

Tampereen teknillinen yliopisto. Julkaisu 1306
Tampere University of Technology. Publication 1306

Teemu Laukkarinen

Abstracting Application Development for Resource
Constrained Wireless Sensor Networks

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB104,
at Tampere University of Technology, on the 4th of September 2015, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2015

ISBN 978-952-15-3542-0 (printed)
ISBN 978-952-15-3567-3 (PDF)
ISSN 1459-2045

ABSTRACT

Ubiquitous computing is a concept whereby computing is distributed across smart
objects surrounding users, creating ambient intelligence. Ubiquitous applications
use technologies such as the Internet, sensors, actuators, embedded computers, wire-
less communication, and new user interfaces. The Internet-of-Things (IoT) is one of
the key concepts in the realization of ubiquitous computing, whereby smart objects
communicate with each other and the Internet. Further, Wireless Sensor Networks
(WSNs) are a sub-group of IoT technologies that consist of geographically distributed
devices or nodes, capable of sensing and actuating the environment.

WSNs typically contain tens to thousands of nodes that organize and operate au-
tonomously to perform application-dependent sensing and sensor data processing
tasks. The projected applications require nodes to be small in physical size and
low-cost, and have a long lifetime with limited energy resources, while performing
complex computing and communications tasks. As a result, WSNs are complex dis-
tributed systems that are constrained by communications, computing and energy re-
sources. WSN functionality is dynamic according to the environment and application
requirements. Dynamic multitasking, task distribution, task injection, and software
updates are required in field experiments for possibly thousands of nodes functioning
in harsh environments.

The development of WSN application software requires the abstraction of computing,
communication, data access, and heterogeneous sensor data sources to reduce the
complexities. Abstractions enable the faster development of new applications with
a better reuse of existing software, as applications are composed of high-level tasks
that use the services provided by the devices to execute the application logic.

The main research question of this thesis is: What abstractions are needed for ap-
plication development for resource constrained WSNs? This thesis models WSN
abstractions with three levels that build on top of each other: 1) node abstraction,
2) network abstraction, and 3) infrastructure abstraction. The node abstraction hides
the details in the use of the sensing, communication, and processing hardware. The
network abstraction specifies methods of discovering and accessing services, and dis-

ii Abstract

tributing processing in the network. The infrastructure abstraction unifies different
sensing technologies and infrastructure computing platforms.

As a contribution, this thesis presents the abstraction model with a review of each
abstraction level. Several designs for each of the levels are tested and verified with
proofs of concept and analyses of field experiments. The resulting designs consist of
an operating system kernel, a software update method, a data unification interface,
and all abstraction levels combining abstraction called an embedded cloud.

The presented operating system kernel has a scalable overhead and provides a pro-
gramming approach similar to a desktop computer operating system with threads and
processes. An over-the-air update method combines low overhead and robust soft-
ware updating with application task dissemination. The data unification interface
homogenizes the access to the data of heterogeneous sensor networks. A unification
model is used for various use cases by mapping everything as measurements. The
embedded cloud allows resource constrained WSNs to share services and data, and
expand resources with other technologies. The embedded cloud allows the distributed
processing of applications according to the available services. The applications are
implemented as processes using a hardware independent description language that
can be executed on resource constrained WSNs. The lessons of practical field experi-
menting are analyzed to study the importance of the abstractions. Software complex-
ities encountered in the field experiments highlight the need for suitable abstractions.

The results of this thesis are tested using proof of concept implementations on real
WSN hardware which is constrained by computing power in the order of a few MIPS,
memory sizes of a few kilobytes, and small sized batteries. The results will remain
usable in the future, as the vast amount, tight integration, and low-cost of future IoT
devices require the combination of complex computation with resource constrained
platforms.

PREFACE

The research work for this thesis was carried out in the Department of Computer
Systems and later in the Department of Pervasive Computing at Tampere University
of Technology during the years 2009 – 2014.

I would like to express my sincere gratitude to my supervisor Adjunct Professor
Marko Hännikäinen for his guidance, support, and motivation during the research.
I am also grateful to Professor Timo D. Hämäläinen, Professor Tommi Mikkonen,
and Professor Mikko Tiusanen for their help in the process. I would like to thank
Professor Evgeny Osipov and Professor Jukka Riekki for reviewing my thesis. Also,
I would like to thank Professor Ismo Hakala and Professor Jukka Riekki for agreeing
to act as opponents in the defense.

Humongous thanks go to the members of the TUTWSN team for their valuable work
that after all made this thesis possible. Special thanks to Dr. Mauri Kuorilehto, D.Sc.,
Dr. Mikko Kohvakka, D.Sc., Dr. Jukka Suhonen, D.Sc., Dr. Ville Kaseva, D.Sc., Mr.
Timo Alho, M.Sc., Mr. Lasse Määttä, M.Sc., Mr. Olli Kivelä, M.Sc., Mr. Juha
Onkila, M.Sc., Mr. Ilkka Kautto, M.Sc., Mr. Markku Hänninen, M.Sc., and the rest
of colleagues in the departments that I have had pleasure to work with.

My thesis was financially supported by HPY Research Foundation, Tekniikan edis-
tämissäätiö, Ulla Tuominen Foundation, and Walter Ahlström Foundation from which
I am truly grateful.

I would like to express special gratitude to my family for their support and encour-
agement: my parents, Tuula and Martti, and my siblings, Tanja and Simo, and their
families.

Also, I would like to thank all those persons, groups, and things that have kept me go-
ing while working on this thesis: my vital friends at #eetr and #evokit IRC channels;
rest of my friends; Sakari Karipuro and rest of #kameramafia; L’Amusette and their
companions; Alex Regan and Klubi; numerous musical acts and bands; several cof-
fee shops; and some other functional interfaces. No animals were harmed in making
of this thesis, regardless of someone asking about feeding the nodes to cows.

iv Preface

Finally, I would like to end this to a very inspirational quote, which describes in an
exquisite way the process of making a doctoral thesis, but also many other aspects of
life:

“WAGRRRRWWGAHHHHWWWRRGGAWWWWWWRR!”

- Chewbacca in Star Wars: The Empire Strikes Back

Tampere, May 12, 2015

Teemu Laukkarinen

TABLE OF CONTENTS

Abstract . i

Preface . iii

Table of Contents . v

List of Publications . ix

List of Abbreviations . xi

1. Introduction . 1

1.1 WSN Design Characteristics . 1

1.2 Research Questions . 3

1.3 Scope and Contribution of Thesis 3

1.4 Methods of Thesis . 6

1.5 Thesis Outline . 6

2. Review on Node and Network Abstractions for WSN Nodes 9

2.1 Abstractions on WSN Nodes . 9

2.2 WSN Node Platforms . 10

2.2.1 Software Execution on MCUs 10

2.2.2 Radio Communication . 13

2.3 Node Abstractions . 13

2.3.1 WSN OS Kernels . 14

2.3.2 WSN Programming Models 16

2.3.3 Over-the-Air-Programming 20

2.4 Network Abstractions . 23

vi Table of Contents

2.4.1 WSN middleware . 23

2.4.2 In-Network Processing . 27

3. Results for Node and Network Abstractions for WSN Nodes 29

3.1 WSN Node Platform Used on the Thesis 29

3.2 HybridKernel . 30

3.2.1 Comparison of Scheduling Methods 30

3.2.2 Proof of Concept Implementation 31

3.2.3 Discussion of the Results 35

3.3 OTAP Method . 35

3.3.1 Proof of Concept Implementation 37

3.3.2 Discussion of the Results 37

4. Review on Infrastructure Abstractions for Heterogeneous Sensor Networks 39

4.1 Infrastructure Abstractions for End User Applications 39

4.2 Common Features of Infrastructure Abstractions 39

4.3 Infrastructure Abstraction Categories 40

4.3.1 Homogenization Interfaces 42

4.3.2 Sensor Webs . 44

4.3.3 Sensor Clouds . 49

4.4 Research Questions in Infrastructure Abstractions 51

5. Results on Infrastructure Abstractions 53

5.1 An Information Model for Unified Measurement and Actuator Access 53

5.2 Embedded Cloud . 55

5.2.1 Embedded Cloud Infrastructure 56

5.2.2 DiMiWa: A Distributed Middleware 57

5.2.3 PDL: Process Description Language 59

5.2.4 Proof of Concept Implementation 60

5.2.5 Comparison and Evaluation 61

5.2.6 Future Work and Discussion 65

Table of Contents vii

6. Analysis of WSN Field Experiments as a Research Method 69

6.1 WSN Field Experiments . 69

6.2 Results of Analyzed Field Experiments 71

7. Summary of Publications . 75

8. Conclusions . 77

Bibliography . 79

Publications . 103

LIST OF PUBLICATIONS

This Thesis consists of an introductory part and the following six publications. In the
introductory part the publications are referred to as [P1], [P2], ..., [P6].

[P1] T. Laukkarinen, V. A. Kaseva, J. Suhonen, T. D. Hämäläinen, and M. Hän-
nikäinen, "HybridKernel: Preemptive Kernel with Event-driven Extension
for Resource Constrained Wireless Sensor Networks", IEEE Workshop on
Signal Processing Systems, October 7–9, 2009, Tampere, Finland. doi:10.110
9/SIPS.2009.5336243

[P2] T. Laukkarinen, L. Määttä, J. Suhonen, T. D. Hämäläinen, and M. Hän-
nikäinen, "Design and Implementation of a Firmware Update Protocol for
Resource Constrained Wireless Sensor Networks". International Journal of
Embedded and Real-Time Communication Systems (IJERTCS), 2(3), pp. 50–
68, 2011. doi:10.4018/978–1–4666–2776–5.ch003

[P3] T. Laukkarinen, J. Suhonen, T. D. Hämäläinen, and M. Hännikäinen, "Pilot
studies of wireless sensor networks: Practical experiences," Conference on
Design and Architectures for Signal and Image Processing (DASIP), pp. 1–8,
November 2–4, 2011, Tampere, Finland. doi:10.1109/DASIP.2011.6136867

[P4] T. Laukkarinen, J. Suhonen, and M. Hännikäinen, “A Survey of Wireless
Sensor Network Abstraction for Application Development,” International
Journal of Distributed Sensor Networks, vol. 2012, Article ID 740268, 12
pages, 2012. doi:10.1155/2012/740268

[P5] J. Suhonen, O. Kivela, T. Laukkarinen, and M. Hännikäinen, "Unified service
access for wireless sensor networks," Third International Workshop on Soft-
ware Engineering for Sensor Network Applications (SESENA), pp. 49–55,
June 2, 2012. doi:10.1109/SESENA.2012.6225735

x List of Publications

[P6] T. Laukkarinen, J. Suhonen, and M. Hännikäinen, “An embedded cloud de-
sign for Internet-of-Things,” International Journal of Distributed Sensor Net-
works, vol. 2013, Article ID 790130, 13 pages, 2013. doi:10.1155/2013/
790130

LIST OF ABBREVIATIONS

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

ACF Authentication and Capability Format

API Application Programming Interface

CoAP Constrained Application Protocol

CPU Central Processing Unit

CSV Comma Separated Values

DiMiWa Distributed Middleware

EEPROM Electronically Erasable Programmable Read-Only Memory

FMI Finnish Meteorological Institute

GPRS General Packet Radio Service

GSN Global Sensor Networks

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation, and Air Conditioning

HW Hardware

IC Integrated Circuit

IETF Internet Engineering Task Force

IPC Inter-Process Communication

IPv6 Internet Protocol version 6

I/O Input/Output

xii List of Abbreviations

IoT Internet-of-Things

ISR Interrupt Service Routine

JSON JavaScript Object Notation

MAC Medium Access Control

MEDF Meta-Data Format

MEMS Micro Electro Mechanical Systems

MCU Micro Controller Unit

NaaS Network as a Service

NASC Node Actuator and Sensor Control

NMF Network Management Format

O&M Observations and Measurements

OGC Open Geospatial Consortium

OS Operating System

OWL Web Ontology Language

OTAP Over The Air Programming

PC Personal Computer

PCB Printed Circuit Board

PDA Personal Digital Assistant

PDL Process Description Language

PID Proportional-Integral-Derivative

PIDP Program Image Distribution Protocol

QoS Quality of Service

RAM Random Access Memory

REST Representational State Transfer

xiii

RF Radio Frequency

RTOS Real-time Operating System

SADF Sensor Archive Data Format

SAS Sensor Alert Service

SaaS Software as a Service

SensorML Sensor Model Language

SES Sensor Event Service

SIDF Sensor Information Data Format

SIR Sensor Instance Registry

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SOS Sensor Observation Service

SPS Sensor Planning Service

SQL Structured Query Language

SOR Sensor Observation Registry

SSN Semantic Sensor Network

SWE Sensor Web Enablement

TDMA Time-Division Multiple Access

TML Transducer Markup Language

TTL Time-To-Live

TUTWSN Tampere University of Technology Wireless Sensor Network

UDP User Datagram Protocol

URI Uniform Resource Identifier

UVPN Ubiquitous Virtual Private Network

xiv List of Abbreviations

VM Virtual Machine

W3C World Wide Web Consortium

WNS Web Notification Service

WOAG WSN OpenAPI Gateway

WSDL Web Services Description Language

WSN Wireless Sensor Network

WWW World Wide Web

XML eXtensible Markup Language

1. INTRODUCTION

Ubiquitous computing is a vision whereby human-computer interaction is obscured,
and an ambient intelligence experience is created for the user [214]. The Internet-of-
Things (IoT) is a key enabling concept, whereby ubiquitous applications are created
with the help of things that communicate and interact in cooperation to execute in-
telligent tasks [18]. The tasks can be anything from simple automated lighting to
interactive social experiences that fuse information from various sources. The term
IoT is ambiguous and lacks a clear textbook definition [18]. In this thesis, IoT is
understood as heterogeneous smart devices that form a communication network to
exchange data peer-to-peer through a common interface and the Internet.

Wireless Sensor Networks (WSNs) are a specific subset of IoT technologies, whereby
spatially distributed sensing devices form a wireless network to deliver measurement
data [4, 117, 221]. WSN devices are programmable small computers running soft-
ware that allows measurement, data collection, data processing, and communication.
WSNs are often bi-directional and can control appliances through actuators. The
sensory data and actuating capability of WSNs plays a key role in creating intelligent
ubiquitous applications. The constant development of small energy-efficient Inte-
grated Circuits (ICs) and communication technologies, and the emergence of small
energy-efficient Micro Electro Mechanical Systems (MEMS) sensors have enabled
these WSNs [4, 38, 117, 221].

1.1 WSN Design Characteristics

The WSN paradigm states that the wireless devices, or nodes, autonomously form a
network, and thus can be easily deployed in the physical world [4, 38, 117]. Figure
1 presents the WSN reference architecture: the nodes measure phenomena, commu-
nicate wirelessly in a multi-hop fashion, and deliver data to the gateways, where the
data can be forwarded to the end users.

Many WSN deployments have a harsh environment that causes a physical burden

2 1. Introduction

Internet

Wireless Sensor Network

A node inspecting a
phenomena with
sensors

Wireless medium and ad hoc
multi-hop communication

Gateway to other
networks and servers

Servers for storing and
refining the data

End user
interfaces

GW

Fig. 1: The WSN reference architecture.

on the nodes [4, 21, 38, 118, 190]. Deployments are located in mines, battlefields,
greenhouses, ships, sewers or factories that have untypical conditions, e.g. extremely
high or low humidity and temperature. The nodes may be exposed to high radiation in
a nuclear disaster area or to extreme vibration when attached to machinery. Snow fall
or falling leaves can change the Radio Frequency (RF) communication environment
drastically. In static environmental conditions, other physical changes are evident:
people and RF absorbing/reflecting objects move and vary in density, doors open
and close, and vandalism is a potential issue. As a result, nodes appear, disappear,
and reappear in WSN deployments and this must be considered in WSN application
development.

The requirements of maintenance-free operation, small physical size, and low manu-
facturing costs are incorporated into WSNs, since networks of hundreds to thousands
of nodes are expected to function for several years [4, 38, 117, 168]. Some visions
suggest that the nodes could be disposable [38]. These requirements have resulted in
resource constrained WSNs.

Resource constrained WSN nodes are constructed from a small Micro Controller
Unit (MCU), a wireless communication device, sensors and actuators, and a limited
energy source [4, 38, 117]. The communication, processing, and sampling must be
optimized to achieve years of maintenance-free operation with batteries or energy
harvesting devices, such as solar panels. The small MCUs have limited memory and
processing resources, which makes development of the embedded WSN software
challenging due to the incorporate complex protocols and distributed functionality.
The research in this thesis concentrates on these resource constrained WSNs.

1.2. Research Questions 3

1.2 Research Questions

This thesis focuses on facilitating application development for resource constrained
WSNs. Software abstractions are the chosen research approach, as these aim to make
application development faster, simpler, less error prone, and less Hardware (HW)
dependent [168]. These benefits are achieved when the abstraction reduces imple-
mentation complexity by hiding details from the application programmer [22, 106,
114, 168]. The abstraction separates applications with an interface, which allows
portability and reuse [114, 152, 153].

For WSN application development, the resource constraints and the expectation of
autonomous ad hoc networking in harsh conditions set up a complex system that re-
quires WSN-specific abstractions [21,118,168]. Similarly, creating such abstractions
is complicated due to the limited resources and distributed functionality.

The main research question of this thesis is: What abstractions are needed for appli-
cation development for resource constrained WSNs. This question divides into more
detailed questions as follows.

• How should one divide the abstractions hierarchically and what are the respon-
sibilities of each level?

• How should one execute application tasks on an Operating System (OS) as
neither the existing pre-emptive kernels nor event-driven kernels alone have
the required characteristics?

• How should one disseminate new software and applications to the distributed
WSN nodes?

• How should one homogenize the sensor data and actuator accessing for hetero-
geneous WSNs?

• How should one unify the functionality of a node, a network and an infrastruc-
ture for distributed processing over heterogeneous WSNs?

1.3 Scope and Contribution of Thesis

The scope and contribution of this thesis are presented in Figure 2. The scope is
in the software abstractions and practical development of resource constrained WSN

4 1. Introduction

Application Development
With WSNs

Node
Abstraction

Network
Abstraction

Infrastructure
Abstraction

•HybridKernel
•OTAP method

Software
Abstractions

Development
in Practice

•Embedded
Cloud

•WSN
OpenAPI

Survey Practical Lessons
of WSN Field
Experiments

Evaluation with
Proofs of
Concept

Scope

Results

Fig. 2: The Scope and the Contribution of this thesis.

applications. The emphasis is on solving open issues set by the resource constraints,
and testing the design feasibility in practice with real WSN HW.

This thesis models WSN application development with three abstraction levels as
depicted in Figure 3: a) node abstraction, b) network abstraction, and c) infrastructure
abstraction. The levels are explained in the following paragraphs.

The node abstraction hides HW specifics from WSN applications with an OS and a
protocol stack. The OS provides an execution environment for the WSN applications.
The protocol stack abstracts communication. WSN applications on the node abstrac-
tion include such tasks as reading a sensor, processing data, and sending data to an
interested party. These tasks require energy-aware functioning to ensure the long life-
time of a battery-powered node. The node abstraction is implemented on the resource
constrained nodes as embedded software. Thus, handling the constrained resources
is the major design issue for the node abstraction designs.

The network abstraction hides the distributed nodes and provides such methods as
service discovery, service access, and distributed processing. For example, a WSN
application on a network abstraction can request an average temperature from a group
of nodes or create an alarm at too high humidity. The network abstractions are imple-
mented as software on the resource constrained nodes. However, parts of the software
can be implemented on resource richer nodes, gateways, or servers. The network
abstraction on the WSN nodes is typically called middleware [37,83,141,151]. Han-
dling the constrained resources of the nodes and the distributed functioning in harsh
environments are the major design issues for the network abstractions.

The infrastructure abstraction hides heterogeneous sensor networks and supporting
technologies behind one unified interface. It is needed because one WSN technology

1.3. Scope and Contribution of Thesis 5

Network Abstraction

WSN node
hardware

OS
Protocol

stack

Infrastructure abstraction

End user
applications Node

applications

Node abstraction

WSN
3

WSN
2

Network abstraction

1 technology
1 node

1 network
1 technology

n nodes

n networks
n technologies

n nodes

Abstracts hardware and
communication:

Task execution and loading,
sensor/actuator access, packet

handling

Example applications:
Measure sensors, send

packets, distributed and load
program code

Abstracts network:
Service access, service
discovery, distributed
processing, share data

Example applications:

Data queries, event
creation, data fusion and
aggregation, positioning,

mobile agents

Abstracts technologies:
Heterogeneous technologies as

unified interface

Example Applications:
Ubiquitous applications,

environment monitoring, working
conditions monitoring, air quality

reports, asset tracking, military
alarming, access control, web user

interfaces

Network
applications

Node Abstraction Infrastructure Abstraction

WSN
1

Fig. 3: The WSN abstraction model of this thesis.

is rarely capable of delivering all of the data that the end user application requires.
For example, delivering multimedia data over a resource constrained WSN is not vi-
able [5]. WSN measurements and actuators may be integrated with other existing
systems, such as Heating, Ventilation, and Air Conditioning (HVAC) and lighting
systems in a building. Hiding the WSN technology specific details makes the end
user application development independent of the WSN technology and ensures porta-
bility. The infrastructure abstractions are implemented on resource rich computing
platforms, such as embedded Personal Computers (PCs), servers, or cloud computing
platforms. Handling the heterogeneous technologies, the vast application space, and
the dynamic WSN services are the major design issues for the infrastructure abstrac-
tions.

The main contribution of this thesis is the abstraction model. In addition, the fol-
lowing contributions are made related to the abstraction model and given research
questions.

6 1. Introduction

• A survey of the software abstractions [P4] characterizes, classifies, and ana-
lyzes the on-going research on infrastructure abstraction.

• An embedded cloud design [P6] binds the three abstractions into one design,
which allows resource, service, and processing distribution between heteroge-
neous sensor networks.

• HybridKernel [P1] allows scalable multitasking on resource constrained nodes.

• An Over The Air Programming (OTAP) method combines efficient firmware
updating [P2] and application dissemination [P6].

• WSN OpenAPI [P5] is an eXtensible Markup Language (XML) specification
for unified access to heterogeneous WSN measurements and actuators.

• Practical lessons of field experimenting are analyzed for WSN application de-
velopment [P3].

1.4 Methods of Thesis

Three methods are used in this thesis: 1) literature survey, 2) proof of concept, and
3) analysis of field experiments. These methods are popular in information systems
research [61].

A literature survey is used in [P4] to characterize the abstractions and to find open
issues in WSN abstractions.

Proof of concept is used in [P1], [P2], [P5], and [P6]. In this thesis, proof of concept
answers the question that "Is it possible to implement the design on resource con-
strained WSN nodes?" through functionality and feasibility metrics such as memory,
energy, and execution overheads.

Field experiments are analyzed in [P2], [P3], and [P5]. A field experiment indi-
cates that the design works in unpredictable environmental conditions and concludes
lessons learned for the WSN abstractions and application development.

1.5 Thesis Outline

This thesis is constructed from an introductory part and six publications [P1 – P6].
The introductory part motivates, summarizes, and concludes the research work pre-

1.5. Thesis Outline 7

sented in this thesis. The publications present the main results of this thesis. The rest
of the introductory part has three distinctive sections, organized as follows.

The first part consists of Chapter 2 and Chapter 3, which cover WSN application de-
velopment with resource constrained WSN nodes. Chapter 2 gives the background
of resource constrained nodes, node abstractions and network abstractions. Chapter
3 summarizes the thesis results for WSN application development in resource con-
strained nodes.

The second part consists of Chapters 4 and 5, which cover infrastructure abstractions
for heterogeneous sensor networks. Chapter 4 presents a review of infrastructure ab-
stractions. Chapter 5 summarizes the research results for infrastructure abstractions.

The third part is Chapter 6, which covers the analysis of lessons from field experi-
ments with WSNs. The related research is given and the thesis results of the field
experimenting summarized.

Chapter 7 summarizes the publications included in this thesis. Finally, Chapter 8
concludes the thesis and presents the discussion and future research work.

8 1. Introduction

2. REVIEW ON NODE AND NETWORK ABSTRACTIONS FOR
WSN NODES

This chapter summarizes knowledge of node and network abstractions for resource
constrained WSN nodes. The related studies [37, 154, 179, 191] discuss WSN OS
kernels designs, middleware, OTAP, and programming models as abstractions for the
WSN applications on the nodes. These topics are mapped to the abstraction model in
Figure 4. The protocol stacks are left out of the review as a separate research field.

2.1 Abstractions on WSN Nodes

Abstractions on the node are required for three reasons: 1) The WSN applications
share the HW components in the node. Implementing an application is faster, if the
HW access is the same for all of the WSN applications. 2) The node HW is het-
erogeneous as different types of nodes have different MCUs, sensors, actuators, and
communication ICs. Without node abstraction, the same WSN application would
have to be implemented multiple times for different HW combinations. 3) The node

Application Development on Nodes

Node Abstraction Network Abstraction

Uses

Provided by

Responsible

Processing and
Communication HW

Abstraction

Operating System

Protocol
Stack

Kernel
Programming

Approach
OTAP

Task
Execution

Main task

Task
Programming

Software and
Task Updating

Networking and
Service Abstraction

Middleware

Service
Discovery

Service
Access

In-network
Processing

Fig. 4: A mapping of the topics covered in this chapter.

10 2. Review on Node and Network Abstractions for WSN Nodes

resources need management to achieve optimum operation and life-time. The ab-
straction should manage resource-sharing between the WSN applications.

The node abstraction consists of embedded software components that run on resource
constrained WSN HW. Figure 5 presents a typical node HW platform and its software
components. An OS kernel abstracts the Central Processing Unit (CPU), sensors,
actuators, and communication HW specifics. A protocol stack hides the communica-
tion, acting as an interface to send and receive data between the nodes. OTAP allows
software updates and application injection. Middleware abstracts the network over
the distributed nodes and allows network-wide applications. These components are
interconnected as one WSN OS that runs the WSN applications in the WSN nodes.

The software components that connect the larger units implement the abstraction as
an interface. Therefore, this thesis concentrates on these interconnecting compo-
nents: the OS kernel, OTAP, and middleware.

2.2 WSN Node Platforms

The WSN node platforms typically consist of an MCU, a radio with an antenna,
a power supply, sensors, actuators, and a Printed Circuit Board (PCB) as depicted
in Figure 5 [108]. The node platforms are restricted in computing, memory, and
energy resources due to the size and expected life-time requirements. Table 1 presents
currently available node platforms grouped by the MCUs used. The node platforms
typically utilize two series connected AA batteries as an energy source. One 1.5 V
AA -battery has a capacity of 1000 to 3000 mAh depending on the current draining
and chemicals used [65]. This thesis uses 20000 J (ca. 2000 mAh at 3 V) as a
reference energy budget.

2.2.1 Software Execution on MCUs

An MCU contains a CPU, program memory, data memory, Electronically Erasable
Programmable Read-Only Memory (EEPROM), timers, and Input/Output (I/O) con-
nections. The CPU executes embedded software from the integrated program mem-
ory. Therefore, MCUs set limitations on the abstraction designs that are implemented
as embedded software on the nodes.

1 The specification gives value of 5mA at 4 MHz. Given value is scaled assuming linear scaling.

2.2. WSN Node Platforms 11

Table 1: Low power MCUs used in the existing resource constrained node platforms. Sleep
currents are the minimum sleep state, where the MCU can wake up to continue
execution without an external wake up signal.

MCU Program Data Active Sleep Platforms
(kB) (kB) µA/MHz µA

Atmel ATmega328P [16] 32 2 300 @ 1.8 V 4.20 Arduino Uno [11]
Atmel ATmega2560 [15] 256 8 500 @ 1.8 V <5.00 Arduino Mega [11]
Atmel ATmega128L [13] 128 4 1250 1 @ 3 V <15.00 MEMSIC MICAz [144]

MICA2 [146]
BTnode ver3 [227]

Atmel ATmega1281 [14] 128 8 500 @ 1.8 V <5.00 Libelium Waspmote [129]
MEMSIC IRIS [143]

Texas Instruments MSP430 [93] 48 10 330 @ 2.2 V 1.1 MEMSIC TelosB [145]
Shimmer [172]

Microchip PIC18LF8722 [148] 128 3.9 380 @ 2.0 V 0.12 TUTWSN [108]

The most commonly used MCUs have remained the same in WSN research during
the last decade. In [190], out off 40 surveyed WSN research deployments, the 8-
bit Atmel ATMega128 series was used in 16 and 16-bit Texas Instruments MSP430
series in 14 deployments. These MCUs have been selected for resource constrained
WSNs due to their low price, low energy consumption, and small size.

WSN platforms with more computing resources exist, such as ARM Cortex-M3
equipped Preon32 [205], XScale 32 bit CPU equipped IMote [94], and an ARM11
equipped general purpose computer Raspberry Pi [171]. However, the energy con-
sumption of these platforms is too high for long-term operation using small batteries.
For example, Preon32 [205] has an active current consumption of 3.7 mA at 8 MHz
and 1.3 mA in sleep mode, compared to the active 1.0 mA at 4 Mhz and 120 nA sleep
current consumption of PIC18LF8722 [148].

The recently emerged ARM Cortex-M0+ MCUs provide 32-bit computing power
with similar specifications to 8-bit MCUs. For example, STMicroelectronics provides
a Cortex-M0+ MCU STM32L062K8 [189] that has 64 KB of program memory, 8
KB of Random Access Memory (RAM), 165 µA at 1 MHz 1.2 V run mode and
655 nA deepest sleep mode current consumption. These MCUs will allow more
computing power on battery-powered WSN nodes, but the memory resources are not
significantly larger.

12 2. Review on Node and Network Abstractions for WSN Nodes

P
ro

to
co

l S
ta

ck

MAC

Routing

Middleware

Transport

N
o

d
e

 A
p

p
lic

at
io

n
s

Se
n

so
rs

 &
 A

ct
u

at
o

rs

O
p

e
ra

ti
n

g
Sy

st
e

m

K
e

rn
e

l

Tasks

Events

IPC

Memory management

ISR

Scheduling

Timers

H
ar

d
w

ar
e

CPU

M
C

U

A/D

I2C

UART

EEPROM

Data
memory

Program
memory

I/O

Timers

Counters

PWM

Interrupts

File system

Pheripheral access

So
ft

w
ar

e

Drivers

Sensors

Actuators

Buttons

LEDs

PCB Antenna

Radio

JTAG

OTAP

Bootloader Synchronization

Measurement

Monitoring

Tracking

Positioning
Encryption

Decryption

WSN Node

Power supply

Diagnostics

Su
p

p
o

rt
in

g
So

ft
w

ar
e

Controlling

QoS

SPI

Debug /
Tracer

Configuration
tools

API

Installation
tools

Watchdogs

Data access Service discovery Data
processing Distribution Event creation

Fig. 5: Typical HW and software components of a WSN node. A TUTWSN node is used as an
example of WSN node platforms.

2.3. Node Abstractions 13

The transistor density advances in IC technology will allow physically even smaller
resource constrained nodes in the future. These nodes can be used in new applica-
tions. Eventually, the nodes will achieve the envisioned dust size [212], and a subset
of the WSN nodes will remain resources constrained, hence, the results of this thesis
will remain topical.

2.2.2 Radio Communication

Active radio communication HW consumes multiple times more energy than active
MCU, as can be seen from the measurements of [P2]. To achieve low energy con-
sumption, the communication HW usage is optimized with a WSN-specific Medium
Access Control (MAC) protocol [2, 3, 49]. For example, communication HW active
time is minimized using a Time-Division Multiple Access (TDMA) MAC protocol
that tightly synchronizes the communication into low duty cycle frames with a short
communication time [108]. The routing is typically a multi-hop mesh that avoids
single points of failure and distributes the packet load over several hops. The nodes
relay data hop-by-hop toward the collection points [190, 192], where each hop adds
a delay to the packet delivery. Therefore, WSN communication set limitations on the
data sending intervals, data packet sizes, and data delivery delays, which all affect
abstraction design on the WSN nodes.

The radios used on the WSN node platforms are presented in Table 2. The throughput
is constrained by low duty cycle communication. If the radio throughput is 250 kbit/s
while the low duty cycle communication uses one 10 ms frame a second between
two nodes, the maximum throughput of that hop is 2.5 kbits/s. This would not be
enough to transfer real-time speech, as it requires a minimum of 4 kbit/s throughput.
Payloads of 10–30 B are typically used in WSN deployments [190].

2.3 Node Abstractions

A WSN OS is an implementation of the node abstraction. An OS consists of a WSN
OS kernel that executes the tasks of a protocol stack, an OTAP, middleware, sup-
porting software, and WSN applications as depicted in Figure 6. The tasks create
the functionality of the WSN and the WSN OS kernel schedules the tasks accord-
ing to its design. The tasks require additional components from the kernel, such as
events, Inter-Process Communication (IPC), synchronization, and memory manage-
ment. The kernel, Interrupt Service Routine (ISR), peripheral drivers, timers, and file

14 2. Review on Node and Network Abstractions for WSN Nodes

Table 2: Radios used in the existing resource constrained nodes. Range is an estimate of the
maximum possible.

Radio Freq. Throughput Range Platforms
(MHz) (kbit/s) (m)

XBee-ZB [50] 2400 250 120 Arduino [11]
Libelium Waspmote [129]

XBee-802.15.4 [50] 2400 250 90 “
XBee-900 [50] 900 156 10000 “
XBee-868 [50] 868 24 10000 “

Nordic nRF24L01 [159] 2400 2000 180 TUTWSN [108]
Arduino [11]

Nordic nRF905 [160] 433 50 500 TUTWSN [108]
Atmel RF230 [17] 2400 50 500 MEMSIC IRIS [143]
Texas Instruments CC2420 [200] 2400 250 50 MEMSIC MICAz [144]

MEMSIC TelosB [145]
Shimmer [172]

Texas Instruments CC1101 [199] 315-915 600 2000 TUTWSN [108]

system [203] are abstracted behind one WSN OS Application Programming Inter-
face (API) [190].

A review of WSN OS kernels, programming models, and OTAP is given in the fol-
lowing sections. The supporting software of WSN OS is left out of this thesis, since
the abstraction methods are traditional interfaces, such as file systems [203], and dy-
namic memory allocation [132].

2.3.1 WSN OS Kernels

Research on WSN OSs has proposed two different approaches for multitasking [48,
51, 190]: cooperative event-driven kernels and pre-emptive multithreading kernels.
The following sections cover and compare these kernels.

A cooperative event-driven kernel executes an event-handler after an associated event
has occurred [48, 58, 115, 139]. Because of the cooperation, event-handlers must
wait until the currently running event-handler willingly yields or ends its execution.
The only exception is the event-handlers executed in interrupt handlers, but they are
limited to a few specific tasks.

Cooperative event-driven kernels are proposed for resource constrained WSNs due to
their small memory footprint. The kernel implementation is small in size, one event-
handler requires only a few bytes of data memory, and switching event-handlers is

2.3. Node Abstractions 15

WSN OS Kernel

Tasks

Protocol
Stack

WSN OTAP Middleware
WSN

Applications
Supporting
Software

Executes

Consists of

WSN OS

WSN
application
tasks are
executed on
the WSN OS

Fig. 6: WSN OS definition as a node abstraction.

fast and has a low overhead operation similar to a function call. As a result, one node
can execute hundreds of event-handlers.

The down side of cooperative event-driven kernels is the challenging task program-
ming approach [59, 115, 190, 191, 213], where event-handlers must either quickly
complete or voluntarily yield the execution to avoid exhausting other event-handlers
from the execution. As a result, combining a high timing accuracy task and a long-
running task is challenging. Furthermore, sporadic event-handlers must wait for the
completion of the currently executing event-handler, which can result in problems in
WSN applications that require a fast reaction to outside events. These complexities
must be taken into account by the application programmer.

Pre-emptive multithreading kernels provide threads for multitasking. The threads
are forcibly removed (pre-empted) by the kernel to give execution time for other
threads [56, 213]. The threads can be programmed without realizing the execution
needs of other threads running in the system. The pre-emptive kernels are proposed
for those WSNs that require high accuracy timing or a fast reaction to events [115].

Thread programming is familiar to developers from desktop computer programming
[59]. As a drawback, each thread requires a stack located in the data memory,
where the context of the execution environment is stored. Context storing and restor-
ing during the pre-emption requires more execution cycles than changing an event-
handler [56, 213]. Also, the pre-emptive kernels have a larger and more complex
implementation compared to event-driven kernels due to the context switching.

16 2. Review on Node and Network Abstractions for WSN Nodes

Related Research on WSN Operating Systems

Related research on WSN OSs is summarized in Table 3. The table includes the WSN
OSs proposed for the resource constrained WSN platforms.

TinyOS [84] and Contiki [58] are event-driven kernels. Contiki provides protothreads
[59] as a solution for complex event-handler programming. Protothreads are ex-
plained in detail in the next section; however, protothreads do not solve the timing
accuracy problem of the event-handler programming. MANTIS OS [24] and Nano-
RK [66] are pre-emptive kernels that suffer from high overheads. LIMOS [223, 226]
is a hybrid that provides pre-emption inside cooperative event-handlers. However,
the pre-empted parts are scheduled cooperatively, thus LIMOS does not solve the
large memory overhead of the pre-emptive kernels.

The remaining related works concentrate on different OS design issues rather than
kernel types. For example, t-kernel [77] concentrates on task execution security
by implementing efficient virtual memory mimicking and RETOS [36] achieves the
same behavior with compile-time modification and run time checking. Task security
ensures that a task does not violate the data of other tasks, but this does not affect the
problems of event-driven or pre-emptive kernels.

Conclusions on WSN OS Kernels

The benefits and drawbacks of both kernel types are summarized in Table 4. Neither
kernel type fulfills the specific needs of WSN application development [190, 213].
The event-driven kernel lacks timing accuracy and imposes a challenging program-
ming approach. The pre-emptive kernel has high overheads that may limit the number
of concurrent tasks, and thus complicate the development.

2.3.2 WSN Programming Models

WSN programming models can be divided into low-level and high-level methods
[154, 168, 176, 191]. The high-level methods create applications over the whole net-
work, for example using Structured Query Language (SQL) middleware presented
in Section 2.4.1. The low-level methods consist of two main approaches: OS API
programming and virtual machine programming.

The WSN OS API is used with a programming language, typically C, to construct

2.3. Node Abstractions 17

Table 3: Related WSN OS proposals.
Operating System Type Design features
TinyOS [84] Event-driven One of the first WSN kernels, open source, ap-

plication development with NesC [72], thread and
code protection extension [9].

MANTIS OS [24] Pre-emptive One of the first pre-emptive kernels.
Contiki [58] Event-driven Dynamic loading, multithreading library, open

source, event-driven programming with pro-
tothreads [59].

SOS [80] Event-driven Dynamic module loading and primitive module
execution safety.

Nano-RK [66] Pre-emptive High timing accuracy and deadline guarantees.
t-kernel [77] Pre-emptive Small overhead virtual memory and memory pro-

tection.
RETOS [36] Pre-emptive Dynamically reconfigurable and user/kernel space

separation with software.
Pixie OS [133] TinyOS extension Resource aware dataflow programming model,

where task reserved tickets follow availability and
reservation of the resources.

LiteOS [33] Pre-emptive UNIX -like file system approach. Each node can
be accessed with terminal connection.

CORMOS [218] Event-driven Communication oriented design.
TMO-NanoQ+ [220] Pre-emptive A time and message triggered pre-emptive task

scheduling. Also, supports cooperative compile-
time serialization scheduling.

SenOS [107] State machine A finite state machine based OS where state ma-
chine applications are described as sequence of ac-
tions.

OSone [167] Event-driven Thin hierarchical distributed OS that abstracts a
distributed WSN to a one processing computer.

LIMOS [223, 226] Hybrid Each cooperative event-handler can execute sev-
eral pre-emptive threads.

FreeRTOS [71] Pre-emptive General purpose open source Real-time Operat-
ing System (RTOS), small memory overhead com-
pared to other general purpose RTOSs.

SensorOS [115] Pre-emptive High timing accuracy.

WSN applications. NesC [72] and protothreads [59] are specially designed program-
ming methods for WSNs.

Protothreads [59] are a state machine abstraction for event-driven kernels that were
first used in Contiki [58]. Protothreads are implemented with C precompiler macros
that provide a pre-emptive thread like API for event-handlers. As protothreads have
a special approach to traditional C programming, Listing 2.1 presents an illustrative
example of timer event usage with protothreads. The actual program code of the
protothread commands PT_<command> is inlined after the precompilation. This

18 2. Review on Node and Network Abstractions for WSN Nodes

Table 4: Comparison of the kernel types.

Kernel Type Benefits Drawbacks

Pre-emptive kernel Guaranteed timing accuracy.
Easy programming model
for combining timing critical
tasks and long running tasks.
Familiar programming model.

High memory overhead when
deployed. Pre-emption exe-
cution overhead increases en-
ergy consumption.

Event-driven kernel Low memory and execution
overhead.

Challenging to combine tim-
ing critical tasks and long run-
ning tasks. Non-familiar pro-
gramming model for applica-
tion developers.

complicates run time debugging, since lines 3, 6, and 9 of Listing 2.1 contain code
that the debugger cannot break to. Protothreads simplify splitting the tasks in the
event-handlers, but they do not solve the high accuracy timing issues.

NesC [72] is an event-handler programming language for TinyOS. The NesC code
is a dialect of C programming language and is compiled into a full C programming
code. Thus, NesC requires the application programmer to adopt a new language. As
a similar illustrative example to that for protothread, Listing 2.2 presents timer event
usage with NesC. Interface declarations are deprecated for the sake of presentation
clarity. The code contains an initialization of the event-handler in lines 2–5, setting
up a timer in lines 7–13, and the actual event-handling code in lines 15–18.

A Virtual Machine (VM) typically runs on top of a small OS kernel and a protocol
stack. VM applications are developed using an HW-independent byte code that sep-
arates the application from the running HW. This increases heterogeneity and porta-
bility, since the same VM byte code runs on different MCUs without any changes.
As a downside, VM approaches have a higher execution and memory overhead than
running native machine code. Also, VMs require handling a new byte code from the
programmer, and may limit the application development, e.g. only allow access to
predefined events.

Maté [124] is a VM for TinyOS that is a stack computer with predefined event trig-
gers, and built-in sampling, sending, and receiving instructions. As a similar illustra-
tive example, Listing 2.3 presents sensor sampling and sending with Maté. Darjeel-
ing [30] is similar to Maté. Impala [131], SensorWare [28], and MagnetOS [20] are
commonly cited VMs in WSN research, but they are too resource-consuming for re-

2.3. Node Abstractions 19

1 s t r u c t e t i m e r t i m e r ;
2 PT_THREAD(example (s t r u c t p t ∗ p t))
3 {
4 PT_BEGIN (p t) ;
5 whi le (1) {
6 e t i m e r _ s e t (& t i m e r , 1000) ;
7 PT_WAIT_UNTIL (pt , PROCESS_EVENT_TIMER) ;
8 / / A p p l i c a t i o n l o g i c .
9 }

10 PT_END(p t) ;
11 }

Listing 2.1: Initiation and handling of a timer event with protothreads in Contiki

1 i m p l e m e n t a t i o n {
2 command r e s u l t _ t S t d C o n t r o l . i n i t () {
3 re turn SUCCESS ;
4 }
5
6 command r e s u l t _ t S t d C o n t r o l . s t a r t () {
7 re turn c a l l Timer . s t a r t (TIMER_REPEAT , 1000) ;
8 }
9

10 command r e s u l t _ t S t d C o n t r o l . s t o p () {
11 re turn c a l l Timer . s t o p () ;
12 }
13
14 e v e n t r e s u l t _ t Timer . f i r e d () {
15 / / A p p l i c a t i o n l o g i c .
16 re turn SUCCESS ;
17 }
18 }

Listing 2.2: Initiation and handling of a timer event with NesC

source constrained WSNs. MagnetOS [20] is a general purpose Java VM distributed
over ad hoc nodes, SensorWare [28] implementation takes 240 KB of program mem-
ory, and Impala [131] is implemented for Personal Digital Assistants (PDAs).

Protothreads and NesC simplify event-handler programming, but they do not solve
the timing and long running task issues. NesC and the VMs require programmers
to adopt a new programming language and programming model for the applications.
Compared with native C, a VM can restrict application development.

20 2. Review on Node and Network Abstractions for WSN Nodes

1 pushc 1 / / S e t p r e d e f i n e d s e n s o r ID parame te r t o t h e s t a c k
2 s e n s e / / Sample t h e s e n s o r u s i n g t h e b u i l t −i n i n s t r u c t i o n
3 pushm / / Push message t o t h e s t a c k
4 add / / Add sampled v a l u e t o t h e message
5 send / / Send t h e message

Listing 2.3: A sensor sampling with Maté.

WSN OTAP

Software Updates

Software
Transfer

Fall-back
Upon Failure

Software
Decoding

Dynamic
Loading

Application
Injection

Provides

Consists of

Application Dissemination

Fig. 7: WSN OTAP definition.

2.3.3 Over-the-Air-Programming

OTAP is a method for fixing software errors, adding new functionality, or adding new
applications to a WSN without physical access to the nodes. WSN OTAP is required,
since the network may consist of thousands of devices, which makes physical pro-
gramming impractical, or the network may be deployed to an environment that is not
accessible [31].

Figure 7 presents the definition for WSN OTAP. A WSN OTAP provides software
updating and application dissemination methods. Software updating consists of trans-
ferring the software, decoding the software on the node, and a fall-back procedure
in a case of failed update. Application dissemination consists of injecting new ap-
plications into the network and dynamically loading the new application in to the
execution. The entire set of software on a node is typically referred to as firmware.

Five OTAP methods can be distinguished: a VM, a loadable library, a firmware dis-
semination, an incremental dissemination, and rateless codes. Table 5 provides the
benefits, drawbacks, and existing proposals for these OTAP methods. The methods
are described in the following paragraphs.

Since VMs separate the executed software from the HW, the VM byte code can be
updated and relocated without any modifications to the actual embedded software.
The new VM byte code is disseminated to the nodes using the protocol stack and the

2.3. Node Abstractions 21

nodes take it to the execution. If the VM byte code runs on top of a kernel and a
protocol stack, the VM method can only fix, update, and add new WSN applications.
The protocol stack or the OS cannot be updated or fixed [179], unless additional
updating methods are implemented. For example, VM* uses incremental updating
for the system software and VM itself [109].

In the loadable library method, the OS dynamically loads parts of the native firmware.
The libraries can be updated by disseminating them separately to the network [54,57,
58, 140]. This method has a high overhead: the loading is a complex operation and
requires additional memory space. The relocation of the new code is execution time-
and energy-consuming. This method only allows updating of the libraries, which
must be preselected. In addition, implementing the dynamic loading may require
specialized development tools, such as scripts to modify the compiled firmware as
location-independent.

In firmware dissemination, a large part or all of the firmware is disseminated to the
network and nodes load the new firmware either onto an external flash memory or di-
rectly to the program memory [88,89,165]. The dissemination can be over the WSN
protocol stack or a specialized dissemination protocol. The firmware dissemination
is the most capable method since it can update and add new features to the entire
firmware. However, heterogeneity support is inefficient. If the HW has a high level
of heterogeneity, the firmware must contain all of the software for each HW config-
uration, or different firmware has to be disseminated to differently configured nodes.
As a result, the dissemination of small fixes or new applications that modify a small
part of the code is a resource-consuming operation.

Incremental dissemination is a compression method for firmware dissemination. Only
a delta file is disseminated, which describes how the existing firmware must be mod-
ified to achieve the new firmware [53, 55, 86, 97, 164]. The delta file contains in-
structions to relocate and delete the existing code, and additions of new parts that
do not exist on the current firmware. Because of the HW-specific implementation,
the compression of incremental updating is better than with traditional compression
algorithms [55, 202].

The incremental update is an efficient method when the modifications are small. As
a down-side, firmware reconstruction can be a time- and energy-consuming task and
requires architecture-specific implementations, since function calls and variable ad-
dresses need to be modified on relocation. Also, if large part of the firmware change,
the benefits compared to firmware dissemination are lost.

22 2. Review on Node and Network Abstractions for WSN Nodes

Table
5:

C
om

parison
ofthe

O
TA

P
m

ethods.

O
TA

P
m

ethod
Purpose

B
enefits

D
raw

backs
E

xisting
proposals

V
M

U
pdate

application
soft-

w
are.

T
he

softw
are

is
indepen-

dentfrom
the

H
W

and
eas-

ily
dissem

inated.

H
igh

overhead.
M

ay
re-

strictupdates
to

application
code

only,e.g
cannotfix

is-
sues

in
the

V
M

itself.

M
até

[124],
V

M
*

[109],
Im

pala
[131],

SensorW
are

[28],and
D

arjeeling
[30]

L
oadable

library
U

pdate
parts

of
the

firm
w

are
and

the
applica-

tion
softw

are.

O
nly

selected
parts

of
the

firm
w

are
needs

to
be

dis-
sem

inated.

H
igh

im
plem

entation
and

execution
overhead.

R
e-

quires
supportfrom

the
im

-
plem

entation
tools.

E
L

O
N

[54],
Flex-

C
up

[140],
C

ontiki
dy-

nam
ic

library
[57,58]

Firm
w

are
dissem

-
ination

U
pdate

the
entire

firm
w

are.
Sm

all
execution

overhead.
L

ow
energy

overhead
ifup-

dates
are

rare.

R
estricted

heterogeneity
support.

C
areful

design
required

to
avoid

netw
ork

fragm
entation

during
the

update.

D
eluge

and
D

eluge2.0
[88,

89],Stream
[165]

Increm
ental

dissem
ination

U
pdate

m
odified

parts
of

the
entire

firm
w

are.
Sm

allupdatesrequire
sm

all
am

ountofdata
transferand

are
done

efficiently.

O
n

large
updates,

effi-
ciency

degrades
due

to
the

parsing
a

new
firm

w
are.

C
om

plex
im

plem
entation.

R
sync

[97],
R

M
T

D
[86],

Z
ephyr

[164],
R

2
[53],

R
3

[55]

R
ateless

codes
Im

prove
efficiency

of
the

dissem
ination

of
the

entire
firm

w
are.

H
igh

im
m

unity
to

packet
loss.

R
educes

packettrans-
m

ission.

Increased
overhead

on
new

softw
are

decoding
from

the
encoded

codes.

R
eX

O
R

[52],
R

atelessD
el-

uge
[79],

Synapse
[178],

Synapse++
[177]

2.4. Network Abstractions 23

The rateless code method encodes the firmware before sending. The code stream
can experience a certain level of packet loss without the need for retransmission: the
receiver can patch missing packets on its own [52, 79, 177, 178]. This reduces the
amount of disseminated data and increases the update success rate in the unreliable
network conditions of WSNs. As with incremental updates, rateless codes have high
execution, program memory, and data memory overheads, due to the required decod-
ing at the receiving node.

In conclusion, none of the presented OTAP methods completely match both require-
ments of software fixes and application dissemination. VMs add overhead and do
not allow software fixes for non-VM code. The same is true of loadable libraries.
Firmware dissemination is inefficient with small updates and application dissemina-
tion. These issues are solved by incremental updating, but it adds overhead and does
not solve heterogeneity issues. Rateless codes only improve dissemination, with a
cost of execution overhead.

2.4 Network Abstractions

With a network abstraction, WSN applications are developed over the distributed
nodes. The network abstraction is implemented using middleware [37, 78, 176, 211].
Middleware hides resource management, network management, and topology from
the WSN application: the WSN application has methods to discover and access the
services of the network without actual understanding how the network is organized.
Services are typically measurements, actuators, and processing. Processing includes
services such as data aggregation, data fusion, and event creation. Security and
Quality of Service (QoS) can be integrated into middleware [78, 151, 211].

2.4.1 WSN middleware

WSN middleware research has been versatile for resource constrained WSN. Four
common methods are found in the related research [37, 78, 83, 116, 141, 151, 154,
176, 179, 191, 211]: a WSN API, WSN as a database, shared memory through a
tuple-space, and mobile agents [176]. The following section presents the methods
targeted to resource constrained WSN nodes. The surveys typically cite Milan [156]
and SensorWare [28], but these were excluded from this thesis since their approach
is not designed for resource constrained WSNs.

WSN APIs have methods to discover services and deliver service data to interested

24 2. Review on Node and Network Abstractions for WSN Nodes

Network Abstraction

WSN Middleware

Service
Discovery

Service
Access

Resource Load
Balancing

In-network
Processing

Distributed
Computing

Provided by

Consists of

Fig. 8: WSN middleware definition.

1 SELECT AVG(t e m p e r a t u r e) , nodeid , FROM s e n s o r s
2 WHERE f l o o r = 1
3 EPOCH DURATION 60 s

Listing 2.4: An example of TinyDB data query for acquiring averaged temperature from
Floor 1.

parties [101, 187]. For service discovery, the network abstraction can advertise the
available services [187] or respond to an injected request with the available ser-
vices [101]. When the service is discovered, a subscription is made at the service
provider, which then delivers the service data. The subscription describes a data de-
livery method that can be at an interval, on change, or a one-time delivery.

WSN as a database uses a query language for data acquisition, aggregation, and
processing. TinyDB [136] and COUGAR [219] are well-known database proposals
that use an SQL-like query language. Listing 2.4 gives an illustrative example of
TinyDB data acquisition for comparison to low-level OS programming in Section
2.3.2. The abstraction is higher, as the executed code on the nodes is not shown to
the application programmer, and the query concentrates purely on data acquisition.
WSN as a database typically allows the aggregation of data and execution of simple
processing. For example, an alarm can be generated when a set limit is exceeded.

TinyDB has a static set of available sensors and processing attributes that the ap-
plication programmer may use. TinySOA [173, 174] uses dynamic services as the
abstraction, where the WSN nodes publish their services when joining the network.

In tuple-spaces, data is shared between a group of nodes through shared memory,
where an application can store and retrieve data as tuples. Tuple space originates from
Linda [73], which is a shared memory proposal for traditional distributed systems. A
tuple is a combination of data points, e.g. (<node ID>; <data type>; <data>).
Figure 9 depicts WSN tuple space middleware in action. A temperature application

2.4. Network Abstractions 25

Temperature
Application

Averaging
Application

1. Node A inserts tuple:
(A; temperature; 23.0)

2. Node B queries
temperature tuples:
(C; temperature; 22.5)
(A; temperature; 23.0) Tuple Space:

(node ID; type; data)

WSN node HW

RTOS
Protocol

stack

Node
abstraction

Tuple Space
Middleware

(C; humidity; 80%)
(C; temperature; 22.5)
(A; temperature; 23.0)

WSN node HW

RTOS
Protocol

stack

Node
abstraction

Tuple Space
Middleware

Fig. 9: A tuple space middleware and its functioning on top of a node abstraction.

on Node A inserts a tuple into the tuple space. Node B queries temperature tuples
from the tuple space for averaging, and receives tuples from Node A and Node C.

TinyLIME [47] and TeenyLIME [45] are tuple space middleware for WSNs. Both are
based on LIME [157] middleware for ad hoc networks, which proposes mobile agents
with a tuple space. TinyLIME uses resource constrained WSN nodes as data sources
in a tuple space for mobile sinks of higher computing power. The sinks contain fixed
agents that implement the application logic. TeenyLIME works completely on WSN
nodes. The node implementations of TinyLIME and TeenyLIME build on top of
TinyOS.

TinyLIME [47] uses fixed agents as an application logic implementer. An agent acti-
vates itself in the execution when the desired condition occurs, e.g. a tuple required
by the agent is received. Mobile agents migrate in the network by cloning them-
selves from node-to-node according to given behavior conditions. They implement
the distributed application behavior in the network by storing their internal state over
migration [211]. Figure 10 presents mobile agent middleware in a WSN, where an
example mobile agent travels according to a temperature limit. For example, such a
mobile agent could map the progression of a forest fire and guide firefighters. Ag-
illa [69] is WSN middleware that uses mobile agents together with a tuple space.

Table 6 presents a summary of WSN middleware and their key features. These WSN
middleware and high-level programing approaches are well covered by the existing
surveys [37, 78, 83, 116, 141, 151, 154, 176, 179, 191, 211].

26 2. Review on Node and Network Abstractions for WSN Nodes

C
o

n
d

itio
n

:
Te

m
p

e
ratu

re

<1
0

0
°

C
o

n
d

itio
n

:
Te

m
p

e
ratu

re

<1
0

0
°

Fre
e

 M
o

b
ile

A

ge
n

t Slo
t

Fre
e

 M
o

b
ile

A

ge
n

t Slo
t

X

Fre
e

 M
o

b
ile

A

ge
n

t Slo
t

Fre
e

 M
o

b
ile

A

ge
n

t Slo
t

C
o

n
d

itio
n

:
Te

m
p

e
ratu

re

<1
0

0
°

Fre
e

 M
o

b
ile

A

ge
n

t Slo
t

Fre
e

 M
o

b
ile

A

ge
n

t Slo
t

110°

90° 95° 93°

1. A mobile agent
injected to the
network

WSN node HW

RTOS
Protocol

stack

Node
abstraction

Mobile Agent
Middleware

WSN node HW

RTOS
Protocol

stack

Node
abstraction

Mobile Agent
Middleware

WSN node HW

RTOS
Protocol

stack

Node
abstraction

Mobile Agent
Middleware

3. Since the rule is not
fulfilled for node X, the
mobile agent does not clone
itself there

2. The mobile agent travels
by cloning hop-by-hop
according to its rules

Fig. 10: A mobile agent middleware and its functioning on top of a node abstraction.

In conclusion, WSN middleware has a high variation between different approaches
and there are no directly comparable qualitative metrics for them. According to
[154, 211], the variety is due to the specific application scenarios to which the mid-
dleware are targeted. Also, lack of collaboration possibilities between different mid-
dleware is seen as a problem. Database, tuple space, and mobile agent middleware
are considered theoretical approaches, as they do not directly fit the real-world ap-
plication requirements of sense-and-react applications [154]. Therefore, they are not
widely adopted in WSN field experiments [190].

The current WSN middleware may hide heterogeneity inside one WSN, but WSN
middleware do not work over different WSNs and other sensing technologies that
WSN application development requires [83, 179, 191, 211]. More sophisticated pro-
cessing is expected in the future, where the processing will take place at the various
levels of the abstractions [37, 83].

2.4. Network Abstractions 27

Table 6: Summary of the WSN middleware for resource constrained WSNs.

Middleware Type Specialty

Mires [187] Interface Publish/subscribe data delivery, ad-
vertised services, and in-network ag-
gregation services.

WSN API [101] Interface Service discovery through injected
requests, and data delivery through
queries.

TinyDB [136] SQL Query A database middleware for TinyOS
that has in-network aggregation and
processing support [135].

Cougar [219] SQL Query One of the first SQL like middleware
for WSNs.

SINA [181] SQL Query Provides integrated scripting lan-
guage for in-network applications.

DSWare [127, 128] SQL Query Adds a confidence function for fused
events. Reduces communication with
in-network processing.

TinySOA [173, 174] Service Query Abstracts node resources as dynamic
services. Provides event and condi-
tion query language to activate the
services.

TinyLIME [47] Shared tuple space Nodes deliver data to the tuple space
of mobile sinks. Fixed agents react to
the available WSN data in the tuple
space, which provides service discov-
ery for the sinks.

TeenyLIME [45] Shared tuple space Creates a shared memory over the
WSN nodes.

Agilla [69] Shared tuple space Mobile agents clone and migrate
from node to node.

2.4.2 In-Network Processing

In-network processing of a WSN network abstraction can improve energy efficiency,
bandwidth usage, and reliability. For example, nodes in a room could deliver temper-
ature packets to one node that calculates an average, drops the rest of the packets, and
only sends the averaged packet forward. This would reduce packets on the routing
path outside the room. In-network processing is presented in this thesis as it works
as one motivation for the embedded cloud.

Krishnamachari et al. [112] used mathematical and simulation analysis on data aggre-

28 2. Review on Node and Network Abstractions for WSN Nodes

gation models. The result proposed 50%-80% energy savings with WSNs. Prakash
et al. [170] used real HW parameters with simulation models and managed to reduce
energy consumption by 74% from 270 mJ to 70 mJ. TinyDB, TAG, and SKETCH
queries with in-network aggregation were tested in [134] by Luo et al. The results
suggest that aggregation can improve energy efficiency and data quality, or reduce
packet loss.

Proportional-Integral-Derivative (PID) controlling and event detection use cases were
simulated in [8] and the proposed in-network processing reduced traffic, delay, and
energy consumption by up to 85% depending on the topology when compared with
processing on external logic. In-network processing increases reliability and respon-
siveness in controlling applications, since the controlling node can make adjustment
decisions without a connection to the external logic.

In-network processing consumes CPU execution time and the packet exchanging can
increase if the processing does not fit the routing topology or the physical distribution
of the nodes [134, 170]. In addition, in-network processing can reduce data quality
or accuracy when reducing number of packets. Thus, using in-network processing
is not always beneficial: a method for balancing overheads and benefits is required.
Such methods are not reported in the related works.

3. RESULTS FOR NODE AND NETWORK ABSTRACTIONS FOR
WSN NODES

This section summarizes the contribution of this thesis to research on node and net-
work abstractions on resource constrained WSN nodes. The contributions are as
follows.

• HybridKernel solves the overhead problem of pre-emptive kernels and chal-
lenging event-handler programming with a scalable hybrid compromise.

• A combination of Program Image Distribution Protocol (PIDP) and Process
Description Language (PDL) form an OTAP method that efficiently updates
all of the software and allows dissemination of applications over heterogeneous
platforms. PIDP is a firmware dissemination method, and PDL is a byte code
VM that uses abstracted services of sensing devices as operation parameters.

• Distributed Middleware (DiMiWa) and PDL provide network abstraction over
heterogeneous WSNs. As they are key components of the embedded cloud,
they are presented in detail with the embedded cloud in Chapter 5.

3.1 WSN Node Platform Used on the Thesis

The proofs of concepts in this thesis are implemented for the Tampere University
of Technology Wireless Sensor Network (TUTWSN) nodes [108]. They consist of
PIC18F8722 MCU [148] with a selection of 2.4 GHz, 833Mhz, and 433 MHZ radio
chips. The TUTWSN nodes are typically powered with two AA batteries. Compared
with other WSN node platforms, the PIC18F8722 MCU has similar performance
metrics to Atmel ATmega128L as shown in Table 1. The TUTWSN nodes compare
to the MEMSIC MICAz [144] and MICA2 [146] node platforms that are frequently
used in WSN research [190].

TUTWSN has low energy and low latency protocol stacks available [104, 108, 192].
Low energy TUTWSN is a multi hop ad hoc mesh WSN that functions for 1–5 years

30 3. Results for Node and Network Abstractions for WSN Nodes

with two AA batteries while delivering measurements from 30 seconds - 5 minutes
intervals. Low latency TUTWSN is a multi hop ad hoc WSN that has a latency under
1 second per hop, mains powered routing nodes, and battery powered mobile nodes.

3.2 HybridKernel

Cooperative event-driven kernels and pre-emptive kernels are not completely satis-
factory for WSN application development. Event-driven kernels have an unfamiliar
programming approach and are not suitable for combining long-running and high
timing accuracy tasks. Pre-emptive kernels have high memory overhead due to the
context stacks required that limit the amount of usable tasks on resource constrained
WSN platforms.

HybridKernel [P1] consists of a pre-emptive base and a cooperative event-driven ex-
tension. HybridKernel ensures high timing accuracy between pre-empted tasks, or
processes. The event-driven extension enables multiple low memory overhead tasks,
or threads, within one pre-emptive process, which ensures scalable overheads. The
threads are programmed using protothreads [59]. The threads have their own event
waiting and yield kernel API functions. The rest of the kernel API is shared between
the base and the extension consisting of events, timers, an IPC method, a mutual ex-
clusion synchronization, and memory management. As a result, high timing accuracy
tasks and long-running tasks can be programmed for HybridKernel as on traditional
OS through one homogenized API.

3.2.1 Comparison of Scheduling Methods

The differences in scheduling between the cooperative event-driven kernel, the pre-
emptive kernel and the hybrid scheduling of HybridKernel are illustrated in Figures
11, 12, and 13. In this scheduling example, the protocol stack is a tightly synchro-
nized periodic task that requires high timing accuracy. The temperature and humidity
tasks are periodic measurement tasks. The motion detection is a measurement task
that reacts to the sporadic events of a motion detection sensor. The new software
decoding task is a long low priority task, such as an incremental updating task. This
example is a typical WSN application scenario: as reported, WSN deployments typ-
ically use 2–5 OS tasks and 2–6 application tasks [190]. The time is compressed in
these figures for the sake of clarity.

On the event-driven kernel in Figure 11, the other tasks need to yield from execution

3.2. HybridKernel 31

Protocol stack

Temperature

Humidity

Motion detect

New software
decoding

An event lauching the
task, e.g. timer

Required idle marging to guarantee CPU to
protocol stack

Task waiting for CPU

Task on CPU

Event dispatched

Event affection area

Fig. 11: The scheduling example for an event-driven cooperative kernel. The tasks are sched-
uled in round robin fashion and the task must yield voluntarily. The tightly synchro-
nized protocol stack requires that other tasks yield within a margin time.

voluntarily within an idle margin time to guarantee CPU for the protocol stack. As
a result, task completion times are delayed, CPU time is wasted during the brick
wall idle margin, and the tasks need to be split by the programmer. The pre-emptive
kernel in Figure 12 can forcibly take the protocol stack in to the execution when the
time is due. As a result, other tasks complete faster, CPU time is not wasted, and the
programmer does not need to split the tasks.

On HybridKernel in Figure 13, the temperature, humidity, and motion detection tasks
are executed as threads in one process. The protocol stack, and the new software
decoding tasks run on two additional processes. Compared with the event-driven
kernel, HybridKernel reduces task completion times and wasted CPU time. Also, the
measurement and new software decoding tasks can be implemented without realizing
the timing requirements of the protocol stack. Compared with the pre-emptive kernel,
HybridKernel requires 3 stacks instead of 5, and 14 context switches instead of 16 in
this example.

3.2.2 Proof of Concept Implementation

The proof of concept of HybridKernel on the TUTWSN platform requires 9083 B
of program memory, 89 B of data memory, achieves 1 µs timing accuracy for the

32 3. Results for Node and Network Abstractions for WSN Nodes

Protocol stack

Temperature

Humidity

Motion detect

New software
decoding

An event lauching the task, e.g. timer

Task waiting for CPU

Task on CPU

Event dispatched

Event affection area

Fig. 12: The scheduling example for a pre-emptive kernel. Margins are not needed since
the kernel pre-empts lower priority threads. The temperature, humidity, and motion
detect application tasks share the same priority.

Protocol stack

Temperature

Humidity

Motion detect

New software
decoding

An event lauching the task, e.g. timer

Task waiting for CPU

Task on CPU

Event dispatched

Event affection area

Fig. 13: The scheduling example for HybridKernel. Margins are not needed since the kernel
pre-empts lower priority threads. The temperature, humidity, and motion detect
application tasks run on the same process, and require yielding voluntarily due to
cooperative event-driven scheduling.

highest priority process, and allows a scalable data memory overhead according to
the application requirements. The process context switch takes 90 µs on average on a
4 MHz PIC18F8722 MCU measured with an oscilloscope. Thread switching takes a
few µs: the accuracy was limited due to the speed of the measurement arrangement.

3.2. HybridKernel 33

Table 7: A comparison of data memory consumption of the WSN OS kernels for five tasks
with three levels of pre-emption. The values with * have been calculated from the
available source code.

OS Kernel A Pre-emptive Pre-emptive Stacks An Event- Event- Total
(B) Task Tasks (B) handler handlers (B)

(B) total (B) (B) total (B)

HybridKernel 89 28 84 384 31 93 566
SensorOS 115 [115] 17 [115] 85 640 - - 840
TinyOS 178 [84] 43* [42] 129 384 46 [84] 138 829
Contiki 230 [58] 8* [40] 24 512 1 15* [41] 45 811
MANTIS 144 [24] 10 [24] 50 640 - - 844

As a comparison, a TinyOS task posting takes 80 clock cycles [125], which would be
10 µs with a 4 MHz clock speed. SensorOS [115] is a pre-emptive kernel that requires
6964 B of program memory on a PIC18F8722. Thus, the event-driven extension of
HybridKernel adds ca. 2 KB of program memory overhead.

Table 7 compares the data memory consumption of HybridKernel to four other WSN
OSs with the use case of Figure 13. The values are taken from the publication or
calculated for a PIC18F8277 MCU from the available source codes. A 128 B stack
is used for each pre-emptive task and three levels of pre-emption are used for Hy-
bridKernel, Contiki, and TinyOS with TOSThreads [9]. Additional data memory
consumption may be realized from events and other dynamic variables that the ker-
nel and applications require to function. For HybridKernel, all necessary events that
the kernel requires are included in the task memory consumption.

HybridKernel saves energy by reducing context switches when compared to pre-
emptive only kernels. The energy consumption Etotal of a kernel can be expressed
as

Etotal = Pata +Psts, (1)

where Pa is the active MCU power consumption, ta is the active MCU time during
the observed time, Ps is the sleep power consumption and ts is the sleep time. The
sum of ta and ts give the observed time tobs = ta + ts which is the time-frame where
the context switch reducing is observed. By eliminating active time ta with the help
of tobs, the energy consumption EPre of a pre-emptive kernel can be presented as

EPre = Pa(tobs− ts)+Psts = Patobs +(Ps−Pa)ts = Patobs +4Pts, (2)

1 Contiki requires one additional stack for the kernel.

34 3. Results for Node and Network Abstractions for WSN Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50 60 70 80 90 100

En
e

rg
y

Sa
vi

n
gs

 (
%

)

MCU Duty Cycle %

Reduce of 15 Context
Switches

Reduce of 5 Context
Switches

Reduce of 2 Context
Switches

Fig. 14: The energy savings of HybridKernel when reducing context switches of a pre-
emptive only kernel. Duty cycle is the active to sleep time relation of the MCU. The
plot is for 1 s observation time using PIC18F8722 context switch time and energy
consumption.

where4P is the difference Ps−Pa in sleep and active power consumption.

The reduction in context switches increases the sleep time. Therefore, the energy
consumption EHybrid of HybridKernel can be calculated by adding the reduced con-
text switches to the sleep time of EPre, which results in

EHybrid = Patobs +4P(ts + tcs4C), (3)

where 4C is the reduction in context switches and tcs is the context switch time.
Compared with a pre-emptive kernel, the energy savings of HybridKernel SE can be
calculated as a percentage:

SE = 1−
EHybrid

EPre
100 = 1− Patobs +4P(ts + tcs4C)

Patobs +4Pts
100. (4)

Figure 14 plots the energy savings of Equation 4. The energy savings depend on
the MCU duty cycle. If a pre-emptive kernel has a low duty cycle (short MCU active
time and long MCU sleep time), the context switch overhead increases, as the context
switches consume more of the active time. Therefore, HybridKernel is suitable for
low duty cycling WSNs, where context switches occur over a short period of active
time.

3.3. OTAP Method 35

In addition to the results of this thesis and [P1], the implementation of a router node of
low latency TUTWSN [104] was ported on HybridKernel in a research project [161].
The router nodes listened continuously for incoming packets. Compared with a non-
interrupting loop kernel, HybridKernel port increased the packet receiving capability
of the router nodes by reducing the packet handling delay. As a result, HybridKernel
port improved low latency operation. In addition, HybridKernel port reduced code
complexity. Respectively, it increased both data and program memory consumption.
The increase in the data memory consumption was 477 B that was 12% of the avail-
able data memory. Energy consumption was not considered, since the low latency
TUTWSN routers are mains powered due to the continuous listening.

3.2.3 Discussion of the Results

The requirement for hybrid design has been discussed in the literature. Strazdins
et al. [190] reasoned that both cooperative and pre-emptive scheduling should be
supported by the WSN OS according to the reported WSN deployments. Watfa and
Moubarak discussed the same requirement in [213]. Both articles were published
after the publication of HybridKernel.

HEROS [132] has a similar hybrid design as HybridKernel, but was published five
years later in 2014. TinyOS and Contiki have external libraries for pre-emptive tasks.
These libraries are not integrated into the kernel design, which requires special API
functions that require attention from the application programmer. LIMOS is a hybrid
kernel, but it conducts pre-emption inside cooperative event-handlers, which does not
reduce overheads or improve timing accuracy between the event-handlers.

3.3 OTAP Method

An OTAP method is needed to fix software errors and add new features to OSs,
protocol stacks, applications, and other WSN software when the WSN is deployed.
VMs and loadable library methods only allow the applications and predefined soft-
ware components to be updated. In addition, both methods add execution overhead.
Firmware dissemination methods are not suitable for small updates and new applica-
tion dissemination, which is solved by incremental dissemination methods. However,
they have complex and device specific implementation, add overhead, and degrade
in efficiency on large updates. Rateless codes can be used to reduce transmitted data,
but they add execution overhead and do not provide any new methods.

36 3. Results for Node and Network Abstractions for WSN Nodes

WSN Node HW

OS
Protocol

stack

Node abstraction

PDL

C B
A

PIDP

DiMiWa

PDL
Applications PDL Process

X

WSN Node HW

Protocol
stack

Node abstraction

PDL

PIDP

DiMiWa

PDL
Applications

PDL
Applications
PDL Process

Y
2. PIDP
updates the
firmware from
A to B

WSN Node HW

PIDP

Node C without a
complete
firmware

3. Node C
clones the
firmware
from
Node B

1. Node A gets
the new
firmware from
the server
through the
gateway

OS

Empty or
corrupted

firmware due to
failed update

Node specific applications are disseminated
separately as PDL processes through the
WSN protocol stack

GW

Fig. 15: The firmware OTAP and the application dissemination method with PIDP and PDL.

The combination of PIDP and PDL forms a robust and energy efficient method for a
WSN OTAP that allows both firmware updates and application dissemination as pre-
sented in Figure 15. PIDP allows the same firmware to be used for the whole WSN.
The newly deployed nodes are automatically programmed with the newest firmware,
which reduces maintenance and tracking of software versions. PDL allows node-
specific applications, which can be dynamically and automatically updated. Both
PIDP and PDL have been implemented for PIC18F8722 MCU and have been shown
to feasible with proofs of concept in [P2] and [P6].

PIDP [P2] is a firmware dissemination method that clones all of the new software
hop-by-hop from node to node. PIDP does not require fail-safe firmware on an
energy-consuming external flash, since it has a robust fall-back method. Since PIDP
is not part of the updated firmware, PIDP can always start a new transfer with a
neighbor through an advertisement channel, if the updated firmware or the transfer
fails. PIDP ensures that the whole network is eventually updated, even if some nodes
are not within the reach of the network when the update starts. Furthermore, a new
node without existing firmware can be deployed to the network and the PIDP will
automatically clone the newest version from one of the neighbors.

Similar to other firmware dissemination protocols, PIDP is not well suited for ap-

3.3. OTAP Method 37

plication dissemination. The application software must be the same for of all the
nodes, which wastes program memory and complicates the network configuration.
Also, a separate configurator program is needed to define which applications can run
on which nodes [P2 - P3]. Using PDL for the applications solves this issue. It is
presented in detail in Chapter 5 and [P6]. PDL describes the application process as
a byte code, and the PDL processes are disseminated using the WSN protocol stack,
similar to the VM updating method. This method allows for unique application pro-
cesses for each node, which can be added, updated, and removed separately of the
WSN firmware updated by PIDP.

3.3.1 Proof of Concept Implementation

PIDP requires 6389 B of program memory and 22 B of data memory when imple-
mented on a PIC18F8722. A receiving node consumes 1469 mJ of energy and 74 s
of MCU time during one update on the TUTWSN WSN node platform at 4 MHz.
A sending node consumes 1550 mJ of energy and 49 s of MCU time. The execu-
tion time difference is due to the verification of the transferred firmware. The energy
consumption difference is due to the different radio listening times. If the advertise-
ments can be done as part of the protocol stack signaling, as in TUTWSN, they do
not increase energy consumption. As a result, one update on PIDP consumes under
0.01% of the available 20000 J energy. The PDL proof of concept implementation is
covered in Chapter 5.

3.3.2 Discussion of the Results

The related OTAP methods are not efficient for both tasks of updating software and
disseminating applications. This thesis shows that software updates can be efficiently
and robustly done with PIDP. It does not require energy consuming external flash,
updates all of the software, and has a robust fall-back method. To allow application
dissemination, a separate abstraction of PDL provides an efficient solution for fre-
quent application changes on heterogeneous nodes, as it works on top of the WSN
stack. In conclusion, PIDP and PDL complete each other. PDL could be replaced
with a VM approach, but PDL has a higher service level abstraction through the em-
bedded cloud, as presented in Chapter 5.

38 3. Results for Node and Network Abstractions for WSN Nodes

4. REVIEW ON INFRASTRUCTURE ABSTRACTIONS FOR
HETEROGENEOUS SENSOR NETWORKS

This chapter reviews infrastructure abstractions for heterogeneous sensor networks.
The amount of existing research on infrastructure abstractions is overwhelming. In-
stead of covering all of the proposals, this review presents the diversity of this re-
search field. As a result, common features are summarized, categorization is pre-
sented, and open questions on infrastructure abstractions are discussed. Publications
that take WSNs design characteristics into account were selected for this review.

4.1 Infrastructure Abstractions for End User Applications

A typical infrastructure abstraction unifies heterogeneous sensing data sources and
separates end user application implementation from the utilized sensing technolo-
gies. In this context, heterogeneity means using several sensing technologies without
compatible low-level communication methods for cooperation. End user applications
typically require data from different sources such as WSNs, wired sensors, databases,
and automation systems, since one WSN is not capable of delivering all of the re-
quired data.

The resource constraints of the WSNs do not directly influence the design of the in-
frastructure abstractions. A server computer or embedded PC is harnessed to execute
the implementation. Therefore, existing Internet technologies, distributed comput-
ing, and databases are used in the designs. However, the infrastructure abstraction
should realize the WSN characteristics to abstract dynamic WSN behavior, and avoid
unnecessary resource consumption.

4.2 Common Features of Infrastructure Abstractions

The common features of infrastructure abstractions are summarized in Table 8. Sim-
ilar work has been proposed in [29,150,222], but they concentrate on a specific field:

40 4. Review on Infrastructure Abstractions for Heterogeneous Sensor Networks

[150] discusses Service-oriented Architecture (SOA) approaches, [222] discusses
Sensor Web approaches, and [29] discusses Open Geospatial Consortium (OGC)
Sensor Web Enablement (SWE). Table 8 presents the requirements from all aspects
of infrastructure abstractions.

The main feature is establishing technology interoperability, which requires three
components. Data access is unified, service discovery is provided, and the knowledge
of the data is unified with an ontology. In addition, meta-data is required to complete
the information and service access. The data source may be selected according to
its accuracy or the sensor data may be illustrated on geographical maps. Finally, the
sensing data is processed to create new refined data for end user applications.

4.3 Infrastructure Abstraction Categories

This thesis presents three categories for infrastructure abstractions: homogenization
interfaces, Sensor Webs, and Sensor Clouds. These categories have vague borders
as most of the reviewed works contain overlapping features [29]. Therefore, all re-
viewed works could be positioned under the homogenization interface category, and
the categories partly built on top of each other. Figure 16 illustrates the relations and
main topics of these three categories.

Homogenization Interfaces

Sensor Webs

Sensor Clouds

Unified Data
Access:

Queries, XML,
Adapters,

Buses, Data
Sharing, Device-

to-Device,

Web
Services:

HTTP, REST,
WSDL

Sensor
Virtualization

Cloud
Computing

Fig. 16: Infrastructure abstraction categories and their relations.

4.3. Infrastructure Abstraction Categories 41

Ta
bl

e
8:

C
om

m
on

fe
at

ur
es

of
in

fr
as

tr
uc

tu
re

ab
st

ra
ct

io
ns

.

Fe
at

ur
e

C
on

te
nt

Pu
rp

os
e

C
ha

lle
ng

es
E

xa
m

pl
e

Pr
op

os
al

s

Te
ch

no
lo

gy
in

te
ro

p-
er

ab
ili

ty
U

ni
fie

d
da

ta
ac

ce
ss

,
se

rv
ic

e
di

sc
ov

er
y,

on
to

lo
gy

H
om

og
en

iz
e

he
te

ro
ge

ne
ou

s
se

ns
or

s
an

d
ac

tu
at

or
s.

In
co

m
pa

tib
le

ac
cu

ra
ci

es
an

d
ac

ce
ss

m
et

ho
ds

Se
ns

or
W

eb
s

as
O

G
C

SW
E

[2
5]

.
V

ir
tu

al
se

ns
or

s
as

in
[7

,1
30

,1
37

].

U
ni

fie
d

da
ta

ac
ce

ss
D

at
a

de
liv

er
y:

co
nt

in
uo

us
st

re
am

of
da

ta
,

hi
st

or
y

qu
er

ie
s,

de
liv

er
y

on
tr

ig
ge

re
d

ev
en

t.

Pr
ov

id
e

un
ifi

ed
ac

ce
ss

to
th

e
se

ns
or

da
ta

an
d

ac
tu

at
or

s
U

ni
fic

at
io

n
re

qu
ir

es
te

ch
no

l-
og

y
sp

ec
ifi

c
ad

ap
te

rs
St

re
am

s:
O

G
C

SW
E

SO
S

[3
2]

.
Q

ue
ri

es
:

G
lo

ba
l

Se
ns

or
N

et
-

w
or

ks
(G

SN
)

[1
].

E
ve

nt
s:

O
G

C
SW

E
SA

S
[1

83
]

Se
rv

ic
e

D
is

co
ve

ry
R

eq
ue

st
se

rv
ic

es
gl

ob
al

ly
,g

e-
og

ra
ph

ic
al

ly
,

or
ac

co
rd

in
g

to
re

qu
ir

em
en

ts
.

R
eg

is
te

r,
pu

b-
lis

h,
an

d
su

bs
cr

ib
e

se
rv

ic
es

.

D
is

co
ve

r
av

ai
la

bl
e

ho
m

og
e-

ni
ze

d
m

ea
su

re
m

en
t,

co
nt

ro
la

nd
pr

oc
es

si
ng

se
rv

ic
es

.

A
pp

ea
ri

ng
an

d
di

sa
pp

ea
ri

ng
de

vi
ce

s
m

ak
e

se
rv

ic
es

dy
-

na
m

ic
an

d
un

pr
ed

ic
ta

bl
e.

Se
ns

or
ca

pa
bi

lit
y

qu
er

ie
si

n
O

G
C

SW
E

SP
S

[1
85

].
Se

rv
ic

e
re

gi
s-

tr
at

io
n

in
Ti

ny
SO

A
[1

9]
.

M
et

a-
da

ta
se

ar
ch

in
g

in
G

SN
[1

].

O
nt

ol
og

y
A

sc
he

m
a

to
pr

es
en

td
at

a
fo

r-
m

at
s

an
d

co
nn

ec
tio

ns
.

D
efi

ne
s

m
ac

hi
ne

re
ad

ab
le

kn
ow

le
dg

e
to

re
pr

es
en

t
th

e
da

ta
w

ith
th

e
sa

m
e

un
its

an
d

m
et

a-
da

ta
.

U
nl

im
ite

d
am

ou
nt

of
m

ea
su

r-
in

g
an

d
co

nt
ro

lli
ng

qu
an

tit
ie

s
th

at
on

to
lo

gy
sh

ou
ld

co
ve

r.

X
M

L
in

O
G

C
SW

E
[2

6,
46

],
L

am
se

s
[9

8]
,

an
d

Se
N

sI
M

[3
5]

.
SS

N
[2

08
]

O
W

L
.S

m
ar

t-
M

3
on

-
to

lo
gy

A
PI

.

M
et

a-
da

ta
A

dd
iti

on
al

in
fo

rm
at

io
n

fo
r

th
e

ap
pl

ic
at

io
n.

E
na

bl
e

se
rv

ic
e

di
sc

ov
er

y
ba

se
d

on
lo

ca
tio

n,
ac

cu
ra

cy
,s

am
pl

in
g

ra
te

et
c.

fe
at

ur
es

.
C

om
pl

e-
m

en
tt

he
m

ea
su

re
m

en
td

at
a

w
ith

m
et

a-
da

ta
.

U
nl

im
ite

d
po

ss
ib

ili
tie

s
fo

r
th

e
re

qu
ir

ed
m

et
a-

da
ta

.
A

pp
lic

a-
tio

n
sp

ec
ifi

c
re

qu
ir

em
en

ts
.

Se
ns

or
M

ap
[1

58
],

SS
N

[2
08

],
O

&
M

[4
6]

,S
en

so
rM

L
[2

6]
.

V
ir-

tu
al

se
ns

or
s

co
nt

ai
n

m
et

a-
da

ta
in

G
SN

[1
].

Pr
oc

es
si

ng
D

at
a

ag
gr

eg
at

io
n,

da
ta

fu
si

on
,

ev
en

t
de

te
ct

io
n,

ev
en

t
cr

e-
at

io
n.

R
efi

ne
an

d
fu

se
m

ea
su

re
m

en
t

da
ta

fo
r

th
e

en
d-

us
er

ap
pl

ic
a-

tio
n.

A
pp

lic
at

io
n

re
qu

ir
em

en
ts

va
ry

,
di

ff
er

en
t

se
ns

or
sa

m
-

pl
in

g
ra

te
s,

di
st

ri
bu

tio
n

of
pr

oc
es

si
ng

is
no

tu
se

d.

C
om

bi
ne

d
pr

oc
es

si
ng

el
em

en
ts

[2
7]

.
V

ir
tu

al
se

ns
or

s
G

SN
[1

].
O

G
C

SW
E

SA
S

pa
tte

rn
m

at
ch

-
in

g
[1

83
],

Se
ns

or
M

L
pr

oc
es

s
ch

ai
ns

[2
6]

42 4. Review on Infrastructure Abstractions for Heterogeneous Sensor Networks

4.3.1 Homogenization Interfaces

A homogenization interface has two basic features: 1) it homogenizes data, and 2) it
homogenizes the device access of heterogeneous sensor networks. All related work in
this chapter implements these two features. Therefore, the following section reviews
and discusses homogenization only interfaces. The homogenization interfaces can be
divided into four subcategories.

1. Data Query Interfaces provide homogenized query access to sensors and their
data. They resemble WSN as database middleware from network abstractions.
These interfaces typically combine XML and SQL for data access and allow
the incorporation of meta-data and processing [1, 98].

2. Adapter and Bus Interfaces connect devices together with one homogeneous
connection. An end user application can utilize the connected devices by join-
ing the same bus using an adapter or an interface provided by the infrastructure
abstraction [35, 102].

3. Device-to-Device Interfaces allow devices from different technologies to di-
rectly communicate through one common connection, such as the Internet
[43, 91, 204]. These interfaces allow the device itself to access the data of
other devices, in addition to serving data requests from end user applications.

4. Data Sharing Points allow devices to publish, subscribe, and query data ar-
bitrarily from a specific communication point [74, 85]. These points resemble
the shared memory proposals for WSN middleware. The data sharing point
defines an interface that the joining devices implement.

Table 9 summarizes the related research on homogenization interfaces. The proposals
are categorized according to the subcategories presented above.

Since Constrained Application Protocol (CoAP) [43, 91] homogenizes only device
access, not the data, it does not fit directly with homogenization interfaces. However,
CoAP is a potential protocol to be the de facto standard for device access in future
infrastructure abstractions, since it is standardized by the Internet Engineering Task
Force (IETF) [180] to provide Hypertext Transfer Protocol (HTTP) access over the
Internet to resource constrained devices.

CoAP has been used in Californium [111] to move application logic from WSN nodes
to the cloud, in Actinium [110] for direct access to WSN nodes from JavaScript, in

4.3. Infrastructure Abstraction Categories 43

T-RES [8] to distribute processing over WSN, and by Leppanen et al. [122, 123] to
distribute mobile agents over heterogeneous IoT devices.

With resource constrained WSNs, CoAP works on top of IPv6 over Low power Wire-
less Personal Area Networks (6LoWPAN) [92]. 6LoWPAN compresses Internet
Protocol version 6 (IPv6) headers so that IPv6 addressing can be used with IEEE
802.15.4 networks [90]. Similarly, CoAP compresses HTTP headers. Together they
compress headers of originally several hundred bytes into a lightweight format of un-
der 100 bytes, which enables HTTP Representational State Transfer (REST) access
to resource constrained WSNs with IPv6 addressing. HTTP REST is explained in
Section 4.3.2.

Homogenization interfaces would benefit from de facto standards for sensor data
access and format. Currently there are several promising specifications from such
organizations as the Semantic Sensor Network (SSN) from [208] the World Wide
Web Consortium (W3C), which is an Web Ontology Language (OWL) [206] data
knowledge homogenization for sensor networks, and CoAP [180] from IETF, which
homogenizes data access.

UVPN, T-RES, Smart-M3, and Gómez-Goiri and López-de-Ipiña proposal allowed
devices to decide when and how to connect to other devices. In the rest of the pre-
sented related works, device-to-device connections are established by the applica-
tions on top of the infrastructure abstraction. If a device cannot connect to other
devices itself, the in-network processing is dependent on the network abstraction and
its transparent use in the infrastructure abstraction, but the transparency breaks the
homogenization. For example, a virtual sensor in GSN [1] can have a TinyDB query
that uses in-network processing, but there is no homogenization between different
technologies. Creating virtual sensors for all possible in-network processing queries
is not feasible, either. As a result, a homogenized processing method is needed that
maps the processing tasks of the infrastructure to the available in-network processing.

Although homogenization interfaces typically have methods for further processing
and refining the data, they do not utilize the processing capabilities of the abstracted
devices. GSN [1], proposal of Bouillet et al. [27], and SeNsIM [35] provided trans-
parency for in-network processing, but did not utilize it on the processing executed
on top of their abstraction. WOAG [102] utilized sensors as data providers only,
although WOAG itself can be distributed between different gateway devices. Cur-
rently, T-RES [8] is the only related work that has realized in-network processing and
device-to-device communication in its infrastructure abstraction.

44 4. Review on Infrastructure Abstractions for Heterogeneous Sensor Networks

Table 9: Summary of the related research on homogenization interfaces.

Related research Description

D
at

a
Q

ue
ry

In
te

rf
ac

es

GSN [1] Describes virtual sensors with XML, which consist of several
input streams. SQL queries are used to discover, get, and pro-
cess the data. The virtual sensors are grouped in containers that
can form a peer-to-peer network over the Internet.

Lamses [98] Adds context-aware processing to an XML and query inter-
face, which extracts events from the sensor data. Queries are
extracted from the XMLs and used to access the homogenized
sensor networks.

A
da

pt
er

an
d

B
us

In
te

rf
ac

es

SeNsIM [35] Unifies data with adapters to an XML query interface. The
querying is provided to all the devices and end-user applica-
tions that join the bus.

WSN OpenAPI Gateway
(WOAG) [102]

WOAG instances form a distributed network, where instances
run on gateway devices of different execution capabilities. The
instances exchange data in the WSN OpenAPI format [P5].

Bouillet et al. [27] Uses processing elements that are described as semantic graphs
constructing from a combination of tuples and ontology. The
processing elements can be connected to refine, and modify the
data streams.

D
ev

ic
e-

to
-D

ev
ic

e
In

te
rf

ac
es Ubiquitous Virtual Pri-

vate Network (UVPN)
[204]

Forms a virtual private network between sensor networks.
Adapters homogenize devices that connect to UVPN end-
points. The endpoints are connected with virtual switches that
forward messages over different protocols.

CoAP [43, 91] A header compression protocol for HTTP REST access to re-
source constrained IoT devices.

T-RES [8] Distributes Python scripts over WSNs with CoAP. Uses in-
network processing on WSNs instead of external logic.

D
at

a
Sh

ar
in

g
Po

in
ts Smart-M3 [85] Allows devices store, retrieve, and modify data from an infor-

mation store through a broker. The data is stored as triples
according to some known ontology. An ontology API provides
methods to discover the format of the stored data.

Gómez-Goiri and López-
de-Ipiña [74]

Uses HTTP REST API to form tuple space for data sharing
between different devices.

4.3.2 Sensor Webs

Sensor Webs homogenize sensor data using Web Services [18, 29] that implement
machine-to-machine services using protocols related to the World Wide Web (WWW)

4.3. Infrastructure Abstraction Categories 45

A Web
Service
provider

A Web
Service
client

A Web Service Broker
or a Discovery Service

Provider: Registers
provided services
described as WSDL

Client: Request for
available services

Broker: Response
WSDL of the providers

Client: Request data according
to WSDL description as SOAP
message

Provider: Respond
with the requested
data as SOAP message

1.
2.

3.

4. 5.

WWW

Fig. 17: A typical process of Web Services with WSDL and SOAP [209].

[209]. Typically, a client connects to server resources via a Uniform Resource Iden-
tifier (URI) using HTTP messages. This approach is called REST architecture if the
server-client communication is stateless [67].

Figure 17 presents a typical Web Service architecture built with Web Services De-
scription Language (WSDL) and Simple Object Access Protocol (SOAP) XML mes-
sages [207, 209, 210]. Web Service interfaces are defined with WSDL XML. WSDL
contains information about how the Web Service is accessed, and how the SOAP
messages are constructed. The client discovers available services from the Web Ser-
vice brokers as WSDL specifications. The client requests data using SOAP messages.
The service provider responds with the requested data as SOAP messages. It should
be noted that WSDL and SOAP are not bound to HTTP or REST architecture.

The term Sensor Web is ambiguous, since not all Sensor Web proposals utilize stan-
dard Web Service technologies. The term SOA is typically used with Sensor Webs as
Web Service is one design pattern of SOA approaches. SOA sensor network abstrac-
tions have been surveyed in [29, 150, 222]. The term Web-of-Things is sometimes
also used for Sensor Webs that use HTTP REST [29]. Due to their similarities, SOA
and Web-of-Things are categorized under Web Services in this thesis.

Table 10 summarizes related research on Sensor Webs. OGC SWE is presented in
detail in the following, since it is one of the most often referred to and studied Sensor
Web proposals [25, 184] and represents a typical Sensor Web proposal.

46 4. Review on Infrastructure Abstractions for Heterogeneous Sensor Networks

Table 10: Summary of the related research on Sensor Webs.

Related research Description

OGC SWE [25, 184] Set of XML specifications for Sensor Web implementations.

Hourglass [182] One of the first SOA proposals for connecting sensor networks
and applications. Abstracts service providers behind XML de-
scribed interconnected circuits that allows intermittent connec-
tions between service producers and consumers.

SenseWeb [76] and Sen-
sorMap [158]

SenseWeb uses adapting gateways to form a unified Web Ser-
vice API. SensorMap has Web Service tools to visualize data
from SenseWeb on georaphical maps.

HYDRA [63, 64, 95] Tunnels SOAP messages through a resource aware middleware
to achieve device-to-device interoperability. It is unclear, if
HYDRA is usable with resource constrained WSNs.

SOCRADES [188] Extends an enterprise Web Service architecture with a service
proxy, which provides IoT devices as virtual devices.

Gomez and Laube [75] Similar to SOCRADES. Provides context aware processing for
business applications.

TinySOA by Aviléss-
López and García-
Macías [19]

Integrates WSN nodes to a Web Service interface with a SOA
middleware and a gateway. The gateway registers WSN node
services to a registry at a server. Not affiliated with the WSN
network abstraction TinySOA [173, 174].

Amudson et al. [10] WSN nodes implement a middleware that executes service
graphs describing application functionality. WSNs are con-
nected through gateways to the Internet as WSDL described
Web Services.

Young-Jun Jeon et al.
[96]

An end-to-end WSN to Web Service architecture that translates
HTTP messages directly to WSNs, and allows access and pro-
cessing data from a web browser.

Leppänen et al. [122,
123]

A CoAP based mobile agent proposal that distributes process-
ing over heterogeneous IoTs. The mobile agents contain task
code, information of the required local and remote resources,
and the state of the agent. The state is stored over migration.
The resources are accessed with Web Services.

OGC SWE currently consists of six XML interface specification for Sensor Webs.
The specifications are Sensor Model Language (SensorML) [26], Observations and
Measurements (O&M) [46], Sensor Alert Service (SAS) [183], Sensor Observation
Service (SOS) [32], Sensor Planning Service (SPS) [185], and Web Notification Ser-

4.3. Infrastructure Abstraction Categories 47

vice (WNS) [186]. Table 11 summarizes these specifications and their dependencies,
and Listing 4.1 gives an example of O&M.

Table 11: Summary of OGC SWE specifications.

Specification Content Dependencies

SensorML
[25, 26, 184]

Describes processes and process chains. Each pro-
cess has inputs, outputs, and parameters. Process
without an input is a data source, e.g. a sensor.
Geolocation and meta-data are included to process
descriptions.

O&M [46] Defines observation data format. Combines meta-
data, result, location, and observation time as pre-
sented in Listing 4.1.

SOS [32, 184] Queries observations with various parameters, e.g.
location.

Observations are deliv-
ered with O&M notation

SPS [184, 185] Configures tasks (e.g. sampling rate of a sensor)
on the available sensors. Discovers sensor capa-
bilities. Controls actuators.

Data access through SOS
or other methods.

SAS [183, 184] Delivers and creates alert notifications. Creation
with pattern matches. Sensors publish alerts to
SAS. Consumers subscribe alerts from SAS.

WNS delivers notifica-
tions to subscribers

WNS [184, 186] Delivers notifications to the subscribers.

The following specifications are related to OGC SWE, but are not part of the OGC
SWE standards. Transducer Markup Language (TML) [82] describes a hardware
model for sensors and actuators. TML was part of the original OGC SWE, but it is
now a retired specification [184]. Sensor Instance Registry (SIR) [100] is a replacing
interface for TML. It handles the meta-data of the sensors. SIR and Sensor Observa-
tion Registry (SOR) [99] provide discovery service for sensors and observations [29].
Sensor Event Service (SES) [62] is a replacement proposal for SAS. SIR and SOR
are planned to be part of the OGC SWE standard. PUCK [162] is an OGC standard
that can be used in conjunction with SWE. PUCK defines a protocol for connecting
RS232 and Ethernet sensors and actuators.

OGC SWE specifications have been studied in the literature, including performance
analysis [194, 198], evaluation of usage with testing scenarios [142, 169], evaluation
with implementation for TinyDB and Mica Motes [39], evaluation with implementa-
tion for mobile sensors [149], and a survey of existing deployments that implement
OGC SWE interfaces [195].

48 4. Review on Infrastructure Abstractions for Heterogeneous Sensor Networks

1 <om : OM_Observation >
2 <gml : d e s c r i p t i o n > O b s e r v a t i o n : Room t e m p e r a t u r e < / gml :

d e s c r i p t i o n >
3 <gml : name> O b s e r v a t i o n < / gml : name>
4 <om : phenomenonTime >
5 <gml : T i m e I n s t a n t
6 gml : i d =" o t 1 ">
7 <gml : t i m e P o s i t i o n >1984−11−08T2 : 1 6 : 0 0 . 0 0 < / gml : t i m e P o s i t i o n >
8 </ gml : T i m e I n s t a n t >
9 </om : phenomenonTime >

10 <om : r e s u l t
11 x s i : t y p e =" gml : MeasureType "
12 uom=" Cel " >23.0 </om : r e s u l t >
13 </om : OM_Observation >

Listing 4.1: A simplified O&M example of temperature measurement. Several required
tags have been deprecated for the clarity of presentation.

OGC SWE is a complete set of specifications for abstracting sensor networks as Web
Services. Many implementations do not include teh entire set or the implementation
is invalid. The core operations of SOS were typically implemented and 29% of the
found instance files were invalid according to [195]. The invalidity can cause inter-
face utilization problems. However, OGC SWE does not require all of the interface
operations to be implemented, only the core operations.

OGC SWE is too complex to be implemented on a resource constrained WSN [130].
It is suitable for resource-rich nodes, gateways, or servers. Also, OGC SWE does
not propose methods for distributing processing to sensor networks, but only utilizes
sensors as data providers.

Sensor Webs integrate sensor networks into Internet applications. However, WSN
nodes are not directly accessible with the HTTP REST architecture of Web Services,
unless CoAP or similar compression protocol is used. As the CoAP builds on top
of 6LoWPAN, CoAP requires IPv6 to become more common before becoming a de
facto access method.

Currently, most of the Sensor Webs do not utilize or implement in-network processing
on WSNs. CoAP allows processing to be extended to WSNs in REST architecture,
as shown by T-RES and Leppänen et al. However, two problems exist. First, Web
Services typically use XML, which contains too much data for transfer over a WSN.
The data must be reformatted and compressed. Second, WSNs require new methods
for transferring processing from the high-level descriptions of the Web Services to

4.3. Infrastructure Abstraction Categories 49

Physical Sensors:
• Register to Sensor Cloud
• Deliver measurements on

demand

User:
• Create/destroy virtual sensors
• Access virtual sensors

Virtual Sensors:
• Abstract, arbitrate,

and provision data of
physical sensors

2) Sensor Cloud with Virtualized Sensors 1) Sensor Cloud with Cloud Computing

Physical Sensors:
• Register to Sensor Cloud
• Deliver measurements

Cloud Computing Plaftorms:
• Server scaling according

to use
• Processing
• Storage pace

User:
• Access unified sensor

data through e.g. Web
Services

Fig. 18: Sensor Cloud approaches.

the WSN nodes.

4.3.3 Sensor Clouds

Sensor Clouds combine the cloud computing paradigm of Infrastructure, Platform, or
Software as a Service with sensor networks [7, 130]. The term Sensor Cloud is used
with two definitions: 1) virtualized server resources of cloud computing platforms
are used with sensor networks; 2) sensors are virtualized in a similar manner as how
server hardware and software are virtualized in Infrastructure or Platform as a Service
cloud computing [7, 130, 137, 224, 225]. These two methods are depicted in Figure
18 and summarized in the following paragraphs.

A cloud computing platform scales the processing, bandwidth, and storage resources
of a server infrastructure according to the demand of the application, with minimum
effort or even automatically [7, 130]. Due to the scalability, the implementation of
infrastructure abstraction can start on a small server with a small cost, and scale up
if the demand for resources increases. This is beneficial when there is no definite
forecast for the amount of end users or connected sensor networks. Sensor Clouds
typically use Web Services [7, 130], as the cloud computing platforms are reached
through the Internet.

The following proposals integrate cloud computing platforms with WSNs. A network
of human health and activity recognition for care services is presented in [105, 120].
It integrates WSNs, context aware cameras, and a cloud computing platform into one
application. IoTCloud middleware provides Web Service for Internet connected IoT

50 4. Review on Infrastructure Abstractions for Heterogeneous Sensor Networks

devices to connect to the cloud [70]. A sensor cloud is presented in [121] that con-
nects sensor networks through Amazon Web Services onto the Amazon EC2 cloud
computing platform.

A cloud computing platform separates physical server HW from virtual HW with
provided virtualization. Users can create hundreds of small servers that can be located
anywhere on a large distributed server farm. A Sensor Cloud with virtualized sensors
uses the same concept. A virtual sensor requested by the user is separated from the
actual physical sensors [224]. The virtual sensor handles the communication and
sensor data acquisition from the physical sensors. Virtual sensors can be further
interconnected to form hierarchical processing. When the data is no longer needed,
the virtual sensor can be destroyed.

The actual sensor data and data access are automatically provisioned in the virtual
sensors [7]. Provisioning means ensuring the reasonable use of the physical sensors.
For example, if two virtual sensors require the same data but with a different sampling
rate, only one best fit sampling rate is selected. Provisioning also ensures that if
two or more sensors are available that produce the required measurement, the sensor
usage is distributed. If one of the sensors fails, its load is balanced to other sensors,
and the failures are hidden from the user.

One of the first sensor virtualizations and automated provisioning system was pre-
sented as an architecture model in [224, 225]. The model abstracts physical sensors
as virtual sensors and virtual sensor groups. The end-users have access to the sensor
data through a web portal. The virtual sensors and groups are provisioned automati-
cally according to the user needs.

WSN-SOrA [12] provides WSN as Network as a Service (NaaS). It is a SOA that
provisions abstracted WSNs to multiple concurrent users. The service provisioning
is done using XML. The prototype is implemented for TelosB resource constrained
WSN platforms.

Publish/subscribe Software as a Service (SaaS) architecture was presented in [81]. It
consists of application specific virtualized services that utilize the connected WSNs
through publish/subscribe brokers. Provisioning and access policy are included in
the design. A similar design was presented in [6] for IoTs. The measurement data is
expressed with SensorML and access to services is authorized using access policies.

Sensor Clouds are either Sensor Webs with scalable cloud computing server or Sensor
Webs extended with virtual sensors for sensor provisioning and accounting. Thus, the
same issues concerning Sensor Webs in Section 4.3.2 concern Sensor Clouds.

4.4. Research Questions in Infrastructure Abstractions 51

The provisioning of physical sensors hides disappearing nodes and allows resource
aware data acquisition without WSN-specific knowledge from the user. This sepa-
rates Sensor Clouds from Sensor Webs. In-network processing should be added to
these virtual sensors to make this approach more efficient for WSNs.

4.4 Research Questions in Infrastructure Abstractions

Seven open research questions for infrastructure abstractions are presented in [P4]
about service discovery, security, privacy, QoS, de facto ontology, accounting, and
performance metrics.

For this thesis, the main research question is that current infrastructure abstractions
neglect the processing capabilities of the sensor devices. Most of the infrastructure
abstractions utilize sensor devices only as data providers [8, 130, 166, 197, 204]. By
allowing device-to-device communication [166,204] and in-network processing [190,
204], the heterogeneous sensor devices can form intelligent ubiquitous applications
in co-operation to overcome resource constraints [37].

Other question for this thesis concern the lack of a de facto ontology for homogeniz-
ing data access. The wide application field results in a situation where the ontology
should cover a wide range of possible measurements and application requirements.
On the other hand, the ontology should contain only a reasonable and manageable
amount of data structures, data units, and meta-data. Smart-M3 uses ontology APIs
to address the different ontologies, but this does not reduce the tailoring effort in the
way that a de facto ontology would reduce it.

As an update to the open questions in [P4], the lack of performance metrics has
been partly addressed in [198] and [194]. The response times of different filtering
methods of OGC SWE SOS were tested in [198]. In [194], sizes and processing
times of OGC SWE were studied as plain XML, compressed XML, and JavaScript
Object Notation (JSON). However, there is no comparability between the results, and
further studies are needed to establish de facto metrics for comparing infrastructure
abstractions.

52 4. Review on Infrastructure Abstractions for Heterogeneous Sensor Networks

5. RESULTS ON INFRASTRUCTURE ABSTRACTIONS

This chapter summaries the results of this thesis for infrastructure abstractions. This
thesis makes three main contributions:

• The survey in [P4], freshened by Chapter 4, reviews, categorizes, and summa-
rizes infrastructure abstractions.

• In publication [P5], a unified information model is presented that unifies data
and data access for the WSN applications.

• An embedded cloud is proposed in [P6] that allows the distribution of pro-
cessing over heterogeneous technologies and extends the resources of resource
constrained WSNs.

5.1 An Information Model for Unified Measurement and Actuator Access

WSN OpenAPI is an infrastructure abstraction that describes data formats and inter-
faces for sensor and actuator network applications [P5]. WSN OpenAPI homogenizes
sensor network data producers through adapters. It consists of six specifications:

1. Authentication and Capability Format (ACF) describes messages for authenti-
cating connections to WSN OpenAPI gateway.

2. Network Management Format (NMF) describes message formats for querying
network status, and configuring network data collection and alerts.

3. Meta-Data Format (MEDF) describes message formats for querying and in-
serting node capabilities and their sensors in SensorML format.

4. Sensor Information Data Format (SIDF) describes the format for measurement
data.

54 5. Results on Infrastructure Abstractions

5. Sensor Archive Data Format (SADF) describes a request-response interface for
accessing archived data.

6. Node Actuator and Sensor Control (NASC) provides an interface for control-
ling actuators and sensors.

The SIDF, SADF, and NASC interfaces follow the hierarchy presented in Figure
19. All of the message formats and interfaces are described using XML and Comma
Separated Values (CSV). The CSV variant was developed as a compressed format
for the resource constrained environments, e.g. sending data over low bandwidth
connections such as WSNs or General Packet Radio Service (GPRS).

WSN OpenAPI is a light-weight measurement and actuator information model, when
compared to OGC SWE and similar proposals that target covering excessive amount
of situations. For example, the entire WSN OpenAPI technical specification is 119
pages [196], where as the original OGC SWE specifications are 1077 pages in total
(including the retired TML) [26, 32, 46, 82, 183–186].

WSN OpenAPI has been used in WOAG to describe data formats and as an access
method [102]. The distributed WOAG instances communicate using WSN OpenAPI
as well.

Since there is no de facto ontology, WSN OpenAPI has been used as an information
model by using its network-node-measurement hierarchy [P4]. In this method, all
data sources are treated as measurement data. Three example use cases are presented
in the following.

1. Integrating social media as part of a ubiquitous sensor network application
has been envisioned [18]. As an example, a Facebook status update can be
considered as a measurement that has a value (the status update), a unit (text or
picture), and a time stamp. Also, a person is a node in a network of friends.

2. The Finnish Meteorological Institute (FMI) provides Hirlam weather forecasts
as part of their open data service [68]. Where as real time weather observations
are measurements, forecasts spread over the following 48 hours and future
forecasts change every hour. Therefore, one set of forecasts is handled as one
measurement of that specific time.

3. Data provided on the Internet may be needed in WSN applications. Similar
to Facebook integration, a website is a network of web pages (nodes) and the
contents of the web page can be measured at a specific time.

5.2. Embedded Cloud 55

Network

Node

Transducer
(sensor/actuator)

Transducer
components

<SIDF version=”1.0” xmlns=”urn:wsn-

openapi:xml:ns:sidf”>

 <Network>

 <Node>

 <Sensor>

 <Measurement>

 <Component></Component>

 </Measurement>

 </Sensor>

 </Node>

 </Network>

</SIDF>

<Network id=”KitchenNetwork1”>

 …

</Network>

<Node id=”Fridge1”>

 …

</Node>

<Sensor id=”DS620”>

 …

</Sensor>

<Measurement

quantity=”Temperature”>

 <Component id=”temperature”

 unit=”Celcius”>6.0</Component>

</Measurement>

SIDF
Message

Fig. 19: The hierarchy of a WSN OpenAPI SIDF message.

5.2 Embedded Cloud

This thesis proposes an embedded cloud as a solution for the lack of in-network
processing in infrastructure abstractions. The embedded cloud binds the node, the
network, and the infrastructure abstractions in to one design that resembles SOA.
The embedded cloud abstracts measuring, actuating, and processing as services. The
embedded cloud shares all of the available services in a domain between the con-
nected device from different technologies. Upon a connection, the device registers
its services to the embedded cloud to share them with the other connected devices.
The domain can be used to restrict visible services according to the physical location

56 5. Results on Infrastructure Abstractions

Embedded Cloud

PDL

DiMiWa

PDL
Process

Embedded Cloud Infrastructure

PDL
Process

PDL
Process

Programming Interface:
Get, Set, Store Data; Process Services

Message Interface:
Get, Set, Store Data; Process Services

Communication Arbitter Interface:
Store data, relay data, register
devices, execute processing,
virtualize hardware

PDL implements application
logic using services provided
by DiMiWa.

DiMiWa homogenizes
communication through
network protocol to
Infrastructure.

Infrastructure controls
connections and services.

PDL
Process

Connected technologies
can:
• Share services,
• distribute processing,
• extend resources to

the embedded cloud

WSN
2

WSN
1

WSN
3

Fig. 20: The design of the embedded cloud.

of the devices.

Since processing of the connected device is available as a service, the embedded
cloud applications can utilize the processing power from any of the connected de-
vices. As the in-network processing of a WSN is one service, the embedded cloud
applications can utilize these in-network processing capabilities. Furthermore, the
embedded cloud provides additional processing power and storage for the connected
devices in a similar way to how the cloud computing platforms provide for tradi-
tional server software. These are the main distinguishing features when compared,
for example, to the TinySOA of Aviléss-López and García-Macías [19].

The embedded cloud consists of three components: an infrastructure, DiMiWa, and
PDL. These components and their relations are depicted in Figure 20 and explained
in the following sections.

5.2.1 Embedded Cloud Infrastructure

The embedded cloud infrastructure works as a communication arbiter, a data storage
service, and a processing service for the connected devices. For example, a resource

5.2. Embedded Cloud 57

constrained WSN node can store an image of a web camera to the embedded cloud
and ask the embedded cloud to process it using a pattern recognition service. Then,
the embedded cloud will deliver only the processing result back to the node. As a re-
sult, the WSN node can access data processing that would be too resource-consuming
or even impossible on a resource constrained WSN.

Using DiMiWa, the devices register themselves to the embedded cloud infrastructure
and available services are exchanged in the registration handshake. When the con-
nected devices access the remote services, the infrastructure arbitrates the required
messages. Upon new device registration, the infrastructure updates the remote ser-
vices on the connected devices.

DiMiWa and PDL implementations are required for a device to connect to the em-
bedded cloud. The infrastructure can implement DiMiWa and PDL through tailored
adapters for technologies that are unable to execute software.

The embedded cloud infrastructure works as an infrastructure abstraction for end
user applications. An end user application can access the data in the embedded cloud
through a database connection. Also, end user applications can inject new PDL pro-
cesses into the embedded cloud to get more refined data, or to execute application
logic in the cloud.

5.2.2 DiMiWa: A Distributed Middleware

DiMiWa implements the service and the communication abstraction in each technol-
ogy. DiMiWa is distributed middleware for two reasons:

1. To connect a device to the embedded cloud, DiMiWa can be implemented on
the device itself, on an intermediate device, or on the embedded cloud infras-
tructure as depicted in Figure 21.

2. DiMiWa can be implemented on top of the node abstraction, on top of the
network abstraction, or can implement the network abstraction in a WSN as
depicted in Figure 21.

DiMiWa describes messages for the access, control, and use of the services in the
embedded cloud. Each service has a domain where it is available, and a class of
SAMPLE, EVENT, or BLOB. BLOB services produce an amount of data which
cannot fit in the minimum data packet size of DiMiWa. The application cannot access

58 5. Results on Infrastructure Abstractions

WSN Node HW 1

RTOS
1

Protocol
stack 1

Node abstraction 1

PDL

DiMiWa

PDL
Applications

PDL
Applications

PDL
Processes

Middleware 1

GW

WSN Node HW 2

RTOS
2

Protocol
stack 2

Node abstraction 2

PDL

DiMiWa

PDL
Applications

PDL
Applications

Web Camera
HW

TCP/IP

PDL

DiMiWa

Web Camera HW
Virtualization on

Infrastructure

PDL

DiMiWa

PDL
Applications

PDL
Applications

Raspberry PI

UDP/IP

USB Camera HW
Virtualization on

Raspberry PI

PDL

DiMiWa

PDL
Applications

GW

UDP/IP

Embedded Cloud Internet connection

2. A web camera
that is not able to
execute software is
connected by
virtualizing the HW
in the infrastructue

3. An USB web
camera is
connected to
intermediate HW
(Raspberry PI)

4. A web
camera that is
able to execute
software

1. A WSN with a
middleware.
DiMiWa provides
possible in-
network
processing as
services.

5. A WSN without
a middleware.
DiMiWa works as
a middleware.

PDL
Processes

PDL
Processes

PDL
Processes

WSN 1

WSN 2

PDL
Processes

Fig. 21: The execution places of DiMiWa. DiMiWa can locate on the device, intermediate
device, or virtualized hardware in the embedded cloud infrastructure.

remote BLOB services directly, but the application can store them to the embedded
cloud and use them as parameters for processing.

DiMiWa has a cache that stores the registered services and their newest data samples
for SAMPLE and EVENT classes. A Time-To-Live (TTL) value is set on each ser-
vice. The TTL is infinite for local and permanent remote services, such as data pro-
cessing and wired sensors. For other remote services, TTL is a descending counter.
If the remote service does not deliver a new data sample before the TTL reaches zero,
the service is removed from the cache and the PDL processes which used the disap-
peared service are halted. This provides a service discovery method in the embedded
cloud.

The requirements of DiMiWa for implementing technology are the ability to execute
software, and communicate with the embedded cloud infrastructure. The communi-
cation requires sending and receiving a message size of 9 B at minimum that consists
of a 1 B packet type identifier, a 4 B service identifier, and a minimum of a 4 B
payload. If the technology cannot execute the software or send and receive mes-
sages, the DiMiWa implementation must be executed on the infrastructure or on the

5.2. Embedded Cloud 59

Table 12: PDL actions, parameters and purpose.
Action Parameters Purpose

STORE SERVICE Stores value of the SERVICE to the
cloud.

GET SERVICE Returns a value of the SERVICE. The
value is stored to the internal ACCU.

SET SERVICE Sets the ACCU to the SERVICE.
SET_ACCU DATA: a new internal value Sets the immediate data to the ACCU.
TRIGGER SERVICE Blocks process until the SERVICE re-

turns a triggered condition.
TIMER DATA: wait time in seconds Blocks process until the amount of

seconds of the given data have passed.
TIMEWINDOW DATA: time window in seconds Restarts the process, if the time win-

dow is not cleared before expiration.
RESTART - Restarts the process.
JUMP DATA: a jump offset Take a jump of the offset length.
CONDITIONAL_JUMP DATA: a jump offset If the next ACTION will rise the

TRUE flag, the process takes the
jump. Offset is added after the con-
ditional evaluation.

PROCESS_SERVICE process SERVICE, source SERVICE Give the source SERVICE as an input
to the process SERVICE

PROCESS_ACCU process SERVICE Give the ACCU as an input to the pro-
cess SERVICE

OPERATION SERVICE, OPERATION Execute “SERVICE OPERATION
ACCU” equation. Set TRUE flag if
needed.

OPERATION_IMMEDIATE SERVICE, OPERATION, DATA Execute “SERVICE OPERATION
DATA” equation. Set TRUE flag if
needed.

INC_ACCU - Increments ACCU with 1.
DEC_ACCU - Decrements ACCU with 1.

intermediate device, as shown in Figure 21.

5.2.3 PDL: Process Description Language

PDL allows device-independent application development on top of DiMiWa. The
desired application functionality is described as a sequence of actions presented in
Table 12. Actions have access to DiMiWa services and to an ACCU service that is
a PDL process-specific intermediate register for arithmetic calculations. In addition
to service access, a PDL process can set timers and triggers, manipulate the exe-
cution with jumps, and manipulate the ACCU. The PDL timers have a one-second
resolution.

Listing 5.1 gives an example of using a pattern recognition service to detect humans
from a picture. Line 2 sets a 30 s sampling frequency. Line 3 stores a picture. Line 4

60 5. Results on Infrastructure Abstractions

1 u i n t 8 _ t p d l _ p r o c e s s [] = {
2 PDL_ACTION_TIMER , 0x00 , 0x1E ,
3 PDL_ACTION_STORE , DIMIWA_SERVICE_CAMERA_BYTES,
4 PDL_ACTION_PROCESS_SERVICE ,

DIMIWA_SERVICE_HUMAN_PATTERN_REGOCNITION_BYTES,
DIMIWA_SERVICE_CAMERA_BYTES,

5 PDL_ACTION_TIMEWINDOW, 0x00 , 0x1E ,
6 PDL_ACTION_TRIGGER ,

DIMIWA_SERVICE_HUMAN_PATTERN_REGOCNITION_BYTES,
7 PDL_ACTION_SET_ACCU , 0x00 , 0 x00 , 0 x00 , 0 x01 ,
8 PDL_ACTION_SET , DIMIWA_SERVICE_ALARMSOUND_ACTUATOR_BYTES,
9 PDL_ACTION_RESTART } ;

Listing 5.1: A PDL process that detects a human from a picture and plays an alarm
sound.

asks the embedded cloud to process it with human pattern recognition. Line 5 sets a
time window for the processing. Line 6 triggers a human detection message, unless
the time window expires before. Lines 7 and 8 set the sound alarm actuator. More
examples are given in [P6].

5.2.4 Proof of Concept Implementation

The proof of concept implementation concentrates on DiMiWa and PDL, as they are
the components that need to operate on the resource constrained WSN nodes. A proof
of concept implementation of the embedded cloud infrastructure was implemented
with the C++ programming language using User Datagram Protocol (UDP) packets.
The implementation of DiMiWa and PDL was made for the TUTWSN platform. In
addition, both were tested on Raspberry Pi devices [171].

The DiMiWa implementation consumes 3222 B of program memory on a PIC18F8722
MCU with a Microchip MCC18 compiler [147]. Each cache entry utilizes 14 B of
data memory, which results to over hundred possible simultaneous services [P6], if
50% of the available data memory is allocated for the cache. The implementation
includes the messaging, local services, and the cache.

The proof of concept implementation of PDL is 354 lines of C code. It requires 1900
B of program memory on a PIC18F8722 when compiled with a Microchip MCC18
compiler [147]. Each PDL process requires 16 B of data memory. All PDL operations
take under 1 ms to execute on a PIC18F8722 with a 4 MHz clock speed, which allows
over 100 PDL processes to be executed, when PDL implementation is executed once

5.2. Embedded Cloud 61

every 100 ms [P6].

The proof of concept prototypes show that DiMiWa and PDL can be implemented
and executed even on resource constrained WSN nodes, as the required memory re-
sources occupy less than 5% of the available program memory. The number of pos-
sible simultaneous services and PDL processes exceeds the currently typical number
of 2–6 application tasks [190]. Therefore, it is possible to implement and use the
embedded cloud on resource constrained WSN nodes.

5.2.5 Comparison and Evaluation

As presented in Chapter 4, few infrastructure abstractions utilize in-network pro-
cessing. Most notably, T-RES [8] and design of Leppänen et al. [122, 123] allow
distributed processing over heterogeneous WSNs.

The Leppänen et al. design uses mobile agents and an REST interface for distribu-
tion. The devices can communicate and share resources through the interface and
migration of the agents. The design has two major differences when compared with
the embedded cloud:

1. The task code in the mobile agents is not homogenized. It can be arbitrary
machine code, VM code, or interpret byte code that can be queried from a code
repository. This requires the implementation of the task code for all possible
technologies that are expected to migrate the mobile agents that use the task.

2. Combining arbitrary resources remotely is not possible with mobile agents, as
they connect directly to the remote resources to get the data for the task code
to process. The PDL process in the embedded cloud can connect any resource
to a remote processing service. In theory, a mobile agent could mimic similar
behavior through its migration. It is unclear from [122, 123] if this is possible.

The evaluation of Leppänen et al. concentrates on the implementation size, delays
and message sizes. The design of Leppänen et al. consumes 28864 B of program
memory and 3850 B of data memory on an 8-bit Atmel ATmega MCUs. These figures
are larger than with the embedded cloud. The embedded cloud uses 1 s granularity
in its functioning, as many low duty cycle WSNs are not able to deliver data with a
lower delay. The total delay depends on the protocol stack utilized. Therefore, the
point-to-point delay is not considered for the embedded cloud. The message sizes of
Leppänen et al. vary between 8 B and 66 B toward the WSN nodes when using a

62 5. Results on Infrastructure Abstractions

1

GW

2 3

4

Actuator

Server

1

GW

2 3

4

Actuator

Server

1

GW

2 3

4

Actuator

Server

1

GW

2 3

4

Actuator

Server

Topology #0 Topology #1 Topology #2 Topology #3

Fig. 22: The topologies used to evaluate T-RES [8] and the embedded cloud.

20 B task code. These are similar figures to the 9 B minimum message size of the
embedded cloud.

T-RES is evaluated using simulations of four different topologies with applications
that control actuators according to sensor values [8]. Figure 22 presents these topolo-
gies. Unfortunately, direct comparison is impossible, since [8] did not provide enough
detail of the T-RES simulations to allow the embedded cloud to be fitted exactly to
the same simulations. However, the same application and topologies can be used to
compare the embedded cloud with the in-network processing to a server only logic
similar to the T-RES evaluation.

The following assumptions were used for the embedded cloud analysis that was cre-
ated using Excel: 1) there is no packet loss, 2) the network is only executing one
PDL process on Node 4 that takes the average of the temperature from all four nodes
including itself and adjusts the actuator accordingly. 3) the temperature is measured
every 5 minutes, 4) each embedded cloud packet is 9 B except the PDL delivery
packet, which is 9 B + PDL Process size of 62 B (such a PDL process is given in
[P6]). Thus, the packet headers of the protocol stack are not calculated, 5) proto-
col stack-related handshaking and communication packets are not considered in this
simulation, 6) at the time of 0, the embedded cloud has generated 340 B of initializa-
tion data traffic (registration, service pushing, and service subscription) whereas the
server-only logic is assumed to generate 0 B.

Figure 23 presents the worst case scenario, where the in-network processing re-
quires packet routing through the gateway and server. The embedded cloud results
in slightly more traffic due to the initial 340 B overhead. The results have a similar
form to T-RES.

Figure 24 presents the best case scenario, where Nodes 1, 2, and 3 can send tempera-
ture packets directly to Node 4. The in-network processing reduces data traffic signif-

5.2. Embedded Cloud 63

0

10

20

30

40

50

60

0 1000 2000 3000

N
et

w
o

rk
 T

ra
ff

ic
 (

K
B

)

Time (minutes)

Server Logic Only Embedded Cloud

Fig. 23: An analysis of the cumulative network traffic with Topology #0 for the heating con-
troller application. This is the worst case scenario for the embedded cloud.

0

10

20

30

40

50

60

0 1000 2000 3000

N
et

w
o

rk
 T

ra
ff

ic
 (

K
B

)

Time (minutes)

Server Logic Only Embedded Cloud

Fig. 24: An analysis of the cumulative network traffic with Topology #3 for the heating con-
troller application. This is the best case scenario for the embedded cloud.

icantly, as expected from the related work on in-network processing [8,112,134,170].

Figure 25 presents network traffic at the 3600 minute mark for all of the topologies.
The results are similar to T-RES and show the benefits of in-network processing when
the topology is suitable. Unlike T-RES, the embedded cloud can execute a PDL

64 5. Results on Infrastructure Abstractions

0

10

20

30

40

50

60

0 1 2 3

N
e

tw
o

rk
 T

ra
ff

ic
 (

K
B

)

Topology #

Server Logic Only Embedded Cloud

Fig. 25: An analysis of the cumulative network traffic with all the topologies at the 3600
minute mark for the heating controller application.

process on the embedded cloud infrastructure to ensure the best performance, if the
topology is not suitable for efficient in-network processing. Furthermore, the T-RES
implementation is heavier due to the python interpreter, which consumes 8 KB of
data memory and 45 KB of program memory.

The energy consumption of the presented topologies and network traffic depends on
the HW, WSN software and network protocols used. The overhead of running PDL
processes is the main factor in the energy consumption in the embedded cloud. The
actions of PDL processes are executed every 100 ms [P6]. All PDL actions take less
than 1 ms on a PIC18F8722, which consumes 1 mA with 2.0 V supply voltage at a 4
MHz clock speed. Thus, one action of a PDL process takes the maximum of 0.76 µJ
of energy. This results in ca. 630 J of energy consumed in a year, which is 3.15% of
the 20000 J energy budget.

In practice, PDL processes wait for a timer, a trigger, or a get action most of the
time. These actions take less than 200 µs of execution time [P6]. Thus, the best case
energy consumption of one PDL process would be 126 J per year, which is 0.63%
of the 20000 J energy budget. Figure 26 presents the energy consumption of 1 to
50 PDL processes in a year in the worst and best case. The PDL execution can be
configured to execute PDL processes with round robin scheduling. Then, each 100
ms iteration executes only one PDL process action. This would limit the energy
consumption of PDL execution to between 126 J to 630 J a year, with the drawback
of a slower reaction to events.

5.2. Embedded Cloud 65

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40 50

C
o

n
su

m
e

d
 E

n
e

rg
y

(J
)

Amount of PDL Processes

Best Case Worst Case

Fig. 26: The energy consumption of PDL processes in a year for Microchip PIC18F8722.

5.2.6 Future Work and Discussion

The presented embedded cloud solves distribution and shared service access between
heterogeneous sensor networks. There are still four major open tasks for future work:

1. The design would benefit from an intelligent PDL process broker that decides
where the execution of the PDL process is most efficient. This would require
meta-data that models the execution and communication parameters of the de-
vices and technologies.

2. The broker could automatically split PDL processes into subprocesses, if the
subprocess could improve efficiency in the case that the technology is not ca-
pable of executing the entire PDL process. Currently, the PDL processes are
executed where the required services are available.

3. An intelligent DiMiWa service broker could further enhance the efficiency by
pushing only the required remote services to the devices. Currently, all services
in the same domain are pushed to the devices.

4. Currently, the embedded cloud tracks an IP address and an ID for each device.
The IDs need to be adapted when the technology is connected to the embedded
cloud. This adapting could be avoided if the devices had a uniform address-
ing method, such as IPv6 addressing through 6LoWPAN. In addition, using
CoAP would further reduce the tailoring by uniforming the message headers
that encapsulate the embedded cloud messages.

66 5. Results on Infrastructure Abstractions

Table 13 summarizes the research on the embedded cloud. Although the embedded
cloud has future work to be done, it already allows heterogeneous devices from re-
source constrained WSNs to high computing power servers to share data, processing,
and resources, which is not presented in the related works. PDL processes provide
a homogeneous method for utilizing the abstracted services in the embedded cloud,
which makes it possible to use in-network processing. As the foremost contribution,
the embedded cloud shows that the processing and execution capabilities of resource
constrained WSNs can be efficiently harnessed with an infrastructure abstraction.

5.2. Embedded Cloud 67

Ta
bl

e
13

:B
en

efi
ts

,d
ra

w
ba

ck
s,

an
d

fu
tu

re
w

or
k

of
th

e
em

be
dd

ed
cl

ou
d.

Fe
at

ur
e

B
en

efi
ts

D
ra

w
ba

ck
s

Fu
tu

re
w

or
k

PD
L

L
ow

ov
er

he
ad

s
w

ith
dy

-
na

m
ic

lo
ad

in
g.

Se
ns

e
an

d
re

ac
t

ap
pr

oa
ch

.
H

ar
dw

ar
e

in
de

pe
nd

en
t.

N
ot

su
ita

bl
e

fo
r

lo
w

de
la

y
ap

pl
ic

at
io

ns
.

O
nl

y
32

bi
t

in
te

ge
rm

an
ip

ul
at

io
n.

C
re

at
e

pr
oc

es
s

ge
ne

ra
tio

n
fr

om
gr

ap
hi

ca
l

da
ta

flo
w

an
d

au
to

m
at

io
n

to
ol

s.

D
iM

iW
a

Se
rv

ic
e

ab
st

ra
ct

io
n.

Sm
al

l
pa

ck
et

ov
er

he
ad

.
A

llo
w

s
ut

ili
za

tio
n

of
ex

is
tin

g
in

-
ne

tw
or

k
pr

oc
es

si
ng

as
a

se
rv

ic
e.

Se
rv

ic
es

ne
ed

a
pr

ed
et

er
-

m
in

ed
ID

an
d

ho
m

og
en

iz
ed

da
ta

va
lu

es
.

C
re

at
e

an
in

te
lli

ge
nt

se
r-

vi
ce

br
ok

er
.

D
is

tr
ib

ut
ed

pr
o-

ce
ss

in
g

A
pp

lic
at

io
n

lo
gi

c
ca

n
be

ex
ec

ut
ed

w
he

re
be

st
su

ite
d.

R
ed

uc
es

da
ta

tr
af

fic
.

A
dd

s
an

ex
ec

ut
io

n
ov

er
-

he
ad

.
C

re
at

e
an

in
te

lli
ge

nt
PD

L
pr

oc
es

s
an

d
D

iM
iW

a
se

r-
vi

ce
br

ok
er

fo
r

au
to

m
at

ed
di

st
ri

bu
tio

n.
R

es
ou

rc
e

sh
ar

in
g

A
llo

w
re

so
ur

ce
co

ns
tr

ai
ne

d
W

SN
s

to
ex

ec
ut

e
ap

pl
ic

a-
tio

ns
th

at
ar

e
no

to
th

er
w

is
e

po
ss

ib
le

.

In
cr

ea
se

in
ov

er
he

ad
s

w
he

n
di

st
ri

bu
tin

g
da

ta
.

In
cr

ea
se

in
te

lli
ge

nc
e

w
ith

a
PD

L
pr

oc
es

s
an

d
D

iM
iW

a
se

rv
ic

e
br

ok
er

.

E
m

be
dd

ed
cl

ou
d

A
n

in
fr

as
tr

uc
tu

re
ab

st
ra

c-
tio

n
th

at
al

lo
w

s
re

so
ur

ce
sh

ar
in

g
an

d
di

st
ri

bu
te

d
pr

o-
ce

ss
in

g
ev

en
on

re
so

ur
ce

co
ns

tr
ai

ne
d

W
SN

s.

R
eq

ui
re

s
ad

ap
ta

tio
n

fr
om

th
e

te
ch

no
lo

gy
.

D
om

ai
n

an
d

ad
dr

es
si

ng
ar

e
no

t
au

-
to

m
at

ed
.

C
re

at
e

in
te

lli
ge

nt
br

ok
er

s
fo

r
ad

dr
es

si
ng

,
se

rv
ic

es
,

an
d

PD
L

pr
oc

es
se

s.
D

is
-

tr
ib

ut
e

th
e

em
be

dd
ed

cl
ou

d
in

fr
as

tr
uc

tu
re

.

68 5. Results on Infrastructure Abstractions

6. ANALYSIS OF WSN FIELD EXPERIMENTS AS A RESEARCH
METHOD

This chapter analyzes the lessons of the WSN field experimenting for WSN appli-
cation development. First, the related WSN field experiments are studied. Second,
the contribution of this thesis to the lessons is presented. Finally, the lessons are
compared with the abstraction results of this thesis.

6.1 WSN Field Experiments

Field experiments study WSNs in real and often harsh environments. They are uti-
lized to study environmental effects on the functioning of HW, protocol, and appli-
cation implementations.

Field experiment studies have been reported for varying use cases: industrial mon-
itoring [113], habitat monitoring [138, 193], smart office space [119], macro cli-
mate monitoring [201], environment monitoring [44], hospital personnel and asset
tracking [103], structural monitoring [163], and volcano activity monitoring [215], to
present a few examples.

The related work states that field experimenting with a WSN can reveal unforeseen
problems [21,44,87,118,168] and require costly iterations to designs and implemen-
tations. By analyzing the experiments for lessons, problems in future WSN develop-
ment can be avoided.

Most of the field experiment publications give experiences of the suitability of WSN
for the particular application use case. Four related publications analyze experiments
to conclude lessons that are summarized in Table 14.

In [118], a monitoring application for a potato field was implemented. The imple-
mentation consisted of Atmel ATMega 128L based nodes with modified TinyOS,
T-MAC, MintRoute, Deluge, a gateway, and the required application software. The
deployment encountered several problems, such as hardware failures, casing prob-
lems, software errors, and overlooked software testing. Five lessons were listed

70 6. Analysis of WSN Field Experiments as a Research Method

from the experiences. Four of the lessons pointed out the complex software and dis-
tributed functioning, which make testing problematic when combined with resource
constraints and limited connectivity. The fifth discussed assuming the worst for soft-
ware development and environmental conditions.

Seven different deployments were presented in [21]. The deployments used TI MSP-
430 based nodes with TinyOS, SensorScope communication stack, and application
software. The lessons consist of software complexities, embedded software test-
ing, remote controlling, remote monitoring, scientific publishing, research partner-
ing, simulating, node casings, and data utilization to name a few. The major lessons
were on using an incremental iterative development process, avoiding unnecessary
complexities, and avoiding assumptions about data correctness and environmental
conditions.

Corke et al. [44] presented nine field experiments with iterative WSN development
of Atmel ATMega 128 based nodes. The lessons covered software complexities,
difficult testing and debugging of remote deployments, enclosing problems, unex-
pected maintenance tasks, and unexpected environmental problems. In their iterative
process, they found that each different environment set its own challenges: the RF re-
ception changes when sugar canes grow, leaves may drop on solar panels, and water
reflects RF differently than the ground. Following the software complexity lessons,
they designed a tailored WSN OS during the iterations that had a more convenient
programming approach for developers than TinyOS. Furthermore, the debugging and
remote tools were improved to increase the productivity of the development. The
lessons concluded with a description of end-to-end WSN that was thoroughly tested
and where the application development was moved away from node-level program-
ming with a remote procedure call system.

Hu et al. [87] covered a sugar cane field experiment by Corke et al. [44] in detail.
They highlighted problems with software complexities, backbone network connec-
tions, unexpected environmental issues, and a requirement for watchdogs in remote
experiments.

The reported deployment problems have been used as reasoning for in-deployment
testbeds [23], since laboratory test benches, such as Motelab [216] and TOSSIM
[126], are not sufficient to expose the problems that real harsh working environments
can cause. In-deployment testing and debugging methods were proposed in [34, 60,
175, 217]. These methods allow debugging of the distributed WSN during or after
deployment. The debug information is either delivered to the developer in real-time
or logged on the nodes for later examination. However, these proposals do not remove

6.2. Results of Analyzed Field Experiments 71

Table 14: The lessons described by the related research. X denotes that the publication dis-
cusses the lesson.

Lesson [118] [21] [44] [87]

Challenges of testing the distributed software X X X X
Complex software on resource constrained nodes X X X X
Inadequate node enclosures for harsh environment X X X -
Watchdogs required on nodes and on servers - X X X
Deployment monitoring, controlling and tracing
required

X X X -

Non-existing or unreliable backbone network con-
nections

- X - X

Tailored installation and deployment tools re-
quired

- X X -

Expertise of partners and application field experts
required

- X X -

or solve the software complexities, which abstractions ought to solve.

6.2 Results of Analyzed Field Experiments

Publications [P2], [P3], and [P5] used WSN field experimenting as a research method.

• Analysis of 11 field experiments were presented in [P3]. Table 15 summarizes
these experiments.

• PIDP was tested with a campus-wide TUTWSN deployment that consisted of
178 nodes in [P2].

• The greenhouse monitoring deployment was a use case for evaluating WSN
OpenAPI in [P5].

This thesis presents six lessons from the WSN field experiments that were con-
ducted with 1206 deployed resource constrained WSN nodes [P3]. Table 16 summa-
rizes these lessons, which resulted in the end-to-end WSN architecture of TUTWSN.
These lessons contribute to and reinforce the reviewed lessons of the related research.

The reviewed and contributed lessons provide reasons for the research on the WSN
abstractions. Software complexities were mentioned in all of the related lessons.
Removing software complexities is the main feature of the abstractions. Also, the

72 6. Analysis of WSN Field Experiments as a Research Method

Table 15: Summary of the field experiments studied in this thesis [P3]. LL TUTWSN stands
for the low latency version of TUTWSN.

Pilot Study Nodes Duration Technology

Sewer water level monitoring 25 2009-2011 TUTWSN 433 MHz
Chemical factory monitoring 62 2009 (a year) TUTWSN 2.4 GHz
Green house temperature and hu-
midity leveling

30 2009 (a month) TUTWSN 2.4 GHz

Campus network for teaching 340 2008- TUTWSN 2.4 GHz
Home monitoring in several homes 180 2007-2011 TUTWSN 2.4 GHz
Transportation cargo monitoring 10 2009 (a year) TUTWSN 2.4 GHz
Building monitoring 377 2008-2010 TUTWSN 2.4 GHz
Environment monitoring 60 2005-2011 TUTWSN 433 MHz
Environment monitoring, ground
frost and snow depth

30 2007 (a year) TUTWSN 433 MHz

Cattle living conditions in barn 30 2009-2011 TUTWSN 2.4 GHz
Hospital personnel safety 62 2009- LL TUTWSN 2.4 GHz

Total: 1206

field experiments give the practical problems that the abstraction designs need to
realize.

The problems of complex software development with WSN nodes show that the node
and network abstractions used have not been sufficient. For example, Deluge failed
in [118] as it used the underlying network protocol stack to function. As the stack
had unforeseen problems when deployed, the nodes required reprogramming through
physical access. Also, the number of nodes required automation in the configuration
and software programming.

The field experiments show the importance of not assuming the existence of data
sources in the design of the infrastructure abstraction. All of the WSN field exper-
iments encountered disappearing devices, or disappearing services, due to the dy-
namic and unpredictable environment.

Thoroughly tested end-to-end architecture and automated tools ensure the success
of research [44]. The end-to-end architecture of Corke et al. [44] contained all of
the abstraction levels presented in this thesis and used high-level description of the
applications. This suggests that for WSN application development, satisfactory ab-
stractions should realize all of the abstraction levels and be thoroughly tested, and the
application development should take place at as a high level as possible.

The results of this thesis address the presented issues as follows. The OTAP method
works autonomously and contains a fallback method that works separately to the pro-
tocol stack. The embedded cloud provides an end-to-end architecture that reduces

6.2. Results of Analyzed Field Experiments 73

Table 16: Summary of the lessons [P3].

Challenge Lessons learned

Deployments follow the same pro-
cess, even if the application is differ-
ent.

A systematic process should be used for all deploy-
ments. It should cover preparations, required network
size, expected lifetime, and required practicalities.

Distributed and resource constrained
nodes do not have existing debugging
facilities.

Tailored testing tools should be implemented for the
traceability of errors in compile- and run-time even in
remote locations.

New deployment specific sensors and
actuators require an iteration of tests.

As deployment preparations, a testing checklist should
be used to ensure functioning of the previously tested
components. Energy consumption should be checked
after any modifications.

The data must be usable for the end-
user.

Data must be interpret correctly and made available to
the end-user, e.g. through several interfaces for integra-
tion. The network might be installed by the end-user,
and a tailored installation tools may be required.

Deployment of thousands of nodes
require tailored maintenance actions,
since nodes eventually fill require re-
placing.

Maintenance tools are required. A bookkeeping with
automated configuration of the nodes is required. An
autonomous OTAP ensures that nodes get automati-
cally newest software when deployed.

Deploying multiple field experiments
require repetitive work.

A ready and thoroughly tested end-to-end architecture
ensures minimal tailoring.

tailoring, works on all abstraction levels, and raises the abstraction of the application
development with the PDL processes. In conclusion, the lessons of the field exper-
iments show the importance of realizing the design characteristics of WSNs at all
abstraction levels.

74 6. Analysis of WSN Field Experiments as a Research Method

7. SUMMARY OF PUBLICATIONS

This chapter summaries the publications included in this thesis. None of the publica-
tions have been used previously as part of any other doctoral thesis. The contribution
of the author of this thesis is described for each publication. The publications were
written and published between 2009 and 2013.

Publication [P1] presents an operating system kernel, HybridKernel, for resource
constrained WSN nodes. HybridKernel uses a pre-emptive kernel with an event-
driven protothread extension to achieve small memory overhead and high real-time
guarantees.

The author designed and implemented the HybridKernel and was the main author of
the publication.

Publication [P2] presents a lightweight OTAP method, PIDP, for resource constrained
WSN nodes. PIDP does not need a temporary storage memory and has a fall-back
method for unsuccessful transmission. The protocol implementation was tested with
25 and 178 node networks and the power consumption was analyzed.

The author extended the original conference publication [155], added the design of
the application dissemination and the operating system support, further analyzed the
power consumption of the protocol, and presented the comparison to other proposals.

Publication [P3] presents several practical pilot studies in WSN application develop-
ment. The lessons of the studies are presented and several methods are described for
conducting WSN application pilots successfully.

The author was part of the research group that executed the pilot studies and designed
and implemented the presented solutions and tools. The author was the main author
of the publication.

Publication [P4] presents the abstraction levels of the WSN application development
and surveys infrastructure abstractions. The publication gathers several open ques-
tions and presents design directions that could solve some of the proposed problems.

The survey was conducted by the author.

76 7. Summary of Publications

Publication [P5] presents a unified service access for WSNs called WSN OpenAPI. It
is a set of XML specifications and interfaces that homogenize real-time and archived
access to measurements and actuators, and allow alert generation. WSN OpenAPI is
evaluated with implementation, tests, and use cases of heterogeneous technologies.

The author was part of the research group that designed the WSN Open API. The au-
thor gave ideas to the publication, revised the publication, and wrote the greenhouse
monitoring use case.

Publication [P6] defines an embedded cloud for IoTs and presents an embedded cloud
design. The embedded cloud shares and expand the resources of IoT devices, dis-
tributes processing, and provides an unified access for end-user applications. The
design is confirmed with a prototype implementation that works even with resource
constrained WSN nodes.

The embedded cloud design and the implementation were conducted by the author,
and the author was the main author of the paper.

8. CONCLUSIONS

Constructing ubiquitous applications requires a combination of heterogeneous sensor
technologies. Resource constrained WSNs are a key technology for such applica-
tions, which have the requirements of low cost, small size, distributed networking,
and an autonomous, long life-time operation. WSNs need application development
methods that realize these requirements efficiently. The main research challenge is
to create abstractions that allow easier, error-free, portable, and faster application
development with resource constrained WSNs.

This thesis answered the main research question, "What abstractions are needed for
the application development for the resource constrained WSNs?" with an abstrac-
tion model. The model consists of three levels: the node, the network, and the infras-
tructure abstractions. The node abstractions have methods to execute tasks, update
software, interact with HW, and communicate on the resource constrained node. The
network abstractions have methods for data acquisition, service discovery, and dis-
tributed processing over the nodes in one WSN. The infrastructure abstractions ho-
mogenize several heterogeneous sensing technologies behind one unified interface.

The abstraction model answered the main research question and the derived question,
"How to divide the abstractions hierarchically and what are the responsibilities of
each level?". The remainder of the derived research questions were answered and
verified with proofs of concept as follows.

• To execute application tasks efficiently, an OS kernel is needed that combines
pre-emptive scheduling with low overhead tasks for easy multitasking without
excessive resource consumption. The presented HybridKernel combined a pre-
emptive kernel and a cooperative event-driven kernel in to the same design. Hy-
bridKernel allowed scalable memory and execution overheads for pre-emptive
processes that ensure the scheduling of high priority tasks. The cooperative
threads allowed the several application tasks and typical programming style of
a desktop OS.

78 8. Conclusions

• To disseminate new software and applications, an OTAP method is needed
that allows all of the parts of the software to be updated without the risk of
permanent failure, but also allows efficient updating of the applications. The
combination of PIDP and PDL was presented. PIDP allowed software fixes
to the whole firmware with a reliable fall-back method. PDL allowed small
overhead and node specific application dissemination on the WNS nodes.

• To homogenize the data and actuator accessing, a unification interface is needed
that covers a wide range of data sources and actuators. The WSN OpenAPI
unified sensor and actuator access and its network-node-measurement hierar-
chy was used as an information model in use cases for arbitrary data sources.

• To unify the functionality of a node, a network and an infrastructure for dis-
tributed processing, distributed middleware should abstract the data sources,
actuators, and processing capabilities of heterogeneous sensing technologies
to unified services on each level. In the presented embedded cloud, DiMiWa
abstracted these capabilities as services and PDL allowed distributed process-
ing by using the services in its processing. As a result, the embedded cloud
extended the resources of the WSN nodes.

As future work, the components in the embedded cloud should be further advanced
to realize its full potential: 1) an intelligent PDL broker is needed to arbitrate PDL
processes over the connected devices, 2) PDL should cover a larger range of values
efficiently, 3) the infrastructure in the embedded cloud should be distributed to avoid
single points of failure. In conclusion, more research focus is needed on distributing
processing over heterogeneous WSNs, as ambient intelligence requires data sharing,
distributed processing, and collaborative decision making to work autonomously and
reliably.

The results of this thesis have facilitated WSN application development at all abstrac-
tion levels and the lessons of the field experiments provided insight into abstraction
and application development with WSNs. The proofs of concept were implemented
on a resource constrained WSN node to verify their feasibility. The results will re-
main topical and valid in the future. Although the constant development of ICs will
increase the resources of the current sized nodes, the same advances will produce
smaller nodes that will remain resource constrained.

BIBLIOGRAPHY

[1] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for data processing
in large-scale interconnected sensor networks,” in Mobile Data Management,
2007 International Conference on, may 2007, pp. 198 –205.

[2] A. Ahmed, H. Shi, and Y. Shang, “A survey on network protocols for wireless
sensor networks,” in Information Technology: Research and Education, 2003.
Proceedings. ITRE2003. International Conference on, Aug 2003, pp. 301–
305.

[3] K. Akkaya and M. Younis, “A survey on routing pro-
tocols for wireless sensor networks,” Ad Hoc Networks,
vol. 3, no. 3, pp. 325 – 349, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870503000738

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks,
vol. 38, no. 4, pp. 393 – 422, 2002. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6VRG-44W46D4-
1/2/f18cba34a1b0407e24e97fa7918cdfdc

[5] I. Akyildiz, T. Melodia, and K. Chowdury, “Wireless multimedia sensor net-
works: A survey,” Wireless Communications, IEEE, vol. 14, no. 6, pp. 32–39,
2007.

[6] S. Alam, M. Chowdhury, and J. Noll, “Senaas: An event-driven sensor vir-
tualization approach for internet of things cloud,” in Networked Embedded
Systems for Enterprise Applications (NESEA), 2010 IEEE International Con-
ference on, nov. 2010, pp. 1 –6.

[7] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A. Alelaiwi, and M. A.
Hossain, “A Survey on Sensor-Cloud: Architecture, Applications, and Ap-
proaches,” International Journal of Distributed Sensor Networks, vol. 2013,
no. Article ID 917923, p. 18, 2013.

80 Bibliography

[8] D. Alessandrelli, M. Petracca, and P. Pagano, “T-res: enabling reconfigurable
in-network processing in iot-based wsns,” in International Conference on Dis-
tributed Computing in Sensor Systems, DCOSS 2013. International Workshop
on Internet of ThingsŮIdeas and Perspectives (IoTIP-13), 2013, pp. 337–345.

[9] T. Alliance, “Tinyos 2.1 adding threads and memory protection to tinyos,” in
SenSys ’08: Proceedings of the 6th ACM conference on Embedded network
sensor systems. New York, NY, USA: ACM, 2008, pp. 413–414.

[10] I. Amundson, M. Kushwaha, X. Koutsoukos, S. Neema, and J. Sztipanovits,
“Efficient integration of web services in ambient-aware sensor network ap-
plications,” in Broadband Communications, Networks and Systems, 2006.
BROADNETS 2006. 3rd International Conference on, 2006, pp. 1–8.

[11] “Arduino product documentation,” Available: http://arduino.cc, Arduino, vis-
ited: May 07, 2012.

[12] M. Aslam, S. Rea, and D. Pesch, “Service provisioning for the wsn cloud,”
in Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on,
june 2012, pp. 962 –969.

[13] Atmel, “Atmega128l data sheet,” [ONLINE]
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf, 2010.

[14] ——, “Atmega1281 product page,” [ONLINE]
http://www.atmel.com/devices/atmega1281.aspx, 2014.

[15] ——, “Atmega2560 product page,” [ONLINE]
http://www.atmel.com/devices/atmega2560.aspx, 2014.

[16] ——, “Atmega328p product page,” [ONLINE]
http://www.atmel.com/devices/atmega328p.aspx, 2014.

[17] ——, “Atmel at86rf230 datasheet,” [ONLINE]
http://www.atmel.com/Images/doc5131.pdf, 2014.

[18] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Com-
puter Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610001568

[19] E. Avilés-López and J. A. García-Macías, “Tinysoa: a service-oriented
architecture for wireless sensor networks,” Service Oriented Computing

Bibliography 81

and Applications, vol. 3, no. 2, pp. 99–108, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11761-009-0043-x

[20] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou, and
E. G. Sirer, “On the need for system-level support for ad hoc and sensor
networks,” SIGOPS Oper. Syst. Rev., vol. 36, no. 2, pp. 1–5, Apr. 2002.
[Online]. Available: http://doi.acm.org/10.1145/509526.509528

[21] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The hitchhiker’s
guide to successful wireless sensor network deployments,” in SenSys ’08: Pro-
ceedings of the 6th ACM conference on Embedded network sensor systems.
New York, NY, USA: ACM, 2008, pp. 43–56.

[22] V. Berzins, M. Gray, and D. Naumann, “Abstraction-based software
development,” Commun. ACM, vol. 29, no. 5, pp. 402–415, May 1986.
[Online]. Available: http://doi.acm.org/10.1145/5689.5691

[23] J. Beutel, M. Dyer, R. Lim, C. Plessl, M. Wohrle, M. Yucel, and L. Thiele,
“Automated wireless sensor network testing,” in Networked Sensing Systems,
2007. INSS ’07. Fourth International Conference on, June 2007, pp. 303–303.

[24] S. Bhatti, J. Carlson, H. Dai, and et al., “Mantis os: An embedded multi-
threaded operating system for wireless micro sensor platforms,” Mobile Net-
works and Applications, vol. 10, no. 4, pp. 563–579, Aug. 2005.

[25] M. Botts, G. Percivall, C. Reed, and J. Davidson, “Ogc R© sensor
web enablement: Overview and high level architecture,” in GeoSensor
Networks, ser. Lecture Notes in Computer Science, S. Nittel, A. Labrinidis,
and A. Stefanidis, Eds. Springer Berlin / Heidelberg, 2008, vol.
4540, pp. 175–190, 10.1007/978-3-540-79996-2_10. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-79996-2_10

[26] M. Botts and A. Robin, “Ogc R© sensor model language (sensorml) implemen-
tation specification, version 1.0.0,” OpenGIS R© Implementation Specification.
Open Geospatial Consortium. OGC R© 07-000, 2007.

[27] E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan, A. Riabov, and F. Ye,
“A semantics-based middleware for utilizing heterogeneous sensor networks,”
Distributed Computing in Sensor Systems, pp. 174–188, 2007.

[28] A. Boulis, C.-C. Han, R. Shea, and M. B. Srivastava, “Sensor-
ware: Programming sensor networks beyond code update and query-
ing,” Pervasive and Mobile Computing, vol. 3, no. 4, pp. 386 –

82 Bibliography

412, 2007, middleware for Pervasive Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1574119207000314

[29] A. Bröring, J. Echterhoff, S. Jirka, I. Simonis, T. Everding, C. Stasch, S. Liang,
and R. Lemmens, “New generation sensor web enablement,” Sensors, vol. 11,
no. 3, pp. 2652–2699, 2011.

[30] N. Brouwers, K. Langendoen, and P. Corke, “Darjeeling, a feature-
rich vm for the resource poor,” in Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems, ser. SenSys ’09.
New York, NY, USA: ACM, 2009, pp. 169–182. [Online]. Available:
http://doi.acm.org/10.1145/1644038.1644056

[31] S. Brown and C. J. Sreenan, “Software updating in wireless sensor networks:
A survey and lacunae,” Journal of Sensor and Actuator Networks, vol. 2, no. 4,
pp. 717–760, 2013.

[32] A. Bröring, C. Stasch, and J. Echterhoff, “Ogc R© sensor observation service
interface standard, version 2.0,” OpenGIS R© Implementation Standard. Open
Geospatial Consortium. OGC 12-006, 2012.

[33] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The LiteOS operating system:
Towards Unix-like abstractions for wireless sensor networks,” in Proceedings
of the 7th international conference on Information processing in sensor net-
works. IEEE Computer Society Washington, DC, USA, 2008, pp. 233–244.

[34] T. Cao, Q.and Abdelzaher, J. Stankovic, K. Whitehouse, and L. Luo,
“Declarative tracepoints: a programmable and application independent
debugging system for wireless sensor networks,” in Proceedings of the
6th ACM conference on Embedded network sensor systems, ser. SenSys
’08. New York, NY, USA: ACM, 2008, pp. 85–98. [Online]. Available:
http://doi.acm.org/10.1145/1460412.1460422

[35] V. Casola, A. Gaglione, and A. Mazzeo, “A Reference Architecture for Sensor
Networks Integration and Management,” GeoSensor Networks, pp. 158–168,
2009.

[36] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon, “Retos: Re-
silient, expandable, and threaded operating system for wireless sensor net-
works,” in Information Processing in Sensor Networks, 2007. IPSN 2007. 6th
International Symposium on, April 2007, pp. 148–157.

Bibliography 83

[37] I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas, “50 ways to build your ap-
plication: A survey of middleware and systems for wireless sensor networks,”
in Emerging Technologies and Factory Automation, 2007. ETFA. IEEE Con-
ference on, Sept 2007, pp. 466–473.

[38] C.-Y. Chong and S. Kumar, “Sensor networks: evolution, opportunities, and
challenges,” Proceedings of the IEEE, vol. 91, no. 8, pp. 1247–1256, Aug
2003.

[39] X. Chu, Kobialka, B. Durnota, and R. Buyya, “Open sensor web architec-
ture: Core services,” in Intelligent Sensing and Information Processing, 2006.
ICISIP 2006. Fourth International Conference on, 2006, pp. 98–103.

[40] C. code repository, “File: contiki-2.x/core/sys/mt.h, revision 1.6,” [ONLINE]
http ://contiki.cvs.sourceforge.net/, Apr. 2009.

[41] ——, “File: contiki-2.x/core/sys/process.h, revision 1.16,” [ONLINE] http ://-
contiki.cvs.sourceforge.net/, Apr. 2009.

[42] T. code repository, “File: tinyos-2.x/tos/lib/tosthreads/types/thread.h, revision
1.1,” [ONLINE] http ://tinyos.cvs.sourceforge.net/, Apr. 2009.

[43] W. Colitti, K. Steenhaut, and N. De Caro, “Integrating wireless sensor net-
works with the web,” Extending the Internet to Low powerand Lossy Networks
(IP+ SN 2011), 2011.

[44] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore, “Environ-
mental wireless sensor networks,” Proceedings of the IEEE, vol. 98, no. 11,
pp. 1903 –1917, nov. 2010.

[45] P. Costa, L. Mottola, A. Murphy, and G. Picco, “Programming wireless sensor
networks with the teenylime middleware,” in Middleware 2007, ser. Lecture
Notes in Computer Science, R. Cerqueira and R. Campbell, Eds. Springer
Berlin Heidelberg, 2007, vol. 4834, pp. 429–449. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-76778-7_22

[46] S. Cox, “Observations and measurements - xml implementation, version 2.0,”
OpenGIS R© Implementation standard. Open Geospatial Consortium. OGC 10-
025r1, 2011.

[47] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy, and G. Picco,
“Tinylime: bridging mobile and sensor networks through middleware,” in Per-

84 Bibliography

vasive Computing and Communications, 2005. PerCom 2005. Third IEEE In-
ternational Conference on, 2005, pp. 61 – 72.

[48] R. Dasgupta, “Anatomy of rtos and analyze the best-fit for small, medium and
large footprint embedded devices in wireless sensor network,” Sensor Tech-
nologies and Applications, 2008. SENSORCOMM ’08. Second International
Conference on, pp. 598–603, Aug. 2008.

[49] I. Demirkol, C. Ersoy, and F. Alagoz, “Mac protocols for wireless sensor net-
works: a survey,” Communications Magazine, IEEE, vol. 44, no. 4, pp. 115–
121, April 2006.

[50] Digi International Inc., “Xbee wireless rf modules,” Available:
http://www.digi.com/xbee/, 2014.

[51] W. Dong, C. Chen, X. Liu, and J. Bu., “Providing os support for wireless
sensor networks: Challenges and approaches,” IEEE Communications Surveys
and Tutorials, vol. 12, no. 4, 2010.

[52] W. Dong, C. Chen, X. Liu, J. Bu, and Y. Gao, “A lightweight and density-aware
reprogramming protocol for wireless sensor networks,” Mobile Computing,
IEEE Transactions on, vol. 10, no. 10, pp. 1403–1415, 2011.

[53] W. Dong, Y. Liu, C. Chen, J. Bu, C. Huang, and Z. Zhao, “R2: Incremen-
tal reprogramming using relocatable code in networked embedded systems,”
Computers, IEEE Transactions on, vol. 62, no. 9, pp. 1837–1849, 2013.

[54] W. Dong, Y. Liu, X. Wu, L. Gu, and C. Chen, “Elon: Enabling efficient
and long-term reprogramming for wireless sensor networks,” SIGMETRICS
Perform. Eval. Rev., vol. 38, no. 1, pp. 49–60, June 2010. [Online]. Available:
http://doi.acm.org/10.1145/1811099.1811046

[55] W. Dong, B. Mo, C. Huang, Y. Liu, and C. Chen, “R3: Optimizing relocat-
able code for efficient reprogramming in networked embedded systems,” in
INFOCOM, 2013 Proceedings IEEE, 2013, pp. 315–319.

[56] C. Duffy, U. Roedig, J. Herbert, and C. Sreenan, “An experimental comparison
of event driven and multi-threaded sensor node operating systems,” Pervasive
Computing and Communications Workshops, 2007. PerCom Workshops ’07.
Fifth Annual IEEE International Conference on, pp. 267–271, March 2007.

Bibliography 85

[57] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time dynamic
linking for reprogramming wireless sensor networks,” in Proceedings of
the Fourth ACM Conference on Embedded Networked Sensor Systems
(SenSys 2006), Boulder, Colorado, USA, Nov. 2006. [Online]. Available:
http://www.sics.se/ adam/dunkels06runtime.pdf

[58] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a lightweight and flexible
operating system for tiny networked sensors,” in Proc. 29th Annual IEEE In-
ternational Conference on Local Computer Networks, Tampa, FL, USA, Nov.
2004, pp. 455–462.

[59] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simplifying
event-driven programming of memory-constraine embedded systems,” in Pro-
ceedings of the 4th International Conference on Embedded Networked Sensor
Systems, Boulder, Colorado, USA, Nov. 2006, pp. 29–42.

[60] M. Dyer, J. Beutel, T. Kalt, P. Oehen, L. Thiele, K. Martin, and P. Blum, “De-
ployment support network - A toolkit for the development of WSNs,” Wireless
Sensor Networks, pp. 195–211, 2007.

[61] B. Ebeling, S. Hoyer, and J. Bührig, “What are your favorite methods? - an
examination on the frequency of research methods for is conferences from
2006 to 2010,” p. 200, 2012.

[62] J. Echterhoff and T. Everding, “Ogc R© sensor event service interface specifi-
cation (proposed),” Candidate OpenGIS R© Discussion paper Open Geospatial
Consortium. OGC 08-133, 2008.

[63] M. Eisenhauer, C. Prause, M. Jahn, and M. Jentsch, “Middleware for wire-
less devices and sensors - energy efficiency at device level,” in Sensor Mesh
and Ad Hoc Communications and Networks (SECON), 2010 7th Annual IEEE
Communications Society Conference on, 2010, pp. 1–3.

[64] M. Eisenhauer, P. Rosengren, and P. Antolin, “A development platform for in-
tegrating wireless devices and sensors into ambient intelligence systems,” in
Sensor, Mesh and Ad Hoc Communications and Networks Workshops, 2009.
SECON Workshops ’09. 6th Annual IEEE Communications Society Confer-
ence on, 2009, pp. 1–3.

[65] Energizer, “Energizer l91 ultimate lithium aa battery product datasheet,” [ON-
LINE] http://data.energizer.com/PDFs/l91.pdf, June 2014.

86 Bibliography

[66] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-rk: An energy-aware
resource-centric rtos for sensor networks,” in RTSS ’05: Proceedings of the
26th IEEE International Real-Time Systems Symposium. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 256–265.

[67] R. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University of California, Irvine, 2000. [On-
line]. Available: http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm

[68] FMI, “Ilmatieteen laitoksen avoin data,” [ONLINE]
https://ilmatieteenlaitos.fi/avoin-data, Sept. 2013.

[69] C.-L. Fok, G.-C. Roman, and C. Lu, “Mobile agent middleware for sensor net-
works: an application case study,” in Information Processing in Sensor Net-
works, 2005. IPSN 2005. Fourth International Symposium on, 2005, pp. 382 –
387.

[70] G. Fox, S. Kamburugamuve, and R. Hartman, “Architecture and measured
characteristics of a cloud based internet of things,” in Collaboration Technolo-
gies and Systems (CTS), 2012 International Conference on, may 2012, pp. 6
–12.

[71] FreeRTOS, “Freertos homepage - coroutines explained,” [ONLINE]
http://www.freertos.org/, 2010.

[72] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The
nesc language: A holistic approach to networked embedded systems,” in Pro-
ceedings of the ACM SIGPLAN 2003 conference on Programming language
design and implementation, ser. PLDI ’03. New York, NY, USA: ACM, 2003,
pp. 1–11. [Online]. Available: http://doi.acm.org/10.1145/781131.781133

[73] D. Gelernter, “Generative communication in linda,” ACM Trans. Program.
Lang. Syst., vol. 7, pp. 80–112, January 1985. [Online]. Available:
http://doi.acm.org/10.1145/2363.2433

[74] A. Gómez-Goiri and D. López-de Ipiña, “A triple space-based semantic
distributed middleware for internet of things,” in Current Trends in Web
Engineering, ser. Lecture Notes in Computer Science, F. Daniel and F. Facca,
Eds. Springer Berlin Heidelberg, 2010, vol. 6385, pp. 447–458. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-16985-4_43

Bibliography 87

[75] L. Gomez and A. Laube, “Ontological middleware for dynamic wireless sen-
sor data processing,” in Sensor Technologies and Applications, 2009. SEN-
SORCOMM ’09. Third International Conference on, 2009, pp. 145–151.

[76] W. Grosky, A. Kansal, S. Nath, J. Liu, and F. Zhao, “Senseweb: An infrastruc-
ture for shared sensing,” Multimedia, IEEE, vol. 14, no. 4, pp. 8 –13, oct.-dec.
2007.

[77] L. Gu and J. A. Stankovic, “t-kernel: providing reliable os support to wireless
sensor networks,” in SenSys ’06: Proceedings of the 4th international confer-
ence on Embedded networked sensor systems. New York, NY, USA: ACM,
2006, pp. 1–14.

[78] S. Hadim and N. Mohamed, “Middleware: middleware challenges and ap-
proaches for wireless sensor networks,” Distributed Systems Online, IEEE,
vol. 7, no. 3, p. 1, march 2006.

[79] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless deluge: Over-
the-air programming of wireless sensor networks using random linear codes,”
in Information Processing in Sensor Networks, 2008. IPSN ’08. International
Conference on, 2008, pp. 457–466.

[80] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic
operating system for sensor nodes,” in MobiSys ’05: Proceedings of the 3rd
international conference on Mobile systems, applications, and services. New
York, NY, USA: ACM, 2005, pp. 163–176.

[81] M. M. Hassan, B. Song, and E.-N. Huh, “A framework of sensor-
cloud integration opportunities and challenges,” in Proceedings of the
3rd International Conference on Ubiquitous Information Management and
Communication, ser. ICUIMC ’09. New York, NY, USA: ACM, 2009, pp.
618–626. [Online]. Available: http://doi.acm.org/10.1145/1516241.1516350

[82] S. Havens, “Ogc R© transducer markup language (tml) implementation specifi-
cation, version 1.0.0, retired,” OpenGIS R© Implementation Specification. Open
Geospatial Consortium. OGC 06-010r6, 2007.

[83] K. Henricksen and R. Robinson, “A survey of middleware for sensor
networks: state-of-the-art and future directions,” in Proceedings of the
international workshop on Middleware for sensor networks, ser. MidSens
’06. New York, NY, USA: ACM, 2006, pp. 60–65. [Online]. Available:
http://doi.acm.org/10.1145/1176866.1176877

88 Bibliography

[84] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System
architecture directions for networked sensors,” SIGPLAN Not., vol. 35, no. 11,
pp. 93–104, 2000.

[85] J. Honkola, H. Laine, R. Brown, and O. Tyrkko, “Smart-M3 information shar-
ing platform,” in Computers and Communications (ISCC), 2010 IEEE Sympo-
sium on. IEEE, 2010, pp. 1041–1046.

[86] J. Hu, C. Xue, Y. He, and E.-M. Sha, “Reprogramming with minimal trans-
ferred data on wireless sensor network,” in Mobile Adhoc and Sensor Systems,
2009. MASS ’09. IEEE 6th International Conference on, 2009, pp. 160–167.

[87] W. Hu, T. Dinh, P. Corke, and s. Jha, “Design and deployment of long-term
outdoor sensornets: Experiences from a sugar farm,” Pervasive Computing,
IEEE, vol. PP, no. 99, pp. 1 –1, 2010.

[88] J. W. Hui, “Deluge 2.0 - tinyos network programming,” [Online]. Available:
http://www.cs.berkeley.edu/ jwhui/deluge/deluge-manual.pdf, July 2005, [Ac-
cessed: Nov. 13, 2009].

[89] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination pro-
tocol for network programming at scale,” in SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor systems. New
York, NY, USA: ACM, 2004, pp. 81–94.

[90] IEEE Standard for Information Technology—Telecommunications and Infor-
mation Exchange Between Systems—Local and Metropolitan Area Networks—
Specific Requirements—Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPAN), Sept. 2006, IEEE Std 802.15.4-2006.

[91] IETF, “Ietf constrained application protocol (coap) working group,” [ON-
LINE] https://datatracker.ietf.org/doc/draft-ietf-core-coap/, Oct. 2013.

[92] IETF, J. Hui, and P. Thubert, “Compression format for ipv6 data-
grams over ieee 802.15.4-based networks - rfc6282,” [ONLINE]
http://tools.ietf.org/html/rfc6282, Oct. 2014.

[93] T. Instruments, “Ti msp430f15x, msp430f16x, msp430f161x data sheet,” [ON-
LINE] http://focus.ti.com/lit/ds/symlink/msp430f1611.pdf, 2010.

[94] Intel, “Intel mote 2 engineering platform data sheet,” Available:
http://wsn.cse.wustl.edu/images/c/cb/Imote2-ds-rev2_2.pdf, 2014.

Bibliography 89

[95] M. Jahn, M. Jentsch, C. Prause, F. Pramudianto, A. Al-Akkad, and R. Rein-
ers, “The energy aware smart home,” in Future Information Technology (Fu-
tureTech), 2010 5th International Conference on, May 2010, pp. 1–8.

[96] Y.-J. Jeon, S.-H. Park, and J.-S. Park, “Sensor node middleware to support
web-based applications over wireless sensor networks,” in Local Computer
Networks, 2009. LCN 2009. IEEE 34th Conference on, 2009, pp. 963–970.

[97] J. Jeong and D. Culler, “Incremental network programming for wireless sen-
sors,” in Sensor and Ad Hoc Communications and Networks, 2004. IEEE
SECON 2004. 2004 First Annual IEEE Communications Society Conference
on, 2004, pp. 25–33.

[98] Y. Jeong, E. Song, G. Chae, M. Hong, and D. Park, “Large-Scale Middleware
for Ubiquitous Sensor Networks,” Intelligent Systems, IEEE, vol. 25, no. 2, pp.
48–59, 2010.

[99] S. Jirka, A. Bröring, and D. Nüst, “Ogc R© sensor observable registry (sor) dis-
cussion paper,” Candidate OpenGIS R© Public Discussion paper Open Geospa-
tial Consortium. OGC 09-112r1, 2010.

[100] S. Jirka and D. Nüst, “Ogc R© sensor instance registry discussion paper,” Can-
didate OpenGIS R© Discussion paper Open Geospatial Consortium. OGC 10-
171, 2010.

[101] J. Juntunen, M. Kuorilehto, M. Kohvakka, V. Kaseva, M. Hannikainen, and
T. Hamalainen, “WSN API: Application programming interface for wireless
sensor networks,” Sept. 2006, pp. 1–5.

[102] H. Karvonen, J. Suhonen, J. Petäjäjärvi, M. Hämäläinen, M. Hän-
nikäinen, and A. Pouttu, “Hierarchical architecture for multi-technology
wireless sensor networks for critical infrastructure protection,” Wire-
less Personal Communications, pp. 1–21, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s11277-014-1686-2

[103] V. Kaseva, T. D. Hämäläinen, and M. Hännikäinen, “A wireless sensor
network for hospital security: from user requirements to pilot deployment,”
EURASIP J. Wirel. Commun. Netw., vol. 2011, pp. 17:1–17:15, January 2011.
[Online]. Available: http://dx.doi.org/10.1155/2011/920141

[104] V. Kaseva, “Localization and time synchronization services for resource con-
strained wireless sensor networks,” Tampereen teknillinen yliopisto. Julkaisu -
Tampere University of Technology. Publication; 1051, 2012.

90 Bibliography

[105] A. Khattak, L. T. Vinh, D. V. Hung, P. T. H. Truc, L. X. Hung, D. Guan, Z. Per-
vez, M. Han, S. Lee, and Y.-K. Lee, “Context-aware human activity recogni-
tion and decision making,” in e-Health Networking Applications and Services
(Healthcom), 2010 12th IEEE International Conference on, july 2010, pp. 112
–118.

[106] G. Kiczales, “Towards a new model of abstraction in software engineering,” in
Object Orientation in Operating Systems, 1991. Proceedings., 1991 Interna-
tional Workshop on, Oct 1991, pp. 127–128.

[107] T.-H. Kim and S. Hong, “State machine based operating system architecture
for wireless sensor networks,” vol. 3320, pp. 803–806, 2005. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-30501-9_158

[108] M. Kohvakka, “Medium access control and hardware prototype designs for
low-energy wireless sensor networks,” Tampereen teknillinen yliopisto. Julka-
isu - Tampere University of Technology. Publication; 808, 2009.

[109] J. Koshy and R. Pandey, “Vmstar: Synthesizing scalable runtime
environments for sensor networks,” in Proceedings of the 3rd International
Conference on Embedded Networked Sensor Systems, ser. SenSys ’05.
New York, NY, USA: ACM, 2005, pp. 243–254. [Online]. Available:
http://doi.acm.org/10.1145/1098918.1098945

[110] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A restful runtime
container for scriptable internet of things applications,” in Internet of Things
(IOT), 2012 3rd International Conference on the, Oct 2012, pp. 135–142.

[111] M. Kovatsch, S. Mayer, and B. Ostermaier, “Moving application logic from the
firmware to the cloud: Towards the thin server architecture for the internet of
things,” in Innovative Mobile and Internet Services in Ubiquitous Computing
(IMIS), 2012 Sixth International Conference on, July 2012, pp. 751–756.

[112] L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation
in wireless sensor networks,” in Distributed Computing Systems Workshops,
2002. Proceedings. 22nd International Conference on, 2002, pp. 575 – 578.

[113] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra, M. Flanigan,
N. Kushalnagar, L. Nachman, and M. Yarvis, “Design and deploy-
ment of industrial sensor networks: experiences from a semiconductor
plant and the north sea,” in Proceedings of the 3rd international

Bibliography 91

conference on Embedded networked sensor systems, ser. SenSys ’05.
New York, NY, USA: ACM, 2005, pp. 64–75. [Online]. Available:
http://doi.acm.org/10.1145/1098918.1098926

[114] C. W. Krueger, “Software reuse,” ACM Comput. Surv.,
vol. 24, no. 2, pp. 131–183, June 1992. [Online]. Available:
http://doi.acm.org/10.1145/130844.130856

[115] M. Kuorilehto, T. Alho, M. Hännikäinen, and T. D. Hämäläinen, “Sensoros: A
new operating system for time critical wsn applications,” in Embedded Com-
puter Systems: Architectures, Modeling, and Simulation, Heidelberg, Ger-
many, Aug. 2007, pp. 431–442.

[116] M. Kuorilehto, M. Hännikäinen, and T. D. Hämäläinen, “A survey of
application distribution in wireless sensor networks,” EURASIP J. Wirel.
Commun. Netw., vol. 2005, no. 5, pp. 774–788, Oct. 2005. [Online].
Available: http://dx.doi.org/10.1155/WCN.2005.774

[117] M. Kuorilehto, M. Kohvakka, J. Suhonen, P. Hämäläinen, M. Hännikäinen,
and T. D. Hämäläinen, Ultra-Low Energy Wireless Sensor Networks in Prac-
tice - Theory, Realization and Deployment. John Wiley & Sons, Ltd., 2007.

[118] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes: expe-
riences from a pilot sensor network deployment in precision agriculture,” in
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th In-
ternational, apr. 2006, p. 8 pp.

[119] S.-Y. Lau, T.-H. Chang, S.-Y. Hu, H.-J. Huang, L. de Shyu, C.-M. Chiu, and
P. Huang, “Sensor networks for everyday use: the bl-live experience,” in Sen-
sor Networks, Ubiquitous, and Trustworthy Computing, 2006. IEEE Interna-
tional Conference on, vol. 1, 2006, p. 7 pp.

[120] X. H. Le, S. Lee, P. T. H. Truc, L. T. Vinh, A. Khattak, M. Han, D. V. Hung,
M. Hassan, M. Kim, K.-H. Koo, Y.-K. Lee, and E.-N. Huh, “Secured wsn-
integrated cloud computing for u-life care,” in Consumer Communications and
Networking Conference (CCNC), 2010 7th IEEE, 2010, pp. 1–2.

[121] K. Lee, D. Murray, D. Hughes, and W. Joosen, “Extending sensor networks
into the cloud using amazon web services,” in Networked Embedded Systems
for Enterprise Applications (NESEA), 2010 IEEE International Conference
on, 2010, pp. 1–7.

92 Bibliography

[122] T. Leppänen, J. A. Lacasia, A. Ramalingam, M. Liu, E. Harjula, P. Närhi,
J. Ylioja, J. Riekki, K. Sezaki, Y. Tobe, and T. Ojala, “Interoperable mobile
agents in heterogeneous wireless sensor networks,” in Proceedings of the
11th ACM Conference on Embedded Networked Sensor Systems, ser. SenSys
’13. New York, NY, USA: ACM, 2013, pp. 64:1–64:2. [Online]. Available:
http://doi.acm.org/10.1145/2517351.2517382

[123] T. Leppänen, M. Liu, E. Harjula, A. Ramalingam, J. Ylioja, P. Narhi,
J. Riekki, and T. Ojala, “Mobile agents for integration of internet of things
and wireless sensor networks,” in Proceedings of the 2013 IEEE International
Conference on Systems, Man, and Cybernetics, ser. SMC ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 14–21. [Online]. Available:
http://dx.doi.org/10.1109/SMC.2013.10

[124] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor networks,” in
ACM Sigplan Notices, vol. 37, no. 10. ACM, 2002, pp. 85–95.

[125] P. Levis, “Tinyos programming,” [ONLINE] http://www.tinyos.net/tinyos-
2.x/doc/pdf/tinyos-programming.pdf, Mar. 2014.

[126] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the
1st International Conference on Embedded Networked Sensor Systems, ser.
SenSys ’03. New York, NY, USA: ACM, 2003, pp. 126–137. [Online].
Available: http://doi.acm.org/10.1145/958491.958506

[127] S. Li, Y. Lin, S. Son, J. Stankovic, and Y. Wei, “Event detection services using
data service middleware in distributed sensor networks,” Telecommunication
Systems, vol. 26, no. 2, pp. 351–368, 2004.

[128] S. Li, S. Son, and J. Stankovic, “Event detection services using data service
middleware in distributed sensor networks,” in Information Processing in
Sensor Networks, ser. Lecture Notes in Computer Science, F. Zhao and
L. Guibas, Eds. Springer Berlin Heidelberg, 2003, vol. 2634, pp. 502–517.
[Online]. Available: http://dx.doi.org/10.1007/3-540-36978-3_34

[129] Waspmote - Datasheet, Available: http://www.libelium.com/waspmote, Li-
belium Comunicaciones Distribuidas S.L., 2011, document version: v1.4 -
10/2011.

Bibliography 93

[130] Y. Lim and J. Park, “Sensor Resource Sharing Approaches in Sensor-Cloud In-
frastructure,” International Journal of Distributed Sensor Networks, vol. 2014,
no. Article ID 476090, p. 8, 2014.

[131] T. Liu and M. Martonosi, “Impala: a middleware system for managing
autonomic, parallel sensor systems,” SIGPLAN Not., vol. 38, pp. 107–118,
June 2003. [Online]. Available: http://doi.acm.org/10.1145/966049.781516

[132] X. Liu, K. M. Hou, C. D. Vaulx, C. Guo, H. Shi, and B. Tian,
“Hybrid real-time operating system for resource-constraint wireless sensor
nodes,” Journal of Software, vol. 9, no. 7, 2014. [Online]. Available:
http://ojs.academypublisher.com/index.php/jsw/article/view/jsw090717671780

[133] K. Lorincz, B.-r. Chen, J. Waterman, G. Werner-Allen, and M. Welsh, “Re-
source aware programming in the pixie os,” in SenSys ’08: Proceedings of the
6th ACM conference on Embedded network sensor systems. New York, NY,
USA: ACM, 2008, pp. 211–224.

[134] Q. Luo, H. Wu, W. Xue, and B. He, “Benchmarking in-network sensor query
processing,” Technical report - The Hong Kong University of Science and
Technology, 2005.

[135] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “Tag: a tiny aggrega-
tion service for ad-hoc sensor networks,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 131–146, 2002.

[136] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tinydb:
an acquisitional query processing system for sensor networks,” ACM Trans.
Database Syst., vol. 30, pp. 122–173, March 2005. [Online]. Available:
http://doi.acm.org/10.1145/1061318.1061322

[137] S. Madria, V. Kumar, and R. Dalvi, “Sensor cloud: A cloud of virtual sensors,”
Software, IEEE, vol. PP, no. 99, pp. 1–1, 2013.

[138] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proceedings of the 1st
ACM international workshop on Wireless sensor networks and applications,
ser. WSNA ’02. New York, NY, USA: ACM, 2002, pp. 88–97. [Online].
Available: http://doi.acm.org/10.1145/570738.570751

[139] D. Manjunath, “A review of current operating systems for wireless sensor net-
works,” in 22nd International Conference on Computers and Their Applica-

94 Bibliography

tions, CATA-2007, Honolulu, Hawaii, USA, March 28-30, 2007, 2007, pp.
387–394.

[140] P. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and
K. Rothermel, “Flexcup: A flexible and efficient code update mechanism
for sensor networks,” in Wireless Sensor Networks, ser. Lecture Notes in
Computer Science, K. Römer, H. Karl, and F. Mattern, Eds. Springer
Berlin Heidelberg, 2006, vol. 3868, pp. 212–227. [Online]. Available:
http://dx.doi.org/10.1007/11669463_17

[141] W. Masri and Z. Mammeri, “Middleware for wireless sensor networks: A com-
parative analysis,” in Network and Parallel Computing Workshops, 2007. NPC
Workshops. IFIP International Conference on, sept. 2007, pp. 349 –356.

[142] G. McFerren, D. Hohls, G. Fleming, and T. Sutton, “Evaluating sensor obser-
vation service implementations,” in Geoscience and Remote Sensing Sympo-
sium,2009 IEEE International,IGARSS 2009, vol. 5, 2009, pp. V–363–V–366.

[143] IRIS Wireless Measurement System, MEMSIC Inc., document: 6020-0124-02
Rev A.

[144] MICAz Wireless Measurement System, MEMSIC Inc., document: 6020-0065-
05 Rev A.

[145] TELOSB Mote Platform, MEMSIC Inc., document: 6020-0094-04 Rev B.

[146] Memsic Inc., “Mcs410 cricket wireless loca-
tion system - product specification,” Available:
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0063-
03_a_mcs410_cricket-t.pdf, Nov. 2014.

[147] Microchip, “Mplab c compiler for pic18 mcus,” [ONLINE]
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&-
nodeId=1406&dDocName=en010014, 2010.

[148] ——, “Pic18f8722 family data sheet,” [ONLINE]
http://ww1.microchip.com/downloads/en/DeviceDoc/39646c.pdf, 2010.

[149] R. Müller, M. Fabritius, and M. Mock, “An ogc compliant sensor observation
service for mobile sensors,” in Advancing Geoinformation Science for a
Changing World, ser. Lecture Notes in Geoinformation and Cartography,
S. Geertman, W. Reinhardt, and F. Toppen, Eds. Springer Berlin Heidelberg,

Bibliography 95

2011, pp. 163–184. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
19789-5_9

[150] N. Mohamed and J. Al-Jaroodi, “Service-oriented middleware approaches for
wireless sensor networks,” in System Sciences (HICSS), 2011 44th Hawaii In-
ternational Conference on, jan. 2011, pp. 1 –9.

[151] M. Molla and S. Ahamed, “A survey of middleware for sensor network and
challenges,” in Parallel Processing Workshops, 2006. ICPP 2006 Workshops.
2006 International Conference on, 2006, pp. 6 pp. –228.

[152] J. D. Mooney, “Bringing portability to the software process,” Dept. of Statistics
and Comp. Sci., West Virginia Univ., Morgantown WV, 1997.

[153] J. Mooney, “Strategies for supporting application portability,” Computer,
vol. 23, no. 11, pp. 59–70, Nov 1990.

[154] L. Mottola and G. P. Picco, “Programming wireless sensor net-
works: Fundamental concepts and state of the art,” ACM Comput.
Surv., vol. 43, no. 3, pp. 19:1–19:51, Apr. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1922649.1922656

[155] L. Määttä, J. Suhonen, T. Laukkarinen, M. Hännikäinen, and T. D. Hämäläi-
nen, “Program image dissemination protocol for low-energy multihop wireless
sensor networks,” in International Symposium on System-on-Chip 2010, Tam-
pere, Finland, Sept. 2010, pp. 129–135.

[156] A. Murphy and W. Heinzelman, “Milan: Middleware linking applications and
networks,” University of Rochester, Tech. Rep. TR-795, 2002.

[157] A. Murphy, G. Picco, and G. Roman, “Lime: a middleware for physical and
logical mobility,” in Distributed Computing Systems, 2001. 21st International
Conference on., Apr 2001, pp. 524–533.

[158] S. Nath, J. Liu, and F. Zhao, “Challenges in building a portal for sensors world-
wide,” in In First Workshop on WorldSensor-Web, Boulder,CO. ACM, 2006,
pp. 3–4.

[159] Nordic Semiconductor, “Single chip 2.4 GHz transceiver nrf24l01 - product
specification,” Available: http://www.nordicsemi.com/eng/Products/2.4GHz-
RF/nRF24L01, Sept. 2006, revision: 1.0.

96 Bibliography

[160] ——, “Single chip 433/868/915 MHz transceiver nRF905 - product spec-
ification,” Available: http://www.nordicsemi.com/eng/Products/Sub-1-GHz-
RF/nRF905, June 2006, revision: 1.4.

[161] J. Onkila, “Käyttöjärjestelmän edut langattomassa anturiverkossa,” Tampere
University of Technology - Theses, 2011.

[162] T. O’Reilly, “Ogc R© puck protocol standard version 1.4,” Candidate OGC R©
Standard. OGC 09-127r2, 2010.

[163] S. N. Pakzad, G. L. Fenves, S. Kim, and D. E. Culler, “Design
and implementation of scalable wireless sensor network for structural
monitoring,” Journal of Infrastructure Systems, vol. 14, no. 1, pp. 89–101,
2008. [Online]. Available: http://link.aip.org/link/?QIS/14/89/1

[164] R. K. Panta, S. Bagchi, and S. P. Midkiff, “Zephyr: Efficient
incremental reprogramming of sensor nodes using function call indirections
and difference computation,” in Proceedings of the 2009 Conference
on USENIX Annual Technical Conference, ser. USENIX’09. Berkeley,
CA, USA: USENIX Association, 2009, pp. 32–32. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855807.1855839

[165] R. Panta, I. Khalil, and S. Bagchi, “Stream: Low overhead wireless repro-
gramming for sensor networks,” in INFOCOM 2007. 26th IEEE International
Conference on Computer Communications. IEEE, 2007, pp. 928–936.

[166] P. Parwekar, “From internet of things towards cloud of things,” in Computer
and Communication Technology (ICCCT), 2011 2nd International Conference
on, sept. 2011, pp. 329 –333.

[167] B. Pasztor and P. Hui, “Osone: A distributed operating system for energy effi-
cient sensor network,” in Teletraffic Congress (ITC), 2013 25th International,
2013, pp. 1–9.

[168] G. P. Picco, “Software engineering and wireless sensor networks: Happy
marriage or consensual divorce?” in Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research, ser. FoSER ’10.
New York, NY, USA: ACM, 2010, pp. 283–286. [Online]. Available:
http://doi.acm.org/10.1145/1882362.1882421

[169] M. E. Poorazizi, S. H. L. Liang, and A. J. S. Hunter, “Testing of sensor
observation services: A performance evaluation,” in Proceedings of the

Bibliography 97

First ACM SIGSPATIAL Workshop on Sensor Web Enablement, ser. SWE
’12. New York, NY, USA: ACM, 2012, pp. 32–38. [Online]. Available:
http://doi.acm.org/10.1145/2451716.2451721

[170] G. Prakash, M. Thejaswini, M. SH, V. KR, and P. LM, “Energy efficient in-
network data processing in sensor networks,” World Academy of Science, En-
gineering and Technology 48 2008, vol. 48, 2008.

[171] Raspberry Pi, “Raspberry pi an arm gnu/linux box for 25$,” Available:
http://www.raspberrypi.org/, 2014.

[172] Shimmer User Manual, Realtime technologies Ltd., 2011, revision 2R.d.

[173] A. Rezgui and M. Eltoweissy, “Service-oriented sensor-actuator networks [ad
hoc and sensor networks],” Communications Magazine, IEEE, vol. 45, no. 12,
pp. 92–100, December 2007.

[174] ——, “Service-oriented sensor-actuator networks: Promises, challenges, and
the road ahead,” Computer Communications, vol. 30, no. 13, pp. 2627
– 2648, 2007, sensor-Actuated Networks {SANETs}. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0140366407002472

[175] K. Römer and M. Ringwald, “Increasing the visibility of sensor net-
works with passive distributed assertions,” in Proceedings of the work-
shop on Real-world wireless sensor networks, ser. REALWSN ’08.
New York, NY, USA: ACM, 2008, pp. 36–40. [Online]. Available:
http://doi.acm.org/10.1145/1435473.1435484

[176] K. Römer, “Programming paradigms and middleware for sensor networks,” in
GI/ITG Workshop on Sensor Networks, 2004, pp. 49–54.

[177] M. Rossi, N. Bui, G. Zanca, L. Stabellini, R. Crepaldi, and M. Zorzi,
“Synapse++: Code dissemination in wireless sensor networks using fountain
codes,” Mobile Computing, IEEE Transactions on, vol. 9, no. 12, pp. 1749–
1765, 2010.

[178] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A. Harris, and M. Zorzi,
“Synapse: A network reprogramming protocol for wireless sensor networks
using fountain codes,” in Sensor, Mesh and Ad Hoc Communications and Net-
works, 2008. SECON ’08. 5th Annual IEEE Communications Society Confer-
ence on, 2008, pp. 188–196.

98 Bibliography

[179] B. Rubio, M. Diaz, and J. Troya, “Programming approaches and challenges for
wireless sensor networks,” in Systems and Networks Communications, 2007.
ICSNC 2007. Second International Conference on, Aug 2007, pp. 36–36.

[180] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application proto-
col (coap) - rfc 7252,” [ONLINE] http://www.rfc-editor.org/info/rfc7252, June
2014.

[181] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor information net-
working architecture and applications,” Personal Communications, IEEE,
vol. 8, no. 4, pp. 52 –59, Aug. 2001.

[182] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, and
M. Welsh, “Hourglass: An infrastructure for connecting sensor networks and
applications,” Harvard University, Tech. Rep., 2004, harvard Technical Report
TR-21-04.

[183] I. Simonis, “Ogc R© sensor alert service candidate implementation specifica-
tion, version 0.9,” Candidate OpenGIS R© Implementation Specification Open
Geospatial Consortium. OGC 06-028r3, 2006.

[184] ——, “Ogc R© sensor web enablement architecture, version 0.4.0,” OGC Best
Practice. Open Geospatial Consortium. OGC R© 06-021r4, 2008.

[185] I. Simonis and J. Echterhoff, “Ogc R© sensor planning service implementation
standard, version 2.0,” OpenGIS R© Implementation Standard. Open Geospa-
tial Consortium. OGC 09-000, 2011.

[186] I. Simonis and A. Wytzisk, “Web notification service, version 0.1.0,” OpenGIS
Discussion Paper. Open Geospatial Consortium. OGC 03-008r2, 2003.

[187] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and
J. Kelner, “Mires: a publish/subscribe middleware for sensor networks,” Per-
sonal and Ubiquitous Computing, vol. 10, no. 1, pp. 37–44, 2006.

[188] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza, and
V. Trifa, “Soa-based integration of the internet of things in enterprise services,”
in Web Services, 2009. ICWS 2009. IEEE International Conference on, 2009,
pp. 968–975.

[189] STMicroelectronics, “Stm32 l0 series of ultra-low-power mcus,” Available:
http://www.st.com/web/en/catalog/mmc/SC1169/SS1817, 2014.

Bibliography 99

[190] G. Strazdins, A. Elsts, K. Nesenbergs, and L. Selavo, “Wireless sensor net-
work operating system design rules based on real-world deployment survey,”
Journal of Sensor and Actuator Networks, vol. 2, no. 3, pp. 509–556, 2013.

[191] R. Sugihara and R. K. Gupta, “Programming models for sensor networks: A
survey,” ACM Trans. Sen. Netw., vol. 4, pp. 8:1–8:29, April 2008. [Online].
Available: http://doi.acm.org/10.1145/1340771.1340774

[192] J. Suhonen, “Designs for the quality of service support in low-energy wireless
sensor network protocols,” Tampereen teknillinen yliopisto. Julkaisu - Tampere
University of Technology. Publication; 1061, 2012.

[193] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons from a
sensor network expedition,” Wireless Sensor Networks, pp. 307–322, 2004.

[194] A. Tamayo, C. Granell, and J. Huerta, “Using swe standards for ubiquitous
environmental sensing: A performance analysis,” Sensors, vol. 12, no. 9,
pp. 12 026–12 051, 2012. [Online]. Available: http://www.mdpi.com/1424-
8220/12/9/12026

[195] A. Tamayo, P. Viciano, C. Granell, and J. Huerta, “Empirical study of sensor
observation services server instances,” in Advancing Geoinformation Science
for a Changing World, ser. Lecture Notes in Geoinformation and Cartography,
S. Geertman, W. Reinhardt, and F. Toppen, Eds. Springer Berlin Heidelberg,
2011, pp. 185–209. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
19789-5_10

[196] Tampere University of Technology, “Wsn openapi technical
specification,” WSN OpenAPI Technical Specification - r1.00-
2013 - 2013-10-14 - Editor: Jukka Suhonen, 2013.
[Online]. Available: http://www.tkt.cs.tut.fi/research/gwg/downloads/
WSN_OpenAPI_Specification_r1.0.pdf

[197] L. Tan and N. Wang, “Future internet: The internet of things,” in Advanced
Computer Theory and Engineering (ICACTE), 2010 3rd International Confer-
ence on, vol. 5, aug. 2010, pp. V5–376 –V5–380.

[198] T. Tavares, R. Santana, M. Santana, and J. Estrella, “Performance evaluation
on opengis consortium for sensor web enablement services,” in ICSNC 2013,
The Eighth International Conference on Systems and Networks Communica-
tions, 2013, pp. 135–140.

100 Bibliography

[199] Texas Instruments Inc., “Cc1101 low-power sub-1ghz rf transceiver,” Avail-
able: http://www.ti.com/product/cc1101, 2014.

[200] ——, “CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF transceiver,”
Available: http://www.ti.com/product/cc2420, 2014.

[201] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A
macroscope in the redwoods,” in Proceedings of the 3rd international
conference on Embedded networked sensor systems, ser. SenSys ’05.
New York, NY, USA: ACM, 2005, pp. 51–63. [Online]. Available:
http://doi.acm.org/10.1145/1098918.1098925

[202] N. Tsiftes, A. Dunkels, and T. Voigt, “Efficient sensor network reprogramming
through compression of executable modules,” in Sensor, Mesh and Ad Hoc
Communications and Networks, 2008. SECON ’08. 5th Annual IEEE Commu-
nications Society Conference on, 2008, pp. 359–367.

[203] N. Tsiftes, A. Dunkels, H. Zhitao, and T. Voigt, “Enabling large-
scale storage in sensor networks with the coffee file system,” in
Proceedings of the 2009 International Conference on Information
Processing in Sensor Networks, ser. IPSN ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 349–360. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1602165.1602197

[204] D. Villa, F. Moya, F. J. Villanueva, O. Aceña, and J. C. López, “Ubiquitous
virtual private network: A solution for wsn seamless integration,” Sensors,
vol. 14, no. 1, pp. 779–794, 2014.

[205] Virtenio, “Innovative 2.4 ghz radio module for preon32-series,” Available:
http://www.virtenio.com/en/products/radio-module.html, 2014.

[206] W3C, “Owl web ontology language reference,” [ONLINE]
http://www.w3.org/TR/owl-ref/, Sept. 2012.

[207] ——, “Web services description language (wsdl) version 2.0 part 1: Core lan-
guage,” [ONLINE] http://www.w3.org/TR/wsdl20/, Jan. 2013.

[208] W3C Incubator Group, “Semantic sensor network xg final re-
port - w3c incubator group report 28 june 2011,” Available:
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/, 2014.

Bibliography 101

[209] W3C Working Group, “Web services architecture note 11 february 2004,”
Available: http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/, 2014.

[210] ——, “Web services glossary note 11 february 2004,” Available:
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/, 2014.

[211] M. Wang, J. Cao, J. Li, and S. Dasi, “Middleware for wireless sensor networks:
A survey,” Journal of computer science and technology, vol. 23, no. 3, pp.
305–326, 2008.

[212] B. Warneke, M. Last, B. Liebowitz, and K. Pister, “Smart dust: communicat-
ing with a cubic-millimeter computer,” Computer, vol. 34, no. 1, pp. 44–51,
Jan 2001.

[213] M. K. Watfa and M. Moubarak, “A benchmarking tool for
wireless sensor network embedded operating systems,” Jour-
nal of Networks, vol. 9, no. 8, 2014. [Online]. Avail-
able: http://www.ojs.academypublisher.com/index.php/jnw/article/view/
jnw090819711984

[214] M. Weiser, “The computer for the 21st century,” Scientific american, vol. 265,
no. 3, pp. 94–104, 1991.

[215] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, and
M. Welsh, “Deploying a wireless sensor network on an active volcano,” Inter-
net Computing, IEEE, vol. 10, no. 2, pp. 18 – 25, 2006.

[216] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Motelab: a wireless sensor
network testbed,” in Information Processing in Sensor Networks, 2005. IPSN
2005. Fourth International Symposium on, April 2005, pp. 483–488.

[217] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse, “Clairvoyant: a
comprehensive source-level debugger for wireless sensor networks,” in
Proceedings of the 5th international conference on Embedded networked
sensor systems, ser. SenSys ’07. New York, NY, USA: ACM, 2007, pp.
189–203. [Online]. Available: http://doi.acm.org/10.1145/1322263.1322282

[218] J. Yannakopoulos and A. Bilas, “Cormos: a communication-oriented runtime
system for sensor networks,” in Proc. 2nd European Workshop on Wireless
Sensor Networks, Istanbul, Turkey, Feb. 2005, pp. 342–353.

[219] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing
in sensor networks,” SIGMOD record, vol. 31, no. 3, pp. 9–18, 2002.

102 Bibliography

[220] J. Yi, S. Heu, B. Choi, H. Kim, H. Sue, and J. Kim, “TMO-NanoQ+: A Real-
Time Kernel for Sensor Networks Supporting Time-Triggered and Message-
Triggered Tasks,” in 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing, 2007. ISORC’07,
2007, pp. 228–235.

[221] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer Networks, vol. 52, no. 12, pp. 2292 – 2330, 2008. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/pii/S1389128608001254

[222] D. Yin and Y. Fang, “From sensor net to sensor grid a survey and taxonomy on
sensor web,” in Geoscience and Remote Sensing Symposium, 2007. IGARSS
2007. IEEE International, july 2007, pp. 2935 –2938.

[223] H. ying Zhou and K. mean Hou, “Limos: A lightweight multi-threading op-
erating system dedicated to wireless sensor networks,” Wireless Communica-
tions, Networking and Mobile Computing, 2007. WiCom 2007. International
Conference on, pp. 3051–3054, Sept. 2007.

[224] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure - physical sensor
management with virtualized sensors on cloud computing,” in Network-Based
Information Systems (NBiS), 2010 13th International Conference on, sept.
2010, pp. 1 –8.

[225] M. Yuriyama, T. Kushida, and M. Itakura, “A new model of accelerating ser-
vice innovation with sensor-cloud infrastructure,” in SRII Global Conference
(SRII), 2011 Annual, 29 2011-april 2 2011, pp. 308 –314.

[226] H.-Y. Zhou, K.-M. Hou, J.-P. Chanet, C. de Vaulx, and G. De Sousa, “Limos:
A tiny real-time micro-kernel for wireless objects,” Wireless Communications,
Networking and Mobile Computing, 2006. WiCOM 2006.International Con-
ference on, pp. 1–4, Sept. 2006.

[227] B. P. . E. Zurich, “BTnode rev3 hardware reference,” Available:
http://www.btnode.ethz.ch/Documentation/BTnodeRev3HardwareReference,
2007, visited: May 04, 2012.

PUBLICATIONS

104 Publications

PUBLICATION 1

T. Laukkarinen, V. A. Kaseva, J. Suhonen, T. D. Hämäläinen, and M. Hännikäinen,
"HybridKernel: Preemptive Kernel with Event-driven Extension for Resource Con-
strained Wireless Sensor Networks", IEEE Workshop on Signal Processing Systems,
October 7–9, 2009, Tampere, Finland. doi:10.1109/SIPS.2009.5336243

r2009 IEEE. Reprinted, with permission, from T. Laukkarinen, V. A. Kaseva, J.
Suhonen, T. D. Hämäläinen, and M. Hännikäinen, "HybridKernel: Preemptive Ker-
nel with Event-driven Extension for Resource Constrained Wireless Sensor Net-
works", IEEE Workshop on Signal Processing Systems, October 7–9, 2009.

laukkart
Typewriter
Publication 1 is changed to preprint version for Internet
publishing due to the IEEE copyright requirements

kulkki
Typewritten Text

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of Tampere University of Technology's products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating new
collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn
how to obtain a License from RightsLink.

HYBRIDKERNEL: PREEMPTIVE KERNEL WITH EVENT-DRIVEN EXTENSION FOR
RESOURCE CONSTRAINED WIRELESS SENSOR NETWORKS

Teemu Laukkarinen, Ville A. Kaseva, Jukka Suhonen, Timo D. Hämäläinen, Marko Hännikäinen

{teemu.laukkarinen, ville.a.kaseva, jukka.suhonen, timo.d.hamalainen, marko.hannikainen}@tut.fi
Tampere University of Technology, Department of Computer Systems

P.O.Box 553, FI-33101, Tampere, Finland

ABSTRACT

A low-power wireless sensor network (WSN) implements dynamic
communication protocols and embedded sensing applications on re-
source constrained platform. WSNs utilize dozens of tasks, which
have differentiated realtime requirements. This requires an efficient
implementation with the use of a real-time operating system opti-
mized for WSNs. Current WSN operating systems are based either
on preemptive or event-driven kernels. Preemption provides accu-
rate timings but requires large data memory footprint. Event-driven
kernels have small footprint but do not support time as accurately.
This paper presents a new HybridKernel for WSNs which combines
the advantages of both kernels. It meets five key requirements with-
out any major drawbacks: it halves footprint of preemptive kernels,
it provides 2 µs timing accuracy, it minimizes energy consumption,
and it can be easily configured and used between preemptive and
event-driven parts through a coherent system call interface.

Index Terms— wireless sensor networks, operating system ker-
nels, embedded operating systems

1. INTRODUCTION

Wireless Sensor Networks (WSN) are expected to become key build-
ing blocks for ubiquitous smart environments [1]. A low-power
WSN combines communication, sensing, and data processing with
resource constrained platform, enabling its integration into numer-
ous things [2]. Applications can be anything from various fields,
such as automation, signal processing or raw data gathering. Real
Time Operating Systems (RTOS) are utilized to serve the complex
requirements of the WSN protocol implementations [3]. In gen-
eral, the WSN RTOSes provide multitasking, deadline guarantee, re-
source sharing, and realtime reactiveness with coherent system call
interface.

Current WSN RTOS implementatios use two different kernel
types, either a preemptive multithreading kernel or an event-driven
kernel [4]. The preemptive kernel provides accurate timings and a
familiar system call interface for the application programmer. The
preemptive threads have a context and they can be switched forcibly
by the scheduler. Each context requires quite much data memory and
context switching consumes processing time. These cause unwanted
energy consumption and data memory overhead.

The event-driven kernels require less data memory and do not
have the context switching overhead. Thus, they are widely used
for WSNs. The kernel executes event handlers, which are associated
to periodic and sporadic events. The event handlers are executed
cooperatively, which enables fast context-free switching. However,
the event handlers have to be executed to the completion. Thus,

they cannot perform lengthy computations to guarantee fairness for
others. This affects to the timing accuracy and reactiveness [3] [4].
Also, the application programmer has to be aware of this, which
makes application programming slower and more difficult than with
preemptive kernels [5].

In this paper, we propose HybridKernel, which implements a
flexible event-driven extension on top of a preemptive kernel. A
state-machine abstraction called protothreads [5] is used for the
event-driven extension. The protothreads remove the slow and com-
plex programming approach of the event handlers. HybridKernel
is the first WSN RTOS kernel that has a coherent API between
the preemptive and event-driven parts. It is scalable, it provides
accurate timings, it improves energy efficiency, and it has small data
memory footprint as shown in subsequent sections. The novel Hy-
bridKernel approach resolves problems with traditional preemptive
and event-driven kernels.

The related work is presented in section 2. Section 3. describes
the design of HybridKernel. Section 4. gives the implementation
on Microchip PIC18F8722 microcontroller unit (MCU). Section 5.
evaluates design and implementation. Conclusions and the future
work are presented in section 6.

2. RELATED WORK

Event-driven kernels are a common solution for the small footprint
WSN hardware platforms, which have 8-bit MCU with 4-64 KB of
data memory. The preemptive kernels are considered feasible for the
large footprint hardware platforms, such as 16 or 32bit MCUs with
over 640 KB of data memory [4].

An experimental comparison between the event-driven kernel
and preemptive kernel on WSNs is given in [6]. TinyOS [7] is used
for the event-driven kernel and MantisOS [8] is used for the pre-
emptive kernel. The results show that TinyOS manages to be more
energy efficient at the high static traffic loads, while MantisOS suf-
fers from context switching overhead. However, MantisOS manages
better sporadic traffic loads, due to its preemptive scheduling. As a
result, there is no completely adequate RTOS for the WSNs in small
footprint platforms.

Three WSN RTOSes have introduced compromises between the
two kernel types. Preemptive threads called TOSThreads were in-
troduced for TinyOS [9]. In this approach, event-driven TinyOS is
executed in one high priority preemptive thread and the applications
are executed in lower priority threads. This approach guarantees ex-
ecution time for TinyOS. The context overhead remains since the
application threads can only use the event-driven kernel through a
blocking system call API. Thus, one application requires one thread
and context. The application programmer can control overhead by

creating applications for the TinyOS kernel also. However, this adds
unnecessary complexity to the application development.

Contiki implements preemptive multithreading support as an
application library on top of the event-driven kernel [10]. As with
TinyOS the context overhead remains. Contiki supports event-
handler application execution in parallel with preemptive threads.
Thus, the overhead can be controlled by the application programmer.
However, the application development complexity increases.

LIMOS approach is to associate a set of preemptive threads to
events [11]. Basically it is an event-driven kernel, which executes
multiple preemptive threads in every event handler. As usual the
event handlers have to run to the completion. This approach does
not preserve strict timings between the event handlers. If every event
handler has two preemptive threads, all the event handlers require
two stacks. This increases the data memory overhead to the level of
traditional preemptive kernel. However, the application programmer
can avoid unnecessary context switches.

The protothreads are introduced in [5]. Long processing
in event-handlers is usually split in phases with state-machines.
Dunkels et al. have shown that using the protothreads as an abstrac-
tion for state-machines, code complexity decreases. The protothread
API can be formed to resemble traditional preemptive multithread-
ing API, which is familiar to the application programmers. The
overhead of the protothreads is small increase in the execution time
and the code size. Also, local variables are not saved across the
blocking protothread system calls, which application programmer
has to be aware of.

When compared to the traditional preemptive and event-driven
kernels, HybridKernel proposes a kernel design that is scalable, pro-
vides timing accuracy and reactiveness, and is suitable for the small
WSN platforms. HybridKernel supports both methods natively and
through the coherent API, which Contiki and TinyOS do not pro-
vide. HybridKernel utilizes the protothreads for the event-driven ex-
tension to overcome difficult event handler programming. Use of the
protothreads is more free with HybridKernel than traditional event-
driven kernels, since the protothreads block each other only inside
that very preemptive thread. Unlike LIMOS, HybridKernel mini-
mizes both context overheads, since it minimizes the need for the
preemptive threads. This reduces amount of context switching and
needed data memory.

3. HYBRIDKERNEL DESIGN

The HybridKernel architecture is presented in Figure 1. It con-
structs from the preemptive kernel and from the novel event-driven
extension. In HybridKernel, the preemptive threads are named as
processes and the protothreads are named as threads. The nam-
ing convention was chosen to emphasize overhead differences and
to remove confusion between the preemptive threads and the pro-
tothreads.

3.1. Preemptive kernel

Processes are scheduled by the process scheduler, which is a prior-
ity based round-robin scheduler without time-slicing abilities. The
highest priority execution ready process is executed until it calls a
blocking system call. Every process has at least one thread and the
threads are connected to the parent process.

The event handler passes events, which are the communication
mechanism of the kernel. Figure 2 illustrates the event handling
scheme example. The events are assigned and delivered to the parent

HW

Kernel HAL

Process
Scheduler

Event
Handler

1. Process

Interrupt
Control

Thread
Scheduler

Thread
Scheduler

2. Process

...

Timers Mutexes IPC

System Call API

ISR A
PI

1. Thread
2. Thread

N
. Thread

...

1. Thread
2. Thread

N
. Thread

Thread
Scheduler

3. Process

...
1. Thread
2. Thread

N
. Thread

Preemp�ve
Kernel

Applica�on

Thread API Thread API Thread APIEvent-driven
Extension

Fig. 1: The Architecture of HybridKernel

process and the thread scheduler is responsible to deliver events to
the correct threads.

The IPC messaging system is provided for interprocess commu-
nication [12]. With it processes and threads may deliver message
envelopes to each other. The IPC system associates a thread specific
message queue to an event. If the receiver tries to receive an IPC
message and the message queue is empty, the event is assigned for
it. The receiver may then wait until the associated event rises.

Mutual exclusion (mutex) [12] is used for synchronization. The
mutex associates a global resource to an event. A process or thread
may try to reserve the resource. If the resource is not reserved, the
reservation is given to the reserver. If the resource is already re-
served, an event is assigned for the reserver. When the reservation
holder releases the resource, next event in the reservation list is risen
and the event holder is invoked.

The timing interface constructs from high and low resolution
timers. The high resolution timer is a microsecond scale timer. It
may be used only by one process at a time. To guarantee deadlines
to this process, its priority is set to the highest priority. The low reso-
lution timer is a millisecond scale timer and it has no restrictions for
amount of using processes or threads. Deadlines of the low resolu-
tion timers are not guaranteed and process priorities are not touched.

A Hardware Abstraction Layer (HAL) is used to hide the un-
derlying MCU from the kernel implementation. This ensures fast
portability of the kernel.

An Interrupt Service Routine (ISR) API is designed for the inter-
rupt driven device drivers. The device driver may register a callback
function and/or an event to an interrupt. When the interrupt occurs,
the ISR calls the callback function. The callback function can in-
dicate if the ISR should raise the provided event. If the callback
function is not provided, the ISR only raises the provided event.

3.2. Event-driven extension

The thread scheduler is responsible for call every thread inside one
process. This is also illustrated in Figure 2. When the application
programmer introduces more than one thread to the process, thread
scheduler is used. It calls thread entries in the round robin style.

assign event 2

event 2 risen

event 2 risen

wait event

wait event

Process

Thread
Scheduler

1. thread

Event Handler

2. thread

3. thread

wait event

wait events

block process

evoke process, event 2 risen

2. thread

wait event 2

assign event 1

assign event 3

wait events

Interrupts

block process

Fig. 2: Event Handling in HybridKernel

Every thread has a state, which indicates if it is blocked, suspended
or ready for the execution. When the thread scheduler notices that all
the threads are blocked (waiting for an event) or suspended, it starts
waiting for an event and blocks the parent process.

The proposed novel event-driven extension does not follow the
traditional event-driven approach, since the threads are not necessar-
ily associated to the events. They may be used as event handlers or
more like traditional threads. The protothreads fit to this approach
perfectly. For example, a nonblocking idle thread may be used to
preserve energy efficiency. The idle thread should be in the lowest
priority process, so that it is taken to the execution, when all other
processes and threads are blocked.

4. IMPLEMENTATION

The prototype applications and HybridKernel were implemented for
a prototype WSN hardware platform which consists of a Microchip
PIC18F8722 8bit MCU. It has 128KB of program memory and
3938B of data memory. HybridKernel was implemented with C
-programming language. Parts of the HAL and the context swap
were implemented with assembly.

Process related information is stored to a Process Control Block
(PCB). Respectively, thread related information is stored to a Thread
Control Block (TCB). The PCB holds a process identifier (PID), a
context, a process state, an event queues, and a thread table. The
TCB holds a thread entry point, a state, an IPC message queue, a
mutex entry, and an alarm entry.

The PCBs are stored to two separate queues depending on the
process states. When the process has a state ready, it is stored to the
ready queue. While the process has state blocked, it is stored to a
blocked queue.

Processes and threads have a PID. The threads inherit parent
processes PID and extend it with their own PID. The kernel uses
only the process PID and the thread scheduler uses the thread part.
This guarantees that events get assigned to right processes and the
thread PID is stored to the event also.

Table 1: HybridKernel system call interface

Process API

os_process_create(pid, options, priority,
code_entry, stack, thread_table)

Thread API

os_thread_begin()
os_thread_end()
os_thread_exit()
os_thread_event_wait()
os_thread_yield()

Thread Control API

os_thread_spawn(pid, code_entry)
os_thread_suspend(pid)
os_thread_get_state(pid)
os_thread_resume(pid)
os_thread_reset(pid)
os_thread_kill(pid)

Event API

os_event_assing(event)
os_event_deassign(event)
os_event_wait(block)

Timers API

os_get_entry_time()
os_wait_until(time_stamp)
os_alarm_set(time)
os_alarm_remove()

Mutexes API

os_mutex_reserve(mutex, block)
os_mutex_release(mutex)

IPC API

os_ipc_send(msg)
os_ipc_recv(block)

Memory control API

os_mem_alloc(size)
os_mem_free(pointer)

The protothreads were implemented with the same principle as
in [5]. The implementation relies on the ANSI C feature, which lets
case -statement in a switch -structure to be located anywhere inside
the structure. The point of the execution is stored to the so called
local continuation variable. With this variable, the protothread can
continue execution after a blocking system call.

Table 1 presents the coherent system call API of HybridKernel.
It is divided in several APIs to emphasize related system call func-
tions.

Processes may be created with os_process_create system call
function. It takes a PID, options, priority, process code entry point,
stack and thread table as parameters. With the parameter options the
application programmer may decide whether or not the process has a
thread scheduler. If the thread scheduler is not included, the process
may be used like a traditional preemptive thread. Stack and thread
table allocations are left to the application programmer.

The application programmer may create new threads with

os_thread_spawn function. A PID and a code entry point are
needed to spawn a new thread. If maximum amount of threads
is exceeded os_thread_spawn returns an error code. With func-
tions os_thread_suspend, os_thread_resume, os_thread_reset and
os_thread_kill application programmer may control existing threads
in the system.

Every thread has to start with os_thread_begin and end with
os_thread_end. A thread may exit permanently with os_thread_exit.
When thread exits, its resources are freed and a new thread may be
spawn to replace it. Thread may voluntarily yield with os_thread_-
yield.

An event may be assigned with os_event_assign. If the event
is already assigned, an error code is returned. The thread may wait
events with os_thread_event_wait.

System calls os_entry_time and os_wait_until are for the high
resolution timer. The os_entry_time returns current time stamp and
the os_wait_until returns when the given time stamp has passed. The
os_alarm_set and os_alarm_remove system calls are for the low res-
olution timer. The os_alarm_set takes a millisecond value in which
an alarm event is risen. The os_alarm_remove removes the currently
set alarm.

A resource may be reserved with os_mutex_reserve system call
and released with os_mutex_release. An IPC message may be send
and received with os_ipc_send and os_ipc_recv system calls. A sim-
ple memory allocation scheme is provided for dynamic runtime al-
locations. With os_mem_alloc the application programmer may re-
serve memory block of a desired size. os_mem_free can be used to
release reserved memory blocks.

The threads may use any system call freely, except the os_wait_-
until and os_event_wait. These are blocking system calls for the one
threaded processes only. The os_set_alarm, the os_mutex_reserve,
and the os_ipc_recv system calls take a parameter that decides
whether or not the system call should block the whole process. If
they do not block, an event is assigned for the thread and the system
call returns a handle to that event.

5. EVALUATION

In this section advantages of the HybridKernel are evaluated. Sys-
tem call API coherency is compared to other hybrid WSN RTOSes.
Scalability is evaluated as data memory and program memory con-
sumption. Performance shows timing accuracy and context overhead
minimization.

5.1. System call API Coherency

The coherency of the API is achieved as threads and processes may
use provided system calls as liked, except the os_wait_until and
os_event_wait system calls. Contiki and TOSTthreads provide dis-
tinct library and system call API to support preemptive multithread-
ing. In Contiki, the library is used on top of the event-driven ker-
nel and it uses same event mechanism [10]. However, the event-
driven API is not usable crosswise with the preemptive library. In
TOSThreads, one thread executes TinyOS [9]. Thus, the TinyOS
API cannot be used in other threads and a separate system call API
is needed for threads to access TinyOS services. The API of LIMOS
is not presented in [11].

5.2. Scalability

The HybridKernel implementation requires 89 bytes of data mem-
ory. This is the common figure that is given for kernel memory con-

sumption and it is static. However, when an application introduces
tasks, memory consumption increases due to the required PCBs,
TCBs, and possible stacks. With the current implementation, one
PCB requires 28 bytes and one TCB requires 31 bytes.

The total data memory consumption C can be evaluated with

C = 89 + (31 + S) × min(T, P) + 28 × T, (1)

where P is the amount of the preemptive processes and T is the
amount of threads in the configuration. S is the used stack size for
the processes. min(T, P) is needed due to the fact, that every process
need at least one TCB. Invariable 89 comes from the static kernel
consumption and invariables 31 and 28 represent the TCB and PCB
consumptions.

For example, if the application programmer has 1 kilobyte bud-
get, 5 processes and 6 threads or 3 processes and 16 threads could
be used.

With WSN protocols, such as the TUTWSN [2] [13], one high
priority process could be dedicated to the Time-Division Multiple
Access (TDMA) Medium Access Control (MAC) protocol. One
process could handle the routing and management layer with help
of two threads and third process could handle the application layer
and applications with the remaining threads. TDMA MAC proto-
cols generally require strict timings, since the medium is divided in
to time slots. The routing and management protocol layers require
CPU time frequently, but they do not need strict timings. The appli-
cations traditionally sample sensors with long intervals and do not
require frequently CPU time. Thus, this example division is realis-
tic, because the MAC layer has guaranteed deadlines and the routing
and management are executed prior to the applications.

Estimations of the data memory consumptions of various WSN
RTOSes are gathered in Table 2 for the preceding WSN protocol ex-
ample. It should be noted that stack size and control blocks varies
depending of the used MCU and the compiler. Estimations are based
to the given values if possible. However, some TCB and PCB esti-
mations are based on the available source codes. Thus, these estima-
tions are suggestive.

16 threads are used for the preemptive SensorOS [3] and Manti-
sOS [8] kernels. For Contiki, TinyOS, and HybridKernel three pre-
emptive parts and 16 cooperative parts are used. The stack size of
128 B is used. Contiki requires one stack for the event-driven part
and thus it has 128 B more stack consumption than others. To avoid
confusion between processes and threads, the PCB is used for the
preemptive part memory consumption and the TCB is used for the
nonpreemptive parts.

The estimated values show the benefits of the hybrid approach.
The SensorOS and MantisOS require more data memory and thus
they are harder to fully utilize with small 8 bit MCUs. HybridKer-
nel and Contiki have similar memory consumption figures, where
as TinyOS approach requires more data memory. As a conclusion,
HybridKernel has one of the smallest data memory footprints of the
presented kernels and it scales to various configurations.

HybridKernel uses 9038 bytes of the program memory when
compiled for the Microchip PIC18F8722 MCU. This is 7 % of the
available program memory. Comparison to other RTOSes is not fea-
sible, since the compiler and the target platforms vary. Preemp-
tive WSN RTOS SensorOS is implemented for similar Microchip
PIC18F4620 MCU in and it requires 6964 B of the program memory
[3]. Thus, the event-driven extension brings about 2 KB of program
memory overhead.

Table 2: Data memory footprint comparison of WSN RTOSes based on estimated values

RTOS Kernel PCB PCB total Stacks TCB TCB total Total Difference
(bytes) (bytes) (bytes) (bytes) (bytes) (bytes) (bytes) (%)

HybridKernel 89 28 84 384 31 496 1053 0 %
SensorOS 115 [3] 17 [3] 272 2048 - - 2435 131 %
TinyOS 178 [7] 43 [14] 129 384 46 [7] 736 1427 35 %
Contiki 230 [10] 8 [15] 24 476 15 [16] 240 1006 -5 %
MantisOS 144 [8] 10 [8] 160 2048 - - 2352 123 %

5.3. Performance

The high resolution timer accuracy was tested with an application,
where the CPU was heavily populated at every timer invoke by the
lower priority processes with several threads. Timing accuracy was
tested on a continuous manner, where the highest priority process
waited the high resolution timer at constant intervals. This test en-
sures that the deadline can be guaranteed for the high resolution
timer user, such as the TDMA based MAC -protocol. Test was per-
formed with 250 ms, 500 ms and 1 s wait intervals. The results show
that accuracy was constant through different intervals and average
variance was as low as 2 µs.

The context switching takes 90 µs on average. With Hybrid-
Kernel there are eventually less context switches than with the pre-
emptive only kernels. For example, if the application requires ac-
curate execution for one thread with 100 ms intervals and between
every 100 ms three other threads execute their tasks. When the three
threads are ready, the CPU is released for the idle thread. With the
traditional preemptive kernel, the context switching overhead would
be 0.72 % of the execution time. With HybridKernel the overhead
would be 0.18 %, if the timing critical thread is executed in one pro-
cess and other threads are executed in lower priority process.

The results show that the design of HybridKernel does not af-
fect the timing accuracy of a preemptive kernel. The minimizing of
the context switching overhead improves energy efficiency, due to
decrease in the kernel processing time.

6. CONCLUSIONS AND FUTURE WORK

This paper shows that using an event-driven extension with a pre-
emptive RTOS kernel is viable. The presented HybridKernel has a
small data memory footprint, it preserves time accurately, it is scal-
able, it improves energy efficiency, and it provides an easy-to-use
coherent system call interface. All these are achieved with small
program memory overhead and small increase in the responsibility
of the application programmer. HybridKernel enables preemptive
kernels with small 8 bit microcontroller units. Thus, it enables pre-
emptive kernels with the resource constrained WSN platforms.

In future work, we will study a more dynamic priority based
thread scheduler. A dynamic loading of the protothreads over WSN
is another aspect of the future work.

7. REFERENCES

[1] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and
E. Cayirci, “A survey on sensor networks,” Communications
Magazine, IEEE, vol. 40, no. 8, pp. 102–114, Aug 2002.

[2] Mikko Kohvakka, Marko Hännikäinen, and Timo D. Hämäläi-
nen, “Ultra low energy wireless temperature sensor network
implementation,” in Proc. 16th Annual IEEE International

Symposium on Personal Indoor and Mobile Radio Communi-
cations, Berlin, Germany, Sept. 2005, pp. 801–805.

[3] Mauri Kuorilehto, Timo Alho, Marko Hännikäinen, and
Timo D. Hämäläinen, “Sensoros: A new operating system
for time critical wsn applications,” in Embedded Computer
Systems: Architectures, Modeling, and Simulation, Heidelberg,
Germany, Aug. 2007, pp. 431–442.

[4] R. Dasgupta, “Anatomy of rtos and analyze the best-fit for
small, medium and large footprint embedded devices in wire-
less sensor network,” Sensor Technologies and Applications,
2008. SENSORCOMM ’08. Second International Conference
on, pp. 598–603, Aug. 2008.

[5] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb
Ali, “Protothreads: Simplifying event-driven programming of
memory-constraine embedded systems,” in Proceedings of the
4th International Conference on Embedded Networked Sensor
Systems, Boulder, Colorado, USA, Nov. 2006, pp. 29–42.

[6] Cormac Duffy, Utz Roedig, John Herbert, and Cormac
Sreenan, “An experimental comparison of event driven and
multi-threaded sensor node operating systems,” Pervasive
Computing and Communications Workshops, 2007. PerCom
Workshops ’07. Fifth Annual IEEE International Conference
on, pp. 267–271, March 2007.

[7] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, and Kristofer Pister, “System architecture directions
for networked sensors,” SIGPLAN Not., vol. 35, no. 11, pp.
93–104, 2000.

[8] Shah Bhatti, James Carlson, Hui Dai, and et al., “Mantis os: An
embedded multithreaded operating system for wireless micro
sensor platforms,” Mobile Networks and Applications, vol. 10,
no. 4, pp. 563–579, Aug. 2005.

[9] TinyOS Alliance, “Tinyos 2.1 adding threads and memory pro-
tection to tinyos,” in SenSys ’08: Proceedings of the 6th ACM
conference on Embedded network sensor systems, New York,
NY, USA, 2008, pp. 413–414, ACM.

[10] Adam Dunkels, Björn Grönvall, and Thiemo Voigt, “Contiki -
a lightweight and flexible operating system for tiny networked
sensors,” in Proc. 29th Annual IEEE International Conference
on Local Computer Networks, Tampa, FL, USA, Nov. 2004,
pp. 455–462.

[11] Hai ying Zhou and Kun mean Hou, “Limos: A lightweight
multi-threading operating system dedicated to wireless sensor
networks,” Wireless Communications, Networking and Mobile
Computing, 2007. WiCom 2007. International Conference on,
pp. 3051–3054, Sept. 2007.

[12] Abraham Silberschatz and Peter B. Galvin, Operating sys-
tem concepts, Addison-Wesley Publishing Company, 4 edition,
1994.

[13] Jukka Suhonen, Mauri Kuorilehto, Marko Hannikainen, and
Timo D. Hamalainen, “Cost-aware dynamic routing protocol
for wireless sensor networks - design and prototype experi-
ments,” Personal, Indoor and Mobile Radio Communications,
2006 IEEE 17th International Symposium on, pp. 1–5, Sept.
2006.

[14] TinyOS code repository, “File: tinyos-
2.x/tos/lib/tosthreads/types/thread.h, revision 1.1,” [ONLINE]
http ://tinyos.cvs.sourceforge.net/, Apr. 2009.

[15] Contiki code repository, “File: contiki-2.x/core/sys/mt.h, revi-
sion 1.6,” [ONLINE] http ://contiki.cvs.sourceforge.net/, Apr.
2009.

[16] Contiki code repository, “File: contiki-2.x/core/sys/process.h,
revision 1.16,” [ONLINE] http ://contiki.cvs.sourceforge.net/,
Apr. 2009.

112 Publications

PUBLICATION 2

T. Laukkarinen, L. Määttä, J. Suhonen, T. D. Hämäläinen, and M. Hännikäinen, "De-
sign and Implementation of a Firmware Update Protocol for Resource Constrained
Wireless Sensor Networks". International Journal of Embedded and Real-Time Com-
munication Systems (IJERTCS), 2(3), pp. 50–68, 2011. doi:10.4018/978–1–4666–
2776–5.ch003

This paper appears in International Journal of Embedded and Real-Time Commu-
nication Systems (IJERTCS), authored by T. Laukkarinen, L. Määttä, J. Suhonen,
T. D. Hämäläinen, and M. Hännikäinen. Copyright 2011, IGI Global, www.igi-
global.com. Posted by permission of the publisher.

50 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Computer Science, Dissemination Protocol, Embedded Systems, Reprogramming, Wireless
Sensor Networks

INTRODUCTION

A Wireless Sensor Network (WSN) consists of
autonomous sensor nodes (Akyildiz, Weilian,
Sankarasubramaniam, & Cayirci, 2002). The
goal of sensor node hardware development is

Design and Implementation of
a Firmware Update Protocol
for Resource Constrained
Wireless Sensor Networks

Teemu Laukkarinen, Tampere University of Technology, Finland

Lasse Määttä, Tampere University of Technology, Finland

Jukka Suhonen, Tampere University of Technology, Finland

Timo D. Hämäläinen, Tampere University of Technology, Finland

Marko Hännikäinen, Tampere University of Technology, Finland

ABSTRACT
Resource constrained Wireless Sensor Networks (WSNs) require an automated firmware updating protocol
for adding new features or error fixes. Reprogramming nodes manually is often impractical or even impos-
sible. Current update protocols require a large external memory or external WSN transport protocol. This
paper presents the design, implementation, and experiments of a Program Image Dissemination Protocol
(PIDP) for autonomous WSNs. It is reliable, lightweight and it supports multi-hopping. PIDP does not require
external memory, is independent of the WSN implementation, transfers firmware, and reprograms the whole
program image. It was implemented on a node platform with an 8-bit microcontroller and a 2.4 GHz radio.
Implementation requires 22 bytes of data memory and less than 7 kilobytes of program memory. PIDP updates
178 nodes within 5 hours. One update consumes under 1‰ of the energy of two AA batteries.

to create tiny battery-powered low-cost dis-
posable nodes. Increasing the performance or
memory capacity increases the physical size,
energy consumption and manufacturing costs.
Thus, nodes are limited in computation, storage,
communication and energy resources. These
limitations must be addressed when designing
and implementing protocols in WSNs.DOI: 10.4018/jertcs.2011070103

International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011 51

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

It is not always possible to physically access
the nodes in the field once they are deployed.
Yet, adding new features, applications and
program error fixes necessitates updating the
program image that contains the software and
protocols running on a node. The solution is a
WSN reprogramming protocol, which is used
to inject new software into a WSN.

Five general challenges affecting repro-
gramming in WSNs can be identified (Wang,
Zhu, & Cheng, 2006). First, large program
images must be transferred reliably through
an error prone medium. Thus, the receiver
should be able to detect errors and request the
corrupted segments again. Second, processing
speed and memory capacity in nodes set limits
to the time and space complexity of designed
protocols. Third, battery powered WSN nodes
inherently require the reprogramming protocols
to be energy efficient. Fourth, the reprogram-
ming protocol must be scalable enough to handle
WSNs that consist of hundreds or thousands of
nodes deployed in varying densities. And fifth,
the operating system, which is used in nodes,
can set limits on the program image format and
the reprogramming protocol.

Several protocols (Wang, Zhu, & Cheng,
2006) have been proposed for reprogramming
a WSN. A common approach is to equip each
node with external memory storage where the
new program image is stored. Once the image
has been received and verified, a dedicated im-
age transfer program copies the new program
image over the old image. This approach al-
lows uninterrupted operation as the new image
is transferred in the background. However, the
additional memory increases hardware price
and takes place on the circuit board, therefore
necessitating expensive or energy consuming
platforms that prohibit the vision of long term,
disposable nodes. Furthermore, many protocols
(Hui & Culler, 2004; Levis, Patel, Culler, &
Shenker, 2004; Levis & Culler, 2002) support a
particular operating system only.

In this paper we present the design, imple-
mentation and experimental results of a Program
Image Dissemination Protocol (PIDP) for au-
tonomous adhoc multihop WSNs. PIDP consists
of firmware version handshakes between nodes,

periodic firmware version advertisements and
a reliable program image transfer, as shown in
Figure 1. Firmware version advertisements are
used between neighboring nodes to advertise
and compare firmware versions and check for
compatibility. The reliable image transfer is used
to transfer program images between nodes and to
rewrite the program memory. A small bootloader
program locates and executes the loaded program
image. PIDP is lightweight, energy efficient, reli-
able and, unlike other reprogramming protocols,
does not require external memory for temporary
storage of program images. A PIDP update in
one part of the WSN does not disturb the whole
network, thus, allowing a continuous operation
of the non-affected nodes. Furthermore, PIDP
is not restricted to a particular operating system
or WSN protocol.

PIDP was evaluated using the TUTWSN
prototype (Kuorilehto, Kohvakka, Suhonen,
Hämäläinen, Hännikäinen, & Hämäläinen,
2007). TUTWSN is a state of the art adhoc
multihop WSN technology for resource-con-
strained WSNs developed by Department of
Computer Systems at Tampere University of
Technology. TUTWSN features an energy ef-
ficient medium access control (MAC), which
uses time-division multiple access (TDMA), a
cost-aware routing protocol (Suhonen, Kuo-
rilehto, Hännikäinen, & Hämäläinen, 2006) and
multiple custom designed hardware platforms.
The operating principle of the MAC layer of
TUTWSN is similar to the beacon enabled
clustered mode in IEEE 802.15.4 (IEEE Stan-
dards Association, 2008). Therefore, a similar
implementation can be applied to ZigBee (Zig-
Bee Alliance, 2010).

The paper is organized as follows. First,
related work is covered. Second, the design
of PIDP is presented. Third, implementation
is shown. Fourth, evaluation, performance
measurements are given. Finally, the paper
is concluded.

RELATED WORK

A number of reprogramming protocols for WSN
are built on the TinyOS (Hill, Szewczyk, Woo,

52 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Hollar, Culler, & Pister, 2000) operating system.
TinyOS does not support loadable modules.
Thus, a program image must be loaded as a
single binary image.

XNP (Crossbow Technologies, 2003) is
one of the first reprogramming services for
TinyOS and the MICA2 platform. It features
a single-hop reprogramming scheme where the
program image is sent as unicast to a particular
node or broadcasted to a group of nodes. The
single-hop nature limits the scalability of XNP
and it only serves as an alternative to manual
wired reprogramming.

The successor to XNP is Deluge (Hui &
Culler, 2004). Deluge is an epidemic multihop
protocol that allows nodes to store several dif-
ferent program images in an external EEPROM
memory. One of these images can act as the so
called Golden image, which is used as a backup
image if the main program image is corrupted.
The 2.0 version (Hui, 2005) also adds support
for resuming incomplete program image down-
loads and additional program image verification.
MOAP (Stathopoulos, Heidemann, Estrin, &
SENSING, 2003) is similar to Deluge.

The Maté virtual machine (Levis & Culler,
2002), which is built upon TinyOS, bypasses
the lack of loadable modules by presenting
a high-level virtual machine instruction set.
Maté bytecode programs are smaller than full
program images, which lowers the energy
cost of disseminating them. The downside is
that interpreting the bytecode creates energy
overhead. If new software is disseminated only
seldom, the energy consumption of the code
interpretation is dominant.

Unlike the TinyOS-based approaches, indi-
vidual applications and services can be loaded
individually in the Contiki operating system
(Dunkels, Gronvall, & Voigt, 2004; Dunkels,
Finne, Eriksson, & Voigt, 2006). Like Maté,
this saves energy as only parts of the whole
image need to be disseminated. This dynamic
loading only applies to the applications, while
the operating system and the protocol stack can
only be updated with a separate special image
transfer program.

The requirement for external memory
storage is common to all these reprogramming
protocols, as they use transport layer dissemina-

Figure 1. The logical structure and the memory layout of PIDP and the WSN stack. PIDP is a
separate protocol stack. Firmware version advertisements and handshaking co-operate with the
WSN stack to disseminate version information and to begin reliable program image transfer.

International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011 53

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

tion protocols to transfer program images. These
dissemination protocols are stored within the
main program image, which cannot be over-
written as long as it is being executed. This can
cause problems e.g. in (Langendoen, Baggio, &
Visser, 2006), where unreliable MAC protocol
made Deluge useless. As a result, nodes were
updated by hand on the deployment site.

An approach to updating based on the dif-
ferences between the old and the new program
image is presented in (Mukhtar, Kim, Kim,
& Joo, 2009). The old and new images are
analyzed and a model to modify the old one
is created. The model and completely new
parts are disseminated with any dissemina-
tion protocol. Similar approach is presented
in (Reijers & Langendoen, 2003), but this is a
processor specific solution. These approaches
do not efficiently update the image when it
is significantly different from the old image.
However, these do not require external flash,
but they do require a reliable transport protocol
layer. Reliable transport protocols for code dis-
semination have been presented in Stathopoulos,
Heidemann, Estrin, and SENSING (2003) and
Miller and Poellabauer (2008).

As opposed to Contiki, Maté or difference
models, PIDP transfers complete program im-
ages. In our experience, the ability to update
individual applications is seldom needed as
programming error fixes and new features often
affect multiple modules of the program image.
In addition, loading individual applications re-
quires either support from the operating system
or a separate mechanism for handling runtime
relocation of modules. PIDP requires no such
support and is operating system independent.
PIDP does not require an external reliable
transport protocol and it can be used to update
completely different image to the network.

PIDP DESIGN

PIDP design consists of firmware version
handshaking, periodic firmware version adver-
tisements, and reliable image transfer. Figure 2
presents the PIDP design in action. Following

sections present the design in detail. PIDP mini-
mizes communication and memory overhead,
therefore allowing very resource-constrained
implementations. Also, PIDP design includes
new firmware injection, security, operating
system support, and support for heterogeneous
networks.

Firmware Version Handshaking

Program image transfer begins automatically
when a node detects that one of its neighbors
has a new version of a compatible program, as
shown in Figure 2 between the nodes A and B.
The node with a lower version number sends a
firmware request and the other node responds
with a firmware confirmation at the WSN
protocol level. After this, the nodes jump to
the reliable image transfer of the PIDP, which
is independent of the WSN stack.

PIDP assumes that a node performs a
handshake with its neighbors after powering
up to find new routes. This is the case in most
of the sender decided WSN protocols, such as
ZigBee. Version information is exchanged in
PIDP when a node exchanges routing informa-
tion or synchronizes with its neighbors, which
adds a small overhead. Either node participating
in the handshaking can start the update opera-
tion. Both nodes reboot after the update and
perform handshaking with their neighbors. This
guarantees that program images will propagate
epidemically in the WSN.

It is important to note that version infor-
mation is exchanged on a hop-by-hop basis
between neighbors without flooding the version
information further into the network. If a net-
work contains multiple nodes with incompatible
program images, it may limit the propagation
of program images.

Periodic Firmware Version
Advertisements

Nodes periodically advertise their program
image version on an advertisement channel,
as shown in Figure 3. After each advertisement
the source listens for a reply. The parameter Ta

54 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

adjusts the interval between these periodic ad-
vertisements. The main purpose of the periodic
advertisements is to act as a failsafe. If a node
encounters a problem while reprogramming or
the image transfer is disrupted, the node may
listen for the periodic advertisements to find
a new source for image transfer as shown in
Figure 3. In addition, periodic advertisements
allow nodes to perform image acquisition even
if their protocol stacks might otherwise be
incompatible. As periodic advertisements are
only transmitted seldom and nodes do not listen
for them during normal operation, they use very
little energy. WSNs that use synchronized MAC
protocols, such as IEEE 802.15.4, can embed
the version information in synchronization
beacons, which nodes transmit periodically.

Reliable Image Transfer

Information about the program image is stored
in a header, which consist of hardware identi-
fier, firmware version, message authentication
code, and valid and dissemination bits. Program
images are identified by a combination of the
hardware platform identification number and the
firmware version number. Platform identifica-
tion numbers are used to limit the transfer of
program images between incompatible sensor
nodes. Furthermore, the header contains a valid
bit that indicates whether or not the program
image has been successfully validated and
can be safely executed. The dissemination bit
decides if the node will disseminate the image
to the network.

Figure 2. Node B has a newer version. Node A and Node B execute firmware handshaking on
WSN association. Then they start program image update and move to the PIDP reliable im-
age transfer. Meanwhile Node C and D continue normal WSN operation. Eventually, Node A
is updated and nodes reboot. Node B associates with Node C, starts the update, and continues
disseminating image further.

International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011 55

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Unlike other reprogramming proposals, the
image transfer in PIDP operates independently
of the main WSN stack. This allows the image
transfer protocol to achieve a better energy-
efficiency, as minimizing the number of proto-
cols layers used in the transfer also minimizes
the amount of overhead in the transmission of
program images. Furthermore, simple indepen-
dent stack can be tested thoroughly and possible
problems of unreliable transfer protocols cannot
prevent program image update. As the WSN
protocol stack is part of the updated image,
the possible problems on WSN protocols can
be fixed with PIDP.

The image transfer protocol follows the
general client-server architecture as seen in
Figure 2. The receiver of the program image
acts as a PIDP client, while the sender acts
as a PIDP server. Communication between a
PIDP client and a PIDP server is performed at
a channel selected by the PIDP server, which
is transmitted within the firmware advertise-
ments. PIDP servers may choose to use a single
network-wide dedicated channel for the image
transfers or they may use an appropriate channel

selection algorithm to choose channels that are
not being used. Choosing different channels is
preferred, as this lowers the chance of collisions
with nearby image transfers.

The PIDP client begins by requesting the
header of the program image as presented in
Figure 2. Once the header is received the PIDP
client marks the current header invalid and
requests the contents of the program image
in blocks. After each block the PIDP client
immediately writes the data to the program
memory, thus invalidating the previous program
image. After the whole image is received the
PIDP client validates the program image by
calculating the message authentication code
and comparing it to the one in the header. If the
validation calculation is correct, the header is
marked valid. Otherwise, the header remains
marked invalid.

After the transfer the PIDP client and the
PIDP server reboot and return to the normal
WSN operation. The PIDP client uses the PIDP
bootloader program to check that the header
is valid and begins executing code from the
beginning of the program image. If the header

Figure 3. Example of periodic advertisements and their functioning as a fail-safe. Node A trans-
mits advertisements with interval Ta. Node B is updating its firmware with Node C at the data
channel of Node C. Node B encounters a problem at terror, scans the advertisement channel and
begins a new transmission with Node A using the data channel of Node A.

56 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

is not valid then the PIDP client begins to scan
the advertisement channel for firmware adver-
tisements and re-executes the image transfer.

Program Image Injection

Three alternative ways exist for new program
image injection with PIDP. First, a new node
with a new image may be brought to the cover-
age area of the WSN. The new image is then
disseminated to the network automatically by
PIDP. Second, a PIDP cloner device may be used
to transfer program image to one node in the
network, which then starts advertising the new
version. Third, the new image can be uploaded
to a server, which delivers it to the gateways.
The gateways advertise the new image to the
network and PIDP will first update the nearest
nodes using the gateways as relays.

The PIDP cloner device is a specially
programmed node that does not act as a part
of the WSN. It only advertises the new image
on a special cloning channel. The nodes do not
normally listen for this channel. When the node
is rebooted while a button is pressed, the node
will listen for the cloning channel for a period.
If there is a PIDP cloner device nearby and the
hardware platform identifier match, the node
will start the image transfer. If the dissemination
bit is set, the newly programmed node will then
start disseminating the image further.

The server injection is presented in Figure
4. The image is first compiled and then modified
with a script to a XML file, and the XML file
is finally uploaded to the database. The server
indicates to the gateways that there is a new im-
age to advertise. When a node notices the new
image from the advertisements, the gateway
requests the new image piece by piece from
the server and relays it to the node.

Security

Three major security questions concern program
image updating (Deng, Han, & Mishra, 2006).
First, the new image must be from a reliable
source. Second, the new image must be valid.
Third, the image must be transferred securely
to preserve intellectual property. PIDP accepts

only images with correct message authentication
code. This ensures that unknown source cannot
inject a new image to the network and hijack
the network. The message authentication code
is calculated with a one-way function that uses
a secret key, the program image, and a magic
number as parameters. As the program image is
used in calculation of the message authentication
code, the image validity is secured at the same
time. The secret key can be used to encrypt and
decrypt the program image packets with AES
algorithm after the handshaking to prevent
stealing the program image with sniffing.

Operating System Support

WSN operating systems have two approaches
for updating. The whole image including the
application and the operating system are dis-
seminated (TinyOS and Deluge), or only the
applications are disseminated to the network
(Contiki). PIDP supports both ways as presented
in Figure 5. The operating system can be a part
of the whole program image as in Figure 5a. This
is similar to Deluge and TinyOS. The operating
system can be left out of the program image, as
in Figure 5b, but the applications are treated as
one image. Injecting one new application re-
quires re-injecting all the existing applications.

PIDP allows as many image version head-
ers as there are room in the version advertisement
packet. Thus, program image can be split in
several parts as presented in Figure 5c. These
parts can be separately updated. The selected
program image part is indicated in the hand-
shaking between the PIDP client and server.
Then, the PIDP will update only the selected
part. This can be used to inject new applications
to the network without injecting the remaining
ones again and the operating system can be
updated separately. However, each image re-
quires a new header. The header overhead would
increase and the amount of applications would
be limited. Furthermore, the applications should
always fit inside a certain space and some ap-
plications would waste the program memory.
Every program image requires known entry
functions, which will add some complexity in

International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011 57

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

the development. Multiple program image sup-
port is not currently incorporated to the PIDP
design nor implemented. It will be imple-
mented in future work. Novel solutions are
needed for solving the problems.

PIDP does not restrict the operating system
from using its own protocols to update applica-
tions. For example, PIDP can update Contiki
and Contiki can use its own protocols to handle

applications. The image validation should then
only cover the area, which is not modified by
the program code dissemination of Contiki.

Heterogeneous Node Support

WSNs are seldom homogenous; nodes have
different sensors, different roles, and different
applications. PIDP separates heterogeneity only

Figure 4. Program image injection starts with compilation of the image from a source code to
a hex file, then formatting it to an xml file, and uploading it to the database. The server will
retrieve image information and relay it to the gateways. The gateways will advertise the image
to the WSN and relay the image, when a node requests the new image.

Figure 5. a) A typical use of PIDP, where operating system and WSN stack form the program
image. b) If the operating system is reliable and will not require new features, it can be left out
of the program image. c) With small modifications, PIDP can update the program image in two
or more parts. This allows granular updating, but image headers increase overhead

58 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

between hardware devices. If the hardware is
not same, the image transfer is not started. To
overcome this limitation, we have developed
an auto-configurator. The node is configured
during the building process to its configura-
tion: the connected sensors, desired roles and
required applications of the node are set to
the EEPROM of the node. A program image
is used, which contains all the necessary code
for these configurable parts. Node selects used
role and applications at the startup according
to the configuration. This allows us to use one
single program image for the whole WSN with
various node configurations.

IMPLEMENTATION

PIDP and TUTWSN protocol stack are imple-
mented using the C programming language and
the Microchip MPLAB C compiler (Microchip
Technology, 2009).

TUTWSN Protocol Stack

The TUTWSN MAC protocol forms a clustered
tree topology (Kuorilehto, Kohvakka, Suhonen,
Hämäläinen, Hännikäinen, & Hämäläinen,
2007). Each cluster contains a cluster head, a
headnode, and several cluster members. Cluster
members can be leaf nodes or headnodes of
other clusters forming a tree of clusters. Each
cluster within interference range operates on
a separate cluster channel that is used for
intra-cluster communications. Nodes share a
common network channel that is used by the
headnodes to advertise their clusters. Nodes
scan the network channel at least once every
hour to find new clusters. In addition, network
scans occur when nodes lose their route to the
network gateway.

The headnodes maintain a data exchange
schedule. Time is divided into fixed length
access cycles. Each access cycle begins with
a superframe, which contains slots for data
transfers at the cluster channel, and ends in
an idle time. The length of the access cycle is
set to two seconds. Cluster advertisements are

sent on the network channel in the beginning
of each superframe. Three additional cluster
advertisements are also sent during the idle time
with approximately 500 millisecond intervals
between them.

A TUTWSN sensor node includes an 8 bit
Microchip PIC18LF8722 microcontroller (Mi-
crochip Technology 2008) with 128 kilobytes of
program memory and 3936 bytes of data memo-
ry. The microcontroller has an internal 1024 byte
EEPROM memory. A Nordic Semiconductors
nRF24L01 (Nordic Semiconductors, 2007) is
used as the radio, which has a payload size of
32 bytes and a configured transmission rate of
1 megabit per second. The radio does support
carrier sensing. It operates on the 2.4 gigahertz
band and offers 126 channels and transmission
powers of -18 dBm...0 dBm. TUTWSN node
has a simple user interface, which consists of
a push button and two light emitting diodes.
TUTWSN sensor nodes can be equipped with
multiple sensors, such as accelerometers, tem-
perature sensors, and humidity sensors. Two 1.5
volt LR6-sized batteries are used as the power
source. A TUTWSN sensor node circuit board
is shown in Figure 8.

PIDP Implementation

Firmware version handshaking was embed-
ded to the MAC layer of TUTWSN. Thus,
nodes exchange version information when
they perform association with each other. This
allows rapid firmware dissemination within a
TUTWSN cluster tree.

The periodic firmware advertisements are
transmitted in the TUTWSN network channel,
which allows nodes to receive advertisements
while they are performing normal neighbor dis-
covery. An advertisement is sent on each access
cycle during the idle time. Thus, the interval Ta
between the advertisements matches the length
of the access cycle. In addition, advertisements
on the TUTWSN network channel allow the
program image to propagate between different
cluster trees, but this method of dissemination
is limited by the low frequency of network

International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011 59

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

scans. The cluster channel is used for program
image transfer to minimize collisions between
concurrent program image transfers.

The bootloader and the program image
transfer protocol are stored in a reserved segment
in the beginning of the program memory. They
are followed with the program image header
and the main program image. The message
authentication codes are implemented by using
a modified 4 byte RC4 code similar to the code
described in (Zhang, Yu, Huang, & Yang, 2008).

The program image transfer protocol uses
a packet size of 32 bytes. Each packet has a 6
byte header followed by a payload with a length
of 26 bytes.

Reliable image transfer is located on a
memory section that cannot be updated with
PIDP. It includes only the necessary modules
to perform the program image transfer and
the program memory rewrite. Modules are a
radio driver, PIDP server, PIDP client, program
memory writer, program image verification, and
bootloader. This memory section has to be kept
as small as possible since it reduces amount of
available memory for the WSN implementation.

The reliable image transfer and the main
program are never executed concurrently. Thus,
the image transfer can utilize data memory seg-
ments that are normally reserved for the main
program. Overlaying the data memory signifi-
cantly reduces data memory requirements of the
image transfer protocol. Despite the overlaying,
a small amount of dedicated memory is needed
for passing version information between the
main program and the image transfer.

EVALUATION

Evaluation of PIDP was performed by analyzing
the memory consumption, propagation speed
and energy consumption impact.

Memory Consumption

Memory consumption was analyzed from the
compiled program images for the TUTWSN
platform.

From the results in Table 1 we can see that
the memory consumption of the PIDP protocol
is split in two parts. The first part contains the
image transfer while the second part is stored
within the program image and contains the
necessary support for accessing the image
transfer protocol and the implementation of
the firmware advertisement scheme.

Although PIDP requires 815 bytes of data
memory in total, the absolute increase in the
data memory requirements stays at 22 bytes.
The image transfer overlays data memory with
the WSN stack.

Propagation Time

In order to give a reference point for the mea-
sured propagation times, the program image
transmission and verification times between
two nodes were first measured. Transferring
a 123 kilobyte image between two nodes in
optimal conditions was 51 seconds on average,
thus achieving a transfer rate of 2.4 kilobytes
per second. The program image verification
time was a constant 23 seconds. Thus, the
minimum time for updating a sensor node with
this particular program image was 74 seconds.

Program image propagation experiments
were performed in a typical office environment
with various interference sources such as sev-
eral WLAN routers operating on the same
frequency band. The first experiment included
one gateway and 25 sensor nodes. The nodes
were placed on a table in one group. Size of the
table was less than one square meter. The pur-
pose of this experiment was to see how PIDP
performed in a situation where every node had
multiple neighbors in close proximity and the
amount of network activity was high. Update
speed is presented in Figure 6. PIDP success-
fully reprogrammed the nodes in 12 minutes.
8 concurrent image transfers were observed
during this period at the time of 500 and 600
seconds from the start. 28 updates were per-
formed, which indicates that 3 updates failed
and 3 nodes had to be updated again. Reason
for these failures is unknown. Ta was approxi-
mated based on the measurements. It took 35

60 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

seconds from a node to be capable to dissemi-
nate received image.

For the second experiment, the perfor-
mance of PIDP was measured using the Tampere
University of Technology campus WSN. This
campus network has 178 sensor nodes and 13
gateways distributed in six buildings around
the university campus. Figure 7a presents the
campus and the coverage area of the campus
WSN. The Computer Science building has sen-
sor nodes in four floors while the others have
nodes in only one floor. Distance between nodes
ranges from 5 meters to 20 meters. The campus
WSN is used as an application platform for stu-
dents to implement their own applications on a

WSN course. Measurement data of the campus
WSN is provided for property maintenance.
Figure 8 presents a humidity, luminance, and
temperature measurement node at the campus
of the Civil Engineering building. In addition,
carbon dioxide and passive infrared based
human activity are measured in the campus
WSN. Students attending to the course may
carry a node with them, which is tracked by
the campus WSN.

The new program image was injected
into the WSN by updating a single node on
the 4th floor of the Computer Science build-
ing. Each node sent a report after a successful
update procedure.

Table 1. Memory consumption of TUTWSN with PIDP in bytes. ©2010 IEEE. Used with permission.

Component Program memory (B) Data memory (B)

Reliable image transfer 3578 793 (overlayed)

Version handshaking 1386 15

Firmware advertisements 1425 7

Total 6389 22 + (793)

Figure 6. The updating speed graph of PIDP on the 25 node experiment. The extra three up-
dates were result of failed updates, which caused re-update. Ideal Ta presents how the network
would be updated, if a node could start updating another one immediately after receiving the
new image. Approximated Ta of the experiment indicates that one node disseminates 35 seconds
after the update.

International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011 61

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The results of the second experiment show
that PIDP successfully propagated the program
image through the campus WSN in five hours,
as shown in Figure 7b. A delay was experienced
between a pair of nodes located between the
Civil Engineering building and the Main build-
ing. Once the image had spread to the Main

building, it continued to propagate to the rest
of the WSN. As a result, program image had
to travel over 50 hops to achieve the last node
in the Mechanical Engineering building (700
meters long path and average hop distance of
12.5 meters equals 56 hops).

Figure 7. a) Tampere University of Technology campus, the coverage of the campus WSN, and
the new program image injection point of the experiment in computer science building. b) A
graph presenting the TUT Campus WSN experiment progress in percentage of updated nodes.
The dissemination was stalled, because two neighboring nodes belonged to different clusters and
had good routes to different gateways. Therefore, they did not associate until one hour periodic
scan was due. Labels indicate the time when the update was completed for that building.

62 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

The dissemination speed during the second
test was mostly limited by the long interval
between network scans. The new image propa-
gated quickly within individual clusters e.g.
inside one building, but spread slowly from
one cluster to another. As most of the nodes
had good routes to the nearest network gate-
way, they had no reason to perform additional
network scans. This limitation can be avoided
by disseminating the program image through
the network gateways.

The transmission time between nodes
varied from one minute to four minutes. This
was caused by the differences in link reli-
ability between different nodes. Due to the
hardware restrictions, PIDP client chooses
first received advertiser to be a PIDP server
without considering link quality. This can
lead to a situation where image transfer has
to be attempted several times between nodes
that are too far apart or suffer from low link
reliability due to interference.

Energy Consumption Impact

PIDP energy consumption impact was measured
on the TUTWSN hardware platform for the
PIDP client and the PIDP server. Measurements
were conducted with a stable power source and
series resistor of known value. The voltage over
the series resistor was measured with an oscil-
loscope to determine drawn root-mean-square
current. Duration and current of the image
transfer and verification operations were mea-
sured. Slight differences to the measurements in
propagation time section are result of different
updated image. Figure 9a and Figure 9b present
screen captures of the oscilloscope, where the
series resistor voltage is drawn over the time.

The PIDP client sends requests to the PIDP
server, which are the narrow spikes in Figure
9a. Then the PIDP client listens for the image
packets, which are the wide spikes in the capture.
One packet has 26 B of payload and the program
memory writing has to be done in 64 B blocks.

Figure 8. A TUTWSN node platform, TUTWSN node in an enclosure, and two nodes installed to the
Civil Engineering building of Tampere University of Technology campus in the TUT campus WSN

International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011 63

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Therefore, two to three packets are received
before writing. The success of writing a block
of the program image is always verified im-
mediately. The whole image is verified after
the image has been completely transferred. The
PIDP server listens for requests of the PIDP
client (wide spikes in Figure 9b), prepares a
packet, writes it to the radio and sends it to the
PIDP client (narrow spikes).

The TUTWSN platform was run on 4 MHz
clock frequency and 2.5 V supply voltage. 4
MHz is the highest possible clock frequency
with the specified supply voltage. The highest
possible clock frequency is used to achieve
the fastest possible dissemination time and the
shortest affection time to the normal operation.
The radio used a random channel from the
2.4 GHz ISM band and the highest possible
transmission power of 0 dBm. The MCU is
continuously active during the update operation.
On the PIDP server, the radio is active for 35
second, which is 67.3% of the image transfer
time and it is receiving 93.5% of that time.
On the PIDP client, the radio is active for 17
seconds, which is 32.7% of the image transfer

time and it is receiving 90% of that time. These
values were obtained from the oscilloscope.

Energy consumption results of the PIDP
client are presented in Table 2. Typical lithium
AA batteries have approximately 20000 J of
usable energy. Thus, one update consumes
under 0.1‰ of the available energy of the
PIDP client. If the expected node lifetime is
two years, updating a node once a day would
reduce lifetime approximately 10%. Impact is
irrelevant on moderate amounts of updating.
However, PIDP is not suitable for continuous
application dissemination. This is due to the
whole program image updating. If the im-
age is sliced to smaller pieces as presented in
Operating System Support section, the energy
consumption impact will be reduced.

PIDP server energy consumption is pre-
sented in Table 3. The image transfer consumes
more energy with the PIDP server, since it has
to listen for longer periods. However, the PIDP
server does not need to write or verify the im-
age after the transfer and the total amount of
consumed energy is similar to the PIDP client.
In normal operation, one node acts once as a

Table 2. Energy consumption measured of the PIDP client. Radio RX denotes for radio listening
and receiving. Radio TX denotes for radio transmitting. MCU energy consumption during the
image transfer includes the energy consumed in the program memory writing.

Operation Time consumed
(s)

MCU (mJ) Radio RX
(mJ)

Radio TX
(mJ)

Total (mJ)

Image transfer 49.62 711.99 436.14 48.46 1196.59

Image verification 24.44 272.44 0 0 272.44

Total: 74.06 984.43 436.14 48.46 1469.03

Table 3. Energy consumption measured of the PIDP server. Radio RX denotes for radio listening
and receiving. Radio TX denotes for radio transmitting .

Operation Time con-
sumed (s)

MCU (mJ) Radio RX
(mJ)

Radio TX
(mJ)

Total (mJ)

Image transfer 49.62 553.03 932.92 64.85 1550.80

Image verification 0 0 0 0 0

Total: 49.62 553.03 932.92 64.85 1550.80

64 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

PIDP client and zero to multiple times as a PIDP
server. Therefore, it is difficult to determine
actual energy consumption impact of server
duty in a network. In our experiments, one node
acted as a PIDP server zero to three times. Thus,
energy consumption impact varies between
1500 mJ – 6000 mJ, which is under 1‰ of the
available energy.

PIDP is an energy efficient method to dis-
seminate new program image to the network.
The energy consumption impact increases
significantly only if the network is updated
often, e.g. once a day. Furthermore, the energy
consumption impact is divided evenly across

the whole network, since the image disseminates
one hop a time and most of the nodes act once
as the PIDP client and similar amounts as the
PIDP server.

The energy efficiency could be improved
by decreasing the radio transmission power or
the radio listening time. If the radio transmission
power is decreased that the total transmission
energy consumption is half of the current con-
sumption, it would reduce energy consumption
2% in total. Thus, the transmission power is
not significant energy consumer. In optimum
case, radio listening time would be the same as
the transmission time. Therefore, reducing the

Figure 9. Screen captures of the oscilloscope drawing the series resistor voltage during the
energy consumption measurements for the PIDP client and server. The scale is horizontally 10
ms/div and vertically 200 mV/div. a) The PIDP client sends a request packet and listens for the
image packet. 2-3 image packets are received before writing to the program memory. b) The
PIDP server listens for requests of the PIDP client, prepares an image packet and sends it. Note:
a) is not in synchronization with b).

International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011 65

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

radio listening time would reduce maximum of
26% of the PIDP client and 56% of the PIDP
server energy consumption. Reducing the radio
listening time is one major task in future work.

COMPARISON

Feature comparison of known multihop re-
programming methods for WSNs is presented
in Table 4. PIDP manages to function without
operating system. Also, it can function with
any OS and update the OS as well. PIDP does
not require external flash or reliable transport
protocol, since it has own transport protocol.
Finally, PIDP usually updates the whole pro-
gram image, but it can be modified to update
it in parts.

CONCLUSION

This paper presents a lightweight, reliable and
energy efficient program image dissemination
protocol for WSNs. Unlike other dissemina-
tion protocols, PIDP does not require external
memory storage, is independent of the WSN
stack, offers a low overhead protocol for trans-
ferring program images, and can reprogram the
whole WSN stack. PIDP is implemented using
low-power WSN prototype nodes and tested in
actual real-world conditions. The experimental

results show that PIDP can reprogram 178 nodes
in 5 hours and requires less than 7 kilobytes
of ROM and 22 bytes of RAM and that it is
possible to create a dissemination protocol
that does not require external memory and yet
achieves the epidemic dissemination capabili-
ties of traditional dissemination protocols with
low energy consumption.

Future work on PIDP will include new
methods for inter-cluster advertisements, reli-
ability improvements, energy consumption
minimizing, and use of it for application dis-
semination with operating systems.

The new inter-cluster advertisement meth-
ods will speed up the propagation of the pro-
gram image. This would remove stalls as seen
in Figure 7b, where network was partitioned
and both partitions considered their network
situation satisfactory. In addition to multiple
injection points, this can be solved with ap-
plication level software advertisements, where
nodes are informed in the application level that
there might be newer program image available.
Then the nodes could seek more eagerly for
the new image.

To improve reliability, the PIDP protocol
must select the transfer channel from non-in-
terfering channels. Also, the PIDP client should
start the image transfer with the best possible
neighbor. These are difficult tasks to do and

Table 4. Feature comparison of known WSN reprogramming approaches

Protocol Requires OS Supports
multiple

OS

Requires Ext.
Flash

Requires
transport
protocol

Update Scope

PIDP No Yes No No Whole program image
or parts

Deluge Yes / TinyOS No Yes Yes Whole program image

Contiki Yes No No Yes Application
dissemination

Maté Yes / TinyOS No No Yes Application
dissemination

MOAP Yes / TinyOS No Yes Yes Whole program image

66 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

require novel designs and implementations to
fit the PIDP design.

Energy consumption can be reduced sig-
nificantly by reducing the radio listening time.
This requires strictly synchronized protocol.
The PIDP client and server could negotiate a
timetable in every transmission for the next
packet. This introduces research problems of
what to do after unsuccessful transmissions
and how to fit such a complex protocol on a
restricted space.

For operating systems support, we will
implement the two part program image dissemi-
nation to PIDP. SensorOS (Kuorilehto, Alho,
Hännikäinen, & Hämäläinen, 2007) is used
as operating system and WSN API (Juntunen,
Kuorilehto, Kohvakka, Kaseva, Hännikäinen,
& Hämäläinen, 2006) is used as an application
layer. Also, we will experiment with Contiki to
see, how the problems of dynamic application
loading can be overcome with PIDP.

ACKNOWLEDGMENT

This paper is an updated and revised version
of Määttä, Suhonen, Laukkarinen, Hämäläinen,
and Hännikäinen, (2010), “Program Image Dis-
semination Protocol for Low-energy Multihop
Wireless Sensor Networks”, in Proceedings of
the 2010 International Symposium on System
on Chip (SoC). IEEE.

REFERENCES

Akyildiz, I., Weilian, S., Sankarasubramaniam, Y.,
& Cayirci, E. (2002). A survey on sensor networks.
IEEE Communications Magazine, 40(8), 102–114.
doi:10.1109/MCOM.2002.1024422

Alliance, Z. (2010). ZigBee specification. Re-
trieved from http://www.zigbee.org/Standards/
ZigBeeSmartEnergy/Specification.aspx

Crossbow Technologies. (2003). Mote in-network
programming user reference. Retrieved from http://
www.tinyos.net/tinyos-1.x/doc/Xnp.pdf

Deng, J., Han, R., & Mishra, S. (2006). Secure code
distribution in dynamically programmable wireless
sensor networks. In Proceedings of the Fifth Inter-
national Conference on Information Processing in
Sensor Networks (pp. 292-300).

Dunkels, A., Finne, N., Eriksson, J., & Voigt, T.
(2006). Run-time dynamic linking for reprogram-
ming wireless sensor networks. In Proceedings of the
Fourth ACM Conference on Embedded Networked
Sensor Systems (pp. 15-28).

Dunkels, A., Gronvall, B., & Voigt, T. (2004). Con-
tiki - a lightweight and flexible operating system for
tiny networked sensors. In Proceedings of the 29th
Annual IEEE International Conference on Local
Computer Networks (pp. 455-462).

Hill, J. W., Szewczyk, R., Woo, A., Hollar, S., Culler,
D., & Pister, K. (2000). System architecture direc-
tions for networked sensors. SIGPLAN Notes, 35(11),
93–104. doi:10.1145/356989.356998

Hui, J. W. (2005). Deluge 2.0 - TinyOS network pro-
gramming. Retrieved from http://www.cs.berkeley.
edu/~jwhui/deluge/deluge-manual.pdf

Hui, J. W., & Culler, D. (2004). The dynamic be-
havior of a data dissemination protocol for network
programming at scale. In Proceedings of the 2nd
International Conference on Embedded Networked
Sensor Systems (pp. 81-94).

IEEE Standards Association. (2008). Part 15.4:
Wireless medium access control (MAC) and
physical layer (PHY) specifications for low-rate
wireless personal area networks (WPANs). Re-
trieved from http://standards.ieee.org/getieee802/
download/802.15.4a-2007.pdf

Juntunen, J., Kuorilehto, M., Kohvakka, M., Kaseva,
V., Hännikäinen, M., & Hämäläinen, T. (2006). WSN
API: Application programming interface for wireless
sensor networks. In Proceedings of the IEEE 17th
International Symposium on Personal, Indoor and
Mobile Radio Communications (pp. 1-5).

Kulkarni, S., & Wang, L. (2005). MNP: Multihop
network reprogramming service for sensor networks.
In Proceedings of the 25th IEEE International Confer-
ence on Distributed Computing Systems (pp. 7-16).

Kuorilehto, M., Alho, T., Hännikäinen, M., &
Hämäläinen, T. D. (2007). SensorOS: A new op-
erating system for time critical WSN applications.
In Proceedings of the 7th International Conference
on Embedded Computer Systems: Architectures,
Modeling, and Simulation (pp. 431-442).

International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011 67

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Kuorilehto, M., Kohvakka, M., Suhonen, J.,
Hämäläinen, P., Hännikäinen, M., & Hämäläinen,
T. D. (2007). Ultra-low energy wireless sensor
networks in practice: Theory, realization and
deployment. New York, NY: John Wiley & Sons.
doi:10.1002/9780470516805

Langendoen, K., Baggio, A., & Visser, O. (2006).
Murphy loves potatoes: Experiences from a pilot
sensor network deployment in precision agriculture.
In Proceedings of the 20th International Parallel and
Distributed Processing Symposium (p. 8).

Levis, P., & Culler, D. (2002). Maté: A tiny virtual ma-
chine for sensor networks. SIGOPS Operating Systems
Review, 36(5), 85–95. doi:10.1145/635508.605407

Levis, P., Patel, N., Culler, D., & Shenker, S. (2004).
Trickle: A self-regulating algorithm for code propaga-
tion and maintenance in wireless sensor networks.
In Proceedings of the 1st Conference on Networked
Systems Design and Implementation (p. 2).

Microchip Technology. (2008). PIC18F8722 product
page. Retrieved from http://www.microchip.com/

Microchip Technology. (2009). MPLAB C compiler
for PIC18 MCUs. Retrieved from http://www.mi-
crochip.com/

Miller, C., & Poellabauer, C. (2008). PALER: A
reliable transport protocol for code distribution in
large sensor networks. In Proceedings of the 5th
Annual IEEE Communications Society Conference
on Sensor, Mesh and Ad Hoc Communications and
Network (pp. 206-214).

Mukhtar, H., Kim, B. W., Kim, B. S., & Joo, S.-S.
(2009). An efficient remote code update mechanism
for wireless sensor networks. In Proceedings of the
IEEE Military Communications Conference (pp. 1-7).

Mtt, L., Suhonen, J., Laukkarinen, T., Hmlinen, T.,
& Hnnikinen, M. (2010). Program image dissemi-
nation protocol for low-energy multihop wireless
sensor networks. In Proceedings of the International
Symposium on System on Chip (pp. 133-138).

Nordic Semiconductors. (2007). nRF24L01 product
specification. Retrieved from http://www.nordic-
semi.com/

Reijers, N., & Langendoen, K. (2003). Efficient
code distribution in wireless sensor networks. In
Proceedings of the 2nd ACM International Confer-
ence on Wireless Sensor Networks and Applications
(pp. 60-67).

Stathopoulos, T., Heidemann, J., Estrin, D., &
SENSING, C. U. (2003). A remote code update
mechanism for wireless sensor networks. Retrieved
from http://www.isi.edu/~johnh/PAPERS/Statho-
poulos03b.html

Suhonen, J., Kuorilehto, M., Hännikäinen, M., &
Hämäläinen, T. (2006). Cost-aware dynamic routing
protocol for wireless sensor networks - design and
prototype experiments. In Proceedings of the IEEE
17th International Symposium on Personal, Indoor
and Mobile Radio Communications (pp. 1-5).

Wang, Q., Zhu, Y., & Cheng, L. (2006). Reprogram-
ming wireless sensor networks: Challenges and ap-
proaches. IEEE Network, 20(3), 48–55. doi:10.1109/
MNET.2006.1637932

Zhang, C., Yu, Q., Huang, X., & Yang, C. (2008).
An RC4-based lightweight security protocol for
resource-constrained communications. In Proceed-
ings of the 11th IEEE International Conference on
Computational Science and Engineering Workshops
(pp. 133-140).

Teemu Laukkarinen received the M.Sc. degree in computer science from Tampere University of
Technology (TUT) in 2010. He is currently pursuing towards PhD in the Department of Computer
Systems at TUT. His research interests include operating systems, applications and high level
abstractions in wireless sensor networks.

Lasse Määttä received the MSc degree in computer science from Tampere University of Tech-
nology (TUT) in 2010. He is currently working as a researcher in the DACI research group in
the Department of Computer Systems at TUT. His research interests include software design for
low-power wireless sensor networks.

68 International Journal of Embedded and Real-Time Communication Systems, 2(3), 50-68, July-September 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Jukka Suhonen received the MSc degree in computer science from the Tampere University of
Technology (TUT), Finland in 2004. He is currently pursuing his Ph.D. in the Department of
Computer Systems at TUT. His research interests include wireless networking, network protocol
and algorithm design, and Quality of Service issues in wireless networks.

Timo D. Hämäläinen received the MSc degree in electrical engineering from Tampere University
of Technology (TUT), Finland, in 1993, and PhD degree in electrical engineering from TUT,
Finland, in 1997. He is a Professor at Department of Computer Systems (DCS) at TUT since
2001. He is author of over 60 journal and 200 conference publications and holds several patents.
His research interests include wireless sensor networks, parallel system-on-chip architectures
and design tools.

Marko Hännikäinen received his MSc in information technology in 1998, and PhD in informa-
tion technology in 2002 from the Tampere University of Technology (TUT). He was nominated
an adjunct professor in 2005, and since 2007 he has been a Professor at the Department of
Computer Systems, TUT. He has authored over 120 publications and holds several patents. His
research interests include wireless sensor networks, new wireless applications concepts, and
model-based system design.

PUBLICATION 3

T. Laukkarinen, J. Suhonen, T. D. Hämäläinen, and M. Hännikäinen, "Pilot studies
of wireless sensor networks: Practical experiences," Conference on Design and Ar-
chitectures for Signal and Image Processing (DASIP), pp. 1–8, November 2–4, 2011,
Tampere, Finland. doi:10.1109/DASIP.2011.6136867

r2011 IEEE. Reprinted, with permission, from T. Laukkarinen, J. Suhonen, T. D.
Hämäläinen, and M. Hännikäinen, "Pilot studies of wireless sensor networks: Practi-
cal experiences," Design and Architectures for Signal and Image Processing (DASIP),
2011 Conference on , November 2–4, 2011.

laukkart
Typewriter
Publication 3 is changed to preprint version for Internet
publishing due to the IEEE copyright requirements

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of Tampere University of Technology's products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating new
collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn
how to obtain a License from RightsLink.

PILOT STUDIES OF WIRELESS SENSOR NETWORKS: PRACTICAL EXPERIENCES

Teemu Laukkarinen, Jukka Suhonen, Timo D. Hämäläinen, Marko Hännikäinen

{teemu.laukkarinen, jukka.suhonen, timo.d.hamalainen, marko.hannikainen}@tut.fi
Tampere University of Technology, Department of Computer Systems

P.O.Box 553, FI-33101 Tampere, Finland

ABSTRACT

For enabling successful field pilots of Wireless Sensor Network
(WSN) applications, the network reliability and prototype testing
become limiting factors. Application pilot studies need to operate
end-to-end, covering the physical durability of devices, embedded
software, and infrastructure interfaces and data collection. This
paper summarizes our pilot study experiences, and what tools and
practices were required. Six lessons are proposed: a systematic
pilot template results straightforward pilot completion; shared WSN
infrastructure reduces labor; tailored embedded software testing
tools are needed; the pilot must be prepared carefully; the WSN
technology must be usable for research partners; and the pilot must
be maintained and maintenance tools are required in large scale
pilots. Our experiences base on over 20 pilot studies and over 1000
deployed devices. This paper describes 11 main pilots, which utilize
from 10 to 377 devices per pilot.

Index Terms— wireless sensor networks, sensor systems and
applications, pilot study

1. INTRODUCTION

A Wireless Sensor Network (WSN) consists of several measuring
devices (nodes), which autonomously form a communication net-
work [1]. The nodes sense their environment, process and store data,
and deliver data towards the sinks. These sinks act as gateways to
other networks or infrastructure servers.

WSNs are widely studied, as they are an enabling technology
for numerous ubiquitous applications in different fields, such as en-
vironmental and energy monitoring, building automation, and se-
curity. WSN technology is composed of complex distributed em-
bedded systems. Typically, the targeted WSN nodes are small and
low-cost, and operate years with small batteries or use solar pan-
els. Thus, the technology is resource constrained in computational
power, communications capacity, memory, and in energy.

WSN development has been relying for field piloting to achieve
reliable performance and application feasibility results [2]. In prac-
tice, prototype applications are implemented on a selected WSN
technology. For enabling successful field pilots of WSN applica-
tions, the networking reliability and prototype testing become lim-
iting factors. Application pilots operate end-to-end, covering the
physical durability of devices, embedded software, and infrastruc-
ture interfaces and data collection.

The resource constraints and demanding nature of pilot instal-
lations make the prototype testing and the management of pilot re-
liability difficult. Operability needs to be achieved on node level
functionality, network level operations, and application level [2]. A
laboratory testing with a small number of nodes is not enough to
ensure application functioning in real conditions [2], as constantly

changing environmental conditions affect radio communication and
hardware durability.

TUTWSN [3] is a WSN prototype technology developed at the
Department of Computer Systems, Tampere University of Technol-
ogy. TUTWSN has been used in over 20 field pilots with over 1000
nodes between 2007 and present. Field pilots have been organized
with research partners and they have been concentrating on certain
applications, such as building automation measurements, transport
logistics, and personnel security.

TUTWSN prototypes are battery powered, embedded sensing
devices operating on 2.4 GHz and 433 MHz ISM radio bands. The
technology consists of hardware platforms, multihop mesh protocol
stack, and end-to-end application infrastructure. TUTWSN repre-
sents a modern resource constrained battery powered WSN technol-
ogy.

As a summary of pilot experiences, we present six lessons,
which we consider the most important lessons in relatively large
WSN pilot studies. A systematic pilot template is proposed for
straightforward pilot study completion. A shared WSN infrastruc-
ture is shown, which can be cloned for parallel pilots to reduce labor
and speed up piloting. Tools for difficult embedded software testing
are described. Purpose of the tools is to ensure WSN functionality
before the pilot. Required preparations before a pilot are described,
such as a testing checklist. The role of partners must be taken into
account. This requires deployment tools and integration support.
Finally, the pilot must be maintained, which requires tools in large
pilots.

The experiences are compared with four main related lessons
publications. Langendoen et al. [4] present a troubled pilot study of
potato field monitoring with 109 nodes. This is one the first lessons
learned type of publications of WSN pilot studies. Barrenetxea et al.
[2] present seven environment pilot studies with 179 nodes. Corke
et al. present nine iterative environmental monitoring pilot studies
with 355 nodes in [5] and provide lessons, which led to an end-to-
end WSN solution for environmental monitoring. A water quality
monitoring network in a sugar cane farm is presented by Hu et al. in
[6] with long range nodes (up to 1 km). These four publications give
several lessons of pilot studies for the scientific community.

The contribution of this paper is to present experiences of pilot
studies: practices and tools are proposed for pilot preparation, test-
ing, deployment, monitoring, and maintenance. Compared to the re-
lated work, the experiences come from relatively larger pilots. These
extend and confirm the work in related papers.

This paper is constructed as follows. First, the related work is
settled by examining the pilot study lessons of others in Section 2.
Then, the TUTWSN infrastructure is presented in Section 3. Section
4 presents the major pilots deployed with TUTWSN. The lessons
from those pilot study experiences are given in Section 5. Finally,
the paper is concluded in Section 6.

Table 1: Experiences and lessons described by the related research. X denotes that publication discusses the lesson on varying detail.

Experience Langendoen
et al. [4]

Barrenetxea
et al. [2]

Corke et al.
[5]

Hu et al. [6]

Difficult embedded software testing X X X X
Problems with backbone network connections
(GPRS/3G etc.)

- X - X

Problems with node enclosures X X X -
Challenging software complexity X X X X
Watchdog required and/or useful - X X X
Deployment monitoring, controlling and/or tracing X X X -
Installation and/or deployment tools - X X -
Importance of partners - X X -

2. RELATED WORK

The related work concentrates on pilot study experiences of the men-
tioned four main related publications [2, 4, 5, 6]. Table 1 gathers
reported experiences, which are mentioned at least in two of these
publications.

Difficult embedded software testing is constantly reported. Mal-
functioning nodes cause trouble in deployment and if there is no
tracing in deployed nodes, the problem is difficult to solve.

Typically, each deployment uses some server infrastructure for
data storage. In remote deployments, an Internet connection is re-
quired. 3G/GPRS etc. modems are used, however, there are often
problems with these. Node enclosures are also a difficult task. If
the nodes need to be accessed during the deployment, the enclosure
cannot be fully hermetic.

WSNs require complex software, e.g. protocol stacks. Com-
plexity makes development challenging. Watchdogs have been use-
ful on various levels, from nodes to servers. The WSN should be
remotely monitored and controlled during the deployment. Tracing
is required for the later analysis of possible problems. Deployments
require tools for installation and maintenance.

Finally, partnering with other researches is vital, since one can-
not master everything. Each of these lessons presented in Table 1 is
covered in more detail in the lessons section.

Development experiences of ZigBee from standard to commer-
cial products are presented in [7]. The main contribution compared
to other publications is the necessity of simple installation tools. Two
tools are described, which are courtesy of Eaton’s Home Heartbeat
product. First, a simple name insertion for a sensor node is de-
scribed. When a node is activated with a key of a key chain fob, the
name can be selected from the LCD screen in the key fob. Second,
instead of full mesh network, Home Heartbeat uses range-extenders
and the actual sensor devices are non-routing. This is easy to un-
derstand and install for everyone. These are similar approaches to
our memorable IDs and deployment tool. However, we managed to
make an easy-to-use deployment tool for a full mesh network. The
tool is presented in Section 5.5.

WSN deployments have been reported constantly on various ap-
plications, such as habitat monitoring [8], volcano monitoring [9],
semiconductor plant and oil tank monitoring [10], and microclimate
monitoring of a redwood [11]. These papers present the application,
measurements, and experiences of the WSN technology. Emphasis
is either on the application and measurements or on the WSN tech-
nology functionality. These papers provide technical lessons about
protocols and hardware, whereas this paper targets to end-to-end
studies.

3. TUTWSN INFRASTRUCTURE

TUTWSN is a full mesh network with multihop and ad-hoc features.
It is autonomous and does not require configuration when deployed.
The TUTWSN protocol stack consists of four layers: physical, low
energy consumption [3, 12] and low latency [13] Medium Access
Control (MAC) and routing layers, and application layer [14]. Also,
systems software have been developed: operating system [15, 16],
middleware [17] and independent firmware update protocol with a
bootloader [18].

The TUTWSN hardware consists of three main boards, which
share the same micro controller unit, and temperature and luminance
sensors. Accelerometer and humidity sensors are optional. There is
a connector for external sensors. This connector has pins for digital
I/O, analog-to-digital converter input, I2C bus, SPI bus and UART
interface. 2.4 GHz and 433 Mhz off-the-shelf radio transceivers are
used. AA or AAA batteries are typically used as an energy source.
A mains transformer or a solar panel are optional sources.

Ethernet gateways have additional UART-to-Ethernet bridge and
an SD memory card slot for buffering data during possible Ethernet
connection outtakes.

A server infrastructure is used with TUTWSN. It consists of a
gateway software with a database. A Java user interface software,
mobile web user interface, and SMS messages are provided for end
users. Several server interfaces are provided for integration to other
systems. As a result, TUTWSN is an end-to-end WSN infrastruc-
ture, which is presented in Figure 1.

4. MAIN TUTWSN PILOTS

Pilots have tested TUTWSN on various environmental conditions
from subzero temperatures on outdoors to high humidity and tem-
peratures in sauna. Furthermore, pilots have tested quick installation,
small and large networks, and various sensors for different usage. Fi-
nally, pilots provided knowledge of WSN usage in applications and
usable data for the end user.

We have piloted TUTWSN with several research and industry
partners. The main pilots are gathered in Table 2 and are explained
in the following sections. The pilots are briefly introduced and given
as a background for the lessons in the Section 5.

4.1. Sewer water level monitoring

In the sewer line monitoring, the problem was a waste water line
of a chemical factory, which runs through the city and occasionally
flooded to the streets. This water line was around 5 km long.

Routing

Applications

MAC

Gateway

Server

Software

Wireless sensor

network

WSN

Protocol

stack

User interfaces,

mobile and

desktop

Ethernet

gateway

Physical

Existing

systems /

partner

integrations

RMI, SOAP,

XML, SIP,

SQL

Sensors

and

actuators,

SPI, I2C,

ADC, UART,

I/O

Charts,

reports,

alarms, real

time

information

U
I In

te
rfa

c
e

s
S

e
rv

e
r in

te
rfa

c
e

s

Fig. 1: TUTWSN infrastructure. It starts from the node sensors and actuators, and ends to the end user interfaces.

Table 2: The main pilot studies deployed with TUTWSN. The hospital personnel safety pilot used low latency MAC and routing while the
other pilots used low energy consumption MAC and routing.

Pilot Study Nodes Duration Technology

Sewer water level monitoring 25 2009- 433 MHz
Chemical factory monitoring 62 2009 (a year) 2.4 GHz
Green house temperature and humidity leveling 30 2009 (a month) 2.4 GHz
Campus network for teaching 340 2008- 2.4 GHz
Home monitoring in several homes 180 2007- 2.4 GHz
Transportation cargo monitoring 10 2009 (a year) 2.4 GHz
Building monitoring 377 2008-2010 2.4 GHz
Environment monitoring 60 2005- 433 MHz
Environment monitoring, ground frost and snow depth 30 2007 (a year) 433 MHz
Cattle living conditions in barn 30 2009- 2.4 GHz
Hospital personnel safety 62 2009- 2.4 GHz

The goals of the sewer water level monitoring pilot were: 1)
Equip wells in a 5 kilometers long water line with water level sensors
to monitor water level. 2) Test WSN functionality and performance
in long-range alarming application. 3) Study the benefits of WSN
installation speed and cost-efficiency.

In the installation, every well was equipped with a TUTWSN
node, two water level sensors, and a temperature sensor. A line of
extra routing TUTWSN nodes was constructed above the ground.
Both ends of the line were equipped with gateways to the Internet
to improve robustness. Data was gathered to a server and integrated
into the existing factory system. The installation had 23 battery oper-
ated long range nodes (433 MHz) and two mains powered gateways.
One maintenance visit was needed during the deployment due to the
failed sewer nodes.

The experiences of this pilot study were: 1) The first sewer
nodes did not withstand the very high humidity and rapid temper-
ature variations of the wells. They had to be replaced with hermet-
ically closed enclosures. This is presented in Figure 2. 2) The de-
ployment tool was helpful for constructing reliable routing line. 3) A
new server interface was needed for integrating TUTWSN into the
existing systems. 5) A WSN functionality monitor was needed to
alarm from possible failures.

4.2. Chemical factory monitoring

Chemical factory monitoring focused on two main cases: monitoring
fault connections in the factory and monitoring loading of trucks at

the premises. The goals were: 1) To study WSN functioning inside a
factory, which is full of metal pipes and other metal structures. 2) To
receive alarms from fault connections. 3) To measure loading levers
positions and track trucks inside the factory premises.

The installation consisted of 60 nodes (2.4 GHz) and 2 gate-
ways. The network was installed inside the factory and to the outside
premises. In addition, few mobile nodes were placed in the trucks.

The experience of this pilot study was that a new server interface
was needed for integrating TUTWSN into the existing systems.

4.3. Greenhouse temperature and humidity leveling

In Greenhouse monitoring, the network was installed temporarily in
two greenhouses and a storage space. The goals were: 1) To find
out temperature and humidity leveling the greenhouse spaces. 2) To
study the installation speed of the WSN. 3) To study the benefits of
the WSN for growing plants.

The installation consisting of 28 nodes (2.4 GHz) and 2 gate-
ways took one day. The node constellation is shown in Figure 3.
During the deployment, the staff of the greenhouse studied tempera-
ture and humidity graphs and noticed that a part of the second green-
house was significantly colder. They adjusted the air conditioning
and added insulation according to the measurements. As a result,
the temperature leveled across the greenhouse.

The experiences of this pilot study show that the clonable WSN
infrastructure and automated configuration reduced the workload
and allowed a quick and short pilot.

(a) A node in a tree at -20 Celsius degree frost. (b) A destroyed sewer node. Circuit board and
battery holders were corroded due to the high
humidity and condensation.

(c) A robust sewer node, which is molded in
epoxy resin inside a PVC pipe.

Fig. 2: Node pictures in various conditions. Pilot will not succeed, if the enclosing is not prepared according to local conditions.

Greenhouse 1

Greenhouse 2
Cold storage

Office

A node

Fig. 3: The installation constellation and an installation picture of
the greenhouse monitoring pilot. A circle represents a node and an
arrow between circles represents the route of the data.

4.4. Campus network for teaching

Our largest single deployment so far has been the campus network
at the Tampere University of Technology campus. The goals were:
1) To study TUTWSN functionality in a large deployment. 2) To
create a WSN platform for students to study and to create applica-
tions for. 3) To provide meaningful measurements for the facility
management.

At the moment, the installation consists of 340 nodes, which are
installed in the public areas of the campus. The network is used on a
course, where students can develop their own applications on top of
the network. Furthermore, the network is used as research test-bed
[18].

The experiences of this pilot study were: 1) 340 nodes require
automated configuration and updating. 2) Node logistics must be

precise in a such large scale.

4.5. Home monitoring in several homes

For home monitoring the goals were: 1) See the benefits of WSNs
for home users. 2) Study the installation easiness of the WSN.

The installation was done by the home owners. Networks of
10-40 nodes were delivered to over 10 homes. These networks
measured temperature, humidity, illumination and CO2 in various
rooms, including sauna. Furthermore, passive infrared sensors, mag-
net switches, and piezo-electromechanical pressure sensors reported
of unauthorized access.

The experiences of this pilot study were: 1) Labor amount was
not significant due to WSN infrastructure cloning although there
were over 10 parallel pilot locations. 2) Installing a mesh network
requires a deployment tool. 3) People want simple physical identi-
fiers for the nodes.

4.6. Transportation cargo monitoring

The goals were to test WSN functionality in a truck, gather useful
information from the cargo, track the truck, and identify attached
trailers.

The installation was done by the partner. A cargo space of a
truck and its trailers were monitored with 10 nodes. Temperature,
humidity and acceleration were measured. A notification of every
over four g-force impact was sent. Furthermore, a GPS tracking of
the truck was used. The attached trailer was identified from the node
neighbor information.

The experience of this pilot study was that the battery holder
springs were too soft to withstand over 4 g-force impacts, and the
node briefly lost its supply current. This was noticed in the prelimi-
nary checks. The springs were replaced with solid contacts.

4.7. Building monitoring

Building monitoring pilots have concentrated on the working condi-
tions of employees. The goals were: 1) To measure indoor air quality
with WSN from multiple points. 2) To monitor room usage with the
WSN. 3) To study WSN benefits for installing to existing buildings.

The installations were performed by our partners. Temperature,
humidity and CO2 levels were measured. Also, room usage was
monitored with CO2 and passive infrared sensors.

The experience of this pilot study was that installing a mesh net-
work requires a deployment tool.

4.8. Environmental monitoring

An outdoor temperature and humidity environmental monitoring
network was deployed to test long-range 433 MHz TUTWSN. The
goals were: 1) Test TUTWSN functionality in outdoor environ-
ment with long-range hops. 2) Provide measurement data for local
farmers and other interest groups.

The installation covers approx. six square kilometers with
60 nodes. It measures luminance, air temperature and humidity,
ground temperature and moisture, and lake temperature. A web
user-interface was developed for the measurement data. The pilot
has been running since 2005 and it has been updated several times.

4.9. Environmental monitoring, ground frost and snow depth

The goals were: 1) The partner wanted to test WSN technology.
2) Ground frost and snow depth were measured with temperature
sensors.

The installation took place in Lapland with 30 nodes. Ground
frost and snow depth measurements based on multi-point tempera-
ture measurements, where depths were determined from the temper-
ature. Sensors were attached to one cable with 10 cm between each
sensor. For the ground frost measurement, a hole was dug and the
sensors were set in to that hole. Sensors were hanged on air for the
snow depth.

The experience of this pilot study was that lacquering the node
circuit board for protection is enough for outdoor nodes.

4.10. Cattle living conditions in a barn

The goals were: 1) Test WSN technology in a barn. 2) Measure the
living conditions of the cattle. 3) Monitor the security of the barn.

The installation in the barn comprised 30 nodes. Temperature,
humidity, CO2 and luminance were the main measurements. In ad-
dition, passive infrared motion detectors and magnet switches were
deployed to monitor the security of the barn and safety of the cattle.
A water pressure switch was integrated into TUTWSN. It monitors
the pressure of the cattle drinking water supply system. If the pres-
sure drops, an alarm is sent.

4.11. Hospital personnel safety

The goals were: 1) Locate a person triggering the alarm from hospi-
tal at room level accuracy. 2) Test the low latency WSN.

Hospital personnel safety pilot study is presented in detail in
[13]. The installation consists of nine sink nodes, 41 routing nodes
and 12 mobile nodes. Personnel carry mobile nodes, which are con-
tinuously localized. An alarm can be activated from the mobile node
when the person encounters a threatening situation. Then, the user
interface shows the room, where the alarm sender is. In addition, the
network delivers measurements and actuator commands.

The experience concerning this paper is the cloned WSN infras-
tructure. Different MAC and routing layers were used compared to
other presented pilots. However, the WSN infrastructure was other-
wise the same.

5. LESSONS

This section presents our experiences compared to the four related
pilot study articles [2, 4, 5, 6].

5.1. Lesson 1. A systematic pilot plan is needed

Each of our pilots followed the same template. First, goals for the
pilot were determined. This was done in close collaboration with
our research partners. In addition to the goals, the required measure-
ments and actuators, the deployment size, the expected deployment
lifetime, and the schedule were settled. Second, the pilot was ex-
ecuted. This includes development, installation, and maintenance.
Finally, the results of the pilot were drawn according to the original
goals. This is a straightforward template to complete pilot studies.

Common goals for the pilots were testing the WSN suitabil-
ity, possible technology benefits, and functioning in the application.
Typically, each pilot required at least one new measurement. This re-
quired integration of new sensors to TUTWSN before deployment.
A pilot plan document was created, which defined the goals, required
new measurements, deployment size, and expected results of the pi-
lot.

The pilot execution was divided into three phases. First, new
sensors were integrated, nodes were assembled, and preliminary
tests were performed. Then, the deployment was conducted with
research partners. Finally, the pilot was monitored and maintained.

The pilot results were gathered after the agreed deployment
time. The original goals were compared to the deployment execu-
tion. The collected results were disseminated to the pilot partners.

5.2. Lesson 2. WSN infrastructure must be shared by parallel
pilots

Corke et al. presented an end-to-end WSN architecture as a result of
several pilots in [5]. They had five different hardware, software, and
network protocol combinations for their pilots, which eventually led
to the end-to-end solution. All our pilots shared the same TUTWSN
infrastructure. This was vital to reduce labor and management of the
pilots and removed the need for extensive preliminary testing before
each pilot.

Since we had a tested technology, the development before a pilot
required only new sensor integrations. Adding a new sensor required
a driver and a packet description development on to the node. Packet
description had to be mapped in to the database on the server. Af-
ter that the sensor was immediately usable in the architecture. This
repeated often in our pilots, so we created a process definition for
adding a new sensor. The process defined phases required for the
integration. Also, it defined required new source code files for the
new sensor.

As [5] states, end-to-end solution automates the recurring tasks
of the WSN deployments. In order to conduct many parallel pilots,
we needed the shared WSN infrastructure to reduce labor and speed
up the start of the pilots.

5.3. Lesson 3. Tailored testing tools are required for the embed-
ded WSN software

All four reference publications note the importance of software test-
ing for successful deployment [4, 2, 5, 6]. WSNs are considered dif-
ficult to test, since they are resource constrained embedded devices
and distributed [19]. There are no verbose debugging interfaces and
the distribution requires debugging of several devices at once.

We had to develop tools for testing the embedded code, before
the sufficient level of functionality was achieved for the pilot studies.
These tools were run-time assertions with stack trace, static analyz-
ers, a distributed debug printing interface, and a network sniffer.

The run-time assertions check that embedded code is working
properly and prerequisites are not violated. If a failing assertion is

encountered, the node will send file and line information about the
error over radio, write it on to EEPROM, and print it through UART.
The information can be caught with a sniffer, read with an EEPROM
reading device, or received to a terminal through UART. Also, the
stack trace is delivered with the same methods. This information
help tracing the origins of the bug. The assertions resemble ones
presented in [20].

Static analyzers find the hazardous points of the embedded C
code. We have used an open source Splint analyzer to ensure higher
code quality. A static analyzer for the stack size consumption was
needed, since the small MCU on a node has a limited function depth.
If the stack overflows, the code might tangle. Due to the complex
protocol stack, this has happened to us occasionally before using the
static code analyzer. Corke et al. reported a stack analyzer tool for
optimizing thread stack sizes to save memory [5].

The distributed debug printing interface allows us to enable and
disable debug prints in the embedded code. TUTWSN nodes and
sinks are basically the same devices. Sinks are extended with an
UART-to-Ethernet adapter. We used these sinks as nodes in test-
ing. This allowed a distributed collection of debug prints to a server,
which solved efficiently the problem of testing small embedded dis-
tributed devices.

Finally, the network sniffer gives an instant look to the protocol
stack behavior on the field. It presents captured traffic in a human
readable form and illustrates time and frequency division scheduling
of the MAC layer. The sniffer allowed us to trace long term mis-
behaviors and find out if the MAC layer was operating according
to the designed algorithms. Authors in [4] stated the necessity for
such packet sniffer and in [2] presented a sniffer tool that presents
measurement values on the field.

This testing tool set allowed us to find all major flaws from the
embedded WSN code. Figure 4 presents an availability graph [21] of
our protocol stack improvements in one test iteration. The availabil-
ity graph shows the probability to receive a sample within the time
interval. The dashed graphs show the worst and the average recep-
tion interval before updating the tested and improved protocol stack.
The solid lines represent the intervals after updating. The updated
worst node achieves the average of the older.

As [4] and [2] state, the protocol stack testing and functional
verifying are a key factor for successful pilot study. In [2], authors
state that things should be kept as simple as possible to achieve this
goal. However, the presented tools can significantly help testing even
complex embedded WSN software.

5.4. Lesson 4. The preparation is important before the pilot

We had a checklist, which was reviewed before deploying the net-
work. This checklist mainly consisted of basic functionalities (e.g.
every node delivers correct data from every sensor), where the net-
work was quickly put up on a desk and checked. In addition, the en-
ergy consumption of the nodes was continuously monitored. Adding
a new sensor to the node is safe for the network operations, but it is
easy to leave some I/O pin of the micro controller unit on a wrong po-
sition. One such pin can increase energy consumption significantly.

WSNs are often used in harsh conditions and protecting the em-
bedded hardware has been difficult as stated by three reference pa-
pers [2, 4, 5]. Rain, condense water, and extreme temperatures are
typically encountered conditions. We used lacquer to protect circuit
boards from moisture in simple outdoor installations. In fact, this
was enough for all our outdoor pilots, except for the sewer nodes.
Figure 2b shows a destroyed sewer node. The sewer had a very high
humidity and rapid temperature changes. If the conditions are very

Fig. 4: An availability graph presents improvements achieved in one
iteration of testing with presented tools. 95% availability is achieved
by average in 60 seconds after update. Before update, 95% availabil-
ity was achieved in 90 seconds.

harsh, enclosing a node cannot be overdone. We molded nodes in to
resin inside a PVC pipe. Figure 2c shows such sewer node. Two D
batteries were used to ensure sufficient life-time, since such node is
usable only once. D batteries have approx. ten times the capacity of
AA batteries.

Enclosing is an often reported problem. Molding nodes her-
metically protects them from moisture and corrosion. However, as
the hardware is no longer accessible, the WSN must be thoroughly
tested. Our pipe sewer nodes have been functioning for over one and
half years without maintenance.

Backbone server connection problems are reported in [2] and
[6]. We have encountered the same problem in two forms. First,
the partner had a high network security and despite the preparations,
correct ports had not been opened at the time of deployment. Sec-
ond, the wireless Internet connection (GPRS/3G, Flash-OFDM or
satellite) had a poor coverage at the deployment site. In our experi-
ences, taking different connection options to the deployment site is
important. This ensures that the deployment is got running, even if
the partner network is not yet ready or the service of one wireless
Internet connection is poor. When the deployment site is in a remote
location, this saves time and money.

5.5. Lesson 5. The technology must be usable for the research
partners

The gathered data is useless as itself, someone must know what to
do with the data [2]. Thus, it is wise to partner with experts of the
application area. Most of our pilot studies were originally composed
by industry or research partners. We concentrated on providing the
technology for the partners and the partners were responsible for in-
terpreting data correctly. Furthermore, the partners typically wanted
to do application case studies or exploration of WSN possibilities in
their application area. The goal was to see benefits and usability of
WSN in the studied application. This often required integration to
the existing systems.

Our architecture provides several interfaces, which can be used
to integrate TUTWSN as a part of other systems. However, some
existing systems required new interfaces, for example XML SOAP,
Java RMI and OPC connectivity. Our server software has a plug-in
architecture, which allows extension with new interfaces.

Tabs for network, node and services configura�on

Connec�on log

Connec�on establishment

Selected services for the issued node

Fig. 5: A screenshot of auto-configurator. It can configure network, node, and services configurations to a node wirelessly.

Occasionally, the deployment was installed by a partner. In-
stalling an autonomous mesh WSN should be easy. However, limited
node amount and difficult to understand operation can make instal-
lation difficult even to an experienced engineer. We created a de-
ployment tool that can be activated with a push of the press button.
The node constantly scans the network and indicates immediately
with LEDs if the current location is a good installation point. The
deployment tool is deactivated with another push of the button or by
itself after a certain time period. Energy is not wasted, since LEDs
are used only for a short period of time, as LED energy consumption
was discussed in [2]. We instructed to start the installation from the
sink and advance there on. As a result, a network can be installed
rapidly by anyone, and it is guaranteed to function well as long as
the installer follows the LED user interface.

5.6. Lesson 6. The pilot must be maintained and maintenance
tools are a necessity in large scale pilots.

WSNs are considered data-centric, it does not matter which device
delivers the required data from the location. However, as [2] states,
tracing the data to the original source is often required. For exam-
ple, if a sensor fails, it must be replaced in most cases. In [2] every
measurement packet were labeled with an ID. In our network, each
packet contains a node ID. Thus, tracing the source is trivial. The
problem is that when over 1000 nodes are deployed, it is a demand-
ing task to keep up with network and node configurations. We had
to develop two tools for configuration and tracing of the nodes in the
pilots.

An auto-configurator was developed for an easy node configu-
ration. Nodes were programmed with a bootloader and a program
image at the factory. When the node is deployed (e.g. it is assigned
to a network and required sensors are attached to it), the required
configurations are set with the auto-configurator wirelessly. This al-
lows a fast deployment configuration. The auto-configurator user
interface is presented in Figure 5. It has a connection establishment
part, configurations for a network, a node, and services, and a status
logging window.

The auto-configurator enables effective network wide program-
ming, which is close to the requirement for network programming
presented by Corke et al. at the discussion part [5]. The approach
is still per-node programming, but the same program image is used
on all nodes in the network. This simplifies the development of the
large scale deployments, what Corke et al. demand.

Each node has a globally unique serial number which is set at the

factory. In the auto-configuration, a logical node ID is given to each
node. These are unique in one network. This scheme allows us to use
simple IDs. In our experience, users want to see node IDs and they
want them to be short. Thus, user can see the same number in the
user interface and in the physical node on a pilot although this is not
the data-centric idea. User can set a name for each node in the user
interface and hide the ID. The IDs are used only for installation and
maintenance to distinguish the physical node. Physical traceability
is noted as a necessity in [2].

Nodes need to be replaced occasionally. In addition to the auto-
configurator, a web service was developed, which stores serial num-
ber, configuration, and software version of each node. If a node fails
and requires replacing, a new factory programmed node can be con-
figured to replace the malfunctioning one. The new node may have
the same logical node ID. This same web service tracks deployed
networks and provides directly server software configurations. This
tool was a necessity, when the node and pilot amounts increased.
Corke et al. discuss these practical issues as a not fully explored
research area [5].

In addition to node maintenance, automatic controlling and
monitoring are useful tools for maintenance [2]. Our controlling is
limited to automated data requests from the network. Otherwise the
network is autonomous. For monitoring, we have automated server
monitors for Internet connection between gateway nodes and server
software, for malfunctioning nodes, and for server software and
hardware. If something fails, an email or a SMS message is sent to
persons with interest. These are a necessity on pilots, which monitor
critical systems, such as the sewer water level monitoring network.
Detecting node malfunctions and recovering from these faults is
considered major challenge in [5] for large scale deployments.

As the authors in [2] state, the WSN deployments are not a case
of leave and forget. Earlier experience are backed up by our experi-
ence that despite the data-centric approach, WSNs require traceabil-
ity. With the presented approach, it is easy to trace faulty measure-
ments and failures to nodes and sensors. Further, replacing a node
does not require dramatic actions or skills of an engineer. Finally, the
end-user has a continuous set of memorable IDs. This helps users,
which are not familiar with the data-centric operation.

6. CONCLUSIONS

This paper presented six practical lessons of WSN pilot studies. A
systematic WSN pilot study template was proposed for the straight-

forward completion of the pilots. Benefits of a shared WSN infras-
tructure were described for parallel pilots. Required testing tools
were presented for embedded WSN software testing. The impor-
tance of pilot preparations was noted. Required actions for easy
partnering were presented. Finally, the maintenance of large scale
pilots was discussed and maintenance tools were presented. Each
lesson presented our experiences and compared them to four refer-
ence publications. A successful pilot must function reliably from
end-to-end, must integrate into the systems of partners, and must be
maintained, even if the node amounts are relatively large.

7. REFERENCES

[1] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and
E. Cayirci, “A survey on sensor networks,” Communications
Magazine, IEEE, vol. 40, no. 8, pp. 102–114, Aug 2002.

[2] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The
hitchhiker’s guide to successful wireless sensor network de-
ployments,” in SenSys ’08: Proceedings of the 6th ACM con-
ference on Embedded network sensor systems, New York, NY,
USA, 2008, pp. 43–56, ACM.

[3] M. Kohvakka, J. Suhonen, T. Hämäläinen, and M Hännikäinen,
“Energy-Efficient Reservation-Based Medium Access Control
Protocol for Wireless Sensor Networks,” EURASIP Journal on
Wireless Communications and Networking, vol. 2010, pp. 22,
2010.

[4] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves
potatoes: experiences from a pilot sensor network deployment
in precision agriculture,” in Parallel and Distributed Process-
ing Symposium, 2006. IPDPS 2006. 20th International, apr.
2006, p. 8 pp.

[5] P. Corke, T. Wark, R. Jurdak, Wen Hu, P. Valencia, and
D. Moore, “Environmental wireless sensor networks,” Pro-
ceedings of the IEEE, vol. 98, no. 11, pp. 1903 –1917, nov.
2010.

[6] W. Hu, T. Dinh, P. Corke, and s. Jha, “Design and deployment
of long-term outdoor sensornets: Experiences from a sugar
farm,” Pervasive Computing, IEEE, vol. PP, no. 99, pp. 1 –
1, 2010.

[7] A. Wheeler, “Commercial applications of wireless sensor net-
works using ZigBee,” Communications Magazine, IEEE, vol.
45, no. 4, pp. 70–77, 2007.

[8] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. An-
derson, “Wireless sensor networks for habitat monitoring,” in
Proceedings of the 1st ACM international workshop on Wire-
less sensor networks and applications, New York, NY, USA,
2002, WSNA ’02, pp. 88–97, ACM.

[9] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson,
J. Lees, and M. Welsh, “Deploying a wireless sensor network
on an active volcano,” Internet Computing, IEEE, vol. 10, no.
2, pp. 18 – 25, 2006.

[10] L. Krishnamurthy, R. Adler, P. Buonadonna, J. Chhabra,
M. Flanigan, N. Kushalnagar, L. Nachman, and M. Yarvis,
“Design and deployment of industrial sensor networks: ex-
periences from a semiconductor plant and the north sea,” in
Proceedings of the 3rd international conference on Embedded
networked sensor systems, New York, NY, USA, 2005, SenSys
’05, pp. 64–75, ACM.

[11] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
St. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong,
“A macroscope in the redwoods,” in Proceedings of the 3rd
international conference on Embedded networked sensor sys-
tems, New York, NY, USA, 2005, SenSys ’05, pp. 51–63,
ACM.

[12] J. Suhonen, M. Kuorilehto, M. Hannikainen, and T.D.
Hamalainen, “Cost-aware dynamic routing protocol for wire-
less sensor networks - design and prototype experiments,” in
Personal, Indoor and Mobile Radio Communications, 2006
IEEE 17th International Symposium on, 2006, pp. 1 –5.

[13] V. Kaseva, T. D. Hämäläinen, and M. Hännikäinen, “A wireless
sensor network for hospital security: from user requirements
to pilot deployment,” EURASIP J. Wirel. Commun. Netw., vol.
2011, pp. 17:1–17:15, January 2011.

[14] J.K. Juntunen, M. Kuorilehto, M. Kohvakka, V.A. Kaseva,
M. Hannikainen, and T.D. Hamalainen, “Wsn api: Application
programming interface for wireless sensor networks,” in Per-
sonal, Indoor and Mobile Radio Communications, 2006 IEEE
17th International Symposium on, 2006, pp. 1 –5.

[15] M. Kuorilehto, T. Alho, M. Hännikäinen, and T. D. Hämäläi-
nen, “Sensoros: A new operating system for time critical wsn
applications,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation, Heidelberg, Germany, Aug. 2007,
pp. 431–442.

[16] T. Laukkarinen, V.A. Kaseva, J. Suhonen, T.D. Hamalainen,
and M. Hannikainen, “Hybridkernel: Preemptive kernel with
event-driven extension for resource constrained wireless sensor
networks,” in Signal Processing Systems, 2009. SiPS 2009.
IEEE Workshop on, oct. 2009, pp. 161 –166.

[17] M. Kuorilehto, M. Hännikäinen, and T.D. Hämäläinen, “A
middleware for task allocation in wireless sensor networks,”
in Personal, Indoor and Mobile Radio Communications, 2005.
PIMRC 2005. IEEE 16th International Symposium on, 2005,
vol. 2, pp. 821 –826 Vol. 2.

[18] L. Määttä, J. Suhonen, T. Laukkarinen, M. Hännikäinen, and
T. D. Hämäläinen, “Program image dissemination protocol for
low-energy multihop wireless sensor networks,” in Interna-
tional Symposium on System-on-Chip 2010, Tampere, Finland,
Sept. 2010, pp. 129–135.

[19] T. Cao, Q.and Abdelzaher, J. Stankovic, K. Whitehouse, and
L. Luo, “Declarative tracepoints: a programmable and appli-
cation independent debugging system for wireless sensor net-
works,” in Proceedings of the 6th ACM conference on Em-
bedded network sensor systems, New York, NY, USA, 2008,
SenSys ’08, pp. 85–98, ACM.

[20] K. Römer and M. Ringwald, “Increasing the visibility of sensor
networks with passive distributed assertions,” in Proceedings
of the workshop on Real-world wireless sensor networks, New
York, NY, USA, 2008, REALWSN ’08, pp. 36–40, ACM.

[21] J. Suhonen, T.D. Hämäläinen, and M. Hännikäinen, “Availabil-
ity and End-to-end Reliability in Low Duty Cycle Multihop
Wireless Sensor Networks,” Sensors, vol. 9, pp. 2088–2116,
2009.

142 Publications

PUBLICATION 4

T. Laukkarinen, J. Suhonen, and M. Hännikäinen, “A Survey of Wireless Sensor
Network Abstraction for Application Development,” International Journal of Dis-
tributed Sensor Networks, vol. 2012, Article ID 740268, 12 pages, 2012. doi:10.1155/
2012/740268

First published by Hindawi Publishing Corporation.

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2012, Article ID 740268, 12 pages
doi:10.1155/2012/740268

Research Article

A Survey of Wireless Sensor Network Abstraction
for Application Development

Teemu Laukkarinen, Jukka Suhonen, and Marko Hännikäinen

Department of Computer Systems, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland

Correspondence should be addressed to Teemu Laukkarinen, teemu.laukkarinen@tut.fi

Received 25 June 2012; Revised 14 September 2012; Accepted 5 November 2012

Academic Editor: Arne Bröring

Copyright © 2012 Teemu Laukkarinen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Wireless sensor network (WSN) application development is not an easy task due to its resource constrained nature and vast feature
rich application space. Several abstractions are harnessed to ease out the difficult WSN application development. In this paper,
three levels of abstractions are classified from the existing literature: node, network, and infrastructure abstractions. Since the node
and network abstractions are already a well-studied area, the infrastructure abstraction is surveyed in detail to complete knowledge.
Technology interoperability, service discovery, metadata support, and processing support are found as basic requirements for
infrastructure abstraction. Problematic security and quality of service topics are discussed and the open research questions of
ontology, service discovery, distributed processing, and performance metrics are defined. Finally, a distributed middleware design
is presented as a possible solution for the key open research question: how to utilize capabilities of the abstracted technologies.

1. Introduction

A wireless sensor network (WSN) consists of even thousands
of resource constrained devices (nodes), which form a
distributed autonomous network [1]. Energy, computation,
communication, and memory constrained WSNs must react
to real world phenomena, process and fuse data, and
eventually create new knowledge. This knowledge must be
presented to an end-user or analyzed to create value added
end-user services.

Getting data from a physical sensor to an end-user is not
a simple task in WSN application development due to the
resource constraints, complex protocols, and multiple levels
of technologies involved in the delivery [2–4]. Therefore,
different abstraction levels are needed to make application
development easier. Three levels can be classified from the
existing research work: node, network, and infrastructure
abstractions.

The main contributions of this paper are the classifi-
cation of the three abstraction levels, and a survey of the
WSN infrastructure abstractions. The authors of this paper
consider node and network abstractions well surveyed and
defined area of the WSN research, but find a lack of definition

of the infrastructure abstraction. The survey part presents
the diverse field of the infrastructure abstraction and gathers
a common set of requirements. In addition, we propose open
research questions and present our design approach to meet
some of those questions.

The paper is constructed as follows. Section 2 presents
the three abstraction levels based on the existing publica-
tions. Section 3 presents the related work for this survey.
Our motivation is given in Section 4. Section 5 presents the
survey of infrastructure abstractions and Section 6 collects
the properties of the surveyed proposals as requirements
for the infrastructure abstraction. Section 7 discusses open
research questions, which are derived from the survey.
Our design proposals for the open questions are given in
Section 8, and the paper is finally concluded in Section 9.

2. WSN Application Abstraction Levels

Three levels of abstraction for WSN applications can be
classified from existing WSN research work: node, network,
and infrastructure abstractions. Figure 1 positions these
levels in the WSN infrastructure and each abstraction is
described in detail in the following sections.

2 International Journal of Distributed Sensor Networks

Network abstraction

Node abstraction

Infrastructure abstraction

Network wide
application

Network wide
application

Node
application

Protocol
stack RTOS

WSN node hardware

Network wide
application

End user
applications

End user
applications

End user
applications

End user
applications

WSN

WSN

WSN

End user
applications

Scope of abstraction

Multiple WSNs and technologies:
metadata servers, mobile phones,
cameras, etc.

Abstraction of
different

technologies

Communication
and resource

abstraction

Node hardware
and execution

abstraction

Figure 1: The abstraction levels of WSN application development.

2.1. Node Abstraction. The resource constrained embedded
node hardware and communication protocols are abstracted
with node abstraction that executes applications on each
physical node [2, 3]. Embedded operating systems or virtual
machines are often used approaches. For example, TinyOS
[5], Contiki [6], and Maté [7] are well-known proposals
of the node abstraction. The applications perform such
actions as reading a sensor, processing measured data,
sending data to interested parties when required, and even
updating/distributing applications further in the network.
The application development is typically conducted with
C, NesC [8], or similar programming language, and the
development is node specific.

2.2. Network Abstraction. The distributed node network is
abstracted from data interested users with network abstrac-
tion. This level works in cooperation between distributed
nodes and provides such services as data access through
queries, and data processing in-network through aggregation
and fusion [4, 9, 10]. Also, it can provide distribution
services for node applications, such as sharing measurements
through distributed memory abstraction. TinyDB [11],
COUGAR [12], Agilla [13], and TinyLime [14] are often
referred proposals of this abstraction level. The node and
network abstractions have research history of over decade
now, and several surveys have been published of them [2–
4, 9, 10, 15, 16].

The network abstraction provides access to the WSN
measurement data, but the measurement data itself is rarely
sufficient for end-user application [4]: the measurement data
can be combined with metadata (e.g., add physical location
information, descriptive name, and place the measurement
on a map), further processed, combined with data from
other technologies, or archived for later study. Since the
network abstraction and resource constrained nodes cannot

provide all the required data and processing for the end-
user application, an infrastructure abstraction is used to fulfill
the gap. Further, infrastructure abstraction extracts end-
user applications from the node and network abstractions.
Without any infrastructure abstraction, tailored solutions
would be needed for each technology utilized by the
application.

2.3. Infrastructure Abstraction. Infrastructure abstraction
proposals typically describe the requirements with the same
terms as network abstractions, and both are typically referred
as WSN middleware. However, the functional units are
different: on network abstraction, heterogeneous nodes in one
network are abstracted behind an interface. On infrastruc-
ture abstraction, multiple heterogeneous sensor networks are
abstracted behind one interface.

The main purpose of the infrastructure abstraction is
to separate end-user application from the heterogeneous
sensor networks. The infrastructure abstraction is a relatively
new research area, which has gained more attention lately.
This is due to the wide application space: new end-
user applications are tested, deployed, and evaluated using
different technologies. An infrastructure abstraction makes
end-user application development faster, easier, and WSN
technology independent. Currently, there is a lack of surveys
on infrastructure abstractions, and the requirements and the
design space have not been defined comprehensively. This
paper is targeted at contributing in filling this knowledge
cap.

3. Related Surveys

Mohamed and Al-Jaroodi [17] survey and discuss WSNs as
service oriented middleware (SOM). A SOM provides WSNs

International Journal of Distributed Sensor Networks 3

as services for application developers. WSN derived require-
ments for SOMs are runtime for services, service discov-
ery, heterogeneity abstraction, service configuration, service
transparency, automated discovery and service change, inter-
operability between devices and systems, efficient handling
of large volumes of data, security, and support for Quality
of Service (QoS) [17]. However, Mohamed and Al-Jaroodi
[17] state that very few of their surveyed work address even
half of the presented requirements. We consider SOMs as
a subset of infrastructure abstractions that mainly abstract
network abstraction services from the application developer.
For example, metadata or processing are not discussed in
[17].

Dafei and Yu [18] survey sensor web proposals. By
their definition, sensor web provides access, discovery, and
interoperability of sensor services through WWW. This is
one subset of infrastructure abstraction of the WSNs. For
example, Yin et al. discuss context-awareness (referred to as
processing in this paper) as an open issue in sensor webs.
We consider that incorporating WWW as a part of the
infrastructure abstraction is not a desired solution for every
application, since connection to the Internet can be a security
risk, for example, in factories and hospitals. Our survey
concentrates on wider area of infrastructure abstractions.

Bröring et al. [19] discuss new generation sensor web
enablement (SWE) of open geospatial consortium SWE
(OGC). They present a layered stack for SWE, which consists
of sensor layer, sensor web layer, and application layer.
They identify four middleware classes (abstractions in this
paper), which may overlap with each other and cross the
three stack layers: sensor network management systems,
sensor web infrastructure, centralized sensor web portals,
and Internet of Things/Web of Things. Compared to our
abstraction levels, their sensor network management systems
class is the same as the node and the network abstraction
levels. The rest of the classes belong to our infrastructure
abstraction. Thus, Bröring et al. [19] present a more refined
stack of the infrastructure abstraction, but this is done only
for their definition of sensor webs. Further on, Bröring
et al. [19] concentrate only to OGC SWE. Again, our
survey concentrates on general infrastructure abstractions,
and OGC SWE is one possible solution in this wide field.

4. Motivation

In our earlier work, we codeveloped WSN pilot applications
with partners [20]: variety of interfaces were needed to
integrate our WSN technology to the existing systems and
tailoring was often needed for end-user application, be it
weather web service, working conditions monitoring, factory
automation system, or hospital personnel safety. These
experiences motivated us to research abstractions for end-
user application development to find proposals that remove
tailoring and repeating work. We classified the abstractions
to the presented three levels and studied their current status
from existing surveys.

Although there are several proposals fitting to the infrast-
ructure abstraction, only three related surveys were found,

and they concentrated on one specific area of such abstrac-
tions. Also, related surveys suggested that infrastructure
abstractions do not utilize processing capabilities of network
abstractions, since it is not pointed by any of the three nor
discussed. These findings motivated us to write this survey.

It is easy to envision several applications where a versatile
infrastructure abstraction is a necessity. We describe a hospi-
tal use case as a motivating example: a fixed WSN is deployed
for indoor positioning in a hospital. A patient can be
equipped with a mobile device, such as a tablet, and another
WSN that does physiological measurements, for example,
patient temperature, electrocardiogram (ECG), and stress
level. The tablet sends physiological and positioning data
over WLAN or 3G to the infrastructure abstraction.

Patients can move around in the hospital, and they are
tracked constantly. If the patient gets a seizure, an alarm
of the location is sent to personnel. The ECG is stored for
later study by a doctor. Further, the ECG is combined with
location and indoor air condition information. These help
the doctor to distinguish normal behavior from concerning
situations. Finally, the patient can navigate in the hospital
buildings with the help of the indoor positioning and the
tablet. For example, if the patient is ordered to an X-ray and
the tablet can lead him/her to the right place at the right time.

The presented hospital use case sets requirements for
infrastructure abstractions: As patients check in and out,
the infrastructure level processing must detect new patients
and their measurement devices through service discovery in
order to store, process, and monitor data related to the
patients. Technology interoperability is an obvious necessity,
since different technologies are used as data sources. Data
processing is needed in several occasions: calculate position,
combine position with patient data, detect abnormal ECG
behavior, and so forth. Patient information and floor plans
are examples of metadata required by the application.

5. Survey of the Infrastructure Abstraction

The material for this survey was collected using IEEE Xplorer
and Google Scholar search engines. IEEE Xplorer returns
728 hits and Google Scholar approximately 15300 hits with
WSN and middleware search words from year 2006 onwards.
Only research papers abstracting WSNs for end-user appli-
cation were considered for this survey. We selected a set
of papers that emphasize the diversity of infrastructure
abstractions and present comprehensive set of requirements.
Further, we only concentrate on the high level designs and do
not consider implementation specific details.

5.1. Open Geospatial Consortium Sensor Web Enablement.
Open geospatial consortium (OGC) [21, 22] has proposed
sensor web enablement (SWE), which is a set of XML
specifications and interfaces for WSNs. OGC SWE has
six specifications: sensor model language (SensorML) [23],
observations and measurements (O&M) [24], sensor alert
service (SAS) [25], sensor observation service (SOS) [26],
sensor planning service (SPS) [27], and web notification
service (WNS) [28].

4 International Journal of Distributed Sensor Networks

SensorML is a set of models and XML schemas, which
can be used for discovering services (including SensorML
process models), tasking sensor services, processing observa-
tions (often measurements) with SensorML Process model,
and chaining SensorML processes [21–23]. In addition,
SensorML provides uniform data format for the OGC SWE
services and contains metadata for processes. SensorML
process has inputs, outputs, and parameters; a process
without any inputs is a data source (e.g., a measurement
device). O&M is a set of models and XML schema that
describe the output information model for the sensor web
applications [22, 24]. For example, an observation in O&M
combines metadata, result, and sampling time in together.
Now retired Transducer Markup Language (TML) defined a
model for hardware characteristic of sensors and actuators,
and a transportation method for sensor data [22, 29].

SOS is an interface to access observations with several
parameters, such as temporal and geographical [22, 26].
It utilizes O&M for modeling sensor observations and
SensorML for modeling sensors and sensor systems. SAS is
an event stream processor and notification system [22, 25].
It continuously monitors data stream and creates events or
alerts from pattern matching situations. SPS provides an
interface to find out about available assets and possibility
to execute tasks in the system [22, 27]. WNS is an interface
for delivering notifications (events and alerts) to the user
[22, 28]. Communication can be one-way, where notification
is just delivered to the user, or two-way, where a response is
expected from the user as well.

OGC SWE is an exhaustive but complete set of specifi-
cations for infrastructure abstraction. SensorML and O&M
together resolve most of the abstraction problems. How-
ever, the OGC SWE does not distribute processing to the
abstracted technologies; it only uses them as data providers.
As mentioned earlier, not all WSN applications can be web
services, although parts of the OGC SWE could be utilized
without interaction in web: for example, SensorML and
O&M could be used just as ontology. OGC SWE could
be even considered too complex specification for some
use-cases, for example, for resource constrained embedded
devices performing simple interactions for actuating air
conditioning according to temperature. Further, OGC SWE
interoperability is restricted to sensor and actuator devices
only and the metadata is mainly for describing physical
features of the sensors and their measurements.

5.2. Bouillet et al. Bouillet et al. [30] present a middleware
for creating sensor network applications that utilize data
from many sources simultaneously. They reason it with
application scenarios, which combine sensor data from tem-
perature sensors to cameras and provide processed data for
different end-users. The paper describes Processing Elements
(PEs), which take data in as input streams, process data, and
return result as one or more output streams. The middleware
system discovers data source streams and connects them to
correct PEs. Data sources and PEs are homogenized with
Web Ontology Language (OWL) [31] ontologies. Further,
PEs can be interconnected to refine processing more and

to provide processed data for complex applications. Formal
models are given for data sources and PEs. An algorithm is
proposed, which can automatically composite applications
from connecting PEs and data source streams according to
a high level description of the application.

Bouillet et al. [30] proposal achieves technology inter-
operability with the OWL ontologies, if the connected
technology can match the ontology format. The strongest
part of the proposal is the processing: data from the sources
can be refined and combined into infinity with connectible
PEs. They state that in-network processing of data sources is
transparent to the system, but their proposal does not seem
to utilize this. The service discovery is limited to matching
the input of a PE to data sources according to their semantic
descriptions with the ontology: the temporal nature of the
WSNs is not discussed, and therefore it is a question that
can this proposal survive from, for example, disappearing
data source. Metadata is not discussed in [30], but apparently
metadata providers could be data sources and PEs could get
their metadata through those.

5.3. Global Sensor Networks. Global Sensor Network (GSN)
abstracts WSNs as a set of virtual sensors, which have one
homogenized structure [32]. XML is used to define a virtual
sensor, and each virtual sensor has one or multiple inputs
consisting of any type of real sensors or other virtual sensors.
SQL like language can be used to retrieve and process the
data from the abstracted sensors through wrappers. A time
model with count- and time-based windowing mechanism
is presented to handle different application requirements for
the temporal semantics. Metadata is used in these virtual
sensors for service discovery and identification.

GSN is a complete proposal, which only lacks a definition
of ontology. Instead, the data format is described as a part of
the virtual sensor. This is a versatile approach, but the end-
user application (or other virtual sensors) must understand
all possible structures. If these are not defined globally,
the application implementation can be cumbersome: for
example, one virtual sensor could produce temperature as
an integer and another as an double; the application should
then figure out the differences. Further, GSN supports similar
processing methods that network abstractions often provide,
for example, averaging, but there is no indication that
the virtual sensor abstraction would utilize these methods
directly.

5.4. SenseWeb and SensorMap. SenseWeb collects wired,
wireless and mobile sensors behind one application pro-
gramming interface (API) to provide technology interop-
erability [33]. Coordinator forwards application requests
for data, homogenizes data format, caches measurements
to SenseDB, and provides service and resource discovery.
Sensors are connected to the coordinator through tailored
gateways, which uniform the access. DataHub gateway is
provided as a reference gateway for those sensors that do not
want to implement tailored one. A mobile proxy connects
mobile sensors to SenseWeb and delivers measurements
according to location when sensors are available. Data

International Journal of Distributed Sensor Networks 5

transformers are used to process data. Coordinator indexes
transformers and provides transformer service discovery for
the applications.

SensorMap [34] is an application on top of SenseWeb. It
provides tools to illustrate sensor data on a map. It consists of
GeoDB, DataHub, Aggregator, and SensorMap GUI. GeoDB
holds metadata for sensors, DataHub keeps track of con-
nected sensors, Aggregator combines geographically near-
by sensors, and SensorMap GUI presents measurements on
a map according to queries. SensorMap allows technology
interoperability and service discovery through the GeoDB
and DataHub. Data processing is provided by Aggregator
and SensorMap GUI. Aggregator resolves nearby and similar
sensors from the provided metadata. SensorMap fuses results
of queries together with a map to visualize the data. Query
results are queried from Aggregator and DataHub.

SenseWeb and SensorMap provide a complete way to
aggregate data and present it on web. SenseWeb even realizes
node mobility, which is often overlooked by the other pro-
posals. Since SenseWeb and SensorMap work tightly in the
Internet and WWW, they raise the question of security and
privacy. However, the Internet and WWW approach is not
a general solution for the infrastructure abstraction: stand-
alone WSN applications are required as well. SenseWeb and
SensorMap only collect web published sensor data together,
for example, actuator controlling is not possible.

5.5. Lamses. Lamses is a large-scale middleware proposal for
ubiquitous sensor networks [35] with a complex architecture
that concentrates on creating context-aware applications
from sensor network data. Lamses provides a common inter-
face for accessing abstracted WSNs technologies and manag-
ing applications. Lamses consists of a context aware engine,
metainformation management, sensor network manage-
ment, control and query management, and state manage-
ment. The context-aware engine processes sensor data and
events to create context-aware events. The data is handled
and stored as XML packets, which are provided as queries
for the application programs as well.

Lamses supports only context-aware processing, altho-
ugh it internally integrates data for the context-aware engine.
It has a control and query management, which could deliver
data or controlling commands to the abstracted sensor
networks, but this is not discussed in the paper. The metadata
describes only a limited set of attributes of the WSN devices
mainly related to the sensing hardware and device identifiers.

5.6. SeNsIM. SeNsIM proposes an architectural and a data
model for technology interoperability between sensing tech-
nologies [36]. It adapts existing technologies with wrappers
and provides a mediator interface for end-user applications.
The wrappers connect to the mediator, and the mediator
uses an XML query interface for end-user applications. The
data is unified by formatting it to an XML. SeNsIM does
not provide any metadata or processing support. Casola et al.
[36] implicate that processing of the abstracted technologies
could be utilized, and that “the state of the sensor can be
modified,” which indicates that SeNsIM could deliver data to

the abstracted technologies. However, these are not discussed
clearly in the paper. The wrappers do service discovery on
to the abstracted technologies, but it is not clarified how
mediator shows this to the applications.

5.7. Smart-M3. Smart-M3 [37] is an interoperability plat-
form for smart spaces. It allows small embedded devices
to locally share semantic information. Any ontology can be
used with it, and application developer can use ontology
through Ontology API. Every device, or Knowledge Processor
(KP), can store and retrieve information from the Semantic
Information Broker (SIB). For example, a mobile phone
can be used to control local sensor network actuators
and home appliances through Smart-M3. KPs can only
communicate through a SIB by inserting, querying, or
subscribing/publishing the data into it. KPs can be mobile:
they can join and leave to a SIB and they can discover the
data of other KPs from it.

Smart-M3 is more a technology interoperation commu-
nication protocol than a complete infrastructure abstraction,
but it does not propose any restrictions for the appli-
cation development. However, it does require a common
ontology for information storing. Without a standardized
ontology, Smart-M3 will be only locally usable. For example,
Smart-M3 implementation in home applications can use
different ontology from Smart-M3 implementation in office
applications. Switching between these locations with the
same mobile device will require implementation of both
ontologies (or use of both Ontology APIs) on that mobile
device. Smart-M3 does not provide metadata or processing
support. If these are required, they must be implemented on
top of Smart-M3.

Smart-M3 has an unique approach compared to other
surveyed proposals that each embedded device can directly
interoperate through it: there is no need for end-user
application or processing run-time in the infrastructure; the
actuator device controlling the air condition can read by
itself from the SIB what carbon dioxide and temperature
sensors have reported and adjust the air according to those
values.

6. Infrastructure Abstraction Requirements

The common features of the surveyed work are gathered
in Table 1. These requirements are ruled by the end-user
applications, and therefore are the requirements for the
infrastructure abstraction. It should be noted that the basic
paradigm of the infrastructure abstraction is to separate
the end-user application from the abstracted technologies:
the technologies behind the infrastructure abstraction can
change without any need to modify existing end-user
applications. The requirements are discussed in detail in the
following and the references given in this Section are for
example of the discussed topic.

6.1. Technology Interoperability. Heterogeneous WSN tech-
nologies must be homogenized for the end-user application.
This is one of the major challenges with infrastructure

6 International Journal of Distributed Sensor Networks

T
a

bl
e

1:
Fe

at
u

re
s

of
th

e
su

rv
ey

ed
in

fr
as

tr
u

ct
u

re
ab

st
ra

ct
io

n
s.

A
bs

tr
ac

ti
on

D
at

a
ac

ce
ss

m
et

h
od

Te
ch

n
ol

og
y

in
te

ro
p

er
ab

ili
ty

O
n

to
lo

gy
Se

rv
ic

e
di

sc
ov

er
y

M
et

ad
at

a
P

ro
ce

ss
in

g

O
G

C
SW

E

P
u

bl
is

h
/S

u
bs

cr
ib

e,
qu

er
ie

d
st

re
am

s
an

d
h

is
to

ri
ca

lv
al

u
es

,
ev

en
ts

,a
n

d
al

er
ts

A
se

t
of

X
M

L
sp

ec
ifi

ca
ti

on
s

an
d

in
te

rf
ac

es
fo

r
se

n
so

r
in

te
ro

p
er

ab
ili

ty

O
n

to
lo

gy
n

ot
m

en
ti

on
ed

,b
u

t
Se

n
so

rM
L

de
sc

ri
be

s
u

n
if

or
m

da
ta

st
ru

ct
u

re
an

d
u

n
it

s,
an

d
O

&
M

de
sc

ri
be

s
ob

se
rv

at
io

n
st

ru
ct

u
re

Se
n

so
rM

L
m

od
el

s
an

d
X

M
L

sc
h

em
a

ca
n

be
m

in
ed

fo
r

Se
n

so
rM

L
pr

oc
es

se
s

(i
n

cl
u

de
s

co
n

n
ec

te
d

se
n

so
rs

an
d

ac
tu

at
or

s)
;S

P
S

ca
n

be
u

se
d

to
te

st
as

se
t

av
ai

la
bi

lit
y

fo
r

a
ta

sk

Se
n

so
rM

L
co

n
ta

in
s

pr
oc

es
s

m
et

ad
at

a
an

d
O

&
M

co
n

ta
in

ob
se

rv
at

io
n

m
et

ad
at

a

T
h

ro
u

gh
Se

n
so

rM
L

pr
oc

es
se

s
an

d
pr

oc
es

s
ch

ai
n

s;
SA

S
fo

r
cr

ea
ti

n
g

n
ot

ifi
ca

ti
on

s
fr

om
pa

tt
er

n
m

at
ch

in
g

da
ta

B
ou

ill
et

et
al

.[
30

]
St

re
am

,b
u

t
th

e
ac

ce
ss

in
g

m
et

h
od

is
n

ot
de

sc
ri

be
d

T
h

ro
u

gh
th

e
in

pu
t

se
m

an
ti

cs
th

at
da

ta
so

u
rc

es
m

u
st

ad
ap

t
O

W
L

on
to

lo
gi

es

D
at

a
so

u
rc

es
an

d
P

E
ou

tp
u

ts
th

at
m

at
ch

to
a

P
E

in
pu

t
ca

n
be

di
sc

ov
er

ed

N
ot

m
en

ti
on

ed

P
E

s
ca

n
be

in
te

rc
on

n
ec

te
d;

an
al

go
ri

th
m

to
co

m
bi

n
e

P
E

s
in

to
an

ap
pl

ic
at

io
n

G
N

S
Q

u
er

y
w

it
h

st
re

am
s

an
d

h
is

to
ri

ca
ld

at
a

A
bs

tr
ac

te
d

te
ch

n
ol

og
ie

s
ar

e
de

sc
ri

be
d

as
vi

rt
u

al
se

n
so

rs

N
o

on
to

lo
gy

,b
u

t
th

e
vi

rt
u

al
se

n
so

r
de

sc
ri

be
s

th
e

da
ta

st
ru

ct
u

re
fr

ee
ly

V
ir

tu
al

se
n

so
r

ca
n

be
di

sc
ov

er
ed

w
it

h
th

ei
r

m
et

ad
at

a
de

sc
ri

pt
io

n
s

E
ac

h
vi

rt
u

al
se

n
so

r
h

ol
ds

m
et

ad
at

a
de

sc
ri

pt
io

n
s

SQ
L

lik
e

pr
oc

es
si

n
g

on
th

e
vi

rt
u

al
se

n
so

rs
;

vi
rt

u
al

se
n

so
rs

ca
n

be
so

u
rc

es
to

ot
h

er
vi

rt
u

al
se

n
so

rs

Se
n

se
W

eb
Q

u
er

y
w

it
h

st
re

am
s

an
d

h
is

to
ri

ca
ld

at
a

U
n

if
or

m
A

P
I,

w
it

h
da

ta
an

d
ti

m
e

ab
st

ra
ct

io
n

N
ot

u
se

d,
bu

t
th

e
A

P
I

h
om

og
en

iz
es

da
ta

fo
rm

at
,b

u
t

th
e

m
et

h
od

is
n

ot
de

sc
ri

be
d

Fo
r

se
n

so
rs

,a
cc

or
di

n
g

to
se

n
so

r
ty

p
e

or
lo

ca
ti

on
,a

n
d

fo
r

tr
an

sf
or

m
er

s

N
ot

m
en

ti
on

ed

Tr
an

sf
or

m
er

s
ca

n
co

nv
er

t
u

n
it

s,
ag

gr
eg

at
e,

fu
se

,a
n

d
vi

su
al

iz
e

da
ta

Se
n

so
rM

ap

Q
u

er
y

w
it

h
st

re
am

s
an

d
h

is
to

ri
ca

ld
at

a;
lo

ca
ti

on
-b

as
ed

qu
er

ie
s

po
ss

ib
le

T
h

ro
u

gh
Se

n
se

W
eb

D
at

aH
u

b
A

la
ck

of
st

an
da

rd
on

to
lo

gy
di

sc
u

ss
ed

Se
rv

ic
es

ca
n

be
di

sc
ov

er
ed

fr
om

G
eo

D
B

m
et

a-
da

ta

G
eo

D
B

h
ol

ds
m

et
a-

da
ta

A
gg

re
ga

te
ge

og
ra

ph
ic

al
ly

cl
os

e
se

n
so

rs
an

d
di

sp
la

y
on

a
m

ap

La
m

se
s

Ev
en

ts
fo

r
co

n
te

xt
-a

w
ar

en
es

s
an

d
qu

er
ie

s
fo

r
da

ta
re

tr
ie

va
l

D
es

cr
ib

es
a

co
m

m
on

in
te

rf
ac

e
fo

r
at

ta
ch

in
g

W
SN

s
in

to
it

N
ot

m
en

ti
on

ed
,b

u
t

u
se

s
X

M
L

fo
r

h
om

og
en

iz
in

g
da

ta
N

ot
m

en
ti

on
ed

A
n

X
M

L
ba

se
d

m
et

a-
in

fo
rm

at
io

n
da

ta
ba

se
fo

r
co

m
pl

em
en

ta
ry

h
ar

dw
ar

e
in

fo
rm

at
io

n

C
on

te
xt

-a
w

ar
e

ev
en

t
an

d
da

ta
pr

oc
es

si
n

g;
in

te
rn

al
ly

in
te

gr
at

es
da

ta
fo

r
co

n
te

xt
-a

w
ar

e
ev

en
ts

Se
N

sI
M

Q
u

er
y

fo
r

re
al

-t
im

e
da

ta
an

d
ev

en
ts

W
ra

pp
er

s
co

n
n

ec
t

te
ch

n
ol

og
ie

s
to

a
m

ed
ia

to
r

an
d

da
ta

is
u

n
ifi

ed
in

an
X

M
L

N
ot

m
en

ti
on

ed
,b

u
t

an
X

M
L

m
od

el
is

u
se

d
fo

r
th

e
da

ta
u

n
if

yi
n

g

W
ra

pp
er

s
di

sc
ov

er
se

n
so

rs
fr

om
ab

st
ra

ct
ed

te
ch

n
ol

og
ie

s
N

ot
m

en
ti

on
ed

.
N

ot
m

en
ti

on
ed

cl
ea

rl
y

Sm
ar

t-
M

3
P

u
bl

is
h

/S
u

bs
cr

ib
e

an
d

qu
er

y/
in

se
rt

da
ta

K
Ps

ca
n

co
m

m
u

n
ic

at
e

th
ro

u
gh

a
SI

B
in

a
sm

ar
t

sp
ac

e
w

it
h

ou
t

te
m

po
ra

lc
on

n
ec

ti
on

s

A
ny

on
to

lo
gy

ca
n

be
u

se
d

an
d

th
er

e
is

an
O

n
to

lo
gy

A
P

I
fo

r
ea

ch
u

se
d

on
to

lo
gy

K
Ps

ca
n

fi
n

d
di

ff
er

en
t

se
rv

ic
es

th
ro

u
gh

a
SI

B
,

if
th

e
se

m
an

ti
cs

of
th

ei
r

da
ta

m
at

ch

N
ot

m
en

ti
on

ed
N

ot
su

pp
or

te
d/

po
ss

ib
le

International Journal of Distributed Sensor Networks 7

abstractions. Technology interoperability consists of three
requirements: uniform data access, ontology, and technology
feature homogenization.

6.1.1. Uniform Data Access. There must be a method to
access the data of the abstracted technologies. Data retrieval
can be history exploration [32], continuous stream [30],
or event based [21]. On history exploration, the appli-
cation requests existing data within a time window from
the abstraction. On continuous stream, data is delivered
continuously to the application. On event based, data is
delivered after certain event has occurred either continuously
or as a one-time action. Events are often referred as alerts in
many publications.

A query or publish/subscribe interface is typically used
for accessing the data. On query interface, the application
retrieves information with explicit queries [32]. On pub-
lish/subscribe interface [21, 37], the application subscribes
for interesting data and the publisher delivers the data when
it is available. Queries fit well for history exploration and
continuous stream retrievals, whereas publish/subscribe fits
for continuous stream and event retrievals.

6.1.2. Ontology for Data Format Homogenization. The main
task for ontology is to remove heterogeneity between dif-
ferent data producing technologies for the same data type
[33]. Ontology describes format, units, and ranges for the
data. This simplifies end-user application development, for
example, application can rely that temperature measurement
is always in the same format and has a unit of Celsius.
If data would be requested from different sources without
ontology, end-user applications would have to parse and
format the data from each technology separately for the
final presentation. With a common ontology, the end-user
application becomes technology independent: underlying
technologies can be changed as long as they can produce data
in the ontology format.

6.1.3. Technology Feature Homogenization. WSN technolo-
gies have several features, which should be homogenized. The
list of such features could be exhaustive and in some case,
transparency is a necessity. For example, end-user should
know that the node controlling the power outlet of TV
is that particular one he/she sees on the wall. Configura-
tion, concept of time [32], and data delivery back to the
abstracted technologies are common features that typically
need homogenization at the infrastructure abstraction.

Resource constrained WSNs seldom have a real-time
clock and/or the data packets are limited in size and
cannot deliver the exact time of the observed phenomena.
In some applications, it is vital to understand temporal
connections between observed phenomenas [32], even if
they are observed with different technologies. Therefore, the
infrastructure abstraction should homogenize time format.
This is an obvious part of the ontology.

WSNs and other supporting technologies are not only
data providers, but are also consumers. There must be a
method to deliver data to the abstracted technologies. For

example, WSN can deliver measurement data, which is then
used to control actuated device, such as air conditioning.
Typically, this functionality is part of the data access. In
addition to control tasks, there can be configuration tasks
and data injection that abstraction should support.

6.2. Service Discovery. Not all services are continuously
accessible on WSNs due to the possible node mobility, error-
prone communication medium, hardware failures, or energy
depletion. In addition, new services can be added to the WSN
or the supporting technologies. For example, in web services
such as SensorMap [34], third parties can add or remove data
providers, which then appear as usable data sources for the
already existing end-user applications. A service discovery
method is needed to find the interesting services [32, 33].

The infrastructure abstraction must solve three main
tasks in service discovery. First, networks may have their
own service discovery methods, which must be homogenized
to ease the end-user application development. Second, the
service discovery must be general enough to expand discov-
ery to those technologies/services that wither do not follow
the existing WSN paradigm or are completely different
from typical measurement services. Third, scalability and
transparency are needed. For example, most applications are
not interested about the sensor itself, only the measurement
type. However, the accuracy of the sensor may be important
on some applications and even the sensor product name and
the manufacturer information may be needed. If these are
used as service discovery parameters, the service discovery
must scale to various levels of detail and be transparent when
needed.

6.3. Metadata. Plain measurement data is not sufficient
for the end-user applications but it must be completed
with various kinds of metadata. Descriptions of location,
hardware, measurement accuracy, measurement purpose,
and so forth, are typical metadata for WSN measurements
[35]. For example, location description could be “kitchen” or
an identifier for a patient in patient monitoring. Even more
complex metadata is a possible requirement. For example, if
the measurement is made on a certain geographical location,
the end-user might expect to see the measurement illustrated
on a map, and the location must be updated, when the
measurement is location information, or the node is mobile
[34].

Metadata is such a wide topic that an infrastructure
abstraction cannot specify all the possible metadata that an
end-user application might require. However, the infras-
tructure abstraction should support at least the metadata
that abstracted technologies typically provide. If there is
heterogeneity in the available metadata between differ-
ent abstracted technologies, the infrastructure abstraction
should allow adding same metadata for all the abstracted
technologies. For example, the infrastructure abstraction
could require from the technology adapter that it completes
required set of metadata to the measurements. Some of the
metadata can be provided as a service as well. For example,

8 International Journal of Distributed Sensor Networks

a map repository could be a service of the infrastructure
abstraction.

6.4. Processing. A method to create and add processing
services to the infrastructure abstraction produce at least
two benefits. (i) Aggregated data can be reused between
different end-user applications or between different instances
of the end-user application. This will reduce data requests
to the network, reduce data traffic, and make application
development simpler, when aggregation services are needed
(e.g., averaging or summing). (ii) Infrastructure has more
resources for processing than resource constrained WSNs.
Thus, it is possible to do more complex aggregation and
processing on the infrastructure-level. The infrastructure
abstraction can then provide more elegant services to the
end-user application, if needed. For example, infrastructure-
level processing could distinguish interesting situations from
the measurement data and create an event or new measure-
ment for the end-user applications.

The infrastructure abstraction should allow creating
new processing services [30, 32]. In addition to the
already presented service access requirements, processing
services require an execution environment, a method to
describe/create the processing services, and an injection
method to add new processing services.

7. Discussion and Open Research Questions

The open research problems yield from the wide applica-
tion space, which requires infrastructure abstraction to be
versatile. Currently, many existing solutions are restricted
to one application field or on web-based applications.
Although each of them eases the application development, a
general purpose infrastructure abstraction would yield easier
adaptation, since developers can start to develop on the
same abstraction without burdensome pre-examination of
the WSN technologies. WSNs need standardizations and a
commonly used abstraction in order to finally breakthrough.
We consider that there is still research work and problems to
be solved.

Security is discussed in only few of the surveyed papers.
Mohamed and Al-Jaroodi [17] found this same issue with
their survey, and debated about the importance of security
in SOMs. They consider security via communication and
operation safety and conclude that security is indeed an
important topic. However, we consider that at the infras-
tructure level, communication or operation security is not
a research problem as such, since the existing solutions are
sufficient. For example, most infrastructure abstractions are
traditional server or web software, which can rely on SSL,
SSH, or other widely used schemes. The WSN has its own
security mechanisms, which are not exposed to the upper
levels. More prominent security topics are user access rights
(e.g., who can access what data, and from where), processing
provisioning (e.g., what is dropped, if the system processing
capabilities saturate), or accounting (e.g., who has consumed
data, and by how much).

Quality of Service (QoS) is typically a network level prob-
lem, and the topic is not discussed in the surveyed papers.
Typically, there is no QoS support from the sensor network
or it is already abstracted by the network abstraction, for
example, TinyDB does not provide clear QoS support for the
application. However, the infrastructure abstraction should
take care of using the QoS support if such is available.
The infrastructure abstraction should classify the application
required data and demand better quality for the important
data from the abstracted sensor networks to ensure the fastest
and the most reliable data delivery.

QoS in the infrastructure abstraction is another open
question. Infrastructure may need to receive and process
significant amount of data, and still react to alarming
conditions quickly. This problem can be seen as implemen-
tation or server infrastructure problem, but novel location,
data, and/or user aware distribution approaches of the
infrastructure may be needed.

For the ontology, the most demanding open task is to
develop one that is accepted as a de facto standard. Currently,
there is no such proposal. The problem is the versatility:
ontology should support all the possible data sources that
are required or will be introduced in future. This is not an
easy task and will require novel approach or may well be
impossible. Defining or modeling the WSN application space
as well as possible is the ground work that should be made
before such ontology can be produced.

Service discovery is incorporated on most of the surveyed
proposals. Often papers only state that some feature of the
proposal can be used for service discovery without any
further analyzing the usability. Service discovery should gain
more attention, since it is not a trivial task. The homogeniza-
tion, generalization, scalability, and transparency features
should be fulfilled.

Processing is supported by many of the surveyed abstrac-
tions, but there is lack of support for automated feedback
loops in many proposals. WSNs are often used in controlling
applications and if the infrastructure-level processing is
versatile enough, the processing task can even make the
controlling decision. This requires a feedback loop from the
processing to the abstracted technologies. This should not be
overlooked when designing an infrastructure abstraction.

Many network abstractions support in-network pro-
cessing. The infrastructure abstraction should utilize these
features, since there are clear benefits available from dis-
tributing the processing to the network where applicable.
Krishnamachari et al. [38] found out with mathematical
and simulation analysis of data aggregation models that in-
network aggregation can produce 50%–80% energy savings
in WSNs. Prakash et al. [39] simulated models with real
hardware parameters and found out that simple in-network
averaging can reduce energy consumption from 260–270 mJ
to 60–70 mJ. Luo et al. [40] evaluated in-network aggregating
queries for TinyDB [11] with TAG [41], and SKETCH
[42]. They found out that in-network aggregation can
reduce energy consumption, improve data quality, and/or
reduce end-to-end packet loss rate. Currently, distributing
processing in the abstracted networks is not implemented in
any of the surveyed proposals.

International Journal of Distributed Sensor Networks 9

An example of distributed middleware for WSN end user applications. Middleware takes
care of utilizing services of each abstraction level to its best.

RTOS
or

VM

Protocol
stack

Node
applications

Node
abstraction

WSN
2

Map
presentation
micro service

WSN
3

Query
measurements

Combine
measurements
to a map

Utilization of existing

network and node

abstractions ensure

efficiency of the WSNs

Supporting technologies: metadata
servers, mobile phones, cameras, etc.

Query maps

Create alert conditionsQuery averages

Create alerts and
distribute alert
condition where
applicable

Request measurements
with map presentation

Enduser
application

WSN node HW

One visible abstraction
layer for end user
applications

Processing, etc.
distributed over
multiple network
abstractions by the
distributed middleware
micro services

Distribute
averaging to WSN

Alerting micro
service

End user
application

End user
application

Averaging
micro service

Distributed middleware API

Supporting technologies abstraction
Network 3 abstraction

Network 2 abstractionNetwork 1 abstraction

Figure 2: An example use case of distributed middleware design. Averaging micro service distributes the average calculation to the Network
1.

It should be noted that both Prakash et al. [39] and Luo
et al. [40] found out energy consumption overhead of in-
network processing as well, when the processing is complex
or distributed over large areas of sparse network. Therefore, it
should be carefully selected where the processing is executed:
on the network or on the infrastructure. As far as the
authors of this paper know, there is no existing proposal for
algorithms or models to distinguish the best place for the
processing to take place. This is an obvious open research
problem. With careful distribution of the processing to the
network, WSN performance can be improved energy and
reliability wise.

From a scientific point of view, there are no metrics,
benchmarks, or testing facilities for comparing infrastructure
abstractions. These can be created, for example, the size of
the data structures in different proposals could be compared
using typical measurements, or the saturation point of the
processing capabilities could be tested. As far as the authors
know, such metrics have not been published or tested for
infrastructure abstractions.

8. Design Proposals for Open
Research Questions

We propose distributed middleware as a common naming
convention for WSN abstraction that work on node, net-
work, and infrastructure levels. Figure 2 presents how the
distributed middleware fits to the WSN abstraction levels
presented in Figure 1. We have concentrated to solve open
problems in the service discovery, the distributed processing
and the ontology. The key idea is to use small processing
services that are simple enough to be distributed through
the network abstraction, if it supports such action. If the

distribution is not possible, the infrastructure handles the
processing.

8.1. Tag-Based Service Discovery. For service discovery we
propose categorized tags. For example, location: Tampere has
a category location and a tag Tampere. An application can
make a query of tags to discover existing and new services.
The tag-based discovery is scalable, transparent, and future-
proof, since it does not restrict the tags. For example, the
service can have a tag that describes the sensor model sensor:
dallas; semiconductor; dm620, and the same service can also
complete tag search of measurement: temperature. Further,
new technologies can always introduce tags that have not
been used before, if they are needed with new applications.
GSN has quite similar method to present metadata for
discovering the virtual sensors.

Tags can be generated from the existing metadata, and
they work as part of the metadata as well. For example, if
the location of the sensor is known as coordinates, they can
be converted to descriptive tags of the location. Further, tags
can be easily generated from the data that sensor provides.
If there is a temperature measurement value retrieved from
the sensor, it should respond to tag query of measurement:
temperature.

8.2. Distributed Processing. Distributed middleware design
requires specifying interface between network and infras-
tructure abstractions, and creating a processing language
that can be analyzed to find processing tasks that can be
distributed to the network. We have started to design an
XML specification, which describes the processing task called
micro service. The typical in-network aggregating/processing
operations are key components in describing these micro

10 International Journal of Distributed Sensor Networks

<microservice>
<descriptions><!- -defines what the service does and describes tags

and address, which can be used to find it- -></description>
<input>

<source name=“src1”><!- -name defines name for this source in the processing part- ->
<address><!- -this is direct access to the service, thus we already know it- -></address>

</source>
<source name=“src2”>

<discovery><!- -Search for all outdoor temperature values of Tampere- ->
<tag>location : tampere</tag>
<tag>location : outdoor</tag>
<tag>measurement : temperature</tag>
</discovery>

</source>
</input>
<output><!- -defines output(s) for this service- -></output>
<process>

<variable name=“avg”>
<assign>

<function type=“average”>
<parameter>src1</parameter>
<parameter>src2</parameter>

</function>
</assign>

</variable>
<if ><compare operator=“greater”><valueOf name=“avg”/>25.0 </compare>
<then>

<action type=“increase”><destination name=“dst”/>
</then>
</if>
<if><compare operator=“less”><valueOf name=“avg”/>20.0</compare>
<then>

<action type=“decrease”><destination name=“dst”/>
</then>
</if>

</process>
</microservice>

Algorithm 1: An example of the processing section of the micro service XML schema.

services. When the input technology supports used aggre-
gation method, the infrastructure abstraction execution
environment distributes processing through the network
abstraction.

As an example, a pseudo-XML schema is proposed to
describe a new micro service in Algorithm 1. First, the micro
service is described. This includes the tags and address, which
are used to find the micro service and to connect it. Second,
the input sources are defined. The input can be either direct
address to a service or a set of discovery tags. Third, the
output is defined. The output is either direct connection to
another micro service (e.g., for the feedback control loops) or
a server that responds to the application queries. Finally, the
processing of the micro service is described. The inputs are
processed according to the processing schema and the results
are driven to the output. The presented processing calculates
average between two sources. If these sources can calculate
average in-network, the processing is distributed through the
network abstraction, for example, if the “src1” and “src2” are

in the same network behind TinyDB network abstraction,
the averaging could be executed by it. If there is no support
or sources are from different networks, the infrastructure
processing calculates the average.

8.3. Ontology. Instead of trying to create omnipotent ontol-
ogy as a de facto standard, world could be squeezed
into the mold that ontology provides. For example, world
could be seen as measurements, where everything can be a
measurement or can be measured. Expanding this vision to
nodes and networks allows covering all kind of data in WSN
applications with simple ontology structure. For example,
[19] discusses integration of social networks as a part of
sensor web as an open issue. As an example, Facebook type
of social network could be expressed with the sensor centric
ontology of WSN OpenAPI [43]: Facebook user’s friends are
a network, where every node is a friend and their status,
birthday, pictures, and so forth, are measurements. Further,

International Journal of Distributed Sensor Networks 11

a person can be a network of measurements, such as body
temperature, first name, and social security number. A car is
a network of sensors, and so forth.

9. Conclusions

This paper classified three levels of abstraction for WSNs:
node, network, and infrastructure abstractions. A survey
of existing infrastructure abstractions was presented and
infrastructure abstraction requirements were defined. An
infrastructure abstraction should provide technology inter-
operability by homogenizing data access, data format, and
other technology features. Service discovery, metadata addi-
tion, and data processing are also required. As open research
questions we discussed security and QoS and defined lack
of de facto ontology, lack of focus on service discovery,
lack of processing distribution to the network, and lack
of benchmark metrics for infrastructure abstractions. We
discussed a solution for the ontology problem and proposed
design directions for the service discovery and distributed
processing. As a future work, we will implement proposed
designs and test them with simulations and real world
deployments. Also, we will study benchmarking metrics for
infrastructure abstractions.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks, vol.
38, no. 4, pp. 393–422, 2002.

[2] R. Sugihara and R. K. Gupta, “Programming models for sensor
networks: a survey,” ACM Transactions on Sensor Networks,
vol. 4, no. 2, article no. 8, 2008.

[3] L. Mottola and G. P. Picco, “Programming wireless sensor
networks: fundamental concepts and state of the art,” ACM
Computing Surveys, vol. 43, no. 3, article no. 19, 2011.

[4] K. Henricksen and R. Robinson, “A survey of middleware for
sensor networks: State-of-the-art and future directions,” in
Proceedings of the International Workshop on Middleware for
Sensor Networks (MidSens ’06), pp. 60–65, New York, NY, USA,
November 2006.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.
Pister, “System architecture directions for networked sensors,”
SIGPLAN Notices, vol. 35, no. 11, pp. 93–104, 2000.

[6] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki—a lightweight
and flexible operating system for tiny networked sensors,” in
Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks (LCN ’04), pp. 455–462, Tampa,
Fla, USA, November 2004.

[7] P. Levis and D. Culler, “Mate: a tiny virtual machine for sensor
networks,” SIGPLAN Notices, vol. 37, no. 10, pp. 85–95, 2002.

[8] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D.
Culler, “The nesC language: a holistic approach to networked
embedded systems,” SIGPLAN Notices, vol. 38, no. 5, pp. 1–11,
2003.

[9] S. Hadim and N. Mohamed, “Middleware: Middleware chal-
lenges and approaches for wireless sensor networks,” IEEE
Distributed Systems Online, vol. 7, no. 3, pp. 1–23, 2006.

[10] M. M. Wang, J. N. Cao, J. Li, and S. K. Dasi, “Middleware
for wireless sensor networks: a survey,” Journal of Computer
Science and Technology, vol. 23, no. 3, pp. 305–326, 2008.

[11] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems, vol. 30, no.
1, pp. 122–173, 2005.

[12] Y. Yao and J. Gehrke, “The cougar approach to in-network
query processing in sensor networks,” SIGMOD Record, vol.
31, no. 3, pp. 9–18, 2002.

[13] C. L. Fok, G. C. Roman, and C. Lu, “Mobile agent middleware
for sensor networks: an application case study,” in Proceedings
of the 4th International Symposium on Information Processing
in Sensor Networks (IPSN ’05), pp. 382–387, April 2005.

[14] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy,
and G. P. Picco, “TinyLIME: Bridging mobile and sensor
networks through middleware,” in Proceedings of the 3rd
IEEE International Conference on Pervasive Computing and
Communications (PerCom ’05), pp. 61–74, March 2005.

[15] M. M. Molla and S. I. Ahamed, “A survey of middleware
for sensor network and challenges,” in Proceedings of the
International Conference on Parallel Processing Workshops
(ICPP ’06), pp. 223–228, August 2006.

[16] W. Masri and Z. Mammen, “Middleware for wireless sensor
networks: a comparative analysis,” in Proceedings of the IFIP
International Conference on Network and Parallel Computing
Workshops (NPC ’07), pp. 349–356, September 2007.

[17] N. Mohamed and J. Al-Jaroodi, “Service-oriented middleware
approaches for wireless sensor networks,” in Proceedings of
the 44th Hawaii International Conference on System Sciences
(HICSS-44 ’10), pp. 1–9, January 2011.

[18] Y. Dafei and F. Yu, “From sensor net to sensor grid: a
survey and taxonomy on Sensor Web,” in Proceedings of the
IEEE International Geoscience and Remote Sensing Symposium
(IGARSS ’07), pp. 2935–2938, June 2007.

[19] A. Bröring, J. Echterhoff, S. Jirka et al., “New generation sensor
web enablement,” Sensors, vol. 11, no. 3, pp. 2652–2699, 2011.

[20] T. Laukkarinen, J. Suhonen, T. D. Hamalainen, and M. Han-
nikainen, “Pilot studies of wireless sensor networks: Practical
experiences,” in Proceedings of the Conference on Design and
Architectures for Signal and Image Processing (DASIP ’11), pp.
1–18, November 2011.

[21] M. Botts, G. Percivall, C. Reed, and J. Davidson, “Ogc sensor
web enablement: overview and high level architecture,” in
GeoSensor Networks, S. Nittel, A. Labrinidis, and A. Stefanidis,
Eds., vol. 4540 of Lecture Notes in Computer Science, pp. 175–
190, Springer, Berlin, UK, 2008.

[22] I. Simonis, “Ogc sensor web enablement architecture, version
0.4.0,” OGC 06-021r4, OGC Best Practice. Open Geospatial
Consortium, 2008.

[23] M. Botts and A. Robin, “Ogc sensor model language (sen-
sorml) implementation specification, version 1.0.0, OpenGIS
Implementation Specification,” OGC 07-000, Open Geospa-
tial Consortium, 2007.

[24] S. Cox, “Observations and measurements—xml implementa-
tion, version 2.0, OpenGIS Implementation standard,” OGC
10-025r1, Open Geospatial Consortium, 2011.

[25] I. Simonis, “Ogc sensor alert service candidate implemen-
tation specification, version 0.9,” OGC 06-028r3, Candi-
date OpenGIS Implementation Specification Open Geospatial
Consortium, 2006.

[26] A. Bröring, C. Stasch, and J. Echterhoff, “Ogc sensor obser-
vation service interface standard, version 2.0,” OGC 12-
006, OpenGIS Implementation Standard. Open Geospatial
Consortium, 2012.

[27] I. Simonis and J. Echterhoff, “Ogc sensor planning ser-
vice implementation standard, version 2.0,” OGC 09-000,

12 International Journal of Distributed Sensor Networks

OpenGIS Implementation Standard. Open Geospatial Con-
sortium, 2011.

[28] I. Simonis and A. Wytzisk, “Web notification service, version
0.1.0,” OGC 03-008r2, OpenGIS Discussion Paper. Open
Geospatial Consortium, 2003.

[29] S. Havens, “Ogc transducer markup language (tml) imple-
mentation specification, version 1.0.0, retired,” OGC 06-
010r6, OpenGIS Implementation Specification. Open Geospa-
tial Consortium, 2007.

[30] E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan, A. Riabov,
and F. Ye, “A semantics-based middleware for utilizing het-
erogeneous sensor networks,” Distributed Computing in Sensor
Systems, vol. 4549, pp. 174–188, 2007.

[31] W3C, “Owl web ontology language reference,” http://www
.w3.org/TR/owl-ref, 2012.

[32] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for
data processing in large-scale interconnected sensor net-
works,” in Proceedings of the 8th International Conference on
Mobile Data Management (MDM ’07), pp. 198–205, May 2007.

[33] A. Kansal, S. Nath, J. Liu, and F. Zhao, “SenseWeb: an
infrastructure for shared sensing,” IEEE Multimedia, vol. 14,
no. 4, pp. 8–13, 2007.

[34] S. Nath, J. Liu, and F. Zhao, “Challenges in building a portal
for sensors world-wide,” in Proceedings of the 1st Workshop on
WorldSensor-Web, ACM, pp. 3–4, Boulder, 2006.

[35] Y. S. Jeong, E. H. Song, G. B. Chae, M. Hong, and D. S. Park,
“Large-scale middleware for ubiquitous sensor networks,”
IEEE Intelligent Systems, vol. 25, no. 2, pp. 48–59, 2010.

[36] V. Casola, A. Gaglione, and A. Mazzeo, “A reference archi-
tecture for sensor networks integration and management,”
GeoSensor Networks, vol. 5659, pp. 158–168, 2009.

[37] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3
information sharing platform,” in Proceedings of the 15th IEEE
Symposium on Computers and Communications (ISCC ’10), pp.
1041–1046, June 2010.

[38] L. Krishnamachari, D. Estrin, and S. Wicker, “The impact of
data aggregation in wireless sensor networks,” in Proceedings
of the 22nd International Conference on Distributed Computing
Systems Workshops, pp. 575–5578, 2002.

[39] G. L. Prakash, M. Thejaswini, S. H. Manjula, K. R. Venugopal,
and L. M. Patnaik, “Energy efficient in-network data process-
ing in sensor networks,” World Academy of Science, Engineering
and Technology, vol. 48, 2008.

[40] Q. Luo, H. Wu, W. Xue, and B. He, “Benchmarking in-
network sensor query processing,” Tech. Rep., The Hong Kong
University of Science and Technology, 2005.

[41] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tag: a tiny aggregation service for ad-hoc sensor networks,”
in Proceedings of the 5th symposium on Operating systems design
and implementation, ACM SIGOPS Operating Systems Review,
vol. 36, no. SI, pp. 131–146, 2002.

[42] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate
aggregation techniques for sensor databases,” in Proceedings of
the 20th International Conference on Data Engineering (ICDE
’04), pp. 449–460, April 2004.

[43] J. Suhonen, O. Kivela, T. Laukkarinen, and M. Hannikainen,
“Unified service access for wireless sensor networks,” in
Proceedings of the 3rd International Workshop on Software
Engineering for Sensor Network Applications (SESENA ’12), pp.
49–495, June 2012.

156 Publications

PUBLICATION 5

J. Suhonen, O. Kivela, T. Laukkarinen, and M. Hännikäinen, "Unified service ac-
cess for wireless sensor networks," Third International Workshop on Software En-
gineering for Sensor Network Applications (SESENA), pp. 49–55, June 2, 2012.
doi:10.1109/SESENA.2012.6225735

r2011 IEEE. Reprinted, with permission, from J. Suhonen, O. Kivela, T. Laukkari-
nen, and M. Hännikäinen, "Unified service access for wireless sensor networks,"
Software Engineering for Sensor Network Applications (SESENA), 2012 Third Inter-
national Workshop on , June 2012.

laukkart
Typewriter
Publication 5 is removed for Internet publishing due to
the IEEE copyright requirements

PUBLICATION 6

T. Laukkarinen, J. Suhonen, and M. Hännikäinen, “An embedded cloud design for
Internet-of-Things,” International Journal of Distributed Sensor Networks, vol. 2013,
Article ID 790130, 13 pages, 2013. doi:10.1155/2013/790130

First published by Hindawi Publishing Corporation.

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 790130, 13 pages
http://dx.doi.org/10.1155/2013/790130

Research Article
An Embedded Cloud Design for Internet-of-Things

Teemu Laukkarinen, Jukka Suhonen, and Marko Hännikäinen

Department of Pervasive Computing, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland

Correspondence should be addressed to Teemu Laukkarinen; teemu.laukkarinen@tut.fi

Received 11 April 2013; Revised 23 October 2013; Accepted 28 October 2013

Academic Editor: Seokcheon Lee

Copyright © 2013 Teemu Laukkarinen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Internet-of-Things (IoT) consists of interconnected heterogeneous devices that ubiquitously interact with physical world. The
devices are often resource constrained in terms of energy, computation, and communication resources. Distributing processing
between these heterogeneous devices could yield to better performance and sharing, and extending resources of the devices
could yield to more intelligent ubiquitous applications. Such a design can be called as “embedded cloud”, which is defined in this
paper. An embedded cloud design is presented that consists of distributable Process Description Language (PDL), Distributed
Middleware (DiMiWa), and an infrastructure. As a result, PDL can execute distributed processes and share resources as services over
heterogeneous IoT devices with help of DiMiWa and the infrastructure. The design is evaluated with a prototype implementation,
where PDL and DiMiWa are executed on a small 8-bit microcontroller-based IoT device. The implementation requires only 5122 B
of program memory (4% of the available), consumes under 1ms of CPU time per process in the worst case, and allows over 100
simultaneous services per device.

1. Introduction

Internet-of-Things (IoT) consists of heterogeneous net-
worked embedded devices that communicate through wired
or wireless links or the Internet to create new ubiquitous,
mash up, context aware, and information-based applications
[1–3]. Often these embedded devices measure or interact
with physical world ubiquitously, and they consist of wired
sensors, RFIDs, Wireless Sensor Networks (WSNs), and/or
mobile devices. Typically, IoT devices have limited communi-
cation and processing capabilities due to the energy consum-
ing communication, small physical factor, battery operation,
and long lifetime expectations.

Distributing and networking tens or hundreds of IoT
devices enable intelligent ubiquitous applications. Distribut-
ing the processing or the application logic over the networked
IoT devices is an important feature [3], since in-network
processing can improve energy efficiency and data delivery
reliability due to the reduced communication and congestion,
especially, on resource-constrained WSNs [4–7]. Current
IoT abstractions that hide device heterogeneity from end-
user application development do not take distributed or in-
network processing into account. The processing is done in

the infrastructure, and the IoT devices are mainly used as
heterogeneous data providers that are homogenized for the
end-user applications [3, 4, 8]. The heterogeneity of the
IoT devices makes distributing processing difficult, which
may be the reason for the lack of such proposals. In this
paper, heterogeneity means wired and wireless measuring
and actuating technologies that use different communication
methods and data formats without any direct device-to-
device interoperation compatibility.

Modern mobile phones already use cloud services to
extend their resources, such as iCloud on Apple devices and
SkyDrive on Microsoft devices. On current IoT abstractions,
IoT technologies work only as data providers and the applica-
tion is implemented on the infrastructure [4]. However, the
heterogeneous IoT devices in one location could potentially
implement the application on their own, if they could expand
and share their resources. As found out by Parwekar [3] and
the authors of this paper [4], there is a lack of design proposals
for IoT devices that would allow distributing processing and
expanding resources between different IoT technologies.

We propose embedded cloud as a solution that would
share, distribute, and expand resources of heterogeneous IoT
technologies. As a contribution, we define the requirements

2 International Journal of Distributed Sensor Networks

for an embedded cloud and propose an embedded cloud
design, which extends resources of measuring and actuating
IoT devices. The novelties of the presented design are as
follow.

(i) Heterogeneous IoT technologies can access external
resources (other IoT technologies services and cloud
processing) from the embedded cloud and virtu-
ally extend their own resources to the cloud ser-
vices through the presented Distributed Middleware
(DiMiWa).

(ii) The application logic is developed with a device
independent Process Description Language (PDL),
which is simple enough to be implemented and exe-
cuted even on small 8-bit resource-constrained WSN
devices, and versatile enough to allow implementing
complex processes with a small memory footprint.

(iii) The application logic can be executed on the IoT
devices of the suitable parts; there is no need to route
everything through central arbitrating server. Fur-
ther, technology specific processing can be harnessed,
which allows to achieve the energy conservation
benefits of in-network processing [4–7].

(iv) The design does not discriminate any technology; a
solution to connect anymeasuring or actuating device
as a part of the proposed embedded cloud design is
presented.

PDL allows distributable process execution and a simple
platform independent process creation with a small memory
footprint. DiMiWa abstracts technology heterogeneity into
services and provides sharing and expanding of the services
(both local and remote services without visible separation
to the application) while ensuring efficient use of the IoT
technologies. The infrastructure provides PDL and DiMiWa
execution environment for those technologies that cannot
match the running requirements. Also, the infrastructure
works as a communication arbiter and a data storage and
provides those processing tasks that are too resource consum-
ing for the connected IoT devices. Together these three com-
ponents form an embedded cloud. The design is evaluated
by studying the feasibility with a prototype implementation,
three use cases, a scalability evaluation, and a comparison of
the features against the related research.

The paper is constructed as follows. Section 2 gives
our definition and requirements for an embedded cloud.
Section 3 covers the related work of IoT clouds and the
components of the presented embedded cloud design. The
embedded cloud design is given in Section 4, and it is
evaluated with a prototype implementation in Section 5.
Section 6 discusses open questions in the design. Finally,
Section 7 concludes the paper and gives future work.

2. The Definition of the Embedded Cloud

Defining cloud computing has been a cumbersome task
and no widely accepted definition can be found [9, 10].
Infrastructure, platform, and software as a service (IaaS, PaaS,

and SaaS) are the main cloud computing approaches, which
are results of service oriented architecture (SOA). At the
time of writing, a Google search of the “embedded cloud”
gives approx. 25000 hits, and the first hits redefine “cloud”
of infrastructure connected IoT devices as an embedded
cloud [11–13]. A Google Scholar search gives approx. 248 hits
for the scientific publications discussing “embedded cloud”.
However, most of the findings are not computer system
studies. IEEE Xplore search engine does not give hits for
the “embedded cloud” term; a search with separated terms
over AND operation gives 329 hits from the relevant research
fields.

Current “embedded”, IoT, or sensor cloud proposals
utilize IoT devices only as heterogeneous data providers and
use existing cloud computing approaches for homogenizing
and further refining the data for the end-user applications
[3, 8, 14]. In such papers, the embedded cloud is seen as an
assorted collection of homogenized data producers.However,
we consider embedded cloud to have more requirements
from the IoT devices. Therefore, we propose a definition for
the embedded cloud.

Cloud computing provides virtualized computing ser-
vices without logical or location relation to physical hardware
[10]. This is impossible in the embedded world due to tight
relation with the physical world: sensors measure specific
quantities at the specific locations and at the specific time
[2]. Thus, the embedded cloud has two paradigms: (1) the
heterogeneous IoT devices provide homogenized services
to the end user through the embedded cloud, such as
measurement data and actuator controls. (2) The embedded
cloud provides and shares services between the IoT devices,
such as processing power, storage space, and those services
that do not exist on a particular IoT device. Then, the IoT
device itself can virtually extend its resource to the embedded
cloud. If these two paradigms are accomplished, creating
ubiquitous applications could be revolutionized, since the
resource constraints of the smallest IoT devices would no
longer restrict the development, not even at the local domain
of the device itself. Figure 1 illustrates this definition of the
embedded cloud.

The general requirements for an embedded cloud design
are as follows.

(1) It should homogenize data accessing and processing
of heterogeneous IoT technologies for the end user.

(2) It should extend resources of the IoT technologies.
(3) It should distribute processing that the IoT technolo-

gies can share resources and make the most of the
available resources.

All three requirements are complicated due to the hetero-
geneous IoT devices with varying computing, communica-
tion, and energy resources. First, homogenization is difficult,
since communication models, sampling rates and accuracies,
data access notations, and so forth are different between
technologies. Second, extending the resources is difficult, for
example, if the device is only capable of sending and receiving
few bytes occasionally.Third, distributing the processing and
sharing resources require approaches where computation,

International Journal of Distributed Sensor Networks 3

Embedded cloud for IoT:

Discover, share, store, and process data

End user interface to the embedded cloud

Embedded device interface to the embedded cloud

Any internet connected embedded device sees a
supply of virtual resources and services:

End user sees one resource rich homogenized
network of services:

without knowledge of the delivering hardware
∙ Access data from any embedded device

∙ Create and inject processing tasks to the cloud

∙ Access data that is not produced by the device
∙ Store and process data without resource constraints

Figure 1: The concept of the embedded cloud.

communication, and energy resource differences are solved.
The resulting design should be lightweight to work on the
most resource-constrained IoTdevices; yet, the design should
be agile and versatile to cover the vast application space
of IoT. Finally, through these requirements the embedded
cloud should allow easier application development for the
IoT technologies without the limitations of the resource
constraints and without tailoring due to the technology
heterogeneities.

3. Related Work

The critical problem in current heterogeneity solving propos-
als is the lack of harnessing the processing capabilities of the
connected IoT technologies. They fold into two categories:
first, an adaptation layer is used as a common gateway
for heterogeneous technologies. In these solutions, such as
OGC SWE [15] and GSN [16], the data produced and/or
consumed by the sensor networks is adapted for the end-
user application that runs on a server infrastructure [4,
17]. These solutions do not provide real device-to-device or
technology-to-technology interoperation and cannot solve
the basic use case: how to allow one device to utilize a
measurement of a different device. They only remove the
heterogeneity of the connected technologies for the end-
user application. Further, the processing capabilities of the
technologies are not harnessed. Second, a knowledge sharing
points allow heterogeneous devices to interchange data, as
in Smart-M3 [18]. These solutions do not share processing,
extend resource, or harness the processing capabilities and
they require tailored application development on each device.

Current sensor cloud or IoT cloud proposals use IoT
devices as data producing sensors and data consuming
actuators similar to heterogeneity adaptation proposals. IoT

clouds use cloud computing for storing data, refining data,
and providing refined services to end users; such proposals
can be found, for example, in [14, 19–23]. These proposals
use the cloud computing due to two factors. First, the cloud
computing can dynamically scale to the ever increasing
device, data, and end-user amounts, since IoT can potentially
have many thousands of devices producing vast amount of
data. Second, the cloud computing provides a cost-effective
infrastructure to process the vast amount of data, while
scaling to the random requests from the end users.

RoboEarth project proposes similar approaches for
autonomous mobile robots. RoboEarth stores record of the
physical world and action recipes to a database to be shared
between Internet connected robots [24]. Our design is for
wider interaction between heterogeneous IoT devices. Also,
our design is able to cover RoboEarth functionality, achieve
it on smaller devices, and extend it with interaction of other
nonrobotic embedded devices. Authors of this paper were
not able to find any directly comparable IoT design from
the scientific world that would expand and share resource
and distribute processing on the measuring and actuating
IoT devices. However, the components of our design have
comparable proposals.

Knowledge sharing proposals can be compared to
DiMiWa. Smart-M3 [18] allows device-to-device data
exchange through shared knowledge points, but it does not
expand resources virtually or allow distributed processing.
Gómez-Goiri and López-de-Ipiña propose a distributed
middleware that shares data between heterogeneous IoT
devices using RDF [25] and triples [26]. In addition to
sharing, data can be queried from the tripe space. Gómez-
Goiri and López-de-Ipiña proposal does not distribute
processing, and the Java ME implementation is complex and
heavy for resource-constrained devices. Both middleware

4 International Journal of Distributed Sensor Networks

Distributed middleware (DiMiWa)

Process description language (PDL)

The infrastructure

Database access

A
PI

M
es

sa
ge

s

Push/pull Push registration and domain

Get/set/store service data

Set processing

Subscribe/unsubscribe service data

Get/setDeliver data of the

local and remote

services

By
te

 co
de

ex
ec

ut
io

n

Homogenize

remote services

Run byte code actions that
access local and remote

services

Homogenize

Homogenize data

access and

processing of the

IoT deviceRegister devices

Share services

Provide storage space

e.g., measurements

Provide processing services

Execute DiMiWa and PDL

for those devices that

cannot execute them Access data and

inject PDL

processes
End-user applications

Cl
ou

d
co

m
pu

tin
g

∙ Service data

∙ Processing between services

∙ Registration

∙ Services and data
∙ PDL processes

∙ Processing
∙ Data access

∙ Local and

∙ Packets

∙ IDs

∙ Units

∙ Domains

Figure 2: The embedded cloud design, its components, and the levels of homogenization.

proposals require tailored application implementation on
the connecting IoT device.

Distributed WSN middleware can be compared to
DiMiWa as well. SQL query-based middleware, such as
TinyDB [27], provides a SQL-like interface to query and
process measurements from a WSN; however, TinyDB can-
not function between different technologies as DiMiWa
does. TinyLIME [28] and Agilla [29] allow distributing
data between mobile devices in a WSN through a tuple
space. Again, these solutions cannot be distributed between
different technologies. Any of the presented related solutions
do not expand resources of the resource-constrained WSNs.

Virtual Machines (VMs) for WSNs and process descrip-
tion languages are the related work for the proposed PDL.
Mate [30] is a well-known virtual machine for WSNs
that allows distributing WSN applications to the resource-
constrained WSN nodes without actual reprogramming.
Mate itself does not support distributed processing and it
functions close to the hardware. The proposed PDL allows
process distribution and it utilizes abstracted services of
DiMiWa. Process description languages are often XML,
such as Web Service Definition Language (WSDL) [31], and
intended for large scale computing. Thus, unlike PDL, they
are not suitable for small resource-constrained IoT devices.

4. The Embedded Cloud Design

Our embedded cloud design consists of three layers as
presented in Figure 2: the infrastructure, DiMiWa, and PDL.
In this design, processes and services provide the homog-
enizing abstraction. A process is described as actions that
use the services. Typical processing tasks (such as average
calculation) are services as well. A process can be distributed
onto the IoT devices where applicable. A domain is used to
provide locality into the services. A device can only see those
remote services that are in the same domain. Together these
design components fill the requirements of the embedded
cloud as shown in following sections.

4.1. The Infrastructure. The infrastructure design consists
of four main parts: a database, communication handling,
processing tasks, and end-user access. The communication
between the infrastructure andDiMiWa is done viamessages.
The infrastructure should be driven on an Internet connected
server platform, such as a cloud computing platform.

4.1.1.Messages. Table 1 describesmessages that are sent by the
infrastructure, andTable 2 describesmessages that are sent by
DiMiWa. Each message consists of message ID and payload,

International Journal of Distributed Sensor Networks 5

Table 1: Messages from the infrastructure to the DiMiWa devices.

Message Purpose
Push
registration

Cloud informs device of successful registration,
and pushes the domain to the device

Push domain Cloud pushes a domain to the device
Push service Cloud pushes a remote service to the device
Push service
data

Cloud pushes data of the remote service to the
device

Pull service
data Cloud pulls data of a service from the device

Flush services Cloud instructs the device to flush current
remote services (e.g., change in domain)

Push PDL
process Cloud pushes a new PDL process to the device

Flush PDL
processes

Cloud instructs the device to flush current PDL
processes (e.g., change in domain)

Table 2: Messages from the DiMiWa devices to the infrastructure.

Message Purpose
Push
registration The device registers in to the embedded cloud

Push domain The device informs of a location change to the
embedded cloud

Update
service The device requests for new TTL for a service

Get service
data

The device requests for new data for an existing
service and data is delivered once

Set service
data The device sets new data for a service

Store service
data

The device instructs cloud to store new data of
an existing service. Data is stored once

Subscribe
service

Subscribed service data is delivered
continuously when new data is ready

Unsubscribe
service The device unsubscribes for data

Set
processing
service

The device sets a service for a processing
service

and the payload typically constructed from service IDs, small
amount of data, or a domain. The data formatting (units) is
part of the implementation.

The messages allow the basic functionalities of service
discovery, data delivery, and process injection. The service
discovery happens during the registration. The IoT device
informs about itself to the embedded cloud, which responses
with the available services. The data delivery is performed
with the service data pushing and pulling, getting and
setting, and subscribing and unsubscribing. The distributed
processing is done with pushing and pulling the processes by
the infrastructure and creating processing service chains by
the IoT device.

The communication parameters, such as node and net-
work IDs, should be in the headers of the packet that encap-
sulates the message. An adapter may be required to translate
the IDs, which is a part of the implementation of DiMiWa.

4.1.2. Database. Each registered device is stored in to Node
DB that contains a node ID, a domain, a key to Network
DB, and relations to Service DB and Process DB. Network
DB contains connection information to each network: an IP-
address, a port, and a packet wrapping format, if required.
Service DB keeps track of services of each node and in
each domain, and Process DB keeps track of PDL processes.
The Blob DB stores the data delivered to the embedded
cloud and the data generated by the processing tasks in the
infrastructure. The data has a time stamp of its arrival.

4.1.3. Processing. The infrastructure has three main process-
ing tasks. First, it must handle the communication between
devices running DiMiWa. Second, it must execute DiMiWa
and PDL for those technologies that cannot execute them on
their own. Third, it must run processing services that are too
heavy to run on typical IoT devices, for example, FFT, pattern
recognition, and artificial intelligence.

The communication handler approves node registrations,
delivers domains and services to the nodes, stores and
requests data to the blob store, handles the data subscriptions,
and delivers data to the nodes. If one node instructs store or
get to a remote service and the cloud does not have recent
enough data from that service, the infrastructure can request
a new data from the service owner.

The in-cloud processing and resource sharing create vast
possibilities of distributed intelligence similar to RoboEarth
[24]. For example, one could create a small battery-operated
mobile robot with a camera and run a face detection on
that device. If the mobile robot would be connected to the
embedded cloud, it could store every face in to the cloud.
Further, the face detection processing could be moved to the
cloud as well, if this would, for example, save energy. Even
further, if the robot is replicated, all the robots could share
the same face database, and when one robot adds a new face
to the cloud, all the robots would be instantly able to detect
that same face.

4.1.4. End-User Access. We selected not to concentrate on
end-user application interface in this paper, since it is a large
research problem on its own.The embedded cloud essentially
provides an access to its databases for the end user. In addi-
tion, the end user can addPDLprocesses and processing tasks
to the infrastructure. However, the implementation is not
straightforward or well abstracted with a such basic interface.
We reckon that additional application cloud infrastructure
would be beneficial to improve data refinement and allow
higher level processing. This infrastructure could potentially
generate PDL processes automatically from a high level
description of an application, as we presented in [4]. This
application cloud on top of the embedded cloud is left as
future work.

4.2. Distributed Middleware. DiMiWa works as a middle-
ware in the embedded cloud design that allows different
technologies to connect to the embedded cloud. It provides
a homogenized service interface for the PDL processes.
The implementation can be executed on device or on

6 International Journal of Distributed Sensor Networks

Infrastructure

Temperature
AverageTemperature

Passive IR

Motion detector
Sound detector

Pi

Linear actuator

Picture

Raspberry Pi

Wireless sensor network

Web camera

Actuator

Human pattern recognition

All the devices can see and use all the services, if they are in the same domain

Internet connection

DiMiWa and PDL implementation
Service Local services of the device

Infrastructure runs on a cloud-computing platform

I/O connection

Figure 3: Possible execution locations for the DiMiWa and PDL implementations for aWSN, an Internet connected web camera and a linear
actuator that has no execution capabilities.

the cloud, which ensures that no technology is discrimi-
nated.The implementation execution possibilities ofDiMiWa
and PDL are presented in Figure 3. If a device/technology
cannot satisfy the presented requirements of DiMiWa, the
device/technology can be connected to the cloud through an
intermediate hardware, for example, with a Raspberry Pi as
the actuator is connected in Figure 3. If the device/technology
has an Internet connection capability, a virtual DiMiWa
implementation can be run directly in the infrastructure, as
the web camera is connected in Figure 3. Thus, DiMiWa is
distributedmiddleware over several technologies.

To ensure wide portability of DiMiWa, the requirements
for the executing IoT device have been minimized: the IoT
device must be able to send and receive data packets from
the Internet (e.g., through a tailored gateway) with a payload
of at least 9 B (1 B packet type and at least 8 B of payload), it
must provide a time stamping method, and it must be able to
execute a DiMiWa implementation. As the only requirement
is 9 B of payload and two-way communication, DiMiWa can
be used on top of several IoT communication technologies,
such as often referredZigBee [32], 6LoPWAN[33], andCoAP
[34].

DiMiWa consists of two interfaces: an application pro-
gramming interface (API) for PDL and the message interface
that is used to communicate with the infrastructure. The
design is kept minimal to ensure wide portability. In addition
to these two interfaces, a service cache is used to keep track
of local and remote services. DiMiWa implementation can
have technology specific features; for example, a DiMiWa
implementation for a WSN could deliver data straight from
node to node and bypass the infrastructure to reduce packet
amount, or a WSN could select process runner according to
the routing hierarchy and available in-network services.

4.2.1. An API to PDL. A PDL process can store a value of a
service, trigger to a service, get a value of a service, set a value

Table 3: DiMiWa API for PDL.

Operation Parameters Purpose

Store Service Stores value of the service for the
calling device

Trigger Service Triggers to the service

Get
Service,
buffer for
data

Returns a value of the service

Set Service, data
in a buffer Sets a value of the service

Get class Service Gets the class of the service

Process data Service, data
in a buffer

Sets data to be processed with the
service

Process
service

Service,
service

Sets value of the service to be
processed by another service

of a service, and instruct a service or data as an input to a
processing service. The API is presented in Table 3. PDL uses
these interface functions in its execution and the PDL design
follows this same service paradigm. However, the IoT device
can implement other applications on top of the DiMiWa API
as well.

4.2.2. Service. A service contains an identifier, a domain, and
a class. The service identifier and the domain together form
an address space that is used to distinguish and access the ser-
vices.Thephysical relation is abstracted; thus, the service user
cannot know which physical device is actually implementing
the service. However, the identifier and the domain restrict
the physical location of the service implementer.

The service class contains a flag for local and remote
services. The class itself provides information of the usable
actions on the DiMiWa process. The classes are BLOB, SAM-
PLE, and EVENT. A BLOB class service produces amount

International Journal of Distributed Sensor Networks 7

Table 4: PDL actions, parameters and purpose.

Action Parameters Purpose
STORE SERVICE Stores value of the SERVICE to the cloud

GET SERVICE Returns a value of the SERVICE. The value is stored to the internal
ACCU

SET SERVICE Sets the ACCU to the SERVICE
SET ACCU DATA: a new internal value Sets the immediate data to the ACCU
TRIGGER SERVICE Blocks process until the SERVICE returns a triggered condition

TIMER DATA: wait time in seconds Blocks process until the amount of seconds of the given data have
passed

TIMEWINDOW DATA: time window in seconds Restarts the process, if the time window is not cleared before
expiration

RESTART — Restarts the process
JUMP DATA: a jump offset Take a jump of the offset length

CONDITIONAL JUMP DATA: a jump offset If the next ACTION will rise the TRUE flag, the process takes the
jump. Offset is added after the conditional evaluation

PROCESS SERVICE process SERVICE, source SERVICE Give the source SERVICE as an input to the process SERVICE
PROCESS ACCU process SERVICE Give the ACCU as an input to the process SERVICE

OPERATION SERVICE, OPERATION Execute “SERVICE OPERATION ACCU” equation. Set TRUE flag
if needed.

OPERATION IMMEDIATE SERVICE, OPERATION, DATA Execute “SERVICE OPERATION DATA” equation. Set TRUE flag
if needed.

INC ACCU — Increments ACCU with 1.
DEC ACCU — Decrements ACCU with 1.

of data that cannot be presented in one variable, for example,
images, graphs, or sounds. The intention is that resource-
constrained devices do not try to access a BLOB class services
(it is not forbidden though). SAMPLE class services produce
ameasurement or take an adjustment parameter of the size of
one variable on request or on intervals. EVENT class services
produce measurements of the size of one variable after some
events.

4.2.3. Service Cache. Node mobility is evident in the embed-
ded cloud, which causes services to appear and disappear
dynamically: storing and discovering methods are needed. A
service cache is used to store local and remote services and
their data. DiMiWa registers local services in the infrastruc-
ture upon a registration. As a response, the infrastructure
delivers available remote services according to the domain.
All used services are stored in the service cache, and they
all have a Time-To-Live (TTL) value that ensures cleaning
of disappearing remote services eventually.The local services
have an infinite TTL, and they stay permanently in the service
cache.

The service cache holds the newest value for each SAM-
PLE and EVENT services. BLOB services are stored only into
the infrastructure. The get operation returns the value for
the SAMPLE and EVENT class services. The trigger returns
a true boolean value, if there is a value entry with recent
enough time stamp.The time threshold can be selected in the
implementation taking technology specific packet delays into
account. In a case of store operation for a local service, the
value from the cache is sent to the infrastructure.

4.3. Process Description Language. PDL was designed to
be platform and programming language independent, to
have a small memory footprint when implemented, and to
not require real multitasking to ensure the suitability for
the resource-constrained IoT devices. PDL itself provides a
cooperative multitasking for its processes.

A PDL process is a series of known size actions that
interact with DiMiWa services. Each action in the series is
executed step by step in a state machine. PDL resembles an
instruction set of a virtualmachine, but the operands are local
or remote services instead of typical register and memory
accesses of a CPU. The known size of the actions and the
following operands make parsing and implementing the exe-
cuting state machine easy. Each process has an accumulator
register ACCU for storing and manipulating values returned
by the services.

Table 4 presents all the actions of PDL. The actions
allow accessing the DiMiWa services, creating timed actions,
manipulating the execution flow, manipulating the accumu-
lator, and instructing the DiMiWa processing services. The
small amount of the actions ensures that the implementation
is lightweight.

PDL requires a call of a timing function once a second
that is the timing granularity. If the target technology cannot
provide this granularity, the PDLmust be implemented in the
infrastructure.

The execution flow can bemanipulated with two different
actions. First, a timeout can be createdwith TIMEWINDOW.
If the following action does not proceed or produce a
TRUE result within the time window, the process is restarted.

8 International Journal of Distributed Sensor Networks

Second, a jump can be taken with three actions: jump always
with JUMP, jump after CONDITIONAL JUMP if the follow-
ing action produces a TRUE, and jump in the beginning with
RESTART. The conditionals TRUE and FALSE are set by the
operation actions after the evaluation.

The accumulator can be manipulated with setting,
adding, subtraction, multiply and division operations. The
manipulation can be done between an immediate value
or a DiMiWa service. The arithmetics are saturating; thus,
accumulator overflow is not possible.

The end user can add new processes to the embedded
cloud. The embedded cloud then resolves the best execution
place for that process. The process could be even split into
smaller PDL action series, if required. However, algorithm
and design for splitting the PDLs are left as future work.

5. Evaluation with a Prototype

The evaluation studies the feasibility of the presented embed-
ded cloud design. First, we evaluate the implementation
feasibility of PDL and DiMiWa on resource-constrained
IoT devices. Second, we discuss scalability issues. Third, we
evaluate usability of the PDL processes using for example use
cases. Finally, we present a comparison of features to existing
related work.

5.1. Implementation Feasibility. We have implemented a
portable implementation of DiMiWa with the C program-
ming language. The portability requires two interfaces in
addition to the API and messages of the embedded cloud
design: a platform interface and a portable interface. The
platform interface must be called by the IoT device running
the DiMiWa implementation.The portable interface must be
implemented by the IoT device.

The platform interface has three functions: handling the
received packets, keeping up the connection to the embedded
cloud, and resolving the domain, if the device physically
moves.

The portable interface implements the following func-
tions. An initialization function does all the device specific
initializations, for example, adding the local services to the
DiMiWa service cache. A wrapped packet allocation is pro-
vided, where the packet holds room for the IoT technology
specific communication and the DiMiWa packet and the port
fills the device specific headers and trailers. A function for
sending a packet towards the Internet is provided. A function
to get the time for DiMiWa cache is implemented. It should
be noted that the time format can be anything, since the time
is not delivered to the embedded cloud. Getting and setting
functions are implemented for the values of the local services
implemented by the device. Finally, memory allocation and
freeing functions are implemented.

PDL implementation is standard C programming lan-
guage code and can be directly compiled for any platform
that has a C compiler. The implementation is 354 lines of
C code including 15% of comment lines. One process data
structure holds a container pointer, a process description
pointer, a process description size, a location of the process

(1) uint8 t clock(lc t∗ lc, event t∗ event){
(2) os thread begin(lc);
(3) while(1){
(4) os alarm set(1000); // 1ms granularity
(5) os thread wait event(lc);
(6) pdle clock tick();
(7) }
(8) os thread end(lc);
(9) }
(10) uint8 t run(lc t∗ lc, event t∗ event){
(11) os thread begin(lc);
(12) while(1){
(13) os alarm set(100);
(14) os thread wait event(lc);
(15) pdle run();
(16) dimiwa run();
(17) }
(18) os thread end(lc);
(19) }

Listing 1: PDL and DiMiWa execution with threads of HybridKer-
nel.

execution, status flags, a timer, a jump offset register, and
an accumulator register. This yields 12 B and the size of two
pointers of memory per each PDL process. One PDL action
is 8 bits, jump offset is 8 bits, immediate data is 32 bits, and
timers are 16 bits.

PDL provides four interface functions: pdle clock tick()
must be called once a second to create the internal timer,
pdle add process() adds a new process to the execution,
pdle remove process() removes a running process from the
execution, and pdle run() executes the running processes.

In theDiMiWa implementation, one service is 32 bits, one
data entry is 32 bits integer, the class is 8 bits, and the domain
is 8 bits. One DiMiWa cache entry requires memory for 10 B
of data (a service, a class, a TTL, a value, and a time stamp)
and two pointers.

Listing 1 presents how PDL and DiMiWa are executed
using threads in our HybridKernel [35]. These threads are
built on protothreads proposed by Dunkels et al. [36], which
are used in Contiki [37]. Thus, the same execution model
should work for Contiki as well. Both systems software are
designed for small 8-bit microcontrollers that are often used
on resource-constrained WSN devices.

Our prototype implementation was tested using two
PIC18F8722 8-bit microcontrollers [38] equipped TUTWSN
WSN devices [39], two Raspberry Pi devices [40], and a
laptop running the infrastructure as shown in Figure 4.
The WSN devices implemented a Passive Infra-Red (PIR)
motion detector and temperature measurement services, one
Raspberry Pi implemented a camera service with USB WEB
camera, and the other one implemented a sound producing
on/off actuator service. The packets were delivered using
UDP between the Internet connected devices.

On the TUTWSN device, the PDL implementation takes
1900B, andDiMiWa implementation takes 3222 B in program
memory. This totals to 5122 B, which is 4% of the available

International Journal of Distributed Sensor Networks 9

TUTWSN devices

Laptop running the infrastructure

and showing the stored picture

Raspberry Pi with

and audio actuator
USB web camera

Figure 4: The prototype testing setup.

128 KB program memory. These values were gathered with
Microchip MCC18 compiler using optimizations. The values
do not contain the library functions (such as a linked
list), drivers, protocol stack, or operating system. From the
implementation results it can be concluded that PDL and
DiMiWa can be implemented for a small 8-bit IoT device.The
Raspberry Pi implementation executable is a 23.5 KB ELF file.

Executing a process onPDL requires varying time on each
step and iteration. Table 5 presents the worst case execution
times averaged for the PIC18F8722 implementation running
at 4MHz (1 instruction per 𝜇s). The execution times were
gathered by probingMCUpins with an oscilloscope, running
a test PDL process, and toggling pins according to actions.
Jumps and operations manipulating ACCU require varying
time due to the 8-bit MCU and 32-bit operations that are
implemented with software by the compiler. The figures are
considered reasonable, and the presented implementation
can run over 100 PDL processes on the PIC18F8722 as shown
in the scalability section. The execution times do not contain
protocol stack operations (e.g., sending a packet).

5.2. Scalability. Scalability should be considered for small
resource-constrainedWSNs and IoT technologies, since their
memory, energy, and communication resources are often
limited. Thus, resource-constrained WSNs are the possible
bottlenecks of the presented design.Themain scalability issue
is the amount of services and processes that one device can
potentially handle. Eventually, data memory and execution
time will run short.

With the presented TUTWSN and PIC18F8722 imple-
mentation, DiMiWa and PDL have around 1968 B of data
memory in their use. As described in Section 5.1, one service
entry in DiMiWa cache requires 10 B of data memory and
two pointers. Since pointers are 2 B on PIC18F8722, this
totals to 14 B per cache entry and the upper limit for
subscribed services of one device is 1968 B/14 B = 140. The
PDL processes can be stored to the program memory, but
each PDLprocess requires 16 B of datamemory and the upper
limit for processes is 123. Since both processes and services

Table 5: The worst case execution times of DPL actions on
PIC18F8722 MCU.

Action Execution
time (𝜇s)

TIMER and TIMEWINDOWwhen set 350
STORE, SET, PROCESS SERVICE,
PROCESS ACCU <800

TRIGGER, GET 190
idling (waiting for timer or RESTART) 180
rest of the actions (actions manipulating ACCU and
jumps) <400

compete from the samedatamemory resource, a compromise
is needed, and both the process and the service amounts need
to be carefully controlled.

The execution time depends on the PDL process amount
and structure.The presented implementation runs PDL every
100ms (Listing 1), and on the worst case one action takes
800𝜇s. As a result, the deadline of 100ms will be breached
with 125 PDL processes running a lengthy action at the
same step. Considering the data memory constraints, it is
seen that the execution time will not restrict scalability on
PIC18F8722-based platforms. However, the execution time is
energy consuming, and therefore the PDL process amount
should be carefully controlled.

The presented figures suggest that the implementation is
well usable with PIC18F8722 and a TUTWSN network of 100
devices could execute even 12300 different PDL processes,
which should be considered enough. Resource-constrained
WSNs typically have limited amount of duties, since the
connections (sensors and actuators) to the physical world are
limited.

In addition to service and PDL process amounts, themes-
sage exchange affects scalability. If the device subscribes a lot
of remote services, the infrastructure might push too much
data to the device. This could cause two drawbacks: first,
the network gets congested due to the amount of delivered

10 International Journal of Distributed Sensor Networks

(1) uint8 t pdl process[] = {
(2) PDL ACTION TIMER, 0 × 01, 0 × 2C,
(3) PDL ACTION STORE, DIMIWA SERVICE TEMPERATURE,
(4) PDL ACTION RESTART };

Listing 2: A 9-byte PDL process for measuring temperature every 5 minutes.

(1) uint8 t pdl process[] = {
(2) PDL ACTION TRIGGER, DIMIWA SERVICE PIR,
(3) PDL ACTION TIMEWINDOW, 0 × 00, 0 × 3C,
(4) PDL ACTION TRIGGER, DIMIWA SERVICE PIEZO,
(5) PDL ACTION TIMEWINDOW, 0 × 00, 0 × 3C,
(6) PDL ACTION TRIGGER, DIMIWA SERVICE SOUND,
(7) PDL ACTION STORE, DIMIWA SERVICE CAMERA,
(8) PDL ACTION PROCESS SERVICE, DIMIWA SERVICE HUMAN PATTERN RECOGNITION,

DIMIWA SERVICE CAMERA,
(9) PDL ACTION CONDITIONAL JUMP, 0 × 13,
(10) PDL ACTION OPERATION IMMEDIATE, DIMIWA SERVICE HUMAN PATTERN RECOGNITION,

PDL OPERATION EQUAL , 0 × 00, 0 × 00, 0 × 00, 0 × 00,
(11) PDL ACTION SET ACCU, 0 × 00,0 × 00,0 × 00,0 × 01,
(12) PDL ACTION SET, DIMIWA SERVICE GATE ACTUATOR,
(13) PDL ACTION TIMER, 0 × 01, 0 × 2C,
(14) PDL ACTION DEC ACCU,
(15) PDL ACTION SET, DIMIWA SERVICE GATE ACTUATOR,
(16) PDL ACTION RESTART };

Listing 3: A 66-byte PDL process that detects human from a camera picture after motion detection sensor alarms and controls a gate similar
to the constellation in Figure 3.

messages. Second, the increase in data traffic might increase
energy consumption.These figures depend on the underlying
transport technology and routing topology, which make esti-
mating them very difficult as the embedded cloud is designed
to connect any technology. For example, on TUTWSN, the
increase in data traffic is not vital, if themessages are delivered
through the so-called reserved slots [39]. Communication
must be done on these slots even if there is no application data
to be send.However, itmust be emphasized that the presented
design allows the implementation of DiMiWa and/or the
execution of the PDL process resides on the infrastructure as
shown in Figure 3 with the web camera. This would remove
the overheads from the technology. In the current design, this
issue can be avoided with careful use of the PDL processes.

The scalability of the infrastructure is assumed to be
infinite in this paper. In practice, there is an upper limit
for amount of connected devices, exchanged data, and ser-
vices, but we assume that exhausting the infrastructure is a
nonrelevant problem, if the design is deployed in large scale
over distributed data centers or cloud platforms; for example,
Facebook is currently able to serve over one billion users [41].

5.3. Example Use Cases. With the following three use cases,
we show the versatility, usability, and feasibility of the PDL
processes. Listing 2 presents a basic temperature measure-
ment process with 5-minute intervals. This is a typical task

required from a WSN node. Listing 3 presents a process
that detects humans from a picture after three distinctive
motion detectors have been triggered within a time frame
of one minute. If a human is detected, a gate is opened for
5 minutes. This process could be used to separate humans
from cagedwildlife. Implementing this process on a resource-
constrained WSN would be difficult due to the large data of
the picture and processing power required by the image pro-
cessing. Listing 4 presents a simple P controlled temperature
controlling that utilizes averaged temperature, which would
improve the result compared to a single point ofmeasure.This
is a typical WSN middleware and in-network processing use
case for example, in a building automation.

Listing 2 process is in size 9 B. Respectively, Listing 3 is
66 B in size and Listing 4 is 62 B in size. Direct comparison to
a tailored application or a Maté implementation is difficult
due to the service approach of DiMiWa, but it is easy to
estimate that programming the same behavior with CPU like
byte code would yield a larger footprint. Relatively small size
of the processes allows a process injection to a WSN over the
WSN protocol stack, without a need for a program image
or firmware distribution support [42]. The use cases were
tested with the prototype implementation by simulating the
physically missing hardware.

OnListing 3, the triggering could be executed on the node
that is the first node to route all three triggering messages,

International Journal of Distributed Sensor Networks 11

(1) uint8 t pdl process[] = {
(2) PDL ACTION TIMER, 0 × 01, 0 × 2C,
(3) PDL ACTION PROCESS SERVICE, DIMIWA SERVICE AVERAGE, DIMIWA SERVICE TEMPERATURE,
(4) PDL ACTION TIMER, 0 × 01, 0 × 2C,
(5) PDL ACTION CONDITIONAL JUMP, 0 × 0B,
(6) PDL ACTION OPERATION IMMEDIATE, DIMIWA SERVICE AVERAGE, PDL OPERATION LT,

0 × 00, 0 × 00, 0 × 08, 0 × 98,
(7) PDL ACTION GET, DIMIWA SERVICE HEATING,
(8) PDL ACTION DEC ACCU,
(9) PDL ACTION SET, DIMIWA SERVICE HEATING,
(10) PDL ACTION CONDITIONAL JUMP, 0 × 0B,
(11) PDL ACTION OPERATION IMMEDIATE, DIMIWA SERVICE AVERAGE, PDL OPERATION GT,

0 × 00, 0 × 00, 0 × 08, 0 × 34,
(12) PDL ACTION GET, DIMIWA SERVICE HEATING,
(13) PDL ACTION INC ACCU,
(14) PDL ACTION SET, DIMIWA SERVICE HEATING,
(15) PDL ACTION RESTART };

Listing 4: A 62 bytes PDL process with P controlled temperature controlling.

Table 6: Comparison of features.

Technology: Presented proposal Smart-M3 Mate TinyDB OGC SWE RoboEarth
Technology interoperation X X X
Heterogeneity homogenization X X (partly) X X
Application implementation X X (partly) X
Application dissemination X X (partly) X
Distributed processing X X X
Resource expanding X X
Usable directly on 8-bit WSNs X X X X
Last measurement data access X X X X X
Archived measurement data access X X X X

for example, the first routing node in Figure 3. When the
three motion detection sensors alarm (PIR, motion sensor,
and sound sensor) and send their messages to the routing
node, the node could drop the packets and only send the
store command for the camera. Typically, this would reduce
communication, energy consumption, and/or congestion [4–
7]. The average calculation on Listing 4 process could be
executed with in-network processing of aWSNwith the same
benefits.

5.4. Comparison. Comparing the memory and execution
overheads of the implementation is difficult, since it would
require implementing all the related work on the same plat-
form and there are no existing comparable overhead figures.
Also, the novelty of the presented design is in its features
that make it versatile. Therefore, we concentrate to compare
features of related work to present our design versatility in
Table 6. Although RoboEarth is not intended for IoT use, it
has been included since it shares similar approach. TinyDB
supports application implementation, dissemination, and
distributed processing within one technology; thus, it is only
considered to support those partly.

6. Open Questions and Discussion

The presented design is a starting point for the embed-
ded cloud designs. There are open questions; for example,
security, privacy, ontologies, or data semantics are main
requirements for any IoT technology. Security and privacy
are not discussed, since the presented design and imple-
mentation rely on the built-in security methods of the used
technologies. Handling the encryption keys and so forth is an
open problem that should be solved. Ontology and semantics
rule the format and units of the data. One ontology can
be selected in the implementation of the presented design.
The ontology should provide identifiers for each device,
and it should define units, ranges, accuracy, and so on for
each measurement in the embedded cloud. The units and
accuracies were selected according to the available hardware
on the prototype implementation.

Although connected devices register to the embedded
cloud through DiMiWa and do the service discovery with
help of the infrastructure, there are management issues that
were not discussed in this paper. For example, how the
domains are set. In the prototype implementation we hardly
coded the devices and their domains, but an automated

12 International Journal of Distributed Sensor Networks

method is needed to make this design more complete. This
would be easy to solve, if all the devices could produce a
WGS84 or similar coordinates for their location.On the other
hand, often the domain is a description of the place, such
as kitchen, a social security number, or a room number.
Creating a completely automated system is a very difficult
research problem.

The presented design could be improved for even better
scalability with two extra components that keep track on
subscribed services and running PDL processes on each
device. These components could be called DiMiWa service
and PDL process brokers. The DiMiWa service broker could
monitor the amount of services subscribed on the device,
and when the threshold is achieved, it could move some
of the processing to the infrastructure to reduce amount of
subscribed remote services. The PDL process broker could
ensure that the device does not exhaust under its load.
The PDL process broker could move PDL processes to the
infrastructure, if the device runs out of memory, execution
time, or energy. These two brokers should cooperate to
ensure the best utilization of the technologies.Therefore, they
both require understanding of the executing technology, but
currently there are no such technology models available that
could be used as an input data for these brokers. The brokers
and the technologymodel are the important part of our future
work.

7. Conclusions and Future Work

In this paper, an embedded cloud was defined as a design
that homogenizes distributed processing, resource extending,
resource sharing, and data accessing of heterogeneous IoT
devices. A novel embedded cloud design was presented that
consists of a distributable process description language, a
distributable middleware, and an infrastructure. Together
these components form an embedded cloud that expands
resources, distributes processing, and hides heterogeneity
even for themost resource-constrained IoT technologies.The
prototype implementation was functional even on an 8-bit
microcontroller-based WSN device.

As future work, we will study modeling IoT devices to
describe their performance and capabilities and to try to cre-
ate an algorithm that utilizes these performance descriptions
to distribute the PDL processes in a more intelligent way
through the DiMiWa service and PDL process brokers.

References

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: a
survey,”Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] L. Tan and N. Wang, “Future internet: the internet of things,”
in Proceedings of the 3rd International Conference on Advanced
Computer Theory and Engineering (ICACTE ’10), vol. 5, pp.
V5376–V5380, August 2010.

[3] P. Parwekar, “From internet of things towards cloud of things,”
in Proceedings of the 2nd International Conference on Computer
and Communication Technology (ICCCT ’11), pp. 329–333,
September 2011.

[4] T. Laukkarinen, J. Suhonen, and M. Hannikainen, “A survey
of wireless sensor network abstraction for application develop-
ment,” International Journal of Distributed Sensor Networks, vol.
2012, Article ID 740268, 12 pages, 2012.

[5] Q. Luo, H. Wu, W. Xue, and B. He, “Benchmarking in-network
sensor query processing,” Technical Report, The Hong Kong
University of Science and Technology, Hong Kong, 2005.

[6] G. L. Prakash, M. Thejaswini, S. H. Manjula, K. R. Venugopal,
and L. M. Patnaik, “Energy efficient in-network data processing
in sensor networks,”World Academy of Science, Engineering and
Technology, vol. 24, pp. 12–25, 2008.

[7] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann,
“Impact of network density on data aggregation in wireless
sensor networks,” in Proceedings of the 22nd International
Conference on Distributed SystemsWorkshops, pp. 457–458, July
2002.

[8] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain, A.
Alelaiwi, and M. A. Hossain, “A survey on sensor-cloud: archi-
tecture, applications, and approaches,” International Journal of
Distributed Sensor Networks, vol. 2013, Article ID 917923, 18
pages, 2013.

[9] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” in Proceedings of the
Grid Computing Environments Workshop (GCE ’08), pp. 1–10,
November 2008.

[10] M. Armbrust, A. Fox, R. Griffith et al., “A view of cloud com-
puting,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[11] Embedded Hardware, “40 posts categorized embedded cloud,”
2013, http://blog.vdcresearch.com/embedded hw/embedded-
cloud/.

[12] Real-Time Innovations Inc and R. Joshi, “The embedded
cloud: it at the edge,” 2013, http://www.embedded.com/design/
prototyping-and-development/4219526/The-embedded-cloud-
IT-at-the-edge.

[13] H. Davis, “Embedded cloud computing,” 2013, http://
embedded.communities.intel.com/community/en/software/
blog/2011/04/11/embedded-cloud-computing.

[14] G. C. Fox, S. Kamburugamuve, and R. D. Hartman, “Archi-
tecture and measured characteristics of a cloud based internet
of things,” in Proceedings of the International Conference on
Collaboration Technologies and Systems (CTS ’12), pp. 6–12, May
2012.

[15] M. Botts, G. Percivall, C. Reed, and J. Davidson, “Ogc sensor
web enablement: overview and high level architecture,” in
GeoSensor Networks, S. Nittel, A. Labrinidis, and A. Stefanidis,
Eds., vol. 4540 of Lecture Notes in Computer Science, pp. 175–
190, Springer, Berlin, Germany, 2008.

[16] K. Aberer, M. Hauswirth, and A. Salehi, “Infrastructure for data
processing in large-scale interconnected sensor networks,” in
Proceedings of the 8th International Conference on Mobile Data
Management (MDM ’07), pp. 198–205, May 2007.

[17] N. Mohamed and J. Al-Jaroodi, “Service-oriented middleware
approaches for wireless sensor networks,” in Proceedings of
the 44th Hawaii International Conference on System Sciences
(HICSS ’10), pp. 1–9, January 2011.

[18] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-M3
information sharing platform,” in Proceedings of the 15th IEEE
Symposium on Computers and Communications (ISCC ’10), pp.
1041–1046, June 2010.

[19] M. M. Hassan, B. Song, and E. Huh, “A framework of sensor-
cloud integration opportunities and challenges,” in Proceedings

International Journal of Distributed Sensor Networks 13

of the 3rd International Conference on Ubiquitous Information
Management and Communication (ICUIMC ’09), pp. 618–626,
ACM, New York, NY, USA, January 2009.

[20] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure
physical sensor management with virtualized sensors on cloud
computing,” in Proceedings of the 13th International Conference
on Network-Based Information Systems (NBiS ’10), pp. 1–8,
September 2010.

[21] M. Yuriyama, T. Kushida, and M. Itakura, “A new model of
accelerating service innovation with Sensor-Cloud Infrastruc-
ture,” in Proceedings of the Annual SRII Global Conference (SRII
’11), pp. 308–314, April 2011.

[22] M. S. Aslam, S. Rea, and D. Pesch, “Service provisioning for
the wsn cloud,” in Proceedings of the IEEE 5th International
Conference on Cloud Computing (CLOUD ’12), pp. 962–969,
June 2012.

[23] S. Alam, M. M. R. Chowdhury, and J. Noll, “SenaaS: an event-
driven sensor virtualization approach for internet of things
cloud,” in Proceedings of the 1st IEEE International Conference
on Networked Embedded Systems for Enterprise Applications
(NESEA ’10), pp. 1–6, November 2010.

[24] M.Waibel, M. Beetz, J. Civera et al., “Robo earth,” IEEE Robotics
and Automation Magazine, vol. 18, no. 2, pp. 69–82, 2011.

[25] “Resource description framework (rdf),” 2013, http://www
.w3.org/RDF/.

[26] A. G. Gómez-Goiri and D. López-De-Ipiña, “A triple space-
based semantic distributed middleware for internet of things,”
inCurrent Trends inWeb Engineering, F. Daniel and F.M. Facca,
Eds., vol. 6385 of Lecture Notes in Computer Science, pp. 447–
458, Springer, Berlin, Germany, 2010.

[27] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems, vol. 30, no.
1, pp. 122–173, 2005.

[28] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, and
G. P. Picco, “TinyLIME: bridging mobile and sensor networks
through middleware,” in Proceedings of the 3rd IEEE Interna-
tional Conference on Pervasive Computing and Communications
(PerCom ’05), pp. 61–74, March 2005.

[29] C.-L. Fok, G.-C. Roman, and C. Lu, “Mobile agent middleware
for sensor networks: an application case study,” in Proceedings
of the 4th International Symposium on Information Processing in
Sensor Networks (IPSN ’05), pp. 382–387, April 2005.

[30] P. Levis and D. Culler, “Mate: a tiny virtual machine for sensor
networks,” ACM SIGPLAN Notices, vol. 37, no. 10, pp. 85–95,
2002.

[31] W3C, “Web services description language (wsdl) version 2.0
part 1: core language,” 2013, http://www.w3.org/TR/wsdl20/.

[32] ZigBee Alliance, “Zigbee alliance homepage,” 2013, http://www
.zigbee.org/.

[33] IETF, “Ietf ipv6 over low power wpan (6lopwan) working
group,” 2013, http://datatracker.ietf.org/wg/6lowpan/charter/.

[34] IETF, “Ietf constrained application protocol (coap) work-
ing group,” 2013, https://datatracker.ietf.org/doc/draft-ietfcore-
coap/.

[35] T. Laukkarinen, V. A. Kaseva, J. Suhonen, T. D. Hämäläinen,
and M. Hännikäinen, “Hybridkernel: preemptive kernel with
event-driven extension for resource constrained wireless sensor
networks,” in Proceedings of the IEEE Workshop on Signal
Processing Systems (SiPS ’09), pp. 161–166, October 2009.

[36] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads:
simplifying event-driven programming of memory-
constrained embedded systems,” in Proceedings of the 4th
International Conference on Embedded Networked Sensor
Systems (SenSys ’06), pp. 29–42, Boulder, Colo, USA, November
2006.

[37] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki-a lightweight
and flexible operating system for tiny networked sensors,” in
Proceedings of the 29th Annual IEEE International Conference
on Local Computer Networks (LCN ’04), pp. 455–462, Tampa,
Fla, USA, November 2004.

[38] Microchip, “Pic18f8722 family data sheet,” 2013, http://ww1
.microchip.com/downloads/en/DeviceDoc/39646c.pdf.

[39] M. Kohvakka, Medium Access Control and Hardware Prototype
Designs for Low-Energy Wireless Sensor Networks, Tampere
University of Technology, Publication 808, Tampere, Finland,
2009.

[40] Raspberry Pi, “Raspberry pi,” 2013, http://www.raspberrypi
.org/.

[41] Yahoo News, “Number of active users at facebook over
the years,” 2013, http://news.yahoo.com/number-activeusers-
facebook-over-230449748.html.

[42] T. Laukkarinen, L. Määttä, J. Suhonen, T. D. Hämäläinen, and
M. Hännikäinen, “Design and implementation of a firmware
update protocol for resource constrained wireless sensor net-
works,” International Journal of Embedded and Real-Time Com-
munication Systems (IJERTCS), vol. 2, no. 3, pp. 50–68, 2011.

