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1.1.  Background 

The Internet is a global system for interconnecting communication networks. It is a 
network that consists of thousands of different kinds of networks. There are small and big 
networks ranging from local scope to global scope. There are private, public, academic, 
business, and government networks. These networks use different kinds of technologies 
at the bottom of protocol stacks, for example, wireless and optical networking 
technologies. However, there is one factor common to all of these networks. They all use 
the TCP/IP (Transmission Control Protocol/Internet Protocol) suite (Kurose and Ross 
2017; Stallings 2013; Tanenbaum and Wetherall 2010) for communication in the upper 
parts of the protocol stack. The Internet uses the standardized Internet protocol suite to 
serve billions of users worldwide. The Internet and TCP/IP have been developed together 
so that TCP/IP offers the mechanisms for implementing the Internet. Since the Internet 
has been undergoing change throughout its lifetime, TCP/IP has also continued its 
evolution to meet the needs of the Internet. This development of the Internet, and 
therefore the development of TCP/IP, will continue so that the new requirements of 
Internet users can be realized. Internet protocols are specified in open standards, known 
as RFCs (Request for Comments). 
  
IP is a network layer protocol of the TCP/IP protocol suite. IP is responsible for delivering 
data packets to the right destinations. It is a connectionless datagram based protocol. It is 
a simple protocol that does its job with the help of other protocols like routing protocols. 
Because IP is a simple protocol, the transport services needed by applications must be 
offered on top of the IP protocol. For this reason, the services required must be 
implemented as part of the transport layer or by the application itself. TCP and UDP (User 
Datagram Protocol) are both built on top of IP. These protocols are the core protocols of 
the transport layer. TCP and UDP operate in a very different way, and the one which is 
used depends on the requirements of the application process.  
 
TCP is a byte-oriented protocol that guarantees the delivery of data bytes. This protocol 
offers error control mechanisms for the use of applications. TCP uses acknowledgments 
and retransmissions to implement reliable data delivery. Duplicate packets are discarded 
and out-of-order packets are resequenced by TCP. Therefore, data packets are delivered 
to the application in the order in which they were sent. TCP is a reliable and connection 
oriented protocol. A logical connection must be established between the end points before 
data transmission. Thus, the implementation of TCP is heavyweight. On the other hand, 
if the application requires the guaranteed delivery of data, TCP is the right choice for the 
transport layer protocol.  
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However, TCP is not an ideal protocol for the use of all video services (Choi et al. 2012). 
Some real-time applications do not want to use the retransmissions offered by a transport 
protocol because such kinds of applications are often loss-tolerant and played in real time. 
These applications are loss-tolerant because some packet drops do not significantly 
degrade the quality of service experienced by the users of these applications. These packet 
drops can be softened by using the error correction properties of the applications. Because 
they work in a real-time repeat mode, these kinds of applications do not always have 
enough time for retransmissions. The received packet must be presented on the screen of 
a user device just after it has entered the destination device. In the case of TCP, out-of-
order packets also cause a problem, known as head-of-the-line blocking. Due to the order 
delivery property of TCP, the bytes after missing ones cannot be delivered to the 
application. If a more recent packet arrives, this new data must be put in a queue. The 
application cannot access this new data until the lost bytes are received. TCP's burst-like 
transmission also causes delay jitters and sudden quality degradations because there can 
be abrupt and deep sending rate reductions.   
 
In contrast, UDP is often considered more suitable for real-time video applications. It 
offers two services for applications. First, it provides a way to distinguish between the 
multiple applications running on a single host. Like TCP, UDP uses so-called port 
numbers for implementing this service. Second, UDP also offers optional error checking 
for applications. Due to these minimal services, UDP is a light protocol on top of IP. It is 
a connectionless unreliable message-based protocol. Message-based means that it 
preserves message boundaries. However, it is possible that nothing will be received if the 
message is dropped due to congestion or error checking because UDP is an unreliable 
protocol without packet retransmissions. It is up to the application to split data into 
messages and also to provide all the error recovery functions for dropped packets that are 
required. Because of this simplicity, UDP makes it possible to send streaming media over 
the networks effectively. It provides a way to meet the real-time demands of applications 
as closely as possible. Therefore, UDP has typically been used by applications such as 
real-time media (audio, video, Voice over IP) where the on-time arrival of packets has 
been more important than reliability. Simple query/response applications also use UDP 
because there is no overhead for setting up a reliable connection. 
 
Unfortunately, even UDP is not an optimal protocol for all real-time media applications. 
It cannot offer all the services needed by some applications. Therefore, an extra-protocol 
called Real-time Transport Protocol (RTP) (Schulzrinne et al. 2003) has been added on 
top of UDP. There is, however, one major difference between UDP and RTP. UDP is part 
of the kernel whereas RTP is part of the application process. With this choice, RTP was 
implemented without the need for modifying the socket API. In that way, it is also 
possible to modify RTP for the needs of an application. This enables developers to 
implement congestion control as part of the RTP protocol. A complete implementation of 
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reasonable because most of the traffic was TCP-based, and UDP was only used with 
short-lived request/response connections. 
 
By the end of the 1990s, it could be seen that UDP-based long-lived connections would 
become more common. Floyd and Fall (1999) pointed out that, without the appropriate 
congestion control mechanisms of UDP flows, TCP connections would receive a much 
smaller bandwidth share than competing UDP flows. Therefore, it was no big surprise 
that interest towards UDP-based congestion control increased and a lot of research work 
was done (Widmer et al. 2001). Some proposals were built on top of UDP and some on 
top of RTP. The main effort was the development of the Datagram Congestion Control 
Protocol (DCCP) (Kohler et al. 2006b). Instead of using UDP as part of congestion 
control based communication, the developers of DCCP decided to design a totally new 
protocol. This new protocol was placed as part of the transport layer and, thus, as part of 
the kernel.  DCCP does not include any kind of fixed congestion control mechanism. It is 
possible to use DCCP with different kinds of congestion control mechanisms, each 
suitable for a certain application group.      
 
Despite great research work, the congestion control mechanisms developed for UDP-type 
traffic are not widely used by network operators. There has not been any actual need for 
the use of these congestion control solutions. Dynamic rate adaptation techniques have 
been developed so that TCP-based video streaming can be implemented in a reasonable 
way in existing overprovisioned networks. Network operators have relied on 
overprovisioning in order to avoid congestion in their networks. Overprovisioning means 
that a network operator purposely offers an unnecessary amount of network capacity to 
support peak demand without significant service degradation. Because overprovisioning 
is commonly used to protect networks against massive traffic variations, it can be said 
that problems have been solved by increasing the bandwidth of network links and the 
processing power of routers. In particular, overprovisioning of network links has become 
common because optical fiber offers a very economical way to perform overprovisioning.  
 
Overprovisioned networks are considered to be cost-effective to manage and easy to 
troubleshoot. Typically, such networks will not cause problems unless there is a massive 
burst of traffic or network link failure. Therefore, it comes as no surprise that there was 
no notable criticism of overprovisioning for many years. However, nowadays there are 
some arguments against massive overprovisioning. For example, massive 
overprovisioning with unnecessary high power consumption goes against green Internet 
ideology (Gupta and Singh 2003; Bianzino et al. 2012). Therefore, alternative approaches 
are welcome, and one such approach is to improve the congestion control mechanisms of 
the Internet.    
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�x congestion occurs when too many packets are present in a network, and therefore, 
packets are lost or significantly delayed;  

�x a network is said to be congested from the perspective of a user if the service 
quality noticed by the user decreases due to the increase of the network load; 

�x when a network is congested, increasing the offered load only leads either to a 
small increase in the network throughput or to an actual reduction in the network 
throughput (Kurose and Ross 2017, p. 295). 

The third definition emphasizes the fact that it is the network user who ultimately decides 
if  the quality of the service is good enough. The fourth definition is the most technical. 
The offered load is the amount of data that is sent to the network, such as the number of 
packets per second. Throughput is the amount of data that passes through the network and 
is received on the receiver side. In a congested situation, the throughput cannot increase 
because the resources of the network are already fully utilized. If the offered load is 
increased by sending extra packets to the network, these extra packets must be dropped. 
The throughput can even decrease if packets are dropped at the beginning of the 
connection path, and therefore, the routers at the end part of the connection become 
underutilized (Floyd and Fall 1999). 
 
The goal of congestion control is to avoid a congestion situation in network elements. 
There is also a more sophisticated definition for congestion control. This definition says 
that the target of congestion control is to adapt the sending rates of senders to match the 
available end-to-end network capacity. This definition emphasizes the fact that network-
wide approaches must be used to implement congestion control. Otherwise, congestion is 
only moved from one node to another. In theory, traffic should be monitored over the 
whole network. 
 
The background of congestion control lies in queuing theory. In a packet-switched 
network, packets move into and out of queues when these packets traverse through a 
network. As a result, packet-switched networks are often said to be networks of queues. 
These queues are also called buffers. It is typical for packet-switched networks that 
packets may arrive to a router in bursts. The task of buffering is to absorb data bursts 
inside the network. The presence of buffers is essential to permit the transmission of 
bursty traffic. Without buffers, a lot of packets would be discarded. However, it is also a 
target to empty buffers during silent periods. Queuing inside the network is not a desired 
operation. The queue limits should not reflect the steady lengths of queues that we want 
to maintain in the network; the lengths of queues should reflect the size of bursts we need 
to absorb (Braden et al. 1998). 
 
There are two schemes for implementing congestion control. These schemes are the 
congestion avoidance scheme and the congestion control scheme (Jain 1990). These 
schemes are related to each other, but also distinct. They are related because both solve 
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the problem of congestion management in the network. The congestion avoidance scheme 
allows networks to operate in a region where delays are low and throughput high. It tries 
to protect the network so that the network does not enter the congested state. In that way, 
the congestion avoidance scheme tries to avoid packet drops. In contrast, with congestion 
control schemes, packet drops are signals for the control function to react. After a packet 
drop, the congestion control scheme tries to bring the network back to an operating area 
with no drops. The congestion avoidance scheme is a preventive mechanism whereas the 
congestion control scheme is a recovering mechanism. It has also been said that 
congestion avoidance is a proactive approach and congestion control a reactive approach 
(Tian et al. 2005).  
 
The difference between these two schemes is rather subtle. If  the congestion avoidance 
scheme is used, the congestion control scheme is still required because congestion 
avoidance cannot be trusted to keep the network at its optimal area in all circumstances. 
Of course, if the network is working in the connection-oriented mode, the congestion 
avoidance scheme is sufficient alone, as the problem of congestion is solved by reserving 
resources along the connection path during the connection setup phase. Often concrete 
mechanisms include both these features. In this thesis, the term congestion control is used 
in a general sense for congestion control functions. The term congestion avoidance is used 
only if we want to emphasize the congestion avoidance feature.  
 
The Internet works in the best-effort way. There are also aspects where the Internet should 
support quality of service (QoS) principles. A lot of research work has been done in this 
area (Xiao and Ni 1999; Meddeb 2010). A header field of the IP protocol has been 
reserved for this QoS function. However, the large-scale use of QoS has not been realized 
in practice. For this reason, for example, the loading times of web resources must be 
optimized to be fast enough by other methods (Vihervaara et al. 2016a). In this thesis, the 
QoS aspect is not considered. However, it is worth remembering that congestion control 
and QoS issues are bound together. For example, routers have to pay attention to which 
packets may be queued or dropped. If some connections are promised that they will 
experience low delays and low drop ratios, then other connections have to do congestion 
control work on behalf of these connections. The dual-mode mechanism developed in this 
thesis could be achieved using QoS techniques. In this case, the mechanism could be 
called the dual priority mechanism. However, this kind of mechanism could not be a pure 
end-to-end mechanism because the implementation would require network support at 
least to some extent. 
 
It can be difficult to utilize network resources in an efficient way if there is no kind of 
congestion control in a network, or if the congestion control is implemented 
inappropriately. Costs related to bad congestion control are underutilized network 
resources and modest performance received by applications. The consequences of bad 



12 
 

congestion control are described in Kurose and Ross (2017, pp. 289-295). The four cost 
principles of Kurose and Ross (2017) point out that overprovisioned networks can also 
derive advantage from proper congestion control. These principles are explained below.  
 
The first cost of a congested network is that large queuing delays are experienced after 
the average packet arrival rate nears the link capacity. Matters are even worse if we take 
into consideration that the nature of network traffic is sometimes self-similar (self-similar 
traffic is explained in section 2.9). This first principle also points out why a theoretical 
option, using infinite buffer space in routers, is not a sensible solution against congestion 
losses. One important property for a good congestion control mechanism can be derived 
based on these queuing delays. A good mechanism tries to keep queues short. 
 
The second cost of congestion is that the sender must perform retransmissions in order to 
compensate the packets that are dropped due to the buffer overflow. This automatically 
means that the offered load is bigger than the throughput. Of course, this is only possible 
if we are using a reliable protocol with retransmissions between the sender and receiver. 
An unreliable protocol without retransmissions can also be harmful in this regard. If an 
unreliable protocol works without congestion control, it can, with its high sending rate, 
fill the router buffers. In this way, it can force reliable protocols into packet losses and 
retransmissions. On the Internet, this means that UDP traffic sources can be harmful to 
the proper functioning of the TCP protocol. UDP sources can force TCP sources into 
retransmissions.  
 
The duration between sending a certain packet and receiving the corresponding 
acknowledgement for that packet is called round-trip time (RTT), also known as round-
trip delay. When a router is in a congested state, queuing delays increase. Because delays 
increase, round-trip times (RTT) also increase. These increased RTTs may lead to a 
situation in which retransmission timeout (RTO) timers expire and therefore some 
received data packets will be resent unnecessarily. This yields the third cost of congestion 
because after an unnecessary retransmission, routers have to use their resources to 
forward this unneeded copy of the packet. This also shows why proper RTT estimations 
are important as well as good RTO calculation rules based on RTT estimations (Jain 
1990). 
 
When a packet is dropped along the path, transmission capacity is wasted because the 
transmission capacity that was used at each of the links to forward that dropped packet is 
wasted. This is the fourth cost of congestion. This means again that the offered load is 
bigger than the throughput. This is depicted in Figure 2.1. 
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RED has four parameters to tune. Finding the optimal RED parameters is not an easy task 
(Christiansen et al. 2001). For example, the maximum threshold should be low enough to 
enable short delays. On the other hand, if the application is sending packets in bursts, 
fairly bursty traffic should be accommodated. With these types of applications, it could 
be desirable to have a large enough gap between the maximum threshold and minimum 
threshold. It can be observed that the optimal values for these parameters are connection-
based. Unfortunately, it is impossible to use connection-based parameters because it leads 
to scalability and efficiency problems. However, RED also works quite well with 
suboptimal parameters, by reducing queuing delays and packet drops. 
 

2.2.3. CoDel 

CoDel (Controlled Delay) is a new active queue management mechanism (Nichols and 
Jacobson 2012). It tries to offer short delays while permitting bursts of traffic. Its purpose 
is to distinguish between a good queue and a bad queue. It treats these queue cases 
differently. A good queue allows short traffic bursts and is a situation which disappears 
within a short time. A bad queue persists for several RTTs. The robust way to separate 
these two cases is to take the minimum of the queue length over a sliding time window 
that is longer than the nominal RTT.  
 
CoDel defines two parameters: the target parameter, which defines the target value for 
the long-term maximum queuing delay and the interval parameter, which defines the 
duration of one control period. There is not necessarily a need for the manual 
configuration of these parameters because default values can be used. The developers of 
CoDel have observed that a target of 5 ms and an interval of 100 ms are workable in most 
cases. The use of time values instead of packet counts makes the algorithm tolerant for 
varying link speeds. CoDel adds a timestamp to each received and queued packet. Once 
the packet has been dequeued, the time spent in the queue is calculated. CoDel is 
interested in the minimum delay over a time defined by the interval parameter. If the 
observed minimum delay is over the target parameter, it indicates a bad queue situation 
and CoDel starts to drop packets. Dropped packets are signals to the senders to reduce 
their sending rates, and the queue starts to drain. 
  
CoDel is mainly used in edge routers and access nodes to control delays. It is able to offer 
small delays to QoS-aware traffic flows. In core routers, its use has not become more 
common because it increases the processing load of routers. In addition, most traffic flows 
can tolerate delays that are significantly higher than 5 ms. 
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timeout value is too long, it can lead to a situation in which the congestion is detected 
unnecessarily late. It is usually desirable for sources to reduce their rates as soon as 
possible if the network becomes congested.  
 
Heterogeneous RTTs can cause some unequal fairness among traffic flows (Vojnovic et 
al. 2000) because traffic flows do not work necessaril y in a synchronous way. For 
example, in an additive increase phase, where a sender increases its sending rate by a 
constant step for every ACK received, we can take the situation with two senders so that 
the RTT of sender 1 is twice as long as the RTT of sender 2. In this situation, sender 2 
receives twice as many ACKs as sender 1 during the additive increase phase. Therefore, 
sender 2 also takes twice as many constant increase steps as sender 1. In this way, sender 
2 can increase its sending rate faster than sender 1. The same conclusion can also be 
drawn if we consider the TCP throughput equation (Hassan and Jain 2004, p. 130):         
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This equation is the inverse square root p law, which is derived from the common saw-
tooth behavior of TCP under the assumptions that the packet loss ratio �L is constant and 
the receiver acknowledges every packet. This equation yields the average sending rate T 
in bytes per second as a function of �4�6�6, the packet size �O, and the packet loss ratio. It 
indicates that connections with shorter RTTs are given better average sending rates.   
 

2.5. AIMD principle 

In this section, the goodness of four basic congestion control approaches is examined. If 
the sending rate is changed with linear controls, the rate of the sender can be increased or 
decreased in an additive or a multiplicative way. There are four possible combinations: 

�x Multiplicative Increase, Additive Decrease (MIAD); 
�x Additive Increase, Additive Decrease (AIAD); 
�x Multiplicative Increase, Multiplicative Decrease (MIMD); 
�x Additive Increase, Multiplicative Decrease (AIMD). 

These are not all the possible controls because our observations are restricted merely to 
the basic cases. For instance, the changing rate method may be exponential instead of 
linear, or both additive and multiplicative increase components may be present at the 
same time. The congestion feedback of the network may also be more complex than pure 
binary feedback (congestion, no congestion). 
 
The behavior of these four cases with only two sources is depicted in Figure 2.4. This 
figure describes an ideal case. The RTTs of both senders are supposed to be equal and, 
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consequently, the rates are changed at the same time. It is also assumed that both sources 
are given the same binary congestion feedback.  
 

 
Figure 2.4 Transition lines of AIAD, MIAD, MIMD, and AIMD 
 
There are two lines in the figure. The efficiency line shows the transmission capacity of 
the system. The sum of the sending rates cannot exceed this line for a long time. When 
the sum of the sending rates exceeds this line, the network will gradually become 
congested. The fairness line is at an angle of 45 degrees and passes through the origin. As 
far as fairness is concerned, the sending rates of the two customers should be equal. This 
is true for all points on this line. The optimal point is the point of intersection of the 
efficiency line and the fairness line. The optimal congestion control mechanism moves 
quickly towards this point and stays around it in a stable manner. 
 
If there is an additive component, the transition line moves in parallel with the fairness 
line. It moves at an angle of 45 degrees. Therefore, AIAD cannot approach the fairness 
line unless the starting rates of the customers are equal. If there is a multiplicative 
component, the transition line moves along the line that dissects the origin and the point 
of the current sending rates. Due to this behavior, MIMD will never reach the optimal 
point if the starting point stays outside the fairness line. This is the same for the MIAD 
approach. If we wish MIAD  to reach the optimal point, the starting point must be on the 
fairness line. Otherwise, MIAD behaves very unfairly. In contrast, AIMD  always 
approaches the optimal point. The multiplicative decrease component of AIMD always 
brings the transition line closer to the fairness line, and the congestion control holds the 
total sum of sending rates near the efficiency line. However, the system fluctuates around 
the optimal point along the fairness line because only the binary feedback congestion 
indication is used. The senders always increase or decrease their rates after the feedback 
and the rates never stay in place.      
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In the paper by Chiu and Jain (1989), the above-described combinations are studied 
mathematically to prove the goodness of AIMD. They also present those very illustrative 
vector graphics representations that show that only AIMD can reach the optimal point. 
Chiu and Jain (1989) present three propositions. The first and third are as follows: 

�x Proposition 1. In order to satisfy the requirements of distributed convergence to 
efficiency and fairness without truncation, the linear decrease policy should be 
multiplicative and the linear increase policy should always have an additive 
component, and optionally it may have a multiplicative component with a 
coefficient of no less than one. 

�x Proposition 3. For both feasibility and optimal convergence to fairness, the 
increase policy should be additive and the decrease policy should be 
multiplicative (because a multiplicative increase component pushes the transition 
line away from the fairness line). 

In view of these proposals, the congestion control mechanism should preferably be 
AIMD.  
 
AIMD  control can also be represented by a mathematical formula. If the rate of a sender 
at time t is denoted by x(t) , and y(t)  represents the binary feedback of congestion control 
so that the value of 0 means a non-congested situation and the value of 1 means a 
congested situation, the rate update function can be expressed as: 
          
             �T�:�P
E�s�; 
L���=�Ü
E���>�Ü���T�:�P�;      if   y(t) = 0                   (2-5) 
             �T�:�P
E�s�; 
L���=�× 
E���>�×���T�:�P�;     if   y(t) = 1              (2-6)  
 
where �=�Ü , �>�Ü , �=�× and �>�× are constants and in the case of AIMD control �=�Ü
P �r , �>�Ü
L �s, 
�=�× 
L �r , and �r 
O�>�×�� 
O�s. 
  
In the paper by Chiu and Jain (1989), the behavior of nonlinear controls has also been 
studied. They explain why they consider nonlinear controls to be unsuitable for practical 
purposes. Although nonlinear controls offer more flexibility in trying to move towards 
fairness, there is the problem of finding the right parameters. The parameters must usually 
be chosen relative to the system parameters, such as the capacity of links and the 
maximum number of users. Being too sensitive to the system parameters reduces the 
robustness of the control. A nonlinear control can also require different powers for 
different areas, as depicted in Figure 2.5.  
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layers. Thus, the implemented complexities do not burden the core routers. This is 
ultimately a very natural conclusion because functions can be implemented correctly only 
with the knowledge and support of the sending unit. Implementing the congestion control 
mechanism totally inside the core network is impossible because, with this kind of 
mechanism, there is no way to control sending rates. If the mechanism is partly 
implemented inside the core network, then the implemented mechanism should be offered 
for the use of wide variety of applications. It makes no sense to increase the processing 
load of routers by a mechanism that is used by only one application type. In addition, the 
mechanism should not require a lot of core router processing power. The applications-
specific functions should be implemented completely by the endpoints. 
 
Blumenthal and Clark (2001) presented that this end-to-end argument is no longer valid 
in all cases. For example, the original end-to-end paper by Saltzer et al. (1984) assume 
that endpoints are ready to cooperate to achieve their goals. Today, there are fewer and 
fewer reasons to believe that we can trust that all endpoints will behave as desired. If we 
wish to make networks more trustworthy, while endpoints cannot be trusted, it seems that 
some mechanisms should be located in the core of the network. In this way, endpoints 
can be forced into good behavior. 
 
The congestion control mechanism with per-flow states on routers is not recommended 
because the per-flow state inside the router can cause scalability problems. If a router has 
to identify individual end-to-end flows, the router must maintain a database entry for each 
of such connections. These database entries must be updated continuously. For example, 
there could be a timer for each entry so that the entry can be cleared if the connection 
disappears without notification. This timer must be refreshed every time the packet of that 
entry is processed by the router. With IPv4, this kind of connection identification is also 
quite difficult  because the port numbers of the transport layer must be investigated. This 
investigation is an impossible job if IPsec is used with IPv4 because port numbers are 
encrypted.  
 
The congestion control implementation must have as much resistance as possible against 
selfish users. By selfish user, we mean a user who is ready to change the standard 
implementation of the congestion control algorithm so that improved performance is 
achieved by such a modified algorithm. This is typically realized through altering the 
code implementation of the control algorithm. It is very difficult to make the mechanism 
totally immune against selfish users as network security issues have shown during the last 
decades, but there is much that can be done. If the sender and receiver only receive a 
compiled version of the code, the code cannot be changed by a selfish user. In fact, this 
means that the congestion control is implemented as part of the application layer. If the 
implementation is part of the kernel, then open source operating systems, like Linux, are 
vulnerable to code changes. In such cases, implementation principles can be based on the 
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presumption that the sender side is the trusted part, like the network operator. In these 
cases, the algorithm can be designed to be resistant against client side changes. One 
example of this kind of solution is presented in the next chapter when Explicit Congestion 
Notification (ECN) is explained. 
 

2.7. Implicit and explicit congestion control 

Congestion control can be implemented with or without feedback. In an open-loop control 
system, a pre-determined control strategy is used to define the fixed control, and 
feedbacks are not used. No measurements, conclusions, or adjustments are done during 
the control period. The length of this control period depends on the case. Because the 
Internet is vulnerable to routing changes, a fixed control strategy should perhaps be 
updated periodically. For instance, RSVP (Resource Reservation Protocol) (Braden et al. 
1997) works in this updating manner. 
 
In a feedback-based control system, the system is measured. Based on the measurements 
and a control algorithm, the appropriate feedbacks are derived and the control parameters 
of the system are adjusted. For example, if the target is to achieve a TCP-friendly 
throughput, a formula describing the throughput of a TCP session as a function of loss 
rate can be used as a control algorithm to calculate the estimated sending rate. This 
formula, published by Padhye et al. (1998), can be written as follows: 
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where: 
���$�:�L�; = the sending rate in packets per second 
���4�6�6 = the round-trip time 
���6�K = the timeout value 
���L = the packet loss probability 
 b = the maximum number of packets acknowledged by a single acknowledgement. 
This kind of feedback-based control system is sometimes called a closed-loop control 
system. 
 
If we think of feedback-based congestion control in broad terms, two different kinds of 
approaches can be considered (Kurose and Ross 2017, p. 296; Jain 1990). The first 
approach is to perform congestion control without the explicit help of network elements. 
This kind of congestion control is called Implicit Congestion Control (ICC). It is also 
called End-to-End Congestion Control because the entire logic of congestion discovery 
resides in end systems. The second way to carry out congestion control is with the explicit 
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help of routers. This kind of control is called Explicit Congestion Control (ECC) or 
network-assisted congestion control.  
 

2.7.1. Implicit Congestion Control 

In ICC, detection of congestion is based on the end-to-end behavior of traffic. One such 
behavior is a packets loss event since IP routers will  discard incoming packets if there is 
no room in the queue due to the congestion. The second such kind of implicit feedback is 
an increase in end-to-end delay that is clearly over the fixed propagation delay. 
Congestion control using implicit signaling does not require any support from network 
nodes. One advantage of such kind of signaling is that new mechanisms are easy to deploy 
and the updates of existing implementations are also easy to execute. No changes are 
needed to the routers and therefore new mechanisms can be deployed gradually.   
 
However, ICC also has some disadvantages. If packet drops are the only signs of 
congestion, and thus signals for network resources, the source must generate packet losses 
to know the limit of the network. Because the Internet is a very dynamic environment 
with incoming and outgoing traffic, this probing and generating of packet losses must be 
done repeatedly. This is the natural explanation for the saw-tooth behavior of the TCP 
protocol. Using only implicit feedbacks to make assumptions about the network state may 
be misleading. Interpreting packet losses as a sign of congestion works only if the 
congestion is the main reason for the packet losses (Tian et al. 2005). If a packet is 
dropped due to a checksum error or a temporary problem with a wireless connection, 
reducing the sending rate to alleviate the congestion is incorrect. In addition, if ICC is 
based on observations of delay variations, wireless connections can be problematic with 
their link-based retransmissions and handovers.  
 

2.7.2. Explicit Congestion Control 

The power of ECC is that it is exactly the congested node itself that reports that the node 
is congested. This significantly alleviates problems with dropped packets due to 
checksum errors and problems with wireless links. If ECC is done in the proper way, the 
effort for doing so is at an acceptable level. Only a couple of header bits are needed for 
ECC and the processing efforts of routers are minor. Therefore, it is no surprise that ECC 
has been adopted in the TCP/IP world by updates, as will be explained later.   
 
ECC can be done in a backward or forward direction. In the backward-based approach, 
the congestion indication is sent straight to the source and it travels in the opposite 
direction to the congested traffic. In the forward-based approach, the indication is sent to 
the receiver typically with the packet that experienced the congestion. The receiver echoes 
this indication back to the sender. The advantage of the backward-based approach is that 



29 
 

it typically takes less than 1/2 RTT to get the congestion indication to the sender. With 
the forward-based approach, this time is about one RTT, and it is, of course, preferable to 
react to congestion as quickly as possible. 
 
However, the implementation of the forward-based approach is easier than that of the 
backward-based approach. In the forward-based approach, only the congestion indication 
bit must be set into the packet experiencing the congestion. With the backward-based 
approach, there are some problems. The first problem is the identification of the 
connection because part of the connection identifier resides in the transport layer. This 
transport layer part contains the port numbers of the source and destination applications. 
Examining transport layer headers violates the principle that routers only process the 
header of the IP layer. In addition, with IPsec, it is impossible to read the encrypted port 
numbers. The second problem is finding the packet of the same connection but traveling 
in the opposite direction to the congested packet so that the congestion indication can be 
piggybacked to the source. Of course, this backward indication can also be sent by a 
separate packet generated by the congested router. This kind of packet is called a choke 
packet. Both types of backward indication require extra processing from the router, and 
this occurs at a time when the router is overloaded due to congestion.           
 
ECC can be binary-based, credit-based, or rate-based. In the binary-based approach, only 
one bit or a couple of bits are needed to report the congestion level of the network, In the 
simplest case, only one bit reports whether the network is congested or not. However, 
with this kind of one-bit implementation, more control bits are needed for proper 
implementation as we will  see in the next chapter when the ECC implementation of 
TCP/IP is considered. In the credit-based approach, the source is told how many bytes or 
packets the source is allowed to send until the next new credit is received. This is quite a 
similar mechanism to receiver-based flow control. If the rate-based approach is used, the 
sender is told the exact sending rate with packets per second or bits per second. 
 
If we compare these three approaches, it can be said that the binary-based approach enjoys 
the widest acceptance. Only monitoring the length of queues is necessary to conclude the 
proper congestion feedback. The credit-based and rate-based approaches need more 
processing efforts from routers. Used and free resources must be investigated and the 
number of active connections using resources must be monitored to calculate the explicit 
credit or rate for a certain user. Monitoring the number of connections is also problematic 
without violating the protocol approach because port numbers reside in the headers of the 
transport layer. As stated above, these port numbers are impossible to read when using 
IPsec. The binary-based approach also has its own problems with special cases. One such 
case is using IP tunneling for instance with Mobile IP or VPN. The ECC feedback must 
be copied from the tunneling header to the original header at the endpoint of the tunneling.      
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2.8. Window-based versus rate-based congestion control 

There are two basic ways to control the sending rate of the sender. The first is rate-based 
control and the second is window-based control (Chandra and Subramani 2010). In rate-
based control, the sender is not allowed to exceed a certain rate, which is usually presented 
in bits per second. The sender is allowed to send continuously using this rate until the 
next congestion feedback is received. After receiving the congestion feedback, the 
sending rate is updated according to certain rules. In window-based control, the sender is 
allowed to send a certain maximum number of bytes or packets to the network between 
congestion feedbacks. This number of bytes or packets is called a sending window. This 
method can give rise to burst sending behavior because the sending window may become 
empty before the next feedback arrives. Window-based control is said to be self-clocking 
(Jacobson 1988) because the behavior of the window is strictly coupled to the arrivals or 
absences of feedback messages, as well as to the cycles of feedback messages. 
 
The window-based method works in a more network-friendly way. It naturally 
implements the principle that a new packet is not put into the network until the old packet 
leaves the network. It automatically stops the sending function if the sender does not 
receive any feedback messages due to a major problem somewhere in the round-trip path. 
On the other hand, the window-based method has the disadvantage that if the round-trip 
delay is long, the network can sometimes become underutilized because it takes a long 
period before the self-clocking feedback system reaches the optimal transmission rate. In 
addition, if feedback messages arrive in a bursty manner and the sender ejects packets 
into the network as soon as possible, the traffic pattern can be very bursty. For instance, 
this kind of feedback burstiness can appear if frequent acknowledgement messages are 
queued in a sequential manner due to congestion in a high-speed router. 
 
Rate-based implementation is typically simpler than the window-based one. Rate-based 
control is also said to be more suitable for streaming media because it does not stop the 
sending if feedback messages stop arriving for a while. Akan (2004) has analyzed the 
throughput of rate-based and window-based congestion control schemes. One important 
result of that analysis is that the throughput performance of the rate-based congestion 
control schemes is inversely proportional to the square root of the propagation delay, 
whereas that of the window-based schemes is known to be inversely proportional to the 
propagation delay itself. This result confirms the point of view that rate-based congestion 
control schemes adapt better to high propagation delay environments than window-based 
schemes. 
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links, some with special characteristics. There are wireless links with certain probability 
of high bit error rates, links with high delays, and asymmetric links with low-speed 
feedback channels. Sometimes congestion-controlled traffic must pass through a 
multicast network environment or travel through special boxes like firewalls and NAT 
boxes.  These environments are briefly discussed here, concentrating on the challenges 
they place on congestion control. The presentation shows that developing a congestion 
control mechanism suitable for all cases is extremely difficult. 
 
Wireless links can be harmful for congestion control (Casetti et al. 2002) because 
congestion control implementations typically use delays and packet losses as an 
indication of congestion. Wireless links with high bit error rates can affect both of these 
variables in unexpected ways. If retransmissions are not used, packet losses can be quite 
usual. If retransmissions are used, sequential retransmissions can increase delays and 
especially variation in delays. Many efforts have been made to solve this problem. Many 
of these efforts have especially targeted the TCP protocol. Typically, solutions try to hide 
the problems of wireless links from the end-to-end connection. There is a splitting 
solution, dividing the connection into the wireless part and the wired part (Bakre and 
Badrinath 1995) and a snooping solution with quick transport layer retransmissions 
(Balakrishnan et al. 1995). These solutions typically have some stumbling block. For 
example, there may be problems with security issues, especially with IPsec, which 
encrypts the header structures of the transport layer. It seems that the natural and working 
solution is to solve these problems totally on the data link layer using techniques like 
Forward Error Correction (FEC), retransmissions, and varying link layer packet sizes. 
 
Satellite links share the same inclination to high bit error rates as wireless links. Because 
of their long signal paths, satellite links also have some extra problems (Katabi et al. 
2002). First, the delays are usually long, and also RTT estimates. This typically means 
that RTT fluctuations are at a high level, which is normally an undesirable feature. 
Satellite links are often high-speed links and, together with high delays, these links have 
high bandwidth-delay products. Connections having high bandwidth-delay links are 
problematic for an AIMD  control mechanism. It takes a long time before moderate 
additive increase steps can reach the high utilization level of the connection path. After 
the congestion, the multiplicative decrease component again takes the connection path far 
away from the high utility level. This problem can be alleviated if this kind of link is 
shared among many AIMD connections. 
 
In asymmetric links, the offered data rate of a reverse path is smaller than that of a forward 
path. Typically, the forward path is the same as the data path and the reverse path is the 
same as the acknowledgement path. This kind of asymmetric phenomenon can appear if 
the connection path includes for example slow ADSL or satellite links. This asymmetry 
can also occur if the shared data channels of the mobile phone networks are used in the 
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In its early years, the TCP/IP protocol suite did not have any kind of congestion control 
mechanism. Therefore, it was unsurprising that TCP/IP networks experienced their first 
congestion collapse events in the 1980s. After these collapse events, something had to be 
done. The natural choice was to implement TCP/IP congestion control as part of the TCP 
protocol because most of the traffic was TCP-based at that time. If the traffic was not 
TCP-based, it was typically short-lived traffic, and therefore normally not the source of 
congestion. The TCP-based solution was implemented in a very clever way. Only the 
code of the sender side had to be changed without any need for changes on the receiver 
side. Receivers continued to send only normal acknowledgements. Based on these 
acknowledgements, the senders made implicit assumptions on the state of the network. 
Because congestion control was implemented in this way, it was possible to deploy it in 
a gradual way. Even the later improvements could be made mainly without any changes 
to the receiver side.  
 
UDP-based traffic with long-lived connections also increased gradually. There were 
assumptions that this kind of traffic could be harmful without congestion control. 
Therefore, a period of time started when there was a lot of work aiming at developing 
congestion control mechanisms for UDP-based traffic. The most notable solution was the 
DCCP protocol explained later in this thesis. Because the developed mechanisms did not 
enjoy wide popularity among network operators, this kind of research work  gradually 
decreased. However, during recent years, all kinds of video-based traffic has increased 
heavily. People want to watch TV programs through the Internet. All kinds of events, 
including sport events and music concerts, are watched via the Internet in real time. So, 
it can be assumed that congestion control for video services will become a  active topic 
of research. This thesis can be categorized as belonging to this research category. 
 

3.1. TCP congestion control 

In its basic mode, TCP uses an implicit congestion control scheme. TCP increases its 
sending rate until a packet loss is detected and, after that, the sending rate is reduced. The 
reducing operation is multiplicative and large enough to pull the network out of the 
congested state. After the rate reduction, the sending rate starts to increase again. This 
pattern of increasing and decreasing the sending rate makes the data flow fluctuate around 
the equilibrium point. Load and connection changes inside the network change the 
position of the equilibrium point, but the multiplicative decrease scheme always returns 
the data rate to below the equilibrium point. In fact, the choice of the right decreasing step 
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for the multiplicative decrease scheme is the key to the good performance of the AIMD 
algorithm.  
 
TCP congestion control follows the ACK clock principle. In its steady state, the network 
cannot become congested as long as a new packet is not sent to the network before the 
previous packet has left the network. The acknowledgement advertises that the previous 
packet has left the network. In this way, the arrival of ACKs can synchronize the sending 
behavior of the sender. 
 

3.1.1. TCP timeout management  

TCP maintains an estimate for the round-trip time (RTT) to derive a retransmission timer 
for each transmitted packet. Because the delay properties of TCP connections are 
variable, the RTT estimate is derived by a dynamic algorithm that constantly adapts to 
the changes of a connection path. TCP implementations attempt to predict future round-
trip times by measuring the delay properties of sent packets. Based on these 
measurements, the sender averages these samples into a smoothed round-trip time 
estimate (SRTT). When a packet is sent over a TCP connection, TCP measures how long 
it takes for it to be acknowledged. Consecutive measurements produce a sequence of 
round-trip samples: �5�:�s�;, �5�:�t�;, �5�:�u�; and so on. After each new sample �5�:�E�;, the new 
SRTT is computed as:  
 
 �5�4�6�6�:�E
E�s�; 
L �:�s
F �Ù�; �Û�5�4�6�6�:�E�; 
E���Ù�Û�5�:�E�;)           (3-1)   
 
where �Ù is the smoothing factor that determines how quickly SRTT adapts to changes 
and how quickly old values are forgotten. It is recommended to use �Ù value of 1/8. A 
formula like this is an Exponentially Weighted Moving Average (EWMA) or a low-pass 
filter that helps to change SRTT smoothly.  
 
Choosing a suitable retransmission timeout (RTO) value based on SRTT is no trivial task. 
The initial implementations of TCP used the rule: 
 
 �4�6�1
L �t �Û�5�4�6�6�ä            (3-2) 
 
However, experience has shown that a constant factor is too inflexible because RTT and 
its variations increase quickly with load. Jacobson (1988) gives a concrete example of 
75% capacity usage, leading to an RTT variation factor of sixteen. He also notes that an 
SRTT factor of 2 can adapt to a load level of at most 30%. This problem was solved by 
making the timeout value sensitive to the variance of the round-trip time as well as using 
a smoothed round-trip time estimate. This change requires keeping track of another 
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behavior. The rule defines that if a TCP entity receives an out-of-order segment, it must 
immediately send an ACK frame with the acknowledgement number representing the last 
in-order segment received. This acknowledgement is called a duplicate ACK (DupACK) 
because it has the same ACK number as the last sent acknowledgement. TCP will 
continue to repeat this duplicate ACK for each out-of-order received segment until the 
missing segment arrives and fills the hole in the receiving buffer. After receiving the 
missing segment, the receiver sends a cumulative acknowledgement for all the in-order 
received segments. 
 
When the sender receives the duplicate ACK, it can mean two different types of events. 
In the first case, the packets have been reordered inside the network. This means that 
consecutive packets have taken different routing paths between the end nodes. In the 
second case, the packet has been lost on the network path. On the basis of this second 
case, duplicate ACKs can be considered an early warning from the system to report that 
a packet has been lost. This is an early warning because often the RTO has not yet expired. 
Therefore, with the help of the duplicate ACKs, the sender can initiate the fast retransmit 
operation for the missing segment even though the RTO timer of the segment has not yet 
expired. In fact, the sender must receive three duplicate ACKs with the same 
acknowledgment number before the missing segment can be fast retransmitted. Three 
duplicate ACKs are needed instead of one because we need to be fairly sure that it is not 
a reordering situation. 
 
Related to congestion control, the more interesting algorithm is the fast recovery 
algorithm that is always initiated after the fast retransmit operation. Because the sender 
receives duplicate ACKs, it is a clear indication that at least some packets have found 
their way to the receiver through the connection path. Therefore, the congestion situation 
cannot be very critical. There is probably a moderate congestion situation somewhere on 
the connection path and it is not a good idea to react to moderate congestion with the slow 
start operation. Slow start drops the sending rate to almost zero and it takes a long time 
before the pipe is again utilized at a high level. Therefore, this kind of moderate 
congestion activates the fast recovery operation, which only halves the sending rate.  
 
Fast recovery is implemented as follows: 

�x When three duplicate ACKs are received and fast retransmit is triggered, the 
ss_threshold is set to half of the congestion window just before the congestion 
event. After that, the fast recovery algorithm governs the transmission of data as 
explained below until a non-duplicate ACK arrives.  

�x Set the congestion window to the value of ss_threshold plus �u�Û�/�5�5. This 
increases the congestion window by the number of the three segments that have 
just left the network and initiated the three duplicate ACKs. These three segments 
are buffered on the receiver side waiting for the missing segment.  
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is based on the slow start, congestion avoidance, and fast retransmit algorithms. The next 
version was called TCP Reno. Reno improves the congestion recovery phase by adding 
the fast recovery algorithm to the TCP congestion control. 
 
One of the known problems of the fast retransmit/fast recovery algorithm is a situation 
when multiple packets are lost during a single window of data. The problem is that the 
fast retransmit operation initiates the retransmission of a single segment. This means that 
TCP retransmits only one segment per round-trip time. After this retransmission, it takes 
one RTT until the next non-DupACK arrives. This regular ACK includes information 
regarding which segments have actually made their way to the receiver. If more than one 
segment has been lost during a single window, this regular ACK is known as a partial 
ACK. A partial ACK is a regular ACK that covers some, but not all, of the segments that 
were sent before entering the fast retransmit/fast recovery phase (Henderson et al. 2012). 
After this partial ACK, three new DupACKs are needed to initiate the fast retransmit 
operation for the next missing segment. After this new fast retransmit operation, a new 
fast recovery operation is triggered and the congestion window is reduced again due to 
the condition inside a single window. Unfortunately, it is also possible that this behaviour, 
with its many RTTs, may cause the expiration of the RTO timer. In this case, the sender 
must enter its slow start mode and radically reduce its sending rate.  
 
One solution for the problem of multiple drops within a single window is a TCP version 
called NewReno (Henderson et al. 2012). Every time the fast retransmit operation is 
activated, TCP NewReno stores the highest sequence number so far transmitted to the 
variable called recover. With the help of this variable, the sender can distinguish between 
the full ACK and the partial ACK. If the next regular ACK after the fast retransmit 
operation is the partial ACK, the next missing segment is immediately retransmitted 
without the need for three new DupACKs. In this case, NewReno stays in the current fast 
recovery mode without the need for a new rate reduction step. Another new proposal for 
improving the fast retransmit/fast recovery algorithm is the Proportional Rate Reduction 
(PRR) algorithm (Mathis and Cheng 2013).  
 
Even with this fix, NewReno suffers from the fundamental problem because one ACK 
frame cannot report all the segments lost in a single window. This problem can be solved 
by using the TCP SACK version (Mathis et al. 1996). TCP SACK can put more 
acknowledgement information in a single ACK frame because it can utilize the option 
part of the TCP header. When TCP SACK is used, the receiver uses an ACK format that 
enables it explicitly to report which segments from a single window made their way to 
the receiver, and which were lost. With the help of TCP SACK, it is possible to fast-
retransmit more than just a single segment per RTT.  
 
In the past ten years, a large number of non-standard TCP variants have been proposed. 
They often address the under-utilization problem related to the large bandwidth-delay 
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occurs and a packet is marked rather than dropped. The second bit is the ECN Capable 
Transport (ECT) bit. This ECT bit informs routers that the source is an ECN capable 
source and will respond to ECN marking as if  the packet had been dropped. This bit is 
required because the Internet can only be upgraded to ECN capable in a gradual manner. 
There may also be some applications or transport protocols which do not support the ECN 
mechanism. If the traffic flow is ECN capable, the ECT bit is set by the source and the 
routers will mark the packet instead of dropping it. If the ECT bit is not set, the packet 
must always be dropped in the congestion state.  
 
Since this kind of explicit notification is a forward type indication, more control is needed. 
The indication goes to the receiver and it must be echoed back to the sender. The TCP 
protocol does this echoing with the help of two extra bits. Both of these bits are placed in 
the TCP header part, which was originally reserved for future use. The first bit is called 
the ECN echo bit and it echoes the congestion event back to the sender. This bit is set in 
the ACK frame, which is sent to the sender. In fact, this bit is set in a series of ACK 
frames because ACK frames can be sent unreliably. This happens if data is transferred in 
only one direction and therefore ACKs are not sent in a piggybacking manner. Because 
an ECN echo can disappear on the ACK path, the sending rate is never reduced because 
of this congestion event. The problem with unreliable ACKs is solved so that every ACK 
frame is sent with the ECN echo bit set after the congestion event. This ECN echo setting 
continues until the receiver receives a data frame where the Congestion Window Reduced 
bit (CWR) of this data frame has been set. The CWR bit is the other extra bit reserved for 
the use of ECN. The CWR bit informs the receiver that the sender has received the 
congestion echo and reduced its sending rate. The CWR bit is transferred reliably because 
it is sent with a reliable transfer data frame. 
 
More control is necessary if receivers can act maliciously. When a packet is marked, a 
malicious receiver can easily omit to set the ECN echo bit and the reducing event of the 
sending rate can be avoided. This problem can be solved with a nonce. The nonce is a 
random number that is set as part of the data frame when the data frame is sent. In the 
congested situation, the router must delete the nonce at the same time as the CE bit is set. 
The idea of the nonce is that the receiver must echo the nonce back to the sender with 
every ACK frame where the ECN echo bit is not set. If a frame with a set CE bit is 
received, the receiver must set the ECN echo bit of the next ACK frame because the 
receiver is unable to echo the deleted nonce. The disadvantage of using the nonce is that 
more control bits are required in the header. Spring et al. (2003) present a solution where 
nonce behavior is implemented without the need for extra control bits. There have also 
been other proposals for implementing ECN, for example, the eXplicit Control Protocol 
(XCP) (Katabi et al. 2002).    
 
There is also a technology called Pre-Congestion Notification (PCN) (Menth et al. 2013). 
PCN provides feedback about load conditions in the network to the boundary nodes of 
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the network. PCN uses packet marking to notify boundary nodes if the preconfigured 
queue threshold has been exceeded on some link. This feedback is used for PCN-based 
admission control and flow termination. Instead of decreasing the sending rates of 
connections, PCN uses the feedback to reduce the number of connections in the network. 
Admission control and flow termination are useful for protecting the quality of inelastic 
flows. An inelastic flow requires a minimum bit rate. Applications like real-time voice 
and video are called inelastic because these applications become unusable if they have 
less than a minimum bit rate at their disposal.   
 

3.2. Delay-based congestion control mechanisms 

Delay-based congestion control mechanisms are presented here because delay-based 
approaches are also utilized in the mechanism developed in this thesis. First, the Packet 
Pair measurement technique is described. Perhaps the best-known delay-based congestion 
control mechanism, TCP Vegas, is introduced subsequently. The following techniques, 
TCP-LP and LEBDAT, are somewhat different from TCP Vegas because they do not try 
to obtain their own shares of the bandwidth. These two techniques offer low priority 
services compared to the TCP protocol. A survey of these kinds of low priority transport 
protocols is presented in a paper by Ros and Welzl (2013). The last technique presented 
here is the Delay-Gradient Congestion Control Algorithm which uses delay gradients 
rather than delays for congestion control. Many more delay-based congestion control 
techniques exist such as DUAL, FAST TCP, and CARD, for example. DUAL (Wang et 
al. 1992) is one of the seminal works in this area. FAST TCP (Wei et al. 2006) has been 
called the high-speed version of Vegas and CARD (Jain 1989) is another seminal 
analytical work in this field.   
 

3.2.1. Packet Pair 

In actual fact, Packet Pair (Keshav 1991) is not a congestion control mechanism. It is a 
measurement technique that can be used to derive the capacity of the bottleneck link. It 
can be considered as a basic technique for delay-based measurements. In this technique, 
two packets are sent back-to-back so that the second packet is sent immediately after the 
first one. Therefore, there is a high chance that these packets are served one after another 
by the bottleneck link. The delay properties of these two packets can be used to derive 
the capacity of the bottleneck link. 
 
 



50 
 

 
Figure 3.3 Principle of the Packet Pair technique 
 
Figure 3.3 shows what happens when two packets are sent through a bottleneck link. In 
this figure, there are three links and two packets are moving from left to right. The links 
on the left and right sides are links with high capacity. The link in the middle is the slow 
capacity bottleneck link. The shaded areas represent packets. The aim of Packet Pair is 
that two measuring packets enter the bottleneck link back-to-back and the second packet 
must be kept in the queue at least for a short time. This guarantees that these packets are 
sent over the bottleneck link one after another without a gap. Because the number of bits 
inside the packet is not changed when the packet travels through the bottleneck, the packet 
must spread out in time. Therefore, these packets leave the bottleneck link with a time 
gap that depends on the capacity of the bottleneck. If neither of these packets experiences 
queuing later on the connection path, they will  reach the receiver with this time gap. The 
capacity of the bottleneck link can be calculated by dividing the size of the first packet 
by the time gap t. This division uses the size of the first packet since the Packet Pair 
approach was redefined by Lai and Baker (2000) so that a small packet is sent 
immediately after a large packet. This modification increases the chance of getting these 
two packets served back-to-back in the bottleneck. 
 
This bottleneck link behavior can also be considered as the background to the self-
clocking/ACK-clocking mechanism of the TCP protocol mentioned earlier in this thesis. 
If the receiver immediately acknowledges incoming packets without delayed ACKs, and 
if these ACKs do not experience any queuing inside the reverse path, the ACKs are 
received with spacing based on the behavior of the bottleneck link.       
 

3.2.2. TCP Vegas 

TCP Reno repeatedly increases its sending rate in an additive manner. In this way, it tries 
to find the load level of the congestion and then it backs off significantly away from this 
level. Consequently, TCP Reno oscillates around the optimal point in a saw-tooth manner. 
The congestion window size of TCP and the queue lengths of routers also show clear 
oscillatory behavior. Such behavior is inherent to the AIMD  algorithm and this oscillation 
is used to probe variable network resources.  
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problem is one of asymmetry. A TCP connection can experience an asymmetry problem 
if the bandwidth of the data path is much larger than the bandwidth of the 
acknowledgement path. In such a situation, it may happen that the queues of the 
acknowledgement path fill up while the queues of the data path remain empty. Therefore, 
Vegas can incorrectly converge to an operating region in which the available bandwidth 
of the data path is considerably under-utilized.  
 
Another problem of Vegas is one of rerouting because changing the routing path may 
change the delay properties of the connection. In a situation like a link failure, the delay 
properties of the connection usually increase because the optimal path is no longer usable. 
Because the propagation delay usually increases in such a situation, Vegas maintains the 
old and too short estimate for the���$�=�O�A�4�6�6. As a result, the data path may be under-
utilized. The third problem of Vegas is known as the persistent congestion situation. If a 
new connection enters the network when queues have already built up, this connection 
can receive an incorrect assessment of the delay properties of the network. In other words, 
the value of �$�=�O�A�4�6�6 is overestimated. This can lead to a situation where TCP Vegas 
keeps more packets in the queues of the routers than it expects. If this situation lasts for a 
long time, it can lead to persistent congestion.  
 
There is also a TCP version celled TCP Veno (Fu and Liew 2003). This version is based 
on TCP Reno with some TCP Vegas-like improvements. The basic idea of Veno is that 
the Vegas improvements help to differentiate between congestive and non-congestive 
losses. Non-congestive losses can arise, for example, if there are problems with wireless 
links due to bit errors. When a packet loss is detected by the fast retransmit mechanism, 
TCP Veno checks if �&�E�B�B is under���; �E�C�; �4�P�; �N�A�O�; �K�H�@. If  it is, TCP Veno draws the 
conclusion that this particular packet loss is probably a non-congestion loss due to bit 
errors. In this case, Veno decreases its congestion window by only 20% instead of halving 
it li ke Reno does. If �&�E�B�B is over���; �E�C�; �4�P�; �N�A�O�; �K�H�@, the congestion window is halved.     
 

3.2.3. TCP-LP 

Kuzmanovic and Knightly (2006) introduced TCP-LP (Low Priority), which is an end-
to-end protocol. TCP-LP achieves two-class service prioritization without the support of 
routers. The new service class offered by TCP-LP is a low-priority service as compared 
to the normal best-effort service offered by the Internet. If TCP- and UDP-based flows 
need more bandwidth for their use, and the network capacity is fully utilized, TCP-LP 
flows withdraw from using the bandwidth. On the other hand, the objective of TCP-LP is 
to use the excess network bandwidth that is unutilized by non-TCP-LP flows. 
 
The low-priority service is implemented with the help of congestion control. To achieve 
this low-priority service in the presence of TCP traffic, it is necessary for TCP-LP to 
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detect an incipient congestion earlier than TCP. In principle, the network could provide 
such an early congestion indicator. For example, TCP-LP flows could use a type-of 
service bit to indicate that they only need a low-priority service. Based on this indication, 
routers could use Explicit Congestion Notification (ECN) messages to inform TCP-LP 
flows only that there is an incipient congestion in the network. However, TCP-LP 
implements this low-priority service without the need of network support.  
 
The key mechanism of the TCP-LP congestion control is the use of one-way packet delays 
for early congestion indications. TCP-LP measures one-way packet delays and employs 
a simple delay threshold-based method for early indication of congestion. This early 
indication of congestion is deduced by the TCP-LP flow whenever the smoothed one-way 
delay exceeds the threshold. The threshold resides within the range of the minimum and 
maximum delay experienced by the connection. With the help of the threshold, TCP-LP 
can react earlier to congestion than a packet drop-based TCP connection. After the 
threshold is reached, TCP-LP starts to reduce its sending rate while TCP still continues 
to increase its sending rate in a normal congestion avoidance manner until a packet drop 
is experienced. On the other hand, if there is unused bandwidth under the threshold, TCP-
LP will adopt it. In order to prevent TCP-LP from overreacting to a burst of congestion 
indications, TCP-LP ignores successive congestion indications during the next round-trip 
time if the source has just reacted to a previous congestion indication. 
 

3.2.4. Low Extra Delay Background Transport  

Low Extra Delay Background Transport (LEDBAT) (Shalunov et al. 2012) is a 
congestion control algorithm that possesses experimental RFC status. It is a delay-based 
algorithm which tries to utilize the available bandwidth on an end-to-end path. It also tries 
to react to an incipient congestion before actual congestion losses.  
 
LEDBAT is designed for low-priority applications because LEDBAT connections 
withdraw from using bandwidth after a queuing delay exceeds the predefined target. It is 
designed for the use of background bulk-transfer applications so that LEDBAT 
connections do not interfere with the performance of competing flows. LEDBAT can be 
used as part of transport protocols or applications if  the data transmission mechanism can 
carry timestamps and acknowledgements frequently. At the moment, the main objective 
is to use it with low-priority application protocols, such as those built on top of the UDP 
for peer-to-peer (P2P, BitTorrent) applications. 
 
The LEDBAT sender uses one-way delay measurements to estimate the amount of 
queued data on the data path. When the estimated queuing delay is less than the 
predetermined target, LEDBAT concludes that the network is not yet congested and 
increases its sending rate to utilize the free network capacity. When the estimated queuing 
delay becomes larger than the predetermined target, LEDBAT decreases its sending rate 
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The maximum and minimum measurements are less noisy than per packet RTT 
measurements. Nevertheless, CDG uses moving average smoothing for gradients so that 
the sum of the sample gradients is divided by the number of samples in the moving 
average window. 
 
At different states of the connection, RTTs and gradients behave as shown in Figure 3.4. 
When the queue becomes full, �6�4�I�=�T stops increasing before �6�4�I�E�J stops increasing. 
The reverse is true for the queue moving from full to empty. Figure 3.4b shows the values 
of the gradients for these two conditions. Based on these estimates, the state of the queue 
(full, empty, rising, falling) can be evaluated. Unfortunately, delay gradients are often too 
sensitive to second order delay fluctuations (Wang et al. 1992). Therefore, CDG does not 
use delay gradients as the main source of congestion discovery. Delay gradients are used 
to assist a normal TCP Reno-like congestion control to make the right decisions. For 
example, gradients are used to differentiate between congestion and non-congestion 
losses. Only when the queue is full, do packet losses become congestion losses.  
 

        
Figure 3.4 Principles of detecting queue states with the help of gradients 
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TCP-like mechanism probes the available bandwidth aggressively. It is suitable for 
applications that want to use as much bandwidth as possible but can tolerate significant 
rate fluctuations. TFRC is designed for applications that prefer a smooth rate. Many real-
time multimedia applications are such applications. Therefore, TFRC is discussed in more 
detail later after a brief introduction of the main DCCP protocol.   
 

3.3.5.1 Main DCCP protocol 

Most of the congestion control mechanisms described in this thesis are merely schemes 
and not complete protocols. A transport protocol often includes many functions that are 
not necessarily congestion control specific. For example, there are checksums for error 
checking and port numbers to ensure that applications can be identified. DCCP offers all 
the necessary functions. Kohler et al. (2006b) introduce the core DCCP protocol. The 
paper by Kohler et al. (2006a) is also significant because it discusses the motivations 
behind the design of DCCP. Their paper explains the functions needed for this kind of 
transport protocol.    
 
DCCP is a connection-based protocol even though it is an unreliable protocol. This 
guarantees better cooperation with middle-boxes, like firewalls. It also creates ground for 
feature negotiation. One important feature is CCID, Congestion Control Identity. Every 
approved congestion control mechanism has its own number for CCID. DCCP 
connections are bidirectional. Data may pass from both endpoints to the other or only in 
one direction. Acknowledgements can also be piggybacked by data packets. Logically, 
however, a DCCP connection consists of two separate unidirectional connections called 
half-connections. It is possible that a half-connection uses its own congestion control 
mechanism, which is different to that used by the other half-connection. 
 

3.3.5.2 TCP Friendly Rate Control 

TCP Friendly Rate Control (TFRC) (Floyd et al. 2008) is designed to be reasonably fair 
when competing for bandwidth with TCP flows. It is difficult to define TCP friendliness 
exactly but Floyd et al. (2008) state that TFRC is "reasonably fair" if its sending rate is 
generally within a factor of two of the sending rate of a TCP flow under the same 
conditions. TFRC has a much lower variation in sending rate over time compared to TCP. 
This smoothing behavior makes it suitable for applications such as streaming media 
where a relatively smooth sending rate is important. With a smoothed sending rate, TFRC 
responds to changes in available bandwidth more slowly than TCP. For this reason, TFRC 
is not recommended for applications that simply need to transfer as much data as possible 
in as short a time as possible. 
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TFRC is best suited for applications that use a fixed packet size and respond to congestion 
by varying the sending rate in packets per second. TFRC can also be used with 
applications that do not have a fixed packet size, but where the packet size varies 
according to the needs of the application (for example with video applications). With 
these kinds of applications, TFRC perhaps does not work in the optimal way. TFRC is 
not suitable for applications that require a fixed interval of time between consecutive 
packets and vary their packet size in response to congestion. TFRC is more a receiver-
based mechanism than a sender-based mechanism. Therefore, TRFC is well-suited for an 
application where the sender is a multi-connection server and the receiver has more 
processing power for congestion control computation. 
 
TFRC is an equation-based congestion control mechanism. It uses a throughput equation 
to calculate the allowed sending rate. Because DCCP tries to be fair toward TCP, TFRC 
uses the TCP throughput equation. This equation describes the TCP sending rate as a 
function of the loss event rate, round-trip time, and segment size: 
 

�$�:�L�; 
L
�O

�4�6�6
§
�6�ã

�7

E�F�v�4�6�6�Û�u
§

�7�ã

�<
�G�L�:�s
E�u�t�L�6�;

�����á�������������������������������������������:�u
F �s�s�;�� 

 
where: 
���$�:�L�; = the sending rate bytes/sec 
���4�6�6 = the round-trip time 
���O = the segment size in bytes 
���L = the loss event rate. 
 
Equation 3-11 is the same equation as 2-7 but with the TCP retransmission timeout value 
set to the value of 4*RTT and the sending rate presented in bytes. It is also supposed that 
the maximum number of packets acknowledged by a single TCP acknowledgement is 
one. On the other hand, the unanswered question is why the factor of 1.3 is replaced by 
the factor of 3. 
 
To simplify, a loss event interval involves a group of packets between two consecutive 
packet losses. The duration of the loss event interval is at least one RTT so that TFRC 
does not react to multiple packet losses inside the same window. The loss event rate is 
the inverse of the number of packets in the particular loss event interval. The receiver 
measures the weighted average loss event rate. The receiver sends this average 
information back to the sender. The sender also uses these feedback messages to measure 
RTTs. The loss event rate and smoothed RTT estimate are then fed into TFRC's 
throughput equation to obtain the allowed sending rate, which is limited to be at most 
twice as high as the receive rate. To obtain this receive rate, the receiver continually 
calculates the received data rate and reports it back to the sender.  
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TFWC senders use the TCP throughput equation to compute congestion windows. The 
equation for TFWC can be derived from the simplified TCP throughput equation (Eq. 3-
11). In equation 3-11, �O is the packet size in bytes and �4�6�6 is the end-to-end round-trip 
time. In window-based congestion control, it is normally supposed that it takes one RTT 
to send the whole window. Thus, equation 3-11 must be multiplied by �4�6�6 to obtain the 
equation for the window-based mechanism. In addition, if this equation is divided by �O, 
we obtain the window in packets. If  both sides are multiplied by �4�6�6���O, we get the 
congestion window size �9  in packets:  
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This equation is interesting because it shows that only the loss event rate �L has to be 
known in order to calculate the TCP-friendly window size.  
 
To calculate the loss event rate, TFWC uses the same average loss interval mechanism as 
TFRC. In this mechanism, the last eight intervals between the packet losses are stored 
and the weighted average is calculated. In TFWC, the loss event rate is calculated by the 
sender. For feedback information about packet losses, the receiver sends ACK messages 
to the sender. The ACK message carries an Ack Vector where the delivery status of each 
packet is reported. For the ACK messages, the receiver maintains an Ack Vector data 
structure that contains the packet list indicating whether or not a packet was delivered 
successfully. The Ack Vector grows in size when the receiver gets packets from the 
sender. Therefore, the ACK message itself needs to be acknowledged so that already 
acknowledged packets can be removed from the Ack Vector.  
 
As equation 3-12 shows, RTT measurements are not required with this kind of congestion 
control mechanism. It leads, however, to very bursty behavior. In window-based control, 
the idea is that the sender sends the whole allowed window as soon as possible. When the 
window closes, the sender must stop and wait until the window opens again. This bursty 
behavior is somewhat alleviated because TFWC switches back to the TFRC mode (rate-
based but still sender-based) when the window is small. In fact, TFWC also implements 
RTT measurements. RTTs are needed to calculate the retransmission timeouts. With the 
help of RTO timers, deadlock cases can be solved. A deadlock can happen if the Ack 
clock stalls due to packet drops. Because TFWC is an unreliable protocol, it actually sends 
a new packet rather than a retransmission after the timer expires. The window size can be 
divided by RTT to remove the bursty behavior. However, we are then again in rate mode. 
 
There are also other TFRC variants such as MulTFRC (Damjanovic and Welzl 2011) and 
Enhanced TCP-Friendly Rate Control (ETFRC) (Talaat et al. 2013), for example. 
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4 �'�X�D�O���0�R�G�H���&�R�Q�J�H�V�W�L�R�Q���&�R�Q�W�U�R�O���0�H�F�K�D�Q�L�V�P���I�R�U��
�9�L�G�H�R���6�H�U�Y�L�F�H�V 

In this chapter, the basic algorithm for the dual-mode congestion control mechanism is 
presented along with the test results of the algorithm. Simulations play a big role in this 
chapter because the algorithm was developed and first tested using simulations. The real 
network tests were executed subsequently.  
 
To recap, the goals of the new congestion control mechanism are as follows: 

�x The mechanism includes two modes. There is a backward-loading mode for low-
priority services in which bandwidth is given to other connections after a certain 
load level. There is also a real-time mode that demands its fair share of the 
network bandwidth.   

�x The algorithm should be receiver-based so that there are not complicated 
conclusion procedures on the heavy-loaded server side.   

�x The implementations of the modes should be as convergent as possible. In 
particular, the sender side should be as similar as possible for both modes, 
enabling seamless switching between modes. 

�x The real-time mode should be TCP-friendly but the bandwidth should be used  
much more smoothly than TCP does.  

�x The mechanism should be less biased against long round-trip times than TCP. 
�x The mechanism facilitates DASH-based rate adaptation.  
�x The mechanism should be stable and scalable. 

As an additional target, the avoidance of unnecessary complexity can be mentioned. The 
developed algorithm is called Congestion control for VIdeo to Home Internet Service 
(CVIHIS). If we wish to emphasize that a specific issue is related to the backward-loading 
mode version, we use the abbreviation CVIHIS-BLM. Similarly, for the real-time 
version, we use the abbreviation CVIHIS-RTM. 
 

4.1. CVIHIS algorithm 

Based on the findings of the study by Vihervaara and Loula (2014), this thesis presents 
an improved version of the algorithm. The paper by Vihervaara and Loula (2015) is 
related to this improved version. This section presents only the basic algorithm, while all 
kinds of special cases are bypassed. These special cases include, for example, a special 
start phase algorithm and an extension dealing with dropped packets due to non-
congestion situations. Some elaboration work and extra discussion are presented in 
Chapter 5. 
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4.1.1. Basic properties of the CVIHIS algorithm 

Sending rates can be controlled in either a rate-based or a window-based manner. It is 
also possible to use a combined rate- and window-based approach. Cen et al. (1998) 
introduced this kind of combined solution. One of the targets of the congestion control 
mechanism presented in this thesis is relative simplicity. Therefore, the combined 
solution can be excluded and either rate-based control or window-based control must be 
chosen. The natural choice for CVIHIS, and traditionally the more commonly used 
approach with multimedia streaming, is the rate-based approach. Akan (2004) notes that 
the window-based approach is not suitable for continuous multimedia streaming since its 
ACK-controlled packet injection method does not maintain smooth rate variation. On the 
contrary, window-based control tends to generate a bursty-like traffic output. Window-
based control is especially unsuitable for long round-trip time connections (Wang et al. 
2008b). 
 
However, rate-based control also has its drawbacks. Although rate-based control works 
well most of the time, it has the inherent danger of overflowing network buffers, since 
the metric being directly controlled is the data rate instead of the amount of data (Cen et 
al. 1998). This means that the sender reduces its data rate only at the request of the 
receiver. If the ACK messages sent by the receiver are lost inside the network due to 
severe congestion, the sender will  continue sending at the old rate. In rate-based control, 
this problem can be solved by using a no-feedback timer. In the window-based approach, 
this problem does not exist because the sender will automatically stop after the granted 
window closes.  
 
If the network does not support explicit congestion feedback, the sending rate can be 
adjusted based on packet losses or delays alone. Both indicators are utilized in the 
mechanism of this thesis, but the algorithm can be said to be somewhat more delay-based 
than loss-based. The reason for emphasizing the delay-based approach is that it generates 
suitable conditions for implementing the background-loading mode (Ros and Welzl 
2013). For example, LEBDAT and TCP-LP, introduced in Chapter 3, offer mechanisms 
such that low-priority applications can withdraw from using the bandwidth after the 
queuing delay exceeds the predefined target. The basic idea behind the delay-based 
approach is that CVIHIS, and especially its backward-loading mode, tries to keep the 
queue level of the router at the level of the target delay. It is worth noting that this target 
delay may exceed the delay demands of applications. If applications have delay and jitter 
demands, these have to be satisfied by quality of service mechanisms. CVIHIS is a pure 
congestion control mechanism, not a quality of service mechanism.   
 
The principles of CVIHIS low-priority behavior can be explained with the help of Figure 
4.1. In this figure, the delay areas used in CVIHIS rate control are presented. These delay 
areas correspond to the queue level of the bottleneck router. The minDelay value 
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corresponds to the situation when the queue is empty. The minDelay value includes only 
propagation delay components, not queuing delays. The queue is empty as long as the 
sum of the sending rates is below the capacity of the outgoing link. If the sum exceeds 
the capacity, the queue starts to fill up. The maxDelay point is detected when a packet 
drop occurs due to queue overflow. CVIHIS tries to keep the queue at the level of the 
targetDelay area. When operating in the upper delay areas, CVIHIS decreases its sending 
rate and correspondingly, when operating in the lower delay areas, CVIHIS increases its 
sending rate. 

 
Figure 4.1 Delay areas used in CVIHIS rate adaptation 
 
When sending rates are increasing and the queue level of the router finally reaches the 
value of the targetDelay area, CVIHIS connections stop increasing their sending rate. 
However, there may be other kinds of connections that still continue to increase their 
sending rates. TCP connections react only to packet losses, and these connections will 
continue to increase their sending rates until the maxDelay point is reached. The UDP 
protocol can continue to increase its sending rate even after packet drops. These other 
connections can push the queue level to the upper areas where CVIHIS connections start 
to decrease their sending rates. With this decreasing behavior, CVIHIS connections using 
the backward-loading mode make more room for other connections, which can therefore 
continue to increase their sending rates.   
 
CVIHIS uses one-way delays for delay measurements rather than round-trip times. A one-
way delay value is calculated between two network points, and it is the time in seconds 
that a packet spends traveling across the IP network between these points. The main 
motivation behind choosing one-way delay is that, in this way, the necessary conclusion 
procedures can be made on the receiver side. It also has other benefits that are explained 
by Almes et al. (1999): 

�x Round-trip measurements actually measure the join performance of two distinct 
paths.  The path from the source to the destination may be different than the path 
from the destination back to the source (asymmetric paths).  

�x Even when the paths are symmetric, the paths may have radically different 
performance characteristics due to asymmetric queuing. 
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�x The performance of an application may depend mostly on the performance of one 
direction. The applications CVIHIS is designed for are typically this kind. The 
performance of the data path is more important than the direction in which 
acknowledgements travel. 

There are also drawbacks related to the one-way delay-based mode. The high-resolution 
clock functions of the operating system must be used. In addition, the clocks of the 
endpoints have to be synchronized with a considerable degree of accuracy.   
 
In essence, it seems that one-way delay measurements are quite simple. The sender can 
send a probe packet with a timestamp field. When the receiver receives the packet, it gets 
another timestamp which corresponds to the receive time of the packet. The difference 
between these two timestamps is the one-way delay. The main problem of measuring one-
way delays is that the clocks of the devices are typically non-synchronized on the Internet. 
If the clocks of the two nodes are not synchronized accurately enough, one-way delay 
measurement includes the corresponding one-way delay and the clock offset between the 
nodes. Even if  initially accurately synchronized, two clocks will differ after some time 
due to clock drift. This clock drift occurs because any two clocks count time at slightly 
different rates. Due to clock offset and clock drift, one-way delay measurements are 
challenging.  
 
There are several techniques that can be used to synchronize the clocks of the endpoints 
(Shin et al. 2011). However, these techniques are not utilized by CVIHIS in order to keep 
the implementation simple. These synchronization techniques are often either too 
complicated or too inaccurate for CVIHIS.  
 
In fact, clock offset is not a problem for CVIHIS. CVIHIS probes two delay values, which 
are presented in Figure 4.1. These delay values are minDelay and maxDelay. It can be 
said that the minDelay value is the shortest one-way delay value experienced during the 
lifetime of the connection. The maxDelay value corresponds to the situation in which the 
queuing delay reaches its maximum value. This happens when a packet is dropped due to 
the buffer overflow of the router. CVIHIS divides the area between the values of 
minDelay and maxDelay into several delay areas. CVIHIS can do this correctly if the 
maxDelay is greater than minDelay even if these delay values are negative due to clock 
offset. The actual one-way delay measurement related to a certain packet includes this 
same clock offset and, therefore, the calculated delay is within the minDelay-maxDelay 
area. 
 
Clock drift can cause problems for CVIHIS. If the measured delay value is increasing due 
to clock drift, the minDelay value will become outdated. After a certain period of time, 
the minDelay value no longer corresponds to the actual propagation delay of the 
connection path. In an extreme situation, the measured delay value including only the 
propagation delay component may reside closer to maxDelay than minDelay. This means 
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multiplicative decrease step. After the packet drop, CVIHIS waits for 1.5 times as long 
as the round-trip time before it makes new rate adaptation decisions. This enables CVIHIS 
to wait for the multiplicative decrease to affect the queue level. CVIHIS behaves with 
respect to the multiplicative decrease step like TCP NewReno, which decreases its 
sending rate only once per round-trip time.  
 

4.1.2. Backward-loading mode and improving the algorithm by 
using delay gradients 

The algorithm measures the one-way delays of the connection path. With the help of the 
minimum and maximum delay values, the delay space is divided into rate adaptation 
areas, as presented in Figure 4.1. By means of these rate adaptation areas, CVIHIS-BLM 
strives to enter the targetDelay area and stay there. If it can remain there for a long time, 
it also means that the sending rate has been stabilized to the capacity of the outgoing link 
because the queue neither grows nor shrinks. For each received data packet, an 
acknowledgement packet with the rate adaptation command is sent back to the sender. 
 
Unfortunately, the algorithm presented in Figure 4.1 does not stabilize in the targetDelay 
area and at the target rate. Instead, the sending rate oscillates, as shown in the simulation 
graph of Figure 4.2. In this simulation, the capacity of the bottleneck link is 600 kbps and 
the sending rate oscillates around this capacity rate.  
 

 
Figure 4.2 Oscillating sending rate of the pre-version 
 
The oscillating behavior can be explained as follows. The sending is started using a 
moderate rate and the queue does not fill up at the beginning. Queuing is not necessary 
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because the sending rate is below the capacity of the outgoing link. The queue starts to 
fill up after the capacity of the bottleneck is reached. At the same time, the measured 
delay values start to exceed the minimum delay. Since the delay values are still below the 
targetDelay area, the sending rate continues to grow. Even after the target area is reached, 
the sending rate still continues to increase for a while because it will take some time 
before the acknowledgement for the data packet that first reached the targetDelay area 
reaches the sender. All data packets ahead of that particular packet, either in the 
connection path or in the queue of the router, continue to increase the sending rate. For 
these reasons, the capacity of the bottleneck link is exceeded, as shown in Figure 4.2.  
 
The reverse phenomenon occurs when the sending rate decreases. The queue does not 
begin to shorten before the sending rate falls below the capacity of the bottleneck. This is 
also the moment when the length of the queue reaches its highest value. After this 
moment, the queue level still exceeds the targetDelay area. Therefore, the sending rate 
continues to decrease. A similar phenomenon happens again as in the increasing phase, 
and the capacity is now underestimated. This phenomenon continues, leading to 
oscillating behavior. The oscillating behavior can be seen more clearly in Figure 4.3. This 
figure presents the queue size of the bottleneck link. Similar oscillating behavior was 
mentioned by Wang et al. (1992).  
 

 
Figure 4.3 Oscillating queue size of the pre-version 
 
The oscillating behavior can be softened significantly by using delay gradients for rate 
adaptation decisions too. The enhanced and final rate adaptation schema is presented in 
Figure 4.4. The minimum and maximum delays are determined on the basis of delay 
measurements. As described above, the minDelay value corresponds to a situation in 
which the queues of the connection path are empty. The minDelay value includes only 
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propagation delay components. The maxDelay point is found when a packet drop occurs 
due to queue overflow. The delay value of the last received packet before the dropped 
packet is used for the maxDelay value because the delay value of a dropped packet cannot 
be measured.     

 
Figure 4.4 Delay areas and rate adaptation steps of CVIHIS  
 
With the help of the minimum and maximum delay values, the delay space is divided into 
seven rate adaptation areas. It could also be stated that the queue of the router is divided 
into corresponding parts. The seven rate adaptation areas are used so that sufficiently 
accurate information about the state of the network can be given to end hosts. Based on 
theoretical analysis and simulations, Qazi and Znati (2011) note that 3-bit congestion 
control feedback is sufficient for achieving near-optimal rate convergence to an efficient 
bandwidth allocation. While the performance gap between 2-bit and 3-bit schemes is 
large, gains follow the law of diminishing returns when more than 3 bits are used. The 
integer values in round brackets refer to the rate adjustment commands of CVIHIS that 
are sent from the receiver to the sender. 
 
The central delay area, called the targetDelay area, is not located in the middle of the 
delay space but is shifted somewhat downwards so that queues can be kept short. The 
displacement used in this case is perhaps too modest for normal operating conditions in 
practice. However, if routers are equipped with active queue management mechanisms, 
this displacement is perhaps appropriate. The locating factors for each delay area are 
presented on the left-hand side of Figure 4.4.  
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There is a black arrow inside some delay areas. This black arrow represents the direction 
of the delay obtained by comparing the delay values of two consecutive packets. If the 
arrow points upwards, delays are increasing and the delay gradient is positive. This also 
means that the queue is filling up. If the arrow points downwards, delays are decreasing 
and the delay gradient is negative, indicating that the queue is emptying. There are four 
delay areas with black delay gradient arrows. Inside these four areas, the rate adaptation 
command is based on the actual delay value and the value of the delay gradient. The delay 
value assigns a certain delay area. Inside this delay area, the delay gradient can affect the 
actual rate adaptation feedback. Two extreme delay areas do not use delay gradients for 
rate adaptation decisions because these areas are far away from the targetDelay area.  
 
By using this kind of rate adaptation scheme, it is hoped that the targetDelay area can be 
reached without significant oscillation. It can be said that this rate adaptation scheme tries 
to achieve two target values. It tries to drive the queue level to the targetDelay area by 
means of the actual delay value. On the other hand, the adaptation scheme also tries to 
adapt the sending rate to the level of the bottleneck capacity. This is done by means of 
the delay gradient. If there is a conflict of interests between these two targets, the sending 
rate target is favored. For example, let us take a case where the measured delay value is 
inside the fifth delay area (�r�ä�w�&���� ���r�ä�x�&). If, at the same time, the delay gradient is 
negative (i.e., black arrow points downwards), it means that the queue is emptying and 
the sending rate is below the capacity of the bottleneck link. In such a situation, CVIHIS-
BLM has to increase its sending rate because the rate target is not being met. This rate 
increase action is taken despite the fact that the queue level exceeds the targetDelay area. 
On the other hand, if the delay gradient is positive, there is no conflict. Both targets dictate 
that the sending rate has to be decreased. 
 
In its additive increase phase, the TCP protocol increases its transmission rate by one 
segment for each round-trip time interval. In its basic form, CVIHIS increases or 
decreases its transmission rate by one packet for each square root of the round-trip time 
interval. This selection is based on two arguments. Firstly, in this way CVIHIS alleviates 
the favoring behavior of short connections. Secondly, this allows CVIHIS to react better 
to long round-trip times. With the help of simulations, it was found that if the transmission 
rate is adjusted by too small steps then, in the cases of long RTT connections, CVIHIS-
BLM could not always enter the targetDelay area. CVIHIS-BLM was informed about the 
state of the network with long delay and too small steps were taken to react properly. By 
adapting the transmission rate proportionally to the square root of the round-trip time, a 
solution can be reached in which the backward-loading mode version of CVIHIS can 
stabilize in the targetDelay area. In addition to measuring the one-way delay of data 
packets, CVIHIS also has to estimate the round-trip time of the connection. 
 
CVIHIS does not use equal increase and decrease steps in all cases. In Figure 4.4, these 
different size steps are shown by a different number of + or - marks. If there are three 
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marks, CVIHIS increases or decreases its transmission rate by one packet for each square 
root of round-trip time. If there are two marks, the adjustment steps are shorter. The 
shortest steps are indicated by using only one + or - mark. To enter the targetDelay area 
smoothly, CVIHIS uses short steps in the delay areas just beside the targetDelay area (rate 
adaptation feedbacks 2 and 3). The adjustment steps related to the delay gradients (rate 
adaptation feedbacks 6 and 7) are the shortest ones. By using the shortest steps for delay 
gradients, we can prevent CVIHIS-BLM from oscillating over the delay areas just beside 
the targetDelay area. The longer steps related to rate adaptation feedbacks 2 and 3 can 
push CVIHIS-BLM away from these delay areas.        
 
According to the design criteria, CVIHIS should be a receiver-based congestion control 
mechanism. This means that all conclusion procedures presented in this section are 
implemented on the receiver side. In addition, the sender side of CVIHIS implements the 
EWMA mechanism for smoothing the sending rate. EWMA also mitigates the effects of 
atypical situations on the operation of the algorithm. For example, momentary excess 
delaying in a wireless environment is not critical to the proper operation of the algorithm.  
 

4.1.3. Real-time mode 

The algorithm presented so far is suitable for the backward-loading mode because the 
connections using this algorithm withdraw from using the bandwidth after a certain load 
level. In contrast, the real-time mode connections of CVIHIS should compete with TCP-
based connections for their fair share of the bandwidth. Therefore, the algorithm has to 
be modified so that it will behave more aggressively in the cases of real-time mode 
connections. One possibility for achieving TCP friendliness would be to imitate TCP 
behavior as exactly as possible. This would mean the use of a purely loss-based 
congestion control approach. CVIHIS takes a different kind of approach, however, so that 
the implementations of its two modes are as similar as possible. 
 
The real-time mode uses a simple approach in which the minimum delay value is pushed 
upwards in a continuous manner. The delay areas presented in Figure 4.4 are also pushed 
upwards and, therefore, CVIHIS behaves more aggressively. This upwards pushing is 
done only when competing behavior is really necessary. If the last measured delay value 
is smaller than the pushed minimum delay value, the minimum delay value is set to the 
value of the last measured delay. The pushing function works in a flexible way.  
 
This type of minimum delay pushing means that the real-time mode version is no longer 
a pure delay-based congestion control solution. The pushing operation shifts this version 
somewhat towards loss-based congestion control. CVIHIS-RTM is a hybrid solution, a 
delay-loss-based solution. If the load of the router increases slowly, the real-time mode 
works like a loss-based approach. Due to the pushing of the minimum delay value, the 
queue level corresponds to the lowest delay area of Figure 4.4 regardless of the increase 
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Tables 4.1 and 4.2 summarize the values of the suitable parameter groups. Table 4.1 
presents the rate adjustment parameters of CVIHIS for simulation tests and Table 4.2 
presents the rate adjustment parameters of CVIHIS for real network tests. Some of these 
parameters differ somewhat from the simulation parameters, because the TCP version 
used is NewReno. NewReno is slightly more aggressive than Reno, which was used for 
TCP communication in the simulation tests. The four leftmost parameters have not been 
changed whereas the three rightmost parameters have been updated. All the three updates 
make CVIHIS more aggressive.  
 
The integer values in round brackets refer to the rate adjustment commands of CVIHIS 
presented in Figure 4.4. The four leftmost columns present the cases where the rate 
adjustment is based on the square root of the round-trip time. The value indicates how 
many more or fewer packets CVIHIS will send during the next square root of the round-
trip time than the one immediately before. These rate adjustment steps can be seen in 
Figure 4.4. In fact, the first column is not a real tuning parameter. This parameter is fixed 
to 1.0. The delay area just above the targetDelay area uses a bigger value than the area 
just below the target area. If the queue level exceeds the target level, it is desirable that 
the queue empties a little faster so that queuing delay can be kept short. MD is a 
multiplicative decrease factor which is used after packet drops to increase the packet 
sending gap. SF is a smoothing factor used for EWMA to smooth the sending rate of 
CVIHIS. PF is a pushing factor used only by the real-time mode. This factor is used to 
multiply the difference between the current minimum and maximum delay values. The 
result of this multiplication is added to the current minimum delay value.  
 
Table 4.1 Rate adjustment parameters of CVIHIS for simulations 

---    (1) 
+++ (4) 

--  (2) ++ (3) -   (6) 
+  (7) 

MD (5) SF PF 

1.0 0.7 0.5 0.2 1.25 0.4 * last update 
0.6 * history 

0.02 

 
Table 4.2 Rate adjustment parameters of CVIHIS for real network tests 

---    (1) 
+++ (4) 

--  (2) ++ (3) -   (6) 
+  (7) 

MD (5) SF PF 

1.0 0.7 0.5 0.2 1.10 0.5 * last update 
0.5 * history 

0.05 

  
 

4.1.5. Pseudocode presentation of the algorithm 

In this section, the implementation principles of the CVIHIS algorithm are introduced 
with the help of a pseudocode presentation. The presentation uses a C programming 
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language-like syntax. This pseudocode presentation uses the values of the rate adjustment 
parameters presented in Table 4.2 for real network tests.   
 
The sender side pseudocode is: 
 
1 PROGRAM CVIHIS_SENDER 
2 
3 struct CVIHIS_data_packet_t {  
4                              uint32_t segno;  
5                              time_t packet_send_time;  
6                              time_t round_trip_time;  
7                              char[] data;  
8                              };  
9 
10 struct CVIHIS_ack_packet_t {  
11                              uint32_t ack_segno;  
12                              uint8_t rate_change_command;  
13                              time_t data_packet_send_time;  
14                             };  
15  
16 CVIHIS_data_packet_t data_packet;  
17 CVIHIS_ack_p acket_t ack_packet;  
18 uint32_t_ segnumber = 1;  
19 time_t send_gap = INITIAL_SEND_GAP;   
20 time_t rtt_time = INITIAL_RTT; //250ms in this study  
21  
22 FUNCTION main()  
23   uint8_t rate_update_command;  
24   time_t now, previous_ack_received, updated_gap;  
25   previous_ack_received = now();  
26   set_signal_handler(signal_handler_send_packet(),   
27   SIGNAL_SEND_NEXT_PACKET);    
28   set_timer(send_gap, SIGNAL_SEND_NEXT_PACKET);   
29  
30   / / A while loop for receiving acknowledgement packets and  
31   // updating the send_gap variable.  
32   WHILE(1)  
33     receive_from_client(ack_packet);  
34     rate_update_command = ack_packet.rate_change_command;  
35     now = clock();  
36     rtt_time = now �± ack_packet.data_packet_send_time;  
37     SWITCH rate_update_c ommand 
38       CASE 1: updated_gap = 1/((1/send_gap) - (1*(now -   
39               previous_ack_received)/sqrt(rtt_time)));  
40               BREAK         
41       CASE 2: updated_gap = 1/((1/send_gap) - (0.7*1*(now -   
42               previous_ack_received)/sq rt(rtt_time)));  
43               BREAK     
44       CASE 3: updated_gap = 1/((1/send_gap)+(0.5*1*(now -  
45               previous_ack_received)/sqrt(rtt_time)));  
46               BREAK   
47       CASE 4: updated_gap = 1/((1/send_gap)+(1*(now -  
48               previous_ack_received)/sqrt(rtt_time)));    
49               BREAK 
50       CASE 5: updated_gap = send_gap*1. 10;      
51               BREAK 
52       CASE 6: updated_gap = 1/((1/send_gap)+(0.2*1*(now -  
53               previous_ack_received)/sqrt(rtt_tim e)));    
54               BREAK 
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55       CASE 7: updated_gap = 1/((1/send_gap) - (0.2*1*(now -  
56               previous_ack_received)/sqrt(rtt_time)));  
57               BREAK 
58       DEFAULT: updated_gap = send_gap*1.000;  
59               BREAK                         
60     END SWITCH 
61     send_gap = (0. 5*updated_gap) + (0. 5*send_gap);  
62     previous_ack_received = now;  
63     IF (send_gap > MAX_GAP)THEN send_gap = MAX_GAP; END IF  
64   END WHILE  
65 END FUNCTION    
66 
67 // Handler for SIGNAL_SEND_NEXT_P ACKET to send the next  
68  // packet  
69 FUNCTION signal_handler_send_packet()  
70   data_packet.packet_send_time = clock();  
71   data_packet.segno = segnumber++;  
72   data_packet.round_trip_time = rtt_time;  
73   // set also the data field of the packet  
74   send_to_client(data_packet);  
75   set_timer(send_gap, SIGNAL_SEND_NEXT_PACKET);  
76 END FUNCTION.  
 
The packet header structures of CVIHIS are defined between code lines 3 and 14. The 
type of time_t is an integer variable, which is 32 or 64 bits long. The sender side has two 
main functions. It sends data packets and receives acknowledgement packets for the rate 
adjustment. The sending event is realized by calling a signal handler 
signal_handler_send_packet(). On code line 26, it is defined that this handler function is 
invoked when the signal SIGNAL_SEND_NEXT_PACKET appears. This signal is sent 
when the timer for sending the next packet is triggered. This signal handler function is 
presented between code lines 69 and 76. On code line 70, the sending time of the packet 
is obtained by the clock function. Every data packet is identified by the sequence number 
that is set for the header by code line 71. After this operation, the sequence number 
variable is incremented by one for the next packet. With the help of the sequence number 
field, the receiver can recognize dropped packets. The packet is sent by code line 74. Line 
75 reschedules the packet sending function. The next sending event will be scheduled 
after a time gap, which is defined by the variable called send_gap. The send_gap variable 
is controlled by the main function.  
 
The while loop of the main function is executed every time a new acknowledgement 
packet arrives. This loop is presented between code lines 32 and 64. The main task of this 
loop is to regulate the sending gap of data packets. This sending gap defines the sending 
rate of CVIHIS. The send_gap variable is updated every time an acknowledgement packet 
is received. Updating is based on the rate adaptation command issued by the receiver and 
delivered to the sender by the acknowledgement packet. The rate adaptation command is 
extracted from the ACK packet on code line 34. The rate adjustment step is defined by an 
integer number between 0 and 7. The integer values are presented in Figure 4.4 (the 
integer values in round brackets now refer to the cases of the switch statement). Based on 
this feedback number, the corresponding rate adjustment step is taken by the switch 
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statement. The switch statement is located between code lines 37 and 60. Integer values 
from 1 to 4 correspond to the feedback values of the delay areas presented in Figure 4.4. 
Integer values 6 and 7 correspond to the situations in which the rate adjustment steps are 
based on delay gradients. The default case of the switch statement corresponds to the 
targetDelay area whose rate adaptation command is 0. A feedback number of 5 indicates 
a packet drop situation. A multiplicative rate decrease step is taken after a packet drop by 
code line 50.  
 
The EWMA mechanism for smoothing the sending rate is realized by code line 61. The 
maximum sending gap is defined by code line 63. If this maximum gap is used, it can 
define the minimum rate of CVIHIS. The argumentation for using this minimum rate 
comes from the application types that CVIHIS is designed for. Video applications usually 
have minimum rate requirements. This is especially true with real-time applications. It is 
also good to remember that if an application is sending at a moderate rate, it cannot be 
the source of congestion. 
 
The receiver side pseudocode is: 
 
1 PROGRAM CVIHIS_RECEIVER 
2 
3 struct CVIHIS_data_packet_t {  
4                              uint32_t segno;  
5                              time_t packet_send_time;  
6                              time_t round_trip_time;  
7                              char[] data;  
8                              };  
9  
10 struct CVIHIS_ack_packet_t {  
11                              uint32_t ack_segno;  
12                              uint8_t rate_change_command;  
13                              time_t data_pac ket_send_time;  
14                             };  
15 FUNCTION main()  
16   CVIHIS_data_packet_t data_packet;  
17   CVIHIS_ack_packet_t ack_packet;  
18   uint8_t rate_change_command = 4;  
19   time_t now, p_delay;  
20   time_t min_delay, max_delay, previous_packe t_delay;  
21   time_t wait_time_after_drop;  
22   uint32_t acknumber = 1;  
23   uint32_t last_number_received = 0;  
24   BOOLEAN CVIHIS_mode;  
25   BOOLEAN start_phase = TRUE;  
26     
27   // A while loop for receiving data packets and sending  
28   // acknowl edgement packets   
29   WHILE(1)    
30     receive_from_server(data_packet);  
31     now = clock();           
32     p_delay = now -  data_packet.packet_send_time;     
33     IF p_delay < min_delay THEN min_delay = p_delay;  
34        END I F      
35 
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36        IF start_phase == FALSE THEN  
37           rate_change_command = 0;  
38        IF CVIHIS_mode == REAL_TIME_MODE THEN  
39           min_delay = min_delay + ((max_delay - min_delay)*0.05);  
40           IF p_delay < min_delay THEN min_delay = p_delay;   
41           END IF      
42           END IF      
43        IF min_delay > max_delay THEN min_delay = max_delay;  
44        END IF    
45     END IF           
46 
47     // Check if a packet is dropped  
48     IF data_packet.segno > last_number_recived+1 THEN  
49          max_delay = p_delay;  
50     start_phase = FALSE;  
51     IF now > wait_time_after_drop THEN  
52   rate_change_command = 5;  
53   wait_time_after_drop = now + 1. 5*        
54             data_packet.round_trip_time;  
55     END IF   
56      END IF       
57     
58     // Delay analyze for the rate adjustment feedback   
59     IF start_phase == FALSE AND now > wait_time_after_drop  
60        AND rate_change_command != 5 THEN  
61         IF p_delay < (min_delay+0.2*(max_delay - min_delay))  THEN 
62    rate_change_ command = 4;  
63         END IF  
64    IF p_delay >= (min_delay+0.2*(max_delay - min_delay)) AND 
65            p_delay <= (min_delay + 0.3*(max_ delay - min_delay))  THEN  
66              IF prevous_packet_delay < p_delay THEN  
67                 rate_change_comm and  = 7;  
68         ELSE rate_change_command = 4;  
69          END IF  
70            END IF       
71         IF p_delay > (min_delay+0.3*(max_delay - min_delay)) AND  
72            p_delay < (min_delay+0.4*(max_delay - min_delay)) THEN  
73              IF previo us_packet_delay < p_delay THEN  
74                 rate_change_command = 7;  
75         ELSE rate_change_command = 3;  
76      END IF  
77         END IF          
78         IF p_delay > (min_delay+0.5*(max_delay - min_delay)) AND  
79            p_delay < (min_del ay+0.6*(max_delay - min_delay)) THEN  
80              IF previous_packet_delay > p_delay THEN  
81                  rate_change_command = 6;  
82                  ELSE change = 2;  
83          END IF  
84            END IF      
85            IF p_delay >= (min_dela y+0.6*(max_delay - min_delay))  AND 
86            p_delay <= (min_delay+0.7*(max_delay - min_delay)) THEN   
87           IF previous_packet_delay > p_delay THEN  
88                 rate_change_command = 6;  
89             ELSE  change = 1;  
90      END IF      
91         END IF             
92         IF p_delay > (min_delay+0.7*(max_delay - min_delay)) THEN    
93              rate_change_command = 1;  
94         END IF  
95     END IF      
96       



91 
 

97        last_number_received = data_packet.segno;  
98     previous_pac ket_delay = p_delay;          
99       
100        //Send Ack  
101        ack_packet.ack_segno = acknumber++;  
102       ack_packet.rate_change_command = rate_change_command;  
103       ack_packet.data_packet_send_time =   
104       data_packet.packet_send_time;  
105       send_to_server(ack_packet);  
106      END WHILE 
107  END FUNCTION.  
   
The rate adaptation feedback value is derived from the delay and loss analysis in the while 
loop of the main function. The analysis is performed every time a data packet is received. 
On code line 31, the receive time of the data packet is obtained. On line 32, the one-way 
delay of the packet is calculated. If the calculated delay value is less than the current value 
of the minimum delay variable, this variable is updated on code line 33.  
 
In the start phase, CVIHIS increases its sending rate until the first packet drop is detected. 
The rate_change_command variable is set to its initial value representing the sending rate 
increase on code line 18. This variable is updated for the first time when the first packet 
drop is detected because the code lines between 36 and 95 are ignored in the start phase 
of the connection.  
    
The default value of the rate adaptation feedback is 0 and this value is put for the 
rate_change_command variable (see code line 37) as soon as the start phase of the 
connection is over (see code line 50). Only a few lines of code need to be added to realize 
the minimum delay pushing behavior of the real-time mode. There is no need to change 
the sender side code. This solution makes it possible to switch between the two modes so 
that the server side does not need to know which mode is currently being used. The added 
code lines are presented between code lines 38 and 42. On line 39, the current minimum 
delay value is updated using a constant factor of 0.05 to multiply the difference between 
the minimum and maximum delay values. This factor belongs to the adjustment 
parameters used to tune CVIHIS to be TCP-friendly. A factor of 0.05 was found to work 
well with the other parameters in the suitable parameter group and is therefore used in the 
real network test cases of this thesis. Because a pushing operation is done after every 
received acknowledgement, 0.05 is quite a high value. This high value indicates that 
CVIHIS must behave quite aggressively in order to be TCP-friendly. In fact, Yang et al. 
(2001) note that TCP is the fastest protocol to utilize extra bandwidth. It was the most 
aggressive protocol when four congestion control mechanisms were compared (TCP, 
TFRC, GAIMD, and TEAR). 
 
A possible packet drop event is observed on line 48 by examining the packet sequence 
numbers. If a packet drop is detected, the code lines between 49 and 55 will be run. First, 
the maximum delay value is updated. After the packet drop, CVIHIS waits for 1.5 times 
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as long as the round-trip time before it makes new rate adaptation decisions. This enables 
CVIHIS to wait until the multiplicative decrease step has had an effect on the queue level. 
The waiting time is defined on line 53 of the code. 
 
If the packet is not dropped and there is enough time since the last packet drop event, the 
delay analysis is performed by the code between lines 61 and 94. This analysis is based 
on the delay areas presented in Figure 4.4. If code efficiency is considered, the use of the 
if -statement structure is not the best choice because every condition of each if-statement 
has to be checked. On code lines 97 and 98, the sequence number and one-way delay 
value of the data packet that has just been processed are placed to corresponding variables. 
  
Immediately after the rate adaptation deduction, CVIHIS sends an acknowledgement 
message to the sender. The number of the ACK-packet and the value of the just deduced 
rate_change_command variable are placed in the header of the ACK packet on code lines 
101 and 102. The transmission time of the received data packet is echoed back to the 
sender for the round-trip time calculation on code lines 103 and 104. After that, the ACK 
packet is sent to the sender. After sending the acknowledgement, CVIHIS is ready to 
receive the next data packet. 
 

4.2. Simulation results 

The simulation program used in this thesis is version 2 of the Network Simulator (NS-2). 
This simulator was chosen because it was the most widely used simulator for network 
simulations at the time the simulations of this thesis began. However, the NS-3 version is 
likely to replace it gradually.  
 
NS-2 (NS2 2013) is an open source program running in the Linux environment. Thanks 
to the open source nature, NS-2 can be expanded and modified to fit custom needs. For 
example, the original protocol objects can be modified and new protocol objects can be 
implemented. The new congestion control mechanism developed in this thesis has been 
implemented using a new transport layer protocol object of NS-2. The output of the NS-
2 simulation is a text file called the trace file. After the simulation, useful information 
must be extracted from the trace file with the help of some text-processing program. In 
this work, Perl scripts are used for information extraction. 
 
Please note that in the simulations of this thesis, the minimum and maximum delay values 
are free from misinterpretation. There are no packet losses due to bit errors. In addition, 
there are no clock offsets and clock drifts present in the simulation environment.           
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oscillate. The queue level of the bottleneck should also settle inside the target area. One 
of the simulation results has been presented in Figure 4.6. As can be seen, the sending 
rate stabilizes at a constant rate. The constant rate is the same as the capacity of the 
bottleneck link, i.e., 600 kbps. In this particular case, the average sending rate is 599.9 
kbps when the start phase of the connection (up to 80 seconds) is excluded from the 
calculation. The standard deviation of the rate is 0.5 kbps. The sending rate varies between 
598.6 and 600.8 kbps. After the start phase, the rate adaptation commands were mainly 
zeros indicating no rate changes.      
 

 
Figure 4.6 Smoothness test of CVIHIS-BLM 
 
Because the basic version of CVIHIS does not have any kind of special start phase 
algorithm, it takes time to achieve a constant sending rate. There is also some oscillatory 
behavior at the beginning of the stabilization process. The first rate peak is inevitable 
because CVIHIS queue level probing does not switch on until a packet drop occurs. The 
maxDelay value is not defined before the first packet drop. After that, CVIHIS-BLM 
takes its multiplicative decrease step and the actual stabilization starts. In this simulation 
case, it takes about 32 seconds before the sending rate stabilizes. 32 seconds is quite a 
long time in the computer world. On the other hand, the basic algorithm of CVIHIS is 
optimized for data transmissions lasting at least a few minutes. The specific features of  
short-term communication can be taken into account by integrating the appropriate start 
phase algorithm into the basic algorithm. 
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Figure 4.7 Queue behavior of the bottleneck link 
 
Related to this simulation case, the queue behavior of the bottleneck link is presented in 
Figure 4.7. The queue size of bottleneck node 2 (see Figure 4.5 for the network 
configuration) is 30 packets in the simulation script. Based on Figure 4.7, it seems that 
the queue level never reaches its maximum size. In the simulation script, the queue level 
is saved in 0.2-second steps and, therefore, the script cannot capture the moment of queue 
overflow. On the other hand, no answer has been found to the question of why the 
maximum queue length seems to be one package less than the value of the simulation 
script in all the simulation cases. Taking into account the previous issue related to the 
maximum queue size, the target queue level of this case is roughly between 11.5 and 14.5 
packets and the queue level settles inside this target area. 
 
As can be seen, the queue level fluctuates slowly inside the targetDelay area and its 
immediate vicinity. This behavior is intentional and was selected from two alternatives. 
In the first alternative, CVIHIS-BLM could eliminate the fluctuating behavior almost 
entirely by using the delay gradient investigation inside the targetDelay area. 
Unfortunately, this investigation would lead to behavior where the sender has to change 
its sending rate after every rate adjustment feedback. In the real world, and also with the 
NS-2, the queuing delay cannot be measured as an integer number of packets but is 
instead a decimal. Therefore, the queuing delay varies all the time as does the delay 
gradient. By choosing the second alternative, i.e., by letting the queuing delay fluctuate, 
the sender can send at a constant rate for a long time. Using this alternative, CVIHIS-
BLM does not perform any rate adjustment functions inside the targetDelay area. This 
leads to slightly fluctuating behavior because CVIHIS-BLM cannot enter the target area 
by using the exact rate of the bottleneck link. If the queue level is supposed to go up or 
down, the sending rate cannot be the same as the capacity of the link.           
































































































































































