a pre-trained network or pre-trained
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weights are used, and it can be used to avoid having to train a network on a large amount of training

data. The best results have been achieved when a pre-trained network is tuned to fit the data in

question. (Litjens et al. 2017)  Transfer learning and fine-tuning the networks are modern ways of

battling  the  requirement  for  large  amounts  of  training  data,  memory  usage  and  overfitting.

Overrepresentation of  the  normal  class  in  medical  imagery has  been a  challenge,  and properly

labelled data can be a scarce resource in some cases. (Greenspan et al. 2016)

CNNs use different types of activation functions to map the predicted values in between the wanted

scale. A popular choice of activation function for convolutional layers is ReLU, which avoids the

Vanishing Gradient Problem.  ReLU stands for Rectified Linear Unit, and operates on the f(x) =

max(0, x) principle to increase speed in training. ReLUs also do not need input normalization in

order to not saturate. Neural networks function well but also face issues if trained too much or too

little. Underfitting happens when the network does not learn as much as it could and overfitting

when it starts to memorize data instead of learning the trends behind it. Overfitting shows as a high

training accuracy and significantly lower validation accuracy. A way of reducing overfitting and

saving computational memory is doing data augmentation, in which data is modified in such a way

that the model cannot tell it is not the same data, for example by flipping images and adding noise

to them while keeping the original image as well. This is a good way to increase the size of training

data, if the volume of training data is not enough to combat overfitting. Another way of reducing

overfitting is applying dropout to the data (Figure 4.), in which some neurons are randomly turned

off,  forcing  the  model  to  generalize.  This  will  most  likely  extend the time a  network takes  to

converge, but the model will be less likely to overfit due to neurons not being able to rely on other

neurons each iteration of the network, thus reducing complexity of the solutions of the network in

regard to data. An overly complex model will only memorize a specific dataset instead of learning

to  apply  solutions  to  different  types  of  data.  Models  with  different  architectures  can  also  be

combined in order to avoid trusting a single model’s output too much, but this can be very memory-

consuming considering that networks today tend to be large and require plenty of training time.

(Krizhevsky et al. 2012)

The  extent  of  convolutional  neural  networks’ abilities  seems  almost  limitless.  CNNs can  even

potentially  be  used  to  identify  skin  cancer  from  cell  phone  images,  increasing  awareness  for

dermatological diseases (Esteva et al. 2017). CNNs have been shown to operate with identifying

fine-grained objects  such as  skin lesions  thus  aiding  in  diagnosis  of  skin  cancer,  and to  reach

pathologist  level  accuracy  in  detecting  cancerous  lesions.  Melanoma  classification,  melanoma
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classification  using  dermoscopy  and  carcinoma  classification  all  yielded  good  results  for  the

constructed AI in a study by Esteva et al. The network used was a GoogleNet Inception v3 CNN,

pre-trained with 1.28 million images, and trained with the new dataset using transfer learning. This

sort of identification tool would be useful for the public because an AI application on a phone could

detect lesions that need to be checked by a professional. However, smartphone pictures fed to a

classifier can vary in contrast, focus, angles and other factors which makes it crucial for a model to

be generalizable. In the study, this was combatted by feeding the classifier  copious amounts of

training data. 

2.4. U-net

The choice of network architecture in this study was U-net. The specialty of ISBI 2012-challenge

winning U-net is using skip-connections along with up- and downsampling layers that increase and

decrease image size. The up- and downsampling layers are symmetric and enable the user to use

less data than other options may require, due to the architecture’s ability to understand context and

localize features with good accuracy, especially in medical image segmentation tasks. Localization

of features is especially relevant for medical image analysis, since many tasks involving medical

data require segmentation of regions of interest (ROI).

U-net’s up- and downsampling parts are also called convolutional encoding and decoding units. The

output of the network is not a generated image, but a pixel-by-pixel confidence map showing the

class predictions of each pixel in the original image. This prediction map is then compared to the

ground truth, which in the case of this thesis study is a binary image created by thresholding the

ground truth images. As U-net trains, the loss function is minimized and usually the best performing

timepoint is when the validation loss is lowest. Training can be stopped by using an early stopping

callback.  Skip connections  are  created by concatenating layers and they  pass information from

downsampling  layers  to  their  corresponding  upsampling  layers  (Figure  3.).  U-net  does  this  to

combine local and contextual information to improve the precision of classification. The benefit of

skip connections lies in downsampling paths losing information during training – this information

can be fed to the upsampling path. Skip connections can be either short or long, and have been

shown to  improve  the  accuracy  of  fully  convolutional  networks  as  well  as  helping  the  model

converge faster (Drozdzal et al. 2016). 
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Deformations (warped images) can be an issue in biomedical data, as networks may not generalize

well to them. In the original U-net publication this was solved by applying elastic deformations

along  with  regular  data  augmentation  to  training  images.  Another  challenge  in  medical  image

segmentation is separating regions of interest from less interesting regions. U-net solves this by

assigning higher weights to the pixels separating these two areas thus more efficiently telling them

apart.  The number of feature channels used by layers is doubled with each convolutional layer.

Convolutional layers are unpadded, so the output image is smaller in size than the corresponding

input  –  which  is  why  a  small  batch  size  and  large  images  are  preferred  for  this  network.

(Ronneberger et al. 2015)

Many machine learning advances have been made for CT images in lung cancer in the field of

Computer Aided Diagnostic (CAD). U-net is being used successfully for image segmentation from

medical imagery such as Magnetic Resonance Imaging (MRI) when used as fully connected (FCN)

or recurrent (RCNN) convolutional neural networks. Semantic segmentation is slow to do by hand

and time is of the essence in a medical setting when many patients await for diagnosis, which is

why CAD has become a popular choice. With the emergence of very deep neural networks there has

been a  problem with  a  vanishing gradient,  but  this  can  be  fixed  by using  ReLU as  activation

function.  ReLU’s  slope  plateaus  in  only  one  direction,  making  it  possible  to  avoid  or  reduce

vanishing gradient problem. Vanishing gradient problem for recurrent and feed-forward network

models  is  a  sign  of  the  weights  not  being  able  to  update  as  training  progresses  thus  stopping

performance improvement. (Alom et al. 2018) 

In many cases it pays off to use pre-trained networks that already have initialized weights from

training with other datasets. This way the network already has some idea on how to classify objects

and can undergo training for a new specific dataset to learn a new skill. U-net can use e.g. VGG11-

initialized weights trained on Imagenet for fine tuning, but can perform well with a small dataset

without pre-trained weights. In the case of smaller datasets, however, overfitting can become an

issue. (Iglovikov & Shvets 2018)
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2.5. Well-known networks

A deep neural network has a large number of filters in a large number of layers. VGGNet by Visual

Geometry Group was one of the first deep networks released, different versions consisting of 11, 16

and 19 layers. VGGNet was published in 2014 and had great success in an ImageNet challenge.

VGGNet became state-of-the-art  when it  became public as more layers meant higher accuracy.

VGGNets  use  ReLU,  convolutional  layers  and  also  fully  connected  layers  with  softmax  end

activation. (Simonyan & Zisserman 2014) 

VGG-19  is  at  the  small  end  of  deep  networks,  however  –  a  2015  implementation  of  ResNet

contained an astonishing amount of 1202 layers (Huang  et al. 2016). CNNs represent supervised

learning, as labels are provided with the data so the network can learn what it should find. Different

uses of deep learning can be object detection, localization, explaining what is happening in a video

or picture, recognizing speech and cancer recognition in images. Some networks after a succifient

amount of training surpass human accuracy. An excellent feature of deep learning is to be able to

utilize  transfer  learning  in  teaching  the  network  to  recognize  something  from a  new problem

domain.  This  expands the  extent  of  data  the  network  is  able  to  use  and opens possibilities  of

networks that can perform with an intense amount of data. 

The  first  proposed  CNN was  LeNet-5  by  the  creator  of  convolutional  networks,  Yann  LeCun

(LeCun  et al. 1998).  LeNet-5 used convolutional,  sub-sampling and fully  connected layers and

instead of the popular choices of today, used a Gaussian connection for the final layer. (Alom et al.

2018) After LeNet came AlexNet. AlexNet was released in 2012 to respond to the growing size of

available labeled datasets, and has shown success in classification tasks. It  was one of the first

CNNs running on GPU to win an image classification contest. As the amount of training images is

climbing over  hundreds  of  thousands,  the  used networks  need to  up their  learning capacity  in

accordance.  AlexNet  consists  of  five  convolutional  and  three  fully-connected  layers  and  uses

Rectified  Linear  Units  (ReLUs)  instead  of  saturating  nonlinearities. Dropout  is  also  used  as  a

regularization method, which was a new approach at the time of AlexNet release. (Krizhevsky et al.

2012)

New  applications  of  deep  networks  are  being  developed  all  the  time  and  for  new  purposes.

Computing power and possibilities set the limit for deep learning, but they are constantly changing

and growing to enable more and more.

19



2.6. CNNs and deep learning in medical image analysis

Convolutional neural networks have been used in histological tissue analysis successfully to e.g.

outline cancerous tissue in whole slide images. In a Bejnordi et al. (2017) study based on a coding

challenge called the CAMELYON16, the best algorithm represented a better accuracy at detecting

cancerous regions than pathologists at 0.994 vs. 0.884. Lymph node metastases were detected from

whole-slide images, and it was found however good the result was, the algorithms were trained to

only discriminate  between normal  and cancer  tissue and could miss  other  pathologies,  such as

infections occurring at the same time in the same tissue. Things that improved accuracy of the

classifiers seemed to be standardization and adjusting to class imbalance in the data. In uncertain

identification cases pathologists may use extra steps such as cytokeratin masking in the process to

confirm the result as accurate, and these uncertain cases can happen with especially hematoxylin-

and eosin-stained samples. 

In a study by Valkonen et al. (2017) good performance (0.97 block-wise AUC) was achieved by

using a dual convolutional neural network (dCNN), which consists of two CNN’s tied together by

fully connected layers. In order to extract multi-scale features the constructed network was designed

in a similar way to a  “virtual pathologist” - zooming in to interesting regions after viewing the

whole  picture  in  general.  This  kind  of  approach  is  a  fitting  continuity  of  mammalian  brain-

mimicking  neural  networks,  only  the  mimicked  mammal  is  a  pathologist  and  their  workflow.

Despite the good results these kinds of classifiers can achieve, this study also recommended it be

used as a decision support system instead of accepting the results without evaluation of the imagery

with human eye. Even when using a neural network as a decision support system instead of relying

on it as a diagnostic tool it still reduces the workload of pathologists, which is also the aim of this

study. Another study by Valkonen et al. (2018) used a pre-trained VGG-16 network to automate

epithelial  cell  detection.  The  work  was  conducted  using  breast  cancer  cell  slides  stained  with

sequential  hematoxylin-IHC  and  fluoro-chromogenic  cytokeratin-Ki67  double  staining,  and  52

images  were  reclassified  to  high  proliferation  using  this  network  after  pathologists  originally

classified them as low proliferation. This type of convolutional neural network can be a valuable

tool in diagnosis, drawing pathologists’ attention to uncertain WSIs for a second assessment.  The

human eye can and does err, and it is crucial especially in the case of cancer to achieve as reliable

results as possible – and neural networks can help with exactly that.
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On top of histological images CT scans, MRI images, PET images and many others can be used

with neural networks. Machine learning applications can be used in e.g. computer tomography,

mammography, X-ray or any medical imaging technique. CNNs are able to analyze 2D and 3D

image data by design instead of only reading in vectorized data like some other machine learning

models. (Shen et al. 2017)

A study by Hou et al. 2016 found that patch-based convolutional neural networks can outperform

CNNs that are based on images, and were the first to combine patch-level CNNs with supervised

decision fusion. Whole slide images are too large to feed to a network as they are, so the images

need to be divided into patches. An approach called MIL (Multiple Instance Learning) has also been

utilized with whole slide images and CNNs, in which unlabeled patches are used in order to predict

labels. 

Deep  neural  networks  have  been  shown  to  reach  pathologist-level  classification  success  with

multiple tissue type WSIs, including lung adenocarcinoma which is a type of non-small cell lung

cancer. A convolutional network was used in a Wei et al. 2019 study in order to find neoplastic cell

regions  and possibly  mixed heterogeneous  areas  of  cancer  with a  ResNet  Patch  Classifier  and

sliding  window approach.  Its  Cohen kappa scores  rivaled  those  of  pathologists’,  but  were  not

accurate enough to be used as a diagnostic tool, especially since these types of tasks can be difficult

for humans as well. The benefits of using a neural network model on uncertain data (for example

WSIs possibly containing different  cancer  subtypes)  are  substantial  when thinking of  diagnosis

from a patient’s view – any help in uncertain diagnosis making is an advantage. In the Wei  et al.

study data augmentation and modification was used to improve the generalizability of the model.

Data augmentation can include adjusting brightness, contrast, axis or colour of the image and thus

create more data to train the network on. 

Different convolutional network architectures (AlexNet, GoogleNet, VGGNet-16 and ResNet) have

been tested in finding associations between tumor cell morphology and subtypes, with all achieving

over 90% Area Under Curve (AUC) scores, and all models perform better than previous methods

that were feature-based (Yu et al. 2019). The overall conclusion was that simpler machine learning

models perform well on more general tasks such as identifying tumors and more complex models

are suitable for distinguishing between for example multiple tumor types. 

CNN has  been  used  with  soft-voting  in  order  to  evaluate  lung  adenocarcinoma  tumor  growth

patterns  in  whole  slide  images,  with  results  as  high  as  89% accuracy.   Soft-voting  stands  for
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choosing  the  class  with  the  highest  percentage  of  votes  given  by  the  classifier.  Lung

adenocarcinoma comes in 6 different types, which have different patterns of growth and can differ

in aggressivity, or different types of tumours can be mixed together. This can impact the time cancer

treatment takes or even different methods that should be utilized to treat the cancer. CNNs have

become a convenient state-of-the-art tool in digital pathology aiding pathologists in their workflow

and  decision-making,  which  can  be  a  difficult  task  for  the  human  eye,  especially  with

heterogeneous tumors. (Gertych et al. 2019)
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3. MATERIALS AND METHODS

3.1. The dataset

The  dataset  used  to  train  the  model  consists  of  whole  slide  images  from Jorma  Isola,  Teppo

Haapaniemi  and Satu  Teppo taken from  34 patient  samples. The slides  of  non-small  cell  lung

carcinoma  were  stained  using  immunohistochemical  fluoro-chromogenic  and  cytokeratin

techniques  and viewed under  brightfield  and fluorescent  illumination,  and corresponding WSIs

were  taken.  Images  in  the  final  dataset  were  cropped  from WSIs  so  that  all  cropped  images

contained PD-L1 positive regions. The fluoro-chromogenic images serve as a template for ground

truth and the immunohistochemical images are the images from which the classifier needs to find

regions of interest. The used staining technique blocks the signaling between PD-L1 and PD-L1

protein, resulting in PD-L1 positive regions becoming clearer to see with the eye. 

Figure 2. Comparison of regular tissue and carcinoma regions. The intensity of the PD-L1 stain differs between some

slides. 
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This type of data can present a challenge to a neural network because the images are very similar.

All of them contain cells, similar colours and nuclei, and it can even be difficult for pathologists,

not to mention other  humans,  to tell  apart  tumorous areas.  The strength and colour  of the dye

changed between samples, presenting another challenge. In addition, a part of the images contained

orange-coloured stain representing PD1 marker. These were removed to the extent that was possible

by only  keeping  the  green  (fluorescent)  channel  of  the  images  that  binary  mask  images  were

produced from. 

The  dataset  was  divided  into  three  individual  parts:  training,  validation  and  test  datasets.  The

training set is used to train the model and the validation set is used to monitor under- or overfitting

of the model during training in order to stop the process when validation loss stops decreasing. The

test set is completely separate and used to test the performance of the model after it is done training.

There was no overlap in the three different datasets due to them being manually selected to be

representative and separate, and tiling with stride being done after dividing the dataset into three

separate folders. This is to ensure there is no positive bias observed and that the model does not see

the validation or testing images during training and thus cannot memorize them.

3.2. Preprocessing and tiling WSIs

The first step in creating an image preprocessing pipeline was cropping the whole slide images to

equal  sizes of 2048x1024 in order to achieve identical dimensions in each image. Python Image

Processing (PIL) (Clark 2015) package was used to load images  and the immunohistochemical

fluoro-chromogenic WSIs were separated based on illumination into separate locations to represent

the input and target images. After the initial preprocessing the equal-sized images were fed into a

pipeline that created the ground truth binary masks from fluorescent images by adjusting brightness,

changing the image into greyscale, blurring the image with a Gaussian blur filter, and extracting a

threshold value with Otsu thresholding from the greyscale image (Otsu 1979). This threshold value

was individual for each image and was used to create a binary mask from the greyscale image.

Small  objects  were removed from binary masks to satisfy the requirements of pathologist-level

outlining  of  tumor  regions,  and  the  resulting  images  were  tiled  to  create  the  target  dataset.

Corresponding  immunohistologically dyed images were also tiled but not processed otherwise to

create a set of input images. During tiling, a custom padding function was used to pad the image

edges to produce equal sized tiles, and a stride of image width / 2 was used to create more training
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data  and  a  better  understanding of  the  tumor  regions  instead  of  separating  tumors.  The  tiling

followed a simple 2-fold rule: 128, 256, 512 etc.

3.3. Model implementation

A good practice to begin implementing a model is to get it to overfit first, then try to generalize it. If

the model starts at underfitting, it is more difficult to find the problem behind a poor learning rate. 

This model was run on CPU and GPU to reduce the computational load. A generator was also used

to feed data directly from disk to the network instead of saving all images as NumPy arrays to

memory. The U-net used was from Github (Zhixuhao 2019), with a few things modified: learning

rate, optimizer and some metrics for training history were changed. The architecture of the model

can be seen in Figure 3. 

Training data was shuffled before feeding into a data generator to ensure the batches consisted of

different types of images from different parts of the dataset. Without data shuffling the performance

of a classifier may suffer as it may learn that the images always come in a certain order. ”Early

stopping”-  and  ”checkpoint”-callbacks  were  used  with  the  model,  which  ensured  that  the  best

weights corresponding with the best model presenting the lowest validation loss was saved. This

was  especially  important  because  the  model  started  overfitting  quickly  after  reaching  peak

performance. 

The U-net  used  has  24  convolutional  layers,  4  max pooling  layers,  two dropout  layers  and  is

designed in a U-shape consisting of up- and downsampling layers. No pre-trained weights were

used, and a finished model with weights was saved for evaluation with an independent test set. The

amount of dropout applied was 0.5 for each dropout layer, and the amount of neurons followed a

two-fold rule: 64, 128, 256, 512, 1024 and reversed for the downsampling, eventually decreasing to

1 neuron due to the binary classification nature of the data. The size of input images was 256x256,

and validation loss, accuracy and IoU metrics were examined for each iteration. The similarity and

diversity  measure  IoU (Intersection  over  Union)  is  also  called  the  Jaccard  index,  explained  in

Chapter 3.4. along with other validation methods. The amount of total and trainable parameters

was 31,032,837, without any non-trainable parameters.
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Figure 3. Architecture of U-net used in this thesis study. Concatenation arrows stand for skip connections, which

transfer information from downsampling layers to upsampling layers. Conv2D stands for 2D convolutional layers.
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A data generator function was created in order to feed data to the model directly from the disk

instead of saving images as NumPy arrays into a variable requiring large amounts of memory. This

significantly speeds up the process. The pipeline was created with Python (version 3.5.4). Packages

NumPy 1.15.2  (Oliphant  2006),  Python  Image Processing  5.0.0  (Clark  2015),  Matplotlib  2.1.1

(Hunter 2007), Keras 2.2.4 (Chollet 2015), Scipy 1.0.0 (Jones et al. 2001), Scikit-image 0.14.2 (van

der Walt et al. 2014), os (Miscellaneous operating system interfaces, posix), re (Regular expression

operations,  2.2.1)  and  functions  from  Bioimage  Informatics-group’s  Github  were  used  in  the

implementation of tiling, preprocessing, creating a generator function and the actual model.  The

backend used with Keras was Tensorflow.

Dropout was used to regularize the model. Dropout simply means that with each iteration of the

data a part of the neurons are dropped out of training, not participating in the classification tasks

(Figure 4.). With adequately shuffled training data, this will happen again with each epoch and lead

to better generalization of the model. This way the neurons cannot solely memorize data instead of

learning. In this pipeline methods like dropout and early stopping are taken advantage of to avoid

overfitting.  Early stopping means monitoring the validation loss  after  each epoch and stopping

training when validation loss stops decreasing. Interestingly dropout is, in a way, modeled after

living things like neural networks are – the idea is based on sexual reproduction,  in which the

combinations of genes that are submitted to offspring is random (Srivastava et al. 2014). In this case

the activated and non-activated combinations are of neurons. The ultimate goal of a convolutional

neural network is to be robust and generalizable with a good predictive accuracy.

Figure 4. A single run of a network with dropout applied, withholding a random selection of 1/3 of neurons from taking

part in the training  and outputting a single class prediction at the end. The direction of the network is downwards. The

withheld neurons may be used in the following iterations of the network.
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Binary cross-entropy (BCE) (1) was used as the loss function because the image segmentation task

was binary with two classes to classify pixels to: regular tissue and PD-L1 positive tissue, also

called background (numerically 0) and target (numerically 1), so binary cross-entropy was a natural

choice for a binary classification problem such as this, as defined by Drozdzal et al. (2016) below:

LBCE=∑
i

y i⋅log(oi)+(1− y i)⋅log (1−oi)                                       1)

Sigmoid activation function (2) was used for the final layer activation and ReLU otherwise for each

convolutional layer. Sigmoid activation function is a commonly used two-class activation function

that outputs results between the range of 0 and 1, useful for predicting probabilities such as the

probability for a pixel to be classified into 0 or 1. In this study the last layer of U-net has a sigmoid

activation function instead of ReLU in all other layers. The basic sigmoidal function from Han &

Moraga (1995) is presented below:

f (h)
1

1+exp(−2βh)
                                                            2)

Adam,  or  Adaptive  Moment  Estimation,  is  a  robust  adaptive  optimization  method  especially

efficient with training neural networks and introduced by Kingma & Ba (2017), but it has been

found by Keskar & Socher (2017) that in some cases adaptive optimizers do not generalize as well

as the stochastic gradient descent method. Stochastic gradient method originates from stochastic

approximation (Robbins & Monro 1951).  The difference between stochastic gradient descent  (3)

and adaptive optimizer functions is that SGD does not limit how it scales the gradient, which has

been fixed for adaptive functions such as Adam. Adaptive functions also correct bias. SGD uses a

scalar learning rate, and adaptive functions use a vector of multiple learning rates which evolve and

change as the training of the model goes on, creating one learning rate value for each parameter. 

w :=w−η∇Qi(w) for i = iteration                                            3)

However in this study optimizers Adam (4) and Adadelta (5) were used for comparison instead of

stochastic gradient descent due to their known good results with this type of data and network.

w k=w k−1−αk−1⋅
√1−β2

k

1−β1
k ⋅

mk−1

√vk−1

+ϵ                                              4)

Adadelta  (Zeiler, 2012)  is a robust optimizer derived from ADA-GRAD designed to require little

concern to adjusting the learning rate due to smart adapting. The learning rate used by Adadelta is

28



dynamic, because it uses solely first-order information and is computed on a per-dimension basis.

Learning rate decay is used to avoid getting stuck in local minima, which can happen if learning

rate remains too high throughout training.

∆ x t=−
RMS [∆ x ]t−1

RMS [g ]t
⋅gt                                       5)

In this study Adam was used with learning rates of 0.0001 and 0.00001. Adadelta was used with a

standard learning rate of 1.0. Adam optimizer and using dropout in order to prevent overfitting has

been shown to be a good combination and produce good convergence by Kingma & Ba (2017). Two

layers of dropout with the value of 0.5 were used in the pipeline.

There exist different types of rectified activation functions introduced by Hahnloser  et al. 2000,

such as standard rectified linear unit (ReLU) and leaky rectified linear unit (Leaky ReLU). The

difference between ReLU (6) and leaky ReLU is that the latter does not drop the negative part, but

allows  a  tiny  gradient  for  it.  ReLU,  on  the  other  hand,  remains  linear  for  positive  values  but

becomes  zero  for  negative  values,  which  makes  it  a  good  choice  for  many  machine  learning

problems. ReLU functions as a linear function that prunes the negative part of a piece to zero and

keeps the positive part of the piece. This can also help the model to converge faster, which means

decreasing  training  loss  to  an  acceptable  level  while  training.  However  by  not  accepting  any

negative values regular ReLU can create dead neurons, which are stuck outputting zero and are

essentially useless. Other types of ReLUs exist as well, such as RReLU and PReLU. The benefits of

using a non-saturated activation function such as the ReLU are to help the model converge faster

and avoid the vanishing gradient issue. (Xu et al. 2015)

An important part of ReLU is being sparsely activated, much like actual neurons in a mammalian

brain. Not all neurons fire at the same time, and there is a benefit to this not happening inside a

machine learning model, either. For example overfitting and noise can be reduced by doing this. 

f (x)={ x if x>0
0otherwise

                                                            6)

Training set batch size can have an effect on network performance. Greater batch size can lead to

much more accurate results, because the network learns differences between training samples better

when there are more examples available each iteration (Radiuk 2017). It has been debated that the

optimal amount of samples per batch lies between 64 and 512, but such large amounts of data per
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iteration aren’t possible for computationally heavy networks such as U-net.  The batch size used

with this study was 20. The network model looped through each pixel of the image tiles, classifying

it a 0 or 1, with 0 being regular tissue and 1 being carcinoma tissue (or other PD-L1 activated

tissue).

3.4. Validation methods

In this chapter the equations, metrics and other validation methods that were used are explained.

Metrics like IoU, AUC and others should be used along with accuracy to give correct information

on how well a segmentation has achieved its goals without giving in to bias present in the data due

to class imbalance (Valkonen et al. 2018). In many machine learning problems the data is assumed

to be i.i.d., identically and independently distributed (Sokolova et al. 2006). Metrics used to assess

the performance of models were IoU, F-score, AUC-score, ROC curve and accuracy. The following

equations for all but Jaccard index are from the Sokolova et al. 2006 publication.

Intersection  Over  Union (IoU)  (7), also  called  the  Jaccard  index (Jaccard  1901),  measures  the

amount of overlap between the predicted image and the ground truth image. In order to calculate it,

a threshold value has to be chosen and the predicted images need to be binarized. In the case of this

study the chosen threshold was 0.5.

IoU=
Target∩Prediction
Target∪Prediction

                                                    7)

Specificity is calculated by dividing the amount of true negatives with the combined amount of true

positives and false negatives (8). False Positive Rate or FPR is calculated by subtracting specificity

from 1. AUC scores (12) were calculated and ROC curves (13) plotted based on False Positive Rate

(8) and True Positive Rate (9).

Specificity=
True negatives

Truenegatives+False positives
                                       8)

FPR=1−Specificity

Sensitivity is calculated by dividing the number of true positives with the combined number of true

positives and false negatives (9). Sensitivity is also called the True Positive Rate or TPR. 

Sensitivity=
True positives

True positives+False negatives
                                      9)
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F-score (10) is a commonly used binary classification evaluation metric for a more reliable accuracy

metric, calculated as follows. Precision stands for the amount of true positives divided by the sum

of true positives and false positives: all samples labelled positive that are actually positive.

F1=2⋅
precision⋅sensitivity
precision+sensitivity

                                                 10)

Basic accuracy (11) calculates the amount of true negatives and true positives over the whole set,

but doesn’t give information on the number of correct labels. This is the reason in some medical

image  classification  problems  accuracy  should  not  be  given  too  much  importance  in  the  final

evaluation as an evaluator of performance. 

accuracy=
true positives+true negatives

true positives+ false positives+false negatives+true negatives
             11)

Area Under Curve or AUC score (12) can be thought of as balanced accuracy and can be calculated

as follows:

AUC=
sensitivity+specificity

2
                                                12)

ROC curve is plotted based on the following equation:

ROC=
P(x∣positive)
P (x∣negative)

                                                     13)
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4. RESULTS

The analysis  phase consisted  of  two parts:  choosing a  good optimizer  and cross-validating the

network with the best  chosen optimizer.  The number of  samples  used was 34,  out  of which 3

samples were reserved for validation and 3 for testing. Both CPU and GPU were used. The results

show  a  good  average  area  under  curve  score  (AUC=0.96)  after  phase  two  of  the  analysis  in

classifying IHC fluoro-chromogenic stained non-small cell carcinoma images (Figure 5.). 

Figure 5. a) Blocks with immunohistochemical fluoro-chromogenic dye, under brightfield. b) Blocks with

immunohistochemical fluoro-chromogenic dye, under fluorescent illumination. c) Ground truth produced from the

fluorescent images. d) Prediction generated by model. First row represents model with Adam optimizer’s learning rate

set to 0.00001, second row Adam with learning rate of 0.0001, and third row model with Adadelta optimizer.
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It is evident the performance of this model does not reach perfection (Figure 6.): for some blocks

the binary mask automatically generated from fluorescent images is not an ideal fit to be used as

ground truth,  and for some blocks the PD-L1 positive regions don’t  have enough colour  to be

visible in brightfield illumination, making classification difficult. 

Figure 6. Examples of image blocks that the classifiers had trouble with. First row represents model with Adam

optimizer’s learning rate set to 0.00001, second row Adam with learning rate of 0.0001, and third row model with

Adadelta optimizer. In these cases the binary mask is either not accurate enough or the staining isn’t revealing ROI

under brightfield, only under fluorescent illumination.

The results show that U-net performs well at recognizing cancerous areas in non-small cell lung

carcinoma images: an AUC score of up to 0.934 was achieved during part one of testing (Figure 7.)

for 2688 blocks of test data. The best chosen model achieves an AUC score of 0.960 after manual k-

fold cross validation (Table 3.).  Accuracy and loss were monitored through training and it  was
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found that the model reaches a high accuracy early in the training, after less than ten epochs in all

tested cases (Figures 8, 9, 10). After the best performance is achieved the model quickly starts to

overfit, so different dropout values were tested. The possible reasons of overfitting are discussed in

Chapter 5. There were no significant changes to model performance from different parameters or

batch size, but batch size 20 was found to yield the best results so it was chosen as batch size for all

runs of the model. Epochs were set to 100 with early stopping and patience limit of 10-20 epochs,

the loss used was binary cross-entropy and the last  convolutional layer used sigmoid activation

function to create prediction results in between 0 and 1. Patience limit means the amount of epochs

the program waits for validation loss to decrease before using early stopping to save the best model

and end the training. Target images were binary and input images were normalized in between -1

and 1. Adadelta and Adam optimizers with different learning rates were tested: Adadelta with 1.0

and Adam with 0.0001 and 0.00001 learning rate. Decay was set to 0.0 in all models.

A 2688-block validation data set for choosing the optimizer was hand picked to be as heterogeneous

as  possible.  There  was  no  overlap  between training,  validation  and  test  set  blocks.  There  was

overlap in the blocks  inside each dataset due to stride during tiling phase. There is no significant

amount of class imbalance in the data, which is why in the case of this dataset and model the ROC-

curve  (Figure  7.)  is  a  better  measure  of  performance  than  precision-recall  curve.  All  models

performed well and on par with each other, with no significant differences. Class imbalance can be

a challenge when using medical imagery as data, since the majority of the images tend to be normal

and only a small part contain a tumor or lesion, leading to class imbalance problems. 

The first step was to choose the best optimizer and learning rate, which is shown in the following

figures 7, 8, 9 and 10. After choosing the most promising optimizer manual k-fold cross-validation

was repeated 5 times with independent test sets of 3500-4000 blocks.
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Figure 7. ROC curves and AUC scores for all models with different optimizers in the first phase. From left to right:

Adam(lr=1e-5) with AUC=0.933, Adadelta(lr=1.0) with the best performance of AUC=0.934 and Adam(1e-4) with

AUC=0.932.

Figure 8. Monitored metrics for Adam optimizer with a 0.0001 learning rate, during training. This is the default

learning rate for U-net. The model with the lowest validation loss (0.33) was chosen to be the best one for predictions.

X-axis represents the number of epochs and y-axis the used metric scale. The best model has a loss of ~0.331 and

accuracy of ~0.858. The axis scales are different for each model due to early stopping.

35



It can be seen that the version of the model with Adam optimizer (learning rate = 0.0001) reaches its

peak fast and already presents good results after one epoch – this could be related to the size of the

dataset being fed in its entirety to the network at once. Other possible reasons are that the data is

quite similar, all images being tissue images with similar dye. This version of the model showed the

smoothest learning curve, the others oscillating more. (Figure 8.)

Figure 9. Monitored training metrics for Adadelta optimizer with a learning rate of 1.0. Default values were used:

learning rate of 1.0, rho of 0.95, no epsilon and decay of 0.0. The best weights had a loss of ~0.321 and an accuracy of

~0.861.

Adadelta optimizer with default values started showing overfitting patterns after epoch 7.5 (Figure

9.): validation loss started increasing and validation accuracy started decreasing. Early stopping was
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used to save the best weights at the peak of the model. Adadelta reached a loss of 0.321 and an

accuracy of 0.861.

Figure 10. Monitored training metrics for Adam optimizer with a learning rate of 0.00001. The validation set accuracy

has more fluctuation, but better accuracy and loss scores for the best weights. The best weights had a loss of ~0.329 and

an accuracy of ~0.862.

Adam optimizer with a learning rate of 0.00001 (Figure 10.) showed oscillation in the accuracy and

loss curves of the validation set. However the best accuracy 0.862 was achieved with this optimizer

and learning rate, so it was chosen for cross-validation and final assessment. It is generally a good

idea to reduce learning rate when overfitting happens. 
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Table 2. Metrics calculated for the same test set for the same model, only varying optimizers.

Metric Adadelta Adam(lr=1e-4) Adam(lr=1e-5)
Accuracy 0.86 0.86 0.86
Loss 0.32 0.33 0.33
AUC 0.93 0.92 0.93
IOU for 0.5 threshold 0.7 0.7 0.7
Precision-recall score 0.91 0.91 0.9
F-score, weighted mean 0.86 0.86 0.86

ROC-curve was plotted for each run of the network and the AUC score each version yields is a

good result of over 0.92 for each model (Figure 7.). Accuracy for each version of the model was

~85-86%. Accuracy was only used to monitor model training due to it being a less representative

metric for this type of image segmentation than for example AUC score and IOU score (intersection

over  union)  or  otherwise  known  as  Jaccard  index.  After  testing  different  optimizers  the  best

performing one was chosen and used for final cross-validation of the network. The best performing

model was Adam with a learning rate of 0.00001, which was chosen for further validation. 

The final dataset used had 28 samples for the training set,  3 samples  for the testing set  and 3

samples for the validation set. Some samples had differing amounts of images, so the results may

have  a  small  bias.  The  amount  of  256x256  training  blocks  for  each  run  of  the  network  was

approximately 31 500 and test and validation sets 3500-4000 blocks each. 

The average AUC score for the best chosen model after manual k-fold cross-validation was 0.96±

0.02, average precision-recall score 0.94±0.02 and average IOU score was 0.74±0.06. The average

F-score was 0.87±0.02. (Table 3.)
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Table 3. Results for cross-validation test sets for Adam 0.00001, rounded to .2 digits. The size of validation and test sets

was 3456 blocks each. Std stands for standard deviation.

Metric Run 1 Run 2 Run 3 Run 4 Run 5 Final std Final average
Accuracy 0.87 0.86 0.89 0.91 0.85 0.02 0.88
Loss 0.29 0.34 0.25 0.22 0.32 0.04 0.28
AUC 0.96 0.93 0.97 0.97 0.95 0.02 0.96
IOU for 0.5 
threshold

0.76 0.65 0.77 0.82 0.71 0.06 0.74

Precision-
recall score

0.95 0.9 0.96 0.97 0.94 0.02 0.94

F-score, 
weighted 
mean

0.87 0.85 0.89 0.91 0.85 0.02 0.87

The U-net  model  used for cross-validation had the following parameters:  Adam optimizer with

0.00001  learning  rate,  binary  cross-entropy,  two  dropout  layers  of  0.5,  ReLU  activations  for

convolutional layers and sigmoid activation for the final convolutional layer. The cross-validation

results show there is no great bias in how the training, validation and testing datasets are divided. 
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5. DISCUSSION

Deep networks like U-net are susceptible to overfitting, but are able to model data fast. This was the

case for this study as well – overfitting starts after a few epochs but the results gained at the peak of

the model are good and loss decreases fast. This study proves that non-small cell lung cancer data

with immunohistochemical  fluoro-chromogenic stained whole slide mages is trainable for U-net

and U-net is capable of recognizing PD-L1 activated regions with good accuracy. The final average

results from manual k-fold cross validation for the best model Adam with learning rate of 0.00001

were AUC of 0.96, accuracy of 0.88, binary cross-entropy loss of 0.28, IoU of 0.74, precision-recall

score of 0.94 and F-score of 0.87. Jaccard score (IoU) ranged between 0.699 and 0.704. (Table 2,

Table 3.)  It was also found that the difference between Adam- and Adadelta-optimizers is small

when it comes to results with non-small cell lung cancer data and U-net.

As can be seen in  Figure 11, there is room for improvement in the classification accuracy. There

exist different methods that could be used to improve the model. Ground truth images could have

been created by a pathologist by going through cancer areas pixelwise and by hand thus creating

near perfect target images. In this case the ground truth images are good but not perfect due to them

being automatically generated by thresholding. Data augmentation could be done to increase the

size of  the dataset  from thousands to  millions of images,  improving the generalizability  of the

model and leading to increasing accuracy when trained for longer periods. With this dataset the

model starts to overfit if it is trained for a longer time, so the accuracy also remains lower than it

possibly could be with further optimization. 

The test set could also be larger. Due to there being only 34 samples, during manual k-fold cross

validation 3 samples were used for the test set  and 3 samples were used for the validation set.

Cross-validation was used to reduce the bias in validating the model, so the results are more reliable

than they would be with only one run of the network. If the same testset was used for validation

each time, the results would not show the real performance of the model. 
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Figure 11. An example of prediction contours overlayed on image blocks with a) brightfield b) fluorescent illumination

and c) predicted confidence maps. The boundaries of predicted areas are approximate as they are illustrated by hand.

In the future deep learning networks could be trained to identify which part of the body an image is

coming from, but currently that still presents a challenge as most medical images need to be tiled in

order to not exceed memory limitations when training the model. (Litjens et al. 2017)

This model otherwise is able to tell regions of interest well (Figure 6.), but could be more certain of

the predictions. It also has trouble finding cancerous areas when they do not exhibit sufficient levels

of staining (Figure 11.), which was expected. With this type of data, U-net is not yet at its fullest

potential. The model could be more generalizable and data could be augmented in order to possibly

improve  the  result. Data  augmentation  means  increasing  the  size  of  the  dataset  by  modifying

existing data and ”fooling” the network into thinking the modified images have not been introduced
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to it  before.  Especially image orientation and colour differences could be beneficial  for stained

tissue sample WSIs. Classification of images must be unrelated to orientation. Data augmentation

such as rotating and flipping the data has been proven successful in generalizing a classifier (Wei et

al. 2019). Plenty of convolutional neural networks reach their peak after being trained with millions

of images, and in this case the amount of training data stayed in the thousands.  The best action

would be to ensure ground truth data is excellent by having a pathologist draw bounding boxes

instead of doing automatic thresholding to get binary masks. Validation by a pathologist is also a

method of getting a more reliable understanding on how the model performs. 
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6. CONCLUSIONS

In this thesis study a pipeline was created that preprocessed IHC fluoro-chromogenic histological

images and trained a U-net on them. The results show that the convolutional neural network used

was able to identify cancerous regions in non-small cell lung carcinoma WSIs with an average AUC

score of 0.960. The study was performed working for Bioimage Informatics group at Faculty of

Medicine and Health Technology, Tampere University.

This convolutional neural network model could be used as a decision making tool in classifying

PD-L1 and PD1- activated regions in non-small cell lung cancer whole slide images. The benefit of

a system like this pipeline being used by pathologists is that it could save time in diagnosis and

possibly reduce costs of diagnosis by replacing an extra staining step.  It could in the future be

developed into  usable  software  and further  optimized for  the  use  of  pathologists  in  real-world

scenarios. Optimization could include adding image augmentation, decreasing loss and improving

generalization with different non-small cell lung carcinoma datasets. The results show it could be

used as a decision support tool in classification of WSIs. There currently is no similar system being

widely used in diagnosis of non-small cell lung cancer, and studies on non-small cell lung cancer,

PD-L1 and deep learning combined are scarce.

The results of this study may be improved with data augmentation or a pathologist creating the

target  images  by hand instead of  automatically  thresholding the binary masks from fluorescent

images. Different parameters and changes to the network architecture may be examined, or different

networks altogether. However, the performance of this model is good considering the data type can

be complex to  learn.  Further  validation could be performed by consulting a  pathologist  on the

performance of the classifier.
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	Non-small cell lung cancer is classified into five subtypes, different by histology: solid, acinar, papillary, micropapillary, and lepidic. The treatment options for each of these depend on the tumor stage of the cancer, with e.g. solid tumor tissue patterns being associated with a poor prognosis – not to mention the different subtypes of lung cancer can be mixed together as histologically heterogeneous tumors, making diagnosis difficult (Wei et al. 2019).
	Many machine learning advances have been made for CT images in lung cancer in the field of Computer Aided Diagnostic (CAD). U-net is being used successfully for image segmentation from medical imagery such as Magnetic Resonance Imaging (MRI) when used as fully connected (FCN) or recurrent (RCNN) convolutional neural networks. Semantic segmentation is slow to do by hand and time is of the essence in a medical setting when many patients await for diagnosis, which is why CAD has become a popular choice. With the emergence of very deep neural networks there has been a problem with a vanishing gradient, but this can be fixed by using ReLU as activation function. ReLU’s slope plateaus in only one direction, making it possible to avoid or reduce vanishing gradient problem. Vanishing gradient problem for recurrent and feed-forward network models is a sign of the weights not being able to update as training progresses thus stopping performance improvement. (Alom et al. 2018)
	Deep neural networks have been shown to reach pathologist-level classification success with multiple tissue type WSIs, including lung adenocarcinoma which is a type of non-small cell lung cancer. A convolutional network was used in a Wei et al. 2019 study in order to find neoplastic cell regions and possibly mixed heterogeneous areas of cancer with a ResNet Patch Classifier and sliding window approach. Its Cohen kappa scores rivaled those of pathologists’, but were not accurate enough to be used as a diagnostic tool, especially since these types of tasks can be difficult for humans as well. The benefits of using a neural network model on uncertain data (for example WSIs possibly containing different cancer subtypes) are substantial when thinking of diagnosis from a patient’s view – any help in uncertain diagnosis making is an advantage. In the Wei et al. study data augmentation and modification was used to improve the generalizability of the model. Data augmentation can include adjusting brightness, contrast, axis or colour of the image and thus create more data to train the network on.

