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Abstract

During the last decade, wireless technologies have experienced signi�cant development,
most notably in the form of mobile cellular radio evolution from GSM to UMTS/HSPA
and thereon to Long-Term Evolution (LTE) for increasing the capacity and speed of
wireless data networks. Considering the real-time constraints of the new wireless
standards and their demands for parallel processing, recon�gurable architectures and
in particular, multicore platforms are part of the most successful platforms due to
providing high computational parallelism and throughput. In addition to that, by
moving toward Internet-of-Things (IoT), the number of wireless sensors and IP-based
high throughput network routers is growing at a rapid pace. Despite all the progression
in IoT, due to power and energy consumption, a single chip platform for providing
multiple communication standards and a large processing bandwidth is still missing.
The strong demand for performing different sets of operations by the embedded systems
and increasing the computational performance has led to the use of heterogeneous
multicore architectures with the help of accelerators for computationally-intensive
data-parallel tasks acting as coprocessors. Currently, highly heterogeneous systems
are the most power-area ef�cient solution for performing complex signal processing
systems. Additionally, the importance of IoT has increased signi�cantly the need for
heterogeneous and recon�gurable platforms.

On the other hand, subsequent to the breakdown of the Dennardian scaling and due to
the enormous heat dissipation, the performance of a single chip was obstructed by the
utilization wall since all cores cannot be clocked at their maximum operating frequency.
Therefore, a thermal melt-down might be happened as a result of high instantaneous
power dissipation. In this context, a large fraction of the chip, which is switched-off
(Dark) or operated at a very low frequency (Dim) is called Dark Silicon. The Dark
Silicon issue is a constraint for the performance of computers, especially when the
up-coming IoT scenario will demand a very high performance level with high energy
ef�ciency. Among the suggested solution to combat the problem of Dark-Silicon, the
use of application-speci�c accelerators and in particular Coarse-Grained Recon�gurable
Arrays (CGRAs) are the main motivation of this thesis work.

This thesis deals with design and implementation of Software De�ned Radio (SDR)
as well as High Ef�ciency Video Coding (HEVC) application-speci�c accelerators for
computationally intensive kernels and data-parallel tasks. One of the most important
data transmission schemes in SDR due to its ability of providing high data rates is
Orthogonal Frequency Division Multiplexing (OFDM). This research work focuses on
the evaluation of Heterogeneous Accelerator-Rich Platform (HARP) by implementing
OFDM receiver blocks as designs for proof-of-concept. The HARP template allows
the designer to instantiate a heterogeneous recon�gurable platform with a very large
amount of custom-tailored computational resources while delivering a high performance

i



ii Abstract

in terms of many high-level metrics. The availability of this platform lays an excellent
foundation to investigate techniques and methods to replace the Dark or Dim part of
chip with high-performance silicon dissipating very low power and energy. Furthermore,
this research work is also addressing the power and energy issues of the embedded
computing systems by tailoring the HARP for self-aware and energy-aware computing
models. In this context, the instantaneous power dissipation and therefore the heat
dissipation of HARP are mitigated on FPGA/ASIC by using Dynamic Voltage and
Frequency Scaling (DVFS) to minimize the dark/dim part of the chip. Upgraded
HARP for self-aware and energy-aware computing can be utilized as an energy-ef�cient
general-purpose transceiver platform that is cognitive to many radio standards and can
provide high throughput while consuming as little energy as possible. The evaluation
of HARP has shown promising results, which makes it a suitable platform for avoiding
Dark Silicon in embedded computing platforms and also for diverse needs of IoT
communications.

In this thesis, the author designed the blocks of OFDM receiver by crafting template-
based CGRA devices and then attached them to HARP's Network-on-Chip (NoC)
nodes. The performance of application-speci�c accelerators generated from template-
based CGRAs, the performance of the entire platform subsequent to integrating the
CGRA nodes on HARP and the NoC traf�c are recorded in terms of several high-
level performance metrics. In evaluating HARP on FPGA prototype, it delivers a
performance of 0.012GOPS/mW. Because of the scalability and regularity in HARP, the
author considered its value as architectural constant. In addition to showing the gain
and the bene�ts of maximizing the number of recon�gurable processing resources on a
platform in comparison to the scaled performance of several state-of-the-art platforms,
HARP's architectural constant ensures application-independent �gure of merit. HARP
is further evaluated by implementing various sizes of Discrete Cosine transform (DCT)
and Discrete Sine Transform (DST) dedicated for HEVC standard, which showed its
ability to sustain Full HD 1080p format at 30 fps on FPGA. The author also integrated
self-aware computing model in HARP to mitigate the power dissipation of an OFDM
receiver. In the case of FPGA implementation, the total power dissipation of the
platform showed 16.8% reduction due to employing the Feedback Control System (FCS)
technique with Dynamic Frequency Scaling (DFS). Furthermore, by moving to ASIC
technology and scaling both frequency and voltage simultaneously, signi�cant dynamic
power reduction (up to 82.98%) was achieved, which proved the DFS/DVFS techniques
as one step forward to mitigate the Dark Silicon issue.
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1 Introduction

With the continuous development of wireless mobile communications and embedded
systems, Internet-of-Things (IoT) as a third wave of information technology will be
widely used in homes, industries and cities. Because of its huge market prospects,
IoT is a hot topic today and has been paid close attention by several companies and
standardization bodies all over the world. It is expected that by 2020more than 50
billion devices will get connected with each other over a network without requiring
human-to-human or human-to-computer interaction. On the other hand, with increasing
demand for additional bandwidth, new wireless communication technologies namely
Long-Term Evolution (LTE) and 5G (the next generation of mobile internet connectiv-
ity) should employ Dynamic Spectrum Access (DSA) [ 2] for ef�ciently utilizing the
spectrum across frequency, space and time while resolving spectrum scarcity issue. In
this context, the recon�gurable wireless platforms can be utilized in order to realize
DSA. It can be achieved by using Software De�ned Radio (SDR) technology and its
intelligent version called Cognitive Radio (CR) [ 3]. In order to design and implement
the radio systems on multi-mode multi-standard transceivers, several requirements
have to be ful�lled, mainly: �exibility, scalable high computational power to meet
the real-time constraints by wireless communication systems, and power ef�ciency to
meet the allocated tight power budget in radio systems. According to the mentioned
requirements, Multi-Processor Systems-on-Chip (MPSoCs) are suitable architectures
for the implementation of SDR by providing a high degree of �exibility as well as
high computational power. In a SDR platform, most of the kernels related to signal
processing can be implemented by programmable processing technologies including
General Purpose Processor (GPP), Digital Signal Processor (DSP), Field Programmable
Gate Array (FPGA) and Coarse-Grained Recon�gurable Arrays (CGRAs). Different
types of data transmission schemes are employed in wireless communication systems
such as Orthogonal Frequency Division Multiplexing (OFDM) which is important in
SDR because of its ability to provide high data rates. OFDM systems split an input
high-speed data stream into several parallel streams which demand parallel processing.

The importance of meeting the real-time constraints of the new wireless standards and
their requirements for parallel processing make the recon�gurable architectures as one
of the most successful platforms. They can provide high computational parallelism
and throughput while having low energy. Recon�gurability means modifying the
functionality at run-time for several applications which offers the �exibility of software
with the performance of hardware. Recon�gurable architectures can be classi�ed into
three different categories (�ne-grained, middle-grained and coarse-grained) based on
the level of granularity. Furthermore, considering the requirement of IoT in future,
a single-chip platform for providing multiple communication standards and a large
processing bandwidth is still missing. The wireless communication terminals have to

1
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be multi-functional in order to support multiple applications. Although many Single
Instruction Multiple Data (SIMD) architectures like SODA ( 2007) [4] and Montium
(2008) [5] have been proposed for SDR applications in the past decade, an ef�cient
cognitive radio engine based on MPSoC has not been developed yet. Currently, highly
heterogeneous multicore architectures and recon�gurable platforms are one of the best
candidates in terms of the power-area ef�ciency for performing the complex signal
processing systems as well as meeting the requirements of IoT. During the recent
years, a handful of research groups around the world have focused their attention on
recon�gurable systems, in particular CGRAs, for wireless signal processing. An array of
prede�ned Processing Elements (PEs) is used in CGRAs to provide high computational
power as well as low energy consumption.

In 1965, Moore's Law predicted that the number of transistors per chip doubles every
two years at constant cost [6]. Then Dennard in 1974showed that the power dissipation
density can be kept constant by scaling the voltage and the dimensions of the transistor
which was threatening an end to Moore's Law [ 7]. According to the Dennard scaling,
voltage and current should be proportional to the linear dimensions of a transistor.
Therefore, circuits can be operated at higher frequencies at the same power as the size
of the transistors shrunk and the voltage was attenuated. Even though Dennard Scaling
tried to show how CMOS devices can be scaled for constant power density, it ignored the
baseline of power per transistor which is established by leakage current and threshold
voltage. Subsequent to putting an end to Dennard Scaling, a team at Massachusetts
Institute of Technology (MIT) found a solution in multicore scaling by presenting
RAW microprocessor architecture in 2002[8]. However, in 2010, the experimental work
explained in [ 6] showed that only 7% of a 300mm2 chip can be operated at full frequency
under a power budget of 80W which means an end also to multicore scaling. This
inability to keep the power constant results to a technology-imposed utilization wall
which affected multicore scaling. It states that in a single chip, all cores cannot be
clocked at their maximum operating frequency due to a given Thermal Design Power
(TDP) constraint which forced a large fraction of chip to be to be switched-off (dark)
or to be operated at very low frequency (dim). The dark or dim part of the chip is
called Dark- or Dim-Silicon, respectively. In 2012, Michael B. Taylor has introduced Four
Horsemen of Dark Siliconas a four top contenders in order to deal with this issue which
are characterized into four different approaches: shrink, dim, specialize and technology
magic [9]. Among them, the Specialized Horsemansuggested that the dark area of
chip can be replaced by instantiating application-speci�c accelerators as the compute
engines highly optimized for executing massively-parallel workloads of critical-priority
applications. Therefore, the execution time can be decreased while the kernels operate
at very low frequencies. In this regard, template-based CGRAs, employed to build
up Heterogeneous Multicore Architectures (HMAs) using a Network-on-Chip (NoC),
are advocated to be instantiated in the dark area of the chip. CGRAs can be used to
generate special-purpose accelerators while being operated at a very low frequency.
They are run-time recon�gurable and programmable with a higher level language ,i.e.,
C/C++ and can offer enormous performance improvements. There are a number of
already existing CGRA architectures such as Pixie (2017) [10], EXTRA (2015-2016) ([11],
[12]), BUTTER (2007) [13], ADRES (2003-2007) ([14], [15] [16]), Morphosys ( 1998-2000)
([17], [18], [19], [20]) and PACT-XPP (2002-2003) ([21], [22]). Recent outcomes suggest
designing heterogeneous multicore platforms which support user-speci�ed scalability
and are composed of general-purpose and recon�gurable special-purpose cores with
seamless integration capability while the communication backbone can be a NoC ([ 6],
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[9]). On the other hand, CGRAs have potentially high transient power dissipation
which requires to be mitigated by employing SElf-awarE Computing (SEEC) models
and various techniques are required such as Dynamic Voltage and Frequency Scaling
(DVFS) and Feedback Control System (FCS) [23]. Furthermore, in order to support IoT
infrastructure, it is important that the power dissipation and energy consumption by
processors reduces and the on-chip resource utilization increases. SEEC model has been
introduced to dynamically control the voltage and operating frequency by using an
adaptive feedback control system to mitigate the power dissipation. In this context, the
instantaneous power/heat dissipation will be decreased to minimize the dark part of
the chip. It should be mentioned that the frequency control system also dims that part
of the chip.

1.1 Objective and Scope of Research

The primary objective of this thesis is the evaluation of Heterogeneous Accelerator-
Rich Platform (HARP) by subjecting it to a stringent test to determine its potential
architectural fallacies and pitfalls. HARP is already designed as a template-based
architecture programmable in C language in a collaboration between the University of
Chicago (UoC), IL, USA, and our research group in TUT for maximizing the number of
computational resources for algorithm acceleration ([ 24], [25]). There are a number of
already existing heterogeneous platforms with nearly similar design philosophy that are
generally structured as many general-purpose and application-speci�c cores connected
over a NoC, such as MORPHEUS (2007-2017) ([26], [27], [28]) and P2012(2012-2014)
([29], [30]). However, the ef�cient utilization of on-chip resources has to be justi�ed. It
is observable that most of the on-chip resources are not utilized over the entire frame
of execution-time and are over or under resourced for the applications that they are
designed for [ 6]. The HARP template allows the designer to instantiate a heterogeneous
recon�gurable platform with a very large amount of custom-tailored computational
resources for high performance. The HARP template is composed of nine nodes
where several template-based CGRAs ([31], [32]) of speci�c sizes tailored for speci�c
applications are integrated with one or a few Reduced Instruction-Set Computing (RISC)
cores over a NoC as a processor/coprocessor model. The template-based CGRAs can
work in parallel to execute different tasks independently or in communication with
each other in the case of data dependency.

The HARP template is �rst evaluated by implementing the OFDM receiver blocks as
a proof-of-concept. OFDM is one of the most important data transmission schemes
in SDR and also one of the candidates to be employed in 5G. An OFDM receiver is
composed of some of the most computationally-intensive parallel tasks such as Fast
Fourier Transform (FFT), Correlation and Complex Matrix-Vector Multiplication (MVM)
which should be implemented by crafting template-based CGRAs. Furthermore, it
includes some serial in nature tasks which require to be performed by GPP. Recently, a
power ef�cient, FPGA-based, parallel-pipelined architecture for an OFDM baseband
modulator has been proposed in order to support a set of OFDM numerologies for
future 5G communication systems ([33], [34]). Therefore, OFDM receiver with such a
�ne mixture of serial and parallel algorithms is selected and implemented based on IEEE
802.11a/g standard speci�cations [ 35] in order to explore and evaluate almost all the
design features of HARP. The implementation of OFDM receiver blocks has led to scale
template-based CGRAs to different dimensions and establish almost all possible ways
of PE interconnections based on the algebraic expressions of each particular application
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while time-multiplexed patterns for data placement in the CGRA memories is explored.
Due to the data dependency between the blocks of an OFDM receiver, the data must be
exchanged among different crafted template-based CGRAs over the NoC by using Direct
Memory Access (DMA) device for complete OFDM implementation. The instantiated
few RISC cores in this design and test regime distribute the con�guration streams
and the data to be processed to all the integrated template-based CGRAs in addition
to act as the controllers. The RISC cores are also available for performing the serial
in nature algorithms and establishing synchronization among all the CGRA nodes
and monitor their performance. Although the implementation of an OFDM receiver
provided suf�cient switching activity on all the NoC nodes and resulted in meaningful
and tangible conclusions, a single case-study was not be enough to empirically assess
an architecture. Therefore, the author further evaluated the HARP template by selecting
various sizes of Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST)
dedicated for High Ef�ciency Video Coding (HEVC) standard. In both case-studies, the
performance of each template-based CGRA, the collective performance of the entire
platform and the NoC traf�c are recorded in terms of the number of Clock Cycles (CC)
and several high-level performance metrics such as Giga Operations Per Second per
milliWatts (GOPS/mW). Furthermore, cross-technology comparisons among HARP and
other state-of-the-art platforms are performed.

This thesis is also addressing the power and energy issues of the computer systems by
tailoring the HARP for self-aware computing model. To support IoT infrastructure, it is
important that the power dissipation and energy consumption by processors reduces
and the on-chip resource utilization increases. For this purpose, the HARP template is
estimated in 28nm Stratix-V FPGA device ([ 36], [37]) and also 28 nm Ultra-Thin Body
and Buried oxide (UTBB) Fully-Depleted Silicon-On-Insulator (FD-SOI) ASIC technology
in order to provide the possibility of scaling the voltage in addition to the frequency
and get more bene�ts in terms of dynamic power dissipation reduction. The self-aware
computing model applied on HARP exploits Feedback Control System (FCS) which
constantly monitors the execution-time of each core. Then based on the worst execution-
time, FCS dynamically scales the operating frequency and the voltage of each CGRA
node of the NoC. As a result, the performance of the overall system is equalized towards
a desired level besides mitigating the dynamic power dissipation. The upgraded HARP
can act as an energy-ef�cient general-purpose transceiver platform that is cognitive to
many radio standards and can provide high throughput while consuming as low energy
as possible. Moreover, the Dark Silicon as a resource will be harvested and transformed
into ef�ciently utilizable processing units. In other words, the proposed approach is
utilizing Dark Silicon for performing massively-parallel workloads of critical-priority
applications by employing the specialized accelerators in large-scale heterogeneous
multicore architecture. HARP lays an excellent foundation to investigate techniques to
replace the Dark Silicon with high-performance silicon dissipating very low power and
energy.

The author also presents a HW/SW codesign of an OFDM receiver by using High-Level
Synthesis (HLS) tools from Xilinx. The tool provided an embedded C/C++ application
programming interface in order to develop heterogeneous embedded systems. The
�ne mixture of serial and parallel algorithms makes an OFDM receiver as a suitable
candidate to be implemented into hardware by compiling the functions written in C/C++
code for every block separately. A general comparison among the HARP template and
ZC706evaluation board with the implemented OFDM receiver is presented.
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The main results achieved in this thesis can be highlighted as follows:

• Evaluation of almost all the architectural features of HARP by design and imple-
mentation of IEEE 802.11a/g receiver blocks as well as 4/ 8/ 16/ 32-point DCT and
4-point DST dedicated for HEVC;

• Proof-of-concept scalable template-based HARP suitable for diverse needs of IoT
as a general-purpose power- and energy-aware transceiver platform;

• Methodology for improving Dark Silicon in embedded computing platforms by
applying self-aware computing model on HARP and mitigating the signal transi-
tion activity over the entire platform with reference to the worst-case performing
core for power conservation;

• Demonstration of modularity and regularity in the HARP as well as exploration of
an architectural constant for HARP based on GOPS/mW which is not changeable
by scaling the computational resources of a platform;

• Allocation of computational resources at design-time in order to utilize most of
the on-chip resources over the entire frame of execution time;

• Demonstration of the bene�ts of scaling the integrated template-based CGRAs to
very large dimensions and maximizing the number of recon�gurable processing
resources on a platform by comparing the HARP template against other state-of-
the-art platforms;

• Providing important insight and guidelines for the designers in order to implement
near-optimal mapping of target applications in terms of performance, resource
utilization, power dissipation and execution time.

1.2 Author's Contribution to the Published Work

The work presented in this thesis has mainly been extracted from the following publi-
cations in which the author was the �rst author and the research area was proposed
and supervised by Prof. Jari Nurmi. He has contributed to all of the publications and
provided extensive feedback for the manuscript drafts.

In publication [P. I] , the author designed and implemented the IEEE 802.11a/g re-
ceiver blocks by using the template-based CGRAs as application-speci�c accelerators
to COFFEE RISC processor. The author designed all the accelerators by crafting the
template-based CGRA, based on the algebraic expressions of the required algorithms.
The accelerators designed are synthesized on the Stratix-V FPGA device and evaluated
for performance in terms of the number of clock cycles, speed-up in comparison with
the RISC software implementation, resource utilization, maximum operating frequency,
power dissipation and energy consumption. Dr. Waqar Hussain and Prof. Jari Nurmi
provided technical comments and supervised the entire work.

In publication [P. II] , the author put his effort in optimizing the implementation of
correlation accelerator used for time synchronization block required in IEEE 802.11a/g
receiver by scaling-up the template-based CGRA. The accelerator is synthesized on
FPGA device and the power dissipation is estimated by simulating the post�t gate-level
FPGA netlist. Furthermore, the author performed cross-technology comparisons of the
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platform with the other state-of-the-art platforms in terms of GOPS and GOPS/mW. Dr.
Waqar Hussain and Prof. Jari Nurmi gave the �nal comments on the work.

In publication [P. III] , the author presented an implementation of IEEE 802.11a/g
receiver blocks by employing HLS tool from Xilinx called SDSoC which provides an
embedded C/C++ application programming interface for developing heterogeneous
embedded systems. The experimental platform in this case-study was Zynq SoC
containing an ARM processor besides a FPGA. Every block of the receiver was written
by the �rst author in C/C++ code to be realizable on the FPGA and the ARM processor
and then evaluated on ZC706board and compared against the HARP. This work was
completely performed by the �rst author during his research visit to Ruhr University
Bochum (RUB), while the second author assisted in working with HLS tool and ZC 706
board. The overall work was supervised by Prof. Diana Göhringer and Prof. Jari Nurmi.

In publication [P. IV] , which is an extension to the author's �rst and second conference
papers published in DASIP 2015and NORCAS 2015, the author evaluated the HARP
by implementing IEEE 802.11a/g receiver blocks as designs for the test of functionality.
In this paper, the author mapped and integrated all designed receiver blocks using the
template-based CGRAs on HARP and then subjected it to a stringent test for identifying
potential architectural fallacies and pitfalls. The author also assigned an architectural
constant based on achieved GOPS/mW to HARP due to its scalability and regularity
which ensures application-independent �gure of merit. Dr. Waqar Hussain and Prof.
Jari Nurmi gave technical comments and invaluable feedback and supervised the entire
work.

In publication [P. V] , which is an extension to the �rst author's conference paper
(published in NORCAS 2017) with an invitation, the author presented an integrated
self-aware computing model in the HARP to mitigate the power dissipation of an IEEE
802.11a/g receiver. In the proposed self-aware computing model, FCS is exploited
for monitoring the execution-time of the NoC nodes constantly and scaling their
operating frequency and the voltage dynamically based on the worst execution-time.
The implementation is estimated on the FPGA-based prototyped platform and also in
28nm Ultra-Thin Body and Buried oxide (UTBB) Fully-Depleted Silicon-On-Insulator
(FD-SOI) ASIC technology. This work was mainly done by the �rst author, while
the second author assisted in synthesizing the whole platform on ASIC and scaling
the voltage and frequency. Prof. Davide Rossi and Prof. Jari Nurmi gave invaluable
feedback on overall work and helped the �rst author to come up with the �nal results.

In publication [P. VI] , the author designed and implemented various sizes of DCT/DST-
speci�c accelerators on HARP for HEVC standard by using template-based CGRAs. The
�nal architecture consists of 4/ 8/ 16/ 32-point DCT and 4-point DST. The accelerators
are arranged over a NoC structure along with three RISC cores. The author reported the
performance of each DCT/DST-speci�c accelerator, the collective performance of the
whole platform and the NoC traf�c in terms of the number of clock cycles and several
high-level performance metrics. The whole platform is synthesized on FPGA device
and then, total power dissipation and energy consumption based on post placement
and routing information are reported. Moreover, the architectural constant of HARP in
terms of GOPS/mW is again proven by the author. The entire work was completely
performed by the �rst author, while the writing of introduction and the equations
related to DCT/DST was done by the help of the second author. This work was fully
supervised by Prof. Jari Nurmi.
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1.3 Thesis Outline

This manuscript is organized as follows: Chapter 2 presents some of the existing state-of-
the-art platforms related to the work presented in the next chapters. Chapter 3 explains
the architecture of HARP and the template-based CGRAs used for integration, the
overall functionality of HARP and the internal structure of the NoC nodes [P.IV]. Chapter
4 presents the design and implementation of OFDM receiver blocks by using template-
based CGRAs ([P.I], [P.II]). Evaluation of HARP by instantiating and implementing an
OFDM receiver base-band processing as well as distributing the data among different
nodes are discussed in Chapter 5 [P.IV]. Chapter 6 focuses on power mitigation and
performance equalization of HARP on FPGA and ASIC devices by employing DFS and
DVFS techniques, respectively [P.V]. Chapter 7 presents a novel HW/SW co-design of
OFDM receiver on ZC 706board using the High-Level Synthesis (HLS) tool from Xilinx
called Software De�ned System-on-Chip (SDSoC) [P.III]. Chapter 8 concentrates on the
design and implementation of multi-purpose DCT/DST-speci�c accelerator by using
template-based CGRAs on HARP [P.VI]. Finally, in Chapter 9, concluding remarks,
open issues and the future work is presented.
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Application-speci�c accelerators in the form of processor/coprocessor model have
been developed and embedded in MPSoC for accomplishing computationally intensive
tasks. The most powerful class of accelerators are CGRAs, which act as coprocessor
to a programmable processor to form a heterogeneous multicore platform where
they can be employed simultaneously and independently of each other or even in
communication with each other at run-time. Prior to creating multicore platforms in
processor/coprocessor models, single core as a GPP has been in use for performing
many applications. Meanwhile, some accelerators have been also assigned for some
computationally intensive tasks. Later on, Very Long Instruction Word (VLIW) machines
have been developed in order to support large-scale parallel applications [ 38]. As the
time passed, VLIW architectures were combined with DSP processors for supporting
also DSP applications targeting high-end mobile communication [ 39]. In multiocore
platforms, the accelerators can be operated as coprocessors to processors either in loose
or tight coupling. In loose coupling, multiple accelerators are connected to a processor
with relatively low bandwidth and can work simultaneously [ 29]. In tight coupling, the
bandwidth is higher than loose coupling for communication with the processor, which
enables faster data transfer and synchronization ([40], [41]). The accelerators can be
tightly-coupled to the processor by either employing coprocessor bus or integrating the
accelerator in the datapath.

2.1 Recon�gurable Devices

In the recent past, recon�gurable devices become popular architectures due to their
�exibility as well as because of time and cost reduction in system development. Recon-
�gurable devices are able to switch their functions at run-time occasionally based on the
data �ow speci�ed at design-time by application developer for various purposes. There-
fore, recon�gurable platforms are able to implement many different tasks. In general
there are three different recon�gurable devices, which are classi�ed according to their
level of granularity: �ne-grained (with granularity of less than 4-bit), middle-grained
(with granularity of less than or equal to 8-bit) and coarse-grained (with granularity of
more than 8-bit) [ 26]. Fine-grained devices have the most optimal resource utilization
due to their �ne level of granularity while the placement and routing is more demand-
ing. Middle-grained devices are a compromise among �ne-grained and coarse-grained
devices with higher bit-width processing and simpler compilers for design and imple-
mentation in comparison with the �ne-grained devices. Coarse-grained devices have
the simplest compilers and the highest level of granularity while the processing of wide
range of applications on the word level can get supported. In the following sections,
several existing examples of �ne-, middle-, and coarse-grained devices in the literature

9
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are described brie�y.

2.1.1 Fine-Grained Devices

Fine-grained devices have much more PEs than coarse-grained devices while the
granularity level of the PEs are 1 to 4 bits. Nowadays most of the applications are
working with 8, 16 or 32-bit operations. In comparison with the coarse-grained devices,
�ne-grained devices should employ more number of PEs in order to execute the same
operation at the cost of more resource utilization and inef�cient mapping. One of
the most promising �ne-grained devices are FPGA and in particular embedded FPGA
(eFPGA). Since FPGAs are not suitable for run-time recon�guration, a small FPGA block
is embedded in a �xed architecture (called eFPGA) to enable run-time recon�gurablity.
An FPGA is composed of Logic Elements (LEs) including a Look-Up Table (LUT), a few
logic gates, 2-to-1 multiplexers and also a few Flip-Flops (FFs). In the market, Xilinx
[42] and Altera [ 43] are the most well-known �ne-grained devices. For instance, in
a case-study done by [44], three eFPGAs are integrated with the NoC-based system.
One of the �ne-grained devices is GARP architecture, which acts as a recon�gurable
coprocessor, tightly coupled with GPP and offering a low granularity by mainly 2-bit
and 4-input LUTs [ 45]. GARP consists of PE arrays while in each row one control block
and 23 logic blocks are instantiated. The size of PE arrays can be modi�ed at design-
time. In order to keep the operating frequency �xed, the connectivity on its fabric is
limited [ 46]. Another �ne-grained device is FlexEos as an eFPGA [ 47]. It consists of
4K Multi-Function logic Cells (MFC) according to SRAM 1-bit Lookup-Tables (LUT).
FlexEOS as a reprogrammable SRAM-based scalable FPGA fabric built on high-density
multi-function logic cells can be programmed by using standard description languages,
i.e., VHDL and Verilog. Another instance of �ne-grained recon�gurable unit is MOLEN,
which acts as a tightly-coupled coprocessor to a GPP ([48], [49]). There is possibility
for MOLEN to be mapped on Xilinx FPGA chip while the FPGA fabric itself acts as
an accelerator. Although MOLEN is physically separated from the GPP, added special
instructions can be operated on that due to the extension of Instruction-Set Architecture
(ISA) of the GPP.

2.1.2 Middle-Grained Devices

Middle-grain recon�gurable devices have been introduced to support the maximum
word length of eight. Therefore, the algorithm with the same processing word length
can be mapped on them. It has to be mentioned that, compared to �ne-grained devices,
mapping the algorithms on middle-grained recon�gurable units is more dif�cult due
to increasing the processing word length. The middle-grain paradigm could provide
a good compromise among area, performance and power while different word length
applications can be supported. One of the middle-grained recon�gurable devices in the
literature is PiCoGA-III consisting of Recon�gurable Datapath Unit (RDU) ([ 50], [51]).
Each RDU is composed of a4-bit LUT, a 4-bit ALU and a 4-bit integer and Galois �eld
multiplier. Another middle-grained recon�gurable processing engine is DART, which
support 8- and 16-bit processing word length ([ 52], [53]).

2.1.3 Coarse-Grained Devices

CGRAs are one of the most promising platforms with the possibility to support a 8-bit,
16-bit and 32-bit arithmetic or logic operation onto a single PE. In CGRAs, an array
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of prede�ned PEs provides a high-level of granularity, high data level parallelization,
high computational power, a large bandwidth, high throughput processing and low
energy consumption. They are recon�gurable and programmable with a higher level
language and can yield tremendous performance improvements while being operated
at a very low frequency. Due to the internal structure and the level of granularity of
CGRAs, they are suitable for performing massively-parallel computationally-intensive
signal processing algorithms. CGRAs are successfully evaluated for a proof-of-concept
for a set of data parallel applications such as FFT [32], Correlation [ 54], Wideband
Code Division Multiple Access (WCDMA) cell search [ 55], image and video processing
([56], [57]), Finite Impulse Response (FIR) �ltering [ 58]. Against all advantages of
CGRAs, they have potentially high transient power dissipation and occupy a large area
of a few million gates. Furthermore, most of the CGRAs have a �xed set of PEs and
interconnections, which are not optimum in terms of cost and performance. Some of
the CGRA architectures found in literature are brie�y described as follows.

2.1.3.1 BUTTER

BUTTER acts as a coprocessor for COFFEE RISC core. It has been developed by
our research group in order to accomplish computationally-intensive tasks [ 13]. It is
composed of a 4� 8 array of PEs. However, the size of PE array can be scaled-up/down
at design-time. The PEs are connected to each other in a point-to-point fashion for
exchanging data. Each PE has a functional unit for arithmetic and logic operations with
the �xed granularity level at 32-bit and also with the ability to support integer and
single precision �oating-point. The con�guration data and the data to be processed can
be transferred from the main memory to the CGRA with the help of a DMA device.
BUTTER is characterized by run-time recon�gurability, which means the possibility of
selection of connection at run-time. The entire platform is synthesized on FPGA device.

2.1.3.2 ADRES

Architecture for Dynamically Recon�gurable Embedded Systems (ADRES) as a coarse-
grained recon�gurable architecture is tightly coupled with Very Long Instruction Word
(VLIW) processor ([ 14], [15] [16]). Compared to the other CGRAs, ADRES showed
many advantages such as improvement in terms of the performance, a simpli�ed
programming model, reduction of communication costs and substantial resource sharing.
The VLIW processor and CGRA are integrated into a one single architecture with two
virtual functional views (VLIW view and recon�gurable array view). The architecture
of ADRES is composed of recon�gurable array of 8� 8 elements. The elements are
connected in a certain topology, which comprise mainly Functional Units (FU), Register
Files (RF) and routing resources. The �rst row of recon�gurable arrays (VLIW view) is
FUs while the rest of the rows (called recon�gurable matrix) are Recon�gurable Cells
(RC), which comprise FUs and RFs and belong to the second view. The FUs, which
can also be heterogeneous supporting various operation sets are connected together
through one multi-port global Data Register File (DRF) with the data bus width of 32
bits. The RCs communicate through a multi-port global DRF, Local Register Files (LRF)
and dedicated interconnects between the FUs. In order to store the intermediate data,
the RFs can be employed in such a way that the words with the length of 16 and 64
bits should be stored in local and global RF, respectively. The routing resources are
composed of wires, buses and networks. The RCs are used to accelerate the data�ow-
like kernels in a highly parallel way. On the other hand, for performing the non-kernel
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codes, VLIW can be used by exploiting Instruction-Level Parallelism (ILP). Since ADRES
is basically a processor/co-processor model, VLIW and recon�gurable array views can
share some resources and therefore, their executions will never overlap with each other.
In order to generate ADRES speci�c intances, an XML-based architecture speci�cation
language can be utilized. ADRES is synthesized on 90 nm CMOS technology and
delivers a performance of 40 MOPS/mW.

2.1.3.3 Morphosys

The Morphosys architecture as a single chip is designed to operate on 8 or 16-bit data
([17], [18], [19], [20]). It is composed of an 8� 8 array of recon�gurable processing
units called Recon�gurable Cell (RC) with con�guration memory, tightly coupled 32-bit
general-purpose processor (TinyRISC) and a high-bandwidth memory interface. The
operation of the RC array is monitored by a RISC core. The RC array is partitioned into
four quadrants. The data transfer can be initiated by RISC core between an external
memory and RC array by using two sets of Frame Buffers (FBs), each has two memory
banks. Each RC incorporates an ALU for �xed-point operations, a multiplier, a shift
unit, input multiplexers and a register �le. The RC array can be con�gured by using
32-bit context word, which can be distributed to all eight RCs in the same column or
row. Special instructions were added to TinyRISC's ISA to transfer RC array related
operations such as control operations, con�guration and data transfer between the array
and the main memory.

2.1.3.4 PACT-XPP

PACT-XPP as a self recon�gurable processing engine is based on a hierarchical array
of coarse-grained architectures ([21], [22]). It is composed of 3� 3 adaptive computing
elements called Processing Array Elements (PAEs) and packet-oriented communication
network. The strength of PACT-XPP is powerful run-time partial recon�guration
capability, which makes the PAEs independent of each other. It means that some PAEs
can be recon�gured for a new functionality while the other PAEs on different parts of the
array can keep computing data simultaneously. Recon�guration is externally-triggered
event-based by special event signals originating within the array. The algorithms written
in C subset program can be mapped on PACT-XPP by using vectorizing C compiler
XPP-VC. PACT-XPP delivers a peak performance of 57.6 GOPS at150.0 MHz.

2.1.3.5 Pixie

Pixie as a heterogeneous Virtual CGRA (VCGRA) has been introduced for high per-
formance image processing applications [10]. The VCGRA is composed of generic
PEs and virtual channels, which are described by VHDL and optimized by using the
parameterized con�guration tool �ow. The optimization has been resulted in resource
reduction of 24% and 82% for each PE and virtual channel, respectively. The PEs are
connected to each other by employing virtual connection blocks and switch blocks.
The PEs of VCGRA are able to execute various arithmetic operations such as addition,
subtraction, multiplication and division. In comparison with the Fine-Grained FPGAs,
the compilation time has been reduced since the designers can write the code at a higher
abstraction level.
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2.1.3.6 EXTRA

EXTRA (Exploiting eXascale Technology with Recon�gurable Architectures) as a �exible
exploration platform has been developed for developing and programming recon�g-
urable architectures with built-in run-time recon�guration ([ 11], [12]). The platform
can be employed in order to handle High Performance Computing (HPC) systems of
the future by enabling the joint optimization of architecture, tools, application and
recon�guration technology. In total, three key objectives have been de�ned for the
success of EXTRA as following; evaluation and optimization of recon�gurable archi-
tectures by combining a recon�gurable architecture description with recon�gurable
design tools in an open recon�gurable technology exploration platform, development of
recon�gurable architectures, recon�gurable tools and the optimization of recon�gurable
HPC applications, improvement of performance, area and power ef�ciency by using the
EXTRA ecosystem in order to perform three HPC applications. The recon�gurable HPC
systems can be developed by designing inherently recon�gurable architecture, enabling
ef�cient recon�guration by developing new tools and identifying the most appropriate
applications for exploiting this novel concept of recon�gurability.

2.2 Multicore Platforms

Multicore platforms can be either homogeneous with several RISC processors loosely
coupled with each other or heterogeneous with the RISC processors and recon�gurable
architectures loosely or tightly coupled with each other. In homogeneous platforms,
the algorithm code, generally written in C, can be distributed equally to all the RISC
cores. In heterogeneous platforms, additional effort is required to program processors
and coprocessors at the data �ow level by using some customized tools. In addition to
the employed heterogeneous multicore platform in this manuscript, HARP, some of the
state-of-the-art platforms with almost similar features are described as follows.

2.2.1 NineSilica

NineSilica has been developed by our research group as a general-purpose homogeneous
MPSoC, programmable in C language [59]. It is composed of nine homogeneous cores
connected over a NoC in 3� 3 mesh topology where each node contains a 32-bit COFFEE
RISC processor. The central node acts as a supervisor node to monitor the rest slave
nodes. Each node has its own instruction and data memory. The data can be transferred
among all the nodes over the NoC by using packet switching technique. In order to
test the functionality of NineSilica, many SDR applications have been designed and
implemented, e.g., FFT and correlations. According to the conducted experimental
results, 64-point FFT can be performed by NineSilica in 10.3 ms while synthesized on a
40 nm FPGA device.

2.2.2 MORPHEUS

MORPHEUS as one of the most promising heterogeneous multiple accelerator platform
is published recently ([ 26], [27]). It is a complex and dynamically recon�gurable SoC
consisting of three different types of recon�gurable devices: �ne-grained embedded
FPGA, middle-grained con�gurable processor and coarse-grained array for exploiting
dynamic frequency scaling to mitigate the power consumption. It is designed as a
heterogeneous digital signal processor for dynamically recon�gurable computing based
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on a 64-bit NoC [ 28]. The master node is ARM 926EJ-S RISC processor, which controls
communication, synchronization and recon�guration mechanisms. The overall system
has a regular infrastructure including communication and memories in order to enable
regularity in control between the heterogeneous accelerators. For providing an ef�cient
use, the platform has also a speci�c software, which contains an operating system and
design tools. The �ne-grained device is FlexEOS, which is brie�y explained above. The
middle-grained device is DREAM, which is recon�gurable DSP core. It contains a 32-bit
RISC core and PiCoGA-III recon�gurable datapath as a matrix of recon�gurable logic
cells. It delivers a performance of 0.2 GOPS/mW using a 90 nm CMOS technology. The
coarse-grained device is XPP-III, integrated into the datapath of a VLIW processor. It
is proposed in order to provide highly parallel processing performance for streaming
applications. All three recon�gurable devices beside the system modules communicate
with each other over a NoC. The system modules are Heterogeneous Recon�gurable
Engines (HREs), memory units and I/O peripherals. The overall MORPHEUS chip
delivers a performance of 0.02 GOPS/mW while synthesized on a 90 nm CMOS
technology with an average dynamic power of 700 mW. MORPHEUS delivers 120
GOPS using 90-nm technology with the size of 110mm2 in order to accomplish a video
surveillance motion detection application with the power dissipation of 1.45 W and
peak power consumption of 2.5 W.

2.2.3 P2012

P2012is an area- and power-ef�cient many-core computing platform consisting of four
clusters communicating with each other using a high-performance fully-asynchronous
NoC [ 29]. The clusters are locally synchronous and globally asynchronous while each
cluster is composed of 16 general-purpose processors with independent instruction
streams. The interaction among hardware and software is built by using the local
and global interconnection as a point-to-point stream communication. In P 2012, a
specialized hardware is allocated in order to perform synchronization and advanced
power management. The heterogeneous extended version of P2012is called He-P2012,
which is presented in [ 30] and can be considered as a heterogeneous MPSoC platform.
The platform shows a performance of 40 MOPS/mW using a 28 nm CMOS technology.

2.2.4 RAW

Recon�gurable Architecture Workstation (RAW) as multicore platform is composed of
16 32-bit modi�ed MIPS 2000processors organized as an array of order 4� 4 mesh over
a NoC [8]. RAW allows both static scheduling (similar performance to recon�gurable
arrays) and dynamic scheduling (a mechanism typical of multi-core systems) for the
network transactions. In RAW microprocessor, the effect of wire-delay problem has
been managed by programmable NoC and exposing the wiring channel operators to
the software.

2.2.5 Fulmine

Fulmine has been developed as a heavily specialized multicore platform for IoT applica-
tions, in particular the emerging class of smart secure near-sensor data analytics for IoT
end-nodes without voltage scaling [ 60]. It is a 65 nm SoC based on a tightly coupled
multicore cluster supported with specialized blocks for computationally intensive tasks.
In Fulmine, the engines are four enhanced 32-bit OpenRISC cores, which can exchange
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data with the accelerators in a �exible and ef�cient way because of employing memory
sharing mechanism. Fulmine delivers a performance of up to 25 MIPS/mW in software
with the power consumption of 20 mW on average at 0.8V. It has also achieved low
energy, potentially high speed and low-effort data exchange.

2.3 Power Mitigation of Multicore platforms by DVFS Techniques

As it is mentioned earlier, CGRAs have potentially high transient power dissipation,
which requires additional efforts to be mitigated by employing DVFS techniques and
self-aware computing model. Furthermore, in order to support IoT infrastructure, it is
important that the power dissipation and energy consumption by processors reduces
and the on-chip resource utilization increases. Despite all the progression in IoT, a
single chip platform for providing multiple communication standards and a large
processing bandwidth is still missing due to power and energy consumption. There are
several case-studies in the literature, which are discussed in the following and show the
effects of DVFS along with FCS methods for mitigating the power and maximizing the
performance.

In a case study has been done by W. Hussain et al., FCS technique de�ned in the
processor software was applied on a heterogeneous multicore architecture [61]. Based
on the conducted experiment results, the total dynamic power dissipation has been
mitigated by 20.7% subsequent to equalizing the performance. In another experimental
work, the authors investigated the thermal problems of 3D multicore processors by
using an adaptive DFS technique [62]. The mentioned problem can happen due to high
power density, which is the result of the stacking of multiple layers vertically. According
to the achieved results, they could decrease the peak temperature by up to 10.35 � C.
In another research work, the authors applied a DVFS method to reduce the energy
level of the shared resources in a multicore processor, i.e., NoC and Last-Level Caches
(LLCs) [63]. Based on the obtained results, the energy level has been reduced by56%.
In a research work done by S.M.A.H. Jafri et al., energy aware task parallelism method
has been introduced [64]. This method was targeted for CGRAs and relies on resource
allocation graphs, autonomous parallelism and the algorithms for voltage and frequency
selection. In comparison with the other state-of-the-art DVFS algorithms, signi�cant
reduction in energy, power and con�guration memory demands has been achieved, up
to 36%, 28% and 36%, respectively. In a case study, Proportional Integral Derivative
(PID) controller technique has been presented as a DVFS technique for maintaining the
operating temperature of the multicore platforms within the thermal design power [ 65].
Thus, the total power dissipation can be mitigated according to the certain power limit.
The authors could enhance the system throughput up to 43% and show the effectiveness
of employed method. In another case study, 8.4X energy saving has been achieved in
a self-aware processor [66]. The presented processor was able to self-adapt itself by
constantly monitoring the system energy consumption. In [ 67], our research group
applied DVFS technique to NineSilica platform as a homogeneous multi-processor
architecture. According to the conducted experiment results, signi�cant energy saving
has been observed by the authors while the overall system performance has been
improved by a factor of 3 in comparison with clock gating technique. In one of the latest
published work by D. Rossi et al. [ 68], a self-aware architecture exploiting Body Biasing
(BB) controlled by software has been presented. BB is an advanced technique in order
to shift the effective transistor threshold voltage as well as decrease the leakage power
consumption by applying the voltage to the body contact of CMOS transistors. The
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proposed architecture has been implemented in 28nm Ultra-Thin Body and Buried oxide
(UTBB) Fully-Depleted Silicon-On-Insulator (FD-SOI) ASIC technology. The reason
behind choosing such a technology was implementing the low-power modes in near-
threshold processors as well as compensating the parameters, operational voltage and
temperature. In this research work, the authors employed the wide range Forward BB
(FBB) and Reverse BB (RBB) in order to decrease the design time margins and introduce a
low-power mode and state-retentive sleep mode. According to the achieved experiment
results by D. Rossi et al., design margins reduced enormously while the energy ef�ciency
of the processor improved by 32% with a hardware cost of less than 1% and a runtime
cost for software control of less than 0.01% [68]. Furthermore, 24x area reduction for the
compensation loop and 21.2x better ef�ciency were achieved in [ 68] compared to their
previous design. In another case study ([33], [34]), DFS technique has been employed
by a parallel-pipelined architecture for an OFDM baseband modulator supporting 5G
numerologies in order to adapt the clock frequency for baseband processing at run-time
based on the communication throughput demands. The achieved results showed the
power savings up to 62.5%, which results in improving the system's power ef�ciency.

2.4 Hardware Implementation of DCT/DST for HEVC

Joint Collaborative Team on Video Coding (JCT-VC) presented HEVC as the latest
standard on video compression. The work has been done in joint effort among ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG). The provided output by HEVC standard was 50% reduction in terms of the
bitrate on a speci�c video quality against the Advanced Video Coding (H. 264/AVC)
standard [69]. Similar to the H. 264/AVC standard, the HEVC has a hybrid block-based
coding scheme including intra-picture and inter-picture prediction tools. From the intra-
picture or inter-picture prediction process, there are resulted prediction error residuals,
which require the decorrelation operation. For each N � N residual block, 2D transform
coding operation should be applied in a way that N-point 1D transforms to each row
and column of the residual block have to be performed separately. Various transform
sizes are supported in the HEVC standard for transform coding of the prediction error
residuals mainly 4� 4, 8� 8, 16� 16 and 32� 32 Discrete Cosine Transforms (DCT) as
well as 4� 4 Discrete Sine Transform (DST) compared to 4� 4 and 8� 8 DCT transforms
of H.264/AVC [ 70]. Due to having more provided transform sizes, 5% to 7% additional
bitrate reduction was achieved in comparison with the conventional transforms of the
H.264/AVC. However, despite the improvements in the Rate-Distortion (RD) perfor-
mance of the HEVC using such transforms, the complexity overhead has increased
enormously consequently. In the last section of this manuscript, the author presents the
design and implementation of 4/ 8/ 16/ 32-point DCT and 4-point DST dedicated for
HEVC on HARP template. There are also several similar case-studies in the literature,
which are brie�y discussed in the following.

In a research work, 4/ 8/ 16/ 32-point 2D DCT and 4-point 2D DST for HEVC were
implemented by the use of two 1D transforms with row-column and even-odd de-
composition techniques [71]. The design was implemented on Arria II FPGA device,
which showed the ability of the design to support encoding 1080p format at 60 fps
and 2160P at 30 fps at the cost of 10.0 and 13.9 kALUTs and 216and 344DSP blocks,
respectively. In another case-study, a real-time Kvazaar HEVC intra encoder including
DCT and IDCT for 4K Ultra HD video streaming on Nokia AirFrame Cloud Server
were presented [72]. The encoder has been synthesized on Arria 10 FPGA device, which
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depicted the ability of the system to encode 4K video at 30 fps and 40 fps with one
or two intra coding accelerators, respectively. The achieved results also showed up
to 1.6 and 2.1 respective speed-up compared to the pure Xeon implementation. In an
experimental work done by J. Nikara et al., a uni�ed 2D 8-point DCT and IDCT has
been implemented and synthesized on 0.11 mm CMOS technology [ 73]. The achieved
maximum operating frequency for running the entire platform was equal to 253.0 MHz
at the cost of 40,000 equivalent gates. The obtained results from resource utilization
showed 10-15% smaller estimated area against another uni�ed structure. The authors
in a case study implemented the ef�cient 4/ 8/ 16/ 32-point 2D IDCT and 4-point IDST
for HEVC by using HLS tool [ 74]. The �nal architecture was synthesized on Arria II
FPGA device, which resulted to real-time 60 fps HEVC decoding up to 2160P format.
Based on the achieved results,12.4 kALUTs and 344 DSP blocks were consumed by
the architecture. Moreover, 5X speed-up was also obtained in comparison with the
other HLS approaches. In an experimental work, the FPGA implementation of Future
Video Coding (FVC) 4/ 8-point 2D DCT by employing �xed DSP blocks for perform-
ing multiplication has been presented [ 75]. According to the conducted experiment
results, energy consumption was reduced by 29% in order to process 54 8K Ultra HD
(7680� 4320) video frames per second in the worst case compared to other existing FVC
2D transform hardware. In another research work, 8-point DCT and IDCT have been
implemented on FPGA [ 76]. The implementation required 512CC for processing 8-bit
words while 75,488 kilobytes of total memory were consumed. In a case study, the
authors presented the ef�cient architecture of 4/ 8/ 16/ 32-point 2D DCT for HEVC in
the FPGA device [77]. The achieved results showed hardware cost reduction of 31-64%
and performance improvement. In an experimental work done by P. Kitsos et al., two
high performance FPGA architectures have been used for implementing the 2D 8-point
DCT for Ultra High De�nition video coding system [ 78]. The implementation of the �rst
FPGA architecture with 2 ROMs required 105CC for 8� 8 block at a 338.5 MHz. The
second implemented architecture with 4 ROMs required 65 CC for the same task at 256
MHz. In a case-study done by R. Jeske et al., a16-point 1D DCT used for performing
16-point 2D DCT dedicated for the HEVS standard has been designed by replacing the
multiplications with shifts and adds [ 79]. It resulted to low cost and high throughput
hardware design. The architecture was able to sustain 30 QFHD frames (3840� 2160
pixels) per second in real time. According to the obtained results from synthesizing the
design on Cyclone II and Stratix III, 73.7% and 72% reduction of hardware resources
have been observed against other existing architecture with non-optimized algorithm
at the clock frequency of 23.51 MHz and 87.6 MHz, respectively. Furthermore, the
designed architecture proved its ability by processing 3840� 2160pixels in about 30
fps in real time. In another research work done by E. D. Kusuma et al., the hardware
implementation of 2D DCT has been presented while it was combined with quantization
and zig-zag process by using pipeline architecture for achieving high throughput. The
synthesis results on Spartan-3E XC3S500FPGA device depicted 84.81 MHz maximum
operating frequency with the pipeline latency of 123CC for one 8� 8 input block [ 80]. In
an experimental work done by R. Ebrahimi Atani et al., a novel Distributed Arithmetic
(DA) based 8-point 2D DCT/DST coprocessor has been presented [81]. In this design, a
fully parallel architecture based on row/column decomposition has been proposed. The
architecture was implemented on a Virtex-IV FPGA device with the achieved maximum
operating frequency of 117.1 MHz and dynamic power consumption of 393mW.





3 Platform Architecture

The importance of IoT and its future, IoE, has increased signi�cantly the need for
heterogeneous and recon�gurable platforms. During the recent years, a handful of
research groups around the world have focused their attention on recon�gurable
systems, in particular CGRAs, for wireless signal processing. Additionally, CGRAs are
valuable candidate in order to improve the issue of Dark Silicon. In this context, the
computationally intensive kernels and data-parallel tasks can be designed as application-
speci�c accelerators by using CGRAs specialized for exploiting thread-level and data-
level parallelism. In this chapter, the internal structure of template-based CGRAs used
for integration over NoC and the architecture of HARP are described.

3.1 Coarse-Grained Recon�gurable Arrays

CREMA as a template-based CGRA was �rst introduced by F. Garzia [ 31] and then
developed and scaled-up by W. Hussain [ 32] as AVATAR. Both CREMA and AVATAR
have the same architectural features with different sizes. CREMA and AVATAR are
equipped with 4 rows � 8 columns and 4 rows � 16 columns PEs and two 32-bit local
memories each of size16 columns� 256rows and 32 columns� 512rows, respectively.
The architecture of template-based CGRA is depicted in Fig. 3.1. It has to be mentioned
that the number of rows of PEs can be further adjusted based on the proposed applica-
tion. In order to interleave the data from the local memories to the PEs or vice-versa,
two I/O buffers are embedded, which are made of 2n� 1 multiplexers and 2n 32-bit
registers where n is equal to the number of template-based CGRA's columns ( 8 or 16).

As it is shown in Fig. 3.2, each PE has two input operands for performing both
integer and �oating-point operations in IEEE- 754 format by using 32-bit Arithmetic
and Logic Unit (ALU). There are also several components embedded inside the PEs
as following: LUT, adder, multiplier, shifter, immediate register and �oating-point
logic. Each of these components can be selectivity instantiated at design-time (blocks
with the dashed borders) by the designer based on the processing requirements of an
application, which results to considerable resource/area utilization saving. In order
to perform an application completely by employing the PEs, the suitable and most
ef�cient interconnection among them in a point-to-point fashion has to be applied
by the designer at design-time as well as specifying the type of operation of each PE.
The existing possibilities for interconnections with neighboring PEs can be categorized
into three parts, i.e., local connections with the neighbor PEs, interleaved, and global
connections for those PEs that are far from each other.

Interconnections between the PEs and the set of instantiated operations to be imple-
mented by each PE at any clock cycle is called context. The number of contexts to
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Figure 3.1: The architecture of template-based CGRA used for integration as a CGRA node on
HARP.

be used for performing an application is dependent on the user and application's
algebraic expressions. The contexts can be designed at the system design-time by using
custom Graphical User-Interface (GUI) tool while at run-time, it can be enabled for
an execution step according to the application scenario and the stored con�guration
data in the template-based CGRA. The con�guration words generated by the GUI tool
are injected sequentially and stored into the con�guration memory of PE arrays by the
DMA device [ 82] using a pipelined infrastructure [ 83]. In this context, recon�gurability
means replacing already existing con�guration words with the new set of con�guration
bit streams. The con�guration words are composed of two parameters: an address to
specify the destination and an operation �eld to specify the task of each PE. Subsequent
to loading the con�guration bit streams, the data to be processed over the PE array
can be loaded and stored sequentially into the local memories by employing the DMA
device. The execution �ow of generated accelerators is programmable in C language,
which is controlled by COFFEE RISC core by writing control words to the control
registers of the CGRA accelerators. In the next step, the data can be processed over the
PE array by enabling a context and then stored in the second local memory. Meanwhile,
the template-based CGRA can be recon�gured by switching the context for performing
an execution step. If required, a new set of data can also be loaded for processing
during switching the contexts. The same phases of execution �ow might be iterated
until the algorithm completes its execution. At the end, the results can be sent back to
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the RISC processor or even transferred to the local memory of another template-based
CGRA for further processing.

3.2 Heterogeneous Accelerator-Rich Platform

The HARP platform, shown in Fig. 3.3, is constructed over a NoC of nine loosely
coupled nodes arranged in a mesh topology of three rows and three columns ([ 24], [25]).
The hierarchically heterogeneous NoC is chosen with data width of 32 bits and address
width of 16 bits, which provides local and global communication [ 84]. The central node
is always integrated with COFFEE RISC core as a master node while the rest of the
nodes can be either RISC core or a template-based CGRA, which act as slaves. The NoC
nodes also contain a data memory besides a CGRA device and a DMA device with
master and slave interfaces. The CGRA nodes integrated on HARP can be modi�ed in
terms of size to a speci�c dimension by the user or the NoC nodes can be employed as
a data routing resource only.

A detailed view of both the master and the slave node is shown in Fig. 3.4. The master
node contains a data and an instruction memory besides a RISC processor while the
slave nodes contain a DMA device and a data memory besides a CGRA device. The
DMA device in the slave nodes has a master interface and two slave interfaces. The
master interface can be employed for writing to the network, transferring the data
within the node, accessing the node's internal data memory and also for connecting to
the master side of the DMA device. The DMA's master will be activated once the slave
interface of the DMA receives data from the NoC. The slave interfaces are connected
to the local memories and slave part of the DMA device, which can receive data from
the NoC. The RISC core(s) can write data to the NoC for transferring data between
its own data memory and the other slave nodes data memory in the form of packets.
The packet has routing information in addition to the data and con�guration words.
The data in the form of packet can be written to the NoC through the target module
and reached to its speci�ed destination (slave node), selected by the request switch
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Figure 3.3: General view of HARP architecture. [P.IV]

according to the address �eld of the routed packet. The targeted slave node can be
either the data memory of the respective node or the DMA slave. Furthermore, a shared
space is embedded in the data memory of RISC core(s), which is responsible for setting
and resetting 'read' and 'write' �ags in the case of establishing synchronization for
data transfer between two different nodes. The size of shared memory space can be
speci�ed based on the number of slave nodes. The RISC core and the data memory are
integrated with each other using request/response switches, which can be activated
by the arbiter. The arbiter is also responsible to establish connections among different
modules. Moreover, the RISC core can read data from the instruction and data memory
or write data to them by the use of request switch, which makes the connection between
the RISC core and one of its local slave devices.
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Instruction Memory 
_ 
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Data
Memory
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Figure 3.4: A detailed view of the Master and Slave nodes of HARP. [P.IV]

At the �rst stage of execution �ow of HARP, the central supervisor node sends the
con�guration words and the data to be processed over the NoC in the form of packet
transmission from its data memory to the data memories of the slave nodes during the
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system start-up time. The transferred data will be received �rst by the initiator and then
by the request switch of the destination node, which selects the targeted destination
node. Then the con�guration words and the data will be loaded by using the DMA
device into the local memory of CGRA node. In the case of several con�guration words
and sets of data for the same node, they have to wait until the previous data transfer
task has been completed. Although the RISC core is not allowed to send any new packet
and con�guration word for the same node, however, for the other nodes, the RISC core
can perform the same transfer operations within this period. In order to transfer the
data, which are pending in a queue and also retain the sequence of data transfers, the
RISC core requires establishing synchronization between its own and slave nodes by
writing ' 1' in the allocated shared memory location corresponding to the destination
node. Once the packet arrives to the destination node by using the DMA slave, it will be
read by the DMA master and then distributed to the PE's con�guration memories and
the local memories of a CGRA node. By completing the data transfer, DMA's master
should send an acknowledgment, which results in writing ' 0' over the NoC by RISC
core and reset the allocated shared memory space. By loading the con�guration words
and the data into the local memories of CGRA nodes and con�guration memories of
PEs, the RISC core can send the control words to the template-based CGRA for cycle-
accurate processing. Based on the application requirements and data dependencies in
the scenario, the CGRA nodes can work either independent of each other in parallel or
in sequence by exchanging data. The data exchange among the CGRA nodes can be
performed in a way that the stored results in a local memory can be fetched by the local
memory of another CGRA node directly. By completing the processing of data, they
will transfer back from the local memory of CGRA to the data memory of CGRA and
then to the data memory of the supervisor node.





4 Design and Implementation of OFDM
Receiver Blocks on CGRAs

In this chapter, the design and implementation of IEEE 802.11a/g receiver blocks
on template-based CGRAs are presented and analyzed. At the market of wireless
communication systems, OFDM is one of the most promising techniques to obtain
higher data rates, which is also selected as a valuable candidate for 5th generation
wireless systems (5G). OFDM systems split an input high-speed data stream into several
parallel streams which are simultaneously transmitted across a contiguous collection of
non-overlapping subcarriers [ 35]. OFDM has various advantages, including resilience to
Inter-Symbol Interference (ISI) and frequency selective fading caused by the multipath
propagation [ 35]. The simpli�ed version of the IEEE 802.11a/g receiver blocks and
the tasks implemented by template-based CGRAs or RISC core are shown in Fig. 4.1.
OFDM receiver blocks contain computationally-intensive and time-consuming tasks
such as FFT and Correlation, which can be processed in parallel. Additionally, OFDM
receiver also has some tasks, which are serial in nature and required to be processed by
processor software.

Frequency 
Offset Est.
(CGRA and 
Processor)

FFT
(CGRA)

Remove 
Pilots

Channel 
Correction

(CGRA)

Output Bit Stream

RF
RX

Symbols
Demapping
(Processor)

Time Sync.
CP Removal

(CGRA)

Channel 
Estimation

(CGRA)

Figure 4.1: A simpli�ed view of an OFDM receiver. [P.IV]

Subsequent to transmitting the entire OFDM symbol across the noisy channel and
performing Analog to Digital Conversion (ADC), the receiver is responsible for per-
forming several stages mainly Time Synchronization (TS), Frequency Offset Estimation
(FOE), Fast Fourier Transform (FFT), Channel Estimation (CE) and �nally, Symbols
Demapping (SD). The received data packet at the receiver side is composed of training
symbols (short and long preambles) and OFDM data symbols. The training symbols,
used for synchronization purposes, are constant and known to the receiver. Short
training symbols are composed of ten segments in total. The �rst seven segments are
appointed for packet detection while the last three segments are speci�ed for coarse
FOE. Each segment has16 subcarriers, de�ned at the transmitter side according to
speci�c repetition. Regarding the long preambles, they are composed of two segments,
each containing 64 identical samples. The CE and �ne FOE are use cases for them. In
the following section, each block of OFDM receiver is described in detail and following
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that, the design and near optimal implementation of application-speci�c accelerator for
that speci�c block is presented.

4.1 Time Synchronization

Subsequent to performing ADC, the �rst block of OFDM receiver is TS, which has to
detect the arrival moment of received OFDM symbols. Moreover, the correct position
of FFT window can be detected. In this research work, Cyclic Pre�x (CP) correlation
based method has been selected in order to implement this block [85]. CP is the copy
of the end part of OFDM symbol as a pre�xing of a symbol with the length of 16 and
the time period of 0.8ms, which is equal to Guard Interval ( 1/ 4) � TFFT (3.2ms). CP is
employed in order to combat with ISI and enable the OFDM signal to operate reliably.
Fig. 4.2 depicts the overall performance of TS block where the received signal yn is
correlated with its delayed version with the length of delay z� D of 16 (the length of CP
based on IEEE802.11a/g standard speci�cations) to determine the similarity. According
to the signal �ow of TS process, the correlation algorithm produces outputs cn and zn
expressed in Eq. 4.1 (� stands for the complex conjugate) and Eq. 4.2, respectively.

c(n) z(n)
× �G��

-D

y(n)

Z

arg max | z(n)|

Correlation Square 
Modulus

Figure 4.2: Signal �ow structure of CP correlation based method for TS. [P.IV]

cn = yny�
n� D (4.1)

zn =
L� 1

å
i= 0

ci+ n (4.2)

In order to map the above equations on the template-based CGRA with ef�cient
placement and routing, �rst of all, they have to be simpli�ed and then, the suitable size
of PE array has to be selected for achieving higher level of parallelism and reducing the
processing time.

cn = (( yn(R) � yn� D(R) ) + ( yn( I ) � yn� D( I ) ))
| {z }

Real

+ (( yn( I ) � yn� D(R) ) � (yn(R) � yn� D( I ) ))
| {z }

Imaginary

(4.3)

Due to the size of correlation algorithm ( 80-point) and based on the above simpli�ed
equation, the author decided to scale-up the template-based CGRA to 5� 16 PE array. In
Eq. 4.3, R and I stand for Real and Imaginary parts of the received signal, respectively.
The mapping of Eq. 4.3 on template-based CGRA in order to accomplish 80-point
correlation can be performed by using three contexts in total. The �rst context, which
is always the same for every design, is related to loading immediate values to the PEs
for performing shift operation. It is required for preventing data over�ow after each
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multiplication. Since all the data in this manuscript are represented in 12-bit to keep the
accuracy in an acceptable level, the immediate value is also equal to 12, which means
shifting the result of multiplication by 12 bits. The second and third designed contexts
for performing 80-point correlation algorithm are depicted in Fig. 4.3.
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Figure 4.3: Second & Third Contexts for the Calculation of the Correlations. cn and yn stand
for the original received signal and the complex conjugate of the delayed version of the signal,
respectively. [P.II]

Subsequent to loading the data to be processed into the �rst local memory of second
context, two sets of tasks can be performed. The �rst is related to the multiplication
among the received data symbols and the complex conjugation of its delayed version.
The second task is distributing the data to the other columns of local memory for
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maximizing the parallel usage of PEs in the third context. As it can be observed from
Eq. 4.3, there are four multiplications (done in the �rst row of PEs), one addition and
one subtraction (done in the second row of PEs). The data indicated by the indexes
from 0 to 79 belong to 80-point correlation, which resulted to 80 correlations in total
for performing TS. The last row of PEs (in the second and the third contexts) is also
employed for executing a sum-of-products of the outputs by using feedback operation
for computing the �nal output of each correlation zn based on Eq. 4.2. The number
of iterations of feedback operation for performing accumulation can be determined at
run-time based on the number of existing data symbols. Unregistered-Feed Through
(URF) is also used to delay the data symbols by one or a few cycle after each correlation.
For instance, four URFs are required in order to shift the delayed version of data
symbols by four positions. By that way, the data can be shifted in parallel with its
process in order to accomplish the next step. Due to using ping-pong memories [ 86] in
template-based CGRAs, the stored data symbols in each of local memories can be read
directly by changing the direction of data �ow, speci�ed by the user at design-time.
The second context is just used once while the third context should be iterated until
the correlation algorithm completes its execution. By completing all 80 correlations, the
maximum value should be found, which is equivalent to the edge of FFT window. Since
the results of correlation are complex numbers, the following equation can be used as
the Square Modulus (SM) to calculate the magnitude of complex numbers

t̂ s = argmax
n

j zn j

= argmax
n

j zn(R) � zn(R) + zn( I ) � zn( I ) j
(4.4)

where t̂ s stands for the maximum value of the performed correlations ( zn) and the index
of the time offset, R and I also represent the Real and Imaginary parts. Subsequent to
determining the largest value in the RISC core, it has to be returned to the supervisor
node for further processing.

4.2 Frequency Offset Estimation

Although OFDM is popular for its advantages, however it suffers from sensitivity
to Carrier Frequency Offset (CFO), which might be added to the signal due to the
device impairments and causes ISI and also rotation of demodulated symbols in the
constellation [35]. It means that after downconversion, the received baseband signal is
centered at fD (represents the frequency offset) instead of zero as it is shown in Fig. 4.4.

Baseband signal Passband signal

Baseband signal Passband signal

Frequency, 
MHz

Frequency, 
MHz

Frequency, 
MHz

Frequency, 
MHz

0 fcTX

fcRXf�4��

Upconversion

Downconversion

Figure 4.4: Upconversion and downconversion of signal in transceiver. [P.IV]
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The amount of added CFO to the signal can be estimated by using known last three
segments of the short training symbols added in the transmitter. The down-conversion
of the received signal rn can be expressed as following:

rn = xnej2p fDnTs (4.5)

where xn is transmitted and rn is received signal. Delay and correlation method can be
employed for estimating the value of CFO which is expressed as Eq. 4.6.

z =
L� 1

å
n= 0

rnr �
n+ D

=
L� 1

å
n= 0

((( rn(R) � rn+ D(R) ) + ( rn( I ) � rn+ D( I ) ))
| {z }

Real

+ (( rn( I ) � rn+ D(R) ) � (rn(R) � rn+ D( I ) ))
| {z }

Imaginary

)

(4.6)

Here R and I equivalent to the real and imaginary parts of the signal, respectively.
Moreover, delay, D, is computed performing the multiplication between the period of
short training symbols 0.8 ms and the frequency space20.0 MHz. As it is mentioned
earlier, each segment of short training symbols contains 16 subcarriers, resulting to
48 prede�ned data symbols for three last segments. The mapping of 48 complex
multiplications on CREMA based on Eq. 4.6 is depicted in Fig. 4.5.

As the next step, the amount of added frequency offset should be calculated by using Eq.
4.7 where Ts is the sampling period and \ takes the angle of outputs of the performed
complex multiplication z. The phase angle can also be found by using Eq.4.8 in which
the arctangent ratio should be applied on the division among the imaginary part y and
the real part x.

f̂D = �
1

2p DTs
\ z, (4.7)

q̂ = atan(
y
x

) (4.8)

The division operation is better to be performed by using CORDIC algorithm [ 87] in
RISC processor software instead of mapping the algorithm on template-based CGRA due
to its complex algebraic equations and high number of iterations. In general, CGRAs
are the suitable candidates for parallel tasks, not for complex algebraic operations.
Although the implementation of CORDIC algorithm resulted to shorter execution time
than template-based CGRA, however it was at the cost of more energy and power.
Furthermore, the accuracy of CORDIC algorithm can be tuned by the user at design-
time at the cost of execution time. The CORDIC algorithm for calculating the division
operation can be written based on Algorithm 1.

By completing the division operation, the phase angle has to be calculated. According
to Eq. 4.9, the calculation of the arctangent ratio in processor software can be performed
by employing Taylor series where the value of N can be employed for adjusting the
level of accuracy (4 in this case-study).

arctan x=
N

å
n= 0

� 1n

2n + 1
x2n+ 1 (4.9)
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Figure 4.5: Context for the complex multiplication between a signal and its complex conjugation
[1]. r and rD stand for the last three segments of short training symbols and its delayed version.
[P.I]

Algorithm 1 CORDIC algorithm for calculating the division operation

1: Initialize MaxBits
2: for i:=0 to MaxBits step 1 do
3: if (y < 0jjz > = 0) then
4: y = y + x � t
5: z = z � t
6: else
7: y = y � x � t
8: z = z + t
9: t = t >> 1

Subsequent to estimating the added frequency offset, it has to be corrected based on Eq.
4.10 where the received signal should be multiplied by the estimated frequency offset.

rn
0 = rn � e� j2p fD

n
N (4.10)

Here, rn
0, n and N stand for the corrected signal, the sample index and the number of

samples in a symbol, respectively. In order to compute the exponent function, Taylor
series can be employed again in processor software based on Eq.4.11. However, it can
be further simpli�ed as Eq. 4.12 due to the complex data symbols.

ex =
¥

å
n= 0

xn

n!
(4.11)
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ez = ex(cos(y) + isin(y)) (4.12)

Here, z is a complex value, which consists of real (x) and imaginary ( y). In order to
implement cosand sin functions in processor software, they have to be expanded by
using Taylor series as Eq. 4.13.

cos y=
¥

å
n= 0

(� 1)n

(2n)!
y2n , sin y =

¥

å
n= 0

(� 1)n

(2n + 1)!
y2n+ 1 (4.13)

Subsequent to performing the above-mentioned steps in processor software, the �nal
step related to data symbols correction in terms of the frequency offset (Eq. 4.10) can
be implemented by using CREMA-generated accelerator, almost the same context as
shown in Fig. 4.5. Thus, the data have to be transferred back from the main memory of
the supervisor node to the local memory of the template-based CGRA.

4.3 Fast Fourier Transform

FFT is required to convert the corrected data symbols in terms of the frequency offset
from time domain to frequency domain. FFT, also called demodulation, is computation-
ally intensive and time consuming tasks, which can be effectively accomplished by the
use of radix-2m structures [88], where m 2 Z+ and its structural unit is called a butter�y.
In this manuscript, demodulation is performed by using designed AVATAR-generated
accelerator [32] for processing a 64-point FFT in radix- 4 scheme within 3.2 ms according
to the IEEE 802.11a/g standard speci�cations.

4.4 Channel Estimation

As it is mentioned earlier, the transmitted data symbols have to pass through the wireless
channel, which can be noisy. Therefore, because of the various impairments, the data
symbols may get distorted while passing through the channel. At the receiver side,
the data symbols have to be recovered by estimating the channel frequency response.
The channel estimation task can be accomplished by employing pilot-assisted linear
interpolation algorithm, shown in Fig. 4.6. In this method, four prede�ned pilots are
added at the transmitter. The values and position of the pilots are known for the receiver
and can be used for estimating the channel frequency response of all the subcarriers,
located among the pilots at speci�c positions.

Transmitted Pilots Received Pilots
Channel response

Interpolating FilterEstimated channel 
Response

Data Carrier

Figure 4.6: Channel Estimation based on Pilot-Assisted Linear Interpolation. [P.IV]

By considering the transmitted data symbols ( Xn), channel impulse response (Hn) and
additive noise ( Nn), the received data symbols can be demonstrated as

Yn = XnHn + Nn (4.14)
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where n stands for the number of subcarriers. As the �rst step, the Hn should be
estimated and then, Yn has to be corrected according to Xn [89]. In order to calculate
the channel impulse response Hn, �rst the the channel impulse response of the received
pilots H̃k should be computed, which is expressed as Eq. 4.15 where k is the number of
pilots and PRx is the received noisy pilots, respectively. Moreover, a diagonal matrix is
required to be made by transmitted pilots, expressed as Eq. 4.16.

H̃k = M � 1PRx (4.15)

M =

2

6
6
6
4

M1,1 0 � � � 0
0 M2,2 � � � 0
...

...
...

...
0 0 0 M k,k

3

7
7
7
5

(4.16)

The complex Matrix Vector Multiplication (MVM) between the Received Pilots (RP)
and the Inverse of Transmitted Pilots (ITP) can be computed by employing AVATAR-
generated accelerator, shown in Fig. 4.7. As the next step, in order to accomplish the
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Figure 4.7: Second Context for the Channel Estimation. [P.IV]

channel equalization, the channel frequency response of the adjacent subcarriersHn
requires to be estimated by employing Linear Interpolation method as Eq. 4.17 based
on the found H̃k.

Ĥn =
Np� 1

å
i= 1

Ns

å
j= 1

H̃k( i) +|{z}
3

(( H̃k( i + 1) �|{z}
1

H̃k( i)) �|{z}
2

j � 1
Ns| {z }
m

) (4.17)



4.4. Channel Estimation 33

where Np and Ns stand for the number of pilots and samples, respectively and also mis
the step size in order to estimate the channel frequency response for other subcarriers
located around pilots H̃n by expanding the channel frequency response for four received
pilots H̃k. Eq. 4.17 can be mapped on AVATAR as a third context shown in Fig. 4.8.
Both real and imaginary parts of the pilots can be performed simultaneously by using
the left and right side of the third context, respectively. The step sizes are also computed
by the processor software and loaded into the local memory as 16 different �xed values.
As it is mentioned in Eq. 4.17, three steps are required by the algorithm to be completed,
which are also instantiated by dashed border circles in the third context.
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Figure 4.8: Third & Fourth Contexts for the Calculation of Linear Interpolation and Newton-
Raphson Method. [P.IV]

By completing the linear interpolation, the estimated channel frequency response can
be stored in the second local memory for performing the channel equalization in order
to re�ne Yn as close as possible toXn. Accordingly, the received data symbols excluding
the pilots should be divided by the estimated channel frequency response as following.

Ŷn =
Yn

Ĥn
(4.18)

In order to perform the division operation, Newton-Raphson method [ 90] is employed
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as an iteration algorithm for determining the root of an equation. As an example, for
the given function f(x), the �rst approximation of the root can be found by using Eq.
4.19 where n is the number of iteration, xn is the initial guess of the root and f

0
(xn) is

derivative of a function f (xn).

xn+ 1 = xn +
f (xn)
f 0(xn)

, (4.19)

The above equation can be further modi�ed to be used for performing division operation
as Eq. 4.20. For instance, in order to calculate 1

D , the function f(x) can be written as
f (x) = 1

x � D where D and xn stand for the denominator and initial guess, respectively.

xn+ 1 = xn +
1
xn

� D

� 1
x2

n

= xn + (
1
xn

� D

� 1
x2

n

�
� x2

n

� x2
n

)

= xn � (� xn + Dx2
n)

= 2xn � Dx2
n

= xn.(2 � Dxn),

(4.20)

According to Eq. 4.18, the denominator is a complex number since it is damaged by the
noisy channel. Therefore, in order to be mapped on the template-based CGRA, it can
be further simpli�ed as

x + iy
a+ ib

�
a � ib
a � ib

=
(x + iy) � (a � ib)

a2 + b2 (4.21)

where x + iy is representing the outputs of FFT block and a+ ib and a � ib stand for
estimated channel response and its complex conjugate, respectively. As it is depicted
in the fourth context of Fig. 4.8, the left side is allocated to perform the �rst step of
Newton-Raphson method. As the �rst step, the �rst two rows of PEs are instantiated for
computing the square values of the real and imaginary parts of the channel frequency
response, which is equivalent to (a2 + b2) (denominator). The initial guess also can be
loaded into the local memory during switching the contexts. On the last row of PEs,
the multiplication among the initial guess and denominator can be performed. The
right part of the fourth context, which consists of delay operation is used for passing
the results of linear interpolation for further processing over its following context.

The next step of Newton-Raphson method has been implemented by the left side of
the �fth context where the constant 2 is loaded into the local memory along with the
results of the previous part. It has to be mentioned that the reason behind loading the
initial guess and the constant value in Fig. 4.8 and Fig. 4.9 is making the process of the
algorithm faster because of line readability feature of local memories in the CGRAs.
As it can be observed from Fig. 4.9, Eq. 4.19 gets completed by using the left side of
the �fth context where the required shift operation, subtraction and multiplication are
performed over the instantiated PEs. However, at the right side of the �fth context,
the multiplication among the demodulated data symbols (FFT outputs) and complex
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Figure 4.9: Fifth & Sixth Contexts for the Calculation of Newton-Raphson Method and Channel
Equalization. [P.IV]

conjugation of estimated channel frequency response can be executed. The last stage of
channel estimation is channel equalization, which is implemented by the sixth context.
Here, the outputs of Newton-Raphson method (left side of the �fth context) should be
multiplied by the results of calculated complex multiplication (right side of the �fth
context). In Fig. 4.9, Resi stands for the equalized received data symbols, which can be
passed to the next block of an OFDM receiver, Symbols Demapping block, in order to
extract data bits from data symbols.

4.5 Symbols Demapping

Finally, as the last stage of an OFDM receiver, demodulation or SD has to be performed
in order to ascertain the transmitted data bits for each received data symbol. It can be
done by the use of two different methods, hard-decision or soft-decision. In this research
work, the author selected the hard-decision method. Once the data bits are generated
at the transmitter side, they have to be modulated with one of the schemes such as
16-QAM (Quadrature Amplitude Modulation) constellation points, which comprise
four bits per symbol and are used in this case-study. QAM is a signal in which both
of the amplitude and phase of the carrier are changed (by 90 degrees), resulting to
complex data symbols with Quadrature and In-phase carriers. In order to perform the
hard-decision method at the receiver side, the complex plane should be divided into
decision boundaries based on In-phase and Quadrature areas in a way that four zones
are required to be shaped (in the case of16-QAM) for each leftmost and rightmost two
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bits of a data symbol. Each data symbol has real and imaginary parts that are equivalent
to Quadrature and In-phase, respectively and cause to place the data symbols inside
the decision boundaries. As a result, the data symbols will be mapped to the data bits
based on the closest constellation point to the data symbols in each of 16 decision areas
[35].



5 Evaluation of HARP by Design and
Test of an OFDM Receiver

In this chapter, the author presents the evaluation of HARP by implementing the OFDM
receiver blocks, which are primarily designed by crafting template-based CGRAs during
the previous chapter. Due to the combination of serial and parallel algorithms in the
OFDM receiver blocks, HARP is subjected to a stringent test for identifying potential
architectural fallacies and pitfalls, demonstrating almost all its design features and
technical capabilities and also for the proof-of-concept. Furthermore, the performance
of each template-based CGRA integrated on HARP as well as the entire platform and
the NoC traf�c are recorded in terms of the various performance metrics. HARP
with the OFDM receiver baseband processing instance is also compared against other
state-of-the-art platforms by using cross-technology comparison.
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Figure 5.1: Modi�ed HARP platform for an OFDM receiver test-case. The black colored nodes
are the master and white colored nodes are the slave nodes. [P.IV]

As it can be observed from Fig. 5.1 as a general view of overall processing architecture
of OFDM receiver on HARP platform, there is the bidirectional communication among
master and slave nodes in order to exchange data with each other. At design-time,
the designer can write the distributed control for transferring the control words and
the data as well as execution by using the generated header VHDL �les from GUI
tool in the processor software of the three RISC cores and compile them. Moreover,

37
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the designer can specify the order of exchanging data among the nodes based on the
algorithm data-�ow, which is shown in the �gure with the numbers and dashed arrows.
In Fig. 5.1, the red colored numbers specify the order in which the nodes should be
executed. In this case, the platform is modi�ed in a way that node N 3 RISC core is
the supervisor node for N 0 CGRA, N4 RISC core is the supervisor node for N1 CGRA
and N5 RISC core is the supervisor node for N2 and N8 CGRAs in order to transfer
the con�guration stream and data to be processed. During the system start-up time,
con�guration words are transferred to the data memory of the CGRA nodes by the
three RISC cores. Thereafter the received data symbols are transferred from the data
memory of N 3 RISC core to the data memory of N0 CGRA node by using DMA device
and then loaded into the local memory for performing TS block. The required CC for
data transfer from data memory of a RISC core to the data memory of a CGRA node
and from data memory of a CGRA node to the CGRA's local memory and also the
execution of different tasks are shown in Table 5.1.

Table 5.1: Clock cycles required for data transfer and processing at different stages. In the table, *
signs represent data transfer from CGRA to Node's data memory. [P.IV]

Node-to Data Memory to Data Memory Transfer Execution
-Node Data Memory to CGRA's Local Memory Total Total
N3-N0

(Correlation) 1072 910 1982 1120
N0-N3
(SM) - 7590* - 2345

N3-N4 47 - - -
12634

N4-N1 1961 2703 4664 (+74)
N1-N2 - 570* + 504 1074 328
N2-N5 - 529* - -
N5-N8 637 401 1038 250
N8-N4 - 397* - 2253

As it can be observed from the table, 1072CC and 910CC are required for data transfer
from data memory of N 3 RISC core to the data memory of N0 CGRA and to local
memory, respectively, which resulted to 1982CC total data transfer. It is speci�ed by
dashed arrow number 1 in Fig. 5.1. The processing of correlation algorithm by N 0
CGRA and SM by RISC processor software can be performed in 1,120CC and 2,345CC,
respectively. It has to be considered that by completing the correlation algorithm, 80
results of correlation have to transferred back from the data memory of CGRA node to
data memory of N 3 RISC core within 7,590CC for executing SM. Subsequent to �nding
the index of time offset, it can be transmitted to the data memory of N 4 RISC core
within 47 CC for further processing, which is depicted with dashed arrow number 2 in
Fig. 5.1.

As the next step, the last three segments of the received short training symbols are
loaded into the local memory of N 1 in order to start the process of frequency offset
estimation. As it is shown in Table 5.1, transferring the data from data memory of N 4
RISC core to the data memory of N1 CGRA and then to the local memory takes 4,664CC
in total, shown with dashed arrow number 3. As it is mentioned in the previous section,
the �rst and the last parts of this block can be performed by the crafted template-based
CGRAs in 74 CC (40 CC plus 30 CC) while some parts should be performed by using
RISC processor software (in 12,634CC), which requires data exchange between N1 and
N4 twice. In total, the required processes for performing frequency offset estimation
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can be completed in 12,708CC.

As it is shown with dashed arrow number 4, the corrected data symbols in terms of
the added carrier frequency offset, which are located in the local memory of N 1 CGRA
can be fetched directly by the data memory and the local memory of N 2 CGRA in 570
CC and 504 CC, respectively. Then the computation of 64-point radix- 4 FFT can be
processed in 328CC.

Subsequent to implementing the FFT by N 2 CGRA, the results are transferred by the
DMA device from the local memory to the data memory of N 5 RISC (depicted with
dashed arrow number 5) in 529CC and then to the local memory of N 8 CGRA (speci�ed
with dashed arrow number 6) in 1,038CC in order to accomplish channel estimation.
The channel estimation block can be executed completely in 250CC. As the last step, the
data symbols have to be returned to the data memory of N 5 RISC (depicted with dashed
arrow 7) and then to the data memory of N 4 RISC (depicted with dashed arrow 8) in
397CC for performing symbols demapping by RISC processor software in 2,253CC.

In this case-study, the nodes N6 and N7 are not instantiated with neither CGRA node
nor RISC core as they are not required by our speci�c case study. According to the
achieved CC related to execution time of the CGRA nodes, the percentage of the time
for the useful execution of the N 0, N1, N2 and N8 CGRA nodes is equal to 3.61%, 0.22%,
1.05% and 0.8%, respectively. Although each of CGRA nodes can be designed in way
that be recon�gured to implement several tasks, however the critical path will become
longer while the maximum operating frequency will become lower. Thus, the author
preferred to increase the resources of highly dense FPGA device and not to compromise
the speed.

The digital waveforms related to the utilization of NoC bandwidth for transmitting the
con�guration words and the data transfers between the data memories of the CGRA
nodes are speci�ed with red and blue lines in Fig. 5.2. Furthermore, the execution of
OFDM receiver blocks are also speci�ed with green lines in the case of template-based
CGRAs and gray lines in the case of RISC processor software. First of all, it should
be noticed that the activation control words of the slave nodes (N 0, N1 and N2) are
transferred in parallel, which demonstrates the technical capabilities of the HARP to
have simultaneous execution. This resulted to speed up the execution time. However,
regarding the CGRA-nodes N 2 and N8, since they are supervised by the same RISC
core (N5), N8 has to wait until N 2 completes its data transfer. Furthermore, because
of the data dependency among different blocks of an OFDM receiver, they have to
be performed consecutively. The whole platform is running at 200.0 MHz operating
frequency. The reason behind selecting this operating frequency will be discussed
later. There are three RISC cores and for each of them, a special counter for general-
purpose measurements is embedded with the signal name of tmr_cnt_out . Therefore,
N3 RISC core is responsible for counting the number of clock cycles of N0 CGRA, N4
RISC is responsible for N1 CGRA and N 5 RISC is responsible for N2 and N8 CGRAs.
As it can be seen from the details shown in Fig. 5.2, the number of measured clock
cycles mentioned in Table 5.1 are also written inside the waves. According to that,
frequency offset estimation block is the most time-consuming task, which causes a
large space of frame without any signal activity. It can be considered as the worst-case
candidate and be used later (Chapter 6) for dynamically scaling the operating frequency
of each of the other nodes of the NoC without compromising system throughput.
Therefore, the instantaneous power dissipation can be mitigated and the computational
workload can be uniformly balanced as the frequency of memory accesses will reduce
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- a major factor to overall power dissipation by the system. During the next chapter,
we will discuss in detail about the employed self-aware computing for identifying
the worst case and dynamically monitoring the voltage and operating frequency of
all the system components. Furthermore, it can be observed from the waveform that
a very computationally intensive task, such as FFT and channel estimation can be
computed in a very small fraction of time relatively. Therefore, a designer could employ
a large number of computational resources such as AVATAR containing 5� 16 PEs to a
demanding algorithm like correlation and eventually �nd it over-performing relatively
in the whole design space while it might be an expensive choice.

5.1 Measurements, Estimations, Evaluation and Comparisons

The modi�ed HARP for performing an OFDM receiver is synthesized on a Stratix-V
(5SGXEA4H1F35C1) FPGA device for prototyping purposes. The operating conditions
are selected for both 0� C (low) and 85� C (high) junction temperatures and 23 mm
heat sink with 200LFPM air�ow as a preset cooling solution. The achieved maximum
operating frequencies after placement and routing are equal to 182.32 MHz 0� C and
170.3 MHz 85� C for slow timing model ( 900 mV). In the case of fast timing model
(900 mV), maximum operating frequencies were equal to 258.73 MHz and 235.85
MHz at 0� C and 85� C, respectively. The entire platform works on a single clock
source and is simulated at 200.0 MHz operating frequency. It has to be mentioned
that the clock frequency �rst has been set to 170.0 MHz according to the minimum
achieved operating frequency for running the simulations. Then the author increased
the operating frequency up to 200.0 MHz in order to get more advantages from higher
clock frequency while there is no timing error on the employed FPGA device.

5.1.1 Resource Utilization

Node-by-node breakdown of resource utilization summary for the entire prototyped
platform on FGPA device is depicted in Table 5.2. The resources are categorized in terms
of the number of employed Adaptive Logic Modules (ALMs), Registers, Memory Bits
and DSP elements. As it can be observed, about62% of the ALMs, 11% of the registers
and 51% of the memory bits are consumed by the entire platform, including three RISC
cores and four template-based CGRAs. Additionally, 90% of 18-bit DSP resources are
utilized by 32-bit multipliers instantiated in the PEs. Each 32-bit multiplier requires two
18-bit DSP elements to be synthesized on the FPGA. It means that in order to perform 97
32-bit multiplications, 194 18-bit DSP resources are required by template-based CGRAs.
In addition, 36 18-bit DSP resources are also required by RISC cores, which results to
230 18-bit DSP elements in total for the entire platform. The breakdown of the number
of 32-bit multipliers used for each block of an OFDM receiver and the RISC cores is also
given on Table 5.2.

5.1.2 Energy and Power Estimations

The platform's total power dissipation is estimated based on post placement and
routing (post P&R) information, not functional simulations, using PowerPlay Power
Analyzer Tool of Quartus II 15.0 at an operating frequency of 200.0 MHz and at the
room temperature of 25� C. The total power dissipation is estimated by simulating
the gate-level netlist of the entire platform and then generating the Value Change
Dump (VCD) �le by using ModelSim software [ 91] while it yielded 'HIGH' level of
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Table 5.2: Node-by-node Breakdown of Resource Utilization Summary for Stratix-V
(5SGXEA4H1F35C1) FPGA device. [P.IV]

(32-bit
Memory Multipliers)

Node ALMs Registers Bits DSPs
N0 22,616 9,471 2,633,472 (20) 40
N1 8,171 7,985 2,365,736 (16) 32
N2 22,809 11,583 2,635,136 (28) 56
N3 5,436 5,648 3,145,728 (6) 12
N4 5,505 5,716 3,145,728 (6) 12
N5 5,442 5,650 3,145,728 (6) 12
N8 25,908 16,399 2,633,144 (33) 66

NoC 2,842 4,371 - -
98,729 66,823 19,704,672 (115) 230

Total 62% 11% 51% 90%

con�dence. The VCD �le, generated at the same time of running the whole platform,
contains all the information of signal transition activity during the implementation of
an OFDM receiver [36]. The total power dissipation is composed of static, dynamic
and I/O power. The power of the FPGA chip is called static power, which is required
to maintain the FPGA device in the ON state. The power which is due to the signal
switching activity of the design for the entire run-time duration is called dynamic
power. The static power is almost the same for all template-based CGRAs since a
large are of the chip remains unused and accordingly adds a large offset to all the
static power estimations. Although the static power is essentially characteristic to a
particular FPGA chip, it might increase/decrease for a few mW by scaling up/down
the size of the template-based CGRAs. According to the results obtained from the
tool, the estimated values of static, dynamic and I/O power dissipation are equal to
1243.84 mW, 2623.72 mW and 27.37 mW, which resulted to 3894.93 mW as a total
power dissipation. Node-by-node breakdown of dynamic power, active time and energy
consumption of the NoC nodes are shown in Table 5.3. As it can be found out from the
table, the dynamic power dissipation increases as the size of the template-based CGRA
increases and vice-versa. For instance, AVATAR-generated accelerators integrated in
N0, N2 and N8 require almost 1.5X-2X dynamic power consumption compared to the
CREMA-generated accelerator used in N1. The energy consumption is the product
of power dissipation and active time of each node and is calculated for every node
separately.

Table 5.3: Node-by-node Breakdown of dynamic power dissipation and energy estimation. [P.IV]

Accelerator Dynamic Active Dynamic
Node Type Power (mW) Time ( ms) Energy (mJ)

N0 Time Synchronization 414.35 7.32 3.03
N1 Frequency Offset Estimation 272.23 0.37 0.1
N2 FFT 526.07 1.64 0.86
N3 General Purpose 114.47 16.15
N4 Processing, 113.82 141.17 16.06
N5 Synchronization, Control 114.52 16.16
N8 Channel Estimation 448.01 1.25 0.56

NoC - 10.10 - -
Integration - - -

Logic - 609.07 -
Total - 2623.72 - 53.16
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5.1.3 Evaluation and Comparisons

As it can be seen from Fig. 5.1, the current instance of HARP, which is modi�ed for
processing an OFDM receiver, consists of 240 PEs in total. Furthermore, the entire
platform is running at 200.0 MHz operating frequency. By considering the total power
dissipation of 3894.93 mW, the current instance of HARP delivers a performance of 48
GOPS and0.012GOPS/mW for Altera Stratix-V chip in 28 nm. It has to be mentioned
that GOPS is the product of the number of PEs and the operating frequency. In addition
to this case-study, two more research work have been done already by [24], [25] with
varying sizes of template-based CGRAs and different number of cores, which also
yielded 0.012 GOPS/mW of performance. Accordingly, the author considered 0.012
GOPS/mW as an architectural constant for the HARP template on Stratix-V FPGA
due to its scalability and regularity, which ensures application-independent �gure of
merit. Regarding the utilization rate of PEs, 2914operations have been performed by
240 instantiated PEs for performing the whole OFDM receiver in 9.845ms. It results to
295.98 MOPS. Thus, the utilization rate of PEs would be equal to 0.61% (295.98 MOPS /
48 GOPS). It shows that HARP would be an excellent candidate for alleviating Dark
Silicon issues.

According to HARP's architectural constant , comparisons with other state-of-the-art
platforms can be established as shown in Table 5.4. In some cases where various
platforms have been synthesized for different technologies, i.e., FPGA and ASIC, cross-
technology comparisons is a solution to do the comparison with acceptable accuracy.
For this purpose, the process sizes have to be scaled and the performance gaps have to
be analyzed. In Stratix FPGA devices, scaling from 40 nm to 28 nm and from 90 nm to
28 nm will increase the synthesis operating frequency by 20% and 40%, respectively
[37]. Regarding the performance gap between two technologies, FPGAs and ASICs,
a 90 nm ASIC implementation depicts a speed-up of 4X on average against a90 nm
FPGA implementation while requiring 14.0X lower dynamic power dissipation [ 92].
In the worst case when the static and the dynamic power dissipation have almost the
same values, the factor of 14 for the total power dissipation can be reduced to almost 2
[92]. Furthermore, in order to estimate the performance gap from 90 nm ASIC to 28 nm
FPGA, the platform's value in terms of GOPS or GOPS/mW should be multiplied by a
scaling factor of 60% [92].

Table 5.4: Cross-technology comparisons between HARP and other state-of-the-art platforms.
SU_fTfs, SD_aTfs and Ps stand for Speed-Up for FPGA to FPGA scaling, Speed-Down for ASIC
to FPGA scaling and Power scaling, respectively. [P.IV]

Platform Performance Platform's HARP's
Technology Metric Value Scaled PV Value Gain
NineSilica FFT Execution Exe. Time - Exe. Time � 20% SU_fTfs

FPGA 40 nm Time (ms) 10.3 = 10.3 - 10.3 � 0.2 = 8.24 2.1 3.9�
[93] PV� 40% SU_fTfs

FPGA 90 nm GOPS 19.2 = 19.2� 1.4= 26.88 48 1.78�
P2012 PV� SD_aTfs� Ps

CMOS 28 nm GOPS/mW 0.04 = 0.04� 1/ 4� 1/ 2= 0.005 0.012 2.4�
ADRES (PV� SD_aTfs� Ps)� 60% SU_fTfs

CMOS 90 nm GOPS/mW 0.004 = (0.004� 1/ 4� 1/ 2)� 1.6= 0.0008 0.012 15�
MORPHEUS (PV� SD_aTfs� Ps)� 60% SU_fTfs
CMOS 90 nm GOPS/mW 0.02 = (0.02� 1/ 4� 1/ 2)� 1.6= 0.004 0.012 3�

As it can be observed from Table 5.4, NineSilica [59] requires 10.3 ms for performing
64-point radix- 4 FFT. In this context, the same task has been performed in HARP in
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2.1 ms. It shows 3.9X speed-up after performance scaling. Furthermore, regarding
the resource utilization, NineSilica requires 71,679ALUTs on Stratix-IV device while
HARP requires 102,637ALMs on Stratix-V device. Since one ALM on Stratix-V device
is equivalent to two ALUTs on Stratix-IV device, HARP shows the cost of 1.5X logic
resources in comparison with NineSilica.

Another homogeneous MPSoC synthesized on a 90 nm FPGA device delivers a per-
formance of 19.2 GOPS [93]. In order to the comparison with HARP, the performance
should be scaled from 90 nm FPGA to 28 nm FPGA by a factor of 40%. It is resulted to
increase the value of homogeneous MPSoC to26.88 GOPS. Against the scaled platform's
value, HARP platform obtained a gain of 1.78X.

The platform P 2012has been synthesized using28 nm CMOS technology ([ 29] & [ 30]).
Considering the performance gap between two technologies as well as the worst case
scenario with the equality among the static and dynamic power, the scaled performance
of P2012on a 28 nm FPGA is estimated to be 0.005 GOPS/mW. Accordingly, HARP
achieved a performance gain of 2.4X.

The ADRES platform has been synthesized on 90 nm CMOS with the performance of
0.004 GOPS/mW ([ 14] & [ 15]). Subsequent to scaling the performance from 90 nm
CMOS to a 90 nm FPGA and following that to a 28 nm FPGA, the ADRES platform
presents the performance of 0.0008GOPS/mW, which resulted to 15X gain by HARP.

In the case of MORPHEUS platform, it presents the 0.02 GOPS/mW at 90 nm CMOS
([26] & [ 27] & [ 28]). Subsequent to scaling the performance from 90 nm CMOS to a
90 nm FPGA and multiplying by a 60% speed-up, the HARP's performance depicts a
performance gain of 3X.

Another important vision of each platform is their throughput. In this research work, by
considering the implementation of an OFDM receiver at 200.0 MHz operating frequency,
the throughput is equal to 17 Mbit/s. It is calculated based on the number of data bits
(192) extracted from 48 data symbols at the SD block. The required throughput (data
rate) for 16-QAM modulation based on IEEE 802.11a/g standard speci�cations is 48
Mbit/s, including the coding bits. Therefore, the required throughput has been not
met due to having rather low operating frequency in the employed Stratix-V FPGA
device. However, the required throughput set by the standard can be met by changing
the device to one with at least 3.0X higher operating frequency, i.e., ASIC. The lowest
achievable clock frequency as mentioned by the standard to de�ne the throughput is
not high. Low cost off-the-shelf commercial components can also achieve this.
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Figure 5.2: The time frame related to the utilization of NoC bandwidth in which con�guration
words and the data transfers between the data memories of the CGRA nodes are speci�ed with
red and blue lines, respectively. The execution of OFDM receiver blocks are also speci�ed with
green lines in the case of CGRAs and gray lines in the case of RISC processor software. The
signals 'wren', 'addr' and 'tmr_cnt_out' stand for write-enable, address ports of the Data Memory
and the counter for enumerating the number of CC, respectively. The numbers inside the digital
waveforms of N 3, N4 and N5 are extracted from the Table I. [P.IV]



6 Power Mitigation of a HARP on
FPGA/ASIC by DFS/DVFS Techniques

This chapter presents an integrated SEEC model in HARP template for mitigating the
dynamic power dissipation by employing an OFDM receiver as a test-case. CGRAs
are popular for providing high data level parallelism and also due to the level of their
granularity. However, they have potentially high power dissipation, which should be
mitigated in order to maximize the performance by employing various techniques, i.e.,
DVFS. In this context, SEEC models are playing an important role in order to create
self-adaptive computing systems for the complex extreme-scale computer systems
that require maximum performance besides minimum energy consumption. Self-
adaptive computing systems are able to change their behavior based on the performance
requirements [23]. For this purpose, an advanced FCS technique is exploited in order
to monitor the execution-time of the CGRA nodes constantly by the RISC cores and
then dynamically scale the operating frequency and the voltage of the CGRA nodes
based on the worst execution time to meet the desired performance level. Although
FCS technique can be utilized for dynamically scaling both frequency and the voltage,
however, voltage supply cannot be scaled on the FPGA-based prototype (implemented
in Chapter 5). Therefore, the implementation is also estimated in 28nm UTBB FD-SOI
ASIC technology in order to get more bene�ts in terms of the power mitigation by
scaling the voltage in addition to the frequency.

6.1 Equalization of the OFDM Receiver Performance by Frequency
Scaling

As it can be observed from the modi�ed version of HARP for performing an OFDM
receiver, Fig. 6.1, three RISC cores are instantiated to monitor the performance of the
CGRA nodes they are responsible for. In addition to transferring the con�guration
stream and data to be processed by the RISC cores, they are also responsible for
continuously monitoring the performance of each CGRA node, determining the worst-
case execution time and then upgrading or downgrading the clock frequencies and
supply voltage. As a result, the total power dissipation will be minimized while the
overall performance of the system will be maximized. Once the con�guration words are
transferred by the RISC cores in parallel, the data should be loaded into local memories
of N 0 in order to accomplish the TS block of an OFDM receiver. Then the RISC processor
starts to count the number of CC during the process of TS by using its special counter.
As it is also shown in Table 5.1, total CC required for executing each block of an OFDM
receiver is composed of transfers from data memory of RISC core to the data memory
of CGRA node, data memory to local memory of the CGRA and vice versa and the

45



46 Chapter6. Power Mitigation of a HARP on FPGA/ASIC by DFS/DVFS Techniques

CGRA execution time. Due to having the data dependency among the OFDM receiver
blocks, each computing node has to wait until the other one completes its execution.
Therefore, synchronization has to be established by the three RISC cores. The CGRA
nodes of the platform form a software-de�ned macro-pipeline.
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Figure 6.1: A simpli�ed overview of the HARP architecture with three RISCs and four template-
based CGRAs in a processor/coprocessor model. [P.V]

By completing the process of TS completely, the counted number of CC should be
transmitted to the N 4 RISC core and stored at reserved locations in its data memory.
The same procedure should be also applied on the other CGRA nodes. Once the
�rst iteration is completed, the data related to the number of CC of each CGRA node
should be retrieved in order to recognize the stored most time consuming CGRA node
(worst-case). As it is already reported, the total number of CC related to N 0, N1,
N2 and N8 CGRA nodes are equal to 9,985, 18,039, 1,931 and 1,685 CC, respectively.
According to the conducted experiment results, N 1 CGRA node, the one responsible
for accomplishing FOE block, is the most time consuming and can be selected as the
worst-case candidate. Then, N4 RISC core will notify other CGRA nodes regarding
the selected worst-case candidate. From the second round of iteration, nodes N3, N4
and N5 RISC cores will tune the operating frequency of the CGRA nodes belonging to
them in order to approach the de�ned equalization region. The FCS technique can be
implemented in the processor software to perform dynamically frequency scaling. It
can be performed by comparing the counted CC of the CGRA nodes and the selected
worst-case execution-time and then reducing each core operating frequency to approach
the performance goal. The clock frequencies of the CGRAs can be updated through
a module emulating a DVFS Power Management Unit (PMU). This PMU includes a
32-bit general-purpose register, de�ned as allocated 4-bit �eld ( 16 bits in total for four
cores) for each one when in DVFS mode (on ASIC), the corresponding supply voltage
supporting the clock frequency is also selected. When the frequency is updated the
PMU clock gates the part of the systems where the frequency or voltage is changed.
This guarantees that the subsystem is not operating during the transitions of frequency
and voltage, and that operation is safely restored once the voltage/frequency are stable.

On the FPGA prototype, each RISC core can tune the clock frequency of its associated
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Figure 6.2: Tuning the operating frequencies in the range of � 35.0-200.0 MHz. [P.V]

CGRA node by using this 4-bit �eld between 16 different frequencies within the range
of 35.0-200.0 MHz, depicted in Fig. 6.2. During each of 20 iterations, the 4-bit �eld is
added or subtracted by ” 0001”, which results to update the current clock frequency of
the CGRA node. However, the clock frequency of the RISC cores will remain the same.
It can be observed from Fig. 6.2 that during the system start-up time, all the CGRA
nodes are executing at the maximum operating frequency of 200.0 MHz. Subsequent
to identifying the worst-case candidate, from the second iteration onwards, FCS will
automatically update the target and start to tune the clock frequency of other CGRA
nodes in order to approach the equalization region. The number of iterations can be
speci�ed by the user at desig-time.
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Fig. 6.3 shows the performance equalization of the CGRA nodes. In the case of N0
(TS block), it successfully approached the equalization region by reaching it in the 12th
iteration while running at 35.0 MHz operating frequency. However, for the other two
computing-nodes, N 2 (FFT block) and N8 (CE block), their performance could not
degraded to the equalization region even with running at 35.0 MHz operating frequency
by reaching the 20th iteration. The reason is the smaller workload, lower computation
complexity algorithm and relatively shorter execution time.

In the next step, the entire platform was synthesized on ASIC in addition to FPGA in
order to dynamically scale both frequency and the voltage within the range of 55.0-500.0
MHz and 0.5-1V, respectively. The dynamic power dissipation of the CGRA nodes are
estimated �rst by applying DFS and keeping the voltage constant at 1V and then, by
applying DVFS, which is explained in detail in the next section. Moreover, in order to
have a fair comparison between FPGA and ASIC technologies in terms of the power
mitigation, the maximum operating frequency of ASIC is reduced from 500.0 MHz to
200.0 MHz as the clock frequency of FPGA.

6.2 Measurements and Estimations

The entire HARP platform with the applied FCS was �rst synthesized on a Stratix-V
(5SGXEA4H1F35C1) 28nm FPGA device for prototyping the concept and then in 28nm
UTBB FD-SOI ASIC technology in order to analyze the added bene�ts of including also
voltage scaling. Node-by-node breakdown of resource utilization on FPGA is depicted
in Table 5.2. However, subsequent to applying the FCS technique, the logic utilization
increased for just around 1%, which is almost negligible.

6.2.1 FPGA Evaluation

Table 6.1: Dynamic power dissipation of each node and the NoC before/after applying FCS on
FPGA prototype. [P.V]

Accelerator Dynamic Power (mW) Dynamic Power (mW) Savings
Node Type FCS Inactive FCS Active %

N0 Time Synchronization 414.35 284.43 31.35
N1 Frequency Offset Estimation 272.23 272.83 ' 0.0
N2 FFT 526.07 391.23 25.63
N3 Integration Logic e 114.47 104.13 9.03
N4 Processing, 113.82 114.61 ' 0.0
N5 Synchronization, Control 114.52 105.07 8.25
N8 Channel Estimation 448.01 344.61 23.07

NoC - 10.10 14.34 -
Integration -

Logic - 609.07 461.35 24.25
Total - 2623.72 2092.6 20.24

Subsequent to synthesizing the overall platform on Stratix-V FPGA device by using
Quartus II 15.0, two timing models were selected in order to measure the operating
frequencies after placement and routing. The timing models used by the Quartus II
software could cover worst-case voltage to the minimum and maximum supported Vdd
operating conditions for Slow 900mV 85� C and Fast 900mV 0� C, respectively. By using
these timing models, the timing of FPGA can be veri�ed without the need to implement
physical simulation. In this regard, the maximum achieved operating frequencies for
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slow timing model at an operation voltage of 900 mV are equal to 163.61 MHz and
188.29 MHz at temperatures of 85� C and 0� C, respectively. In the case of fast timing
model (900mV), the maximum operating frequencies are equal to 246.12 MHz at 0� C
and 223.51 MHz at 85� C. First of all, the clock frequency of 170.0 MHz has been used
for running the simulations using the ModelSim simulator and then it is increased up
to 200.0 MHz as the average of the achieved operating frequencies without any timing
error on the particular FPGA instance used. As it can be observed from Table 6.1, the
power measurements are performed in two states: inactive state of FCS with the �xed
operating frequency of 200.0 MHz and active state of FCS with the tunable operating
frequency within the range of 200.0-35.0 MHz. In the case of inactive state of FCS,
the dynamic power dissipation is equal to 2623.72 mW. Once the FCS starts to tune
the clock frequency of the computing nodes based on the worst-case execution time,
the dynamic power dissipation will also start to get reduction. By completing all the
20 iterations, the total dynamic power dissipation can be decreased up to 20.24%. In
the case of FCS active, the estimated static, dynamic, I/O and total power dissipation
for the overall platform showed the value of 1121.19 mW, 2092.6 mW, 27.37 mW and
3239.2 mW, respectively. In comparison with the inactive state of FCS (analyzed in
Chapter 5), the total power dissipation of the entire platform can be decreased up to
16.8%. Although it is proved that applying the FCS technique can be highly effective
in order to reduce the instantaneous dynamic power dissipation and accordingly the
heat dissipation and the dark part of the chip, however the energy consumption on the
FPGA prototype remained approximately the same. It is due to increasing the active
time of the CGRA nodes proportionally as the result of decreasing the clock frequency.

6.2.2 ASIC Evaluation

The entire platform is then synthesized on 28nm UTBB FD-SOI ASIC technology in
order to apply DVFS method and get more power and energy reduction. The various
blocks of the system were synthesized with Synopsys Design Compiler 2014.09 [94] on
a 28nm UTBB FD-SOI RVT standard cell library. The power dissipation was estimated
with Synopsys PrimeTime 2013.06 assuming 20% of switching activity. Furthermore, the
libraries have been characterized down to 0.5V with 0.1V steps using Cadence Liberate
for estimating the power consumption of the blocks at different voltages. The design
was synthesized at 1.0V (slow-slow (ss) corner, 125� C), while the signoff was performed
at different operating voltages (from 1.0V to 0.5V with steps of 0.1V), in order to
provide to the software the knowledge of the maximum operating frequency and power
consumption of the system at the different voltage supplies evaluated in this work. As
it can be observed from the post-syntesis results depicted in Table 6.2, the maximum
achieved operating frequency is 500.0 MHz at nominal voltage in the slow corner (ss,
125� C, 0.9V). The leakage and dynamic power consumption are measured in typical
operating conditions (typical-typical (TT), 25� C, 1.0V). Similar to FPGA implementation,
the area occupation, leakage and dynamic power consumption are also doubled as the
the size of the template-based CGRAs doubled, i.e., N0, N2 and N8 against N1. The
overall platform occupies 8.68 mm2 of the area with the consumption of 0.1424mW and
218.66 mW as the leakage and dynamic power consumption, respectively.

As the next step, both frequency and the voltage are scaled down simultaneously within
�ve steps while at each step, the dynamic power consumption has been measured.
Node-by-node breakdown of dynamic power dissipation affected by applying DVFS
method at each stage is depicted in Table6.3. However, the leakage power is ignored
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Table 6.2: Power consumption and area utilization of the nodes synthesized on ASIC at the
operating frequency of 500.0 MHz ( 0.9V, ss, 125°C) and typical conditions (tt, 25°C, 1.0V) for
estimating the power numbers. [P.V]

Frequency Area Leakage Power Dynamic Power [mW]
Node [MHz] [mm 2] @1V [mW] @1V, 500MHz

N0 500.0 1.78 0.0298 51
N1 500.0 0.9 0.0146 24.75
N2 500.0 1.81 0.0292 48.75
N3 500.0 0.79 0.0136 10.91
N4 500.0 0.79 0.0130 15
N5 500.0 0.79 0.0128 19.65
N8 500.0 1.82 0.0294 48.6

Total 500.0 8.68 0.1424 218.66

because of its negligible value. At the �rst stage, 31.42% power reduction can be
obtained by scaling down the operating frequency and the voltage from 500.0 MHz
and 1V to 480.0 MHz and 0.9V, respectively. By moving forward in scaling down the
operating frequency and the voltage down to 55 MHz and 0.5V, the dynamic power
dissipation can be decreased down to 5.23 mW, which is equivalent to 97.61% saving
compared to the dynamic power dissipation at 1V and 500.0 MHz.

Table 6.3: Impact of DVFS method on the dynamic power dissipation at scaled down voltages
and frequencies on ASIC prototype. DP stands for Dynamic Power. Gains are calculated against
dynamic power at 1V and 500.0 MHz. [P.V]

DP [mW] DP [mW] DP [mW] DP [mW] DP [mW]
@0.9V @0.8V @0.7V @0.6V @0.5V

Node 480.0 MHz 366.0 MHz 238.0 MHz 119.0 MH z 55.0 MHz
N0 33.58 19.15 9.65 3.5 1.17
N1 16.3 9.29 4.68 1.7 0.57
N2 32.1 18.3 9.22 3.34 1.12
N3 7.18 4.09 2.06 0.75 0.25
N4 9.88 5.63 2.84 1.03 0.35
N5 12.94 7.38 3.72 1.35 0.45
N8 32 18.25 9.2 3.34 1.12

Total 149.96 85.51 43.09 15.62 5.23
Gain % 31.42 60.89 80.29 92.86 97.61

6.2.3 Mixed Comparison Between FPGA and ASIC Technologies

In order to have a fair comparison against FPGA implementation, the maximum
operating frequency should be kept at the �xed value of 200.0 MHz. Then the dynamic
power dissipation is estimated in three states on ASIC: inactive state of FCS, active state
of FCS with DFS and active state of FCS with DVFS. As it is depicted in Table 6.4, the
dynamic power dissipation of FOE lock, N 1, as the worst-case candidate is constant in
all states. Regarding the rest of the nodes, subsequent to tuning the operating frequency
of the cores by FCS, the dynamic power dissipation of the entire platform is reduced
by 64.29%. Therefore, the equalization region speci�ed by FCS can be approached
successfully by all the cores, which are running at 55.0 MHz operating frequency. In the
case of DVFS where the supply voltages are also scaled down to0.5V in parallel with
the frequency scaling, the total dynamic power dissipation can be mitigated by 82.98%
in comparison with FCS inactive state.
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Table 6.4: Dynamic power dissipation of each node before applying FCS, after applying FCS with
dynamic frequency scaling (DFS) and also with DVFS on ASIC. [P.V]

Dynamic Power [mW] Dynamic Power [mW] Dynamic Power [mW]
FCS Inactive FCS Active FCS Active

Node 200MHz with DFS @ 1V with DVFS
N0 20.4 5.61 1.7
N1 9.9 9.9 9.9
N2 19.5 5.36 1.12
N3 4.36 1.2 0.25
N4 6 1.65 0.35
N5 7.86 2.16 0.45
N8 19.44 5.35 1.12

Total 87.46 31.23 14.89

Table 6.5 shows the comparison between the OFDM receiver implementation on FPGA
and ASIC technologies at the condition of active state of FCS with the applied DFS
technique. The maximum operating frequency for running the whole platform in both
technologies is 200.0 MHz. The conducted experiment results showed the signi�cant
dynamic power mitigation for performing an OFDM receiver on ASIC against the FPGA.
Figure 6.4 also shows the general comparison as a visual summary of total dynamic
power dissipation of FPGA inactive FCS, FPGA active FCS with DFS, ASIC inactive FCS,
ASIC active FCS with DFS and ASIC active FCS with DVFS. It can be observed that by
applying FCS and DFS on FPGA, 1.25X gain can be achieved in terms of dynamic power
dissipation reduction. In the case of ASIC implementation, the amount of obtained
dynamic power saving with DFS is 7X, which can be further reduced by 5.97X with
DVFS. This approach paves the way for self-aware systems for energy ef�cient OFDM
receiver, mapped on HARP, by mitigating the signal transition activity over the entire
platform with reference to the worst-case performing core.

Table 6.5: General comparison of the impact of DFS technique on FPGA and ASIC dynamic
power dissipation at the same operating condition. [P.V]

Dynamic Power [mW] Dynamic Power [mW]
FPGA ASIC

Node FCS Active with DFS FCS Active with DFS @ 1V
N0 284.43 5.61
N1 272.83 9.9
N2 391.23 5.36
N3 104.13 1.2
N4 114.61 1.65
N5 105.07 2.16
N8 344.61 5.35

Total 2092.6 31.23
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1.25X

9.57X

7X

5.97X

Figure 6.4: General Comparison of Total Dynamic Power of FPGA Inactive FCS, FPGA Active
FCS, ASIC Inactive FCS, ASIC Active FCS with DFS and with DVFS. DP stands for Dynamic
Power. [P.V]



7 HW/SW Co-design of an OFDM
Receiver on Xilinx Zynq SoC using HLS

In this chapter, a novel HW/SW co-design of an OFDM receiver using Xilinx Software
De�ned System-on-Chip (SDSoC) as the High-Level Synthesis (HLS) tool is presented.
The ZYNQ SoCs are composed of an ARM processor besides a FPGA in order to
improve the power ef�ciency and the system performance. On a single chip, heteroge-
neous MPSoC can be created by employing FPGA in order to integrate numerous PEs.
However, designing application-speci�c accelerators and programming of FPGAs by
using Hardware Description Language (HDL) are expensive, time-consuming and com-
plicated. Therefore, HLS tools such as VivadoHLS [95] and SDSoC (Software-De�ned
SoC) [96] have been introduced by Xilinx. Currently, the development of heterogeneous
embedded systems on the Zynq MPSoC/SoC platform by using an embedded C/C++
application programming interface provided by SDSoC becomes much easier for appli-
cation developer than writing HDL. It contains a C/C++ compiler in which the designer
can select each thread of an application to be compiled by a processor in SW or HW.
As it is explained in Chapter 4, the OFDM receiver is composed of parallel and serial
nature algorithms, which require HW/SW co-design to ful�ll system requirements. The
blocks of an OFDM receiver are written in C/C++ code to be realizable on the ARM
processor or on the FPGA. The parallel tasks can be created as accelerators based on the
HW functions written in C/C++ code. The accelerators can be implemented into the
HW by compiling the written HW functions. The HW functions can also be optimized
by employing pragmas to be ef�ciently performed in the FPGA.

7.1 Implementation of an OFDM receiver on the ZC 706Evaluation
Board

In this section, the implementation of an OFDM receiver on ZC 706evaluation board
(Xilinx Zynq SoC) by using the HLS tool as an application for a Linux host is presented.
As the �rst stage, the blocks of OFDM receiver are written in C++ code based on the
explained algorithms in Chapter 4. The general view of the overall platform for OFDM
receiver on ZC706evaluation board is shown in Fig. 7.1.

The blocks of an OFDM receiver can be created as HW functions (application-speci�c
accelerators) then connected to the Processing System (PS) through a data motion
network. As it can be observed from the �gure, the order of executing the OFDM
receiver blocks as the HW accelerators and exchanging the data symbols between the
different accelerators are speci�ed with the dashed arrows and numbers. Fig. 7.2 depicts
the HW/SW connectivity for transferring the data to be processed from the SW to the
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Figure 7.1: An overview of an OFDM receiver implementation on ZC 706evaluation board. [P.III]

HW or vice-versa. Moreover, the required CC for calling the HW functions, setting
up the Data Mover (DM), transferring the data and executing the application-speci�c
accelerators during the processing of the OFDM receiver are speci�ed in the timeline.
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Figure 7.2: HW/SW connectivity and the timeline for seting up DM and calling HW function.
[P.III]

In order to transfer the received data symbols and training symbols from the ARM
processor to the FPGA HW, various DMA con�gurations provided by SDSoC can
be employed. In this case-study, axi_dma_sg (scatter-gather DMA) data mover for
array arguments is selected. In the SDSoC environment, the data transfer network is
composed of HW interface for the application-speci�c accelerators and DM among the
PS and the FPGA through AXI ports. As it can be observed from Fig. 7.2, the ARM
processor (CPU) is responsible for establishing the HW functions and setting up DM for
each function call. Subsequent to completing the function call and the data transfer, the
loaded data as the inputs of HW functions will become available. Then according to the
algorithm scenario monitored by the SW and written by the application developer at
design-time, the accelerators can start their actual processing. Furthermore, it is obvious
from Fig. 7.2 that in the case of several sets of data, setting up DM for each new array of
data can be executed in parallel with the data transfer of the previous one. For instance,
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setting up DM for the �rst TS's array of data with the size of 80 takes 1005CC, which
in the following, can be forwarded to the HW function in 1317CC. At the same time
of transmitting the data to the HW function, DM for the second TS's array of data can
be established. Therefore, the whole process of transferring data from the CPU to the
FPGA HW functions can be calculated as the following

6642CC = 5334CC+ ( 5334CC � 4026CC) (7.1)

where it takes 6642CC in total. Subsequent to transferring the received data symbols
from the CPU to the FPGA Time Synchronization accelerator (dashed arrow number 1),
the correlation algorithm, looking for the index of the time offset and specifying the
edge of FFT window can be implemented in 9549CC. According to Eq. 4.1 and Eq.
4.2, the simpli�ed algorithm for executing the Time Synchronization block by using CP
correlation based method in SDSoC development environment is written as following
pseudo code.

Algorithm 2 CP correlation based method for TS. [P.III]

1: Initialize Location to 0, and Max to � 1
2: for i:=1 to 80 step 1 do
3: #pragma HLS PIPELINE enable_�ush rewind off
4: for j:=1 to 80 step 1 do
5: #pragma HLS PIPELINE II= 1

6: #pragma HLS unroll factor= 4

7: c  y( j)y �
D ( j + i) + c

8: z = real(c) � real(c) + imag(c) � imag(c)
9: if (z > Max) then

10: Max = SM
11: TimeOffsetIndex = i

As it can be seen from the highlighted parts, loop pipelining and loop unrolling are
employed in order to have ef�cient implementation. By using the pragmapipelineand
transforming the sequential execution of operations into parallel, the performance of
the HW function can be improved by performing the loop in a concurrent manner. As
the result, the clock cycles for performing all operations are reduced. However, the
pragmapipelineis limited in terms of ef�ciency mainly by data dependency. By using the
pragmaloop unrolling, the performance can be improved by exploiting the parallelism
among loop iterations. The pragmaloop unrollingcreates copies of the loop body, which
are implemented concurrently. The number of created copies can be determined by
the designer at design-time by inserting an unroll factor. The data dependency and
available HW resources affect on the number of manufacturable copies. As it can be
observed from the pseudo code, HLS unroll factor 4 is selected by the author as the
most ef�cient factor. Moreover, due to the large size of the whole design, it was not
synthesizable for the larger unroll factors.

Subsequent to performing TS block, the short training symbols along with the index of
time offset are transferred from the ARM processor to the FPGA HW accelerator for
executing FOE, speci�ed with the dashed arrows number 2 and 3, respectively. The data
transfer including setting up DM for the input of FOW and the process of this block can
be performed in 10280CC and 4747CC, respectively. In parallel with the computation
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of FOE, the twiddle factors that are required for performing the FFT block can be loaded
from CPU to the HW accelerator in 7168CC (dashed arrow number 4). The process
of 64-point radix- 4 FFT can be completed in 6487CC in which the data symbols are
fetched directly from the outputs of FOE accelerator (dashed arrow number 5). The last
HW accelerator belongs to CE block. By completing the implementation of FFT, the data
symbols should be transferred to the CE accelerator (dashed arrow number 6) in order
to estimate the channel frequency response and accomplish the channel equalization
in 2164CC. Finally, the equalized data symbols should be transferred back to PS in
2688CC (dashed arrow number 7) for performing symbols demapping block where the
data symbols will be converted to data bits by employing the hard decision method.
Symbols demapping block can be executed by processor in SW without requiring any
HW accelerator.

7.2 Experimental Results, Comparison and Discussion

Table 7.1 depicts the required CC for performing each block of an OFDM receiver
using FPGA HW accelerator or ARM processor SW. Furthermore, the achieved clock
cycles are also compared against the HARP platform in Table 7.2. Due to having
different clock speeds for running two different platforms, the value of speed-up for
each accelerator is computed based on the ratio of the old execution time (the product
of CC and the clock period) to the new execution time for a system. The maximum
operating frequency of SDSoC is equal to 667.0 MHz while HARP is running at 200.0
MHz. According to the calculated speed-up of the SDSoC HW accelerators against
HARP, the obtained speed-up from the implementation of TS, FOE and SD on the
ZC706 evaluation board are 1.21X, 8.92X and 4.03X, respectively. In the case of FFT
and CE, since they are algorithms of parallel nature, HARP shows better performance
due to using template-based CGRAs, specialized for parallel tasks. Although the FPGA
is also a worthy candidate platform for accomplishing parallel tasks, however, by the
use of template-based CGRAs, the application developers could have near-optimal
solutions since the interconnections among the PEs can be done manually. On the other
hand, most of the CGRAs suffer from a �xed set of PEs and interconnections, which
makes them dependent on various Design Space Exploration (DSE) techniques in order
to improve them in terms of cost and performance [ 97]. Most of the DSE techniques
are concerned with the interconnection between PEs and the con�guration of their
internal structure. Employing DSE techniques by the designer ensures the design of
near-optimal applications in terms of cost and performance. Furthermore, the level of
granularity is different among the FPGA (an example of �ne-grained) and the CGRAs.
It should also be noticed that the structure of FPGAs are based on LUTs not PEs, which
resulted to accept any bit size. In order to execute an operation, coarse-grained devices
require less PEs and consequently, lower resource utilization in comparison with the
�ne-grained devices. However, the �exibility of �ne-grained devices is better than
coarse-grained devices for executing new operations. Furthermore, coarse-grained
devices have symmetry (arrays of PEs) in their structure. It results to high level of
throughput and data parallelism. On the other hand, they are expensive and have
high transient power dissipation because of occupying an area of a few million gates
on a single chip. In this case-study, TS, FFT and CE blocks of an OFDM receiver are
parallel in nature algorithms. Although it would be dif�cult to have a direct comparison
between FPGA or CGRA in terms of the performance of the above-mentioned parallel
algorithms, however, the parallel algorithms may have better performance on FPGA or
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CGRA based on the amount of computations required by each of them. In the case of
SD block as a serial in nature algorithm, it is performed by the processor software in
both cases due to having faster execution than HW. As it can be observed from Table
7.2, SDSoC HW accelerators have better performance in terms of CC for parallel in
nature algorithms than SDSoC SW. For the whole OFDM receiver, SDSoC HW showed
speed-up of 1.75X against SDSoC SW. Furthermore, SDSoC HW showed also speed-up
of 3.94X in comparison with the HARP due to having higher operating frequency and
different NoC used for transferring the data.

Table 7.1: CC required for processing in two platforms at different stages. Moreover, * and **
stand for the algorithms that have been implemented by SW instead of HW and data transfer
from HW to SW, respectively. [P.III]

HARP (CC) at 200MHz SDSoC (CC) at 667MHz
Data Execution Execution Data Execution

Acc transfer HW Time ( ms) SW Time ( ms) Transfer HW Time ( ms)
TS 9,619 3,465 17.33 14,082 21.11 6,642 9,549 14.32

FOE 4,664 12,708 63.54 14,366 21.53 10,280 4,747 7.12
FFT 2,677 328 1.64 9,282 13.91 3,160 2,503 3.75
CE 1,435 250 1.25 5,276 7.91 2,016** 2,164 4.74
SD - 2,253* 16.27 3,724 5.58 - - -

OFDM - 31,521 157.6 46,730 70.1 - 26,677 40

Table 7.2: Performance comparison between SDSoC HW against HARP and SDSoC SW. * stand
for the algorithms that have been implemented by SW instead of HW. [P.III]

Acc Gain SDSoC HW vs HARP Gain SDSoC HW vs SW
TS 1.21X 1.69X

FOE 8.92X 3.16X
FFT 0.44X 3.71X
CE 0.38X 4.86X
SD 4.03X* -

OFDM 3.94X 1.75X

Node-by-node breakdown of resource utilization of the designed hardware accelerator
on Zynq ®-7000all programmable SoC ZC706 evaluation kit is depicted in Table 7.3.
Furthermore, the rightmost columns of the table present the comparison of resource
utilization between HARP and ZC 706evaluation board. Regarding the SD block, it is
implemented by processor software and thus, there is not any employed 48-bit DSP in
ZC706evaluation board or ALMs and 18-bit DSP in HARP for that. In order to have fare
comparison between HARP and ZC 706evaluation board, it has to be considered that
each ALM in Stratix-V FPGA device consists of two LUTs. As it is described in Chapter
5, the number of employed 18-bit DSP resources in HARP depends on the number
of 32-bit multipliers instantiated. However, against 18-bit DSP resources in HARP,
which are only used for multiplication, 48-bit DSP in ZC706 evaluation board is an
arithmetic logic unit and consists of an add/subtract unit and a multiplier connected to
a �nal add/subtract/accumulate engine and can be used only by accelerators (hardware
functions). Accordingly, a direct comparison between the amount of utilized DSP
resources by two different technologies is dif�cult and the results are only indicative.

The platform's total power dissipation is estimated by using Xilinx Power Estimator
(XPE). According to the obtained results for an OFDM receiver on the ZC 706evaluation
board, the tool showed 3.171 W for total on-chip power at an ambient temperature
of 25� C. The total power dissipation is composed of static, Processor System (PS) +
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Table 7.3: Synthesis results of the proposed accelerators on ZC706 evaluation board and also
resource utilization summary of HARP (Stratix-V ( 5SGXEA4H1F35C1) FPGA device) against
ZC706. Acc stands for Accelerator. [P.III]

Resource Utilization
Acc ZC706 HARP

48-bit 18-bit
BRAM FF LUT DSP ALMs DSP

TS 0 1,019 563 34 22,616 40
FOE 0 41,506 47,838 459 8,171 32
CE 24 29.664 5,143 153 22,809 56
FFT 4 26,900 24,894 103 25,908 66
SD 0 1,875 9,101 0 0 0

Total 28 100,964 117,539 749 98,729 230
% (5.14) (23.09) (53.77) (83.22) (62) (90)

dynamic and I/O power with the values of 0.243W, 2.18 W and 0.748W, respectively. In
comparison with HARP platform with the total power dissipation of 3.9 W, Zynq ®-7000
all programmable SoC ZC706evaluation board showed a gain of 1.22X. However, since
HARP and Xilinx Zynq SoC are running at two different clock frequencies on the
different FPGA platforms, the comparison is not a completely fair and the result is only
indicative. The author expects from HARP to achieve a higher operating frequency on
the ZC706board. Even if HARP runs at the same clock frequency as the OFDM receiver
design implemented on ZC 706, there would be a slight gain in speed over the HARP.



8 Design and Implementation of
Multi-Purpose DCT/DST-Speci�c
Accelerator on HARP

In this chapter, the ef�cient design and implementation of 4/ 8/ 16/ 32-point DCT and
4-point DST by using template-based CGRAs on HARP is presented. Designed template-
based CGRAs for performing various sizes of DCT and DST are crafted according
to the algebraic equations at different dimensions by employing most of the PEs at
each context. The �nal architecture as a multi-purpose DCT/DST-speci�c accelerator is
composed of �ve template-based CGRAs arranged over a NoC structure along with three
RISC cores. Subsequent to integrating the CGRA nodes over HARP, the performance
of each DCT/DST-speci�c accelerator separately along with the performance of the
entire platform are recorded in terms of several high-level performance metrics. In
the following sections, a concise explanation of 4/ 8/ 16/ 32-point DCT and 4-point
DST algorithms is presented. As it is already described in Chapter 2, the HEVC
standard supports 2D DCT/DST with the above-mentioned sizes. However, in order
to prevent signi�cant complexity issues of 2D transforms, 1D implementations are
considered instead of 2D in which N-point 1D transforms should be applied to every
row and column of the residual block separately. Furthermore, these transforms are
designed to be �nite precision approximations of DCT/DST without considering the
transform size. The reason behind using �nite precision approximations is to prevent
encoder/decoder mismatch caused by different implementations, e.g., by different
manufacturers. The process of �nite precision approximations is composed of proper
rounding and scaling operations for obtaining ef�cient compression performance, which
ensures the interoperability of such transforms. More details about the investigations
and experiments for the HEVC transforms are described in [ 98]. The signal �ow-graph
for 4/ 8/ 16/ 32-point DCT is depicted in Fig. 8.1 where the outputs are reordered in
four different sections for four sizes of DCT [ 99]. As it can be seen from the �gure, by
increasing the number of inputs, which is always the power of two, a new set of cosine
butter�ies and a new set of odd transform coef�cients are added. The coef�cients of
Fig. 8.1 are not normalized, which can be performed at design-time by multiplying by
the factor of

p
2/ N. The general equations for a 1D DCT and 1D DST can be expressed

as following where n 2 (0, 1, ...,N � 1) and k is the number of row or column.

1D DCT :

8
>>><

>>>:

Yk =
q

2
N ak

N � 1
å

n= 0
Xkcos( p (2n+ 1)k

2N )

k = 0, 1, ...,N � 1 whereak =

(
1p
2

K = 0

1 otherwise

(8.1)
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HARP

1D DST :

8
>>><

>>>:

Yk =
q

2
N bk

N � 1
å

n= 0
Xksin ( p (2n+ 1)k

2N )

k = 0, 1, ...,N � 1 wherebk =

(
1p
2

K = 0

1 otherwise

(8.2)
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Figure 8.1: DCT Flow Graph for 4/ 8/ 16/ 32-point.

8.1 4-Point DCT

The 4-point DCT can be achieved from Eq. 8.3 and Eq. 8.4, which is equivalent to the
expansion of the shown butter�y. In general the transform matrix coef�cients for 1D
4-point DCT are a = 0.5cos( p

4 ), b = 0.5cos( p
8 ), c = 0.5cos( 3p

8 ). However, the values of
the matrix were found by [ 98] to be as follows; a = 64,b = 83 and c = 36, which are the
most ef�cient transform matrix coef�cients. In the following sections, the similar things
are also applied for 8/ 16/ 32-point transform matrix coef�cients by referring to them
with these (a,b,c, ...) parameters while the details of the calculation of all the transform
coef�cients are not in the scope of this thesis.

DCTTCoe f f 4 � 4 =

2

6
6
4

a a a a
b c � c � b
a � a � a a
c � b b � c

3

7
7
5 (8.3)

According to the above-mentioned transform matrix coef�cients, the equations related
to four outputs ( Yn) of 1D 4-point DCT can be written as following where Xn is the
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input.
Y0 = a(X0 + X1 + X2 + X3)
Y1 = b(X0 � X3) + c(X1 � X2)
Y2 = a(X0 + X3 � (X1 + X2))
Y3 = c(X0 � X3) � b(X1 � X2)

(8.4)

The CREMA-generated accelerator for performing the above equations is shown in Fig.
8.2 where 6 additions, 6 subtractions and 6 multiplications are employed in order to
accomplish 4-point 1D DCT in just one context.
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Figure 8.2: Context for the Calculation of 1D DCT 4-point. [P.VI]

8.2 8-Point DCT

In the case of 8-point DCT, the coef�cient transform matrix can be decomposed into
two matrices in which the computation of the even indexed coef�cients are separated
from the computation of the odd indexed coef�cients due to the coef�cient symmetry
[99]. Although the values of the parameters according to Eq. 8.1 and the signal �ow
are a = 0.5cos( p

16), b = 0.5cos( p
8 ), c = 0.5cos( 3p

16 ), d = 0.5cos( p
4 ), e = 0.5cos( 5p

16 ),
f = 0.5cos( 3p

8 ) and g = 0.5cos( 73p
16 ), however, they are recalculated by [98] as the

most ef�cient transform matrix coef�cients. Therefore, the values of parameters in this
manuscript are as following; a = 64,b = 83,c = 36,d = 89,e= 75, f = 50,g = 18.
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According to the above-mentioned transform matrices coef�cients, the equations related
to eight outputs ( Yn) of 1D 8-point DCT can be expressed as Eq.8.7 where they are also
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simpli�ed to be mapped on the template-based CGRA. The operations are reported in
the same order as the butter�y develops Fig. 8.1, starting from the input coef�cients to
arrive at the output coef�cients.

Y0 = d(( X0 + X3 + X4 + X7)
| {z }

Z0

+ ( X1 + X2 + X5 + X6)
| {z }

Z4

)

Y1 = a(X0 � X7)
| {z }

Z10

+ c(X1 � X6)
| {z }

Z11

+ e(X2 � X5)
| {z }

Z12

+ g(X3 � X4)
| {z }

Z13

Y2 = f (( X1 + X6 � (X2 + X5))
| {z }

Z2

) + b(( X0 + X7 � (X3 + X4))
| {z }

Z6

)

Y3 = c(X0 � X7)
| {z }

Z30

� g(X1 � X6)
| {z }

Z31

� a(X2 � X5)
| {z }

Z32

� e(X3 � X4)
| {z }

Z33

Y4 = d(( X0 + X3 + X4 + X7)
| {z }

Z0

� (X1 + X2 + X5 + X6)
| {z }

Z4

)

Y5 = e(X0 � X7)
| {z }

Z50

� a(X1 � X6)
| {z }

Z51

+ g(X2 � X5)
| {z }

Z52

+ c(X3 � X4)
| {z }

Z53

Y6 = f (( X0 + X7 � (X3 + X4))
| {z }

Z6

) � b(( X1 + X6 � (X2 + X5))
| {z }

Z2

)

Y7 = g(X0 � X7)
| {z }

Z70

� e(X1 � X6)
| {z }

Z71

+ c(X2 � X5)
| {z }

Z72

� a(X3 � X4)
| {z }

Z73

(8.7)

The AVATAR-generated accelerator for performing the above equations is shown in Fig.
8.3 where 16 additions, 7 subtractions and 10 multiplications are employed in order to
accomplish 8-point 1D DCT in two contexts. The left side of the contexts are allocated
to calculate the even indexed outputs while the right side is responsible for computing
the odd indexed outputs.

8.3 16/32-Point DCT

As it can be observed from the second context of Fig. 8.4, the outputs Y0, Y4, Y8 and
Y12 can be produced while switching the context, the new set of data can be loaded
into the local memory. In order to produce the outputs Y 2, Y6, Y10 and Y14, the third
context and a part of the fourth context speci�ed by dashed border line have to be
employed. The remaining outputs of 16-point DCT can also be produced by using the
fourth context twice (second time just the dashed border part).

As it can be observed from Fig. 8.5, Fig. 8.6 and Fig. 8.7, seven contexts are required in
total in order to accomplish 32-point DCT. The second context is the same as the second
context of 16-point DCT while the outputs Y 0, Y8, Y16 and Y24 will be produced. The
third context is designed to prepare the data for the fourth context. The fourth context is
designed as a multi-purpose context, which is partitioned into four different segments,
each can be employed for various purposes. The �rst segment can produce the outputs
Y4, Y12, Y20 and Y28 from the received data of third context. The second segment is
designed to receive the data from the �fth context, process the data, forward them to
the third segment and �nally, produce the outputs Y 2, Y6, Y10, Y14, Y18, Y22, Y26 and
Y30. The fourth segment will also receive data from the seventh context and produce
the last set of 32-point DCT outputs.
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Figure 8.3: Second & Third Contexts for the Calculation of 1D DCT 8-point. [P.VI]

8.4 4-Point DST

Similar to 4-point DCT, the most ef�cient transform coef�cient matrix for 4-point DST
has also been found as written in Eq. 8.8 in which the values of parameters a, b, c and
d are equal to 29, 55, 74 and 84, respectively.

DSTTCoe f f 4 � 4 =

2

6
6
4

a b c d
c c 0 � c
d � a � c b
b � d c � a

3

7
7
5 (8.8)

Then Eq. 8.9 can be expressed based on the above matrix. The CREMA-generated
accelerator for performing 4-point 1D DST is shown in Fig. 8.2 where 5 additions, 1
subtraction and 8 multiplications are employed in a context.

Y0 = a � X0 + b � X1 + c � X2 + d � X3

Y1 = c � X0 + c � X1 � c � X3

Y2 = d � X0 � a � X1 � c � X2 + b � X3

Y3 = b � X0 � d � X1 + c � X2 � a � X3

(8.9)
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Figure 8.4: Second, Third & Fourth Contexts for the Calculation of 1D DCT 16-point.

8.5 Implementation of Multi-Purpose DCT/DST-Speci�c Accelerator
on HARP

Subsequent to crafting DCT/DST-speci�c accelerators by using the template-based
CGRAs at different dimensions in the most optimum way due to employing most of
the PEs at each context, they are integrated over HARP as the slave nodes. As it is
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shown in the overall processing architecture for DCT/DST, Fig. 8.9, N3 RISC core is
responsible for transferring the con�guration stream and data to be processed to N 0 and
N6 CGRAs, N4 RISC is responsible for N1 CGRA and N 5 RISC is responsible for N2
and N8 CGRAs. This level of exchanging data between the master nodes and the slave
nodes simultaneously demonstrates the functionality and technical capabilities of HARP.
Each of these RISC cores has its own counter for general-purpose measurements while
the entire platform works on a single clock source. The CC required for transferring the
data from the data memory of RISC processor to the data memory of the CGRA node,
from the data memory of the CGRA node to the local memory and also for processing
the assigned algorithm are depicted in Table 8.1.

Table 8.1: Clock cycles required for data transfer and processing at different stages. D. Mem,
Trans and Exe. stand for Data memory, Transfer and Execution, respectively. [P.VI]

Node-to Data Memory to Data Memory Transfer Execution
-Node Data Memory to CGRA's Local Memory Total Total
N3-N0 165 348 513 54
N3-N6 188 407 595 56
N4-N1 247 882 1129 67
N5-N2 304 4591 4895 179
N5-N8 616 8697 9313 354

Once the con�guration streams and the data are loaded in parallel by the DMA device
during the system start-up time, the slave nodes can start their execution simultaneously
according to the algorithm data-�ow. As it can be observed from the table, 513CC and
595CC are required for total data transfer from the data memory of N 3 RISC core to N0
and N6 CGRA nodes for implementing 4-point DCT and 4-point DST in 54 CC and 56
CC, respectively. The implementation of 8-point DCT by N 1 CGRA node is monitored
by N 4 RISC core in which the total data transfer and the process of the algorithm can
be performed in 1129CC and 64 CC, respectively. The execution of 16-point DCT and
32-point DCT by N 2 and N8 CGRA nodes, respectively is controlled by N 5 RISC core.
They are the most time-consuming tasks of the platform due to their large matrix sizes
and require 4895CC and 9313CC for data transfer and also 179 CC and 354 CC to
be executed, respectively. Subsequent to the completion of each task, the results from
the local memory of CGRA node should be transferred by the DMA device to the
data memory of its host RISC processor for further processing. Although each CGRA
node can also be designed to be used for processing of various sizes of DCT instead
of just one size, which requires to be recon�gured at run-time, the critical path will
become longer at the cost of operating frequency reduction. The percentage of the total
execution time frame for the useful computation of N 0, N1, N2, N6 and N8 CGRA
nodes excluding the data transfer total time is equal to 7.61%, 7.89%, 9.44%, 25.21% and
49.86%, respectively.

8.6 Measurements, Estimations, Evaluation and Comparisons

The modi�ed platform for performing 4/ 8/ 16/ 32-point DCT and 4-point DST was
synthesized on Stratix-V (5SGXMB9R3H4C2) FPGA device for prototyping the concept.
The operating conditions are selected for both 0� C (low) and 85� C (high) junction
temperatures and 23 mm heat sink with 200LFPM air�ow as a preset cooling solution.
The achieved maximum operating frequencies after placement and routing are equal to
172.66 MHz 0� C and 161.75 MHz 85� C for slow timing model ( 900mV). In the case of
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fast timing model ( 900mV), maximum operating frequencies were equal to 245.96 MHz
and 232.97 MHz at 0� C and 85� C, respectively. The overall platform works on a single
clock source and is simulated at 200.0 MHz operating frequency.

8.6.1 Resource Utilization

Node-by-node breakdown of resource utilization for the entire prototyped platform
on FGPA device is depicted in Table 8.2. The resources are categorized in terms of the
number of ALMs, Registers, Memory Bits and DSP elements. Around 30% of the ALMs,
8.6% of the registers and 42.7% of the memory bits are consumed by the overall design.
It can be found out that the resource utilization of AVATAR-generated accelerators (N 1
& N 2 & N 8) are approximately 4X more resource-consuming than CREMA-generated
accelerators (N0 & N 6) due to employing a higher number of PEs. Additionally, 51% of
18-bit DSP resources are utilized by the 32-bit multipliers instantiated in the PEs.

Table 8.2: Node-by-node Breakdown of Resource Utilization. [P.VI]

Memory (32-bit Multipliers)
Node ALMs Registers Bits DSPs

N0 5,792 4,121 2,364,672 (6) 12
N1 19,469 7,580 2,632,832 (10) 20
N2 20,659 7,887 2,632,992 (14) 28
N3 5,575 5,687 3,145,728 (6) 12
N4 5,630 5,662 4,194,304 (6) 12
N5 5,584 5,617 3,145,728 (6) 12
N6 6,088 3,454 2,364,672 (8) 16
N8 25,149 10,391 2,633,472 (34) 68

NoC 2,605 4,212 - -
95,551 54,611 23,114,400 (90) 180

Total 30% 8.6% 42.7% 51%

8.6.2 Energy and Power Estimations

The platform's total power dissipation is estimated based on post P&R information using
PowerPlay Power Analyzer Tool of Quartus II 15.0 at the operating frequency of 200.0
MHz and at the room temperature of 25� C. The total power dissipation is estimated
by simulating the gate-level netlist of the entire platform and then generating the VCD
�le during the execution of DCT/DST by using ModelSim software while it yielded
'HIGH' level of con�dence. The estimated dynamic, static and I/O thermal power
dissipation are equal to 2492.9 mW, 1624.55 mW and 48.39 mW respectively, which
makes a total of 4102.8 mW. Node-by-node breakdown of dynamic power dissipation
and energy consumption of the system is depicted in Table 8.3. The AVATAR-generated
accelerators (N1 & N 2 & N 8) require almost 1.8X-2.5X dynamic power consumption
in comparison with the CREMA-generated accelerators (N 0 & N 6), which shows that
the dynamic power dissipation increases as the size of PE arrays in the template-based
CGRAs increases. The energy consumption for each node is computed as a product of
dynamic power dissipation and execution time.

8.6.3 Evaluation and Comparisons

As it can be seen from Fig. 8.9, the current instance of HARP, which is modi�ed for
processing an OFDM receiver, consists of 256 PEs in total. Furthermore, the entire
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Table 8.3: Dynamic power and energy estimation of each CGRA node and the NoC. GPP and IL
stand for General Purpose Processing and Integration Logic, respectively. [P.VI]

Dynamic Active Dynamic
Accelerator Power Time Energy

Node Type (mW) (ms) (mJ)
N0 4-point DCT 182.34 0.27 0.05
N1 8-point DCT 363.5 0.34 0.12
N2 16-point DCT 407.92 0.9 0.37
N3 GPP 115.14 5.54 0.64
N4 Synchronization, 114.08 5.65 0.65
N5 Control 115.15 71.04 8.18
N6 4-point DST 193.71 0.28 0.05
N8 32-point DCT 456.85 1.77 0.81

NoC - 10.03 - -
IL - 534.19 - -

Total - 2492.9 - 10.87

platform is running at 200.0 MHz operating frequency. By considering the total power
dissipation of 4.1 W, the current instance of HARP delivers a performance of 51.2
GOPS and0.012GOPS/mW, which proves again the architectural constantfor the HARP
template on Altera Stratix-V chip in 28 nm.

In comparison with the other state-of-the-art platforms for executing the various sizes of
DCT and DST dedicated for HEVC, our proposed architecture supports variable block
sizes (4/ 8/ 16/ 32-point DCT and 4-point DST). However, in many other architectures,
just one or few block sizes are supported, which shows the �exibility of HARP for the
application developer. Considering FULL HD 1080p encoding at 30 fps, it requires
the minimum throughput of 1920 � 1080 � 30 / ( 8 � 8) = 972,000blocks/second in
order to accomplish 8 � 8 DCT. The HARP template is able to perform 1D 8-point
DCT and 2D 8-point DCT in 67 CC and 219 CC, respectively. Accordingly, in order
to accomplish a complete 8 � 8 DCT block, HARP template demands 972,000 � 219
= 212.9 million cycles/second, which is equivalent to a clock frequency of 212.9 MHz.
Considering the achieved 232.97 MHz maximum operating frequency at 85� C for fast
timing model, HARP template is able to support 1080p format at 30 fps. By increasing
the video quality to Full HD 1080p format at 60 fps and 4K UHD 2160p format at 30 fps,
the clock frequency of 425.74 MHz and 851.47 MHz are required by HARP template,
which can not be met on FPGA device. However, by integrating the architecture on
ASIC, the required operating frequencies can be achieved. Based on the conducted
experiment results from Chapter 6, the maximum operating frequency of 500.0 MHz
can be obtained by synthesizing HARP on ASIC, which is enough to sustain 1080p
format at 60 fps.
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Figure 8.5: Second, Third & Fourth Contexts for the Calculation of 1D DCT 32-point.
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Figure 8.6: Fifth Context for the Calculation of 1D DCT 32-point.

Figure 8.7: Sixth & Seventh Contexts for the Calculation of 1D DCT 32-point.
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Figure 8.8: Context for the Calculation of 1D 4-point DST. [P.VI]

Figure 8.9: Abridged general view of Multi-purpose DCT/DST-speci�c accelerator on HARP
platform. [P.VI]



9 Conclusion

In this thesis, the author tested, evaluated and veri�ed the functionality and design
features of Heterogeneous Accelerator-Rich Platform (HARP). The HARP template
was designed as a heterogeneous multicore architecture in order to maximize the
number of computational resources on a platform by integrating several template-
based Coarse-Grained Recon�gurable Arrays (CGRAs) and Reduced Instruction-Set
Computing (RISC) cores in a processor/coprocessor model while the backbone of
communication is Network-on-Chip (NoC). The architecture of HARP is composed
of nine nodes arranged in a mesh topology of three rows and three columns. The
central node is always integrated with the RISC core, which acts as a supervisor node
in order to monitor the functionality of the other slave nodes. Moreover, the supervisor
node is responsible to transfer the con�guration streams and data to be processed to
the slave nodes and establish custom synchronization among all the cores in order
to maintain the distributed control for data and con�guration transfers as well as for
parallel execution. The other nodes can be either integrated with template-based CGRA
for parallel processing or even with the RISC core for general-purpose processing.

9.1 Main Results

As part of this design and test regime, the author designed a particular HARP instance
by instantiating three RISC cores in the mid-row and a few template-based CGRAs
around them. As the �rst test-case, Orthogonal Frequency Division Multiplexing
(OFDM) receiver blocks have been selected as a competent candidate to be mapped
on the HARP template. The OFDM receiver is a �ne mixture of parallel and serial
algorithms, which are demanded to be processed by the template-based CGRAs and
RISC cores, respectively. The template-based CGRAs can be tailored to the computa-
tional requirements of the target application while the dynamic power dissipation can
be mitigated. This combination provided a thorough exploration of the architectural
features and identi�cation of potential architectural fallacies and pitfalls. HARP was
successfully evaluated by performing an OFDM receiver completely with the acceptable
level of accuracy. Although the minimum requirement throughput de�ned by IEEE
802.11a/g for 16-QAM modulation has not been met due to having rather low clock
frequency in the employed FPGA device, the required throughput set by the standard
can be met easily by using a commercial off-the-shelf low cost device with at least
3.0X higher clock frequency. The utilization rate of the PEs employed for performing
an OFDM receiver was measured to be 0.61%, which makes the HARP tamplate an
excellent candidate for alleviating Dark Silicon issues.

The second test-case was design and implementation of various sizes of Discrete Cosine
Transform (DCT) and Discrete Sine Transform (DST) dedicated for High Ef�ciency Video

71
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Coding (HEVC) standard as the latest standard family on video compression. HARP
was also successful in order to prove its technical capabilities as well as the functionality
by acting as the the �rst complete multi-purpose DCT/DST-speci�c accelerator design
for HEVC standard. It was able to execute 4/ 8/ 16/ 32-point 2D DCT and 4-point 2D
DST by applying an N-point 1D transforms to each row and column of the residual
block. The proposed architecture was capable of fully sustaining a format of Full HD
1080P at 30 fps on FPGA.

In both case-studies, the computationally intensive parallel tasks are designed and
implemented by crafting template-based CGRAs while the serial in nature tasks are
delegated to RISC cores as General Purpose Processors (GPPs). The designed CGRAs
for performing an OFDM receiver as well as DCT/DST algorithms are crafted according
to the algebraic equations in the most optimum way since most of the PEs are employed
in each context. Optimal mapping is important at this level and should be noticed
by designers since it will result in improvement of the performance, area utilization,
power dissipation and execution time. In both case-studies, the entire HARP template
including the RISC cores and designed application-speci�c accelerators on that has been
prototyped on a 28 nm Altera Stratix-V Field Programmable Gate Array (FPGA) device
at an operating frequency of 200.0 MHz and at the room temperature of 25� C. It was
also evaluated for different high-level performance metrics in addition to the required
number of Clock Cycles (CC) as the overall execution time such as resource utilization,
maximum achieved operating frequency, power dissipation and energy consumption.

In this thesis, the author also presented a novel HW/SW codesign of an OFDM receiver
using a High-Level Synthesis (HLS) tool. The employed HLS tool was from Xilinx
called Software De�ned System-on-Chip (SDSoC). The Zynq SoC is composed of an
ARM processor besides a FPGA in order to improve the power ef�ciency as well as
the system performance. In this case, the OFDM receiver blocks have been written in
C/C++ code and realized on the FPGA and the ARM processor. The implementation
of OFDM receiver blocks as the mixture of serial and parallel tasks on ZC 706 board
resulted in speed-up 3.49X compared to its implementation on the HARP template.
However, in the case of parallel in nature tasks, CGRAs demonstrated more ef�cient
implementation in comparison with high-level-synthesis for FPGAs since the designers
could have near-optimal solutions for their target application.

As the preliminary result of this manuscript, the author concluded an architectural
constant for the HARP template with the value of 0.012Giga Operations Per Second
per milliWatts (GOPS/mW). This value was conducted by considering the operating
frequency, the total number of instantiated Processing Elements (PEs) at each HARP
instance and total power dissipation. The architectural constant achieved from both
case-studies proved that it does not change by scaling the computational resources
of a platform. It ensured application-independent �gure of merit and demonstrated
the modularity and regularity of the HARP template as one of the key factors in
order to have near optimal solution. According to the architectural constant of the
HARP template, the cross-technology comparisons have been done with the other
state-of-the-art platforms. Against the scaled performance levels of P2012, ADRES and
MORPHEUS in terms of GOPS/mW, HARP showed a performance gain of 2.4X, 15X
and 3X, respectively.

Another proceeding in order to have near optimal solution is mitigating the power
dissipation by maintaining self-aware Dynamic Voltage and Frequency Scaling (DVFS).
In this manuscript, the author also presented power mitigation of the HARP template
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to be used as an OFDM receiver by applying Dynamic Frequency Scaling (DFS) on
Stratix-V FPGA device and DVFS on 28nm Ultra-Thin Body and Buried oxide (UTBB)
Fully-Depleted Silicon-On-Insulator (FD-SOI) ASIC technology. In this context, Feedback
Control System (FCS) has been employed in RISC software in order to monitor the
performance of each CGRA node continuously and tune the clock frequency of the
CGRA nodes based on the selected worst-case execution time candidate. Every three
RISC cores in the current HARP instance were responsible to store the counted clock
cycles of their associated CGRA nodes. Subsequent to recognizing the worst-case
execution time CGRA node, FCS degraded the performance of the other CGRA nodes to
the equalization region in an user-de�ned and application-speci�c range of frequencies
during several iterations. There is also possibility for the designed FCS to update itself
automatically at run-time and de�ne new performance equalization region in the case
where the CGRAs are recon�gured for performing new tasks. In the case of FPGA
implementation, since just the frequency can be scaled, the FCS technique with DFS has
been applied, which resulted in mitigation of the dynamic power dissipation and total
power dissipation by 20.2% and 16.8%, respectively. By moving to ASIC technology
and scaling both frequency and voltage simultaneously, up to 82.98% dynamic power
reduction was achieved. According to the conducted experiment results, self-aware
computing models proved their ability to reduce the instantaneous power dissipation
and accordingly the heat dissipation, which will result in mitigation the Dark Silicon
issue.

As a summary of the main results of the experiments conducted in this thesis by the
author, the HARP template was evaluated successfully to act as a power- and energy-
aware general-purpose transceiver for IoT purposes. The main societal impact will be
to make IoT energy consumption levels feasible for establishing smart homes and cities.
Furthermore, HARP proved itself as a potentially competent hardware to be employed
by 5G radio standards. The HARP template with the applied self-aware computing
model showed its promising results to be instantiated in the dark area of the chip, which
will result in Dark Silicon improvement. According to the provided important insights
into the architecture in this thesis, the author recommended near optimal solution with
some more proceedings in addition to the mapping of the applications on the CGRAs
such as self-aware DVFS, modularity and regularity in the architecture and scalability
in computational resources.

9.2 Future Developments

Many issues in the design of heterogeneous multicore architectures to act as a general-
purpose power- and energy-aware transceiver platform for diverse needs of IoT remain
to be resolved. Furthermore, the research in the area of Dark Silicon is still a hot topic
in both industry and academia and tempts several research groups in the scienti�c
community. The design and evaluation of HARP has already shown promising results,
which call for further research to explore more opportunities to harness the Dark Silicon.

As the future work, it would be a great opportunity to develop, test and evaluate an
extra-large scale power- and energy-aware heterogeneous multicore template-based
architecture by increasing the size of the HARP to 2� (3� 3), which will be composed of
18 connected nodes as a2D matrix of three rows and six columns. Such an extra-large
scale heterogeneous multicore architecture can be used for harvesting Dark Silicon issue.
The upgraded HARP can also act as a energy-ef�cient general-purpose transceiver
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platform for future IoT scenario by supporting a large number of connected devices
communicating at various standards. It can provide high throughput while consuming
as little energy as possible. For the proposed architecture, the power dissipation should
be minimized by adopting self-, power- and energy-aware computational models in
the context of workload balancing and performance equalization. Furthermore, an
appropriate compiler in order to port sequential code on top of the heterogeneous
multicore architectures ef�ciently is still missing.

The HARP template is highly potential to be a suitable candidate for future IoT
and 5G radio standards. It would be interesting to implement massively-parallel
computationally-intensive signal processing algorithms for physical layer of IEEE
802.11n/ac transceiver with massive Multiple Input Multiple Output (MIMO) technol-
ogy to achieve higher data rate networking and adaptability to available bandwidth
at the hardware and software level. One more step towards making a general energy
ef�cient transceiver architecture for IoT purposes would be the physical layer imple-
mentation of IEEE 802.15.4 standard for low-rate wireless personal area networks. It is
the basis standard for different speci�cations released or under development, such as
ZigBee and Radio Frequency Identi�cation (RFID), which will be employed by IoT.

Although CGRAs give speed-up for computationally intensive tasks, most of them have
a �xed set of PEs and interconnections, which are not optimum for various applications
in terms of the cost and performance. In order to combat this issue, several Design
Space Exploration (DSE) have been proposed while most of them are concerned with
the interconnection between PEs and the con�guration of their internal structure. The
problem of such con�guration techniques is the high hardware cost due to the need
of substantial functional resources for initial PE design in order to have a reasonable
performance. Therefore, the problem of interconnection between PEs for a particular
application-speci�c accelerator and analyzing different DSE techniques in order to
mitigate the hardware cost are still fully open. As a future task, we could focus on the
exploration of novel DSE techniques for demonstrated template-based CGRAs in this
manuscript.

By 2040, embedded systems will demand more electricity than the world energy
resources can generate. IoT will soon connect20 to 50 billion devices through wireless
networks to the cloud. Despite all the advances in semiconductor technology and
power- and energy-aware system design, the overall energy consumption of computing
and communications systems is rapidly growing. However, the user expectations on
features and battery life of on-line devices are increasing continuously, creating another
incentive for seeking good trade-offs between performance and energy consumption.
Moreover, the devices and communications in the periphery of 5G networks need to
be optimized for lower energy consumption. Recently, approximate computing has
emerged for making trade-offs between the accuracy of the results on one hand and
the use of resources, power dissipation, energy consumption and time on the other
hand. Approximate computing has huge opportunities for saving energy and time at
the cost of some loss of accuracy or reliability of the results. Transprecision computing
is based on adjustable word lengths according to the precision requirements in different
parts of application algorithms, instead of using the worst-case precision throughout
the computations. This can be achieved by using speci�cally designed multi-precision
processors or by continually recon�guring hardware according to the precision needed.
The preliminary idea of the future work would be the exploration of using demonstrated
template-based CGRAs for energy-ef�cient (transprecision and approximate) computing
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on an open framework under development. It can be done for saving resources, time,
power and energy while reaching acceptable levels of accuracy or precision. Therefore,
the �nal target of the research is to bene�t people and the smart living environments by
bringing a new trade-off to the energy and performance of computing systems with the
help of approximate computing and transprecision computing.
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