
Ville Eerola
Design and Silicon Area Optimization of Time-Domain
GNSS Receiver Baseband Architectures

Julkaisu 1582 • Publication 1582

Tampere 2018

Tampereen teknillinen yliopisto. Julkaisu 1582
Tampere University of Technology. Publication 1582

Ville Eerola

Design and Silicon Area Optimization of Time-Domain
GNSS Receiver Baseband Architectures

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Festia Building, Auditorium Pieni Sali 1,
at Tampere University of Technology, on the 26th of October 2018, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2018

Doctoral candidate: Ville Eerola

Laboratory of Electronics and Communications
Engineering
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Finland

Supervisor: Prof. Jari Nurmi
Laboratory of Electronics and Communications
Engineering
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Finland

Pre-examiners: Dr. Hannu Heusala

FiNoC Design Consulting
Finland

Dr. Jari Syrjärinne
HERE Technologies
Finland

Opponents: Prof. Jorma Skyttä
Department of Signal Processing and Acoustics
Aalto University
Finland

Dr. Jari Syrjärinne
HERE Technologies
Finland

ISBN 978-952-15-4217-6 (printed)
ISBN 978-952-15-4235-0 (PDF)
ISSN 1459-2045

i
i

“thesis” — 2018/10/5 — 11:01 — page i — #3 i
i

i
i

i
i

ABSTRACT

The use of Global Navigation Satellite Systems (GNSSs) in a wide range of
portable devices has exploded in the recent years. Demands for a lower cost
while expecting longer battery life and better performance are constantly
increasing. The general GNSS receiver operation and algorithms are already
well studied in the literature, but the hardware architectures and designs
have not been discussed in detail.

This thesis introduces a high level gate count estimation method that
provides good accuracy without requiring the hardware being fully specified.
It is based on developing hierarchical models, which are parameterizable,
while requiring minimal amount of information about the silicon technology
used for the implementation. The average accuracy has been shown to be
4%.

Three time-domain, real-time GNSS receiver baseband architectures are
described with a discussion about various optimization methods for efficient
implementation: the correlator, the matched filter, and the group correlator,
which is a new architecture combining some of the features of the two first
ones.

Four use cases are defined for different GNSS operating modes: Acquisition,
tracking, assisted GNSS, and the combination of the first three modes. A
comparison is made for receiver basebands including all necessary blocks

i
i

“thesis” — 2018/10/5 — 11:01 — page ii — #4 i
i

i
i

i
i

ii Abstract

for full functionality to find out which of the three architectures provides
the most silicon area efficient implementation.

It is shown that the correlator offers good flexibility, but yields the highest
silicon area for acquisition use cases. The matched filter is best suited
for the acquisition, but has large overhead when it comes to tracking the
signals. The group correlator offers a reasonably good flexibility and area
efficiency in all use cases.

The main contributions of the thesis are: Development of domain specific
optimizations for GNSS receivers and an accurate gate count estimation
method, which are applied for a quantitative comparison of different GNSS
receiver architectures. The results show that no single architecture excels
in all cases, and the best choice depends on the actual use case.

i
i

“thesis” — 2018/10/5 — 11:01 — page iii — #5 i
i

i
i

i
i

PREFACE

The work presented in this thesis has been carried out during the years 1999–
2017 while being employed in VLSI Solution Oy, u-Nav Microelectronics,
Inc., Nokia Oyj, and u-Blox Espoo Oy. The thesis has also been supported
by the Alfred Kordelin Foundation.

I wish to express my thanks to my supervisor, Prof. Jari Nurmi, for his
encouragement, guidance, patience, fruitful discussions, and helpful feed-
back throughout the work. I would also like to thank the reviewers of this
thesis, Dr. Tech. Jari Syrjärinne and Prof. Hannu Heusala for their helpful
feedback.

I would like to thank all my colleagues in the companies I have worked while
working on this thesis. I would like to express special gratitude to Tapani
Ritoniemi, who drove me to try harder to find new solutions to problems
that seemed almost impossible at the first glance; Kim Kaisti, who was
always very enthusiastic about trying out new things and getting them
done; and Dr. Tech. Seppo Turunen for his insight, inspiring discussions,
and example. I also wish to thank my co-authors, Harri Valio and Lic.
Tech. Samuli Pietilä.

Finally, I would like to thank my family and especially my beloved wife,
Sanna for her support and encouragement during this work.

Hämeenlinna, September 2018

Ville Eerola

i
i

“thesis” — 2018/10/5 — 11:01 — page iv — #6 i
i

i
i

i
i

iv Preface

i
i

“thesis” — 2018/10/5 — 11:01 — page v — #7 i
i

i
i

i
i

TABLE OF CONTENTS

Abstract . i

Preface . iii

Table of Contents . v

List of Publications . ix

List of Figures . xi

List of Tables . xiii

List of Abbreviations . xv

1. Introduction . 1

1.1 Research Problem and Scope of the Thesis 2

1.2 Main Contributions . 5

1.3 Author’s Contribution . 6

1.3.1 Publications . 7

1.3.2 Patents . 9

1.4 Thesis Outline . 10

2. Introduction to GNSS Receiver Technology 13

2.1 Global Navigation Satellite Systems 13

2.2 Direct-Sequence Spread-Spectrum Systems 16

i
i

“thesis” — 2018/10/5 — 11:01 — page vi — #8 i
i

i
i

i
i

vi Table of Contents

2.3 GNSS Receivers . 17

2.4 GNSS Receiver Signal Processing Tasks 21

2.4.1 Signal Acquisition 21

2.4.2 Signal Tracking . 23

2.4.3 Data Reception . 25

2.4.4 Measurement Processing 26

3. Gate Count Estimation . 29

3.1 Earlier Work . 29

3.2 Estimation Method Summary 32

3.3 Parameterized Model Creation 33

3.4 Estimation Method Flow 35

3.5 Gate Count Estimation Accuracy 37

3.6 Memory Mapping to a Gate Count Estimate 39

3.7 Small Example . 43

4. Baseband Hardware Optimization 47

4.1 General GNSS Receiver Baseband Considerations 47

4.2 Correlator . 49

4.2.1 Correlator Functionality 50

4.2.2 Word Length Optimization 53

4.2.3 Time-Multiplexed Correlator Architectures 54

4.2.4 Advanced Correlator Functionality 56

4.2.5 Correlator-Based Receiver for Gate Count Comparison 59

i
i

“thesis” — 2018/10/5 — 11:01 — page vii — #9 i
i

i
i

i
i

Table of Contents vii

4.3 Matched Filter . 60

4.3.1 Matched Filter Functionality 61

4.3.2 Reduction Adder Tree 63

4.3.3 Input Multiplexing with 1-bit MF Core 65

4.3.4 Integrating the MF Output Signal 68

4.3.5 Input Decimation to a Multiple of the Chipping Rate 69

4.3.6 MF-Based Receiver for Gate Count Comparison . . 71

4.4 Group Correlator . 72

4.4.1 Derivation of the GC structure 73

4.4.2 GC Implementations 75

4.4.3 GC-Based Receiver for Gate Count Comparison . . 79

5. Architecture Comparison . 81

5.1 Test Cases . 81

5.1.1 Acquisition . 82

5.1.2 Tracking . 82

5.1.3 Assisted GPS . 84

5.1.4 Worst Case . 84

5.2 Comparison Results . 85

6. Conclusions and Future Work . 89

Bibliography . 93

Publications . 107

i
i

“thesis” — 2018/10/5 — 11:01 — page viii — #10 i
i

i
i

i
i

viii Table of Contents

i
i

“thesis” — 2018/10/5 — 11:01 — page ix — #11 i
i

i
i

i
i

LIST OF PUBLICATIONS

This thesis is based on the following papers published in open literature.
In the text, these publications are referred to as [P1], [P2],. . . , and [P6]
and are appended in the concluding half of the thesis.

[P1] Ville Eerola and Jari Nurmi, “Correlator Design and Implementation
for GNSS Receivers,” in NORCHIP, 2013, Nov 2013.

[P2] Ville Eerola, “Rapid Parallel GPS Signal Acquisition,” in Proceedings
of the 13th International Technical Meeting of the Satellite Division
of The Institute of Navigation (ION GPS 2000), Salt Lake City, UT,
Sep. 2000, pp. 810–816.

[P3] Ville Eerola, “Optimizing Matched Filters for GNSS Receivers,” in
2017 International Conference on Localization and GNSS (ICL-
GNSS). IEEE, 2017.

[P4] Ville Eerola, Samuli Pietilä, and Harri Valio, “A Novel Flexible Cor-
relator Architecture for GNSS Receivers,” in Proceedings of the 2007
National Technical Meeting of The Institute of Navigation (ION NTM
2007), San Diego, CA, Jan. 2007, pp. 681–691.

[P5] Ville Eerola and Jari Nurmi, “High-level parameterizable area esti-
mation modeling for ASIC designs,” Integration, the VLSI Journal,
vol. 47, no. 4, pp. 461–475, Sep. 2014.

[P6] Ville Eerola and Jari Nurmi, “Area Estimation of Time-Domain
GNSS Receiver Architectures,” in 2014 International Conference on
Localization and GNSS (ICL-GNSS). IEEE, 2014.

i
i

“thesis” — 2018/10/5 — 11:01 — page x — #12 i
i

i
i

i
i

x List of Publications

i
i

“thesis” — 2018/10/5 — 11:01 — page xi — #13 i
i

i
i

i
i

LIST OF FIGURES

1 Taxonomy of GNSS receiver implementations 4

2 Block diagram of DSSS transmission system 16

3 Generic GNSS receiver block diagram 18

4 Diagram of GNSS receiver channel 19

5 Visualization of the acquisition space 22

6 Generic code tracking loop 24

7 Generic carrier tracking loop 25

8 Floorplan of embedded SRAM 41

9 Schematic picture showing the complex mixer 43

10 Common integrator block for gate count comparison 50

11 Diagram of GNSS receiver channel 51

12 Traditional correlator channel architecture 52

13 Rearranged correlator . 55

14 Signal spectra within correlators 56

15 Strobe correlator discriminator examples 58

16 Correlator finger function implementation 58

17 Correlator-based receiver for gate count comparison 60

i
i

“thesis” — 2018/10/5 — 11:01 — page xii — #14 i
i

i
i

i
i

xii List of Figures

18 Tapped delay line implementation of MF 61

19 15-input binary reduction adder 64

20 Multiplexed MF input . 66

21 Post-MF integration . 69

22 MF input decimation . 70

23 MF-based receiver for the gate count comparison 71

24 Serial-parallel correlator . 73

25 Modified serial-parallel correlator 74

26 Conceptual block diagram of GC 76

27 Different configurations of programmable GC 77

28 Programmable GC with multiple input SR 78

29 GC-based receiver for the gate count comparison 80

i
i

“thesis” — 2018/10/5 — 11:01 — page xiii — #15 i
i

i
i

i
i

LIST OF TABLES

1 Current GNSS systems . 14

2 Properties of GNSS signals on L1 band 15

3 Area estimation references comparison 32

4 Primitive library for gate count estimation 34

5 Basic block library examples 35

6 Properties of memories for SRAM model 39

7 Memory area parameters . 41

8 Memory model errors . 42

9 Strobe shapes generation formulas 57

10 Finger function implementations 59

11 Acquisition test case parameters 83

12 Tracking test case parameters 83

13 A-GPS test case parameters 85

14 Receiver area comparison results 86

i
i

“thesis” — 2018/10/5 — 11:01 — page xiv — #16 i
i

i
i

i
i

xiv List of Tables

i
i

“thesis” — 2018/10/5 — 11:01 — page xv — #17 i
i

i
i

i
i

LIST OF ABBREVIATIONS

3GPP Third Generation Partnership Project
A-GNSS Assisted GNSS
A-GPS Assisted GPS
ADC Analog to Digital Converter
AFC Automatic Frequency Control, an alternative term for FLL
ASIC Application Specific Integrated Circuit
AWGN Additive White Gaussian Noise
BB Baseband
BDD Binary Decision Diagram
BER Bit Error Rate
BIST Built In Self-Test
BOC Binary Offset Carrier
BPSK Binary Phase-Shift Keying
CAD Computer Aided Design
CBOC Composite Binary Offset Carrier, a particular

implementation of MBOC
CDFG Control Data Flow Graph
CDMA Code Division Multiple Access
CMOS Complementary Metal Oxide Semiconductor
DFG Data Flow Graph
DLL Delay Locked Loop

i
i

“thesis” — 2018/10/5 — 11:01 — page xvi — #18 i
i

i
i

i
i

xvi List of Abbreviations

DSP Digital Signal Processing
DSSS Direct-Sequence Spread Spectrum
E911 Enhanced 911
EDA Electronic Design Automation
EU European Union
FCC Federal Communication Commission
FDMA Frequency Division Multiple Access
FFT Fast Fourier Transform
FLL Frequency Locked Loop, an alternative term for AFC
FOC Full Operational Capability
FPGA Field Programmable Gate Array
GC Group Correlator
GEO Geostationary Earth Orbit
GLONASS GLObal’naya NAvigatsionnaya Sputnikovaya Sistema,

GLObal NAvigation Satellite System
GNSS Global Navigation Satellite System
GPS Global Positioning System
HW Hardware
IC Integrated Circuit
ICD Interface Control Document
IF Intermediate Frequency
IGSO Inclined Geosynchronous Satellite Orbit
I/O Input and Output
IOV In Orbit Validation
IP Intellectual Property, in HW design context, often

interpreted to mean a subdesign licensed from a 3rd party
LFSR Linear Feedback Shift Register
LNA Low Noise Amplifier

i
i

“thesis” — 2018/10/5 — 11:01 — page xvii — #19 i
i

i
i

i
i

xvii

LSB Least Significant Bit
MBOC Multiplexed BOC
MEO Medium Earth Orbit
MF Matched Filter
MSB Most Significant Bit
NAND NOT-AND is a logic gate which produces an output which

is false only if all its inputs are true.
NAND2 Two-input NAND gate
NCO Numerically Controlled Oscillator
NTT Number Theoretic Transform
PLL Phase Locked Loop
PRN Pseudo Random Number
C/A Coarse/Acquisition
PVT Position, Velocity, and Time
QMBOC Quadrature Multiplexed BOC
RAM Random Access Memory
RF Radio Frequency
ROM Read Only Memory
RTL Register Transfer Level
SBAS Satellite Based Augmentation System
SDR Software Defined Radio
SIS-ICD Signal-In-Space Interface Control Document
SNR Signal to Noise Ratio
SR Shift Register
SRAM Static Random Access Memory
SS Spread Spectrum
SW Software

i
i

“thesis” — 2018/10/5 — 11:01 — page xviii — #20 i
i

i
i

i
i

xviii List of Abbreviations

TMBOC Time-Multiplexed BOC
TTFF Time-To-First-Fix
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit, a 1980s United States

government program

i
i

“thesis” — 2018/10/5 — 11:01 — page 1 — #21 i
i

i
i

i
i

1. INTRODUCTION

The number of GNSS receivers has exploded with the introduction of
personal navigation devices and inclusion of GNSS receivers in mobile
phones, which was originally driven by the Federal Communication Com-
mission (FCC) e-Call, Enhanced 911 (E911), mandate [1]. The great po-
tential of ubiquitous location information availability for a wide range of
applications ranging from advertising to personal navigation is now taken
for granted by the general public. Today, GNSS receivers are becoming a
common feature in a wide range of electronic devices ranging from digital
cameras to sports watches and tracking tags for valuables. These battery
powered, portable consumer devices place great demands on their compo-
nents for small size, low power consumption and low cost.

Three qualities characterize the performance of any Integrated Circuit (IC):
space, time, and energy. Space determines how big the IC is, which is usually
also tied to the cost of the device. Time is a measure of how quickly a
certain task is performed by it. Finally, any task performed by the IC
requires some energy. Energy is the product of power and time. Since time
itself is already a performance characteristic, power consumption is often
used instead of energy as a performance characteristic of ICs. In any case,
these three parameters are not independent, so that it is not possible to
optimize just one of the three characteristics without affecting the others.
Cost and power consumption are critical figures of merit for any portable

i
i

“thesis” — 2018/10/5 — 11:01 — page 2 — #22 i
i

i
i

i
i

2 1. Introduction

electronic devices, and certainly also for GNSS receivers. The equivalent
gate count of digital integrated circuits is an important measure as it affects
both the cost and the power consumption [2].

1.1 Research Problem and Scope of the Thesis

While the operation and implementation of the GNSS receivers are well
researched subjects, there seems not to exist a good analysis of the dif-
ferent receiver architectures and use cases affecting their gate counts. As
GNSS receivers are targeted toward cheaper and lower power applications,
good understanding of the receiver gate count becomes more important.
The performance metric of time is affected most by the selection of the
algorithms, which is covered well in the existing literature. However, the
architecture selection will also have an effect on the size of the resulting
circuit, and estimating the size, will give the algorithm designers the possi-
bility of taking this metric into account when they are selecting the proper
architecture for each use case.

The power consumption of a digital circuit can be divided into a static
and a dynamic part. The static part is proportional to the gate count and
the dynamic part is proportional to the frequency and operating voltage
in addition to the gate count. Thus, understanding the gate count of the
circuit is important part of understanding the power consumption. However,
in order to reduce the scope of the thesis, we will not consider the power
consumption as a parameter to be optimized.

The gate count measure used in this thesis is based on the relative cell
area of the implemented digital logic compared with the area of a single
Two-input NAND gate (NAND2). Common Electronic Design Automation

i
i

“thesis” — 2018/10/5 — 11:01 — page 3 — #23 i
i

i
i

i
i

1.1. Research Problem and Scope of the Thesis 3

(EDA) software for logic synthesis and optimization, such as the Synopsys
Design Compiler [3], report the total cell area of the resulting design, which
can be turned into the relative cell area by dividing the total area by the
area of a single NAND2 gate. The definition of the equivalent gate count
can be based on either the area or the number of NAND2 gates needed to
implement the same logic. There is a slight difference here, as it is more
efficient to create the more complex gates directly instead of building them
from the NAND2 gates. The selection of the area-based gate count measure
in this thesis is pragmatic: The gate area has more direct relationship to
the final silicon area, which defines the cost of the silicon. The product
cost also includes other parts, such as the package, but they are out of the
scope of this thesis.

In this thesis, we will concentrate on the implementation and optimiza-
tion of digital receiver channels for GNSS receivers. The target of the
optimizations is to minimize the silicon area of the resulting implementa-
tion while fulfilling the requirements for performance in a given operating
scenario. For this purpose we will take a look of three different receiver
Baseband (BB) implementations in four separate cases. The comparison
results will then show which architecture is best suited for each case, so
that we can do a quantitative analysis for their optimality.

There are several ways the GNSS receivers can be implemented. Figure 1
illustrates some of the possibilities for the baseband implementation. The
ones selected for this thesis are marked with a boldface font. The first
selection to make is to decide whether the baseband algorithms are im-
plemented in Hardware (HW) or Software (SW). Traditionally, all GNSS
receivers have been implemented in hardware. The Software Defined Ra-
dio (SDR) concept [4] was applied to GNSS receivers only later [5]. We
will concentrate on the hardware implementations, since they have a direct

i
i

“thesis” — 2018/10/5 — 11:01 — page 4 — #24 i
i

i
i

i
i

4 1. Introduction

GNSS BB Implementations

Technology

HW SW

Timing

Real time Store and
process

Correlation
domain

Time-
domain

Correlator MF GC

Transform-
domain

FFT NTT

Channels

Sequential
Time-

multiplex

Parallel

Fig. 1: Taxonomy of various GNSS receiver BB implementations.

relationship with the gate counts, whereas the software implementation
gate counts depend in a much more complex way from the architecture.
It is possible to implement the GNSS receiver in a way that the incoming
signal is stored first in a memory, and the processing will read the samples
of there instead of processing them in real time as they arrive from the
Analog to Digital Converter (ADC) [6]. The store and process implementa-
tion allows processing the data with potentially smaller hardware running
at a much higher clock frequency compared with the signal sample rate.
The second way is more traditional, since it limits the amount of memory
needed, and simplifies the control requirements of the implementation. All
the early GNSS receivers, e.g. [7], were implemented to process the signal
in real time. We have chosen to restrict ourselves in this thesis to the
real-time implementations. The most critical operation in a GNSS receiver
baseband is performing a cross-correlation between the received signals
and locally generated replicas. The correlation can be done in sample-

i
i

“thesis” — 2018/10/5 — 11:01 — page 5 — #25 i
i

i
i

i
i

1.2. Main Contributions 5

by-sample fashion, i.e. in time-domain, or in a transform-domain by first
transforming the signal e.g. to frequency-domain using a Fast Fourier
Transform (FFT) [8] or Number Theoretic Transform (NTT) [9]. There
are a multitude of different ways to do the correlation in time-domain,
such as traditional correlator [P1], Matched Filters (MFs) [P2],[P3], and
Group Correlator (GC) [P4]. The transform-domain processing is done in a
block-wise manner and is more popular with SW and/or store-and-process
implementations, so we have chosen to concentrate on time-domain imple-
mentations. The channels can be operated in sequential, time-multiplexed
or parallel, by making different trade-offs. Sequential and time-multiplexing
receivers both dedicate a single channel hardware to the reception of one
satellite signal at a time and sequencing the channel for the available sig-
nals over time. The difference between these two is in the time spent in
tracking one satellite. Sequential receivers would spend at least one second
tracking a single satellite at a time whereas time-multiplexed receivers
would use just a few milliseconds per satellite [10]. Practically all modern
GNSS receivers use a parallel channel implementation which processes the
channels in parallel even if internally the hardware would be time multi-
plexed and we will consider parallel receivers in this thesis. We will take a
more detailed look on the correlation implementations in Chapter 4.

1.2 Main Contributions

The main contributions of the thesis can be grouped into three main
categories and are summed up as follows:

1. Presenting an easy-to-use, accurate method for gate count estimation,
which allows parameterizable models to be created for designs at very
early stage. The model is built in a hierarchical way from sub-models,

i
i

“thesis” — 2018/10/5 — 11:01 — page 6 — #26 i
i

i
i

i
i

6 1. Introduction

which can later be refined to improve the accuracy. The method is
well suited for architectural exploration before the design has been
fully refined.

2. Developing domain-specific ways to optimize digital baseband blocks
of GNSS receivers using different architectures. These range from
arranging operations in optimal order, devising an optimal new way
for adding a large amount of numbers, adjusting the sample rate to
alter filter length in time, to creating completely new architectures.

3. Comparing different GNSS receiver baseband architectures in multi-
ple use cases showing which of the architectures can be implemented
in the smallest silicon area for each given case. The comparison was
performed for realistic but limited use cases and can be used as an
example for selecting the correct implementation for any given use
case.

1.3 Author’s Contribution

This thesis summarizes the author’s work on GNSS receiver development.
The research has been done while working on commercial IC projects,
and thus has direct relevance in advancing the state of the art in the
GNSS industry. The scientific contributions are captured in the published
papers. The commercially valuable contributions are also filed and granted
as patents. The publications that are part of this thesis and the related
patents as well as the author’s contributions to each of them are elaborated
next.

i
i

“thesis” — 2018/10/5 — 11:01 — page 7 — #27 i
i

i
i

i
i

1.3. Author’s Contribution 7

1.3.1 Publications

Publication [P1] documented ideas for optimizing correlator-based GNSS
receivers that were developed earlier by the author and used in commercial
GNSS receiver ICs. Many of the ideas presented in this paper were also filed
earlier as patents invented by the author. The highlights include discussion
on time-multiplexing the correlator hardware and smartly implementing
additional signal processing functions within the correlator to reduce the
number of the correlator fingers needed. There was a short section about
power optimization using time-multiplexing, but the treatment was very
superficial and based on some rough estimates about the switching activity
of the logic gates. It is not intended to include this part of the manuscript
in this thesis as it is out of the scope of it. The author was the main
contributor of the paper.

Publication [P2] describes a search unit based on a Matched Filter and
optimized for cold start. The work was done when massively parallel search
engines for GNSS were not yet commonly considered for commercial re-
ceivers. The developed implementation was extremely area-efficient and
it enabled searching all Global Positioning System (GPS) satellites in less
than two seconds. The author’s contribution to the paper was designing
and verifying the search unit as well as being the main contributor to the
paper.

Publication [P3] summarizes the work of the author on optimizing MF-
based GNSS receivers which was carried out over the course of several years.
The main contributions include a way to optimally implement the adder in
the MF where a huge number of inputs need to be added together in very
short time, as well as ideas to improve the usability of the MF for GNSS
receivers by allowing its apparent length in time to be adjusted according

i
i

“thesis” — 2018/10/5 — 11:01 — page 8 — #28 i
i

i
i

i
i

8 1. Introduction

to the incoming signal and allowing further coherent and non-coherent
integration to be applied after the MF. Many of the ideas presented in this
paper were filed earlier as patents invented by the author. The author was
the sole author of this publication.

Publication [P4] presented the Group Correlator architecture as an alterna-
tive for the traditional correlator or MF-based GNSS receivers. Extensive
simulations were performed to optimize the design parameters, and sim-
ulation results were included to show that the new receiver architecture
met the performance targets. The author’s contribution was to develop the
original GC idea into an implementable hardware block and at the same
time generalize the idea for multiple sample rates and input signals. The
author was the main contributor of the paper, Samuli Pietilä was responsi-
ble for the word-length and sensitivity simulations, and Harri Valio’s role
was advisory as the father of the GC concept.

Publication [P5] introduced the gate count estimation method that has
been used in this thesis to evaluate the silicon area estimates of the differ-
ent baseband architectures. The key advantage of this method is that it
enables parameterized models of the design to be developed at a very early
stage of the project. The models can be refined when more accurate infor-
mation becomes available. The estimation method was applied to a variety
of real designs and its accuracy was verified to be extremely good. The
estimation method was developed by the author while he was working on
the development of multiple commercial GNSS receivers. The author also
wrote the paper. The role of the second author (J. Nurmi) was advisory.

Publication [P6] continued to expand the gate count estimation method of
[P5] by adding a method for mapping embedded memories to a gate count
number. This enabled comparison of designs that used different amounts of

i
i

“thesis” — 2018/10/5 — 11:01 — page 9 — #29 i
i

i
i

i
i

1.3. Author’s Contribution 9

embedded memories in addition to the digital logic. Another contribution
was to apply the gate count estimation on different GNSS receiver baseband
architectures. The receiver comparison results of this thesis were presented
in this publication. The author was responsible for the estimation method
development, receiver comparison including developing the test cases, and
writing the paper. The role of the second author (J. Nurmi) was advisory.

1.3.2 Patents

During the work, which was the basis of this thesis, multiple patents have
been filed and granted to protect the inventions. The following patents
are related to this thesis but are not included as part of it. The author’s
contribution was to come up with the original idea and develop it into a
practical implementation for the listed patents:

Patent US 6,850,558 [11] shows how to time-multiplex the data path of
a correlator to reduce the silicon area and power consumption. These
correlator optimizations are explained in more detail in Section 4.2.

Patents US 7,283,582 and US 7,471,719 [12,13] disclose the correlator finger
functions, discussed in Section 4.2 This is shown to be a way to reduce the
silicon area in the correlator-based GNSS receivers.

Patent US 6,909,739 [14] discloses methods to alter the apparent length in
time of the Matched Filter using decimation, and the way to perform coher-
ent and non-coherent integration after the MF. These ideas are reviewed
in Section 4.3.

Patents US 7,010,024 and US 7,505,511 [15, 16] describe a way to time-
multiplex the MF computation by utilizing multiple input shift registers

i
i

“thesis” — 2018/10/5 — 11:01 — page 10 — #30 i
i

i
i

i
i

10 1. Introduction

and multiple reference coefficient registers. The time-multiplexing is ex-
plained in Section 4.3 in this thesis.

Patent US 7,852,907 [17] presents a practical implementation of a Group
Correlator-based GNSS receiver. It also introduces a reconfigurable GC
that allows switching between search and tracking modes in the receiver
utilizing a single hardware block. The GC idea was invented by Harri
Valio and Samuli Pietilä earlier [18], but the development into a practical
implementation as well as the extensions to the original idea were the
author’s responsibility. The GC is discussed in more depth in Section 4.4.

Patent US 8,391,335 [19] discloses the multiple input and output version
of the Group Correlator. This patent is a good example of how a patent
publication can obscure the original idea of the invention so that it becomes
almost indecipherable. The idea behind this patent is explained more clearly
in Section 4.4.

1.4 Thesis Outline

The thesis is composed of an introductory part and six publications. The
introductory part briefly introduces the GNSS receiver technologies to the
reader and contains a summary of the material presented in the papers.

Chapter 2 shortly discusses the concepts required for understanding GNSS
receivers. The GNSS field is already well established so that we will not
explain the basic principles in depth. The reader is referred to any intro-
ductory GNSS book, such as [20, 21], for these. We will only briefly touch
the most important things that are needed for the work presented in this
thesis. We start the chapter by giving a quick view of the current GNSS
systems. Next, we will take a look on the blocks needed for building a

i
i

“thesis” — 2018/10/5 — 11:01 — page 11 — #31 i
i

i
i

i
i

1.4. Thesis Outline 11

GNSS receiver and describe what a general GNSS receiver baseband part
contains. We will then review the operations that are performed in the
receiver digital baseband and the most important performance criteria for
them.

Chapter 3 contains an outline of the gate count estimation method devel-
oped by the author. The method is later used to compare the baseband
architectures using a selection of use cases. This chapter presents a con-
densed overview of the contents of publications [P5] and [P6]. The chapter
begins with a review of the existing literature and then describes the devel-
oped method briefly. Next, the mapping of embedded memories into gate
count estimates is shortly explained. The chapter concludes with a simple
example case which illustrates how the method is used.

Chapter 4 is by far the longest one, discussing three different time-domain
GNSS receiver baseband architectures. We start the chapter by describing
the oldest, correlator-based architecture and illustrate two different ways for
optimizing the correlator block and show how to alter the basic correlator
slightly to perform some more advanced operations. Then we will move on
to the MF-based design. Again, we start by briefly introducing the MF in
the context of GNSS receivers before showing different ways to optimize
the MF-based designs by an efficient implementation of the summation,
using time-multiplexing, and enabling further signal integration after the
MF. The third architecture considered here is the GC, which combines
the characteristics of the correlator and the MF. We describe first how the
GC can be derived and then shortly discuss realistic implementations. For
each of the proposed three architectures, we present the block diagrams
of the GNSS receiver basebands, which are used later in the gate count
comparison of Chapter 5.

i
i

“thesis” — 2018/10/5 — 11:01 — page 12 — #32 i
i

i
i

i
i

12 1. Introduction

Chapter 5 is largely based on publication [P6] and contains the receiver
comparison results of this thesis. We start the chapter by introducing the
test cases for which each compared receiver architecture is parameterized.
This makes the comparison fair in the sense that all receivers are configured
to fulfill the same set of requirements for the comparison. Next, we present
the results with some discussion.

Chapter 6 contains the conclusions and some ideas for future work.

i
i

“thesis” — 2018/10/5 — 11:01 — page 13 — #33 i
i

i
i

i
i

2. INTRODUCTION TO GNSS RECEIVER TECHNOLOGY

In this chapter, we will shortly review the background to the thesis. We
start with a quick overview of the global navigation satellite system to
introduce the field of technology in next Section 2.1. Then, in Section 2.3,
we will introduce the GNSS receivers, providing the framework for the
subject of this thesis. Finally, Section 2.4 contains a slightly more detailed
look on the signal processing tasks implemented in a GNSS receiver.

2.1 Global Navigation Satellite Systems

Global Navigation Satellite System (GNSS) refers to a satellite-based nav-
igation system, which offers a worldwide coverage and provides its users
with information about their Position, Velocity, and Time (PVT). The
GNSS is based on a set of satellites broadcasting a signal, which enable
the users to compute the PVT at the receiver antenna. The users don’t
need to transmit any information towards the system. A typical GNSS
is comprised of three segments: the Space segment, the Control segment,
and the User segment. The space segment consists of the satellites which
transmit the signals used for positioning. The ground segment includes a
master control station, a set of ground antennas for uploading data to the
satellites, and a set of monitoring stations covering various regions of the
earth. The user segment refers to the user equipment for receiving the sig-

i
i

“thesis” — 2018/10/5 — 11:01 — page 14 — #34 i
i

i
i

i
i

14 2. Introduction to GNSS Receiver Technology

Table 1: Current GNSS systems [22–27]
System GPS GLONASS Galileo BeiDou-3
Nominal Satellites 24 MEO 24 MEO 30 MEO 24 MEO /

3 GEO /
3 IGSO

Operational Satellites 31 23 4 IOVa 3 MEO /
(as of May 2018) 18 FOCb 6 GEO /

6 IGSO c

Operational 1995 1993 2020 2020
Owner USA Russia EU China

aIn Orbit Validation
bFull Operational Capability
cBeiDou-2 satellites shown, as no BeiDou-3 satellites are operational yet

nal from the satellites and computing their PVT. There are several GNSS
systems in use and in planning. The oldest and best known GNSS system
is the United States Navstar Global Positioning System (GPS). The Rus-
sian GLObal’naya NAvigatsionnaya Sputnikovaya Sistema (GLONASS)
was available next, and the European Galileo and Chinese BeiDou systems
came later.

Table 1 shows a list of the most important GNSSs currently available. All of
the systems are constantly evolving by improving the system performance
through various means such as adding new signals. GPS, GLONASS, and
Galileo satellites utilize only Medium Earth Orbits (MEOs), where the
satellites have orbital periods of approximately 12 hours. Some of the
BeiDou satellites also use Geostationary Earth Orbits (GEOs), where the
satellites appear to stay at the same spot above the earth. Some BeiDou
satellites are also in an Inclined Geosynchronous Satellite Orbits (IGSOs),

i
i

“thesis” — 2018/10/5 — 11:01 — page 15 — #35 i
i

i
i

i
i

2.1. Global Navigation Satellite Systems 15

Table 2: Some properties of current and future GNSS signals on L1 band. The
references point to the corresponding ICD documents that contain full
details of the signals.

Signal Carrier Code Code Sec Modu- data
freq freq length code lation rate

(MHz) (MHz) (chips) (chips) (Hz)
Original signals
GPS L1 C/A [28] 1575.24 1.023 1023 - BPSK 50
GLONASS L1OF [29] 1598.06 0.511 511 - BPSK 50

–1603.38
Galileo E1-B [30] 1575.42 1.023 4092 - CBOC 250
Galileo E1-C [30] 1575.42 1.023 4092 25 CBOC -
BeiDou B1I [31] 1561.09 2.046 2046 20 BPSK 50
Modernized signals
GPS L1C-D [32] 1575.24 1.023 10230 - BOC(1,1) 100
GPS L1C-P [32] 1575.24 1.023 10230 1800 TMBOC -
GLONASS L1OCd [33] 1600.99 0.511 1023 - 250
GLONASS L1OCp [33] 1600.99 0.511 4092 - BOC(1,1) -
BeiDou B1C-D [34] 1575.42 1.023 10230 - BOC(1,1) -
BeiDou B1C-P [34] 1575.42 1.023 10230 - QMBOC 100

in which they appear to trace out a small figure-eight shape in the sky.
Typically, the GNSS satellites transmit a multitude of signals aimed for
different usage. The satellites are currently transmitting on one to three
Radio Frequency (RF) bands: L1, L2, and L5. In the past, the L1 signals
were intended for civil use, and the L2 signals were designed for military
use only. Recently, some civil use signals have been added to the L2 band
as well. The L5 band is a recent addition, and its signal structure is the
most complex, even if it is also generally available for civil use. Table 2
lists the current and future GNSS signals at the L1 band of frequencies
as an example of the signal properties. The details of the GNSS signals

i
i

“thesis” — 2018/10/5 — 11:01 — page 16 — #36 i
i

i
i

i
i

16 2. Introduction to GNSS Receiver Technology

Transmitter

DATA

OUT

DATA

IN

Receiver

Narrow-band

signal

Spread spectrum

signal

Narrow-band

signal

CODE

GENERATOR

CARRIER

GENERATOR

MODULATOR

CODE

GENERATOR

CARRIER

GENERATOR

DE-

MODULATOR

Fig. 2: Block diagram of a direct-sequence spread-spectrum transmission system.

are documented in Interface Control Documents (ICDs) published by the
owners of the systems. A good source for further information is for example
[35, Part B].

2.2 Direct-Sequence Spread-Spectrum Systems

All GNSS systems use Direct-Sequence Spread Spectrum (DSSS) trans-
mission. Good introduction to Spread Spectrum (SS) technique can be
found in [36] and an in depth review of its history from [37–39]. There are
also several books with a good, in-depth treatment of SS such as [40–42].
In DSSS, the signal is transmitted using a bandwidth that is many times
wider than it what would be needed for the data [36]. A conceptual block
diagram of a DSSS system is illustrated in Figure 2. In the transmitter,
the modulated data is multiplied by a spreading sequence, which typically
is a Pseudo Random Number (PRN) sequence, and then it is mixed up
to the carrier frequency and fed to the antenna. The receiver multiplies
it first by a local oscillator signal to translate the received signal back

i
i

“thesis” — 2018/10/5 — 11:01 — page 17 — #37 i
i

i
i

i
i

2.3. GNSS Receivers 17

to the baseband. Then it needs to multiply the incoming signal by a de-
spreading sequence, which needs to be correctly aligned in time with the
spreading code in the transmitter. The spreading and de-spreading codes
are designed to cancel each other, when the signals are aligned, so that the
original modulated data stream will be recovered. If the spreading code
is a binary code interpreted as ±1, then the spreading and de-spreading
codes can be identical, which is the typical implementation.

There are two reasons for using DSSS in GNSS. The first is that it enables
high resolution ranging [43, 44, Chap. 8], which is crucial for accurate
PVT determination. The second is that it enables multiple signals to be
transmitted at the same frequency. This is a form of multiple access, called
Code Division Multiple Access (CDMA) [45]. The GLONASS system does
not rely on CDMA for the transmission from multiple satellites, but it uses
Frequency Division Multiple Access (FDMA), where each transmitter uses
a separate frequency.

2.3 GNSS Receivers

The function of the GNSS receiver is to acquire and receive the signals from
the satellites of each supported GNSS system, and to measure the signal
transmit times modulo the spreading duration. Using the transmitted
data messages from the satellites and a time-code embedded in the data
frames, the receiver can then compute the full signal transmission time
and the position of the satellites at that time. With four transmit times
it is possible to solve for the four unknowns, namely three coordinates
(X, Y, Z) and the reception time assuming that the reception time is
common or can be propagated to a common time for all satellites [46].
In a similar fashion by measuring the Doppler frequencies of the received

i
i

“thesis” — 2018/10/5 — 11:01 — page 18 — #38 i
i

i
i

i
i

18 2. Introduction to GNSS Receiver Technology

Pre amp
Down

converter

A/D

converter

AGC

Frequency

synth

Reference

oscillator

Receiver

processing

Navigation

processing

User

interface

Antenna

RF

Baseband

SW

Power

supply

N

2

Digital

reciver

channel

Analog

IF

Digital

IF

LO

Fig. 3: Generic GNSS receiver block diagram (adapted from [20]).

signals, it is possible to solve for the velocity in three dimensions together
with the common frequency offset of the local clock of the receiver. This,
of course, is a greatly simplified description of what actually happens
in a modern GNSS receiver. These calculations are typically performed
by the software algorithms running in a microprocessor which is part of
the GNSS receiver. There is a vast amount of literature devoted for the
PVT calculation and other GNSS algorithms. Good sources for further
information include [20,21,35].

A generic GNSS receiver is illustrated in Figure 3. The signal is received
at the antenna and it is then amplified by a Low Noise Amplifier (LNA)
since the signal power is too weak at this point to be directly used. Next,
the signal is down-converted from the RF carrier frequency to a lower
Intermediate Frequency (IF) for further processing in the baseband. The
analog baseband chain also contains filtering and further amplification
which is not shown in the figure. The baseband amplification is also ad-

i
i

“thesis” — 2018/10/5 — 11:01 — page 19 — #39 i
i

i
i

i
i

2.3. GNSS Receivers 19

CORRELATOR

CODE

SYNC

BIT SYNC &

DATA

DEMOD

RF

front-end

CODE

PHASE

DATA

OUT

CARRIER

SYNC
CARRIER

PHASE
CARRIER

REPLICA

Digital receiver channel Receiver processing

CODE

REPLICA

Fig. 4: Conceptual diagram of GNSS receiver channel structure (adapted
from [P6]).

justable to control the signal level at the ADC. This will ensure that the
quantization losses are minimized. As the received signal to noise ratio
is low [47], the ADC needs only a small number of bits [48, 49], usually
between 1 to 3 [50]. The signal chain until this point contains usually just
one path per RF band, as the RF chain bandwidth covers the transmit
frequencies of all the satellites in that band. As we need to receive the sig-
nals from all of the satellites, the digital part contains one receiver channel
for each signal received from each satellite. As each satellite can transmit
multiple signals, the receiver might also need multiple channels per satel-
lite. The receiver uses different SW algorithms to control the hardware
for receiver control, signal acquisition and tracking. Finally, the navigation
processing is responsible for calculating the PVT outputs that the user
needs.

In this thesis, we will concentrate on the implementation and optimization
of the digital receiver channels. A conceptual block diagram of the receiver
channel along with some associated functions is depicted in Figure 4. The
digital baseband signal enters the receiver channel, where it is multiplied by
a replica of the remaining carrier (including IF, satellite Doppler frequency

i
i

“thesis” — 2018/10/5 — 11:01 — page 20 — #40 i
i

i
i

i
i

20 2. Introduction to GNSS Receiver Technology

and any local oscillator errors) and the locally generated replica of the
spreading code. After the multiplication, the signal is accumulated until
it is forwarded to the software algorithms for further processing. Mathe-
matically, this function performs a cross-correlation between the incoming
signal and the locally generated replicas, and thus it is termed as correla-
tor. The correlator is a key component in the GNSS receivers and there
are numerous widely different implementations. The correlator itself does
not produce the measurements necessary for the PVT computation. The
data message transmitted by the satellites is extracted by demodulating
the correlator output signal. The message can only be received when the
replica code and carrier are aligned with the incoming signal; otherwise,
the correlator output is just noise.

In 1988, the first commercial, handheld GPS receiver, the Magellan GPS
NAV 1000, was introduced to the market [51, 52]. It had only only one
hardware channel in the entire receiver, which was time-shared between
the different satellites to facilitate the reception of enough signals for
the PVT computation [53]. However, as the digital technology advanced,
it soon became possible to implement more parallel hardware channels,
which improved the receiver performance [54]. The early receivers were
designed for one GNSS system only, and the number of receiver channels
was low. With the nominal GPS constellation, there are maximally 11
satellites visible at any place and time [46], so 12 receiver channels became
the norm for some time for tracking all visible satellites and one channel
tracking a Satellite Based Augmentation System (SBAS) signal. Nowadays
it is not uncommon to have several hundreds of channels [55]. This is
needed for using more than just one RF band and GNSS and increasing
the performance of the receivers.

i
i

“thesis” — 2018/10/5 — 11:01 — page 21 — #41 i
i

i
i

i
i

2.4. GNSS Receiver Signal Processing Tasks 21

2.4 GNSS Receiver Signal Processing Tasks

After the incoming signals are down-converted to a lower Intermediate
Frequency (IF) and converted to digital discrete time samples, the next
step is to process them at the baseband. There are four main tasks to
perform:

1. Find the coarse parameters for the local replicas for all signals avail-
able

2. Track the incoming signals so that the local replicas stay aligned

3. Receive and extract the messages sent by the satellites

4. Measure the frequency and time of the received signals as accurately
as possible

Usually, the functions are performed in sequence, but the last three are
continued as long as a particular satellite signal remains available. There
are some measures that allow us to determine how well these tasks are
performed.

2.4.1 Signal Acquisition

The signal acquisition process always needs to happen first so that we know
the parameters needed to generate the local replicas accurately enough
for the receiver can start tracking the signals [56]. The signal acquisition
is a three-dimensional search problem, where the search limits are known
to a certain degree. In a cold start situation [57], the receiver does not
have any a-priori knowledge of its own location, the time, the available
satellite signals, or their parameters. The system itself gives some limits:

i
i

“thesis” — 2018/10/5 — 11:01 — page 22 — #42 i
i

i
i

i
i

22 2. Introduction to GNSS Receiver Technology

Δchip

Δ
fr

e
q

code uncertainty

fr
e

q
u

e
n

c
y
 u

n
c
e

rt
a

in
ty

Search bin

P
R
N

Fig. 5: Visualization of the GNSS acquisition space (from [P6]).

There is a finite number of satellites in each system, their orbits and the
receiver motion limits provide bounds to the Doppler range, and the local
reference oscillator has some known limits of the frequency uncertainty.
Only the time is unlimited, but on the other hand, the spreading code
is repeating, so we only need to find the signal transmit time modulo
the code duration. The search space is divided into discrete points in the
three dimensions, where the point distance is set by the search algorithm.
This acquisition space is depicted in Figure 5. There are also some other
commonly used acquisition scenarios. In the warm start case [57], we do
have some a-priori knowledge of the satellite orbital parameters, location

i
i

“thesis” — 2018/10/5 — 11:01 — page 23 — #43 i
i

i
i

i
i

2.4. GNSS Receiver Signal Processing Tasks 23

and time, which allow us to predict which satellites are available, and what
are their estimated Dopplers. The user motion and the time, within the
code period, are still unknown. This results in a bounded search space in
two dimensions. The hot-start case [57] adds more exact satellite orbital
parameters and time down to a few code chips. Also, in many cases the
receiver motion can be guessed accurately enough to make the frequency
uncertainty very small.

The important performance criteria for the search phase are the sensitivity
or minimum signal level for successful acquisition, the acquisition time,
the probability of detection and false alarm, and the frequency and time
estimation accuracy for the found signal. These criteria are not independent
and improving one usually means making one or more of the others worse.

2.4.2 Signal Tracking

The purpose of the signal tracking is to keep the locally generated replica
carrier and code as well aligned as possible to the incoming signal. The
art of signal tracking is a well-researched topic in communications, but the
GNSS application brings some additional requirements. For general commu-
nication applications it is sufficient that the tracking is good enough for the
data to be received successfully. For the GNSS receivers, this is often not
good enough. The phase of the generated replicas is measured and used for
determining the signal reception time. The high precision GNSS receivers
are able to determine the position down to the millimeter level or better.
At 1.5 GHz carrier frequency, this translates to carrier phase accuracy of
about two degrees, which is much better than what is typically required
in data receiving. The phase tracking accuracy will become significant for
the Bit Error Rate (BER) only when it exceeds 18 degrees [58, Chap 10].

i
i

“thesis” — 2018/10/5 — 11:01 — page 24 — #44 i
i

i
i

i
i

24 2. Introduction to GNSS Receiver Technology

EPL

SW

I

Q

Digital

IF

Code

NCO

Code

Generator

Loop

filter

Shift register

Code Loop

Discriminator

Carrier

Generator

IP

IE

IL

QP

QE

QL

Fig. 6: Generic block diagram of GNSS receiver code tracking loop (adapted
from [20]).

Typical code tracking in GNSS receivers is implemented using a Delay
Locked Loop (DLL) [59], which utilizes two differently timed correlators
for advanced (early) and delayed (late) versions of the replicas. The carrier
tracking is implemented with either a Phase Locked Loop (PLL), usually
employing a Costas-loop [60,61] or a Frequency Locked Loop (FLL), which
is also sometimes referred to as Automatic Frequency Control (AFC) [62].
It uses the precisely timed (prompt) correlator, which provides the high-
est signal level. The PLL is more accurate, but it needs a higher Signal
to Noise Ratio (SNR) compared with the FLL [63]. Good references for
spread spectrum signal tracking can be found in [40, 41]. GNSS specific
good general references are [20, 64]. A typical implementation for code
tracking is illustrated in Figure 6, and a carrier tracking implementation
is shown in Figure 7.

The main performance criteria for GNSS signal tracking are the sensitivity,
the tolerance to receiver dynamics (velocity, acceleration and jerk), and

i
i

“thesis” — 2018/10/5 — 11:01 — page 25 — #45 i
i

i
i

i
i

2.4. GNSS Receiver Signal Processing Tasks 25

Carrier

NCO

Code

Generator

Loop

filter

SW

Carrier Loop

Discriminator

I

Q

Carrier

Generator

IP

QP

Digital

IF

P

Fig. 7: Generic block diagram of GNSS receiver carrier tracking loop (adapted
from [20]).

the tracking accuracy. Again, they are not independent, but depend on
each other in addition to the tracking loop algorithms used.

2.4.3 Data Reception

Each GNSS satellite transmits data messages containing information about
its orbit and clock, called ephemeris. This allows the receiver to compute
the exact location of each satellite and the signal transmit time. This
information is needed for computing the PVT at the receiver. The data
messages also contain the rough orbital parameters of the other satellites,
called the almanac, to allow predicting when they are visible to the receiver.
The satellites also transmit some other information, which is not needed for
the PVT computation. The exact format and content of the data messages
are defined in detail in the Signal-In-Space Interface Control Document
(SIS-ICD) of each GNSS system. The data reception uses the prompt
correlator output signal, and the data demodulation and message decoding
is usually done in the receiver SW [65]. Thus, it is not an important part
of the receiver baseband hardware.

i
i

“thesis” — 2018/10/5 — 11:01 — page 26 — #46 i
i

i
i

i
i

26 2. Introduction to GNSS Receiver Technology

The data reception performance is measured by the sensitivity and bit or
frame error rates. Typically, the data reception sensitivity is worse than
the acquisition and tracking sensitivities, so it determines the cold start
sensitivity of the whole GNSS receiver. In some cases e.g. with Assisted
GNSS (A-GNSS), the data can be provided for the receiver through a
different communication channel, which enables it to operate with weaker
signals that would be possible without the assistance.

2.4.4 Measurement Processing

The accurate measurement of the carrier and spreading code timing of the
received signal with respect to the receiver local clock is the key to high
accuracy PVT determination. The receiver position can be computed from
the signal propagation times, and the velocity from the derivative of time,
i.e. frequency. The accurate time at signal reception time is a by-product
of determining the position. In similar fashion the receiver clock frequency
will be solved as a by-product from the velocity computation. There are
numerous well known algorithms for PVT determination and the reader
is referred to for example Kaplan [66] as an introduction or the GNSS
Handbook [67–69] for a more thorough treatment of this subject.

From the hardware perspective, there are two common methods for per-
forming the raw measurements. The first and oldest is to keep track of the
phase and frequency of the generated replicas inside the receiver software
implementing the signal tracking. This is doable, as the replicas are gener-
ated using Numerically Controlled Oscillators (NCOs), whose frequencies
are updated at regular intervals. It is then possible to compute their phases
at the next update time, and this process can be continued as long as the
tracking continues. If the channel NCO update times are identical, then it

i
i

“thesis” — 2018/10/5 — 11:01 — page 27 — #47 i
i

i
i

i
i

2.4. GNSS Receiver Signal Processing Tasks 27

is trivial to get the measured phases and instantaneous frequencies at a
common time. However, if the channels are sampled at the end of the code
periods, which aligns the integration periods accurately with the bits of the
satellite data message, then each channel has different update time, and
it becomes more tedious task to align the measured values to a common
reference time. Implementing the replica phase and frequency sampling in
hardware allows sampling the values at a common instant by storing the
values at sample registers when a hardware signal is toggled. This hard-
ware measurement method has been used in some receiver implementations,
especially those with individual dump for the channel outputs.

i
i

“thesis” — 2018/10/5 — 11:01 — page 28 — #48 i
i

i
i

i
i

28 2. Introduction to GNSS Receiver Technology

i
i

“thesis” — 2018/10/5 — 11:01 — page 29 — #49 i
i

i
i

i
i

3. GATE COUNT ESTIMATION1

Design optimization for digital ASICs2 and IP3 blocks is easier and more
efficient when the design space exploration can be done early in the design
process, before the implementation is frozen. Financial feasibility of the
design may depend on its manufacturing cost and ensuring rapid time
to market will demand knowledge of the design complexity early in the
project. Modern digital designs are based on pre-built digital gates for all
but the most performance critical parts and silicon area is almost directly
proportional to the number of gates. Thus, the gate count is a good metric
for the complexity of a digital circuit. The gate count also has a relation
to the power consumption via the capacitance accountable to the gates.
Furthermore, the testability and the test time are affected by the complexity
so it affects to the cost of the chip also via the cost of the testing.

3.1 Earlier Work

The idea of estimating the design complexity using silicon area, gate count,
or Field Programmable Gate Array (FPGA) resource usage is not a new one.
Several approaches have been proposed in the literature through the years.

1The material in this chapter is based on the publications [P5] and [P6].
2Application Specific Integrated Circuits
3Intellectual Property

i
i

“thesis” — 2018/10/5 — 11:01 — page 30 — #50 i
i

i
i

i
i

30 3. Gate Count Estimation

Shannon [70] can be credited for being the first to propose the estimation
of the switch count for implementing Boolean functions. He proposed that
the upper limit of the complexity of Boolean functions is proportional
to the exponential of the number of inputs. Müller [71] used the same
approach applied to the gate count estimation for implementations of
Boolean functions.

Kellerman [72] proposed that the area of a function depends only on the
number of conditions which must be differentiated by a one or a zero output
and presented a formula for the computation of the area estimate based
on that idea. Pippinger [73] and Cook et al. [74], amongst others, have
studied the relationship between the entropy and the area complexity of
Boolean functions. The entropy measure based estimation method was
then expanded to the multiple-output Boolean functions by Cheng and
Agrawal [75].

The earlier work was based on randomly generated Boolean functions with
a small number of inputs, and the estimates developed using those greatly
overestimated the gate count of real circuits. This problem was pointed out
by Nemani and Najm [76], who proposed that typical circuits are far from
random in their structure and developed a new linear measure of Boolean
functions, which is dependent on the complexity of the on and off-sets of
the function. Using the new method gave more realistic results for typical
circuits. The estimation method was further developed by Büyükşahin and
Najm [77], whose work enabled estimation at a higher level of abstraction
by using a Boolean network representation of the circuit instead of Register
Transfer Level (RTL) level description. In the end, using these kinds of
methods still requires the knowledge of the accurate Boolean functions of
the logic, which may not be available at early phases of the design. Another
approach by Akers [78] was based on representing the Boolean functional

i
i

“thesis” — 2018/10/5 — 11:01 — page 31 — #51 i
i

i
i

i
i

3.1. Earlier Work 31

graphically as Binary Decision Diagrams (BDDs). Bryant [79] applied this
method on integer multiplication in order to estimate its complexity.

Enzler et al. [80] described a method for FPGA design complexity esti-
mation. Starting from a Data Flow Graph (DFG) or block diagram, they
created a characterization vector describing the features of the design,
which consists of numbers and word lengths of design building blocks such
as adders and multipliers as well as some other block characteristics. The
vector can then be mapped into the FPGA resource use, which is similar
to the gate count of an ASIC. In addition, they also use the method to
generate timing estimates, which is possible to do in FPGA, as the blocks
and routing have predictable delays. Their method resembles the one in
this thesis, but our method offers more freedom in the characterization
since it is not tied to the fixed vector format. Since our method allows
selecting the basic functions in which the design is mapped to, it can be
tuned to different classes of designs. In our method, it is also possible to
increase the accuracy of the estimation incrementally by adding more basic
blocks to the estimation process over time.

The references are summarized in Table 3 illustrating the used design de-
scription (input). The table also lists the accuracy of the method if it is
reported in the publication. For a further introduction to the area estima-
tion methods, Meeuws [82] provides a good introduction to the hardware
characteristics estimation techniques in the scope of hardware/software
partitioning. As a summary, it is obvious that most of the earlier work
has concentrated in finding formulas for mapping a small, combinatorial,
and accurately described logic function to an estimate for the hardware
complexity. Also, most of the earlier efforts on the gate count and area
estimation were aimed to develop the algorithms to be integrated into
Computer Aided Design (CAD) tools for building comprehensive frame-

i
i

“thesis” — 2018/10/5 — 11:01 — page 32 — #52 i
i

i
i

i
i

32 3. Gate Count Estimation

Table 3: Area estimation references comparison (from [P5])
Ref Input Cost Accuracy Notes
[70] Boolean functions switches n/a Theoretical work
[71] Boolean functions gates n/a Theoretical work
[72] Boolean functions diodes 15% for random logic

33% for realistic logic
[74] Boolean functions diodes n/a Theoretical work
[73] Boolean functions gates n/a Theoretical work
[75] Boolean functions gates 30%
[76] Boolean equations gates 22% Based on on/off sets

of function
[77] Boolean network gates 24%
[80] Block diagram / FPGA 12% Intermediate vector

DFG cells representation
[81] VHDL FPGA 3.5% Intermediate CDFG

cells representation
[P5] Block diagram / gates 4.0% Parameterizable /

DFG extendable models

works like Abdelhalim et al. in [81]. In contrast, the method presented in
this thesis aims to provide a tool for early stage estimation for architecture
exploration at a high level of design abstraction, which would work on
complex and realistic designs.

3.2 Estimation Method Summary

Development of integrated circuits is very complex and time-consuming
process and optimization is more efficient when done at higher design
abstraction levels. However, no such systematic methods existed for ASIC
design, and architects needed to resort to rules of thumb, their experience

i
i

“thesis” — 2018/10/5 — 11:01 — page 33 — #53 i
i

i
i

i
i

3.3. Parameterized Model Creation 33

in the field and ad-hoc rough estimations. The method proposed here will
offer a way to early estimates of the gate counts of incomplete designs
quickly and efficiently. The method is especially suited for area estimation
of new data flow modules.

The successful use of the proposed method requires only gate size informa-
tion about a few key gate types in the standard-cell library that will be
used in the synthesis of the design. In many cases, default gate size values
could be used for the primitives with only a minor loss of accuracy. Dif-
ferent alternative designs can be compared successfully against each other
with good accuracy as long as the same sizes are used for the primitives.

3.3 Parameterized Model Creation

The proposed gate count estimation method is based on a bottom-up
modeling approach, but the design will be processed from top to down.
The developed model of the design for the gate count estimation can be
parameterized so that it will be easy to explore the effect of parameter
changes to the silicon area. The models are built from parts at three
abstraction levels:

1. Primitive library, which includes elements that correspond directly
to standard-cell gates of the implementation technology.

2. Basic block library, which is built from a pre-defined, but extensible
set of functional blocks such as adders, multipliers, and registers. The
basic blocks are re-usable and parameterized in such a way that they
can be used in modeling of many different designs.

3. Design level models, which are specific to the design under estimation.

i
i

“thesis” — 2018/10/5 — 11:01 — page 34 — #54 i
i

i
i

i
i

34 3. Gate Count Estimation

Table 4: Primitive library for gate count estimation (from [P5]).

Primitive Size Notes

2-input NAND (NAND2) 1 gate 1-gate area definition

Inverter (INV) 1 gate Slightly larger than a

minimum inverter

Register bit (FF) 5 gates With synchronous reset

Full-adder (FA) 5 gates

2-input MUX (MUX2) 3 gates

Half-adder (HA) 3 gates

2-input XOR (XOR2) 3 gates

The primitive library contains typical standard cells, which should be avail-
able for any chosen implementation technology. The gate sizes of these key
cells, which form the primitive library, are the only required information
needed for the proposed method. The primitive library, which was used
in [P5] and [P6] is listed in Table 4, where the default gate counts for the
cells are also given.

The basic block library contains parameterized, low level building blocks,
which are used in most designs. It is also possible to add sub-blocks, which
are used many times in the design, into the basic block library to allow their
re-use. To get the best advantage of the new basic blocks, they need to be
parameterized for maximal re-use and developed carefully to maximize the
accuracy of the estimation. For the basic blocks, it is usually a reasonable
first guess to base them on their minimal area implementation. It is possible
that, for example, some very high-speed designs might need a different
implementation with inserted pipeline stages. The basic building blocks

i
i

“thesis” — 2018/10/5 — 11:01 — page 35 — #55 i
i

i
i

i
i

3.4. Estimation Method Flow 35

Table 5: Examples of basic block library elements from [P5].

Function Size

Adder G(add(N)) = N × G(FA)

Subtractor G(sub(N)) = N × (G(FA) + G(INV))

Increment by 1 G(inc(N)) = N × G(HA)

Absolute value G(abs(N)) = N × (G(XOR2) + G(HA))

Multiply (uns.) G(multuu(N,M)) = N ×M × (G(FA) + G(AND2))

Multiplexer M -to-1 G(mux(N,M)) = N × (M − 1)× G(MUX2)

Register G(reg(N)) = N × (G(FF) + G(MUX2))

are usually modeled with a set of basic primitives, but they could also
contain other basic blocks as parts. Some representative, simple basic
blocks are listed in Table 5, where the notation G(B) means the gate count
G for a block B. There can also be more complex basic blocks such as
register banks, signed multipliers, mixers, and so on. They are developed
using the simple basic blocks and the primitives as parts.

3.4 Estimation Method Flow

The gate count estimation method is split into two distinct phases. The
first one is building a model of the design and this process is illustrated in
Algorithm 1. The process starts by creating a data-flow graph or a block
diagram of the design to be estimated. This will be done in top-down
fashion so that a sub-block diagram is made for each block at the top level.
At each level, we can use new sub-blocks, basic blocks or primitives from
the libraries. The process is repeated until we have just basic blocks or

i
i

“thesis” — 2018/10/5 — 11:01 — page 36 — #56 i
i

i
i

i
i

36 3. Gate Count Estimation

Algorithm 1 The model creation (from [P5])
1: procedure CreateModel(block)
2: Divide to sub-blocks as needed
3: for all sub-blocks do
4: CreateModel(sub-block)
5: end for
6: Define parameters as desired
7: Create a data-flow graph / block diagram
8: Map remainder to basic blocks or primitives
9: end procedure

primitives left at the lowest level. Next, the design can be parameterized
from bottom-up so that the lower level parameters can be derived from
those at the next level up. For example, one common parameter is the
word length for all data elements.

The next phase uses the model with a suitable set of parameters to compute
the estimate, as shown in Algorithm 2. The process simply sums up the gate
count of all instantiated sub-blocks, basic blocks, and primitives recursively
applying the parameters as given by the user at the top level.

There are a few caveats in the use of this method. The first one is the
accuracy of the primitive library. In most cases, the default values will
suffice, but there could be cases where the relative sizes of the primitives
will dictate which of the two architectures leads to a smaller size. This can
happen e.g. when the size of the register cell compared with the sizes of
combinatorial cells is smaller or larger, and the two architectures differ in
the number of register bits needed. In such cases it is important to use
the correct values for the chosen implementation technology during the

i
i

“thesis” — 2018/10/5 — 11:01 — page 37 — #57 i
i

i
i

i
i

3.5. Gate Count Estimation Accuracy 37

Algorithm 2 The model evaluation (from [P5])
1: function EvalModel(block, params. . .)
2: count← 0
3: for all B ← instantiated sub-blocks do
4: count← count+ EvalModel(B, params. . .)
5: end for
6: for all B ← instantiated basic-blocks do
7: count← count+ EvalModel(B, params. . .)
8: end for
9: count← count+

∑
(gate count of primitives)

10: return count
11: end function

process. Fortunately, it is also possible to change the primitive cell sizes
during the process and just re-evaluate the estimate. The modeling phase
does not need to be repeated. The other shortcoming is that the presented
methodology does not take the routing area into account. The result of the
estimate is really the gate count value and not silicon area. If a physical
size estimate is needed, the routing area needs to be estimated. In some
cases, one could also use the average gate count per mm2 value given by
the silicon vendor.

3.5 Gate Count Estimation Accuracy

In [P5], we have shown that the average gate count estimation accuracy
was 4%. The accuracy was computed simply as the average of the absolute
values of the relative errors between the estimated gate count given by
the model and the actual gate count as reported by the logic synthesis

i
i

“thesis” — 2018/10/5 — 11:01 — page 38 — #58 i
i

i
i

i
i

38 3. Gate Count Estimation

tool used. In computing the accuracy, we used blocks from two different
GNSS receivers and a Digital Signal Processing (DSP) processor core. The
gate counts of the blocks ranged from 20 to 250 kilo-gates. The designs
included some embedded memories, but these were excluded from the
accuracy analysis. A detailed description of the architectures of these
blocks can be found in [P5]. In the paper, we also had a number of smaller
examples, which were compared with actual gate counts from the synthesis
tool. These smaller cases had an average error of 3.2%. The gate counts
of these smaller cases ranged from 0.4 to 12 kilo-gates.

The accuracy evaluation method follows its intended use. We started from
a high level description and created the estimation from it. Then using
the same description, a VHSIC Hardware Description Language (VHDL)
implementation was developed and synthesized. Finally, the gate count
given by the estimate was compared against the gate count of the actual
implementation. Only high level description of the design was used for
the gate count estimation model development. For the GNSS receivers,
we used the design specifications. For the VS_DSP, the input document
was its user’s manual [83]. The actual gate counts were obtained from the
implementation documentation of the corresponding ICs.

There were some outliers when comparing the estimates with the actual
numbers. In one case, where the estimate was too optimistic, we determined
the error to be due to some unmodeled interfacing and Built In Self-Test
(BIST) logic for the embedded memories that was included in the actual
implementation. In another case, where the estimate was too high, we found
out that the reason was that the modeling did not take into account all
the optimizations that were possible in the implementation. Interestingly,
these outliers happened in sub-blocks of a larger design and the top level

i
i

“thesis” — 2018/10/5 — 11:01 — page 39 — #59 i
i

i
i

i
i

3.6. Memory Mapping to a Gate Count Estimate 39

Table 6: Properties of memories used to build the SRAM model in Table 7.

Parameter Minimum Maximum

Type Single-port, high speed
Ports 1 1
Size 5120 491520 bits
Word length 8 32 bits
Words 512 15360
Parallel words 4 16
Rows 32 1024
Columns 40 512

estimation accuracy was extremely good. This shows that the modeling
errors tend to cancel out when applying the method for large designs and
the overall accuracy is very good.

3.6 Memory Mapping to a Gate Count Estimate4

Embedded memories are used for data storage for most reasonably complex
designs, as their data storage density is much better than what can be
achieved with register cells. In the case of architecture exploration, the
amount of memory is often different for the different alternatives. It is thus
very important that the embedded memories can also be included in the
gate count estimates. We have chosen to map the area of the memories to a
gate count value based on the number of gates per area information which
we can obtain from the silicon vendor. The memory model needs to be
created for each type of memory and for each implementation technology
separately.

4The memory gate count estimation method was originally presented in [P6].

i
i

“thesis” — 2018/10/5 — 11:01 — page 40 — #60 i
i

i
i

i
i

40 3. Gate Count Estimation

In conjunction of the implementation of a GNSS receiver, we had obtained
from a silicon vendor a set of parameters for variably sized and configured
embedded memory blocks in a 65nm CMOS technology. For the purposes
of building a memory model for the GNSS receiver comparison, we selected
a subset of 168 single-port Static Random Access Memories (SRAMs) from
this set, as listed in Table 6. As it can be seen, the range of the memories
used as the model basis was very wide, so the resulting model should fit
reasonably well to a wide range of uses.

The simplest way to model the memory area is to assume that each storage
element (bit) consumes a certain amount of area, and there is a fixed area
overhead. This can be expressed as:

gates = (a1 · b+A)× C, (1)

where b denote the number of bits in the memory; the model parameter
a1 models the area of a single memory bit; A is the memory overhead
area; and C is the gate density constant (in gates/mm2) given by the
silicon vendor for that particular technology. The model parameters can
now be estimated by fitting this model to the memory area information for
the differently configured memories from the silicon vendor. The average
accuracy computed as average of the absolute values of the relative errors
of the resulting area estimation (i.e. without the gate density taken into
account) was 10%. The errors for differently sized memories are detailed
in Table 8.

A better memory model can be based on a typical layout of embedded
memory shown in Figure 8. The gate count estimate for the memory is
then given by:

gates = (h0 + h1 · r)× (w0 + w1 · c)× C, (2)

i
i

“thesis” — 2018/10/5 — 11:01 — page 41 — #61 i
i

i
i

i
i

3.6. Memory Mapping to a Gate Count Estimate 41

I/O buffers

R
o

w

D
e

c
o

d
e

Column

Decode

w0 w1∙c

h
1
∙r

h
0

Memory array

Fig. 8: Conceptual floorplan of an embedded SRAM (from [P6]).

Table 7: Memory area parameters used in the evaluation

Parameter Value

w0 53.3 µm
w1 1.266 µm
h0 26.3 µm
h1 0.613 µm
kgates/mm2 500

where r and c denote the rows and columns in the memory array, re-
spectively. The constants h0 and w0 model the height and width of the
peripheral area of the memory block containing the address decoding cir-
cuitry and I/O buffers; h1 and w1 model the height and width of a single
memory bit. The resulting estimated parameter values from this SRAM
model using Equation (2) are shown in Table 7. Using this revised model,
the obtained overall average error of the area estimation was 4%. Again, the
detailed errors for differently sized memories can be found in Table 8. As
shown in the table, the modeling error tends to get smaller with increasing
size. Interestingly, the 130-kbit memories have a somewhat larger error for
the second prediction model of equation (2), equaling that of the simpler
model in equation (1). The errors of these two models get closer to each

i
i

“thesis” — 2018/10/5 — 11:01 — page 42 — #62 i
i

i
i

i
i

42 3. Gate Count Estimation

Table 8: Memory modeling errors for different memory sizes. size denotes the
memory size in kilobits; err1 and err2 are the error of the first (eq. 1)
and second models (eq. 2) respectively as the average of absolute values
of the relative errors; and N is the number of different configurations.

size err1 err2 N

5 34.1% 9.4% 12
10 17.7% 6.7% 24
20 10.9% 3.5% 36
40 8.5% 3.0% 36
64 8.6% 2.9% 32

128 4.2% 2.2% 12
130 5.9% 5.9% 8
320 2.0% 1.6% 4
480 2.4% 2.0% 4

other with increasing memory sizes, but for smaller memories the more
complex model is clearly better. A still more accurate model could be ob-
tained if the number of parallel words in the memory array would be taken
into account, but it would complicate the use of such a model especially at
the early estimation phase, where such details would be unknown. Another
idea could be to use the multiplexing factor in the model, but make the
model itself select the smallest memory configuration automatically.

i
i

“thesis” — 2018/10/5 — 11:01 — page 43 — #63 i
i

i
i

i
i

3.7. Small Example 43

SIN/

COS

LOOK-

UP

TABLE

xIN

yIN

phIN
yOUT

xOUT

pbits

ibits

obits

ibits

obits

pbits

pbits

Fig. 9: Schematic picture showing the complex mixer (from [P5]).

3.7 Small Example5

To give some idea of using our gate count estimation method, we will
show how it can be applied to a complex mixer model. The complex mixer
is a common block in many communications related designs. The mixer
multiplies two complex numbers together using four real multipliers and
two adders. One input of the mixer in this case is the phase of a complex
sinusoidal signal, which is commonly generated by a table look-up. This
implementation is shown in Figure 9. The parameters of the mixer model
are:

ibits – Input data word length

pbits – Input phase word length

obits – Output data word length

The development of the gate count model for the mixer is very straightfor-
ward for the arithmetic part. The signed multiplier (Mult_ss), the adder

5This example is taken from [P5].

i
i

“thesis” — 2018/10/5 — 11:01 — page 44 — #64 i
i

i
i

i
i

44 3. Gate Count Estimation

(Add), and the subtractor (Sub) basic blocks can directly be used here.
We can also easily count the required number of elements from the block
diagram.

The look-up table modeling poses a trickier problem. In our case, the look-
up table is implemented as combinatorial logic instead of a Read Only
Memory (ROM), due to pipelining constraints and its small size. The table
contains a full wave of sin(ω) and cos(ω). As we only wanted to get a quick
model for the look-up table, we did not go into great lengths in order to
optimize its size. The most straightforward method to create a model for it
is to write a few simple VHDL models of the table with a different number
of input and output bits and fit a suitable model to the synthesis results.
We can model the table as a number of Boolean functions. According
to Shannon [70], the complexity of a Boolean function is bounded by an
exponential of the number of inputs, so we use an exponential function
as the basis of our model. Since we know that there is a certain amount
of redundancy in the data we will use another parameter in the model to
represent the amount of redundancy. Our model of the gate count of the
table uses a function of the form:

f(x, α, β) = α · x · βx, (3)

where α and β are the model parameters and x is the word length of the
input and output. By fitting our model with empirical data obtained by
synthesizing the table for a few cases, we can determine suitable values
for the two parameters. One would expect that the parameter β would
be close to 2 and α would reflect the redundancy factor and two outputs.
Using a small set of synthesized tables resulted in α = 1.4 and β = 1.8 as
the parameter values. Since sine and cosine tables are common in many

i
i

“thesis” — 2018/10/5 — 11:01 — page 45 — #65 i
i

i
i

i
i

3.7. Small Example 45

Algorithm 3 Complex mixer gate count estimation model (from [P5])
1: function Complex_Mix(ibits, pbits, obits, tech)
2: % Complex multiply
3: mult ←Mult_ss(ibits, pbits, tech)
4: add ← Add(obits, tech)
5: sub ← Sub(obits, tech)
6: mix ← 4 ∗mult+ add+ sub

7: % Look-up table
8: lut ← 1.4 ∗ pbits ∗ 1.8pbits ∗ tech.NAND2

9: return mix+ lut

10: end function

communication applications, it is natural to make a basic building block
from the table for future uses of it. The complete model is shown in
Algorithm 3.

In [P5] we have compared the model with the synthesized VHDL imple-
mentation and the average of absolute values of the relative errors was
found to be 2.4%.

i
i

“thesis” — 2018/10/5 — 11:01 — page 46 — #66 i
i

i
i

i
i

46 3. Gate Count Estimation

i
i

“thesis” — 2018/10/5 — 11:01 — page 47 — #67 i
i

i
i

i
i

4. BASEBAND HARDWARE OPTIMIZATION

In this chapter, we will review three GNSS receiver baseband architectures,
and show how they could be optimized in various ways. There has been
little discussion about such optimizations in the open literature except
in some obscure patent publications. First, we will shortly introduce the
parts necessary in all GNSS receiver baseband implementations. The first
architecture we will present here is the correlator-based receiver architec-
ture, as it is the oldest and best known [84]. We will see how the basic
structure can be tuned to fit various optimization goals. Next, comes a
treatment on the use of a Matched Filter (MF) as the correlating device
in a GNSS receiver. We will conclude the chapter with an overview of the
Group Correlator (GC), which is a recent addition to the GNSS receiver
architecture scene.

4.1 General GNSS Receiver Baseband Considerations

Before jumping to the three receiver architectures discussed in this thesis,
we can shortly review what a generic GNSS receiver baseband needs to
contain in order to perform its operation. The core function in all GNSS
receivers is the computation of the cross correlation between the incoming
signal and the local replicas for each signal we wish to receive in parallel.
In addition to the correlation, every receiver needs a couple of common

i
i

“thesis” — 2018/10/5 — 11:01 — page 48 — #68 i
i

i
i

i
i

48 4. Baseband Hardware Optimization

blocks. Since they are common, we can concentrate on the correlation
implementation in the architecture optimization question. Nevertheless,
also the common blocks should be carefully optimized to get the best
possible implementation.

The GNSS receivers were discussed in Section 2.3. A generic receiver was
illustrated in Figure 3 (on page 18) and the receiver channel in Figure 4
(on page 19). Each receiver channel needs generators for code and carrier
replicas besides the correlator. Usually, there will be more than one delayed
version of the PRN code generated for each channel, but only one carrier
replica is used in each channel. In some cases, the replica generators could
be shared between the channels by e.g. time-multiplexing the hardware.
The replica generators use a NCO to generate the replicas at the right
rate, which the SW algorithms control by updating the frequency of the
oscillator. In case of the carrier replica, multiple bits of the NCO phase
value are used to drive a lookup table, which provides the sinusoidal replica
value. For the code generation, only the overflow indication from the NCO
is used to drive the PRN sequence generation. The PRN code generation
depends on the GNSS specification. The code can be generated quite
easily with a Linear Feedback Shift Register (LFSR) generator for GPS
Coarse/Acquisition (C/A), GLONASS, and BeiDou B1I, but Galileo E1-B
and E1-C codes can only be generated from a table, which is provided in
the Galileo SIS-ICD [30]. Publications [P5] and [P6] provide some examples
of the replica generation blocks.

The correlator usually provides coherent integration up to one code period
length. Thus, the correlator will produce outputs at a rate, which is in the
order of a millisecond. This is a low enough rate to continue the integration
using the receiver software, but if there are very many receiver channels
with many different delayed code versions, the rate might still become too

i
i

“thesis” — 2018/10/5 — 11:01 — page 49 — #69 i
i

i
i

i
i

4.2. Correlator 49

high for the SW to cope with. In such cases it would be advantageous to
follow the correlator block by a hardware-based integrator block. By con-
tinuing the coherent integration, the bandwidth of each channel becomes
smaller while the integration time gets longer. For acquisition, this reduces
the frequency bin size and the search would require more bins to cover the
same frequency range. It is possible to have a second carrier removal stage
before the coherent integrator block, which can split the correlated signal
to multiple frequency bins, which are integrated individually. This saves
replicating the resource hungry correlator block for each frequency bin
to be searched. As the apparent signal frequency is not fully predictable
for extended periods of time and the transmitted data bits are not fully
predictable, it becomes impossible to continue the coherent integration be-
yond approximately one data bit period [85]. If the sensitivity requirements
cannot be met with the coherent integration, GNSS receivers commonly
employ non-coherent integration, which discards the signal phase by taking
a norm1 and then continues to integrate the resulting real valued signal.
The post correlation integration is widely known in GNSS literature [86].
Van Diggelen [87] has presented formulas for computing required coherent
and non-coherent integration times to meet given sensitivity requirements.
The integrator block implementation is illustrated in Figure 10. It was also
shortly presented in publications [P5] and [P6].

4.2 Correlator

In this section, we discuss the various implementation possibilities for a
correlator-based GNSS receiver baseband. We will also describe methods

1Common implementations of a norm include the magnitude of the complex signal,
and the sum of squares of the real and imaginary parts.

i
i

“thesis” — 2018/10/5 — 11:01 — page 50 — #70 i
i

i
i

i
i

50 4. Baseband Hardware Optimization

Coherent Non-coherent

 bypass

NORM

Memory

Mixer Bank

Carrier

Generator Memory

Fig. 10: Common integrator block used for the gate count comparison (adapted
from [P6]).

for its optimization and show how some advanced functionality can be
implemented with minimal hardware complexity.

4.2.1 Correlator Functionality

As the definition of the actual meaning of a correlator as a building block
of a GNSS receiver has been somewhat unclear, we will define it here. The
term correlator in this thesis means a GNSS receiver building block which
performs a cross-correlation operation2 between the received signal and
a single version of a locally generated replica of it. The output of the
correlator is defined as:

C(τ, t, f) =
∫ t+T

t
r(t)c(t− τ)e−j2πf(t−τ)dt, (4)

or in discrete time (where Ts is the sample period):

C(τ, n, f) =
N−1∑
k=0

r ((n+ k)Ts) c ((n+ k)Ts − τ) e−j2πf((n+k)Ts−τ), (5)

2The cross correlation of two periodic signals x(t) and y(t) is defined as Rx,y(τ) =
1/T

∫ T

0 x(t)y(t− τ)dt, where T is the period of the signals

i
i

“thesis” — 2018/10/5 — 11:01 — page 51 — #71 i
i

i
i

i
i

4.2. Correlator 51

CORRELATOR

CODE

REPLICA
CODE

PHASE

DATA

OUT

CARRIER

PHASE

CARRIER

REPLICA

DIGITAL

INPUT

Fig. 11: Conceptual diagram of GNSS receiver channel structure (adapted
from [P6]).

where r(t) is the received signal, c(t) is the locally generated replica of the
spreading code, and e−j2πft is the local replica of the (residual) carrier.
Usually, the received signal is complex valued at a low or zero IF, the carrier
replica is complex valued, and the spreading code typically contains only
the values ±1. A signal flow graph of a correlator is shown in Figure 11.

All recent GNSS receivers use several correlators for efficient operation.
Usually, these are organized as several receiver channels. Each channel is
responsible for handling the reception of one signal from a single satellite.
At least four channels are needed to enable the simultaneous reception of
signals from at least four satellites [46], but often the number of channels
is much larger to allow the simultaneous reception of more satellites for
better performance. Each receiver channel typically has multiple correla-
tors, which share local replica generator blocks for the code and carrier
and which use differently delayed versions of the replica code. These are
often called correlator fingers. Modern GNSS receivers have at least 3
correlator fingers per channel: two (early and late) are used for code track-
ing, and one (prompt) is used for carrier tracking and data demodulation
(see subsection 2.4.2). Many modern receivers employ a greater number
of correlator fingers to implement advanced signal processing algorithms

i
i

“thesis” — 2018/10/5 — 11:01 — page 52 — #72 i
i

i
i

i
i

52 4. Baseband Hardware Optimization

Carrier

NCO

Code

NCO

Code

Generator

Receiver

Processor

Early

Prompt

Late

Input

Samples

Code

replica

control

Carrier

replica

control

Shift register

Fig. 12: Traditional correlator channel architecture (From [P1]).

for reducing multipath effects [88] or improving performance of receiving
modern GNSS signals [89, 90]. More correlation fingers will also improve
the signal acquisition performance [91]. The correlator output is further
processed by receiver software for signal acquisition, detection and track-
ing [63]. An example of a correlator channel in a GNSS receiver is shown
in Figure 12. The most common order of the operations, as shown here,
is to multiply the incoming signal first by the carrier replica as this more
complex multiplier is only needed once, and then by the code replica, which
reduces to a conditional sign reversal of the signal.

The GNSS industry has used the number of correlators as a figure of merit
in marketing. Unfortunately, due to competing on who has the biggest
number, the actual definition of the term correlator has been deviating
from the original, strictest definition. This has led to the idea of counting
equivalent correlators. This count, in its simplest form, is defined as the

i
i

“thesis” — 2018/10/5 — 11:01 — page 53 — #73 i
i

i
i

i
i

4.2. Correlator 53

number of cross-correlation operations between the received signal and
different variations (in delay and/or frequency) of the locally generated
replica within a defined time [92].

4.2.2 Word Length Optimization

The GNSS receiver operates on signals that mostly contain noise. This
makes them special in the word length optimization sense. Typically, the
input to the baseband has only a few bits [65], which also makes the
baseband blocks different from those used in many other signal processing
applications, where the signals contain more bits and have a higher SNR.

In conventional DSP applications, consecutive samples of processed data
are highly correlated and integration increases the signal amplitude directly
proportional to the integration time. Also, depending on the frequency
of the signals, the mean value of the integrated signals can change. For
GNSS applications this is not true. There, the processed samples can
be modeled as additive white Gaussian noise with zero mean, so that
integration increases the standard deviation or amplitude proportionally
to the square root of integration time, and the mean stays as zero. Care
must be taken however, as the SNR can become positive at some point in
the processing chain. If this happens, the word length optimization needs to
be done as in conventional receivers. In the early stages of processing, it is
possible to limit the maximum amplitude using hard limiters, as long as the
number of clipped samples remains reasonably low. Thus, in many cases we
can limit the signal values to, for example, 3 times the standard deviation
(σ) without any noticeable degradation to the performance. Publication

i
i

“thesis” — 2018/10/5 — 11:01 — page 54 — #74 i
i

i
i

i
i

54 4. Baseband Hardware Optimization

[P1] contains more detailed treatment of the word length optimization
considerations for correlator implementation with some examples of the
possible savings.

4.2.3 Time-Multiplexed Correlator Architectures3

Time-multiplexing allows the reduction of parallel hardware elements re-
lated to stateless operations, but offers no reduction of storing state vari-
ables. Usually time-multiplexing is implemented by increasing clock fre-
quency directly proportionally to the number of parallel operations that are
multiplexed. Time-multiplexing is usually employed to save silicon area at
the expense of a slight increase in power consumption due to higher clock
frequencies. By carefully examining and ordering the operations performed
in correlators, it is possible to implement time-multiplexing without really
increasing the clock frequency.

The spread-spectrum signals require large input bandwidth and high sam-
ple rates in the input stages, yet the output of the correlator is usually
delivered at 1 kHz or even slower rate. We also need to repeat the same pro-
cessing for multiple correlator fingers as well as multiple receiver channels.
All this make GNSS receivers attractive for time-multiplexed implementa-
tions.

In traditional correlator signal processing flow as shown in Figure 12, we
first multiply the incoming signal by the carrier replica since the input
word length is small, and thus the silicon area of the mixer area is also the
smallest. Next, the correlator fingers are implemented by multiplying the
mixer output with the differently delayed versions of the code replica with

3The content of this subsection is a summary of Publication [P1]. These ideas were
first published in the patent US 7,010,024 [11].

i
i

“thesis” — 2018/10/5 — 11:01 — page 55 — #75 i
i

i
i

i
i

4.2. Correlator 55

Input

Samples

Early

Prompt

Late

Sample rate 1 Sample rate 2 Sample rate 3

Shift register
Code

NCO

Code

Generator

M
U

L
T

IP
L

E
X

E
R

Carrier

NCO

sin/cos

map

Receiver

Processor

Carrier

replica

control

Code

replica

control

Fig. 13: Re-arranged correlator with code mixer placed in front of the carrier mixer
(from [P1]).

values of ±1, which is also a simple operation. We repeat this hardware
for each correlator finger in the receiver channel. The carrier mixer and
the associated carrier replica generator are the most complex elements of
this implementation and they run at the input sampling rate.

From the spectrum plot Figure 14a, we can see that the required signal
bandwidth is reduced only after the multiplication by the code replica (also
called de-spreading), and we need to maintain the high sample rate until the
final integration. Assuming a low IF, we we can first multiply the received
signal by the code replica, which will result in a low bandwidth signal. We
can then decimate the de-spread signal down to a lower sampling frequency
before performing the carrier replica mixing. The sampling frequency at
the carrier replica mixer still needs to be high enough to pass any center
frequency variations of the incoming signal as well as the residual IF. Thus,
the final integrators are still needed, but they are running at a much
lower rate. This arrangement then allows multiplexing the mixers and final

i
i

“thesis” — 2018/10/5 — 11:01 — page 56 — #76 i
i

i
i

i
i

56 4. Baseband Hardware Optimization

fIF0

fIF

fIF

f

f

f

|S(f)|

BIF

BMIX

BDS

iii)

ii)

i)
BSS

BBB

(a) Spectrum within traditional correla-
tor. i) incoming signal, ii) Signal
after carrier mixer, iii) signal after
multiplying with code replica

fIF0

fIF

fIF

f

f

f

|S(f)|

BIF

BDS

BMIX

iii)

ii)

i)
BSS

BBB

(b) Spectrum within rearranged corre-
lator. i) incoming signal, ii) signal
after multiplying with code replica,
iii) Signal after carrier mixer.

Fig. 14: Signal spectra within different correlator implementations(adapted
from [11]).

integrators for all correlator fingers as well as multiple receiver channels
while keeping the operating frequency constant. The time-multiplexed
correlator structure is illustrated in Figure 13 and the spectrum of the signal
at different stages in this re-arranged correlator are shown in Figure 14b.

4.2.4 Advanced Correlator Functionality4

The number of correlator fingers per channel has increased through the
times and modern GNSS receivers tend to use a large number of them,

4The advanced correlator functionality discussed in this subsection was first published
in the patent US 7,283,582 [12], and was also presented in Publication [P1]

i
i

“thesis” — 2018/10/5 — 11:01 — page 57 — #77 i
i

i
i

i
i

4.2. Correlator 57

Table 9: Generation of the example strobe shapes for discriminators in Figure 15.
The notation r[C ± n] denotes replica delayed or advanced by n chips.
The Simple strobe is also called narrow correlator [95]. (From [P1])

Strobe Generation

Simple r[C−1]− r[C+1]

Bipolar symmetrical r[C−2]− 2r[C−1] + 2r[C+1]− r[C+2]

Asymmetrical r[C−2]− 2r[C−1] + 2r[C+2]− r[C+4]

as modernized GNSSs use more complex signals and advanced algorithms
require additional fingers:

• One Binary Offset Carrier (BOC) tracking algorithm [93] uses two
early / late fingers per channel.

• The strobe correlator [94] can be used to improve tracking accuracy
in multi-path cases. Example strobe cases are shown in Table 9, and
corresponding discriminator shapes are illustrated in Figure 15.

• In many cases advanced functionality can be achieved by adding or
subtracting correlator outputs.

Unfortunately, correlator fingers are relatively expensive to implement in
HW due to the large amount of repeated functionality. The correlator
is a linear system, so adding correlator outputs is equivalent to adding
code replicas before multiplying with the input. The resulting structure is
depicted in Figure 16. We use the term correlator finger function to mean
using a linear combination of differently delayed code replica versions as
the replica in a correlator finger. We can save silicon area using correlator
finger functions instead of operating on correlator finger outputs. Some
example cases of this are shown in Table 10. In all cases, the code generator

i
i

“thesis” — 2018/10/5 — 11:01 — page 58 — #78 i
i

i
i

i
i

58 4. Baseband Hardware Optimization

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Phase difference (chip)

-2

-1.5

-1

-0.5

0

0.5

1
A

m
pl

itu
de

Simple strobe

Bipolar strobe

Asymmetrical strobe

Fig. 15: Examples of strobe correlator discriminator characteritics (from [P1]).

Input

Samples

Code

Generator

Tap

Coeff.

Carrier

NCO

Correlator

Output

Shift register

Finger function

generation

Fig. 16: Correlator finger function example implementation (Full) (from [P1]).

produces 16 differently delayed versions of the replica code. The total
number of fingers is shown in the table together with the finger function
enabled fingers shown in parentheses. The first case is a normal correlator,
the second is a special version, where each finger can independently select
the replica from the delay line, and the two latter use finger functions,
which enable creating the discriminator directly in the correlator. The
gain selection column lists the available choices for the gain of each finger

i
i

“thesis” — 2018/10/5 — 11:01 — page 59 — #79 i
i

i
i

i
i

4.2. Correlator 59

Table 10: Finger function implementation examples (from [P1]).

Case Fingers Gain sel. Adder gates diff

Simple Correlator 5 (0) n/a n/a 4364 -

Delay selection 5 (5) 0/1 OR 4674 +7.1%

Simple functions 3 (2) 0, ±1 2-bit 4074 -6.6%

Strobe functions 3 (2) 0, ±1, ±2 3-bit 4144 -5.0%

function element. The adder column shows how many bits are needed for
the finger function adder or if an OR gate was used instead. The gates
number show the estimated gate count for each implementation, which all
use otherwise identical structure. Finally, the difference column shows the
difference in a percentage compared with the simple correlator.

4.2.5 Correlator-Based Receiver for Gate Count Comparison5

The correlator-based baseband architecture used for the receiver compar-
ison is illustrated in Figure 17. This architecture uses time-multiplexing
for minimizing the gate count. Time-multiplexing allows using a single
data path to process multiple channels (PRN replicas) and/or carrier repli-
cas. The different code phase fingers are processed in parallel within the
correlator block. We assume that the carrier and code generators for the re-
ceiver are maximally time-multiplexed to optimize the receiver gate count.
We will ignore the fact that this arrangement will lead to optimistic area
estimation and it might be difficult to realize. We should also note that,
when this receiver is used in the acquisition mode, we will get an enormous

5Publication [P6] contains the details of the correlator architecture selected for gate
count comparison.

i
i

“thesis” — 2018/10/5 — 11:01 — page 60 — #80 i
i

i
i

i
i

60 4. Baseband Hardware Optimization

Code

NCO

Code

Generator

Carrier

NCO

Correlator block

Shift register

SW algorithms

Code replica

control

Carrier replica

control

AMPL

DET

AMPL

DET

AMPL

DET

sin/cos

map

Carrier

NCO

Code

NCO

Code

Generator

Fig. 17: Correlator-based GNSS receiver architecture used for the gate count com-
parison (from [P6]).

amount of outputs within each coherent integration interval. It would be
possible to reduce the processing load in SW by adding a post-integrator
block after the correlators to process the outputs in hardware. The post-
integrator is not included as a part of the correlator in the area evaluation
in the gate count comparison between the different architectures.

4.3 Matched Filter

At the turn of the century, it became feasible, especially in the economic
sense, to implement full code searches in GNSS hardware. A further driver
for this was the FCC e-Call (E911) mandate [1] with strict requirements
for the acquisition time and sensitivity. The cold start problem with rapid,
full code uncertainty search had been an uninteresting problem before, as

i
i

“thesis” — 2018/10/5 — 11:01 — page 61 — #81 i
i

i
i

i
i

4.3. Matched Filter 61

cM-1 cM-2 c2 c1 c0

Filter

P*(ω)

TC TC TC TCTC

Received signal

plus noise

Output

Fig. 18: A tapped delay line implementation of a matched filter for an M -chip
PRN sequence (from [P3]).

performance in this scenario had not been viewed as a critical or important
performance parameter for GNSS receivers, which had typically been used
in the continuous tracking mode. The cold start had been thought as an
infrequent event since receivers typically operated long times in tracking
the signals while the user was navigating along a route.

4.3.1 Matched Filter Functionality

Matched Filters (MFs) [96], [40, pp. 815–832] are devices which continu-
ously compute the correlation between a known reference signal and the
received signal and produce the maximal output when the correlation is
the strongest. By definition, they are optimum detectors for signals embed-
ded in Additive White Gaussian Noise (AWGN). The structure of a MF is
shown in Figure 18. The incoming signal is first captured in a tapped delay
line and the output of each tap is multiplied by the corresponding coeffi-
cient from the reference signal before being added together. The summing
function is followed by a passive filter matched to the basic pulse shape of
an individual chip. The last filter can be ignored for rectangular chips.

i
i

“thesis” — 2018/10/5 — 11:01 — page 62 — #82 i
i

i
i

i
i

62 4. Baseband Hardware Optimization

Looking at the structure we can assess the difficulty of implementing
the MF in hardware. The MF length is usually equal to a single PRN
code period, as it can then easily compute a full code length correlation.
Using a shorter MF, we will suffer from a worsening of cross-correlation
performance, which makes it more difficult to separate between signals
from different satellites. We could also detect an incorrect timing of the
incoming signal due to the non-ideal autocorrelation properties of partial
PRN codes, which would lead to failed acquisition [97]. The PRN code
lengths for current civil GNSS signals intended for direct acquisition vary
between 511 (GLONASS) to 4092 (Galileo). The MF must produce one
output for each incoming sample, which means that the input and the
output need to be updated at least at the chipping rate, which is between
511 kHz (GLONASS) and 2.046 MHz (BeiDou). For GNSS applications we
can usually assume that the tap multiplications are trivial to implement,
and there are few bits per sample at the MF input stage. The summation
element needs to add as many inputs as there are taps in the filter within
the time between two output samples, which turns out to be in the range
of 4 · 109 operations/s. There are three possible ways to solve this problem:

• Pipeline the MF implementation by storing partial results.

• Fully pipeline the summation by using a transposed filter structure.

• Implement the summation in a smart way.

The first two options need to store intermediate MF output values, which
requires a larger number of storage elements. This is wasteful for hardware
area and power consumption. Furthermore, using area efficient storage such
as Random Access Memory (RAM) is not feasible since we need parallel

i
i

“thesis” — 2018/10/5 — 11:01 — page 63 — #83 i
i

i
i

i
i

4.3. Matched Filter 63

access of all the values at the same time, which is not possible with RAM.
Trying to time-multiplex the MF calculation logic only makes the problem
harder. Thus, we will take a look at the third option.

4.3.2 Reduction Adder Tree6

We will start by considering the problem of adding N 1-bit numbers. This
can later be expanded to multi-bit numbers. The idea behind the method
builds upon the ideas of carry-save adders [98] and tree-adders [99].

We can build a network of one-bit full-adders in a tree structure which
achieves relatively low delay in the order of O(log3N · log2N) times the
delay of single full-adder delay. The log3N term is due to the number of
inputs that need to be added to get the Least Significant Bit (LSB), and
the log2N term is due to the final carry propagation chain from the final
adder producing the LSB of the result to the Most Significant Bit (MSB)
of the result. The number of bits in the result is equal to dlog2Ne∗. The
generation of the reduction adder network is a relatively straightforward
process and is fully explained in [P3]. The resulting structure for adding
15 inputs is shown in Figure 19. It is possible to show that the number
of elements we need to implement an N -input adder using single bit full-
adders is:

Nadd =
dlog2 Ne∑
i=0

N − 2i+1 + 1
2i+1 = N − 1

N
− log2N ≈ N − log2N (6)

It is easy to automate the generation of the adder network with a simple
program, which can generate e.g. a VHDL netlist for the reduction adder.

6The implementation described in this subsection was described by the author in
[P3]. It is believed to be the original product of the author developed in 1999.

∗dxe is the ceiling of x, i.e. the smallest integer n such that n ≥ x.

i
i

“thesis” — 2018/10/5 — 11:01 — page 64 — #84 i
i

i
i

i
i

64 4. Baseband Hardware Optimization

FA4

c s

FA3

c s

FA2

c s

FA1

c s

FA0

c s

FA5

c s

FA6

c s

FA8

c s

FA7

c s

FA9

c s

FA10

c s

s0(0)s1(0)s0(1)s1(1)s0(2)s1(2)s0(3)s1(3)s0(4)s1(4)

s0(5)

s0(6)

s1(5)

s1(6)s1(8)

s1(7)

s1(9)

s2(1)

s2(0)

s2(3)s3(0)

s0s1s2s3

x4x5x6x7x8x9x10x11x12x13x14 x0x1x2x3

s2(2)

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4

00000

0

0

1

1

1

2

Fig. 19: 15-input binary reduction adder (bitcount) (from [P3]).

For the MF implementation, we should consider the input and the coeffi-
cients being signed, and thus the interpretation of the input to the adder
needs to be considered. A useful interpretation would be that a bit value
of ’1’ would mean a match between the input and the corresponding co-
efficient, and ’0’ would mean no match. Thus, we will get the number of
successful comparisons by adding the 1-bit comparison results together.

i
i

“thesis” — 2018/10/5 — 11:01 — page 65 — #85 i
i

i
i

i
i

4.3. Matched Filter 65

However, it is possible that we have a total match of the PRN code to the
input signal, but the sign of the input data is just reversed. In this case, we
get zero successful comparisons. Also, the worst-case match occurs when
exactly half of the comparisons are wrong. However, in this case, the result
from our adder would actually be N/2. For the original interpretation of
the inputs and coefficients the results would be N , −N , and 0, respectively.
To accommodate this we need to multiply the result by 2 and subtract N
from it.

The preceding discussion was only about adding 1-bit inputs. Multi-bit
inputs can be handled by two different ways:

• We could simply extend the algorithm for generating the adder tree
to consider multiple input bit weights while assigning the adder ele-
ments.

• We can use time-multiplexing for processing each input bit weight
at a time, and then include a post processing stage which combines
the individual 1-bit sums.

The latter method also suggests a way of handling larger additions by
smaller summation blocks.

4.3.3 Input Multiplexing with 1-bit MF Core7

It is possible to use the proposed summation block as a building element
for a system with either larger input word length or, equally well, multiple
inputs. We can easily handle multiple inputs in a time-multiplexed way
using the structure illustrated in Figure 20. The input signals arrive in

7The basic idea for this structure was first presented by the author in [P2], and also
patented as [15]

i
i

“thesis” — 2018/10/5 — 11:01 — page 66 — #86 i
i

i
i

i
i

66 4. Baseband Hardware Optimization

SIGNAL
SHIFT REGISTER

REG

REG

REG

REG

Output

Signal select

COEFFICIENT
STORAGE

MULTIPLIER
(XOR)

ADDER

Input
signals

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

Fig. 20: Multiplexed MF input structure (adapted from US 7,010,024 [15]).

parallel to the shift registers, and after each sample period, we calculate the
MF output for all parallel inputs in sequence. We multiply each input with
the same coefficients, but this structure could also be extended to cover
multiple reference signals as well [15, 100]. To use the same structure for
multi-bit inputs, it would be advantageous to use a number representation
where negation is done by inverting all bits, as this eases the multiplication
by the ±1 values of the spreading code.

We know that any non-negative valued integer n can be represented as a
linear combination of M = dlog2 ne powers of 2:

n =
M−1∑
i=0

bi2i, bi ∈ {0, 1}, (7)

i
i

“thesis” — 2018/10/5 — 11:01 — page 67 — #87 i
i

i
i

i
i

4.3. Matched Filter 67

where (bm−1, bm−2, . . . , b0) is the M -bit representation of the number. To
extend the representation to cover negative numbers, we have a few alterna-
tives, e.g. sign-magnitude, two’s complement, and one’s complement [101].
By using one’s complement representation, we can negate a number by
simply complementing all of its bits. One’s complement numbers can be
represented as linear combinations of the bits by assigning a weight of
−(2M − 1) to the highest bit. We can now write our signed numbers as:

n =
M∑
i=0

biwi, bi ∈ {0, 1}, wi =

2i for i < M,

−(2M − 1) for i = M
(8)

Now, applying the MF to the signed M -bit numbers can be written as:

y(n) = MF(x(n)) =
N−1∑
k=0

x(n+ k)c(k)

=
M∑
i=0

M̂F(xi(k))wi (9)

Where M̂F(x) is a modified MF utilizing one bit coefficient multiplication.
This can be implemented in a time-multiplexed way as shown in Figure 20,
but the output values need to be collected from M consecutive outputs
of the MF hardware block. Also, the output is represented using one’s
complement notation with multi-bit digits and must be transformed to a
normal binary representation for further computations.

i
i

“thesis” — 2018/10/5 — 11:01 — page 68 — #88 i
i

i
i

i
i

68 4. Baseband Hardware Optimization

4.3.4 Integrating the MF Output Signal8

We can improve the signal detection statistics by integrating the correlated
signal for longer duration. The integration can be either coherent (normal
integration) or non-coherent (integrating the norm, e.g. the absolute value,
of the signal). The spread spectrum modulation used in GNSS utilizes a
periodic spreading code. By using a MF which is matched to the spreading
code, i.e. whose length equals the code period, the outputs from the MF
separated by a multiple of the code period will correspond to correlation
results with identical code offset positions. It can be shown, that adding
up the MF outputs which are separated by one code period is equivalent
to performing correlation over multiple code periods. Similarly, we can
integrate the MF outputs non-coherently for each code offset after using
a norm operation on the MF outputs. This allows performing parallel
long correlation for all of the searched code phases. As the output rate of
the MF is equal to its input rate, we will not need to run the post-MF
accumulation at a rate greater than the MF outputs become available. The
structure of such post-MF integration is illustrated in Figure 21.

The post-MF integration is an efficient way to improve the acquisition
sensitivity of the MF-based system. It is also possible to put a post-MF
mixer bank before the coherent integration to allow searching for the sig-
nal from a wider frequency range than the bandwidth after the coherent
integration would otherwise allow. This is more efficient than performing
the correlation itself multiple times. It should be noted, however, that the
MF itself will limit the usable bandwidth approximately to the reciprocal
of the code period.

8The patent US 6,909,739 [14] by the author describes the method described in this
subsection.

i
i

“thesis” — 2018/10/5 — 11:01 — page 69 — #89 i
i

i
i

i
i

4.3. Matched Filter 69

MF core

Coherent

integration

Non-coherent

integration

I Q

DATA SHIFT REG

REF SHIFT REG

MULTIPLY & SUM

ACC MEM

NORM

MEMACC

MAG

Fig. 21: Post-MF integration structure (adapted from US 6,909,739 [14]).

4.3.5 Input Decimation to a Multiple of the Chipping Rate9

The MF is matched to a fixed length signal and if the signal is sampled,
then it will be matched to the reference signal of a fixed number of samples.
The frequencies of the GNSS signal transmitted by the satellites will be
subject to Doppler shift due to the satellite motion with respect to the
receiver and the sampling frequency might be slightly different from its
nominal value. These effects will change the duration of the spreading code
slightly from the nominal value. With the post-MF integration, we can use
very long integration times, and eventually it will happen that the code
phase of the received signal will shift with respect to the local time base so

9The idea shown in this section have been published and patented by the author in
US 6,909,739 [14]

i
i

“thesis” — 2018/10/5 — 11:01 — page 70 — #90 i
i

i
i

i
i

70 4. Baseband Hardware Optimization

I

Q

I Q

clock

MF core

CHIP

NCO

DEC

REF

PRN

CARR

NCO

DATA SHIFT REG

REF SHIFT REG

MULTIPLY & SUM

LPF

Fig. 22: Block diagram of MF input decimation to match incoming signal frequency
(adapted from US 6,909,739 [14]).

much that the timing of the MF outputs will no longer match the timing
at the beginning of the integration with respect to the timing of the input
signal. This will ruin the post-MF integration, as the code offsets will no
longer line up to the same storage elements.

Fortunately, it is possible to remedy the situation by altering the sampling
frequency slightly so that it will again match to the apparent received
signal code frequency. A practical implementation has been proposed by
the author in [P2] and US 6,909,739 [14] as depicted in Figure 22. The
incoming signal is decimated to an integer multiple of the chipping rate
before feeding it in to the MF by an integrate-and-dump filter which is
driven by a NCO delivering exact chipping rate (or integer multiple of it), it
results on average an exact match of the length of the incoming chips to each
MF tap. This allows the MF to be kept in sync with the incoming signal.
There are two advantages of this setup: it allows further integration of the
MF outputs, and it also allows signal tracking by dynamically adjusting
the NCO frequency.

i
i

“thesis” — 2018/10/5 — 11:01 — page 71 — #91 i
i

i
i

i
i

4.3. Matched Filter 71

CHIP

NCO

REF

GEN

CARR

NCO

DATA SHIFT REG

REF SHIFT REG

Carrier

NCO

IF

Removal

clock

MULTIPLY & SUM

INTEGRATOR

Fig. 23: MF-based GNSS receiver architecture used for the gate count comparison
(from [P6]).

4.3.6 MF-Based Receiver for Gate Count Comparison10

The MF-based receiver architecture used for the gatecount comparison is
illustrated in Figure 23. This architecture is based on the one originally
published by the author in the patent US 6,909,739 [14]. It is using a com-
mon code generator which has the ability of freezing the code generation
during MF operation after it has been loaded into the MF coefficient regis-
ters. Even if the original version was not intended for signal tracking, this
can be easily implemented by using suitable receiver software and enabling
the bypassing of the magnitude computation in the post-MF integrator to
allow complex valued MF outputs for the tracking algorithms. The carrier
mixer and the adjustable MF input rate provide means of keeping the MF
timing aligned to the received signal. For multi-bit inputs, we use time-

10Publication [P6] contains the details of the MF architecture selected for gate count
comparison.

i
i

“thesis” — 2018/10/5 — 11:01 — page 72 — #92 i
i

i
i

i
i

72 4. Baseband Hardware Optimization

multiplexing of the MF inputs to save computational hardware and we
need multiple clock cycles to produce one full complex valued MF output.
By extending the time-multiplexing, it is possible to also use multiple ref-
erence codes as explained in US 7,010,024 [15]. Since the bandwidth of the
MF is limited and we only use one common input stream, it is not prac-
tical to use the code multiplexing for other use cases than the cold-start
acquisition scenario. Thus, we will use this possibility in the gate count
comparison only for the acquisition case.

4.4 Group Correlator

The correlator and the MF have traditionally been the two main categories
of hardware for performing time-domain correlation in DSSS receivers. In
the correlator, the replica code is multiplied with the incoming signal one
sample at a time and the results are accumulated sequentially until a desired
number of samples have been processed. If cross-correlation at different
time offsets need to be computed in parallel, the correlator structure needs
to be replicated accordingly. On the other hand, the MF always computes
a correlation over all possible time offsets and outputs them sequentially.
It is not very efficient in computing cross correlation for just a single
time offset. The Group Correlator (GC) offers a method of computing
cross correlation which fits in between the correlator and MF in flexibility
and parallelism. The GC was developed to produce a flexible correlation
processing unit for combined GPS and Galileo receivers which would offer
high sensitivity acquisition while minimizing silicon area especially for
assisted and standalone modes of operation.

i
i

“thesis” — 2018/10/5 — 11:01 — page 73 — #93 i
i

i
i

i
i

4.4. Group Correlator 73

Multiply & Add

Code NCO
Code

Generator
Shift Register

Shift RegisterInput

Sample every

M
th
 output

NC/M

Fig. 24: Block diagram of a basic serial-parallel correlator (from [P4]).

4.4.1 Derivation of the GC structure11

It is easier to understand how the GC operates if we follow through its
derivation from a traditional correlator. First, we can add Shift Registers
(SRs) to the correlator to delay the incoming and replica samples. We can
then see that the correlator outputs are identical as long as there are an
identical number of delays in both data paths. Also, it is mathematically
equivalent to multiply and add several values from corresponding SR taps
together in parallel and then add them together whenever the shift registers
have been updated with fresh data. Each input and reference sample will
be used in the correlation only once. We call this structure serial-parallel
correlator. It is shown in Figure 24.

It is now possible to compute more than one correlation result for differ-
ently delayed versions of the replica code in parallel by utilizing the single
multiply and add block in a time-multiplexed fashion. If the shift register
length is denoted byM , then this can be done up toM times using different
time-offsets. We will need to perform the final accumulation of the results
separately. We can use a holding register to freeze the reference code during

11The derivation of a working hardware structure from the GC idea [18] was first
presented by the author in [P4], and also patented as [17]

i
i

“thesis” — 2018/10/5 — 11:01 — page 74 — #94 i
i

i
i

i
i

74 4. Baseband Hardware Optimization

Multiply & Add

Code NCO
Code

Generator
Shift Register

Shift Register

Code Register

Input

NC/M

times M

Load on every

M
th
 sample

Fig. 25: Block diagram of a modified serial-parallel correlator for multiple correla-
tion results (from [P4]).

the computation of the correlations while a shift register is being loaded
with fresh reference code samples, and then periodically reload the holding
register. If each of these results is now accumulated Nc/M times, where
Nc is the code length, we have M full code length cross-correlation results
covering M different consecutive time-offsets. This structure is depicted
in Figure 25.

Looking Figure 25, we can see that it resembles a MF, but there are some
quite significant differences. Traditionally, the length of the MF is one code
period, which makes the MF bandwidth rather small. The bandwidth is
approximately 1/TMF , where TMF is the length of the MF in time. This
requires us to remove the residual carrier (IF + Doppler) before it can be
fed into the MF. The pre-correlation carrier removal usually increments
the number of bits needed in the MF in order to avoid additional losses
due to re-quantization, thus making the HW even more complex. On the
other hand, the parallel correlation part in the serial-parallel correlator can
be made reasonably short, so that it has relatively high bandwidth. The
output sample rate (for each parallel channel) is lowered by the number
of samples summed in this part. Thus, the residual carrier removal could

i
i

“thesis” — 2018/10/5 — 11:01 — page 75 — #95 i
i

i
i

i
i

4.4. Group Correlator 75

now be shared between the parallel channels while using a lower update
rate than if used before the first correlation stage. The other notable
difference to the MF is the continuous updating of the replica code in the
serial-parallel correlator, which readily allows signal tracking. As the whole
reference code is loaded into the taps of the MF, the replica code is not
usually updated continuously.

We can now extend the idea of the serial-parallel correlator by constructing
correlator hardware that shares much of the hardware while making it
possible to operate on more than one GNSS signal. If we add shift and code
registers and replica generators for each NP GNSS signal to be received,
we can cross-correlate in input with NP code replicas at M different code
phase offsets (time offsets). We can also use the same idea to increase the
code phase coverage by adding more code (holding) registers that get their
inputs from the previous code register. By using NR code registers we can
now cover MNR code phase offsets with bandwidth equal to covering only
M offsets. The same principle can be further extended to also utilize more
than a single input shift register. The resulting GC architecture concept
is illustrated in Figure 26.

4.4.2 GC Implementations12

While it is always possible to compute all possible cross-correlations in
the GC, a big advantage in implementation can be achieved by carefully
arranging the connections of the building blocks such that each replica code
shift register (Code SR) and code holding register (Code R) is associated
with a certain input sample rate as the code shift registers and the sample

12The ideas presented in this subsection were presented by the author in [P4], and
also patented as [17,19]

i
i

“thesis” — 2018/10/5 — 11:01 — page 76 — #96 i
i

i
i

i
i

76 4. Baseband Hardware Optimization

GC out

Code

inputs

Sample

inputs

Number of

code replicas

(NP)

Number of

code registers

(NP∙NR)

 Number of

inputs

(NI)

Code SR (GC length)

Sample SR (GC length)

Code R (GC length)

Code SR (GC length)

Sample SR (GC length)

Code R (GC length)

Select

Select

Select

Select

Fig. 26: Conceptual block diagram of the group correlator(from [P4]).

shift registers (Sample SR) need to be updated at the same rate to maintain
the time synchronization. The clock rate of the GC should be equal to an
integer multiple of the least common multiple of the input sample rates
to allow deterministic clocking. In order to minimize the required clock
frequency, the GC should produce outputs at every clock cycle. The GC
must always be followed by an integration block, which individually sums
up the partial correlation results computed by the GC-core and computes
the full length correlation results.

The biggest advantage of the GC architecture can be achieved by realizing
that it is possible to make the number of code replica registers and the
sample rate assignment programmable and still produce correlation results
at a constant rate. This will greatly simplify the design of the blocks that

i
i

“thesis” — 2018/10/5 — 11:01 — page 77 — #97 i
i

i
i

i
i

4.4. Group Correlator 77

SR

reg

reg

SR

SR

SR

reg

reg

reg

reg

reg

reg

reg

reg

reg

reg

Code 1

Code 2

Code NP

Data

MULT

& SUM

SR SR

reg reg

SR SR

SR SR

SR SR

reg reg

reg reg

reg reg

reg reg

reg reg

MULT

& SUM

MULT

& SUM

SR

SR

SR

SR

reg

reg

reg

MULT

& SUM

SR

SR

SR

SR

reg

reg

reg

MULT

& SUM

SR

SR

SR

SR

reg

reg

reg

MULT

& SUM

SR

SR

SR

SR

reg

reg

reg

MULT

& SUM

Fig. 27: Different configurations of the programmable GC for 1x, 2x, and 4x fre-
quency operations (adapted from [P4]).

follow it in the signal processing path. For a single input data stream, we
can make the configuration of the blocks in such a way that it would be
possible to combine several blocks operating at different sample frequencies
and still produce the outputs at the same rate [P4]. This is illustrated in
Figure 27.

It is also possible to utilize multiple input shift registers and use them in
the correlation either in a time-multiplexed way or by selecting an input
shift register to use for each GC code channel. The first case requires as

i
i

“thesis” — 2018/10/5 — 11:01 — page 78 — #98 i
i

i
i

i
i

78 4. Baseband Hardware Optimization

Code

register

clocking

control

Code

register

dump

control

SR

reg

Code 1

Code 2

Data 1

SR

reg

SR

reg

Data 2

Data M

Clock 1

Clock 2

Clock M

Dump

Select

Dump

Select

Dump

Select

Clock

Select

Clock

Select

Clock

Select

SR

reg

SR

reg

SR

reg
Code NP

MULT & SUM MULT & SUM

+

SR SR

SR SR

SR SR

Data

Selector

Data

Selector

Fig. 28: Block diagram of a programmable GC block with multiple input sample
rates (from [P4]).

many times higher clock frequency as there are inputs, but the second case
can use the same clock frequency as the one with just single input shift
register. If the different input channels run with different sample rates,
which are not multiples of a common base frequency, then it is not so
easy to correlate all input channels against all code channels. A GC with
multiple inputs with their own sample rates is shown in Figure 28.

i
i

“thesis” — 2018/10/5 — 11:01 — page 79 — #99 i
i

i
i

i
i

4.4. Group Correlator 79

4.4.3 GC-Based Receiver for Gate Count Comparison13

The GC-based baseband architecture used in the gate count comparison
is illustrated in Figure 29. This architecture is based on the one originally
published by the author in [P4]. We have inserted a coarse carrier removal
block before the GC core block to allow for a wider range of IF frequencies
and Doppler frequencies than the GC bandwidth. We also have an inte-
grator block after the GC core. By utilizing the coherent post-integration,
the GC can do a full correlation over a partial range of code phases, which
makes it more flexible than the MF, but controlling the unit will be more
complex. The GC offers a higher bandwidth compared with the MF as the
correlated code segments are shorter. Thus, it is possible to process signals
from multiple satellites within one time-multiplexed block. The GC can
also be made to operate on more than one input within a single block,
which allows running both tracking and acquisition in parallel using only
a single hardware block.

13Publication [P6] contains the details of the GC architecture selected for the gate
count comparison.

i
i

“thesis” — 2018/10/5 — 11:01 — page 80 — #100 i
i

i
i

i
i

80 4. Baseband Hardware Optimization

code 1

data 1

data M

code N

SHIFT REGISTER

MULT & SUM

SHIFT REGISTER

REGISTER

SHIFT REGISTER

REGISTER

SHIFT REGISTER

DATA

SELECTOR

SHIFT REGISTER

MULT & SUM

SHIFT REGISTER

REGISTER

SHIFT REGISTER

REGISTER

SHIFT REGISTER

DATA

SELECTOR

+

(a) GC core implementation (adapted from [P4]).

GC BlockCode

Generator

GC Core

Block

IF Removal

Block

Mixer Bank

Carrier

Generator

Integrator
Integrator

Integrator

(b) Whole GNSS receiver architecture (adapted from [P6]).

Fig. 29: GC-based GNSS receiver architecture used for the gate count comparison.

i
i

“thesis” — 2018/10/5 — 11:01 — page 81 — #101 i
i

i
i

i
i

5. ARCHITECTURE COMPARISON1

In this chapter, we will show how the gate count estimation method in-
troduced in Chapter 3 can be used on the three different GNSS receiver
architectures described in Chapter 4. For the comparison, we have crafted
three different test cases discussed in the next section. This is followed
by the introduction of the comparison results. We will compare the archi-
tectures optimized for each test case separately. This will show how they
fit for a particular use case. As each optimized receiver might not fulfill
the requirements for all test cases with the same configuration, we also
compare receivers that are configured to fulfil the requirements of all the
test cases with a single configuration. This will show which architecture
is the most flexible and best for overall use. The comparison focuses only
on the gate count or silicon area of the receivers and does not take other
parameters such as power consumption into account. This is a limitation
which could be resolved in future research.

5.1 Test Cases

It would not be a fair comparison if all the receiver architectures would
be optimized for different targets. Thus we need to start the comparison
process by defining use cases for the receivers, and only after that we

1The contents of this chapter are based on the Publication [P6]

i
i

“thesis” — 2018/10/5 — 11:01 — page 82 — #102 i
i

i
i

i
i

82 5. Architecture Comparison

can perform the comparison. Also, it would not be useful to just define
some arbitrary test cases since that could give wrong results for real life
application. For this thesis, we have selected three different use cases and
the combined test case and we will also explain how they represent real
life or close to real life situations for a GNSS receiver. In order to avoid
unnecessary complexity in the test case definition, we concentrate on GPS
only2, but the cases could quite easily be extended to cover other GNSS
systems as well.

5.1.1 Acquisition

Signal acquisition is the most resource hungry step in GNSS receiver op-
eration. One of the critical performance criteria for GNSS receivers is the
Time-To-First-Fix (TTFF), i.e. the time it takes from starting the receiver
to the moment it is able to provide the first calculated PVT output. Thus,
rapid acquisition is also an important design goal for any GNSS receiver
development. The acquisition problem has already been discussed in Sub-
section 2.4.1, so we will not go into the details here. Table 11 will summarize
the important parameters for the acquisition test case.

5.1.2 Tracking

For continuous operation, the GNSS receiver needs to track the signals
received from the satellites in order to constantly measure the ranges
between the receiver and satellites and to decode the data message the
satellites are transmitting. In the tracking phase, the target is not the speed
of operation but the accuracy, which usually means that the correlator bins

2as we did in [P6]

i
i

“thesis” — 2018/10/5 — 11:01 — page 83 — #103 i
i

i
i

i
i

5.1. Test Cases 83

Table 11: Acquisition test case parameters (from [P6])
Parameter Value
Time to acquire ≥ 4 satellites 10 s
Acquisition sensitivity 31 dB-Hz
Coherent integration time 3 ms
Dwell-time 1800 ms
Number of PRN codes 12
Frequency bin size 167 Hz
Frequency search range ±8.2 kHz
Number of frequency bins 17
Code phase search range 1023 chips
Code phase resolution 1/2 chips
Number of code bins 2046
Total number of search bins 417384
Parallel search bins 83000

Table 12: Tracking test case parameters (from [P6])
Parameter Value
Number of PRN codes 16
Number of frequency bins 1
Code phase resolution 1/8 chips
Number of code bins 5
Total number of bins 80

are more closely separated in the code delay-domain. In many cases we
also want to receive simultaneously more signals than we need during the
acquisition phase. Table 12 will summarize the important parameters for
the tracking test case.

i
i

“thesis” — 2018/10/5 — 11:01 — page 84 — #104 i
i

i
i

i
i

84 5. Architecture Comparison

5.1.3 Assisted GPS

Assisted GNSS (A-GNSS) is usually interpreted to mean that we have
some information from the satellites available before turning on the GNSS
receiver [102, 103]. The information is delivered via other channels than
through the signal transmitted by the satellites. As the out-of-band in-
formation does not significantly affect the tracking phase, the only differ-
ence is really in the acquisition phase. For the purpose of this compari-
son, we derive the Assisted GPS (A-GPS) test case parameters from the
coarse-time assistance sensitivity test of the Third Generation Partnership
Project (3GPP) test specification [104]. The parameters of this test case
are summarized in Table 13. Note that the frequency uncertainty range
for the GPS receiver is larger than what is specified in the 3GPP test case
because the true frequency uncertainty for the receiver will be worse than
the system uncertainty due to the inaccuracies of any frequency synchro-
nization over the mobile phone network. In this test case, we have one
strong signal and the rest are weaker.

5.1.4 Worst Case

The fourth and last test case does not define a separate receiver use case,
but a combined case, for which the receivers must meet all the requirements
of the preceding test cases with a single configuration. This is the closest
to a real-life situation since the receiver hardware cannot usually be config-
ured to a completely different architecture during operation. Whereas the
previous cases show which architecture is the best for each test case with
separately tuned configurations, this last case will show which of them is
the most versatile one.

i
i

“thesis” — 2018/10/5 — 11:01 — page 85 — #105 i
i

i
i

i
i

5.2. Comparison Results 85

Table 13: A-GPS test case parameters (from [P6])
Parameter Value
Time to acquire ≥ 4 satellites 5 s
Acquisition sensitivity (weak) 27 dB-Hz
Acquisition sensitivity (strong) 32 dB-Hz
Coherent integration time 9 ms
Dwell-time 1400 ms
Number of PRN codes 9
Frequency bin size 55 Hz
Frequency search range ±100 Hz
Number of frequency bins 4
Code phase search range 1023 chips
Code phase resolution 1/2 chips
Number of code bins 2046
Total number of search bins 73656
Parallel search bins 32736

5.2 Comparison Results

We have created a gate count estimation model for each of the GPS receiver
BB architectures which were introduced in Chapter 4, and then optimized
their parameters for each of the test cases separately subject to a maximum
clock frequency of 128 MHz. Each receiver was split to a number of blocks
(Blks). Each block contains a code generator capable of generating a number
of different PRN sequences in parallel, these are then processed in parallel
and this we call the number of channels (Ch). Similarly, in each block we
have a carrier frequency generator, which can generate a number of parallel
carrier replica signals (Freq). Finally, each receiver channel is capable of
correlating the incoming signal with a number of differently delayed versions
of the spreading code replica (Code).

i
i

“thesis” — 2018/10/5 — 11:01 — page 86 — #106 i
i

i
i

i
i

86 5. Architecture Comparison

Table 14: Area estimates of the receivers in kilo-gates (corrected, from [P6])
Parameters Area

Arch Blks Ch Freq Code Total /ch /bin
Acquisition
Corr 21 8 8 64 9982 59 0.116
MF 1 12 4 2046 1205 100 0.012
GC 5 4 9 512 1925 96 0.021
Tracking
Corr 1 16 1 5 66 4 0.826
MF 16 1 1 8184 5964 373 0.046
GC 1 16 1 128 125 8 0.061
A-GPS
Corr 6 16 4 64 2945 31 0.120
MF 3 1 4 2046 703 234 0.029
GC 3 4 4 512 578 48 0.024
Worst-case
Corr 21 8 8 64 9982 59 0.116
MF 16 1 4 8184 10698 669 0.020
GC 7 4 9 512 2692 96 0.021

The resulting receiver parameters and the respective gate count estimations
are tabulated in Table 14, which shows both the used parameters as well
as the gate count numbers. The gate count values are reported for the
whole receiver (Total) as well as per channel (/ch) and per bin (/bin).
The bins mean individual correlation results for each different PRN code,
frequency, and code delay. The receiver configurations do not have the
same number of blocks, channels, frequencies, and code delays, since some
of the parameters cannot be selected freely.

The correlator-based receiver implemented the integrators using SRAM due
to the high multiplexing ratio, which resulted in a large number of channels

i
i

“thesis” — 2018/10/5 — 11:01 — page 87 — #107 i
i

i
i

i
i

5.2. Comparison Results 87

sharing the computation logic. Even if the resulting memories were small in
size, ranging from 0.2 to 1.5 kilobits, the size was smaller when the storage
was implemented as memory. Despite the fact that the model of the gate
count of the SRAM for small memories is not as accurate as for larger
memories, the error is not large enough to change the interpretation of the
results. The memories in the MF and GC-based receivers were considerably
larger, ranging from 10 to 120 kilobits. For those architectures, the SRAM
model is as accurate as the logic model. For the acquisition, A-GPS, and
GC cases, the ratio between memories and logic is quite high, ranging
from 55% to 90%. This is due to the large number of outputs that must
be computed by the hardware, and relatively simple processing. For the
tracking use case, the ratio was smaller, from 25% and 32%. This is due
to the smaller number of outputs, and relatively larger number of separate
receiver channels.

The main advantage of the correlator-based receiver is the flexibility. The
receiver software can easily configure the receiver for different signal condi-
tions. However, we can also see that the flexibility comes with the price of
the largest area per bin. This can be seen from the fact that the worst case
configuration is equal to the size of the largest individual case, whereas
for the other architectures the worst case configuration is larger than any
of the individual cases. The MF is in the other end of the spectrum. The
flexibility is limited by the fact that the length of the shift register needs to
be a multiple of the code length. This is not a problem in the acquisition
case, which requires searching for all the code shifts, but causes quite a
waste in the tracking case, where only a few code phases are needed for
each tracked satellite, and where the delay between the different code bins
needs to be a fraction of the chip period. The GC architecture is in the
middle ground of these two extremes. It performs the best for the A-GPS

i
i

“thesis” — 2018/10/5 — 11:01 — page 88 — #108 i
i

i
i

i
i

88 5. Architecture Comparison

case, but it is still reasonably good for the acquisition and tracking cases.
In the acquisition case, there is extra overhead due to the higher number
of common hardware needed, and in the tracking case, there are still quite
a few unnecessary correlation results produced.

i
i

“thesis” — 2018/10/5 — 11:01 — page 89 — #109 i
i

i
i

i
i

6. CONCLUSIONS AND FUTURE WORK

In this thesis, the implementation and optimization of GNSS receiver
baseband architectures were discussed. The GNSS receivers are becoming
ubiquitous and as they are included in battery-powered, cheap consumer
products, it becomes more important to ensure that the cost and power
consumption of these devices are well optimized. We have shown how the
optimization can be made and how the results can be measured so that
the correct architecture will be chosen in each case.

We introduced a new method for high level gate count estimation that can
be used already in the early phase of the development of digital integrated
circuits. The method is easy to use and it requires very limited or no
information about the silicon technology to be used for the implementation
of the design. In publication [P5] we have shown that the new method offers
very good accuracy, which is typically better than 5%. The best application
of this method is early, during the architectural design phase, when different
architectures are being compared. The proposed gate count comparison
method provides the theoretical basis for the architecture comparison in
this thesis.

We have reviewed three different time-domain, real-time architectures for
performing the cross-correlation function which is the core algorithm used
for signal tracking and acquisition in all GNSS receivers. For each of the

i
i

“thesis” — 2018/10/5 — 11:01 — page 90 — #110 i
i

i
i

i
i

90 6. Conclusions and Future Work

architectures, we have provided different and novel ways to optimize the
implementations. This represents work over more than ten years and many
of the ideas illustrated in this thesis were filed and granted as patents
invented by the author, which is a testament of their novelty. These ar-
chitechtures and optimizations have also been used in real GNSS receiver
designs developed by the author while working in the industry.

The contribution of this thesis culminates in the comparison of the archi-
tectures presented here. We have developed test cases for the comparison
based on realistic use cases for an A-GPS receiver. The test cases represent
an example, as they depend on the intended use of the receivers to be
compared. What we have shown, is that the winner of the comparison de-
pends on the use case. One size does not fit all. It was seen that flexibility
increases the gate count per correlator. The combined test case, where the
receiver needs to fulfill all the usage scenarios with a single configuration
shows that the GC represents a good compromise between flexibility and
area efficiency.

In order to keep the scope of the thesis manageable, it had to be limited
to real-time, digital hardware-based, time-domain architectures. It would
be interesting to expand the comparison to also cover the software-based,
store and process, and transform-domain implementations. This will be
a nice research subject for the future. Another interesting research topic
would be to find out an optimal way to construct a receiver utilizing two or
more blocks based on a mixed set of architectures, as it was quite obvious
based on the comparison results that different architectures are better
suited for certain operations than the others.

Also, the comparison was done only for optimizing the gate count. Gate
count, or silicon area, is indirectly related to the power consumption, but

i
i

“thesis” — 2018/10/5 — 11:01 — page 91 — #111 i
i

i
i

i
i

91

no attempt was made to find out which architecture would be the most
power efficient. Power estimation is a separate research topic in itself, but
it would be interesting area for future research. Developing an accurate
and easy-to-use method for early design phase power estimation, would be
a valuable optimization tool for the design of portable, battery powered
devices. It would also be interesting to apply such tool to the field of GNSS
receivers.

i
i

“thesis” — 2018/10/5 — 11:01 — page 92 — #112 i
i

i
i

i
i

92 6. Conclusions and Future Work

i
i

“thesis” — 2018/10/5 — 11:01 — page 93 — #113 i
i

i
i

i
i

BIBLIOGRAPHY

[1] FCC Wireless 911 Requirements Fact Sheet WTB Policy, FCC, Jan.
2001.

[2] H. Heusala and J. Skyttä, “How small and still effective a CMOS-
SoC could ever be?” in 2015 Nordic Circuits and Systems Conference
(NORCAS): NORCHIP & International Symposium on System-on-
Chip (SoC). IEEE, oct 2015.

[3] Synopsys design compiler ultra. [Online]. Avail-
able: https://www.synopsys.com/implementation-and-signoff/rtl-s
ynthesis-test/dc-ultra.html

[4] A. A. Abidi, “The path to the software-defined radio receiver,” IEEE
Journal of Solid-State Circuits, vol. 42, no. 5, pp. 954–966, May 2007.

[5] D. M. Akos, “A software radio approach to global navigation satellite
system receiver design,” Ph.D. dissertation, Ohio University, 1997.

[6] M. Moeglein and N. Krasner, “An introduction to SnapTrack R©
wireless-assisted GPS technologyTM,” GPS Solutions, vol. 4, no. 3,
pp. 16–26, Jan. 2001.

[7] P. C. Ould and R. J. Van Wechel, “All-digital GPS receiver mecha-
nization,” Navigation, vol. 28, no. 3, pp. 178–188, Sep. 1981.

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

i
i

“thesis” — 2018/10/5 — 11:01 — page 94 — #114 i
i

i
i

i
i

94 Bibliography

[8] D. van Nee and A. Coenen, “New fast GPS code-acquisition technique
using FFT,” Electronics Letters, vol. 27, no. 2, pp. 158–160, 1991.

[9] J. York, J. Little, D. Munton, and K. Barrientos, “A fast number-
theoretic transform approach to a GPS receiver,” Navigation, vol. 57,
no. 4, pp. 297–307, 2010.

[10] R. Maher, “A comparison of multichannel, sequential and multiplex
GPS receivers for air navigation,” Navigation, vol. 31, no. 2, pp. 96–
111, 1984.

[11] V. Eerola and T. Ritoniemi, “Spread spectrum receiver,” U.S. Patent
6,850,558, Feb. 1, 2005, filed Oct. 13, 2000.

[12] ——, “Spread spectrum receiver,” U.S. Patent 7,283,582, Oct. 13,
2000, filed Oct. 13, 2000.

[13] ——, “Spread spectrum receiver,” U.S. Patent 7,471,719, Sep. 18,
2007, filed Sep. 18, 2007, Continuation of US7,283,582.

[14] ——, “Signal acquisition system for spread spectrum receiver,” U.S.
Patent 6,909,739, Jun. 21, 2005, filed Oct. 13, 2000.

[15] ——, “Matched filter and spread spectrum receiver,” U.S. Patent
7,010,024, Mar. 7, 2006, filed Oct. 13, 2000.

[16] ——, “Matched filter and spread spectrum receiver,” U.S. Patent
7,505,511, Mar. 17, 2009, filed Dec. 23, 2005, Continuation of
US6,850,558.

[17] V. Eerola, “Performing a correlation in reception of a spread spec-
trum signal,” U.S. Patent 7,852,907, Dec. 14, 2010, filed Dec. 21,
2006.

i
i

“thesis” — 2018/10/5 — 11:01 — page 95 — #115 i
i

i
i

i
i

Bibliography 95

[18] H. Valio and S. Pietilä, “Reception of a spread spectrum modulated
signal,” U.S. Patent 7,839,915, Nov. 23, 2010, filed Apr. 21, 2005.

[19] V. Eerola, “Apparatus and method for correlation in a gps receiver,”
U.S. Patent 8,391,335, Mar. 5, 2013, filed Oct. 13, 2006.

[20] E. D. Kaplan, Ed., Understanding GPS: Principles and Applications.
Norwood, MA, USA: Artech House Publishers, 1996.

[21] B. W. Parkinson, J. J. Spilker, Jr., and P. Enge, Eds., Global posi-
tioning system: theory and applications. Washington DC: American
institute of aeronautics and astronautics, Inc., 1996, vol. 109.

[22] GPS: Space segment. [Online]. Available: https://www.gps.gov/syst
ems/gps/space/

[23] GLONASS constellation status. [Online]. Available: https://www.gl
onass-iac.ru/en/GLONASS/

[24] GLONASS history. [Online]. Available: https://www.glonass-iac.ru/
en/guide/index.php

[25] Galileo Programme: Operational satellites. [Online]. Available:
https://www.gsa.europa.eu/galileo/programme

[26] BeiDou constellation status. [Online]. Available: http://www.csno-t
arc.cn/system/basicinfo

[27] J. Shen, “Development of beidou navigation satellite system (bds),”
in 57th Meeting of the Civil GPS Service Interface Committee,
Sep. 2017. [Online]. Available: https://www.gps.gov/cgsic/meetings
/2017/shen.pdf

https://www.gps.gov/systems/gps/space/
https://www.gps.gov/systems/gps/space/
https://www.glonass-iac.ru/en/GLONASS/
https://www.glonass-iac.ru/en/GLONASS/
https://www.glonass-iac.ru/en/guide/index.php
https://www.glonass-iac.ru/en/guide/index.php
https://www.gsa.europa.eu/galileo/programme
http://www.csno-tarc.cn/system/basicinfo
http://www.csno-tarc.cn/system/basicinfo
https://www.gps.gov/cgsic/meetings/2017/shen.pdf
https://www.gps.gov/cgsic/meetings/2017/shen.pdf

i
i

“thesis” — 2018/10/5 — 11:01 — page 96 — #116 i
i

i
i

i
i

96 Bibliography

[28] Navstar GPS Space Segment/Navigation User Interfaces. In-
terface Specification IS-GPS-200H, Dec. 2015. [Online]. Avail-
able: https://www.gps.gov/technical/icwg/IRN-IS-200H-001+002+
003_rollup.pdf

[29] GLONASS ICD for frequency separated radio signal: Interface
control document, Edition 5.1, Moscow, Russia, 2008. [Online].
Available: http://russianspacesystems.ru/wp-content/uploads/2016/
08/ICD_GLONASS_eng_v5.1.pdf

[30] Galileo - Open Service - Signal In Space Interface Control
Document (OS SIS ICD V1.3), Dec. 2016. [Online]. Avail-
able: https://www.gsc-europa.eu/system/files/galileo_documents
/Galileo-OS-SIS-ICD.pdf

[31] BeiDou Navigation Satellite System - Signal In Space - Inter-
face Control Document - Open Service Signals (B1I and B2I)
(Version 1.2), China Satellite Navigation Office, Nov. 2016.
[Online]. Available: http://www.beidou.gov.cn/xt/gfxz/201712/
P020171226741342013031.pdf

[32] Navstar GPS Space Segment/User Segment L1C Interface.
Interface Specification IS-GPS-800D, Sep. 2013. [Online]. Available:
https://www.gps.gov/technical/icwg/IS-GPS-800D.pdf

[33] GLONASS ICD for code separated radio signal: Navigation
radio signal in ranges L1 (edition 1), Moscow, Russia, 2016.
[Online]. Available: http://russianspacesystems.ru/wp-content/upl
oads/2016/08/ICD-GLONASS-CDMA-L1.-Edition-1.0-2016.pdf

[34] BeiDou Navigation Satellite System - Signal In Space - Interface
Control Document - Open Service Signal B1C (Version 1.0), China

https://www.gps.gov/technical/icwg/IRN-IS-200H-001+002+003_rollup.pdf
https://www.gps.gov/technical/icwg/IRN-IS-200H-001+002+003_rollup.pdf
http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_eng_v5.1.pdf
http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_eng_v5.1.pdf
https://www.gsc-europa.eu/system/files/galileo_documents/Galileo-OS-SIS-ICD.pdf
https://www.gsc-europa.eu/system/files/galileo_documents/Galileo-OS-SIS-ICD.pdf
http://www.beidou.gov.cn/xt/gfxz/201712/P020171226741342013031.pdf
http://www.beidou.gov.cn/xt/gfxz/201712/P020171226741342013031.pdf
https://www.gps.gov/technical/icwg/IS-GPS-800D.pdf
http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD-GLONASS-CDMA-L1.-Edition-1.0-2016.pdf
http://russianspacesystems.ru/wp-content/uploads/2016/08/ICD-GLONASS-CDMA-L1.-Edition-1.0-2016.pdf

i
i

“thesis” — 2018/10/5 — 11:01 — page 97 — #117 i
i

i
i

i
i

Bibliography 97

Satellite Navigation Office, Dec. 2017. [Online]. Available: http://
www.beidou.gov.cn/xt/gfxz/201712/P020171226741342013031.pdf

[35] P. J. G. Teunissen and O. Montenbruck, Eds., Springer Handbook of
Global Navigation Satellite Systems. Cham, Switzerland: Springer
International Publishing, 2017.

[36] R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-
spectrum communications — A tutorial,” IEEE Transactions on
Communications, vol. 30, no. 5, pp. 855–884, May 1982.

[37] R. Scholtz, “The origins of spread-spectrum communications,” IEEE
Transactions on Communications, vol. 30, no. 5, pp. 822–854, May
1982.

[38] R. Price, “Further notes and anecdotes on spread-spectrum origins,”
IEEE Transactions on Communications, vol. 31, no. 1, pp. 85–97,
Jan 1983.

[39] R. Scholtz, “Notes on spread-spectrum history,” IEEE Transactions
on Communications, vol. 31, no. 1, pp. 82–84, Jan. 1983.

[40] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread
Spectrum Communications Handbook, rev.ed. ed. New York, NY,
USA: McGraw-Hill, 1994.

[41] J. K. Holmes, Coherent spread spectrum systems. Malabar, FL:
Robert E. Krieger Publishing Company, 1990.

[42] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to Spread-
spectrum Communications. London: Prentice Hall, 1995.

[43] A. Viterbi, “Spread spectrum communications —myths and realities,”
IEEE Communications Magazine, vol. 17, no. 3, pp. 11–18, may 1979.

http://www.beidou.gov.cn/xt/gfxz/201712/P020171226741342013031.pdf
http://www.beidou.gov.cn/xt/gfxz/201712/P020171226741342013031.pdf

i
i

“thesis” — 2018/10/5 — 11:01 — page 98 — #118 i
i

i
i

i
i

98 Bibliography

[44] R. C. Dixon, Spread spectrum systems. New York: J. Wiley, 1984.

[45] A. J. Viterbi,CDMA: Principles of Spread Spectrum Communication.
Reading, MA: Addison-Wesley, 1995, vol. 122.

[46] R. J. Milliken and C. J. Zoller, “Principle of operation of NAVSTAR
and system characteristics,” Navigation, vol. 25, no. 2, pp. 95–106,
Jun. 1978.

[47] R. B. Langley, “GPS receiver system noise,” GPS world, vol. 8, no. 6,
pp. 40–45, 1997.

[48] H. Chang, “Presampling filtering, sampling and quantization effects
on the digital matched filter performance,” in International Teleme-
tering Conference Proceedings. International Foundation for Teleme-
tering, Sep. 1982.

[49] T. Lim, “Non-coherent digital matched filters: Multibit quantization,”
IEEE Transactions on Communications, vol. 26, no. 4, pp. 409–419,
Apr. 1978.

[50] M. Braasch and A. van Dierendonck, “GPS receiver architectures and
measurements,” Proceedings of the IEEE, vol. 87, no. 1, pp. 48–64,
1999.

[51] (2014, Jun.) Magellan celebrates 25th anniversary of first
commercial handheld GPS, the NAV 1000. Press Release. [Online].
Available: http://www.magellangps.com/Newsroom/2014-Archive
s_3/Press-Release-June-2-2014

[52] (2017, Mar.) Retro GPS: Magellan NAV 1000. [Online]. Available:
http://retro-gps.info/Magellan/Magellan-NAV-1000/index.html

http://www.magellangps.com/Newsroom/2014-Archives_3/Press-Release-June-2-2014
http://www.magellangps.com/Newsroom/2014-Archives_3/Press-Release-June-2-2014
http://retro-gps.info/Magellan/Magellan-NAV-1000/index.html

i
i

“thesis” — 2018/10/5 — 11:01 — page 99 — #119 i
i

i
i

i
i

Bibliography 99

[53] R. A. Maher, “A comparison of multichannel, sequential and multi-
plex GPS receivers for air navigation,” Navigation, vol. 31, no. 2, pp.
96–111, Jun. 1984.

[54] J. Ashjaee, D. Bourn, R. Helkey, R. Lorenz, J. Minazio, B. Remondi,
and R. Sutherland, “Ashtech XII GPS receiver-the all-in-one all-
in-view,” in IEEE PLANS ’88., Position Location and Navigation
Symposium, Record. ’Navigation into the 21st Century’. IEEE, 1988.

[55] Javad OEM GNSS receiver TR-3N Datasheet, Javad GNSS Inc.,
Jun. 2018. [Online]. Available: http://www.javad.com/downloads/
javadgnss/sheets/TR-3N_Datasheet.pdf

[56] P. Ward, “GPS receiver search techniques,” in Proceedings of Po-
sition, Location and Navigation Symposium - PLANS ’96. IEEE,
1996.

[57] M. Lehtinen, A. Happonen, and J. Ikonen, “Accuracy and time to
first fix using consumer-grade GPS receivers,” in 2008 16th Interna-
tional Conference on Software, Telecommunications and Computer
Networks. IEEE, 2008.

[58] B. Sklar, Digital communications — fundamentals and applications.
Upper Saddle River: Prentice-Hall PTR, 2001.

[59] J. Spilker and D. Magill, “The delay-lock discriminator-an optimum
tracking device,” Proceedings of the IRE, vol. 49, no. 9, pp. 1403–1416,
Sep. 1961.

[60] J. Costas, “Synchronous communications,” Proceedings of the IRE,
vol. 44, no. 12, pp. 1713–1718, Dec. 1956.

http://www.javad.com/downloads/javadgnss/sheets/TR-3N_Datasheet.pdf
http://www.javad.com/downloads/javadgnss/sheets/TR-3N_Datasheet.pdf

i
i

“thesis” — 2018/10/5 — 11:01 — page 100 — #120 i
i

i
i

i
i

100 Bibliography

[61] S. Riter, “An optimum phase reference detector for fully modulated
phase-shift keyed signals,” IEEE Transactions on Aerospace and
Electronic Systems, vol. AES-5, no. 4, pp. 627–631, Jul. 1969.

[62] F. Natali, “AFC tracking algorithms,” IEEE Transactions on Com-
munications, vol. 32, no. 8, pp. 935–947, Aug. 1984.

[63] C. Cahn, D. Leimer, C. Marsh, F. Huntowski, and G. LaRue, “Soft-
ware implementation of a PN spread spectrum receiver to accom-
modate dynamics,” IEEE Transactions on Communications, vol. 25,
no. 8, pp. 832–840, aug 1977.

[64] P. Misra and P. Enge, Global Positioning System: Signals, Measure-
ments and Performance. Ganga-Jamuna Press, 2006.

[65] A. J. V. Dierendonck, “GPS receivers,” in Global positioning sys-
tem: theory and applications, B. W. Parkinson, J. J. Spilker, Jr., and
P. Enge, Eds. American institute of aeronautics and astronautics,
Inc., 1996, vol. I, ch. 8, pp. 329–408.

[66] E. D. Kaplan, J. L. Leva, andM. S. Pavloff, “Fundamentals of satellite
navigation,” in Understanding GPS: Principles and Applications,
E. D. Kaplan, Ed. Norwood, MA, USA: Artech House Publishers,
1996, ch. 2.

[67] A. Hauschild, “Basic observation equations,” in Springer Handbook of
Global Navigation Satellite Systems, P. J. G. Teunissen and O. Mon-
tenbruck, Eds. Cham, Switzerland: Springer International Publish-
ing, 2017, ch. 19.

[68] D. Odijk, “Positioning model,” in Springer Handbook of Global Nav-
igation Satellite Systems, P. J. G. Teunissen and O. Montenbruck,

i
i

“thesis” — 2018/10/5 — 11:01 — page 101 — #121 i
i

i
i

i
i

Bibliography 101

Eds. Cham, Switzerland: Springer International Publishing, 2017,
ch. 21.

[69] S. Verhagen and P. J. G. Teunissen, “Least-squares estimation and
kalman filtering,” in Springer Handbook of Global Navigation Satellite
Systems, P. J. G. Teunissen and O. Montenbruck, Eds. Cham,
Switzerland: Springer International Publishing, 2017, ch. 22.

[70] C. Shannon, “The synthesis of two–terminal switching circuits,” Bell
System Technical Journal, vol. 28, pp. 59–98, 1949.

[71] D. E. Muller, “Complexity in electronic switching circuits,” Elec-
tronic Computers, IRE Transactions on, vol. EC-5, no. 1, pp. 15–19,
Mar. 1956.

[72] E. Kellerman, “A formula for logical network cost,” Computers, IEEE
Transactions on, vol. C-17, no. 9, pp. 881–884, Sep. 1968.

[73] N. Pippenger, “Information theory and the complexity of boolean
functions,” Theory of Computing Systems, vol. 10, pp. 129–167, 1976.

[74] R. W. Cook and M. J. Flynn, “Logical network cost and entropy,”
Computers, IEEE Transactions on, vol. C-22, no. 9, pp. 823–826, Sep.
1973.

[75] K.-T. Cheng and V. Agrawal, “An entropy measure for the complex-
ity of multi-output boolean functions,” in Proceedings of the 27th
ACM/IEEE Design Automation Conference (DAC), Jun. 1990, pp.
302–305.

[76] M. Nemani and F. Najm, “High-level area and power estimation
for vlsi circuits,” Computer-Aided Design of Integrated Circuits and

i
i

“thesis” — 2018/10/5 — 11:01 — page 102 — #122 i
i

i
i

i
i

102 Bibliography

Systems, IEEE Transactions on, vol. 18, no. 6, pp. 697–713, Jun.
1999.

[77] K. M. Büyükşahin and F. N. Najm, “High-level area estimation,”
in Proceedings of the 2002 international symposium on Low power
electronics and design, ser. ISLPED ’02. New York, NY, USA: ACM,
2002, pp. 271–274.

[78] S. Akers, “Binary decision diagrams,” Computers, IEEE Transactions
on, vol. C-27, no. 6, pp. 509–516, Jun. 1978.

[79] R. Bryant, “On the complexity of VLSI implementations and graph
representations of boolean functions with application to integer mul-
tiplication,” Computers, IEEE Transactions on, vol. 40, no. 2, pp.
205–213, Feb. 1991.

[80] R. Enzler, T. Jeger, D. Cottet, and G. Tröster, “High-level area and
performance estimation of hardware building blocks on FPGAs,” in
Proceedings of the The Roadmap to Reconfigurable Computing, 10th
International Workshop on Field-Programmable Logic and Applica-
tions, ser. FPL ’00. London, UK: Springer-Verlag, 2000, pp. 525–534.

[81] M. Abdelhalim and S.-D. Habib, “Fast FPGA-based area and latency
estimation for a novel hardware/software partitioning scheme,” in
Electrical and Computer Engineering, 2008. CCECE 2008. Canadian
Conference on, May 2008, pp. 775–780.

[82] R. Meeuws, “A quantitative model for hardware/software partition-
ing,” Master’s thesis, Delft University of Technology, Delft, Nether-
lands, May 2007.

i
i

“thesis” — 2018/10/5 — 11:01 — page 103 — #123 i
i

i
i

i
i

Bibliography 103

[83] VSDSP2 Processor Core Manual, VLSI Solution Oy, Tampere,
Finland, Mar. 2001, version 2.6. [Online]. Available: http:
//www.vlsi.fi/fileadmin/manuals_guides/vsdsp2_um.pdf

[84] H. Singleton, “A digital electronic correlator,” Proceedings of the
IRE, vol. 38, no. 12, pp. 1422–1428, dec 1950.

[85] M. M. Chansarkar and L. Garin, “Acquisition of GPS signals at
very low signal to noise ratio,” in Proceedings of the 2000 National
Technical Meeting of The Institute of Navigation (ION NTM 2000),
Anaheim, CA, Jan. 2000, pp. 731–737.

[86] F. Van Diggelen and C. Abraham, “Indoor GPS technology,” CTIA
Wireless-Agenda, Dallas, vol. 89, 2001.

[87] F. Van Diggelen, A-GPS — Assisted GPS, GNSS, and SBAS. Nor-
wood: Artech House, 2009.

[88] M. Laxton and S. DeVilbiss, “GPS multipath mitigation during code
tracking,” in Proceedings of the 1997 American Control Conference
(Cat. No.97CH36041). IEEE, 1997.

[89] F. M. Schubert, J. Wendel, M. Sollner, M. Kaindl, and R. Kohl, “The
astrium correlator: Unambiguous tracking of high-rate BOC signals,”
in 2014 IEEE/ION Position, Location and Navigation Symposium -
PLANS 2014. IEEE, May 2014.

[90] O. Julien, C. Macabiau, M. Cannon, and G. Lachapelle, “ASPeCT:
Unambiguous sine-BOC(n, n) acquisition/tracking technique for navi-
gation applications,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 43, no. 1, pp. 150–162, Jan. 2007.

http://www.vlsi.fi/fileadmin/manuals_guides/vsdsp2_um.pdf
http://www.vlsi.fi/fileadmin/manuals_guides/vsdsp2_um.pdf

i
i

“thesis” — 2018/10/5 — 11:01 — page 104 — #124 i
i

i
i

i
i

104 Bibliography

[91] J. Knight, G. Turetzky, C. Norman, and D. Hilgenberg, “SiRF’s low
power receiver advances,” in Proceedings of the 11th International
Technical Meeting of the Satellite Division of The Institute of Navi-
gation (ION GPS 1998), Nashville, TN, Sep. 1998, pp. 299–305.

[92] A. Genghi, J. Brenner, F. Pisoni, and F. Spalla, “Counting equivalent
correlators,” GPS World, vol. 20, no. 1, pp. 39–65, Jan. 2009.

[93] O. Julien, M. E. Cannon, G. Lachapelle, C. Mongrédien, and
C. Macabiau, “A new unambiguous BOC(n,n) signal tracking tech-
nique,” in Proceedings of The European Navigation Conference GNSS,
2004, pp. 17–19.

[94] V. A. Veitsel, A. V. Zhdanov, and M. I. Zhodzishsky, “The mitiga-
tion of multipath errors by strobe correlators in GPS/GLONASS
receivers,” GPS Solutions, vol. 2, no. 2, pp. 38–45, 1998.

[95] A. Van Dierendonck, P. Fenton, and T. Ford, “Theory and perfor-
mance of narrow correlator spacing in a GPS receiver,” Navigation,
vol. 39, no. 3, pp. 265–283, 1992.

[96] G. Turin, “An introduction to digitial matched filters,” Proceedings
of the IEEE, vol. 64, no. 7, pp. 1092–1112, 1976.

[97] D. Cartier, “Partial correlation properties of pseudonoise (PN) codes
in noncoherent synchronization/detection schemes,” IEEE Transac-
tions on Communications, vol. 24, no. 8, pp. 898–903, Aug. 1976.

[98] T. Kim, W. Jao, and S. Tjiang, “Arithmetic optimization using carry-
save-adders,” in Proceedings 1998 Design and Automation Confer-
ence. 35th DAC. (Cat. No.98CH36175). IEEE, 1998.

i
i

“thesis” — 2018/10/5 — 11:01 — page 105 — #125 i
i

i
i

i
i

Bibliography 105

[99] Z.-J. Mou and F. Jutand, “’overturned-stairs’ adder trees and multi-
plier design,” IEEE Transactions on Computers, vol. 41, no. 8, pp.
940–948, 1992.

[100] V. Eerola, “Rapid parallel GPS signal acquisition,” in Proc. of the
13th International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GPS 2000), Salt Lake City, UT, Sep.
2000, pp. 810–816.

[101] D. E. Knuth, The Art of Computer Programming: Seminumerical
Algorithms, 3rd ed. Reading, Massachusetts: Addison Wesley, 1998,
vol. 2, ch. 4.1.

[102] M. Monnerat, R. Couty, N. Vincent, O. Huez, and E. Chatre, “The
assisted GNSS, technology and applications,” in Proceedings of the
17th International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS 2004), Long Beach, CA, Sep.
2004, pp. 2479–2488.

[103] G. Djuknic and R. Richton, “Geolocation and assisted GPS,” Com-
puter, vol. 34, no. 3, pp. 123–125, mar 2001.

[104] 3GPP2 C.S0036-0 v1.0, Recommended Minimum Performance
Specification for C.S0022-0 Spread Spectrum Mobile Stations, 2011.
[Online]. Available: http://www.3gpp2.org/Public_html/specs/C.
S0036-0_v1.0.pdf

http://www.3gpp2.org/Public_html/specs/C.S0036-0_v1.0.pdf
http://www.3gpp2.org/Public_html/specs/C.S0036-0_v1.0.pdf

i
i

“thesis” — 2018/10/5 — 11:01 — page 106 — #126 i
i

i
i

i
i

106 Bibliography

i
i

“thesis” — 2018/10/5 — 11:01 — page 107 — #127 i
i

i
i

i
i

PUBLICATION 1

Copyright c©2013 IEEE. Reprinted with permission, from

Ville Eerola and Jari Nurmi, “Correlator Design and Implementation for
GNSS Receivers,” in NORCHIP, 2013, Nov 2013.
DOI: 10.1109/NORCHIP.2013.6702037

In reference to IEEE copyrighted material which is used with permission in this thesis,

the IEEE does not endorse any of Tampere University of Technology’s products or

services. Internal or personal use of this material is permitted. If interested in reprint-

ing/republishing IEEE copyrighted material for advertising or promotional purposes

or for creating new collective works for resale or redistribution, please go to http://

www.ieee.org/publications_standards/publications/rights/rights_link.html to

learn how to obtain a License from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

i
i

“thesis” — 2018/10/5 — 11:01 — page 108 — #128 i
i

i
i

i
i

108 Publication 1

i
i

“thesis” — 2018/10/5 — 11:01 — page 109 — #129 i
i

i
i

i
i

Correlator Design and Implementation for GNSS
Receivers

(Invited Paper)

Ville Eerola, Jari Nurmi
Department of Electronics and Communications Engineering

Tampere University of Technology
P.O.BOX 553, FIN-33101 Tampere, Finland

Email: ville.eerola@tut.fi

Abstract—This paper shows how the correlator block for GNSS
receivers can be analyzed and optimized. The received signal
characteristics are reviewed and used in the optimization process.
The correlator is a key element in the GNSS receivers and it
takes a considerable amount of the chip area and power. It
is shown that a gate-count reduction of 30% or more can be
achieved while also reducing the power consumption by more
than 50%. The authors also discuss how advanced functionality
can be added with just a minor increase of the correlator gate-
count. The additional logic allows real-time configuration of the
correlator hardware, which increases its usability in advanced
GNSS receivers.

I. INTRODUCTION

The number of Global Navigation Satellite System (GNSS)
receivers in use has exploded with the introduction of personal
navigation devices (PND) and inclusion of GNSS receivers in
mobile phones. These portable devices require power and cost
efficient implementations of the GNSS receivers. The most
widely known GNSS system is the American GPS [1], [2], but
there are other systems already existing or coming such as the
Russian GLONASS [3], and European Galileo [4], to name a
few. Although specific to GPS, [5] contains a nice introduction
to GNSS receiver architectures and measurements.

The GNSS signals employ direct-sequence spread-spectrum
(DS-SS) transmission for their signals. A good introduction
to spread-spectrum communications is for example in [6].
A notable characteristic of a spread-spectrum signal is that
its bandwidth is significantly larger than required for the
data itself. The DS-SS signal is generated by multiplying the
modulated data-bearing signal by a spreading code, which is
a pseudo-random sequence. The DS-SS receivers need to de-
spread the incoming signal by multiplying it with a properly
aligned local replica of the spreading code, and keep the code
aligned accurately while operating.

The signal from each satellite needs a separate receiver
channel. Fig. 1 illustrates the data flow and processing required
for tracking and receiving a signal from one GNSS satellite.
In addition, many modern GNSS receivers have dedicated
hardware blocks for signal acquisition, which is an important
part of the operation of a GNSS receiver. The multiplication
of the received signal by the local carrier and spreading code
followed by the filter is termed as “correlation” and the part
doing this operation is called “correlator”. With increasing

CORRELATOR

CODE

SYNC

CODE

GEN

DATA

DEMOD

BIT

SYNC

RF

front-end

CODE

PHASE

DATA

OUT

CARRIER

SYNC CARRIER

PHASE

∫t=0

T

Fig. 1. Conceptual diagram of GNSS receiver channel structure.

performance requirements and with the introduction of new
GNSS systems, the demand for the number of correlator chan-
nels and their complexity is increasing. Already the correlators
take a major portion of GNSS receiver chip area. Thus, their
efficient implementation is very important and it will be the
main subject of this paper.

In the next section, we will first go through some basic
elements and the traditional correlator architectures. Next, we
will show how to further optimize the implementation cost and
power consumption of the correlator channel. Then we will
discuss how to further improve the functionality and versatility
of the correlator channel to improve the performance of
the GNSS receiver operation. Finally, we will conclude our
paper and summarize the merits of the correlator architectures
presented here.

II. TRADITIONAL CORRELATOR DESIGN
CONSIDERATIONS

The basic correlator is very simple in its operation and
it might appear that there is little to optimize in its design.
However, there are special implementation aspects that need
to be taken into account when designing correlators for GNSS
applications. In this section, we will first introduce the tradi-
tional GNSS correlator channel architecture, and then discuss
the constraints affecting its design.

A. Corelator Functionality

Fig. 2 depicts a traditional architecture for a digital GNSS
receiver correlator channel. First, the signal is multiplied by
the local carrier replica, and then by several differently delayed

109

i
i

“thesis” — 2018/10/5 — 11:01 — page 110 — #130 i
i

i
i

i
i

Carrier

NCO

Code

NCO

Code

Generator

Receiver

Processor

Early

Prompt

Late

Input

Samples

Code

replica

control

Carrier

replica

control

Shift register
sin/cos

map

Sample rate 1 Sample rate 2

Fig. 2. Block diagram of traditional correlator channel architecture.

Code

NCO

Code

Generator

|∙|

|∙|

Loop

filter

+

-

EPL

Correlator finger

Z(n)

Discriminator

To carrier sync &

data demodulation

Shift register

Fig. 3. Block diagram of correlator fingers for DLL based signal tracking.

versions of the local replica code. Finally, the results are
accumulated for a period of time, and transferred to the
receiver processor, which performs further computations for
signal acquisition, tracking, and data recovery based on the
accumulated data. Each correlation with a differently delayed
version of the replica code is called a correlator finger. The
data is usually processed as complex samples mixed to DC or
very low IF. The conversion from real, bandpass to complex,
lowpass data occurs either in the RF front-end or in the
carrier replica mixer, but the correlator output data is almost
invariably in complex, or I/Q-format.

The number of correlator fingers per channel in modern
GNSS receiver varies, but it is always more than three. Two
of the fingers (early and late) provide values for code tracking
by a delay locked loop by correlating the incoming data with
slightly advanced and delayed versions of the local replica
code, and the third (prompt) provides values for decoding
the satellite data message needed for position calculation by
correlating the incoming signal with replica code that is ex-
actly aligned with it. The tracking loops are closed in software
running on the receiver processor. The particular discriminator
functions (Z(n) in Fig. 3) used in the software will determine
how to adjust the code and carrier NCOs if it is obvious that
the prompt output is out of phase. In the simplest case the
discriminator is looking at the difference of the early and late
outputs. This is the case shown in Fig. 3. Additional correlator
fingers might be implemented to assist in signal acquisition

TABLE I
GNSS RECEIVER SNR VALUES EXAMPLES

BW Weak Nominal Strong

RX signal power -155 dBm -130 dBm -120 dBm

RF filter 4 MHz -50 dB -25 dB -15 dB
ADC output 16 MHz -56 dB -31 dB -21 dB
Correlator output 1 kHz -14 dB 11 dB 21 dB

TABLE II
GNSS RECEIVER NOISE AND SIGNAL VALUES EXAMPLES

Noise Signal Amplitude
σ 3σ Weak Nominal Strong

Correlator input 1.86 5.58 0.003 0.052 0.163
Correlator output 238 714 48 845 2671

when the correct replica code phase is not yet known. In
fact some correlator architectures have some reconfiguration
capabilities to provide tens of fingers in acquisition mode.
Another reason for increased number of correlator fingers is to
provide indication of multipath propagation by correlating the
incoming signal with a slightly more delayed version of the
replica code than used for the DLL tracking. The multipath
detection is required for example by the cellular Assisted
GPS (AGPS) minimum performance standard [7] and it can
also be used to improve the position computation accuracy
in some cases. Furthermore, additional correlator fingers are
required to support more complex modulations such as higher
order Binary Offset Carrier (BOC) modulation in GALILEO
receivers.

B. Wordlength considerations

One way to optimize the silicon area of the correlator is to
minimize the data wordlength along the processing path. In
order to do this, it is necessary to consider the characteristics
of the received data stream as it comes into the correlator.
The GNSS signals are in normally buried in the thermal
noise, as the received signal strength is very weak. The noise
power spectral density in a typical case is −171 dBm/Hz [8].
SNR values for three signal strength cases along the signal
processing chain are shown in table Table I, with BW denoting
bandwith. On most modern, commercial GNSS receivers the
RF data is sampled using 2-bit signed-magnitude data format
having the values of ±1,±3. Following Widrow [9], it can
be shown that the standard deviation (std) of the quantized
thermal noise (σN) is 1.86 in the optimum case, which is
normally maintained by the RF AGC circuitry. We can use
this value and the SNR information to compute the noise and
signal levels in the correlator input and output. The AGC keeps
the noise at constant level, and σN is proportional to the square
root of the number of accumulated samples in the integration.
On the other hand, the signal level increases linearly with the
number of accumulated samples. Noise and signal values for
the three cases along the signal processing chain are shown
in table Table II (represented as unitless numbers) with an

110 Publication 1

i
i

“thesis” — 2018/10/5 — 11:01 — page 111 — #131 i
i

i
i

i
i

assumed ADC sampling rate of about 16 MHz. From the
table we can see that 13-bit two’s complement numbers would
be enough to fully contain the strongest received signal, and
that the largest representable value would be more than 17
times the std of the integrated noise. On the other hand,
considering maximum possible value that could occur given
the input values, we would need 17 bits to avoid overflow.
This represents almost 25% decrease of the required bits in
the integrator part of the correlator, which in most cases is the
major portion of the correlator hardware.

C. Optimizing the Arithmetic

The preceding analysis makes a few simplifications. Firstly,
it does not take into account the increase of wordlength in
the arithmetic operations along the signal processing path.
Secondly, it simply follows how the data values grow with
the integration, which does not mean that the values could
not be scaled down. Thirdly, if we used smaller than the
maximum wordlength in the integrators, there would be a
small possibility of overflow in case of large noise burst,
interference, or exceptionally strong received signal, which
could happen e.g. during spoofing attempts. The overflow must
be avoided as it would be detrimental to the receiver operation.

We will first follow the maximal wordlength case, and
then see where and how the wordlength could be minimized.
Following Fig. 2, we first have to multiply the incoming sam-
ples by the carrier replica. The carrier replica is a sinusoidal
represented usually with 3–5 bits. The complex multiplication
will increase the wordlength by 3–5 bits. The multiplication by
the local code replica is simply inversion of sign, so it does not
affect the wordlength. Thus, in the worst case scaling method,
we would need up to 22 bits for the correlator output. The
mixers do not add information to the data stream, so we could
scale the data after the carrier replica mixer back to three bits
needed for the actual data. We should, however, not simply
truncate the numbers after scaling, as that would introduce a
bias to the data. The bias would adversely affect the receiver
operation. The truncation of 2’s complement numbers would
add a bias of -0.5 to the data. This represents a very large
DC signal, which would be 41 dB above the GNSS signal in
the weak signal case acting as a very large jamming signal.
The bias would also affect the operation of the acquisition
and tracking algorithms which assume bias free signals. Using
rounding, we can get rid of this bias, with some additional
hardware cost. This cost is quite small in comparison with the
saved cost on the integrators, however.

The overflow can be avoided by using saturating arithmetic.
There are two different ways to handle the saturation. The
first is to limit the output to the maximum representable value
during each arithmetic operation without remembering the
overflow. The second way is to monitor the output values, and
raise a flag when an overflow is detected. The latter is called
sticky overflow. Sticky overflow can be better for the receiver
processing logic and can be used to detect abnormal situations,
but it makes the implementation more complex. The non-sticky
saturation could cause some of the signal to be lost, which

Shift register
Code

NCO

Code

Generator

Carrier

NCO

sin/cos

map

Receiver

Processor

Code

replica

control

Carrier

replica

control

Sample rate 1 Sample rate 2

MULTIPLEXER

Input

Samples M
U

X

(I
&

Q
)

Fig. 4. Block diagram of time-multiplexed correlator channel architecture.

would lead to erroneous signal amplitude estimations, but this
is not as severe a problem as letting the output to overflow.
Overflow would lead to errors which are almost twice as
large as the largest value possible. In the implementation of
the saturation for 2’s complement numbers, it is possible to
introduce bias. The saturation should also be implemented as
bias free as it is very easy to implement in that way.

Taking into account the optimization of the arithmetic using
scaling, rounding and saturation, it is possible to reduce the
correlator output wordlength from 22 down to about 12 bits,
which results in a significant saving in the hardware.

III. TIME-MULTIPLEXED CORRELATOR ARCHITECTURE

Time-multiplexing is a well-known method for reducing
hardware area by scheduling computations to occur serially
instead of performing them in parallel. Savings from time-
multiplexing come from reducing the number of data pro-
cessing elements. However, time-multiplexing cannot save any
hardware which is used for storing the state, i.e. data storage
registers.

Correlators in GNSS receivers offer very good possibilities
for taking advantage of time-multiplexing since there are a
large number of parallel computations required. Fig. 4 shows
one possible implementation of a time-multiplexed correlator.
This implementation saves area as we shall see shortly. There
are other ways to approach the time-multiplexing of the cor-
relator, which we will discuss next. Usually time-multiplexing
requires increasing the clock rate to allow performing mode
operations in the same amount of time, but it is possible
to time-multiplex the correlators in a way which does not
require increasing the clock rate since the output data rate is
just a fraction of the input rate. Creating an optimized time-
multiplexed correlator design requires some further analysis
of the GNSS signals. As the signals are spread during trans-
mission, the commercial GNSS signals require from 1 MHz
(Glonass) to 4 MHz (Galileo) bandwidth before de-spreading.
The carrier frequencies are in the L1 band (approximately
1.6 GHz) and their variation is very small, in the order of 10–
30 kHz, depending on the quality of the frequency reference.
This holds true for all systems utilising Code Domain Multiple
Access (CDMA). Originally, Glonass system uses Frequency
Domain Multiple Access (FDMA) and all satellites use the
same spreading code. It is planned to add CDMA signals to

111

i
i

“thesis” — 2018/10/5 — 11:01 — page 112 — #132 i
i

i
i

i
i

TABLE III
CORRELATOR GATE-COUNT EVALUATION RESULTS

Traditional Correlator Time-Mult. Time-Multiplexed & power opt.
Output bits 13 22 13 13
First int N n/a n/a n/a 16 / 32 64 / 128

Fingers gates gates diff gates diff gates diff gates diff

3 2948 4313 46.3% 2400 -18.6% 2933 -0.5% 3171 7.6%
5 4364 6639 52.1% 3267 -25.1% 4517 3.5% 4864 11.5%
8 6488 10128 56.1% 4569 -29.6% 6893 6.2% 7403 14.1%
16 12152 19432 59.9% 8038 -33.9% 13228 8.9% 14173 16.6%

TABLE IV
CORRELATOR ACTIVITY EVALUATION RESULTS IN KGATES·MHZ

Trad. Time-Mult. Time-Multiplexed & power optimized
First int N n/a n/a 16 32 64 128

Fingers act act diff act diff act diff act diff act diff

3 22.7 25.7 12.8% 12.1 -46.8% 9.8 -56.8% 10.0 -56.2% 9.3 -59.0%
5 33.4 43.1 29.1% 20.9 -37.5% 16.7 -49.9% 16.8 -49.8% 15.6 -53.2%
8 49.4 76.7 55.2% 35.2 -28.8% 27.6 -44.0% 27.3 -44.8% 25.2 -48.9%
16 92.1 208.8 126.8% 79.5 -13.6% 59.9 -34.9% 57.0 -38.1% 51.6 -43.9%

Input

Samples

Early

Prompt

Late

Shift register
Code

NCO

Code

Generator

M
U

L
T

IP
L

E
X

E
R

Carrier

NCO

sin/cos

map

Receiver

Processor

Carrier

replica

control

Code

replica

control

Sample rate 1 Sample rate 2 Sample rate 3

Fig. 5. Block diagram of power optimized time-multiplexed correlator channel
architecture.

Glonass in future, which would make it compatible with time-
multiplexed receiver structures.

In the correlator shown in Fig. 2, the carrier removal is done
first, and the code removal next. This is to avoid implementing
the larger carrier mixer for each correlator finger. However,
the carrier mixer is operating at the input sample rate, and
as a complex block also draws quite a bit of power. The
code removal de-spreads the desired satellite signals to a much
narrower bandwidth allowing the reduction of the sample rate
for the received signals assuming that the IF frequency is low.
At a lower sample rate, it is then possible to utilize time-
multiplexing for the remainder of the data path. Then we could
move the carrier removal mixer after the code multiplication
and still implement it only once. This kind of arrangement
is illustrated in Fig. 5, which shows a correlator structure
which is functionally equal to that in Fig. 2. The integration
is divided into two stages, because the typical output rate
of the correlator, 1 kHz, is too low to represent the carrier
variation without aliasing. It is possible to also time-multiplex

the carrier removal mixer so that it would only need one
multiplier and adder instead of four multipliers and two adders.
We can use a similar data analysis process as for the traditional
correlator optimization to determine the correct wordlength of
the first integrators. Further optimization of the size of the
remaining blocks in the data path is possible by rounding the
first stage integration results, but this should be done only after
a thorough analysis of the effects of dropping the lower bits.

For showing the achievable results, we have computed gate-
count estimations for some design examples based on the tra-
ditional and time-multiplexed correlators. The gate-count num-
bers are only computed for the correlator core excluding the
carrier and code replica generation. We have assumed a typical
2-bit sign-magnitude input data sampled at 16.368 MHz rate,
which is sufficient for high quality tracking of GPS and Galileo
signals. The results are shown in Table III. The gate-counts are
compared with the optimally scaled traditional correlator, and
the differences are shown relative to it. It is obvious that the
word length optimization yields the biggest savings. The direct
time-multiplexed architecture area is smallest, but it comes
with a price of increased power consumption. The area of
the power optimized time-multiplexed architecture is slightly
larger than the optimized traditional correlator, but noticeably
smaller than the non-optimized one. Overall, we can see that
the architecture is more complicated, and results in similar
area as for the traditional architecture. Next we will take a
look on the power consumption of the different versions, and
see how they compare to each another.

Commonly it has been thought that time-multiplexing does
not save power but it saves area. This is usually true, if
it is done only to re-schedule operations to be performed
in series instead of performing them in parallel. Then the
operations need to be performed faster, and the result is that the

112 Publication 1

i
i

“thesis” — 2018/10/5 — 11:01 — page 113 — #133 i
i

i
i

i
i

switching activity level can increase. However, in the case of
GNSS correlators, we can save considerable amount of power
by performing time-multiplexing of the operations. Table IV
shows the results of a simplistic evaluation of the switching
activities in the correlators. We have included only the optimal
wordlength cases in the table. The activity is calculated by
assuming uniform 50% switching probability for all data bits.
This is somewhat pessimistic, but as the data is more or less
random by nature, it is not too far off. The activity of the
registers is 100%, as they consume energy every time the clock
is toggled. The clock rates are the same as discussed above.
The activity numbers are given in kGates·MHz. Looking the
results we see that there are great possibilities for huge power
savings, but also that the results for the power optimized time-
multiplexed case depend on the first integrator integration
count. The activity can be seen to decrease with increasing
first integration length, but that will cost us silicon area. So it
is possible to select a “sweet-spot” in the parameter space to
optimize the power consumption and to achieve power savings
in the order of 40-60%.

IV. ADVANCED CORRELATOR FUNCTIONALITY

As we have seen, the correlator fingers are relatively ex-
pensive to implement in hardware. However, many advanced
receiver algorithms require more than simple early and late
correlations. For example, in one BOC signal tracking algo-
rithm [10] two versions of the early and late correlators are
required in addition to the prompt correlator used for data
demodulation. Another interesting scheme is the so called
strobe correlator [11], which can improve tracking accuracy
in presence of multipath. In a strobe-correlator, the chips of
the normal replica PRN-codes are replaced with a stream of
formatted pulses, called strobes. Fig. 6 shows some example
strobes that can be used, and Fig. 7 shows their corresponding
discriminator characteristics. In many cases, we could imple-
ment these advanced correlator functions by simply adding
or subtracting the correlator outputs. For example, the simple
strobe correlator can be implemented by subtracting the late
correlator output from the early correlator output, given that
the local replica code is suitably delayed in the shift register.
Similarly, the other strobe correlators can be implemented by a
combining a few correlators using differently delayed versions
of the replica code. The generation of the strobes in the
example cases are described in Table V. The notation r[C±n]
denotes using the replica code delayed (+) or advanced (–) by
n times the code delay amount relative to the prompt correlator
delay. We can also note that the simple strobe correlator is
functionally equivalent to a “narrow correlator” [12], which
uses a small (a fraction of a chip) delay between the early and
late replicas in contrast to the normal 1 chip spacing.

The correlator is a linear system in the sense that adding the
outputs of two correlators with different replicas is equivalent
to adding the replicas before the multiplications. Thus, it
would be possible to form more complex versions of the
replica code and then use only one correlator finger to process
it. This is illustrated in Fig. 8, which shows the generation of

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

a)

Strobe correlator shapes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1

0

1

2

b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1

0

1

2

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

−1

0

1

2

d)

Time (chips)

Fig. 6. Strobe correlator strobe example. a) Original PRN code, b) Simple
strobe, c) Bipolar symmetrical strobe, d) Asymmetrical strobe.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Simple strobe

Bipolar strobe

Asymmetrical strobe

Discrimination functions for strobe correlator

A
m

pl
itu

de

Phase difference (chip)

Fig. 7. Examples of strobe correlator discriminator characteritics.

113

i
i

“thesis” — 2018/10/5 — 11:01 — page 114 — #134 i
i

i
i

i
i

Input

Samples

Code

Generator

Tap

Coeff.

Carrier

NCO

Correlator

Output

Shift register

Finger function

generation

(a) Full implementation

Input

Samples

Code

Generator

Tap

Coeff.

Carrier

NCO

Correlator

Output

Finger function

generation

Shift register

(b) Simplified implementation

Fig. 8. Correlator finger function example implementations.

TABLE V
GENERATION OF THE EXAMPLE STROBE SHAPES IN FIG. 6.

Strobe Generation

Simple r[C−1]− r[C+1]

Bipolar symmetrical r[C−2]− 2r[C−1] + 2r[C+1]− r[C+2]

Asymmetrical r[C−2]− 2r[C−1] + 2r[C+2]− r[C+4]

TABLE VI
FINGER FUNCTION IMPLEMENTATION EXAMPLES

Case Fingers Gain sel. Adder gates diff

Simple Correlator 5 (0) n/a n/a 4364 -
Delay selection 5 (5) 0/1 OR 4674 7.1%
Simple functions 3 (2) 0, ±1 2-bit 4074 -6.6%
Strobe functions 3 (2) 0, ±1, ±2 3-bit 4144 -5.0%

the replica for one correlator finger using a linear combination
of differently delayed replica code versions—a finger function.
Fig. 8a illustrates a complete case with adjustable weight for
each replica code delay whereas in the case of Fig. 8b we can
just enable or disable the different delays. Finger functions
can also make the correlator very flexible by allowing its
functionality to be configured for multiple situations via the
receiver processing software. By using finger functions we
can save valuable hardware in implementing the advanced
algorithms. This is shown in Table VI, which shows evaluation
of some example cases. The total number of fingers is shown

in the table with the finger function enabled fingers shown in
parentheses. The first two cases are normal correlators, and the
two latter use finger functions, which enable creation of the
discriminator directly in the correlator. This way fewer corre-
lator fingers are needed for the same functionality. The table
shows that we can e.g. save 5% in area when implementing
the strobe correlators with finger functions.

V. CONCLUSION

The correlator is a key functional block in any GNSS
receiver. In modern receivers, the complexity and amount of
correlators has increased due to new and more complex signals
and higher performance requirements. Even though the corre-
lator is seemingly a simple block, its optimization requires
thorough knowledge of the application and its constraints. We
have shown that a gate-count reduction of 30% and power
consumption reduction of more than 50% can be achieved
by taking into account the data characteristics and optimising
the wordlength and scheduling of the block. We have also
illustrated how the correlator functionality can be made much
more flexible with just a few simple additional components.
This allows the GNSS receiver to operate efficiently in many
different situations.

ACKNOWLEDGMENT

This work has been supported by a grant from Alfred
Kordelin Foundation, Helsinki.

REFERENCES

[1] Navstar GPS Space Segment/Navigation Users Interface. GPS Interface
Specification, IS-GPS-200F, Sep. 2011. [Online]. Available: http:
//www.gps.gov/technical/icwg/IS-GPS-200F.pdf

[2] E. D. Kaplan, Understanding GPS: Principles and Applications. Nor-
wood, MA, USA: Artech House Publishers, 1996.

[3] GLONASS Interface Control Document, Edition 5.1, 2008. [Online].
Available: http://www.spacecorp.ru/upload/iblock/fc4/IKD-redakcia%
205.1%20ENG.pdf

[4] European GNSS (Galileo) Open Service: Signal In Space
Interface Control Document, Issue 1 Revision 1, Sep.
2010. [Online]. Available: http://ec.europa.eu/enterprise/policies/satnav/
galileo/files/galileo-os-sis-icd-issue1-revision1 en.pdf

[5] M. S. Braasch and A. Van Dierendonck, “Gps receiver architectures
and measurements,” Proceedings of the IEEE, vol. 87, no. 1, pp. 48–64,
1999.

[6] R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-spectrum
communications–a tutorial,” Communications, IEEE Transactions on,
vol. 30, no. 5, pp. 855 – 884, May 1982.

[7] 3GPP2 C.S0036-0 v1.0, Recommended Minimum Performance Specifi-
cation for C.S0022-0 Spread Spectrum Mobile Stations, 2011. [Online].
Available: http://www.3gpp2.org/Public html/specs/C.S0036-0 v1.0.pdf

[8] P. Misra and P. Enge, Global Positioning System: Signals, Measurements,
and Performance. Lincoln, MA, USA: Ganga-Jamuna Press, 2001, pp.
296–298.

[9] B. Widrow, “A study of rough amplitude quantization by means of
nyquist sampling theory,” Circuit Theory, IRE Transactions on, vol. 3,
no. 4, pp. 266–276, 1956.

[10] O. Julien, M. E. Cannon, G. Lachapelle, C. Mongrédien, and
C. Macabiau, “A new unambiguous boc (n, n) signal tracking technique,”
in Proceedings of The European Navigation Conference GNSS, 2004,
pp. 17–19.

[11] V. A. Veitsel, A. V. Zhdanov, and M. I. Zhodzishsky, “The mitigation
of multipath errors by strobe correlators in gps/glonass receivers,” GPS
Solutions, vol. 2, no. 2, pp. 38–45, 1998.

[12] A. Van Dierendonck, P. Fenton, and T. Ford, “Theory and performance
of narrow correlator spacing in a gps receiver,” Navigation, vol. 39,
no. 3, pp. 265–283, 1992.

114 Publication 1

i
i

“thesis” — 2018/10/5 — 11:01 — page 115 — #135 i
i

i
i

i
i

PUBLICATION 2

Copyright c©2000 Ville Eerola. Reprinted with permission. First published
in:

Ville Eerola, “Rapid Parallel GPS Signal Acquisition,” in Proceedings of
the 13th International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GPS 2000), Salt Lake City, UT, Sep. 2000,
pp. 810–816.

i
i

“thesis” — 2018/10/5 — 11:01 — page 116 — #136 i
i

i
i

i
i

116 Publication 2

i
i

“thesis” — 2018/10/5 — 11:01 — page 117 — #137 i
i

i
i

i
i

Rapid Parallel GPS Signal Acquisition
Ville Eerola, VLSI Solution Oy

BIOGRAPHY

Ville Eerola was born in Finland. He has received the de-
gree of Diploma Engineer in electrical engineering From
Tampere University of Technology in 1990. He has worked
at VLSI Solution since 1992. He has been involved in
GPS receiver technology development since 1992. His re-
search interests include spread spectrum communications
and signal processing in communication systems. He is a
co-founder of VLSI Solution Oy.

ABSTRACT

A GPS acquisition system which achieves extremely short
search times is presented. The system requires no prior
knowledge of position or time. Using a 50 MHz clock fre-
quency, 25 satellites can be searched in parallel. Under
nominal signal conditions, two-second search times have
been demonstrated. The acquisition unit performance has
been verified both with live satellites as well as with a GPS
simulator. With the GPS simulator the performance with
weaker signal conditions was also evaluated. The acquisi-
tion threshold was found to be −134 dBm with a RF noise
figure of 4 dB.

The developed acquisition system is based on parallel
matched-filter implementation, which is capable of search-
ing code offsets of a number of satellites simultaneously.
The frequency domain is searched by sweeping a common
local oscillator frequency. The search process is controlled
by a state machine, which has a number of parallel chan-
nels, each capable of performing a search of its correspond-
ing PRN code. This implementation is considerably more
effective than performing sequential search of each satellite
signal. The modest hardware complexity increase and the
search speed improvement compared to the single-satellite
search unit makes the parallel architecture attractive.

The advances in current CMOS manufacturing technolo-
gies make fully digital implementation of a matched fil-
ter based acquisition unit economically possible even for
low-cost GPS receivers. The acquisition system has been
implemented in 0.35 µm CMOS process. A sensor GPS
receiver containing the acquisition unit, 12 channel corre-

lating receiver together with the DSP and SRAM memory
for running the tracking algorithm fits in a single chip and
is packaged in a 64-pin LQFP package.

1. INTRODUCTION

An important design parameter for GPS receivers is the
Time To First Fix (TTFF). In usual GPS applications, the
receiver has some knowledge of its location, the current
time, and the approximate satellite orbit parameters. It can
use this information to aid in the initial signal search. If this
information is not available, the carrier frequency search
should cover at least the full Doppler uncertainty, the code
phase search should cover all 1023 chips, and all possi-
ble satellites should be searched for. This kind of search
can take several minutes to perform without aid of special
hardware.

The full sky search problem has been an uninteresting area
for many GPS receiver designers because of its infrequent
need, as the location, the current time, and the approxi-
mate satellite orbit parameters are usually available. How-
ever, there are some applications where providing this in-
formation would be hard or uneconomical. For example,
the GPS receiver can be used as a sensor for determining
location and speed of an object which is destroyed or lost
after each use. In such case the receiver needs to be small,
self-contained, low-cost, and usually has no way of upload-
ing any information to it prior usage. In many cases, the
signal acquisition speed is critical for successful operation.
This kind of sensor receivers usually operate in differential
mode where a base station with a continuously operating
GPS receiver performs the differential position computa-
tions. Thus, only the time-stamped receiver measurements
are needed for proper operation, and the cold-start time is
not restricted by time required to receive the ephemerides.

The developed acquisition unit described in this paper is
for C/A-code GPS receivers aiming for rapid signal acqui-
sition when no information on the location, time, and satel-
lite orbits are available for the receiver, and which need ac-
quisition of signals from at least 4 satellites within a couple
of seconds from turning on the receiver. The sensitivity of
the acquisition process was not critical in this application,

810

117

i
i

“thesis” — 2018/10/5 — 11:01 — page 118 — #138 i
i

i
i

i
i

as the receiver is to be used in open sky environment. The
acquisition unit is based on parallel matched-filter imple-
mentation, which is capable of searching code offsets of a
number of satellites simultaneously. The advances in cur-
rent CMOS manufacturing technologies make fully digital
implementation of a matched-filter-based acquisition unit
economically possible even for low-cost GPS receivers.
The application for which the presented acquisition unit
was developed is cost sensitive, but it still requires high
signal acquisition speed, which makes the described archi-
tecture well suited for it.

The acquisition unit is a part of a full GPS receiver base-
band chip with the acquisition unit, 12 channel correlat-
ing receiver together with the DSP and SRAM memory
for running the tracking algorithm. The block diagram of
the chip is shown in Fig. 1. The receiver is intended to
be used in differential configuration where a base station
with a continuously operating GPS receiver performs the
differential position computations. The receiver chip does
not have enough memory to run the full navigation pro-
cessing. The receiver still requires a proper signal track-
ing to achieve the required measurement accuracy, as the
matched filter can measure the code offsets with only about
one-chip accuracy. The whole receiver baseband fits in a
single chip and is packaged in a 64-pin LQFP package and
has been implemented in a 0.35 µm CMOS process.

2. MATCHED FILTERS

Matched filters [1] are devices which continuously com-
pute correlation between a known (reference) signal and a
signal to be measured, and give maximal output when the
correlation between the reference signal and the incoming
signal is strongest. They can be implemented either as a
continuous time or discrete time operation. By definition,
they are optimum detectors for signals embedded in addi-
tive white Gaussian noise (AWGN). Thus a matched filter
(MF) is a useful device to be used in the acquisition phase
of spread spectrum receiver operation to search the correct
timing for the replica code.

The bandpass matched filter is implemented using the low-
pass equivalent format for bandpass filters (Fig. 2). The im-
plementation of a matched filter for finite-length pseudo-
random-number (PRN) waveform is most easily visualized
in the form of a tapped delay line followed by a passive
filter matched to a single PRN waveform as illustrated in
Fig. 3. The output filter (P*(ω)) is matched to the basic
pulse shape of the PRN spreading chips. In the case of
rectangular chips it can be ignored.

3. ALGORITHM

The basic operation of the MF acquisition system is as fol-
lows: The incoming samples are multiplied by sine and
cosine signals produced by a numerically controlled oscil-
lator (NCO). The frequency of the NCO is equal to the GPS

POR

Search engine

 12 ch
correlator

X−memory

Y−memory

 DSP−
peripheral
 interface

VS_DSP

Peripheral
 bus

VS_DSP
 bus

Reset

ad
dr

da
ta

ad
drct
rl

da
ta

Clock

sync

Boot ROM

Peripheral I/O

IF−input
2

 DSP−
peripherals

I−memory

Figure 1: Block diagram of the GPS receiver baseband
chip.

Baseband
Matched
Filter

Baseband
Matched
Filter

2

2

π/2 Local
Oscillator

Threshold
Device

(η)
Code phase

Decision

Received signal

plus noise

Figure 2: A band-pass version of a matched filter acquisi-
tion system using low-pass filters.

Tc Tc Tc Tc Tc

dM d1d2d3dM−1

Filter
P*(w)

Received signal

plus noise

Output

Figure 3: A tapped delay line implementation of a matched
filter for an M-chip PRN sequence.

811

118 Publication 2

i
i

“thesis” — 2018/10/5 — 11:01 — page 119 — #139 i
i

i
i

i
i

1

2

SAMPLE

INC OFFSET

WAIT FOR
1022 SAMPLES

WAIT FOR
1023 SAMPLES

GET NEW

START

HIT

DET>THRES

DET>THRES

SEEK MODE

NO

YES

NO

YES NO

YES

NO YES

INC #FAIL INC #DET

VERIFY HIT MODE

#FAIL=MAX FAIL #DET=MAX DET

Figure 4: Flowchart of the MF search algorithm.

satellite Doppler plus the intermediate frequency (IF). The
detection and verification process is performed indepen-
dently for each PRN signal. The flowchart of the acquisi-
tion process is shown in Fig. 4. The used algorithm im-
plements an M out of N majority logic decision with early
termination.

In the first step the shift register is loaded with data from
the input block one sample at a time. As the length of
the matched filter is 1023 samples, we need to load 1022
samples at this stage. In the next step (1) one more sam-
ple is loaded into the shift register. Now, the data in the
shift register is compared to the reference PRN signal in
the matched filter. If the threshold is not exceeded, we go
back to point (1) and load the next input sample. If the
comparison value exceeds the set detection threshold, a po-
tential match is noticed. In the simplest case exceeding the
threshold would mean that the signal has been found, and
its code phase is aligned with the reference signal in the

matched filter. However, in most practical cases the sig-
nal to noise ratio of the received signal is too low to get
a reliable detection on single comparison. To increase the
detection probability and decrease the probability of false
detection a number of verification comparisons are done.
So, if a possible hit was found, the system enters verifica-
tion mode at point (2). There the shift register is first loaded
with 1023 fresh data samples to improve detection statis-
tics and to arrive at the same code phase position. After the
wait, the threshold comparison is repeated. If the thresh-
old is not exceeded, the value of the fail counter is incre-
mented. The counter is compared against a set maximum
value, which sets a limit on failed verification comparisons.
If the value of the counter reaches the limit, the verification
is considered as failed and the search is continued in search
mode by loading the next input sample at point (1). Oth-
erwise, the verification step is repeated by going back to
point (2). If the comparison value is above the threshold,
the value of the det counter is incremented. The counter is
then compared against a set maximum value, which sets a
limit on successful verification comparisons. The signal is
declared as found if the value of the counter equals to the
limit and the search ends. Otherwise we go back to point
(2) to repeat the verification.

The maximum values for the fail and det counters set the
limit of total verification rounds to the sum of the limits
plus one. The optimization process for the limits is de-
scribed in more detail in [1]. The threshold value selection
process needs to consider the desired detection and false
alarm probabilities. One method for this is presented in
[2].

After checking all possible code offsets for all the paral-
lel channels, the NCO frequency is increased by a given
value, and if it is not above the maximum value, the search
process is repeated. When the frequency reaches the max-
imum value, it is set to the starting value, the set of PRN
sequences to be used is changed, and the search starts from
the beginning. Waiting for all channels to check all possi-
ble code offsets means that some of the channels may in
fact search each frequency bin more than once, and the
time between frequency sweeps depends on the slowest
channel getting all of the code phases checked.

4. HARDWARE

The MF acquisition system implements a parallel matched
filter with integrated search control. The user only needs
to configure the main search parameters such as the fre-
quency and detection limits, and the MF acquisition sys-
tem independently searches the whole uncertainty space.
The results of the search are reported to the user through
the DSP interface.

The MF acquisition system implements the 25 parallel
channels in a time-shared manner. The limit in the number
of channels comes from the ratio of the master clock fre-

812

119

i
i

“thesis” — 2018/10/5 — 11:01 — page 120 — #140 i
i

i
i

i
i

quency to the required sampling frequency of the MF. In
this case the ratio is 50. The single MF core processes both
in-phase and quadrature versions of each channel, reducing
the number of possible channels to 25. Since the number of
possible channels is smaller than the total number of pos-
sible PRN sequences to search, the PRN sequences being
searched must be changed periodically. The PRN signals to
be checked are stored in a ROM, and the time-multiplexing
of the reference signals is done by incrementing an address
counter for the ROM. The counter counts from a base ad-
dress up 25 times modulo 32. The change of the set of
PRN signals to be searched is done by changing the base
address, which is done after sweeping through all frequen-
cies to be searched. The base is changed by a configurable
increment, which is again counted modulo 32. The config-
urable base increment allows for tuning the search process.

There are several events within the MF, which generate
output allowing the user to be aware of the search progress-
ing. The generated event types are:

PRN Found In this case the search was successful. The
found counter exceeded the preset maximum value.
The PRN number, code phase offset, frequency and
hit/failure statistics are available for the user.

Not Found In this case the search was not successful.
The failure counter exceeded the maximum value.
The PRN number, code phase offset, frequency and
hit/failure statistics are available for the user.

Next Frequency This is to inform that all 25 PRN chan-
nels have checked every code phase offset, and the
frequency is incremented by the given value. The new
frequency is available for the user.

Next Base This is to inform that all 25 PRN channels have
checked every frequency, and the base is incremented
by the given value. This event occurs at the same time
than the last frequency sweep event, and they are com-
bined into one data packet.

The events reported to the user can be configured by using
the MF configuration register. The only event that is always
reported is the PRN found event.

The architecture of the GPS acquisition system is shown
in Fig. 5. The top level is composed of four blocks: the
datapath, which contains the actual matched filter imple-
mentation; the control block, which generates the neces-
sary control signals for the other blocks; the state machine
controlling the search algorithm; and the I/O block inter-
facing the MF to the on chip bus.

4.1. Datapath

The matched-filter datapath block contains the MF datap-
ath proper, the MF input processing block, the ROM ad-
dress generation unit, and the local oscillator NCO. The

MF_CTRL MF_IOMF_SM

DATA

ADDR

CTRL

DIN

CLK

RESET

C
ontrol

Control

data

Result

th_detfreqbase

IREQ

MF_DPATH
(MF_CORE, MF_ALU, MF_DP_CTRL, MF_ROTATOR)

Figure 5: Block diagram of the MF unit.

Chip rate
generation

Carrier
removal

clock

Low−pass
filter

LP−Filter Decimate Mixer

NCO

Divider sin/cos

I_in

Q_in

IF

I_out

Q_out

Figure 6: Block diagram of the MF input processing block.

MF input block, illustrated in Fig. 6, contains a complex
low-pass filter, a decimator, an IF local oscillator, and an
IF mixer. The IF mixer performs the complex multiplica-
tion of the input signal by a locally generated carrier replica
signal to remove the Doppler residual. The input process-
ing consists of decimation of the 1-bit input signals from
the original sampling rate of 51.15 MHz and rotating the
complex signals phase with sine and cosine local oscillator
signals produced by the NCO. The NCO runs at the MF
sample rate (1.023 MHz) and has 16-bit frequency resolu-
tion (≈ 15.6 Hz).

The matched-filter datapath, shown in Fig. 7, is the core
of the whole matched-filter acquisition system. The MF
design is of the low-pass type and the datapath arithmetic
is time-multiplexed to process both the in-phase and the
quadrature channels. The matched-filter length in this im-
plementation is 1023 samples, corresponding to the full
PRN code length. The incoming 1-bit I- and Q-data
streams are loaded into two parallel shift registers and
matched against the reference signals stored in a ROM.
The ROM addresses are generated by an address genera-
tion unit, which enables the MF to process multiple PRN
searches in parallel by time-multiplexing the used refer-
ence signals. The data and the reference signal values are
compared by an XNOR gate whose output is one if its two
inputs are the same. The single MF tap implementation
has two shift-registers bits for the input data streams, and a

813

120 Publication 2

i
i

“thesis” — 2018/10/5 — 11:01 — page 121 — #141 i
i

i
i

i
i

REG

REG

REG

M
U
X

R
E
G

thresh

th_det

’0’

din_i

din_q

MF_CORE

MF_ALU

Squaring

Comparator

Adder

PRN number

Add match results

Match with reference

I−Shift register

Q−Shift register

Figure 7: Block diagram of the datapath of the MF search
engine.

32 by 1 ROM for holding the reference PRN signals. The
data registers are compared to the reference PRN data with
an XNOR gate. The comparisons are done in alternating
order, i.e. first the I-channel data, and the the Q-channel
data.

After the comparison, 1023 data values of 1-bits each need
to be added together for every sample to produce the output
of the MF. This is the most challenging part of MF imple-
mentations. Adding together the 1-bit comparison results
gives the number of successful comparisons. However, it
is possible to have a total match of the PRN code to the
input signal, with just the sign of the input data reversed.
In this case we get zero successful comparisons. In fact,
the worst case match occurs when exactly half of the com-
parisons are wrong. To accommodate this we need to get
a result that is signed and whose values are between plus
and minus half of the MF length (−512 to +511).

After adding the compared bits and subtracting the offset,
a pipeline register holds the result before squaring. The
squared MF results are added together two at a time to
combine the I- and Q-branch MF results. The combined re-
sult is finally compared by a configurable threshold value,

SEEK WAIT VERIFY

FWAIT

WAIT>0

FWAIT>0

THDET=0
THDET=1 WAIT=0

F
W

A
IT

=0

A
LL

_D
O

N
E

=1

DONE=0

DONE=1 & ALL_DONE=1

DONE=1 & ALL_DONE=0

Figure 8: State diagram of the MF state machine.

and the comparison result is the output of the MF datapath.

4.2. The State Machine

The MF state machine is responsible for the high level
search control of the MF. It implements 25 parallel oper-
ating state machines, each responsible for search of one
PRN signal. The operation of the state machine channels
is independent except for the synchronization of frequency
and PRN base addresses, which happens only when each of
the channels have processes all of the possible PRN code
phase offsets once.

One channel of the MF state machine is illustrated in Fig. 8.
There are two active states and two states used for waiting.
The starting state is the fwait state, in which new data is
clocked into the shift-registers. The wait in this state lasts
for as many sample clock cycles as there are bits in the
shift register. After the sweep wait the seek state is entered.
While in this state the threshold detector output is checked
on every sample, and if the threshold was exceeded the next
state, verify wait state, is entered, the hit counter is set to
one, and the fail counter is set to zero. If the last code
offset was reached, the state machine sets the done flag
for the current PRN channel. When all the state machine
channels have checked every possible code phase offset,
i.e. when all the done flags are set, the frequency is swept,
optionally the PRN address base register is updated, and
the fwait state is entered.

In the verify wait state the state machine waits for the data
shift register to shift in totally new data in order to im-
prove the detection statistics, and to reach the same code
offset position. In order to verify the satellite detection,
the threshold comparisons are repeated multiple times at
the same code offset position. After waiting in the verify
wait state for the length of the PRN sequence, the verify
state is entered. In this state, the threshold detector value is
checked, the hit or fail counter is incremented. If the num-

814

121

i
i

“thesis” — 2018/10/5 — 11:01 — page 122 — #142 i
i

i
i

i
i

ber of hits and fails are still below their respective maxi-
mum values, the verify wait state is entered again. If the
number of hits is above the maximum value, a satellite sig-
nal is declared as found. After the last verify, if the code
offset is the last one, the done flag is set and the fwait
state is entered if all the flags are set. Otherwise, the seek
state is entered again, and the search continues normally.

The MF state machine sweeps the frequency between the
low and high limit values by configurable steps. The fre-
quency is the fixed IF plus the satellite Doppler frequency,
so the limits should be set according to the real RF front-
end IF and the largest expected Doppler shift. In addition,
the hit and fail counter limits can be configured through a
configuration register. There is also a mechanism for ini-
tializing the MF system to its initial state. The code offset
used in reporting is relative to the local clock counter of the
GPS receiver chip.

5. ADVANTAGE OF PARALLELISM

The MF-based implementation provides orders of magni-
tude improvement over traditional serial-search based on
correlator implementations as it is equivalent to a set of
correlators operating in parallel.

To evaluate the advantages of parallel MF acquisition unit,
a set of simulations has been performed. The simulations
were run with varying number of PRN codes searched si-
multaneously. The results of the simulation are shown
in Fig. 9, which shows the search overall time versus the
number of parallel channels for two threshold value set-
tings. Using the higher threshold value increases acquisi-
tion speed as can be expected. It can clearly be seen that
even using only two parallel channels improves the acqui-
sition speed dramatically. The total search time is almost
half of the search time for single PRN code at a time. The
advantage levels off when more channels are added, but
the optimum is to search all possible codes simultaneously.
The two lines show acquisition times for different thresh-
old values and it can be seen that the relative advantage is
similar independent of the threshold values.

To get another view of the same simulation Fig. 10 shows
the search time of a single frequency for one set of parallel
PRN codes (solid line). It shows that the time to go through
all possible code phases increases with the number of par-
allel channels. However the time required for each PRN
code decreases as shown as the dashed line. This means
that this implementation is less effective than a number of
parallel, completely independent search channels. How-
ever, it is still considerably more effective than performing
sequential search of each satellite signal. The modest hard-
ware complexity increase and the search speed improve-
ment compared to the single-satellite search unit makes the
parallel architecture attractive.

The acquisition unit performance has been verified both

0 4 8 12 16 20 24 28 32
0

0.2

0.4

0.6

0.8

1

Number of parallel channels

R
el

at
iv

e
tim

e

thresh 1
thresh 2

Figure 9: Relative acquisition times versus number of
channels.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

R
el

at
iv

e
tim

e

Number of parallel channels

time per frequency
time per prn/freq

Figure 10: Relative acquisition times for one frequency
sweep versus number of channels.

with live satellites as well as with a GPS simulator. Under
nominal signal conditions, two-second total search times
have been demonstrated. This includes two frequency
sweeps with 25 PRN codes each. With the GPS simu-
lator the performance with weaker signal conditions was
also evaluated. The acquisition threshold was found to be
−134 dBm with a RF noise figure of 4 dB.

6. CONCLUSIONS

A rapid GPS acquisition system requiring no prior knowl-
edge of position, time or almanacs was presented. The
system operates autonomously, and is based on a paral-
lel matched-filter structure. The system has been imple-
mented in CMOS and is used as a building block for a
GPS-based sensor application. The acquisition speed has

815

122 Publication 2

i
i

“thesis” — 2018/10/5 — 11:01 — page 123 — #143 i
i

i
i

i
i

been found to be excellent. The MF-based implementation
provides orders of magnitude improvement over traditional
serial-search based on correlator implementations. Fur-
thermore, the parallel MF architecture offers a significant
acquisition speed improvement over a single-PRN search
approach.

REFERENCES

[1] Marvin K. Simon, Jim K. Omura, Robert A. Scholtz,
Barry K. Levitt. Spread Spectrum Communications
Handbook, rev.ed. McGraw-Hill, 1994. pp 815–832.

[2] A. J. Van Dierendonck “GPS Receivers.” Chap. 8 in
The Global Positioning System: Theory and Applica-
tions, Vol I, B. W. Parkinson and J. J. Spilker Jr.,eds.,
American Institute of Aeronautics and Astronautics,
Reston, VA, 1996. pp 402–405.

816

123

i
i

“thesis” — 2018/10/5 — 11:01 — page 124 — #144 i
i

i
i

i
i

124 Publication 2

i
i

“thesis” — 2018/10/5 — 11:01 — page 125 — #145 i
i

i
i

i
i

PUBLICATION 3

Copyright c©2017 IEEE. Reprinted with permission, from

Ville Eerola, “Optimizing Matched Filters for GNSS Receivers,” in 2017
International Conference on Localization and GNSS (ICL-GNSS). IEEE,
2017.
DOI: 10.1109/ICL-GNSS.2017.8376238

In reference to IEEE copyrighted material which is used with permission in this thesis,

the IEEE does not endorse any of Tampere University of Technology’s products or

services. Internal or personal use of this material is permitted. If interested in reprint-

ing/republishing IEEE copyrighted material for advertising or promotional purposes

or for creating new collective works for resale or redistribution, please go to http://

www.ieee.org/publications_standards/publications/rights/rights_link.html to

learn how to obtain a License from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

i
i

“thesis” — 2018/10/5 — 11:01 — page 126 — #146 i
i

i
i

i
i

126 Publication 3

i
i

“thesis” — 2018/10/5 — 11:01 — page 127 — #147 i
i

i
i

i
i

Optimizing Matched Filters for GNSS Receivers
Ville Eerola

u-Blox Espoo Oy
Itsehallintokuja 6

FIN-02600 Espoo, Finland
Email: ville.eerola@u-blox.com

Abstract—This paper presents methods for optimizing matched
filter based GNSS acquisition units. Matched filters become
computationally complex when the reference signal length is
increased. They have a fixed length in time, which also limits
the achievable integration time. In this paper, we show how to
design an optimal adder for a large number of single-bit values,
and how this can be utilized to build matched filters for multi-bit
numbers and multiple inputs. By altering the incoming sample
rates, it is possible to adapt the matched filter for changing signal
frequency. Employing coherent and non-coherent integration
after the matched filter allows enhancing the sensitivity of signal
detection with modest implementation size increase.

I. INTRODUCTION

At the turn of the century, it became feasible especially in
the economic sense to implement full code searches in GNSS
hardware [1]. A further driver for this was the FCC e-Call
(E911) mandate [2]. The cold start problem with rapid, full
code uncertainty search had been an uninteresting problem
before. The cold start Time To First Fix (TTFF) performance
had not been viewed as a critical or important performance
parameter for GNSS receivers, which had typically been used
in continuous tracking mode. Thus, the cold start had been
an infrequent event. For improving the search performance of
full code uncertainty, the code search had to be parallelized.
A term massive parallel correlation for a device which could
search for the code phase with full code period uncertainty
was devised and proposed first by Dr. Van Diggelen [3].

One implementation of these devices is the matched filter
(MF). Matched filters [4] are devices which continuously
compute the correlation between a known reference signal
and the received signal and produce the maximal output
when the correlation is the strongest. By definition, they are
optimum detectors for signals embedded in additive white
Gaussian noise (AWGN) [5]. The structure of a MF is shown
in Fig. 1. The incoming signal is first captured in a tapped
delay line, and the output of each tap is multiplied by the
corresponding coefficient from the Pseudo Random Noise
(PRN) sequence before being added together. The summing
function is followed by a passive filter matched to the basic
pulse shape of an individual chip. This filter can be ignored
for rectangular chips.

The matched filters are attractive for GNSS receivers espe-
cially for acquiring signals with full code period uncertainty
[6]. Unfortunately, matched filters become very large in silicon
area wise, when the reference signal length increases, and the
computational complexity tends to be high due to the large

cM-1 cM-2 c2 c1 c0

Filter

P*(ω)

TC TC TC TCTC

Received signal

plus noise

Output

Fig. 1. A tapped delay line implementation of a matched filter for an M-chip
PRN sequence.

number of operations needed to produce each output sample.
To gain sensitivity, the signal integration time can be increased,
but unfortunately this could mean increasing the length of
the MF further. The MF is fixed to a reference signal with
fixed length in time. Doppler and receiver clock frequency
variations cause the apparent received signal to vary, which can
lead to matching problems especially with longer integration
times. This paper aims to show how these shortcomings can
be overcome.

In the next section, we will explore a method of imple-
menting the basic MF block very efficiently and how this
basic optimized MF core block can be utilized to build
more complex acquisition blocks. We will also explore other
methods for optimizing the MF based GNSS receiver block in
section III.

II. OPTIMIZING THE MF BLOCK IMPLEMENTATION

Looking at the structure in Fig. 1, we can assess the
difficulty of implementing the MF in hardware. Usually, the
MF length is equal to a single PRN code period to offer
the best acquisition performance. Otherwise we will suffer
from worsening of the cross-correlation performance, which
makes it more difficult to separate between signals from
different satellites. We could also detect incorrect timing
of the incoming signal due to the non-ideal autocorrelation
properties of partial PRN codes, which would lead to failed
acquisition. The PRN code lengths for civil GNSS signals
intended for direct acquisition vary between 511 (GLONASS)
to 4092 (Galileo). The MF must produce an output for each
incoming chip at minimum, which means that the input and
the output need to be updated at the chipping rate, which
is between 511 kHz (GLONASS) and 2.046 MHz (BeiDou).

127

i
i

“thesis” — 2018/10/5 — 11:01 — page 128 — #148 i
i

i
i

i
i

For GNSS applications we can typically assume that the tap
multiplications are trivial to implement, and there are few bits
per sample at the MF input stage. The summation element
needs to add as many inputs as there are taps in the filter
within the time between two output samples, which turns out
to be in the range of 4 · 109 operations/s. There are three
possible ways to solve this issue:

1) Pipeline the MF implementation by storing partial re-
sults

2) Use transposed filter structure, where the summation is
fully pipelined

3) Implement the summation in a smart way

The first two options need to store intermediate MF output
values, which require a large number of bits, and thus are
wasteful on hardware area and power. Furthermore, using area
efficient storage such as RAM is not feasible as we need
parallel access of all the values, which is not possible with
RAM. Trying to time-multiplex the MF calculation logic only
makes the problem harder. Thus we will have a look at the
third option. First we will start by developing a one-bit MF
core, and then we will expand it to multi-bit input and multiple
inputs.

A. One-Bit Input and Coefficients

For the MF implementation, we should consider the input
and the coefficients being signed, and thus the interpretation
of the input to the adder needs to be considered. For single
bit values, one usual representation is:

xs ∈ {−1,+1} → xb ∈ {1, 0} (1)

This mapping can be implemented by the equations:

xb = (1− xs)/2 and xs = 1− 2xb (2)

With this mapping, we can use the logic XOR operation (⊕)
to perform the multiplication between the input data and the
coefficients. Usually, the output will be further processed using
normal multi-bit arithmetic, and we will need to map the
output back to signed numbers. This can be done easily by
noting that:

MFs(xs(n)) =

N−1∑

k=0

xs(n+ k)cs,k

=

N−1∑

k=0

(1− 2(xb(n+ k)⊕ cb,k))

= N − 2MFb(xb(n)) (3)

To save output bits, we could also notice that we could save
one bit in the word length of the following blocks by scaling
the signed output by two. As the input part of the MF is easily
implementable with simple logic, we only need to implement
adding the bits together efficiently.

s0s1s2s3

x4

x12

x13

x14

x0

x1

x2

x3

HA0c
s

HA3c
s

HA1c
s

HA2c
s

HA4c
s

HA5c
s

HA41c
s

HA42c
s

HA43c
s

HA44c
s

HA37c
s

HA38c
s

HA39c
s

HA40c
s

HA33c
s

HA34c
s

HA35c
s

HA36c
s

HA6c
s

HA7c
s

0

0

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

3

3

3

n/a

n/a

n/a

n/a

n/a

Fig. 2. 15-input linear multi-input adder with ripple carry. (HA=half adder)

B. Reduction Adder

We will start by considering the problem of adding N 1-bit
numbers. This will later be expanded to multi-bit numbers.
The trivial implementation is to just loop through the inputs
and add them into the running sum. This is illustrated in Fig. 2
for an example case of adding 15 inputs. The figure omits the
middle 7 stages of the circuit for brevity. The resulting circuit
has one less adders as there are inputs, and the word length of
each adder will be as big as it is needed to hold the maximum
result at that stage. As we can see, it uses a lot of adder
stages and creates a very long critical path (marked with red
colored cells). As the inputs are only 1-bit wide, most of the
circuit is just propagating the carry with the result of previous
addition. A smarter way to implement the function would be
to organize the addition in a binary tree with two-input adders
of increasing width. This will offer a significant improvement
to the length of the critical path as well as a reduction of
the needed 1-bit adders. The number of levels in the tree is
dlog2 Ne. If the number of values to be added at each stage
is odd, then one of the values will be added at a later stage.
Each level of the circuit will need an additional bit of word
length compared with the previous one. This adder structure
is shown in Fig. 3.

We can take the tree structure approach further by noticing
that the full adder cell takes 3 inputs and provides a two-bit

128 Publication 3

i
i

“thesis” — 2018/10/5 — 11:01 — page 129 — #149 i
i

i
i

i
i

s0s1s2s3

x4x5x6x7x8x9x10x11x12x13x14 x0x1x2x3

HA0c
s

FA0c
s

HA1c
s

HA2c
s

HA3c
s

HA4c
s

HA5c
s

HA6c
s

HA7c
s

FA1c
s

HA8c
s

FA2c
s

HA9c
s

HA10c
s

HA11c
s

FA3c
s

HA12c
s

FA4c
s

FA5c
s

HA13c
s

FA6c
s

FA7c
s

HA14c
s

FA8c
s

FA9c
s

s4

0000000

0000

0 0

0

1111

1 1

1

22

23

Fig. 3. 15-input binary tree reduction adder with ripple carry adders. (HA=half adder, FA=full-adder)

FA4

c s

FA3

c s

FA2

c s

FA1

c s

FA0

c s

FA5

c s

FA6

c s

FA8

c s

FA7

c s

FA9

c s

FA10

c s

s0(0)s1(0)s0(1)s1(1)s0(2)s1(2)s0(3)s1(3)s0(4)s1(4)

s0(5)

s0(6)

s1(5)

s1(6)s1(8)

s1(7)

s1(9)

s2(1)

s2(0)

s2(3)s3(0)

s0s1s2s3

x4x5x6x7x8x9x10x11x12x13x14 x0x1x2x3

s2(2)

Depth 0

Depth 1

Depth 2

Depth 3

Depth 4

00000

0

0

1

1

1

2

Fig. 4. 15-input binary reduction adder (bitcount).

result. We can build a network of one-bit full-adders in a tree
structure which allows us to reduce the depth by log2 3 and
achieve a relatively low delay in the order of O

(
log3 N +

log2 N
)

times the delay of the single full-adder delay. The
log3 N term is due to the number of inputs that need to be
added to get the LSB bit, and the log2 N term is due to the
final carry propagation chain from the final adder producing
the LSB of the result to the MSB bit of the result. This number

is equal to the number of bits in the result. The generation
of the reduction adder network is a relatively straightforward
process: To generate the LSB of the result, we first add all
the input bits with full-adders which produce N/3 sum and
carry signals. Then we add all the sum signals together again,
and repeat the process until there is only a single sum signal
left. This is the LSB of the result. To generate the next bit,
we perform the same process to the carry signals produced by
computing the LSB bit. We need to repeat the process until we
have a single carry bit left. This is the MSB bit. In selecting the
signals to be added a simple rule must be followed to get the
shortest possible delay through the network. The rule is that
one should always select the inputs that have the shortest path
from the primary inputs. The resulting structure for adding
15 inputs is shown in Fig. 4. The bit weights are indicated
with numbers in circles and the signal depth is indicated on
the right. The intermediate signals are labeled according to
the output bit position (subscript) and assignment order (in
parenthesis). The sum and carry outputs of the full-adders are
indicated by s and c respectively. It is possible to compute the
number of elements we need to implement an N -input adder.
When using normal full-adders, we take 3 inputs and produce
2 outputs with 2 different bit weights. To sum all N input bits
to produce a single LSB we need to reduce the input by N−1
times. Each full adder reduces the number of inputs by 2. Thus
we need N0 = (N−1)/2 adders at each bit weight. To handle
the case where N is even, we need to use one additional adder.
As each adder also produces a carry bit output, there will be as
many carry outputs for the next level as there are adders. For
the next level, we perform the same reduction again. This time
we need N1 = d(N0−1)/2e = d(d(N−1)/2e−1)/2e adders.1

1dxe is the ceiling of x, i.e. the smallest integer n such that n ≥ x.

129

i
i

“thesis” — 2018/10/5 — 11:01 — page 130 — #150 i
i

i
i

i
i

TABLE I
COMPARISON OF DIFFERENT MF ADDER IMPLEMENTATIONS

Linear Tree (ripple) Reduction Tree
Inputs size carry size carry size carry

15 23 18 18 7 11 5
31 62 35 41 9 26 7

511 2044 519 757 17 502 13
1023 4604 1032 1524 19 1013 15
2046 10230 2056 3057 21 2036 16
4092 22505 4103 6125 23 4082 18

This translates to approximately Ni ≈ (N − 2i+1 + 1)/2i+1

adders at each bit weight level. We can now easily compute
the approximate total number of adders needed:

Nadd =

dlog2 Ne∑

i=0

N − 2i+1 + 1

2i+1
≈ N − log2 N (4)

When the number of inputs becomes large, the generation of
the adder network becomes a tedious process if performed
by hand. To generate the large networks needed for the MF
implementation, a program was developed to generate the
VHDL implementation of the reduction adder.

A comparison of the reduction adder implementation against
the trivial linear adder and the binary adder tree is shown in
Table I. The table shows the resulting size and propagation
delay with respect to a full-adder for a few of different
numbers of inputs. It is clear that this is the worst possible
implementation in both the size and the delay. The tree
adder provides more than 3 times size reduction and cuts the
propagation delay to roughly 2 log2 N from N + log2 N of
the trivial implementation. The reduction adder tree offers
additional reduction in size compared with the binary tree
adder cutting by a factor of 1.5, and some reduction to the
propagation delay due to the shallower depth of the tree
(log3 N vs. log2 N).

C. Extension to Multi-Bit Inputs

The preceding discussion was only about adding 1-bit
inputs. It is possible to use the summation block explained
above as a building element for a system with either larger
input word length, or equally well multiple inputs. Handling
multi-bit inputs can be done by either extending the above
algorithm for generating the adder tree to consider multiple
input bit weights when assigning the adder elements, or using
time-multiplexing for processing each input bit weight at a
time, and then include a post processing stage which combines
the individual 1-bit sums. The latter also suggests a way of
handling larger additions by smaller summation blocks. As the
aim is to keep the hardware size manageable, we will explore
the second solution.

We represent any non-negative valued integer n as a linear
combination of M = dlogb ne powers of the basis b:

n =

M−1∑

i=0

nib
i, 0 ≤ ni < b (5)

Where {n0, n1, . . . , nM−1} is the M-digit representation of
the number. As is typical in digital circuits, we will use binary
numbers (b = 2, ni ∈ {0, 1}) in the following discussion. To
extend the representation to cover negative numbers, we have
a few alternatives. To evaluate them, we need to take a deeper
look at how the coefficient multiplication works. We will only
consider coefficients with values ±1, as this is the most fre-
quent and the simplest case, and the multiplication reduces to a
sign change. The simplest number format, the sign-magnitude,
just means that the highest digit is interpreted as the sign of
the number. Unfortunately, this does not translate to a linear
combination of the digits, but the sign needs to be handled
separately, which means that it is unsuitable for our MF use
case. Perhaps the most used format is the two’s complement,
where we assign a weight of −2M−1 to the highest digit,
and can use the linear combination principle. Unfortunately,
the method for negating the number is somewhat complex
requiring us to complement each digit (ni = 1 − ni), and
add one to the result. This format makes the sign reversal
for the coefficient multiplication unnecessarily complicated.
By using one’s complement representation, we can negate a
number by simply complementing all of its digits. This makes
it very easy to implement the coefficient multiplication within
the MF. Fortunately, one’s complement numbers can also be
represented as linear combination of the digits. We can easily
see that we can assign a weight of −(2M−1−1) to the highest
digit. Complementing a binary digit means just inverting the
bit. We can now write our signed numbers as:

xs =

M∑

i=0

xiwi, wi =

{
2i for i < M,

−(2M−1 − 1) for i = M
(6)

Now considering the operation of MF using one’s complement
binary numbers with coefficient values c = ±1, and using the
mapping from (1) we can write:

xs · cs =
(

M∑

i=0

xiwi

)
· cs =

M∑

i=0

(xi ⊕ cb)wi (7)

Now applying the MF to the signed M-digit numbers can be
written as:

ys(n) = MFs(xs(n)) =

N−1∑

k=0

xs(n+ k)cs,k

=

M∑

i=0

(
N−1∑

k=0

xi(n+ k)⊕ cb,k

)
wi

=

M∑

i=0

MFb(xi(n))wi (8)

Where MFb(x) is the binary MF utilizing one bit coefficient
multiplication with single-bit coefficients. We can implement
this in a time-multiplexed way using the structure illustrated in
Fig. 5, where the output values need to be collected from M
consecutive outputs of the MF hardware block. The basic idea
for this structure was first presented by the author in [7], [8].
As the output is represented using one’s complement notation,

130 Publication 3

i
i

“thesis” — 2018/10/5 — 11:01 — page 131 — #151 i
i

i
i

i
i

SIGNAL
SHIFT REGISTER

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

REG

Output

Signal select

COEFFICIENT
STORAGE

MULTIPLIER
(XOR)

ADDER

Input
signals

Fig. 5. Multiplexed MF input structure.

it usually needs to be transformed to two’s complement format
for further computations.

Using similar principles, it is possible to extend the same
treatment also to handle complex valued or even separate input
streams. If we first consider a matched filter with complex
valued inputs (x(n) = xi(n) + ixq(n)). Its output can be
represented as:

y(n) = MF(x(n))

=

N−1∑

k=0

(xi(n+ k) + ixq(n+ k)) ck

=

N−1∑

k=0

xi(n+ k)ck + i

N−1∑

k=0

xq(n+ k)ck

= MF (xi(k)) + iMF (xq(k)) (9)

This can again be implemented in a time-multiplexed way with
the same structure as used for the multi-bit signals, but then we
need to treat the consecutive outputs as the real and imaginary
parts. It is easy to see that the same idea can be extended to
multiple input streams, which can be handled separately at
the output. Consider for example that the MF has a limited
bandwidth, end it operates on signals near DC. We could have
multiple differently downshifted (in frequency) inputs to a MF
to look for the signal at a wider frequency range. For this kind
of use, we will use the same MF coefficients for all inputs.

III. OTHER OPTIMIZATIONS FOR MF IMPLEMENTATION

In this section, we will take a short look at a few optimiza-
tions which improve the use of the MF in GNSS applications.
First, we will examine how the sensitivity can be improved by
employing integration, and then we look how we can adapt the
MF to changing signal frequencies.

A. Output integration

We can improve the signal detection statistics by integrating
the correlated signal for longer duration [9]. The correlation
can be either coherent (normal integration) or non-coherent
(integrating the norm, e.g. the absolute value, of the signal).
The spread spectrum modulation used in GNSS utilizes a

I Q

MF core

Coherent

integration

Non-coherent

integration

DATA SHIFT REG

REF SHIFT REG

MULTIPLY & SUM

ACC MEM

NORM

MEMACC

Fig. 6. Post-MF integration structure.

periodic spreading code. By using a MF which is matched
to the spreading code, i.e. whose length is equal to the code
period, we notice that the outputs from the MF which are
separated by a multiple of a code period will correspond to
correlation results with identical code offset positions. We can
show that adding up the MF outputs separated by one code
period is equivalent to performing correlation over multiple
code periods. Similarly, if we perform a norm operation (e.g.
the magnitude of the complex valued outputs) we can integrate
the MF outputs non-coherently for each code offset. This
allows performing parallel long correlation for all searched
code phases. Furthermore, as the MF output rate is equal to its
input rate, we will not need to run the post-MF accumulation
at a rate greater than the MF outputs become available.
Also, since the MF outputs are produced sequentially, it is
easy to use RAM for storing the intermediate accumulation
results efficiently. The structure of such post-MF integration
is illustrated in Fig. 6. Coherent and non-coherent integration
is naturally performed in a time-multiplexed way and requires
computational hardware for one signal. Of course, we will still
need to separate storage elements for all the integration sums,
but this is easily and efficiently realized as normal RAM.

The post-MF integration is an efficient way to improve the
acquisition sensitivity of the MF based system. By increasing
the coherent integration time, the bandwidth of the signal
detector becomes smaller. It is possible to implement a post-
MF mixer bank to do the coherent integration at different
center frequencies. This is more efficient than performing the
correlation itself multiple times, as this will save the corre-

131

i
i

“thesis” — 2018/10/5 — 11:01 — page 132 — #152 i
i

i
i

i
i

lation computation. The MF will limit the usable bandwidth
to approximately reciprocal of the code period. For a wider
bandwidth, we need use a mixer before the MF. Here we can
utilize multiplexing of the MF inputs to save computational
hardware.

B. Input Decimation to a Multiple of the Chipping Rate

The MF is matched to a fixed length signal. If the signal
is sampled, then the MF will be matched to the reference
signal of a fixed number of samples. The frequencies of the
GNSS signal transmitted by the satellites will be subject to
Doppler shift due to the relative motion between the satellites
and the receiver. The effect will change the duration of the
spreading code slightly from the nominal value. Also, typically
the reference oscillators in the GNSS receivers are not running
at exactly the designed frequency due to various nonidealities.
With the post-MF integration, we can use very long integration
times, and eventually it will happen that the code phase of the
received signal will shift with respect to the local time base so
much that the timing of the MF outputs will no longer match
those in the beginning of the integration. This will ruin the
post-MF integration, as the code offsets will no longer line up
to the same storage elements.

Fortunately, it is possible to remedy the situation by altering
the sampling frequency slightly so that it will again match
to the apparent received signal code frequency. Normally
a sample rate change requires decimation or interpolation
filters, but in this case, the frequency change is so small that
practically no aliasing or images happen, and the filters can
be left out. A practical implementation has been proposed by
the author in [1], [10]: The incoming signal is decimated to
an integer multiple of the chipping rate before feeding it in
to the MF by an integrate-dump type filter which is driven by
a NCO delivering the exact chipping rate (or integer multiple
of it). This method results in average an exact match of the
length of the incoming chips each MF tap. This cancels out
any code Doppler and it allows the MF to be kept in sync
with the incoming signal. This implementation is depicted in
Fig. 7. This arrangement will cause some momentary timing
errors to the signal entering to the MF, but the summation
of the MF will smooth them out especially if combined with
post-MF integration. There are two advantages of this setup:
it allows further integration of the MF outputs as the correct
peak would not shift over time, and it also allows tracking the
signal by selecting two outputs around the peak for the code
discriminator for DLL tracking algorithm.

IV. CONCLUSIONS

In modern GNSS receivers the ability to acquire enough
satellites for a position fix as quickly as possible has become
a key performance criteria. This requires advanced massive
parallel correlation methods. The matched filter is one time-
domain implementation of a massively parallel correlator. We
have presented two aspects of optimizing MF based GNSS
receivers. By utilizing an efficient method of adding a huge
number of single-bit numbers, it becomes possible to build

CHIP

NCO

DEC

REF

PRN

CARR

NCO

DATA SHIFT REG

REF SHIFT REG

MULTIPLY & SUM

LPF

I

Q

I Q

MF core

clock

Fig. 7. Block diagram of MF input decimation to match incoming signal.

area-efficient matched filters. Additionally, the paper presented
methods to enable long coherent and non-coherent integration
with MF based acquisition and tracking. These make the
MF an attractive building block for high performance GNSS
receivers. The presented optimization methods can be used
also for building other MF-like GNSS receiver structures like
the Group correlator [11].

REFERENCES

[1] V. Eerola, “Rapid parallel GPS signal acquisition,” in Proc. of the 13th
International Technical Meeting of the Satellite Division of The Institute
of Navigation (ION GPS 2000), Salt Lake City, UT, Sep. 2000, pp. 810–
816.

[2] FCC Wireless 911 Requirements Fact Sheet WTB Policy, FCC, Jan. 2001.
[3] F. van Diggelen, “Indoor GPS theory & implementation,” in Position

Location and Navigation Symposium, 2002 IEEE. IEEE, 2002, pp.
240–247.

[4] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread
Spectrum Communications Handbook, rev. ed. New York, NY, USA:
McGraw-Hill, 1994, pp. 855 – 884.

[5] G. Turin, “An introduction to matched filters,” IRE Transactions on
Information Theory, vol. 6, no. 3, June 1960.

[6] V. Eerola and J. Nurmi, “Area estimation of time-domain gnss receiver
architectures,” in Localization and GNSS (ICL-GNSS), 2014 Internatio-
nal Conference on. IEEE, 2014.

[7] V. Eerola, J. Takala, and T. Ritoniemi, “Rapid zero-knowledge gps signal
acquisition,” in Signal Processing Conference, 2000 10th European.
IEEE, 2000, pp. 1–4.

[8] V. Eerola and T. Ritoniemi, “Matched filter and spread spectrum
receiver,” U.S. Patent 7,010,024, Mar. 7, 2006.

[9] F. van Diggelen, “Indoor GPS, wireless aiding and low SNR detection,”
Navtech Seminars, Course Notes Course 218, 2001.

[10] V. Eerola and T. Ritoniemi, “Signal acquisition system for spread
spectrum receiver,” U.S. Patent 6,909,739, Jun. 21, 2005.

[11] V. Eerola, S. Pietilä, and H. Valio, “A novel flexible correlator archi-
tecture for GNSS receivers,” in Proc. of the 2007 National Technical
Meeting of The Institute of Navigation (ION NTM 2007), San Diego,
CA, Jan. 2007, pp. 681–691.

132 Publication 3

i
i

“thesis” — 2018/10/5 — 11:01 — page 133 — #153 i
i

i
i

i
i

PUBLICATION 4

Copyright c©2007 Ville Eerola, Samuli Pietilä, and Harri Valio. Reprinted
with permission. First published in:

Ville Eerola, Samuli Pietilä, and Harri Valio, “A Novel Flexible Correlator
Architecture for GNSS Receivers,” in Proceedings of the 2007 National
Technical Meeting of The Institute of Navigation (ION NTM 2007), San
Diego, CA, Jan. 2007, pp. 681–691.

i
i

“thesis” — 2018/10/5 — 11:01 — page 134 — #154 i
i

i
i

i
i

134 Publication 4

i
i

“thesis” — 2018/10/5 — 11:01 — page 135 — #155 i
i

i
i

i
i

A Novel Flexible Correlator Architecture for
GNSS Receivers

Ville Eerola, Samuli Pietilä, and Harri Valio
Nokia Corporation

BIOGRAPHY be used as the core processing block in a modern multi-
 system GNSS receiver due to its flexibility and efficiency.
Ville Eerola is a Senior Specialist at Nokia Corporation in
Finland. He received an MSc degree in electrical The group correlator typically computes a number of
engineering from Tampere University of Technology in correlation results against a reference signal for a subset of
1990. From 1992 to 2003 he was involved in digital ASIC the full code period. A second stage carrier mixer and a
design and GPS receiver development at VLSI Solution coherent integrator can be placed after the GC for further
and u-Nav Microelectronics. He joined Nokia in 2004. He coherent integration of the correlation results. The GC
has been involved in GPS receiver development since performs the correlation operation in blocks of samples,
1992 and has led the development of several GPS where each block represents the length of the correlation
receivers. His current research interests include GNSS performed inside the GC. By using multiple blocks of
receiver hardware implementation. He is a co-founder of samples the full code period can be covered.
VLSI Solution Oy and u-Nav Microelectronics Alternatively, multiple codes can be used with a smaller
Corporation. correlation range. One GC contains one or more replica
 code inputs, each of which is split into several parts of the
Samuli Pietilä is a Research Manager at Nokia same size. The GC will then perform partial cross-
Corporation in Finland. He received his MSc and correlations between the input data and the replica parts.
Lic.Tech. degrees from Tampere University of Coherent integration can extend the correlation length to
Technology, Finland, in 1994 and 1996 respectively. cover the entire replica code duration or more, even
Between 1994 and 1996 he worked for Tampere though only a part of all possible code phase offsets would
University of Technology, Control Engineering be covered.
Laboratory. Since 1996 he has been with Nokia
Corporation in various research and development A complete GPS+Galileo receiver baseband with state-of-
positions. His current interests include positioning the-art performance based on the GC architecture is
algorithms and methods for mass market devices. described and the parameter selection for its GC design is
 explained. A system simulator, which models the receiver,
Harri Valio is a Senior Research Manager at Nokia has been developed using SystemC and this has been used
Corporation in Finland. He received an MSc degree in to evaluate the receiver operation in different scenarios.
electrical engineering from Tampere University of The performance of the designed receiver in some of the
Technology in 1992. He joined Nokia in 1992 and has scenarios will also be shown.
been working in various research, development and
management positions since. His current interests include INTRODUCTION
positioning methods for mass market devices.
 The goal of the work presented in this paper was to
ABSTRACT develop a flexible correlation processing unit that could be
 used in a GNSS receiver for receiving both GPS and
This paper describes a new architecture for the correlation Galileo signals simultaneously. The important system
processing inside a GNSS receiver. The group correlator parameters for GPS and Galileo L1/OS are shown in
(GC) is a code correlation device, which is optimized for Table 1 below.
parallel reception of multiple signals. It utilizes time-
multiplexing to share some of the signal processing The receiver design complexity is affected by the
hardware amongst several independently operating selection of the sample rates and signal bandwidth. For the
channels. The GC can be used both in acquisition phase acquisition phase, it is advantageous to use as low a
processing as well as in tracking phase processing. It can sample rate as possible to maximize the code search range

of the receiver with the fixed number of correlator bins.

681

135

i
i

“thesis” — 2018/10/5 — 11:01 — page 136 — #156 i
i

i
i

i
i

for the acquisition phase and the tracking phase is
implemented by traditional correlator hardware. Some
solutions are also known to use correlator structures that
can be configured as acquisition accelerators in one mode
and as tracking correlators in another, but they are not able
to perform acquisition and tracking at the same time. To
solve the acquisition problem, it is necessary to implement
the receiver by providing it with a large number of
correlators and by using a long integration time. At
present, manufacturers claim to have receivers with more
than 200,000 “effective” correlators [3] or over 30,000
real-time hardware correlators [4]. For the sake of
comparison, it should be mentioned that the first hand-
portable GPS receivers only had 12 or even fewer
correlators.

GROUP CORRELATOR

Traditionally there have been two main categories of
hardware for performing time-domain correlation in
direct-sequence spread spectrum (DS-SS) receivers: the
correlator and the matched filter (MF). The acquisition
and tracking problems in spread spectrum receivers are
described e.g. in the [5],[6],[7], and the references cited
therein. Correlators have been used both for acquisition
and tracking while MFs are mainly used for acquisition
only.

In the traditional correlator, shown in Figure 1(a), the
replica code is multiplied one sample at a time and the
results of the multiplication are accumulated sequentially
until a desired number of samples have been processed.
The numerically controlled oscillator (NCO) will give a
pulse when the replica code needs to be advanced by one
chip, and the code generator generates the replica code
one chip at a time. This correlator structure will compute a
cross-correlation between the incoming samples and the
replica code at one particular time offset. If cross-
correlations at different time offsets would need to be
computed, the correlator structure would need to be
replicated accordingly. The correlation result would be
equivalent even if the incoming data and replica code
would be delayed by an equal amount of time using e.g. a

Table 1. GNSS system parameters

Parameter GPS Galileo

For a reasonably low penalty due to the worst case
mismatch of code timing, we chose to use a sample
frequency that is twice the chipping frequency. For GPS
this is about 2 MHz. For the Galileo L1/OS BOC(1,1) a
signal of about 4 MHz would be needed for similar
performance. The performance with Galileo signals with a
4 MHz sample rate would be slightly worse than the GPS
performance due to the different shape of the
autocorrelation function. The tracking accuracy of the
receiver is a function of the pre-correlation bandwidth and
the signal-to-noise ratio. It is known that a sample rate in
the order of 10 MHz is a reasonable trade-off between
receiver implementation cost and tracking performance. In
order to simplify the design a sample rate of about 8 MHz
was selected, as it is an integer multiple of the acquisition
sample rates. The exact sample rates depend on the system
clock selection, but as long as they are not exact multiples
of the GNSS chipping rates any value reasonably close to
the above rates could be chosen. In the following
discussion we will use these rounded numbers when
discussing the frequencies.

The new cellular Assisted GPS (AGPS) standards [1], [2]
expect a high sensitivity with rapid signal acquisition, and
the proposed design will comply with these requirements.
At the same time, minimization of the silicon area is a key
optimization target. The receiver could be used in both
assisted as well as in standalone mode. In the AGPS
mode, various levels of assistance data would be available
in various situations. In the best case, microsecond-
accurate time and very accurate frequency would be
known, and in the worst case only the ephemeris
information would be available as assistance. In order to
maximize the performance in all conditions, the receiver
should be able to search both the full code uncertainty of a
small number of satellites as well as a small uncertainty
range of more satellites. A GNSS receiver needs to
perform both acquisition and tracking operations for full
functionality. Additionally, in normal operation, some of
the received signals are being searched for while others
are being tracked. It would be desirable to be able to
handle both cases with minimal hardware and control
complexity.

In many older GNSS receivers correlator hardware
comprising only a few code delays per channel has been
used to acquire and track the signal. These kinds of
receivers operate too slowly for current demands.
Therefore some new approaches have been developed in
which separate acquisition accelerator hardware is used

Chip Rate (MHz) 1.023 1.023
PRN code length in chips 1023 4092
BOC code factor (samples per chip) 1 2
Minimum sample rate (MHz) 2.046 4.092
Total code search range in samples 2046 16368

Code NCO Code
Generator

Pulse PRN code

Samples

NC

(a) Traditional correlator

Code NCO Code
Generator Shift Register

Shift Register

Pulse

Samples

PRN code

NC

(b) Modified version of the traditional correlator

Figure 1. Block diagrams of correlator structures

682

136 Publication 4

i
i

“thesis” — 2018/10/5 — 11:01 — page 137 — #157 i
i

i
i

i
i

If we would like to compute cross-correlation at M
different time-offsets we would need to have 3M samples
total in the shift registers. For example, 2M samples in the
code replica shift register and M samples in the input data
shift register. Also there should be a means of selecting
the samples at different positions of the shift-registers for
different time-offsets. Fortunately there is a better way of
implementing the computation of M correlation results,
which is shown in Figure 2(b). The data and code shift
registers are both M samples long, and there is a code
holding register of M samples that is loaded from the code
shift register after every Mth sample period. While the
code replica is held static, the data is shifted through the
data shift register, and the parallel multiply and add circuit
automatically computes the cross-correlation at M
consecutive time-offsets spaced by the sample period.
Every Mth output from the multiply and add circuit will
correspond to the same time-offset and is already
accumulated over M samples. If each of these results is
now accumulated Nc/M times, we have M cross-
correlation results covering M different consecutive time-
offsets.

Comparing the modified serial-parallel correlator structure
of Figure 2(b) to the matched filter displayed in Figure 3,
we see some similarities, but can also note some important
differences. The length of the MF is typically made equal
to the replica code, and thus the code register can remain
static after it is loaded with the correct code samples at the
beginning of the operation. In the serial-parallel correlator,
the code replica is continuously generated, and
periodically loaded into the code register from the shift
register. If the length of the MF is equal to or an integer
multiple of the code length, then the MF computes a
complete cross-correlation between the replica and the
incoming data. If the MF length is shorter than the replica
code, then the result is only a partial correlation, which is
non-optimal from the GNSS operation point of view, as
the correlation result distance between the maximum and
the results at the other time-differences is not as large as it
could be. This will degrade the performance of the
receiver. Some solutions have been proposed to overcome
this problem but the most usual way still is to make the
MF length equal to the entire spreading code.

The traditional correlator based DS-SS receiver
architecture as shown in Figure 4 is well suited for
tracking mode operation in GNSS receivers, where only a

Multiply & Add

Code NCO Code
Generator Shift Register

Shift Register

Pulse

Samples

PRN code Sample every
Mth output

NC/M

(a) Basic Serial-parallel correlator

Multiply & Add

Code NCO Code
Generator Shift Register

Shift Register

Code Register

Pulse

Samples

PRN code

NC/M

times M

Load on every
Mth sample

(b) Modified serial-parallel correlator for multiple
correlation results

Figure 2. Block diagrams of a serial-parallel correlator

shift register (SR) as depicted in Figure 1(b). In this case
we can alter the cross-correlation time offset between the
replica code and the incoming samples by selecting the
position where the two inputs to the multiplication are
taken from. Of course, more than one multiplier and one
accumulator are still needed if more than a single result is
desired. The use of a shift register to delay the output of
the replica code generator is widely employed in DS-SS
receivers to produce different code phase offsets for
correlating them with the input data stream.

We can get the same time-offset regardless of the absolute
position in the shift registers of Figure 1(b) as long as the
relative positions are kept constant. Thus if the shift
registers are long enough, we can compute several
equivalent correlations at the same time using this
structure. As we can see, the multiplication results are
accumulated over a time. It is mathematically equivalent
to multiply and add several samples together in parallel if
the final accumulation waits between summations until the
shift register has been updated with fresh samples so that
the same incoming samples are used only once.

Figure 2(a) illustrates how such a correlator can be
constructed. Now, if the desired total correlation length is
Nc samples, and the parallel multiply and add operates on
M samples at a time, the final accumulation needs to be
repeated Nc/M times at every Mth sample period. For
computing more than one correlation result in parallel, it
is possible to utilize the single multiply and add block in a
time-multiplexed fashion up to M times using different
time-offsets during this period and then perform the final
accumulation of the results separately. To be able to do
this for K different time-offsets the length of the shift
registers should have at least K additional samples
compared to the number of samples that are multiplied
and added in parallel.

Multiply & Add

Code NCO Code
Generator Code Register

Shift Register

Pulse

Samples

PRN code

Load code initially

Figure 3. Block diagram of a matched filter
implementation

683

137

i
i

“thesis” — 2018/10/5 — 11:01 — page 138 — #158 i
i

i
i

i
i

few different code phase offsets are needed for the
tracking loop. Often three are enough: one correlator
positioned at the aligned code phase offset (prompt), and
one earlier and one later code phase offset for the code
tracking loop discriminator. For multipath detection and
rejection, more correlators than just the minimum amount
could be employed. However, the hardware overhead of
adding more code phase offsets quickly becomes
prohibitive, as a great deal of functionality would need to
be replicated for each additional code phase offset to be
computed. Thus, the traditional correlator is not very well
suited for the GNSS acquisition process requiring rapid
search over large code phase offset uncertainties.

The traditional MF-based receiver architecture as
displayed in Figure 5 has long been used in the acquisition
process in some DS-SS receivers [8]. The MF architecture
is well suited to the acquisition process, as it can very
rapidly produce correlation results for all possible code
phase offset since it will produce a new correlation result
for every new input sample. As input data shift register
and the multiply and add arithmetic are two very large
components of the MF implementation, it would be nice
to time-multiplex these when trying to acquire more than
one transmitted signal, which is commonly needed in
GNSS applications. However, the MF length is typically
very large and consequentially the bandwidth of the MF is
relatively small. This makes it problematic to share the
input shift register, if the center frequencies of the
received signals are not very close to each other. E.g., in
the GPS the duration of one C/A code period is 1 ms, and
the usable bandwidth of the MF would be in the order of
500 Hz. As the Doppler frequencies for different satellites
are spread over about 10 kHz, it would be unlikely that
many satellites could be found from the same 500 Hz
frequency range. The multiply and add computation block
in the MF will need to multiply each corresponding
replica code and input data sample and add all of these
together in just one sample period. In a typical GPS
receiver case, there would be 2046 samples to process
every 0.5 us. It is difficult to economically perform this
computation in time-multiplexed fashion for more than
just a few channels. The MF is not very optimal for

tracking mode operation as it has high overhead for
producing just a few correlation results. The maximum
output would also drift over time since the replica code is
static, which makes the design of the tracking algorithm
more challenging.

It is possible to implement the MF with length that is less
than the full PRN code period. For short code lengths, the
correlation properties of a partial code are far from
optimum. The serial-parallel correlator structure shown in
Figure 2(b) would solve the problems associated with the
partial correlation by providing correlation over the full
PRN code period or even more. This makes it more
feasible to time-multiplex the multiply and add arithmetic
block, but this does still suffer from the narrow bandwidth
due to the number of samples accumulated. However, as
the replica code is now updated periodically, it is possible
to track the incoming signal much more easily, and
maintain the code phase offset between the incoming
signal and the replica code over extended periods of time.
A DS-SS receiver architecture utilizing the serial-parallel
correlator is illustrated in Figure 6.

The serial-parallel correlator has already many desirable
properties for GNSS receiver architecture, but it is still not
optimized for operation with more than a single input
signal. The long coherent correlation makes the bandwidth
very small, which causes a problem with the use of long

Carrier
NCO

Code
NCO

Code
Generator

Receiver
Processor

Early

Prompt

Late

Input
Samples

Code
replica
control

Carrier
replica
control

Shift register

Figure 4. Traditional correlator based DS-SS receiver
structure

Carrier
NCO

Code
NCO

Code
Generator

Receiver
Processor

Input
Samples

Load code
replica

Carrier
replica
control

Code
replica
control

Shift register

Shift register

Figure 5. Traditional MF-based DS-SS receiver structure

Carrier
NCO

Code
NCO

Code
Generator

Receiver
Processor

Shift register

Input
Samples

Carrier
replica
control

Shift register

Code
replica
control

NParallel
load

N sample
delay

Code register

Figure 6. Serial-Parallel correlator based DS-SS receiver
structure

684

138 Publication 4

i
i

“thesis” — 2018/10/5 — 11:01 — page 139 — #159 i
i

i
i

i
i

correlation in reception of multiple GNSS signals whose
carrier frequencies are separated due to the different
Doppler frequencies. It is possible to divide the integration
into two pieces while keeping it mathematically
equivalent. Also, the mixing with the carrier replica code
can be split into two parts, and the second part can be
moved after the first integration, provided that the
frequency of the second component of the carrier replica
is low enough to be considered essentially constant over
each of the shorter integration periods of the first part of
the integration. Splitting the carrier replica mixing
function allows sharing the largest part of serial-parallel
correlation hardware, as the bandwidth of the correlator
itself can pass all received signals. The second stage
mixing then allows continuing the integration over the full
code period or longer for each of the received signals
separately. The first carrier replica should be the same for
all incoming signals, and the second carrier replica needs
to be adjusted for each signal separately. In the GNSS
application, the first carrier replica part is used to cancel
out any common frequency offsets such as residual
intermediate frequency (IF), reference oscillator error etc.,
such that the frequency range of the incoming signals is
centered on zero frequency after the first mixer. The
second part of the carrier replica is then used to track the
individual GNSS signals.

Now that we have found a way to overcome the problems
of sharing the correlation hardware amongst channels, we
can construct the correlator hardware for sharing much of
the hardware while making it possible to operate on more
than one GNSS signal. If we add shift and code registers
and replica code generators for each GNSS signal to be
received into the structure shown in Figure 2(b), and time-
multiplex the multiply and add computation so that the
data in the sample shift register is multiplied and added
with all the code replicas within one input sample period,
we can cross-correlate the input with NP code replicas at
M different code phase offsets (time-offsets). When we
multiply the correlation results with the second part of the
carrier replica, we need to take into account that each NP
consecutive output corresponds to a different incoming
GNSS signal, and the mixing also needs to be time-
multiplexed accordingly. We can also use the same idea to
increase the code phase offset coverage by adding more
code registers that get their input from the previous code
registers associated with the same code replica generator.
By using NR code registers we can now cover M·NR
different code phase offsets for each replica code with
bandwidth which is equal to covering only M offsets. This
group correlator architecture allows us to efficiently
compute M-samples long cross-correlations between the
input samples and NP·NR code replica segments. The same
principle can be extended to also utilize more than a single
input sample SR, which is advantageous for GNSS
receivers operating in both acquisition and tracking modes
simultaneously. The simplified block diagram that shows
the basic architecture of the group correlator is displayed
in Figure 7.

Hardware Implementation

While it is possible to use the group correlator architecture
to always compute all possible cross-correlation
combinations between the input sample SR(s) and the
replica code register(s), a big advantage in implementation
can be achieved by carefully arranging the connections of
the building blocks. Considering the application of GNSS
receivers, we note that the receiver needs to operate in
several different modes, and the best input signal sample
rate for the modes will not be the same. As discussed
before, the group correlator architecture can cope with
more than a single input sample rate for one GC block.
This will require, however, that each code replica shift and
code register is associated with a certain input sample rate,
as the code SRs and the sample registers need to be
updated at the same rate to maintain the time
synchronization. This would mean that some of the code
register loads would occur in different times with respect
to the other registers, and it might become a challenging
task to schedule the computation of the results between
input samples. To allow discrete time operation, the clock
rate of the GC should be equal to an integer multiple of
the least common multiple of the input sample rates
selected such that there will be enough clock cycles to
compute all desired cross-correlations within the
corresponding input samples. If the other sample rates are
integer multiples of the lowest sample rate, the scheduling
can be made much easier. To minimize the required clock
frequency, the GC should produce outputs every clock
cycle, and this will limit the usable choices even further.
Fortunately, it is still possible to find suitable sample rates
and number of code registers (NR) for use with GNSS
receivers. If the sample frequencies associated with the
input sample SRs and their associated code replica

Code SR (GC length)

Sample SR (GC length)

Code R (GC length)

Code SR (GC length)

Sample SR (GC length)

Code R (GC length)

Select

Select

Select

Select

Group Correlator

Correlation Block

GC out

Samples
Bus

Code
Bus Number of

code replicas
(NP)

Number of
code registers

(NP·NR)

 Number of
inputs
(NI)

Figure 7. Conceptual block diagram of the group
correlator

685

139

i
i

“thesis” — 2018/10/5 — 11:01 — page 140 — #160 i
i

i
i

i
i

to right. In the narrow mode only the first code SR is used,
and the data from the last (lowest) code register in a group
is loaded into the first (topmost) code register at the right
side of it, as illustrated by the red arrows in the figure. In
both modes it is possible to chain the different groups by
bypassing some of the code SRs and instead taking the
code register data from the group above it. The chaining
data flows are shown by the blue (narrow) and green
(wide) arrows. The narrow versus wide configuration can
be selected separately for each horizontal pair of code
registers and the pairing can be nested.

As an example, Figure 9 shows three configurations for a
GC block with three possible sample rates 1,SF ,

1,2, 2 SS FF = , and 1,3, 4 SS FF = . There are four code
registers per group when operating at the lowest sample
rate (a), two code registers when operating at the double
sample rate (b), and only one code register when using the
quadruple sample rate (c). However, the total number of
samples in the code registers always remains the same.
The correlation length in time also remains identical in all
of the modes. This makes the GC very powerful
architecture for use in multiple operating modes. We can
note, however, that the number of samples in the code SRs
increases with increasing sample rate, which increases the
hardware overhead for the lower sample rate
configurations. It is possible to optimize the HW size by
making the correlation length smaller in the higher sample
rate operation. This reduces the code offset range, which
is fortunately not too detrimental to the receiver

SR

MULT & SUM

SR/reg

+

SR SR

reg reg

Code 1

Code 2

Data

SR/reg

SR

reg

SR SR/reg

reg reg

 SR/reg

reg

SR SR/reg

reg reg

 SR/reg

reg

MULT & SUM MULT & SUM

select select select

select select select

select select select

Code NP

Figure 8. Generic programmable GC with single
selectable input frequency

registers are FS,i, then the number of code registers to be
used for that sample frequency (NR,i) should be selected so
that it is the least common multiple (LCM) of the sample
rates divided by the corresponding sample rate or an
integer multiple of it, i.e.

NP
NR,i = Nmult ⋅LCM(F)

=0 S n F i
n , / S ,

The required clock frequency can then be computed by
FCLK = NP ⋅ Nmult ⋅ NR,i ⋅ FS ,i

for any i.

The biggest advantage of the group correlator architecture
can be achieved by realizing that it is possible to make the
number of code replica registers and the sample rate
assignment programmable and still produce correlation
results at a constant rate. This will greatly simplify the
design of the blocks that follow in the signal processing
path. For the sake of simplicity we shall first describe the
configuration of the GC which utilizes only a single input
sample rate at a time. However, we will make the
configuration in such a way that it would be possible to
combine several blocks operating at different sample
rates, and still produce the output samples at the same
rate. This also simplifies the addition of more input
sample rates later. Figure 8 shows the generic GC
structure. The replica code SRs are shown in red in the
figure, the code registers in blue, the input sample SRs in
green, and the arithmetic units in yellow. There are
basically two modes of operation for this GC structure,
called narrow and wide. In the wide operation mode the
code SRs that are associated with the same PRN replica
code, i.e. the same group, are chained so that the reference
code flows from one end of the chain all the way from left

SR

MULT & SUM

reg

reg

SR

SR

SR

reg

reg

reg

reg

reg

reg

reg
reg
reg
reg

Code 1

Code 2

Code NP

Data

(a) 1x frequency operation

SR

MULT & SUM

SR

reg reg

MULT & SUM

+

SR SR

SR SR

SR SR

reg reg

reg reg
reg reg

reg reg
reg reg

Code 1

Code 2

Data

Code NP

(b) 2x frequency operation

SR

MULT & SUM

SR

MULT & SUM

SR SR

SR SR

SR SR
reg reg

reg reg

reg reg

+

Code 1

Code 2

Data

SR SR

SR SR

SR SR

SR SR
reg reg

reg reg

reg reg

MULT & SUM MULT & SUM

Code NP

(c) 4x frequency operation

Figure 9. Different configurations of the programmable
GC for 1x, 2x, and 4x frequency operation

686

140 Publication 4

i
i

“thesis” — 2018/10/5 — 11:01 — page 141 — #161 i
i

i
i

i
i

many simplifications can be made while retaining much of
the programmable configuration possibilities. In many
cases it is possible to define a small number of operational
modes for which the internal connections in the GC can be
tailored. For example, in the case of a GPS receiver, only
two modes might be needed: acquisition and tracking. In
the acquisition mode, the sample frequency would be the
lowest possible and the code phase coverage the largest.
In the tracking mode the sample rate would be higher to
improve the tracking accuracy, but the code phase
coverage requirement would not be very large. Adding
Galileo in the receiver requirements this will mean
additional modes are needed. The tracking can be
implemented with the same sample frequency, but the
Galileo signal will have a wider bandwidth requiring a
higher sample rate in the acquisition mode. The two
GNSS systems should probably utilize different sample
rates for acquisition to maximize the search range for
GPS. For a combined GPS+Galileo receiver we might
thus have three operating modes defined with a particular
GC configuration associated with each:

1. GPS signal acquisition
2. Galileo signal acquisition
3. Signal tracking

Each replica code, or channel, can operate in different
mode, which makes the receiver operation still very
flexible, even if only three possible configurations are
defined for each GC group.

GPS+GALILEO RECEIVER IMPLEMENTATION

We have designed a GNSS receiver baseband block based
on the GC. A SystemC [9] implementation of it was made
and tested for functionality. The GPS+Galileo receiver
design is described in this section. The receiver baseband
block is illustrated in Figure 11, and contains a processor
subsystem along with the digital logic to implement the
receiver baseband hardware. We will focus on the GNSS
specific hardware, as the rest can be built from readily
available components.

Code
register
clocking
control

Code
register
dump
control

SR

MULT & SUM

SR

reg
Code 1

Code 2

Data 1

SR
reg

SR
reg

SR

SR

Data 2

Data M

Clock 1

Clock 2

Clock M

Dump
Select

Dump
Select

Dump
Select

Data
Selector

Clock
Select

Clock
Select

Clock
Select

SR

MULT & SUM

SR

reg

SR
reg

SR
reg

SR

SR

Data
Selector

+

Code NP

Figure 10. Block diagram of a programmable GC block
with multiple input sample SRs.

performance, as the higher sample rates tend to be used in
tracking mode operation, where the required code phase
offset coverage is not as large as in the acquisition modes.
In the example here, it would be a good optimization to
leave half of the code registers unused in the highest
sample rate mode.

The GC structure discussed above had only one input
sample rate at a time. It is also possible to have more than
one sample SR with a programmable sample rate selection
for each of the reference code inputs while retaining
similar code register configurability. A GC structure with
several input sample SRs is illustrated in Figure 10. The
figure does not show the replica code configuration part,
to maintain clarity, but all of the connections shown in
Figure 8 can also be made here. Some additional logic is
needed to make the input selection possible. There needs
to be selectable control to dump the code SRs to the code
registers and to shift the code register data accordingly to
the code registers below. Each group in the GC needs to
be associated with one of the input sample frequencies,
and the code SR should be clocked with the same clock as
the corresponding input sample SR. Furthermore, the
dumping of the data needs to be synchronized with the
filling of fresh data into the code and input sample SRs,
which should have equal lengths. For example, if the GC
is like the one shown in Figure 9 but with separate input
sample SRs for all of the three sample rates, the
corresponding input sample SR lengths should be 1, 2,
and 4 times the length of the single code register.

When combining all of the possible features presented
above, the group correlator can become a very complex
device. Fortunately, when the application parameters are
known, the GC can be tailored to a given application and

BUS

Processor

Timer(s)

Group Correlator(s)

Signal I/F Interrupt
Controller

Signal
I/O

Timing
I/O

System I/F

System
I/O

Figure 11. Block diagram of the designed receiver
baseband section

687

141

i
i

“thesis” — 2018/10/5 — 11:01 — page 142 — #162 i
i

i
i

i
i

The group correlator based GNSS receiver signal
processing path shown in Figure 12 contains several
building blocks beside the GC itself. There are several
important design parameters at the receiver top level:

1. Sample rates for the input signal.
2. Number of independent spreading codes to

process. This determines the number of code
generators needed.

3. Number of code bins for each code. This affects
the size of the GC core.

4. Total number of code bins in the receiver. This
affects the number of GC blocks needed.

5. Number of desired frequency bins for each
separate code. This determines the size of the
mixer bank.

The total number of correlator bins (often referred as the
number of correlators) can be computed as a product of
the number of independent codes, the number of code bins
for each code, and the number of frequency bins. In the
following discussion we will refer to the number of the
independent codes as the number of channels in the
receiver.

IF Removal Block

There is one IF removal block which is common to all of
the receiver channels. This is possible since the bandwidth
of the GC is relatively large compared to the possible
frequency range of the incoming signals. The final
Doppler removal is done later in the mixer blocks. The IF
removal block removes a common frequency offset and
sets the sample rates for the further processing blocks.
There are three different sampling rates available for
different operation modes of the channels. The input
signal is mixed with a locally generated frequency in the
IF removal block. Next the signal is down-sampled into
the final sample rates, and re-quantized to optimize the
HW requirements of the GC blocks.

GC Block

The GC Block is the basic building block of the GNSS
receiver. Each GC Block contains code and carrier replica

generators, a GC Core Block, and the Integrator Block,
which performs coherent and non-coherent integration as
well as the detection acceleration for each frequency bin.
The code replica generator can be controlled by the SW
and it can generate a separate code replica signal in a
time-multiplexed manner independently for each channel
in the GC Core Block. The receiver supports any
spreading code up to a length of 4096 and it can also
generate the BOC(n,n) sub-carrier to support Galileo
signal reception. The carrier replica generator supports the
generation of evenly spaced frequencies centered on a per-
channel defined residual frequency estimate. There are
separate Integrator Blocks for each of the frequency bins
operating in parallel. Furthermore, the coherent and non-
coherent integration use separate memory blocks, so that
the processor can access the results in the non-coherent
memory even while the results of the coherent integration
are being continuously accumulated. The magnitude of the
signal in the complex I/Q representation is computed by
the absolute value unit, whose function approximates

22ABS QI += .
The absolute value computation can also be bypassed on a
per-channel basis for the tracking mode, where the
complex valued results are needed. The detection
acceleration block will greatly assist the SW as the
number of correlation results from the whole receiver that
needs to be processed during the acquisition of the
satellite signals is very large.

GC Core Block

The GC Core Block is the correlation engine in the
receiver, and it contains an implementation of the group
correlator as described in the previous sections. It contains
the code replica shift and dump registers, the data shift
registers, and the code and data multiplication and
summation logic. The GC Core Block has several
parameters and the most important of them are:

1. Number of independent replica code inputs for
the GC

2. Correlation length for each group
3. Number of clock frequencies supported

The total number of channels in the receiver can also be
adjusted by selecting how many GC Blocks are used in
one particular implementation.

We next discuss the parameter selection process for the
receiver. The selection of the sampling frequencies for the
receiver should be done first. Fortunately it is a relatively
straightforward task. We selected three different sampling
frequencies – 2 MHz, 4 MHz, and 8 MHz – which are
integer multiples of the lowest one, to be used as required
by efficient implementation of the GC structure. Another
key parameter for the receiver design is the total number
of code bins for each frequency bin, which needs to be
defined based on the desired receiver performance in the
acquisition mode. We wanted the receiver to be able to
search the full code uncertainty of four GPS satellites
simultaneously. This requires us to implement at least
8184 code bins for each frequency bin. With this amount

ABS

Code
Generators

GC Core
Block

IF Removal
Block

MemoryMemory

Coherent Non-coherent

GC Block

Integrator Block Det
Accel

Mixer Bank

Carrier
Generators

Figure 12. Structure of a GNSS receiver baseband block
based on the group correlator

688

142 Publication 4

i
i

“thesis” — 2018/10/5 — 11:01 — page 143 — #163 i
i

i
i

i
i

of code bins we can also search one half of a full code
uncertainty of one Galileo satellite. There are some
additional constraints that need to be taken into account
when choosing the receiver configuration. In the tracking
mode, we would like to track at least 24 satellites as to
fully utilize both GNSS systems. The length of the GC
should be selected in such a way that the total carrier
uncertainty and Doppler range fits into the GC bandwidth
with little signal-to-noise ratio (SNR) degradation. We
only need to compute the GC length for the lowest sample
rate, as the other cases are directly scaled accordingly.
From system analysis, it has been determined that a GC
bandwidth of 32 kHz is a good choice for this parameter.
Rounded up to a convenient integer value this will give 64
as the GC length. As the sample rates relate to each other
with ratios – 1:2:4 – the number of code registers in the 2
MHz mode needs to be a multiple of four as explained in
the previous section. Thus the number of code bins per
channel at the 2 MHz sample rate will be 256.

Keeping in mind the desired total number of code bins and
the number of code bins per channel, we note that the
minimum number of channels that will satisfy this
condition is 32, which nicely satisfies our requirement for
the number of channels. The group correlator architecture
allows the number of channels per block to be varied
easily. Table 2 shows how the other receiver parameters
need to be changed with a selection of choices for the
number of channels per block to satisfy the requirement
for the total number of code bins. The choices that result
in the minimum hardware are highlighted in green. When
considering the optimum choice of the parameters it is
important to note that a larger number of blocks increase
the controllability of the hardware and might lead to lower
power consumption, as blocks that are not currently
needed might be turned off. However, the hardware
overhead is the smallest when the number of blocks is also
the smallest, because the amount of HW that is
independent of the number of channels is also minimized.
The integration memory blocks that are used in each GC
block contain more memory locations when the number of

blocks is lower, and this also results in improved silicon
area efficiency. Another constraint that needs to be
considered is the highest available clock frequency. As
can be seen in Table 2, it can become quite high when the
number of channels per block is increased. For our
receiver design we selected a clock frequency of about 32
MHz, which resulted in a convenient choice for the
number of channels per block. It also offered us good
flexibility for design partitioning. The selected and
derived GC-related parameters for the receiver
implementation are summarized in Table 3.

Having now determined the GC block parameters we can
still change the number of GC blocks to alter the receiver
configuration. Adding blocks increases the HW size, but
also makes the receiver more powerful. Removing blocks
can be done if the receiver HW is too big for a particular
application. This great configurability of the basic design
shows the advantage of the GC-based GNSS design. It
would thus be possible to make a single configurable IP
block that could be used in many different applications
with different performance and size requirements.

Table 4 shows how the receiver search range and number
of tracking channels change when the number of GC
Blocks is changed. The parameters for the GC Blocks are

Table 2. Receiver configurations with varying number
of channels per GC Block

Channels
per
block

Clock
frequency
(MHz)

GC
Blocks

Channels
(total)

Code
bins
(total)

1 8 32 32 8192
2 16 16 32 8192
3 24 11 33 8448
4 32 8 32 8192
6 48 6 36 9216
8 64 4 32 8192

10 80 4 40 10240
12 96 3 36 9216
16 128 2 32 8192
32 256 1 32 8192

Table 3. GC-related parameters for the designed
receiver

Parameter Value
Defining Parameters
Operating frequency 32 MHz
GC length 64
GC Multiplexing factor 4
Number of channels per GC Block 4
Number of GC Blocks 8
Derived Parameters
Number of channels 32
Code bins per channel 256 (128)
Code bins per GC Block 1024
Total number of code bins 8192

Table 4. Search capability and number of tracking
channels vs. GC Blocks is changed

GC
blocks

Code bins GPS
range

Galileo
range

Satellites
tracked

1 1024 1 0.06 4
2 2048 1 0.13 8
4 4096 2 0.25 16
6 6144 3 0.38 24
8 8192 4 0.50 32

10 10240 5 0.63 40
12 12288 6 0.75 48
14 14336 7 0.88 56
16 16384 8 1.00 64
18 18432 9 1.13 72

689

143

i
i

“thesis” — 2018/10/5 — 11:01 — page 144 — #164 i
i

i
i

i
i

specified in Table 3. The configurations that achieve the
minimum requirements of a single full GPS code search
range are shown in yellow. The ultimate configurations
that can search one full Galileo code are show in blue, and
the configurations which can search either four GPS
satellites or half of a Galileo code are shown in green.

EVALUATION AND RESULTS

For evaluating the operation and performance of the
receiver a SystemC-based system simulator was
implemented. Its architecture is shown in Figure 13. The
RF front end providing the digitized IF data stream for the
digital baseband can be simulated or recorded data can be
read from a file.

The system simulator for the designed receiver was used
to perform some functionality and performance testing
using a SW-based GPS signal generator. Also some
testing with recorded signals from the real GPS satellites
has been performed. The designed receiver was found to
be functional in all aspects. The operation with the Galileo
signals has not been evaluated more than by generating a
simple BOC(1,1)-modulated signal and verifying that it
can be detected.

Performance

The acquisition and tracking sensitivities have been tested
in several situations. The receiver was configured as
described in the previous section. When accurate time
assistance (as in the IS-916 minimum performance test) is
available the acquisition sensitivity has been found to be
about 18 dB-Hz with a 2 second total search time. With
coarse time assistance (as in the 3GPP minimum
performance tests) the acquisition sensitivity was about 21

dB-Hz. The designed receiver can track the signal when it
stays above 15 dB-Hz.

Figure 15 shows the results from simulation with accurate
time assistance in the acquisition mode (2 MHz, 20 ms
coherent integration, up to 2 s search time) while Figure
14 illustrates the simulated operation in signal verification
mode with accurate time unknown (8 MHz, 3 ms coherent
integration, up to 100 ms search time).

CONCLUSIONS

The proposed correlation device, group correlator, is a
mix between the matched filter and the correlator. In the
simplest form, it provides a means of computing several
correlation operations in parallel just as the MF does, but
it can compute the correlation over the full code period
with the aid of an integrator block placed after the GC,
which ensures that the correct code position has the
maximum output value, even if the correlation length in
the GC is less than the full code period. With a second
stage carrier mixer placed after the GC and before the
final integration, the proposed architecture overcomes the
signal bandwidth issue related to MF-based
implementations.

The group correlator design is superior compared to
correlator based, matched filter-based, as well as Fast
Fourier Transform (FFT)- based GNSS receiver
architectures. The main advantage of the GC architecture
is minimal hardware complexity compared to traditional
approaches, and the possibility of software configuration
of the receiver. For the hardware implementation, a single
building block can be used, which simplifies the design,
eases the HW configurability, improves receiver
flexibility and usability, and reduces the HW resources
needed.

BUS

Receiver BB

SystemC

Processor model

Bus I/F Interrupt I/F

Tracker
Process

Control
Process

Acquisition
Process

SystemC

SystemC

SystemC

Data Source

(File I/O)

Figure 13. GNSS system simulator structure

690

144 Publication 4

i
i

“thesis” — 2018/10/5 — 11:01 — page 145 — #165 i
i

i
i

i
i

REFERENCES

[1] 3GPP TS 25.171, Requirements for support of

Assisted Global Positioning System (A-GPS);
Frequency Division Duplex (FDD), Available:
http://www.3gpp.org/ftp/Specs/html-info/25171.htm

[2] 3GPP2 C.S0036-0 v1.0, Recommended Minimum

Performance Specification for C.S0022-0 Spread
Spectrum Mobile Stations, Available:
http://www.3gpp2.org/Public_html/specs/C.S0036-
0_v1.0.pdf

[3] SiRF Technology, Inc., SiRFstarIII GSC3LTi and

GSC3LTif, Product Overview, November 2006.

[4] Global Locate, Inc., MantaRayTM System-In-Package

A-GPS Solution, Available:
http://www.globallocate.com/SEMICONDUCTORS/
SEMI_MANTARAY_Frameset.htm

[5] Jack K. Holmes, Coherent Spread Spectrum Systems,

reprint ed., Robert E. Krieger Publication Company,
1990.

[6] Marvin K. Simon, Jim K. Omura, Robert A. Scholtz,
Barry K. Levitt, Spread Spectrum Communications
Handbook, rev.ed., McGraw-Hill, 1994, Part 4, Ch. 1.

[7] Stephen S. Rappaport, Donald M. Grieco, “Spread-

Spectrum Signal Acquisition: Methods and
Technology,” IEEE Communication Magazine, vol.
22, No. 6, pp. 6-21, June 1984.

[8] Ville Eerola, “Rapid Parallel GPS Signal

Acquisition", Proceeding of the ION GPS
Conference, Salt Lake City, September 2000.

[9] Open SystemC Initiative (OSCI), Functional

Specification for SystemC 2.0, October 2001,
Available: http://www.systemc.org/.

25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

500 trials, 95% probability of acquisition at 34.3 dB-Hz

Signal level [dB-Hz]

P
ro

ba
bi

lit
y

25 30 35 40 45 50 55
0

20

40

60

80

100

Search time

Signal level [dB-Hz]

T
im

e
[m

s]

max
mean
min

25 30 35 40 45 50 55
0

0.05

0.1

0.15

Absolute code phase error

Signal level [dB-Hz]

E
rr

or
 [c

hi
p]

99%
50%

Figure 14. Simulation results in strong signal verification
mode without accurate time assistance

15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

500 trials, 95% probability of acquisition at 20.2 dB-Hz

Signal level [dB-Hz]

P
ro

ba
bi

lit
y

15 20 25 30 35 40 45
0

0.5

1

1.5

2

Search time

Signal level [dB-Hz]

T
im

e
[s

]

max
mean
min

15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

Absolute code phase error

Signal level [dB-Hz]

E
rr

or
 [c

hi
p]

99%
50%

Figure 15. Simulation results in weak signal acquisition
mode with accurate time assistance

691

145

i
i

“thesis” — 2018/10/5 — 11:01 — page 146 — #166 i
i

i
i

i
i

146 Publication 4

i
i

“thesis” — 2018/10/5 — 11:01 — page 147 — #167 i
i

i
i

i
i

PUBLICATION 5

Copyright c©2014 Elsevier B.V. Reprinted with permission, from

Ville Eerola and Jari Nurmi, “High-level parameterizable area estimation
modeling for ASIC designs,” Integration, the VLSI Journal, vol. 47, no. 4,
pp. 461–475, Sep. 2014.
DOI: 10.1016/j.vlsi.2014.01.002

i
i

“thesis” — 2018/10/5 — 11:01 — page 148 — #168 i
i

i
i

i
i

148 Publication 5

i
i

“thesis” — 2018/10/5 — 11:01 — page 149 — #169 i
i

i
i

i
i

High-level parameterizable area estimation modeling for ASIC designs

Ville Eerola n, Jari Nurmi
Tampere University of Technology, Department of Electronics and Communications Engineering, P.O. BOX 553, FIN-33101 Tampere, Finland

a r t i c l e i n f o

Article history:
Received 23 May 2013
Received in revised form
4 January 2014
Accepted 10 January 2014
Available online 23 January 2014

Keywords:
Gate-count estimation
Architecture exploration
VLSI circuits
Integrated circuit modeling
System-on-chip

a b s t r a c t

Architectural design space exploration and early area budgeting for ASIC and IP block development
require accurate high level gate count estimation methods without requiring the hardware being fully
specified. The proposed method uses hierarchical and parameterizable models requiring minimal
amount of information about the implementation technology to meet this goal. The modeling process
flow is to: (1) create a block diagram of the design, (2) create a model for each block, and (3) sum up
estimates of all sub-blocks by supplying the correct parameters to each sub-model. We discuss the model
creation for a few parameterized library blocks as well as three communication blocks and a processor
core from real IC projects ranging from 22 to 250 kgates. The average relative estimation error of the
proposed method for the library blocks is 3.2% and for the real world examples 4.0%. The best application
of this method is early in the design phase when different implementation architectures are compared.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

As both the complexity of Application Specific Integrated
Circuit (ASIC) designs and demands for rapid time to market keep
increasing, the importance of good estimates for the design
complexity is growing. The gate count of a design affects its cost
in several ways. The direct influence comes from the cost of the
silicon area. The gate count also has a close relation to the device
power consumption via the total capacitance accountable to the
gates. The testability and test time of the device are affected by the
complexity. Finally, the device yield is decreased with increasing
area. In order to predict these, the device gate count or an other
complexity measure is needed. In many cases the financial
feasibility of an ASIC development project also depends on these
estimates. It is very desirable that an accurate estimate of the
device complexity could be made as early in the development as
possible. Often, the first estimates would be needed even before
any detailed system design has been made.

Early gate count estimation is desirable also because design
optimization is more efficient at the early phases than later in the
project. This would enable efficient hardware optimization at the
architectural and system design levels. In many cases, the design
contains several parameters which could be changed to alter its
performance. However, at the same time, these alterations also
have an effect on the silicon area required for the implementation.
Having a gate count estimation model, which would follow the

parameter changes, would allow more efficient high-level design
space exploration and accurate planning of the design project.

The gate count estimation method presented in this paper has
been developed to meet these demands. It can cope with rough
and sketchy design specification since it does not depend on a
formal and complete description of the device. It also allows
having parameters to be included in the block descriptions, that
will be taken into account when the gate count estimates are
computed. Furthermore, the methodology requires a minimal
amount of information about the implementation technology
and keeps it separated from the design so that the implementation
technology can easily be changed if needed. In the proposed
methodology the gate count G for a block B is modeled using
bottom-up parameterizable models.

The strength and differentiating factor in our methodology is to
be free of requirements for strict design methodology or a formal
description of the design to be estimated. This freedom allows gate
count estimation to be done with incomplete designs.

The remaining of this paper is organized as follows: In Section
2 we will review some of the earlier work on the hardware area
estimation field. In Section 3 we present an overview of the
proposed gate count estimation methodology at a high level,
describing the main steps involved. Next, in Section 4 we will
explain the details involved in the gate count estimation model
creation and explore some of the basic building blocks. In addition
we will show the modeling process of some more complex
building blocks: a multi-port register file, a CORDIC phase rotator
and a complex mixer. In Section 5 we will go through four example
cases from real world designs and present the results from
the example cases and compare our estimates with actual gate
counts. Furthermore, we will give some notes and summarizing

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

0167-9260/$ - see front matter & 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.vlsi.2014.01.002

n Corresponding author.
E-mail addresses: Ville.Eerola@tut.fi (V. Eerola), jari.nurmi@tut.fi (J. Nurmi).

INTEGRATION, the VLSI journal 47 (2014) 461–475

149

i
i

“thesis” — 2018/10/5 — 11:01 — page 150 — #170 i
i

i
i

i
i

comments. Finally, Section 6 concludes the work and shortly
discusses potential improvements to the methodology.

2. Related work

Several approaches to the design complexity estimation in area,
gate count, or Field Programmable Gate Array (FPGA) resource
usage have been proposed in the literature. The earliest approach
for estimating the switch count of implementing Boolean func-
tions was done by Shannon [1], who proposed that the upper limit
of the complexity of Boolean functions is proportional to the
exponential of the number of inputs. This was later applied to the
gate count estimation for implementations of Boolean functions by
Muller [2]. However, it is easy to see that these estimates cannot
be applied to realistically complex circuits, due to the exponential
growth of the estimate.

Kellerman [3] presented a formula for the computation of the
area estimate and proposed that the area of a function is only
depending on the number of conditions which must be differ-
entiated by a one or a zero output. Other researchers, e.g. Cook and
Flynn [4] and Pippinger [5], studied the relationship between the
area complexity of Boolean functions and the entropy ðHÞ. Cheng
and Agrawal [6] expanded the entropy measure based estimation
method to multi-output Boolean functions.

Nemani and Najm [7] pointed out problems in earlier work,
which had been based on randomly generated Boolean functions
with a small number of inputs. They showed how earlier estimates
would greatly overestimate the gate count of real circuits and
proposed that typical circuits are far from random in their
structure. In their work, the authors developed a new linear
measure of Boolean functions, which is dependent on the complex-
ity of the on and off-sets of the function. Using that measure gave
more realistic results when using typical circuits.

Büyükşahin and Najm [8] developed the estimation method
further and used a Boolean network representation of the circuit
instead of RTL level description to enable estimation at a higher
level of abstraction. Still, use of these kinds of methods requires
the knowledge of the accurate Boolean functions of the logic,
which may not be available for all parts of the design at early
phases of the design. For example, in many cases the accurate
function for control logic is not known at the architecture design
phase, even if the data processing would be well defined.

For the estimation of FPGA design complexity, a methodology
was described by Enzler et al. [9]. Their methodology is based on
capturing the features of the design on a data-flow graph (DFG) or
block diagram level to a characterization vector consisting of the
number and word lengths of adders, multipliers, etc. in addition to
some other characteristics of each block. This is then mapped into

the FPGA area and timing estimates. There is some similarity to
our methodology, but our approach allows more freedom in the
characterization as it is not tied to a fixed vector format containing
counts of only a few characteristic functions such as adders,
multipliers, and multiplexers. Our method allows freedom of
selecting the functions to which the design is mapped to. This
allows an optimal set of functions to be chosen for different classes
of designs. It is also possible to increase the estimation accuracy by
incrementally adding more basic blocks to be used in the estima-
tion process over time.

It also seems apparent that many of the earlier efforts on the
gate count or area estimation field seem to concentrate on
integrating the algorithms into CAD tools for building more
comprehensive frameworks like in [10].

Table 1 summarizes the above references with regard to the
used design description (input) and resulting cost estimate (area)
as well as shows the reported accuracy of the method, if available.
Additionally, [11] provides some additional references and a good
survey of the hardware characteristics estimation techniques
related to hardware/software partitioning. In summary, most of
the earlier work have been concentrated to finding a formula to
map a small, combinatorial, accurately known logic function to a
number related to the area of the silicon implementation. In
contrast, our work aims to provide a more high-level tool for the
area estimation, which would work on realistically complex
designs early in the design process.

3. Gate count estimation methodology

We will now describe the estimation process at a high level. In
the next section we will go into more detail of the process. The
estimation methodology described in this paper is based on a
bottom-up modeling approach. The models are built from parts at
three levels:

1. Primitive library
2. Basic block library
3. Design level models

The lowest level of the model consists of a set of predefined
primitives, which correspond directly to standard-cell gates of the
implementation technology. The next level there is a pre-defined,
but extensible, set of basic building blocks, such as adders, multi-
pliers, and registers. The highest level consists of models that are
specific to the design under estimation. The difference between
the basic blocks and the design level models is that the basic
blocks are re-usable and parameterized in such a way that they
can be used in modeling of many different designs. On the other

Table 1
Area estimation references comparison.

Reference Input Cost (output) Average accuracy Notes

[1] Boolean functions Switch count n/a Theoretical work
[2] Boolean functions Gate count n/a Theoretical work
[3] Boolean functions Diode count 15% (random) / 33% (real)
[4] Boolean functions Diode count n/a Theoretical work
[5] Boolean functions Gate count n/a Theoretical work
[6] Boolean functions Gate count 30%
[7] Boolean equations Gate count 22% Based on on/off sets of function
[8] Boolean network Gate count 24%
[9] Block diagram/DFG FPGA cells 12% Intermediate vector representation
[10] VHDL FPGA cells 3.5% Intermediate CDFG representation
This work Block diagram/DFG Gate count 4.0% Parameterizable/extendable models

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475462

150 Publication 5

i
i

“thesis” — 2018/10/5 — 11:01 — page 151 — #171 i
i

i
i

i
i

hand, design level models are created for the design that is being
estimated during the modeling process and are unique for that
design.

The set of the required primitives is limited, and thus only a
limited amount of information is required about the implementa-
tion technology. The required data consists of gate size informa-
tion on a few key gate types in the library that will be used in the
synthesis of the design. In many cases, default gate count values
could be used for the primitives with only a minor loss of accuracy.
This is particularly useful when developing IP blocks without the
knowledge of the final implementation technology.

The algorithm for the model creation process is shown in
Algorithm 1.

Algorithm 1. The model creation.

1: procedure CREATEMODEL(block)
2: Divide to sub-blocks as needed
3: foreach sub-blocks do
4: CREATEMODEL(sub-block)
5: end for
6: Define parameters as desired
7: Create a data-flow graph / block diagram
8: Map remainder to basic blocks or primitives
9: end procedure

The process starts by creating a data-flow graph or a block
diagram of the design to be estimated. In many cases, this is
already available. In some cases, e.g. if a pre-existing design
implemented in FPGA technology needs to be transferred to an
ASIC technology, there may exist more detailed documentation
and RTL-level (VHDL, Verilog, etc.) descriptions, which would
allow the estimation to yield more accurate results.

When the high level description of each sub-block has been
done, parameters can be defined for each block. This would
allow easy exploration of the design by changing some of its
parameters. The parameters should be taken into account when
modeling the blocks, but their effect does not necessarily need
to be taken into account in full accuracy. Consider for example
the number of registers in a register file. Changing this para-
meter also affects the address size, but the effect is very small
ðGp log 2ðNregsÞÞ compared with the fact that the register file size
is (almost) directly proportional to the number of registers
ðGpNregsÞ.

Next, each sub-block is mapped to a predefined set of basic
building blocks, and suitable parameter values for the used library
blocks are calculated based on the design parameters. E.g. using
the register file block, the number of registers and their word
length as well as the number of input and output ports need to be
known, and their values should be used in the mapping. If similar
structures are used in many places of the design, new re-usable
building blocks could be created if needed. By expanding the
building block library, the effort for estimating new blocks will
become smaller. Typically, designers tend to use similar structures
in many of their designs and building their own estimation library
will decrease the effort and improve the accuracy of the estima-
tion. When creating new elements to the building block library, it
is necessary to pay close attention to: (a) how they are parameter-
ized, so that they will be maximally re-usable; (b) the accuracy of
the models, since the modeling accuracy depends very much on
the accuracy of the building block models.

The algorithm for the model evaluation is listed in Algorithm 2.
This algorithm also shows the generic model structure for a block.

Algorithm 2. The model evaluation.

1: function EVALMODEL(block, params…)
2: count’0
3: foreach B’instantiated sub�blocks do
4: count’countþEvalModelðB;params…
5: end for
6: foreach B’instantiated basic�blocks do
7: count’countþEvalModelðB;params…Þ
8: end for
9: count’countþ∑ (gate count of primitives)
10: return count
11: end function

The actual modeling can be implemented in many ways. One good
way is to use some interpreted computer language or program like
Matlab [12] or GNU Octave [13]. This allows the easy implementation
of the parameterization and evaluation of the gate counts with
multiple parameter values. The modeling of the examples provided
in this paper was performed by manually writing a set of Matlab
functions to calculate the gate counts, but the process could easily be
integrated to a block diagramming tool to combine the design
documentation and the estimation model creation into a single step.

One important aspect of the presented methodology is that the
routing area is not taken into account. The result of the estimation is a
gate count value. If a physical area estimation is needed the routing
area must be estimated separately. In the routing area estimation, the
gate count and some estimates of the gate fanouts are needed. In some
cases, one could also use a generic gate count per area figure available
from the silicon vendors for this purpose with good accuracy.

4. Parameterized model creation

We will now explore the model creation process in more detail,
and explain how it is used. In this section we also give examples
how some of the basic blocks in the library can be created, as the
process is essentially the same as for larger designs. The model
creation process starts from the primitives, which are used to build
the models of the basic building blocks. The basic building blocks
are then used to build the models of the blocks of the design. The
block level models can also use the primitives directly if necessary.

4.1. Primitives

The modeling methodology was initially developed for esti-
mating the gate counts of data processing IP-blocks in Digital
Signal Processing (DSP) and communication applications. It was
then noticed that the majority of the area is taken by registers, full-
adders, and multiplexers. Multiplication, which is also common, is
implemented by an array of full-adders and AND-gates. Most DSP
processing algorithms can be implemented with just these cells
together with a small amount of additional controlling logic. For
any reasonably sized block, counting just these few basic cells will
account for the majority of the gates in the whole block.

In the proposed gate count estimation methodology, the list of
primitives used is predefined. Table 2 shows the set along with
their sizes as gates in a typical CMOS process library. As the gate
count estimate is ultimately based on the sizes of the primitives, it
would be important for its accuracy to get the sizes of the
primitives right. Before starting the model creation, the primitives
should be checked against the implementation library if one is
available. It is also important to consider the reset strategy
selected for the design as this has an impact to the size of the
register bits. For the designs in this paper we use synchronous

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475 463

151

i
i

“thesis” — 2018/10/5 — 11:01 — page 152 — #172 i
i

i
i

i
i

reset, which requires an AND-gate at the register cell input. This
has been taken into account in the register bit primitive in Table 2.
A good method would be to synthesize a predefined simple block,
which would map well to the set of the primitives and extract
average primitive sizes from the resulting netlist. This would allow
better fit than just selecting the gates to be used for the primitive
sizing from the library by hand as it would take into account the
varying usage of differently sized versions of the cells.

The list of the primitive cells could be extended as required, but
the set shown in this paper has been sufficient for use in some
relatively large real designs. Keeping the primitive list short has
the added benefit that it will be simple to update for a new cell
library. This is especially handy when trying to compare the size of
a design in two or more different processing technologies or
standard-cell libraries.

4.2. Simple basic blocks

The basic blocks are simple re-usable units that are the basis for
building the estimation models. These blocks are very generic and
will be used in almost all designs. The accuracy of the estimation
will depend on how accurate the basic blocks are, but as the blocks
are very simple in nature, the accuracy can be made good even
with very moderate effort. The blocks that will now be presented
have been sufficient to give very good estimation results for the
examples listed in this paper.

For some (especially arithmetic) basic blocks, the chosen imple-
mentation is the one giving the smallest area. This also usually
translates to the largest propagation delay. In many cases, this is still
a good first estimate. It requires, however, some insight from the
designer to decide, if the speed of themodeled implementation is high
enough for the application. If this is not the case, then another
implementation should be modeled for this block.

We will now go through the most useful basic building blocks
and describe the structures used and their gate counts.

4.2.1. Addition and related operations
Table 3 summarizes the gate count models for adder-like

functions for N-bit operands. The adder that we have used in our
modeling is based on the simple ripple-carry architecture. This is

very straightforward, but it has proved to be quite accurate a
model of most of the adders in our designs. It would also be
possible to extend the adder model to include other adder
architectures if their use seems more frequent.

The other adder based operations, subtraction, incrementing
and decrementing, absolute value, and controllable addition and
subtraction (ADD/SUB) can be modeled in a similar fashion with
simple additions.

4.2.2. Reduction adder
Often, it is necessary to add a large amount of numbers

together in a single operation during a single clock cycle. This
can be achieved by a reduction adder. As this was relatively often
used in our designs, we created a model for it separately. It can be
shown that it is possible to add N1-bit inputs together with a tree
of N� log 2ðNÞ 2-input adders. This can be easily expanded to
multiple bit input cases. The model then becomes

Gðraddðibits;NÞÞ ¼ ibits� ðN� log 2ðNÞÞ � GðFAÞ ð1Þ

4.2.3. Multiplication
The multiplier is a very important element in the implementa-

tion of many DSP algorithms. There are many different, increas-
ingly efficient and complex, architectures for multipliers (see e.g.
[14]) but in most cases the most basic ripple-carry or carry-save
multiplier architectures will be sufficient for the performance
required. Thus, we have selected the ripple-carry array multiplier
for the basis of our modeling, as it is the smallest and most used of
the parallel multiplier choices. The gate count of an N�M-bit
unsigned multiplier is given by the following:

GðmultuuðN;MÞÞ ¼N �M � ðGðFAÞþGðAND2ÞÞ ð2Þ
The basic multiplier structure works only with unsigned

numbers. To be able to utilize signed numbers, the absolute value
of the inputs is used for the multiplication and the sign of the
result will be corrected afterwards by conditional negation. The
multiplier size will be reduced by one in both dimensions, as the
sign bits can be dropped. The gate count of a signed multiplier can
then be calculated by the following:

GðmultssðN;MÞÞ ¼ GðabsðN�1ÞÞ
þGðabsðM�1ÞÞ
þGðmultuuðN�1;M�1ÞÞ
þGðabsðNþM�1ÞÞ ð3Þ

4.2.4. Multiplexers
In addition to the arithmetic building blocks described above,

multiplexers are often used in data processing blocks. They allow
conditional data processing to happen within the data paths by
altering the signal flow based on control signals. The model we are
proposing here is based on using 2-input multiplexers to build
structures with more than two inputs. This is not the smallest
possible, as many cell-libraries contain MUX cells with more than
2 inputs that result in smaller area. However, this simplified model
has proved to give good estimation results. The N-bit M-to-1
multiplexer is built as a tree structure of 2-input multiplexers and
its gate count is given by the following:

GðmuxðN;MÞÞ ¼N � ðM�1Þ � GðMUX2Þ ð4Þ

4.2.5. Registers
The last basic building block is a simple N-bit register. The

model for the register that we have used assumes that the design
style uses synchronous reset for all registers. The model could
easily be changed for asynchronous reset as well, but that would
obviously change the size of all registers. Both the primitive

Table 2
Primitives for estimation.

Primitive Size Notes

2-Input NAND (NAND2) 1 gate 1-gate area definition
Inverter (INV) 1 gate Slightly larger than a

minimum inverter
Register bit (FF) 5 gates Synchronous reset
Full-adder (FA) 5 gates
2-Input MUX (MUX2) 3 gates
Half-adder (HA) 3 gates
2-Input XOR (XOR2) 3 gates

Table 3
Summary of adder-like building blocks.

Function Size

Adder GðaddðNÞÞ ¼N � GðFAÞ
Subtractor GðsubðNÞÞ ¼N � ðGðFAÞþGðINVÞÞ
Increment by 1 GðincðNÞÞ ¼N � GðHAÞ
Decrement by 1 GðdecðNÞÞ ¼N � GðHAÞ
Absolute value GðabsðNÞÞ ¼N � ðGðXOR2ÞþGðHAÞÞ
ADD/SUB Gðadd_subðNÞÞ ¼N � ðGðXOR2ÞþGðFAÞÞ

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475464

152 Publication 5

i
i

“thesis” — 2018/10/5 — 11:01 — page 153 — #173 i
i

i
i

i
i

register-bit size GðFFÞ and the register block size should be altered
if the reset style is changed. Mixing styles in one design would be
bad design practice. In some specific cases there could be a need
for a register without reset, which should be separately modeled
on a case-by-case basis. The gate count of an N-bit single-port
register can be estimated to be:

GðregðNÞÞ ¼N � ðGðFFÞþGðMUX2ÞÞ ð5Þ

4.3. More complex basic blocks

The modeling of a few design blocks that will be used as a part
of the basic block library will be illustrated next. These blocks act
as detailed examples of the modeling process. For these blocks, we
explain the model creation and then provide accuracy comparison
against actual gate count, which was obtained by synthesizing the
corresponding VHDL models using Synopsys DC.

4.3.1. Register files
Register files are an important part of many designs. We will

now describe how to create a parameterized model for a register
file with multiple input and output ports. The block diagram of the
register file is shown in Fig. 1. The parameters of the register file
model are:

1. bits – Register word length
2. regs – Number of registers
3. iports – Number of input ports
4. oports – Number of output ports

The output part is very simple: just oports multiplexers select-
ing the output from the register array.

The register array is slightly more complex to model, as each
register bit needs to select the input from more sources than in a
single port register case. The array can be implemented in a
straightforward way so that the new value of each register is
either selected from one of the input ports or the old value is
retained. The new input selection is made in the write decode
block.

The write decode block is perhaps the most complicated to
model, as it needs to decode and match each address from each
input port and generate select and write-enable signals to the
register bit array. We also generate a write signal by ANDing the
corresponding write-enable and detected address to generate a
write-enable for each input port and register.

Finally, we can compute the total gate count of the register file
by adding together the counts from the three different parts. The
complete algorithm is listed in Algorithm 3.

Algorithm 3. Register file gate count estimation model.

1: function REGISTER_FILE(bits, regs, iports, oports, tech)
2: % Output part
3: o_mux’oportsnMuxðbits; regs; tech
4: % Register array
5: regs’regsnbitsnðtech:FFþ iportsntech:MUX2Þ
6: if iports41 then
7: i_sel’bitsnregsniportsntech:NAND2
8: r_wr’bitsnregsnðiports�1Þntech:NAND2
9: else
10: i_sel’0
11: r_wr’0
12: end if
13: array’regsþ i_selþr_wr
14: % Write Decode part
15: a_bits’ceilðlog2ðregsÞÞ
16: a_inv’iportsna_bitsntech:INV
17: a_cmp’iportsnregsna_bitsntech:NAND2
18: i_wr’iportsnregsntech:NAND2
19: w_dec’a_invþa_cmpþ i_wr
20: return o_muxþarrayþw_dec
21: end function

To test the model we created a simple test with one and two
input and output ports, which are the most common cases. The
evaluation results for the register file model are shown in Table 4.

4.3.2. CORDIC phase rotator
The CORDIC [15,16] is a very versatile hardware building block,

which can be used for many operations. For example, it can act as a
phase rotator in communications and signal processing. Here we
will show the creation of a parameterizable gate count model for
an unrolled, parallel CORDIC phase rotator. Models for other
CORDIC applications can be created in a similar fashion. The block
diagram of a CORDIC phase rotator is shown in Fig. 2.

The parameters of the CORDIC phase rotator model are:

1. niter – Number of iterations
2. ibits – Input data word length
3. pbits – Input phase word length
4. obits – Output data word length

The pre-rotator rotates the incoming complex signal (xin, yin) by
a multiple of 901. This is equivalent to switching the signs and
swapping the real and complex parts of the input. There are four
possible combinations, which require two 2-to-1 multiplexers and
a total of two shared conditional negations. The right shifters
(RSH) are hard-wired and require no gates to implement. The
remaining arithmetic parts are the ADD/SUB elements controlled
by the look-up table outputs di.

The phase look-up table is generally hard to model accurately.
For the CORDIC model we fitted the function

f ðx; α; βÞ ¼ α � x � βx ð6Þ
to empirical data obtained by synthesizing the table for a few
cases. One would expect that the parameter β would be close to
2 and α would reflect the redundancy factor. The fitting resulted in
α¼0.6 and β¼1.8. It should be noted that the input to the look-up
table is two bits less than the phase input due to some bits being
used in the pre-rotation.

out1

outM

clock
wr_data1

wr_dataN

REG

M
U

X

REG

M
U

X

REG

M
U

X

WRITE
DECODE

M
U

X
M

U
X

rd_addr1

rd_addrM

wr_addr1
wr1

wr_addrN
wrN

Reg[0] Reg[1] Reg[nregs-1]

Fig. 1. Schematic picture showing multi-port register file.

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475 465

153

i
i

“thesis” — 2018/10/5 — 11:01 — page 154 — #174 i
i

i
i

i
i

The derivation of the CORDIC gate count model based on the
above principles is an easy task, as long as close attention to the
varying word length along the pipeline is taken into account. The
algorithm of our model is listed in Algorithm 4.

Algorithm 4. CORDIC phase rotator gate count estimation model.

1: function CORDIC_ROT(niter, ibits, pbits, obits, tech)
2: % Pre-rotation
3: p_neg’ibitsntech:XOR2
4: p_mux’2nMuxðibits;2; techÞ
5: pre’pre_negþpre_mux
6: % CORDIC iterations
7: iter’0
8: for i’1;niter do
9: iter’iterþ2nAddSubðobits� iÞ
10: end for
11: % Look-up table
12: if pbitsZ3 then
13: x’pbits�2
14: lut’nitern0:6nxn1:8x

ntech:NAND2
15: else
16: lut’0
17: end if
18: return lutþpreþ iter
19: end function

To test the model, we created a simple test bench shown in
Fig. 3. In this test bench the output of the look-up table for the

phase signal is pipelined to optimize speed, as the propagation
time through the look-up table can be quite large. The evaluation
results for the CORDIC are shown in Table 5. It can be seen here
that the model starts to fail with the smallest configuration tried.
This is probably due to the smaller details of the implementation
that have not been taken into account in the model.

4.3.3. Complex mixer
The complex mixer is another very common block in many

communications related designs. The mixer multiplies two complex
numbers together, which requires four real multipliers and two
adders in its simplest form. Usually the other input of the mixer is a
complex sinusoidal signal, which is commonly generated by a table
look-up with the phase of the signal as its input. This implementa-
tion is shown in Fig. 4. The parameters of the mixer model are:

1. ibits – Input data word length
2. pbits – Input phase word length
3. obits – Output data word length

LOOK-
UP

TABLE

xIN

yIN

phIN

yOUT

xOUT

CORDIC
CORE

OR
MIXER

R
E

G
R

E
G

R
E

G

R
E

G

Fig. 3. Block diagram of the phase rotator test bench.

Table 4
Register file model evaluation.

bits regs Inputs¼1, Outputs¼1 Inputs¼1, Outputs¼2 Inputs¼2, Outputs¼1 Inputs¼2, Outputs¼2

Actual gates Model gates Error (%) Actual gates Model gates Error (%) Actual gates Model gates Error (%) Actual gates Model gates Error (%)

8 4 359 368 2.5 426 420 �1.4 541 548 1.3 635 601 �5.4
16 4 726 721 �0.7 864 827 �4.3 1082 1068 �1.3 1270 1174 �7.6
24 4 1083 1075 �0.7 1286 1233 �4.1 1607 1588 �1.2 1894 1746 �7.8
32 4 1437 1428 �0.6 1708 1640 �4.0 2146 2108 �1.8 2524 2319 �8.1
64 4 2860 2843 �0.6 3402 3265 �4.0 4262 4188 �1.7 4933 4610 �6.5
8 8 724 760 5.0 879 883 0.5 1114 1128 1.3 1288 1251 �2.9

16 8 1462 1485 1.6 1760 1731 �1.6 2210 2185 �1.1 2542 2432 �4.3
24 8 2141 2209 3.2 2574 2579 0.2 3274 3243 �0.9 3803 3612 �5.0
32 8 2858 2934 2.7 3454 3427 �0.8 4372 4300 �1.6 5068 4793 �5.4
64 8 5691 5833 2.5 6855 6819 �0.5 8642 8531 �1.3 9906 9516 �3.9
8 16 1522 1551 1.9 1853 1815 �2.1 2325 2301 �1.0 2647 2565 �3.1

16 16 3090 3018 �2.3 3737 3546 �5.1 4588 4434 �3.4 5207 4962 �4.7
24 16 4605 4486 �2.6 5563 5278 �5.1 6831 6566 �3.9 7780 7358 �5.4
32 16 6071 5953 �1.9 7395 7009 �5.2 9140 8699 �4.8 10 392 9755 �6.1
64 16 12 076 11822 �2.1 14 511 13 934 �4.0 17 857 17 230 �3.5 20 287 19 342 �4.7

Fig. 2. Schematic picture showing CORDIC phase rotator.

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475466

154 Publication 5

i
i

“thesis” — 2018/10/5 — 11:01 — page 155 — #175 i
i

i
i

i
i

The development of the gate count model for the mixer is very
straightforward for the arithmetic part. The multiplier and adder
models can directly be used here. We can easily count the required
number of elements from the block diagram.

Again, the look-up table modeling poses a difficult problem. In
this case, the table contains a full wave of sin ðωÞ and cos ðωÞ.
There is a great deal of redundancy in the table and this needs to
be taken into account. The input and output of the tables are
identical and the model is created by fitting a model function to
the test data. We used the same function (6) as with the CORDIC
look-up table for this case. Interestingly, the value obtained for β is
the same for the CORDIC and the mixer cases. Fitting this func-
tion to synthesize sin ðωÞ and cos ðωÞ tables resulted in α¼1.4 and
β¼1.8.

The complete model is shown in Algorithm 5.

Algorithm 5. Complex mixer gate count estimation model.

1: function COMPLEX_MIX(ibits, pbits, obits, tech)
2: % Complex multiply
3: mult’Mult_ssðibits;pbits; techÞ
4: add’Addðobits; techÞ
5: sub’Subðobits; techÞ
6: mix’4nmultþaddþsub
7: % Look-up table

8: lut’1:4npbitsn1:8pbits
ntech:NAND2

9: return mixþ lut
10: end function

To test the complex mixer model we used the same test bench
as for the CORDIC (Fig. 3). The evaluation results of the model are
shown in Table 6.

4.4. Design level modeling

At the design level the modeling process is essentially identical
to the process illustrated above for the larger basic blocks. In the
beginning, the design is divided into manageable sub-blocks for
which models can easily be created. Normally, this is already done
as a part of normal design practice. At the bottom level, the design
consists of simple hardware elements, such as registers and
arithmetic or logical operations. A block diagram or data-flow
graph is drawn for the sub-blocks and the top level. Next, each
item in the sub-block is mapped to a basic block from the library.

As an example, if the next element to be considered in the sub-
block currently being modeled is an integer multiplication, we
should examine its properties to decide what library block it could
be mapped to. If the multiplication is parallel, and the result is
signed, we should select the signed multiplier model Multss. On
the other hand, of the result is unsigned, we would use theMultuu
model. The remaining task is to find suitable parameters, i.e. word
lengths of the inputs, for the library model. In the case of serial
implementation, we cannot directly use the multiplier models of
the default block library, but must resort to creating the multiplier
model from lower level components and handling it as a sub-block
of the design. It would also be easy to add the serial multiplier to
the basic block library after creating its model, if such multipliers
are used often. In this case, suitable parameters should be used in
its modeling.

If a mapping cannot be done because no such element exists in
the library, the particular part must be modeled as primitives. In
this case, there are a few alternatives. The first is to create a
detailed model of the part using a similar process, as we did for
the blocks in Section 4.3. This would be the most accurate method,
and would lend itself best for the library extension. The second
method, which works well for combinatorial table like structures,
is to create a mathematical formula for the gate count estimation
through fitting to example design data, like we did for example for
the CORDIC and complex mixer examples. This works well, if the
intention is to create re-usable and parameterized models. The
third option is to approximate the gate count by counting the
major logic elements. This is usually easier than it appears from
the first thought, as the elements that cannot be mapped to the
library after partitioning the design, tend to be small. Also, even
though the accuracy of this approximation might not be very high,
the overall effect to the accuracy of the gate count estimation of
the whole design tends to be small. In the rare cases, where we
encounter a element, which does not exist in the library, and is
used in the design very many times, we should put more effort in
its modeling. If this happens to be a part which is used in several
places in the design, it will be a good candidate for adding to
the basic block library, and the effort will be saved in future
modeling work.

Table 5
CORDIC model evaluation.

niter ibits pbits obits Actual gates Model gates Error (%)

3 3 3 5 465 392 �15.70
3 5 3 8 639 653 2.20
5 5 5 9 945 953 0.80
3 7 3 10 815 848 4.00
5 7 5 11 1169 1211 3.60
7 7 7 11 1634 1739 6.40
3 9 3 12 991 1042 5.10
5 9 5 13 1393 1469 5.50
7 9 7 13 2102 2061 �2.00
9 9 9 13 4156 4161 0.10

SIN/
COS

LOOK-
UP

TABLE

xIN

yIN

phIN
yOUT

xOUT

pbits

ibits

obits

ibits

obits

pbits

pbits

Fig. 4. Schematic picture showing the complex mixer.

Table 6
Complex mixer model evaluation.

ibits pbits obits Actual gates Model gates Error (%)

3 3 6 503 493 �2.0
5 3 8 705 735 4.3
5 5 10 1259 1210 �3.9
7 3 10 986 976 �1.0
7 5 12 1604 1563 �2.6
7 7 14 2551 2510 �1.6
9 3 12 1251 1217 �2.7
9 5 14 1961 1916 �2.3
9 7 16 2929 2975 1.6
9 9 18 5372 5466 1.7

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475 467

155

i
i

“thesis” — 2018/10/5 — 11:01 — page 156 — #176 i
i

i
i

i
i

In the model creation for the real world examples presented in
the next section, we could map almost all functionality to the basic
block library. There were only a few specialized functions that
required lower level modeling such as the code generator of the
GPS receiver (Section 5.1), and even most of that could use blocks
from the library. A versatile and rather general element in the
basic block library is the generic look-up table model, which
computes a gate count estimate given the number of inputs,
outputs, and a redundancy factor. The model is exponential, and
should not be used for large tables. It worked well for modeling
the instruction decoding of the DSP processor core (Section 5.4)
thus proving its suitability for general logic modeling.

5. Real world examples

All the preceding examples have been very limited and creating
a detailed model for them is a very straightforward task. Further-
more, in such simple blocks it is possible to take into account even
the smallest details, which can improve the modeling accuracy to
a very good level. In this section, we will describe some examples
from real designs and show that with a very small effort we can
get very accurate models. These examples are extracted from real
IC projects and their functionality has been validated in silicon or
FPGA. The examples in this section include blocks from two
different satellite positioning receivers and a processor core. The
global navigation satellite systems (GNSS) include the American
GPS [17] and the European Galileo [18]. We will not describe how
to design such receivers and will not go into detail of the operation
of the systems here as we will only look into the modeling of the
hardware to evaluate our estimation methodology. An introduc-
tion to spread-spectrum communications and receiver design

issues can be found for example in [19,20]. We will describe the
hardware and discuss the gate count model creation of each
example case first and then show the results at the end of this
section.

5.1. GPS correlator unit

The GPS correlator unit consists of a number of correlator
channels each with a number of correlator fingers. In addition
there is a simple input processing block and a common control
block and a simple bus-combination unit connecting all channels
to the ASIC data bus. In this paper, we concentrate on the
correlator channels, as the size of the other parts is negligible.

The block diagram of one correlator channel is depicted in
Fig. 5 and its key parameters are listed in Table 7. The correlator
channel design follows a typical GPS receiver architecture [21].
When the signal comes into the correlator, it is first multiplied by
the carrier replica, which is generated by the carrier Numerically-
Controlled Oscillator (NCO) and the sin/cos-table. Next it is multi-
plied by a delayed version of the replica code generated by the
code generator driven by the code NCO. Finally, the signal is
integrated for a set time before the results are copied to the output
registers. There are a configurable number of correlator fingers,
each multiplying the incoming signal by a differently delayed
code and integrating it. The count of generated full cycles and the
current NCO phase accumulator are sampled at the same time
as the integrated data is sampled. There is also a setter unit,
which initializes the NCOs to a desired phase and resets the code
generator to start from the beginning of the code at a program-
mable time.

With the aid of Fig. 5 and Table 7, we can easily construct a gate
count model of the correlator channel. Most of the building blocks

SHIFT REG

SHIFT REG

G2 INIT REG

 G1 LOGIC

 G1 LOGIC

REGREG

R
E

G
M

U
X

R
E

G
M

U
X

REG

CMP

R
E

G
M

U
X

REG

0'

0'

R
E

G

DEC

REG

R
E

G
M

U
X

=0

SETTER
FSM

Setter set

Setter load

REGREG

R
E

G
M

U
X

R
E

G
M

U
X

REG

0'

sign

REG

SIN/COS
TABLE

carry

SHIFT REG

R
E

G
S

A
T

MUX

REG

0'

R
E

G
S

A
T

MUX

REG

dump

dump

sample

sample

sample

sample

tick

tick tick

0'

REG

M
U

X
M

U
X

code NCO code generator

carrier NCO setter

correlator fingercarrier removal

fast I&Q in

slow I&Q in

MUX

Fig. 5. Block diagram of the GPS correlator unit.

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475468

156 Publication 5

i
i

“thesis” — 2018/10/5 — 11:01 — page 157 — #177 i
i

i
i

i
i

in the block diagram are already available as basic blocks. The code
generator G1 and G2 logic blocks are simply a few XOR2-gates
[22]. As we know that there are a few miscellaneous register bits
and the setter state requires two bits of state we can add those
registers to the model. Furthermore, as we know that the FSM has
3 inputs and 2 outputs in addition to the state register, we can add
an ad-hoc model of the logic using a simple look-up table model.

5.2. GPS matched filter unit

The GPS matched filter (MF) unit is used as a part of GPS
receiver signal acquisition hardware. The unit presented here
follows a similar architecture to that presented in [23]. The block
diagram of the MF unit is shown in Fig. 6 and the key parameters
are listed in Table 8.

First, the incoming signal is down-converted to DC with the
carrier removal part that is similar to the one in the correlator
channel. Next the signal enters into the decimator, which is
implemented as an integrate and dump filter controlled by the
code NCO and followed by a signal re-quantization block. The code
NCO also drives the replica code generator, which generates the
replica code that is initially loaded into the MF as the reference
signal to be matched against. The MF core computes the matched
filter output for each incoming sample. There are 1023 samples of
data and reference signal in the shift registers. The data and
reference shift-registers in the GPS MF unit have no reset to save
their area and they need to be modeled separately from the
normal register blocks. Each data and reference sample pair needs

to be multiplied together and added together to produce a single
output value. The MF core performs the computation in a bit-serial
fashion by multiplying the 2�3 bits of data by the 1-bit, 71
valued, reference signal one bit at a time. To simplify the opera-
tion, the data is represented in one's complement format [24], in
which the negation of a number is done by inverting all of its bits.
The inversion is done using a XOR2 gate. The parallel summation
of 1023 single bits to a single output is handled by a reduction
adder. The model of the multiply and sum part can be as simple as
follows:

Gðmul_sumÞ ¼ 1023� ðGðmuxð6;1ÞÞþGðXOR2ÞÞ
þGðraddð1;1023ÞÞ ð7Þ

After the addition of all the bits, the remaining task is to assemble
the three values corresponding to the I or Q part of the input to
single numbers. This is done by the accumulator of the output
converter part. The final output of the MF is a stream of data
where the I- and Q-parts of each output sample are time-
interleaved.

By observing Fig. 6 and referring to Table 8, we can proceed to
create a gate count model of the GPS MF unit. Similar to the GPS
correlator model, we can use the already modeled blocks to build
the model except for the few parts that need a dedicated model to
be created.

5.3. GNSS receiver block

We will next show the steps of creating a gate count model of a
GNSS receiver based on the Group Correlator (GC) architecture
[25]. Its top level block diagram is illustrated in Fig. 7 showing the
major parts of the digital baseband of the receiver. In this paper,
we concentrate on the GC_block level excluding the RAM memory
blocks. The design is parameterizable for trading off its perfor-
mance against silicon area. The main parameters and their values
are shown in Table 9. There are also a lot of other interrelated
parameters that can be derived from these and which need to be
taken into account during the modeling process.

The work was divided into smaller pieces according to the
design hierarchy and the model of the receiver block was built in a
bottom-up fashion. We will now describe the model creation of
the main sub-blocks illustrating the methods used.

5.3.1. Group correlator core
The group correlator core block diagram is shown in Fig. 8 and

its parameters come directly from the top level table. It is evident
that the size of this block is dominated by the large number of
registers and the relatively big multiply and sum block, which
multiplies and adds the parallel code and the data samples
together to a single output. Here we can use the reduction adder
model described earlier. The next task is to count the register bits
in the code input shift-registers, the code holding registers, and
the data shift-registers. The code and data are selected by multi-
plexers and depending on the GC operating mode the outputs of
the parallel reduction adders are either added or interleaved by a
multiplexer.

5.3.2. Carrier replica generator
Before we start to go through the carrier replica generator sub-

block, we will first take a look of a more generic block diagram of a
numerically controlled oscillator (NCO), which is used as a basis
for the carrier and code replica generators. Fig. 9 shows a
schematic diagram of a time-multiplexed implementation of an
N-channel NCO. The NCO operates by accumulating the frequency
control word to a phase accumulator register, which wraps over
periodically after each complete output signal cycle. There is also

Table 7
GPS correlator parameters.

Parameter Value Notes

Number of channels 12–14 Configurable
Number of correlator fingers/ch 3–20 Configurable
Channel sample rate (MHz) 10.x/2.x SW selectable

I/Q input word length 3
NCO word length 32
Initial NCO phase bits 16
Carrier phase and cycles width (bits) 32
Code phase and cycles width (bits) 42
sin/cos table input word length 4
sin/cos table output word length 5
Correlator output word length 14
Setter counter word length 16

SIN/COS
TABLE

carrier removal

REG

REG

SHIFT REG

SHIFT REG

G2 INIT REG

 G1 LOGIC

 G1 LOGIC

code generator

carry

chip rate generation

REG

REG

sample
MUX

REG

0,0'

Q
U

A
N

T

R
E

G

REG

SHIFT REGISTER

MULTIPLY & SUM

SHIFT REGISTER

SHIFT REGISTER

R
E

G
M

U
X

MF core

output converter

0'

Fig. 6. Block diagram of the GPS matched filter unit.

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475 469

157

i
i

“thesis” — 2018/10/5 — 11:01 — page 158 — #178 i
i

i
i

i
i

an associated cycle counter, which keeps track of the full cycles
produced. The frequency of the NCO is controlled by writing the
frequency registers via the write interface. The new values are first
held in holding registers, whose sampling is controlled by the
sample control signal. Similarly, the NCO phase and cycle counter
registers for each channel are sampled at the same time and their
values can be read over the read interface. This kind of a NCO
implementation is very commonplace in GNSS applications, where
multiple channels are tracking multiple input signals. GNSS
receivers measure the incoming signal cycles and phase to derive
the time of flight of the transmitted signals. The frequency, phase,
and cycle count register values can be held in shift-register like
arrays, but the accessible copies need to have register-file like
structure allowing random access to the values from the SW. The

phase adder and the cycle counter adder are normal adders and
can be modeled as such.

Fig. 10 shows the carrier replica generator of the GNSS receiver.
Two blocks on the top are similar to the multi-channel NCO
discussed above. There are two additional NCO generating the
running phase for creating the frequency bin spacing. The carrier
replicas for the frequency bins are generated by adding an integer
multiple of the frequency spacing phase to the center frequency
phase or, for one bin, adding the offset frequency phase to the
center phase. We can add the outputs of the two NCOs together
and generate the same signal as we would do by adding the NCO
control values because modulo arithmetic is used in the NCO.
However, in the first case we need only two NCOs and a few
adders, in the latter case there would be as many full NCOs as we
have frequency bins. There is one additional feature, which is not
directly visible in the figures: a desired value can be written to the
NCO phase at a predetermined time via an additional initial value
register. This is needed when initializing the receiver channels
during the operation.

5.3.3. Replica code generator
The code replica generator for the GNSS receiver uses a pre-

computed code, which is loaded into the code generator RAM
before use. This is required for supporting the Galileo system,
whose spreading codes are not based on the use of linear feedback
shift registers, like they are in the GPS. The memory based code
generator is more general and can also be used to generate the
replica codes for the GPS. The block diagram of the replica code
generator is shown in Fig. 11. In the bottom row, there is a NCO
with some special features. The cycle counter has a per-channel
programmable code length register, which is used to reset the
memory pointer after each full cycle of the code. This is used to
cope with the different lengths of the GPS and Galileo codes. Full
code periods are counted with the epoch counter. The output of
the cycle counter is used to produce the word and bit addresses for
the code memory access logic on the top of the block. Above the
NCOs there is the code setter, whose function is to reset the NCO
and the counters to an initial value after a programmable number
of clock cycles after receiving a synchronizing signal derived from
a local time keeping unit. This allows resetting the phase of the
generated code to a known value when initializing the receiver
channels during the operation. The remaining circuitry allows
using the Binary Offset Carrier (BOC) [26] modulation scheme used
by the Galileo system when enabled for each channel. The bit
selection logic in the code memory block is an 8-to-1 multiplexer
and a single bit register.

5.3.4. Integrator bin
The integrator bin is responsible for the remaining hardware

processing tasks in the GNSS receiver. Each integrator bin contains
the following parts, as shown in Fig. 7:

� Frequency bin mixer
� Coherent integrator
� Absolute value computation
� Non-coherent integrator
� Statistics gathering block

Most of the sub-blocks in the integrator bin are simple. The
frequency bin mixer is based on CORDIC, but it also down-scales
the data to save some RAM bits for the following integration. For
this reason the previous CORDIC model cannot be directly used
here. However, the changes are straightforward and the earlier
CORDIC model can be used as the basis for the new model. The
two integrator blocks differ slightly from each other.

Table 8
GPS matched filter parameters.

Parameter Value

Code spacing (chips) 1
Shift register length 1023

I/Q input word length 3
Data shift register word length 3
Carrier NCO word length 17
Code NCO word length 28
sin/cos table input word length 4
sin/cos table output word length 5
Matched filter output word length 13

Fig. 7. Block diagram of the GNSS receiver. Adapted from [25].

Table 9
GNSS receiver parameters.

Parameter Value Notes

Defining parameters
GC length 64
GC multiplexing factor 4
GC chaining factor 2
Number of channels per GC block 16
Number of GC input sample rates 3
Number of GC blocks 2
Number of integrator bins 5
Input word length 3 I &Q

Derived parameters
Total number of channels 32
Code bins per channel 256
Number of code bins per GC block 4096
Total number of code bins 8192

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475470

158 Publication 5

i
i

“thesis” — 2018/10/5 — 11:01 — page 159 — #179 i
i

i
i

i
i

The coherent integrator operates on the correlated complex
samples that have been shifted to DC by the mixer. It adds a
number of samples corresponding to the same code offset and
channel together. These come as a time-multiplexed stream from
the mixer. This means that the integrator running sum needs to be
stored during processing the other streams. As there are a large
number of streams to process, a RAM memory is used for the
storage. For each sample processed, it has to be read from and
written into the memory. It is possible to use two single-port
memories by organizing the data storage in a clever way. This

saves a large amount of silicon area. The integrator output and
memory write data are registered. The integrator uses non-sticky
saturation arithmetic to protect the integration result from
overflow.

The absolute value computation logic computes an approxima-
tion of the magnitude of the complex data using the JPL algorithm
[27], which yields a very good approximate of:

jIðtÞþ iQ ðTÞj ¼
ffi
I2ðtÞþQ2ðtÞ

q
ð8Þ

Code register
clocking
control

Code register
dump control

SHIFT REGISTER

MULT & SUM

SHIFT REGISTER

REGISTER
code 1

data 1

SHIFT REGISTER
REGISTER

SHIFT REGISTERdata M

clock 1

clock M

DUMP
SELECT

DUMP
SELECT

DATA
SELECTOR

CLOCK
SELECT

CLOCK
SELECT

SHIFT REGISTER

MULT & SUM

SHIFT REGISTER

REGISTER

SHIFT REGISTER
REGISTER

SHIFT REGISTER

DATA
SELECTOR

+

code N

data_out

Fig. 8. Block diagram of a parameterizable Group Correlator core. Adapted from [25].

R
E

G

R
E

G

M
U

X

R
E

G

R
E

G

R
E

G

R
E

G

Write I/F

M
U

X

M
U

X

Frequency

R
E

G

R
E

G
R

E
G

R
E

G

R
E

G

R
E

G

Read I/F

R
E

G

clk to regs

sample

Phaseacc

Cycle counter

R
E

G

R
E

G
R

E
G

R
E

G

R
E

G

R
E

G

phase

C
A

R
R

Y

S
IG

N

1

1

Fig. 9. Schematic diagram of a time-multiplexed generic NCO block.

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475 471

159

i
i

“thesis” — 2018/10/5 — 11:01 — page 160 — #180 i
i

i
i

i
i

requiring only very modest amount of hardware compared with
a full implementation of the squaring and square root. The
computation requires only shift and addition operations and a
few multiplexers and comparators are needed for the control. This
block also allows the data to be scaled down by a few bits.

The inputs of the non-coherent integrator are non-negative
numbers that cause the integrator sum to be non-decreasing. In
order to reduce the required word length, the unit keeps track of
the minimum of the partial sums for each channel and subtracts it
from all values while adding the next inputs. The subtracted values
are accumulated separately and kept for each channel for adding
later to the final result to restore the correct values for further
processing. Due to the Doppler effect the spreading code fre-
quency will be slightly different for each frequency bin. To
compensate for this, there is a provision to add an offset to the
integration memory addresses, which requires some additional
logic in the memory address computation.

The last sub-block is the signal statistics computation unit. This
block analyzes the results of the non-coherent integration during
each processing round and provides the following data about the
outputs of the non-coherent integrator for each channel: max-
imum value and its index, sum of all values, sum of all squared
values. The sums accelerate the computing of mean and standard
deviation of the output data. The main components in the
statistics computation unit are the registers needed to store the
data, the multiplier needed for the squaring operation and the
adders for the accumulations.

5.4. VS_DSP processor core

The VS_DSP [28,29] is a configurable, embedded, DSP processor
core that can be used in many applications. The processor core is
based on the modified Harvard architecture with two data buses
(X and Y) and a separate program data bus. The VS_DSP user's
manual [30] contains a very good description of the processor. In
this paper, we will concentrate on the modeling of the core
without explaining the hardware from the functional point of
view. The block diagram of the processor core is shown in Fig. 12.
The core consists of three functional units: datapath, data address
calculation, and program control. In the following, we will now go
through each of them and explain how the gate count model of
the processor core was built. The main parameters of the VS_DSP
core and their default values are listed in Table 10.

5.4.1. Datapath
The datapath of the VS_DSP is shown in Fig. 13. Its operation

uses the register file except for the multiplier output, which is
always stored into the P-register. The ALU can operate on either n
or 2nþg long operands. The NULL/ONES is a pseudo-register,
whose output is either all zeros or all ones. This can be used to
form some useful operations, like increment, decrement, and
negation. When the arithmetic registers are treated as 2nþg long
concatenated words, the number of available registers is halved.

The multiplier is modeled as a normal signed multiplier, with-
out taking into account the saturation. The fractional versus
integer mode selector is a simple 2-to-1 multiplexer. The NULL/
ONES register is modeled as a NAND2 array and the ALU input

CYCLE
COUNTER

CARRIER
NCO

Carrier phase Carrier cycles

BIN
NCO +0

+N× f

+1× f

-1× f

-N× f
+xfxf

f

freq_in

to freq bin +N+1
to freq bin +N

to freq bin +1
to freq bin 0
to freq bin -1

to freq bin -N
to freq bin X

FR
E

Q
 B

IN
 G

E
N

OFFSET
NCO

+N+1× f

Fig. 10. Block diagram of the carrier replica generator.

CODE MEMORY
and

BIT SELECTION LOGICcode_param code_out

Code clkBOC clk

CODE
SETTER

CHIP
COUNTER

(MOD L)

CODE
NCO

EPOCH
COUNTER

2

clk

Code phase Code chip Code cycles

start

Code NCO
Block

Code addr

invert

ena BOC

code_len

clr

1 N

N

Fig. 11. Block diagram of the replica code generator.

ADDRESS
CALCULATION

DATAPATH

P REGISTER

ALU

ADDRESS
REGISTERS

Y
-A

D
D

R
E

S
S

A
LU

X
-A

D
D

R
E

S
S

A
LU

PROGRAM
CONTROL

FETCH

DECODE

CONTROL
REGISTERS

HW-LOOPING

PC

xab yab iab idb

xdb
ydb

ARITHMETIC
REGISTERS

Fig. 12. Block diagram of the VS_DSP processor core. Adapted from [30].

Table 10
Main VS_DSP parameters.

Parameter Range Value Notes

Data word length (n) 8–64 16 Regs and buses
Data address length (da) 8–23 16 darn
Program address length (pa) 11–20 16 parn
Multiplier input width (m) 8–64 16 mrn
Accumulator guard bits (g) 0–16 8 mrn

of arithmetic registers 4–12 8 multiple of 2
of index registers 8, 16 8

of loop hardware levels 0–8 1
Modulo addressing enable T/F T
Bit-reverse addressing enable T/F T

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475472

160 Publication 5

i
i

“thesis” — 2018/10/5 — 11:01 — page 161 — #181 i
i

i
i

i
i

selectors are again normal multiplexers. The ALU is modeled with
an adder/subtractor, a XOR2þAND2 gate array for logical func-
tions, and a 5-to-1 multiplexer for the function selection. Notice
that the ALU has to be 2nþg bits wide for the wide operations. The
arithmetic registers are modeled as a register file. The register file
has 3 input and 4 output ports. The bus interface model is simply a
NAND2 array.

5.4.2. Data address calculation
The VS_DSP data address calculation unit consists of a bank of

index registers and two address ALUs. The inputs to the address
ALU are two index register values (base and modifier) and the
addressing mode selection from the instruction word. The output
of the address ALU is the updated value for the base index register.
The optional bit reverse address-generation can be conceptually
achieved by reversing the bits of the inputs and outputs of a
normal adder. This reversion does not actually take any hardware
and will be internally implemented by arranging the carry propa-
gation of the adder. The normal index register incrementing
addressing modes are implemented by a separate adder. A third
adder is required to implement the modulo wraparound for
optional hardware modulo addressing modes.

The modeling of the data address generation unit is fairly
straightforward. The index register bank is modeled as a register
file with 4 input ports and 6 output ports, which also accounts for
the bus access to the two data buses. The address ALUs consist

mainly of adders and multiplexers with word length equal to that
of the index registers.

5.4.3. Program control
The VS_DSP program control unit is illustrated in Fig. 14. The

control unit fetches and decodes the instructions, computes the
next instruction address, and takes care of the interrupt handling.
The VS_DSP is based on a three-stage fetch-decode-execute pipe-
line architecture, which makes the control unit quite simple. The
PC is automatically incremented, except in the case of reaching the
end of a hardware loop, when it is copied from the loop start
register (LS). The link registers (LR1 and LR2) are used for long
jumps and interrupt processing. The hardware loop is handled by
comparing the instruction fetch addresses to the loop end (LE)
register. If an end of a loop is reached and the loop counter (LC) is
not zero, the LS register is copied to the PC causing the program to
jump back at the start of the loop. In this case, the LC is
decremented by one. The interrupt handler is a simple state
machine, which controls the instruction fetch address and the
storing of the old instruction fetch address to the LR1 register. The
function of the interrupt handler is explained in detail in [30]. The
fetched instruction is stored into the instruction fetch register and
the decoded control signals are stored into the execution control
registers at the end of each instruction decoding cycle.

The instruction address generation and loop hardware parts are
modeled in a very straightforward fashion following the block
diagram in Fig. 14. The modeling of the instruction decoder block
is perhaps the most difficult challenge. It is also quite a large part
of the processor, roughly 20% of the gate count. Its input consists of
the fetched instruction and the condition and mode register
(MR0). The outputs are the different control signals that go to
the various parts of the processor. The first task is to determine the
number of the control signals. For each unit, we computed the
functional controls and bus interface controls separately. Fig. 13
illustrates the calculation of the number of functional control
signals for the datapath. The other blocks are handled in a similar
way. At the end, we have the total number of outputs from the
instruction decoder block. There are a total of 40 inputs and 105
outputs in the instruction decoder logic. The instruction decoder
block can be viewed as a PLA, which would consist of decoding
each input combination (2Ninputs possibilities) and then for each
output selecting the ones that cause the control to have a value of
one. Such a model would yield unrealistically large an estimate if
we would simply use a single decoder and take all inputs and
outputs into account. In reality, the instruction decoder function is
rather sparse and all of the input bits do not have any effect on
some of the output bits. To be able to cope with this, the
instruction encoding has to be taken into account and the inputs
and outputs need to be considered more carefully. In the VS_DSP

Control bit
calculation

SATURATION

FRACT/INT SHIFT

P1 P0

MUX MUX

NULL, ONES

OP1 OP2

ALU
+,-, AND,OR,XOR,

SHR

A1 A0A2
B1 B0B2
C1 C0C2
D1 D0D2

INTERFACE
TO X BUS

INTERFACE
TO X BUS

2m

2m

mm

n/2n+g

n

n/2n+gn/2n+g

n n n

signed mode: 2

mode: 1 (S-mode)

int/fract: 1

restore P: 1
write P: 1

op1-sel: 2
op2-sel: 3

ALU-op: 4
ABS/SAT/RND: 3
invert-in: 1
c-flag: 1
use carry-in: 1
use carry-out: 1

res-sel: 3
write res: 1

total = 34

op1-sel: 3
op2-sel: 3
mop2-sel: 3

Fig. 13. Block diagram of the VS_DSP data path.

jump_addr +1

MUX

LE=
iab?

PC

MUX

LR1

LR0

MUX

iab

LS

LC

LE

LC
0?

-1

MUX

INTERRUPT
CONTROL

(FSM)

FETCH

CTRL

INSTRUCTION
DECODE

interrupt_addr

idb

controls
exec_ctrl

interrupt

reset

optional
loop HW

MR1MR0flags instruction address
generator

Fig. 14. Block diagram of the VS_DSP program control unit. Adapted from [30].

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475 473

161

i
i

“thesis” — 2018/10/5 — 11:01 — page 162 — #182 i
i

i
i

i
i

case, the instruction decoder was modeled in smaller pieces as
shown in Table 11. Additionally the model contained some multi-
plexers to select instruction word fields for decoding. This parti-
tioned model yielded surprisingly good results, as we can see
below. The interrupt control state machine has 6 states, 3 inputs
and 6 outputs and it can again be modeled as a state register and a
look-up table.

5.5. Results summary

The results of the modeling of the example cases described in
the previous subsections are shown in Table 12. The actual gate
count numbers used in the comparison are based on data provided
by Synopsys DC runs when they were synthesized during the IC
projects. The modeled gates are obtained from the developed
model. The modeling errors are given in absolute gates, and as
relative percentage of the actual gate count. As it can be seen from
the results the modeling accuracy using the proposed method is
very good and the average error of the test cases is 4.0%. The
accuracy achieved for the test cases compares very well against
those reported in the literature, especially considering the high
abstraction level of the input data. Our example cases have been
taken from real design projects that have been implemented
in two different CMOS technologies from two different silicon
foundries. This compares well with the overall average relative
error of 3.2% calculated from all of the smaller examples shown in
Tables 4–6.

For the GPS receiver blocks, there are two different configura-
tions for the Correlator: configuration 1 has 7 channels with
5 correlator fingers and 7 channels with 3 correlator fingers and
configuration 2 has 12 channels with 11 correlator fingers.

The Integrator bin in the GNSS receiver has an error of �9.6%,
but most of it can be accounted to unmodeled testability and
interface logic in the integration memory blocks. This can be seen
in the row below, where comparison is made between only the
parts which were modeled. This difference highlights the general
problem of early modeling of gate count: there can be unforeseen
changes during the implementation phase, which would cause
differences between the estimated and actual gate count. Logic
related to testability is one such source and in our example, the
other is the logic which was used to emulate a two-port memory
with two single-port memories. However, these kind of estimation
errors are not specific to the estimation methodology. Even
synthesizing early RTL code using the actual implementation
technology would still have similar problems. It should be noted
here that the GNSS receiver block numbers in the results table
include five instances of the final integrator bin and not the partial
one. This shows that modeling errors in the sub-blocks tend to be
averaged out when considering the whole design.

The VS_DSP modeling results are very good especially con-
sidering the uncertainties in modeling the large instruction
decode logic. The results shown in Table 12 correspond to the
parameters given in Table 10. As an example of using the

parameterization of the gate count models for design space
explorations, some variations of the VS_DSP with different para-
meters are illustrated in Table 13.

6. Conclusions and summary

In this paper, we have presented a methodology for gate count
estimation of ASIC designs. The proposed gate count estimation
methodology can be applied at a very early phase of the design
process. It is based on simple bottom-up modeling of the system.
Using a small set of simple, well characterized, building blocks
allows good accuracy without requiring complex analysis of the
design. The set of building blocks is easily extensible, which allows
tailoring the methodology for particular applications and design
styles. It can be used even when there is an incomplete specifica-
tion available. It is also possible to apply the methodology in an
incremental fashion with increasingly better estimation accuracy.
The possibility of creating parameterized estimation models
allows this method to be used in architectural level design
exploration. It is for example a very efficient tool, when area-
performance trade-offs need to be made early in an ASIC design
project.

It would be advantageous for this method to improve the
modeling of random logic structures like look-up tables and
decoding logic, which are currently handled in an ad hoc fashion
or matching a number of similar, synthesized circuits to a para-
meterized model. The other valuable addition would be to enable
memory blocks to be included in some fashion into the area
estimations. Currently, they are ignored and they need to be taken
into account separately.

As we have shown with the example cases, it is possible to get
very accurate estimations even with very limited effort. The
smaller examples show in detail how the method is applied to
smaller blocks and the large example cases show how accurate
results can be achieved in realistic designs.

Table 11
VS_DSP instruction decoder partial decode list.

Function In Out

General instruction selection 4 68
Control instruction selection 3 16
Condition code evaluation 14 1
ALU instruction selection 8 34
Datapath register move instruction selection 4 4
Index register move instruction selection 4 4
Control register move instruction selection 4 4
Move instruction format selection 3 3

Table 12
Example cases results.

Design Actual gates Model gates Error gates Error (%)

GPS receiver blocks: 0.18 μm CMOS
GPS correlator conf. 1 96 400 99 385 2985 3.1
GPS correlator conf. 2 135 000 140 700 5700 4.2
GPS matched filter 47 972 48 248 276 0.6

GNSS receiver blocks: 65 nm CMOS
GNSS receiver block 249 984 250 437 453 0.2
Group correlator core 65 799 74 588 8789 13.4
Carrier replica gen. 25 114 25 941 827 3.3
Replica code gen. 28 909 28 791 �118 �0.4
Integrator bin 24 375 22 023 �2352 �9.6
Integrator bin parts 21 248 22 023 775 3.6

Processor core: 0.18um CMOS
VS_DSP (v2) 22 000 21 656 �344 �1.6

Table 13
VS_DSP parameter alteration results.

Version Estimate gates Δ Baseline gates

VS_DSP (v2) baseline 21 656 –

With 24-bit datapath 26 148 4492
No loop hardware 20 612 �1044
No modulo and bitrev addressing 20 555 �1101
With 4 arithmetic registers 19 498 �2158
Minimum implementation 10 966 �10 690

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475474

162 Publication 5

i
i

“thesis” — 2018/10/5 — 11:01 — page 163 — #183 i
i

i
i

i
i

Acknowledgments

The authors would like to thank Seppo Turunen from Nokia
for providing actual gate count data for the example cases and
valuable comments. This work has been supported by a grant from
the Alfred Kordelin Foundation.

References

[1] C. Shannon, The synthesis of two-terminal switching circuits, Bell Syst. Techn.
J. 28 (1949) 59–98.

[2] D.E. Muller, Complexity in electronic switching circuits, IRE Trans. Electron.
Comput. EC-5 (1956) 15–19.

[3] E. Kellerman, A formula for logical network cost, IEEE Trans. Comput. C-17
(1968) 881–884.

[4] R.W. Cook, M.J. Flynn, Logical network cost and entropy, IEEE Trans. Comput.
C-22 (1973) 823–826.

[5] N. Pippenger, Information theory and the complexity of Boolean functions,
Theory Comput. Syst. 10 (1976) 129–167.

[6] K.-T. Cheng, V. Agrawal, An entropy measure for the complexity of multi-
output Boolean functions, in: Proceedings of the 27th ACM/IEEE Design
Automation Conference (DAC), 1990, pp. 302–305.

[7] M. Nemani, F. Najm, High-level area and power estimation for vlsi circuits,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18 (1999) 697–713.

[8] K.M. Büyükşahin, F.N. Najm, High-level area estimation, in: Proceedings of the
2002 International Symposium on Low Power Electronics and Design, ISLPED
'02, ACM, New York, NY, USA, 2002, pp. 271–274.

[9] R. Enzler, T. Jeger, D. Cottet, G. Tröster, High-level area and performance
estimation of hardware building blocks on FPGAs, in: Proceedings of the
Roadmap to Reconfigurable Computing, 10th International Workshop on
Field-Programmable Logic and Applications, FPL '00, Springer-Verlag, London,
UK, 2000, pp. 525–534.

[10] M. Abdelhalim, S.-D. Habib, Fast FPGA-based area and latency estimation for a
novel hardware/software partitioning scheme, in: Canadian Conference on
Electrical and Computer Engineering, 2008, CCECE 2008, 2008, pp. 000775–
000780.

[11] R. Meeuws, A Quantitative Model for Hardware/Software Partitioning
(Master's Thesis), Delft University of Technology, Delft, Netherlands, 2007.

[12] Matlab, URL: 〈http://www.mathworks.com/Matlab〉, 2013.
[13] J.W. Eaton, GNU Octave. URL: 〈http://www.gnu.org/software/octave〉, 2013.
[14] J.-P. Deschamps, G.J.A. Bioul, G.D. Sutter, Synthesis of Arithmetic Circuits:

FPGA, ASIC and Embedded Systems, John Wiley & Sons, Inc., Hoboken, NJ,
2006.

[15] J.E. Volder, The cordic trigonometric computing technique, IRE Trans. Electron.
Comput. EC-8 (1959) 330–334.

[16] B. Lakshmi, A.S. Dhar, Cordic architectures: a survey, VLSI Des. 2010 (2010)
2:1–2:7.

[17] Navstar GPS Space Segment/Navigation Users Interface. GPS Interface Speci-
fication, IS-GPS-200F. URL: 〈http://www.gps.gov/technical/icwg/IS-GPS-200F.
pdf〉, 2011.

[18] European GNSS (Galileo) Open Service: Signal In Space Interface Control
Document, Issue 1 Revision 1. URL: 〈http://ec.europa.eu/enterprise/policies/
satnav/galileo/files/galileo-os-sis-icd-issue1-revision1_en.pdf〉, 2010.

[19] R. Pickholtz, D. Schilling, L. Milstein, Theory of spread-spectrum communica-
tions-a tutorial, IEEE Trans. Commun. 30 (1982) 855–884.

[20] M.K. Simon, J.K. Omura, R.A. Scholtz, B.K. Levitt, Spread Spectrum Commu-
nications Handbook, McGraw-Hill, New York, NY, USA, 1994 (revised edition).

[21] E.D. Kaplan, Understanding GPS: Principles and Applications, Artech House
Publishers, Norwood, MA, USA, 1996.

[22] J.J. Spilker, Signal structure and performance characteristics space segment,
NAVIGATION 25 (Summer) (1978) 121–146.

[23] V. Eerola, Rapid parallel GPS signal acquisition, in: Proceedings of the 13th
International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GPS 2000), Salt Lake City, UT, 2000, pp. 810–816.

[24] D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms,
3rd ed., Addison Wesley, Reading, Massachusetts, 1998.

[25] V. Eerola, S. Pietilä, H. Valio, A novel flexible correlator architecture for GNSS
receivers, in: Proceedings of the 2007 National Technical Meeting of the
Institute of Navigation (ION NTM 2007), San Diego, CA, 2007, pp. 681–691.

[26] J.W. Betz, The offset carrier modulation for GPS modernization, in: Proceed-
ings of the 1999 National Technical Meeting of the Institute of Navigation
(ION NTM 1999), San Diego, CA, 1999, pp. 639–648.

[27] B. Levitt, G. Morris, An improved digital algorithm for fast amplitude
approximations of quadrature pairs, The Deep Space Network Prograss Report
42-40, Jet Propulsion Laboratory, Pasadena, CA, 1977.

[28] J. Nurmi, J. Takala, A new generation of parameterized and extensible DSP
cores, in: IEEE Workshop on Signal Processing Systems: Design and Imple-
mentation (SIPS), 1997, pp. 320–329.

[29] J. Takala, M. Kuulusa, P. Ojala, J. Nurmi, Enhanced DSP core for embedded
applications, in: IEEE Workshop on Signal Processing Systems: Design and
Implementation (SIPS), 1999, pp. 271–280.

[30] VSDSP-Manual, VSDSP2 Processor Core Manual, VLSI Solution Oy, Tampere,
Finland, version 2.6. URL: 〈http://www.vlsi.fi/fileadmin/manuals_guides/
vsdsp2_um.pdf〉, 2001.

Ville Eerola received an MSc degree in electrical
engineering from Tampere University of Technology
in 1990. He is currently a PhD student at Tampere
University of Technology. He worked from 2004 to 2011
as a Senior Specialist at Nokia Corporation in Finland.
From 1992 to 2003 he was involved in digital ASIC
design and GPS receiver development at VLSI Solution
and u-Nav Microelectronics. He has been involved in
GPS receiver development since 1992 and has led the
development of several GPS receivers. His current
research interests include GNSS receiver hardware
implementation. He is a co-founder of VLSI Solution
Oy and u-Nav Microelectronics Corporation. He is a

senior member of the IEEE.

Jari Nurmi is a Professor at TUT since 1999, at the
Department of Electronics and Communications
Engineering. His research interests include embedded
computing systems, high-level design methodology,
positioning receivers, wireless localization, and
software-defined radio. He held various research, edu-
cation and management positions at TUT since 1987,
was the Vice President of VLSI Solution Oy 1995–1998,
and is a co-founder of a start-up Ekin Labs Oy since
2013. He was one of the recipients of Nokia Educational
Award 2004, won the Tampere Congress Award 2005,
was an Academy of Finland Research Fellow 2007–
2008, was the co-recipient of IIDA Innovation Award

2011, and was selected for the Scientific Congress Award 2013. He is a steering
committee member of five international conferences. He has edited two Springer
books, and published over 270 international conference and journal articles and
book chapters.

V. Eerola, J. Nurmi / INTEGRATION, the VLSI journal 47 (2014) 461–475 475

163

i
i

“thesis” — 2018/10/5 — 11:01 — page 164 — #184 i
i

i
i

i
i

164 Publication 5

i
i

“thesis” — 2018/10/5 — 11:01 — page 165 — #185 i
i

i
i

i
i

PUBLICATION 6

Copyright c©2014 IEEE. Reprinted with permission, from

Ville Eerola and Jari Nurmi, “Area Estimation of Time-Domain GNSS
Receiver Architectures,” in 2014 International Conference on Localization
and GNSS (ICL-GNSS). IEEE, 2014.
DOI: 10.1109/ICL-GNSS.2014.6934163

In reference to IEEE copyrighted material which is used with permission in this thesis,

the IEEE does not endorse any of Tampere University of Technology’s products or

services. Internal or personal use of this material is permitted. If interested in reprint-

ing/republishing IEEE copyrighted material for advertising or promotional purposes

or for creating new collective works for resale or redistribution, please go to http://

www.ieee.org/publications_standards/publications/rights/rights_link.html to

learn how to obtain a License from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

i
i

“thesis” — 2018/10/5 — 11:01 — page 166 — #186 i
i

i
i

i
i

166 Publication 6

i
i

“thesis” — 2018/10/5 — 11:01 — page 167 — #187 i
i

i
i

i
i

Area Estimation of Time-Domain GNSS Receiver
Architectures

Ville Eerola, Jari Nurmi
Department of Electronics and Communications Engineering

Tampere University of Technology
P.O.BOX 553, FIN-33101 Tampere, Finland

Email: ville.eerola@tut.fi

Abstract—This paper presents the silicon area estimation of
three different GNSS receiver architectures with the analysis of
four different use cases. The receivers are based on traditional
correlator, matched filter, and group correlator architectures.
While introducing the selected test cases, the authors discuss
their applicability for real-life receiver operations. The receiver
architectures are described shortly and the implementation de-
tails explained. The comparison shows that the correlator based
receiver suits best for tracking while matched filters are efficient
only for pure search mode. The group correlator offers a good
area-efficiency in both tracking and search modes.

I. INTRODUCTION

GNSS receivers are becoming a common feature in a
wide range of electronic devices. While their operation and
implementation are well understood, there has not been a good
analysis how different architectures and use-cases affect the
gate count of the receivers. The gate count is an important
factor affecting both the cost and power consumption of the
receivers. As GNSS receivers are targeted toward cheaper and
lower-power applications, good understanding of the receiver
gate count becomes more important.

At the deepest level, all time-domain GNSS receivers
correlate the received signal with locally generated replicas
of the residual carrier and pseudorandom number (PRN)
based spreading code. The receivers are typically organized as
channels, where one channel is usually capable of processing
the received signal from a single satellite. Such a conceptual
receiver channel is illustrated in Fig. 1. The channels of the
receiver architectures can be differentiated by the number of
code phases and carrier frequencies as well as integration ca-
pabilities. Thus, it is possible to compare the different receiver
architectures by defining common operating conditions, which
can be used to calculate the number of satellites, code phases,
and carrier frequencies that the receiver has to be able to
process simultaneously. Additionally, some general constraints
need to be defined for keeping the resulting designs realizable.

In this paper we will concentrate strictly on the GPS system
[1], which simplifies the analysis, but it would be easy to
generalize the treatment to include other GNSS systems such
as GLONASS, Galileo, Quasi-Zenith, or Beidou as well as
Satellite Based Augmentation Systems (SBAS). Furthermore,
the exact definition of the test cases is exemplary and they
could easily be adapted to any other situation when needed.

CORRELATOR

CODE

SYNC

CODE

REPLICA

BIT SYNC &

DATA

DEMOD

RF

front-end

CODE

PHASE

DATA

OUT

CARRIER

SYNC
CARRIER

PHASE
CARRIER

REPLICA

Baseband HW SW algorithms

Fig. 1. Conceptual diagram of GNSS receiver channel structure.

In the next section, we will define the operating conditions
and test cases for the receiver architecture evaluation. Then
we describe the three architectures that will be compared
and define the parameters that will need to be adjusted to
comply with the test case definitions. After the architecture
introductions, we will shortly describe the method of the area
estimation and show the area estimation results. Finally, we
will conclude the paper with a discussion of further research
possibilities.

II. DEFINING THE TEST CASES

We will look into three different use cases which will be
used to define the requirements for the GNSS receivers used
in the area estimation. These are acquisition, tracking, and
assisted acquisition. The operating conditions presented here
are typical for modern GPS receivers. During the analysis
of the different architectures, we will use the term ’cell’ or
’search bin’ to denote a correlation operation of a single
replica PRN code, replica code phase and carrier replica
frequency. We will not use the term ’correlator’ for it, as it
means multiple things for different people.

A. Acquisition

Signal acquisition is the most resource demanding opera-
tional phase of any GNSS receiver. The reason is that the
received satellite signals are very weak, and the search space
is typically very large. At least four satellites need to be found
before a position, velocity and time (PVT) solution can be
computed, and often there can be more than 12 GPS satellites
visible to search for.

The acquisition problem is well-understood, and discussed
in the literature. For example, van Diggelen [2] presents

167

i
i

“thesis” — 2018/10/5 — 11:01 — page 168 — #188 i
i

i
i

i
i

some of the challenges for high sensitivity acquisition. The
acquisition sensitivity requirement will determine the required
dwell-time, which will affect the size of a single search cell
along with the desired code phase accuracy. For the unassisted
GPS case, the longest coherent integration time will be limited
by the data message bit duration. Usually, it will be below
10 ms, and in open-sky cold-start case it can be equal to
the code period (1 ms), which minimizes the losses due to
unknown data bit transitions. As the search bin width in the
frequency dimension is given by [3]

∆fbin <
1

2TC
, (1)

the frequency bin width will vary between 500 Hz and 50
Hz. The usually observed Doppler uncertainty is ±5 kHz
and a typical reference frequency uncertainty can be around
2 ppm, which equals a range of ±3.2 kHz. Thus the total
frequency uncertainty during acquisition without aiding could
be ±8.2 kHz.

In the code phase dimension, the search area is bounded by
the duration of a single length of the spreading code, which
is 1 ms or 1023 chips. In most cases, the search accuracy is
1/2 chips, as this will be a good trade-off between alignment
loss and required complexity.

In the PRN code or satellite dimension, the case will be
limited by the visible satellites when a rough location of the
receiver and time is known or the total number of satellites
in the whole constellation, if no information is available.
Typically, the acquisition is based on the assumption that the
visible satellites can be predicted effectively halving the search
space.

The acquisition uncertainty space is visualized in Fig. 2 and
the acquisition test case parameters are summarized in Table I.
We can use the sensitivity requirement to calculate the required
integration times, which gives us the number of frequency bins
and that can be used to compute the total number of search
bins needed. If we wish to cover the whole uncertainty area in
the given time, we repeat the search approximately five times,
which will finally give us the required number of parallel
search bins needed. The code resolution of the acquisition case
demands a sampling rate of 2.046 MHz.

B. Tracking

Hardware-wise, the tracking case is much less demanding
than acquisition, as the number of required processing cells is
much less. Usually, it would be necessary to only process three
to five different code phases at a single frequency for each
satellite depending on the complexity of the receiver signal
processing algorithms. For tracking, receivers usually employ
a closer separation of the code phases to improve the code
tracking accuracy. A good separation for a GPS receiver would
be 1/8 chips. Most modern GPS receivers are designed to track
all available signals. This would require up to 16 channels to
include a few operational spare satellites and SBAS signals.

The performance requirements such as tracking sensitivity
and signal dynamics handling capability usually have little

Δchip

Δ
fr

e
q

code uncertainty

fr
e

q
u

e
n

c
y
 u

n
c
e

rt
a

in
ty

Search bin

P
R
N

Fig. 2. Visualization of the acquisition space.

TABLE I
ACQUISITION TEST CASE PARAMETERS

Parameter Value

Time to acquire ≥ 4 satellites 10 s
Acquisition sensitivity 31 dB-Hz
Coherent integration time 3 ms
Dwell-time 1800 ms

Number of PRN codes 12

Frequency bin size 167 Hz
Frequency search range ±8.2 kHz
Number of frequency bins 17

Code phase search range 1023 chips
Code phase resolution 1/2 chips
Number of code bins 2046

Total number of search bins 417384
Parallel search bins 83000

TABLE II
TRACKING TEST CASE PARAMETERS

Parameter Value

Number of PRN codes 16

Number of frequency bins 1

Code phase resolution 1/8 chips

Number of code bins 5

Total number of bins 80

effect on the hardware requirements other than avoiding im-
plementation losses. The tracking case hardware requirements
are shown in Table II. The code resolution of the tracking case
demands a sampling rate of 8.184 MHz.

168 Publication 6

i
i

“thesis” — 2018/10/5 — 11:01 — page 169 — #189 i
i

i
i

i
i

C. Assisted GNSS

The assisted GNSS (A-GNSS) refers to the case, where
the GNSS receiver is provided with out-of-band assistance
about the satellites to be received. This information usually
includes predicted satellite positions in the sky and satellite
data message, and may also include more accurate information
about the receiver reference frequency and current time. This
information can be used to reduce the necessary search range
for acquisition, as well as improve positioning sensitivity
through not requiring the GNSS receiver to be able to decode
the satellite data message. The assistance data is standardized
for different systems. One such standard is the 3rd Generation
Partnership Project (3GPP) A-GNSS performance require-
ments specification [4]. There is an associated test specification
[5] which will define test cases to ensure the performance will
be met.

The 3GPP test specification for GPS case specifies a set
of test conditions, where the assistance data as well as the
visible satellites and their signal strength are specified. All A-
GPS receivers must pass the tests and many GPS receivers
today exceed the minimum requirements. Usually the tests to
guarantee the performance will be modified from the standard
tests by just reducing the satellite signal strengths. For most
receivers, the most demanding test in the 3GPP specification
will be the coarse-time assistance sensitivity test. In that
test, at least 9 satellites are visible and 8 of those will be
present during the test. One of the signals will have a higher
signal strength and the rest will have lower power. The time
uncertainty in that test is such that it will cover the whole
code period. In the accurate-time assistance sensitivity test
all signals will be equally weak, but the time is known
within ±10µs or ±10 chips. The availability of such an
accurate timing information to the GNSS receiver will not be
straightforward in real life though. The A-GPS specifications
also contain some tracking tests, but usually they will not be
more demanding for the hardware than in the normal tracking
case as described earlier.

Table III contains the summary of the parameters for the
A-GPS test case. In our case, we have set the frequency
uncertainty at a higher level than strictly demanded in the
A-GPS spec, as this is more typical in a real-life situation.
For the acquisition time, we also set a lower limit, as some
of the time allowed in the specification will be spent in the
tracking mode and wasted in protocol overhead.

D. General constraints

For the purposes of this paper, we will limit the maximum
operational clock frequency to approximately 128 MHz, or 128
times the C/A code frequency. This would be a suitable choice
for chip implementation using a low-power 65 nm CMOS
technology.

For the comparison, we will create a single design for each
receiver. We will adjust the parameters of the receiver so that
it will be able to fulfill the requirements of all the preceding
test cases.

TABLE III
A-GPS TEST CASE PARAMETERS

Parameter Value

Time to acquire ≥ 4 satellites 5 s
Acquisition sensitivity (low) 27 dB-Hz
Acquisition sensitivity (high) 32 dB-Hz
Coherent integration time 9 ms
Dwell-time 1400 ms

Number of PRN codes 9

Frequency bin size 55 Hz
Frequency search range ±100 Hz
Number of frequency bins 4

Code phase search range 1023 chips
Code phase resolution 1/2 chips
Number of code bins 2046

Total number of search bins 73656
Parallel search bins 32736

All implementations will have all elements that are required
for the baseband processing in the GPS receiver including
replica carrier and code generators and integration blocks.

III. THREE ARCHITECTURES

In this section, we will show receiver implementations using
the three architectures to be compared. We will first describe
the architecture and then go shortly over the main aspects
of the implementation. The gate count estimations will be
presented in the next section and compared. The implemen-
tations will be optimized for area. Power consumption would
be subject for another paper.

The replica carrier and code generators for receiver imple-
mentations of the three architectures will be the same, as the
blocks are similar in all cases. The exception is the matched
filter (MF), which does not need the code generator to be
running all the time with variable rates. We will utilize time-
multiplexing for the implementation when applicable. It will
be constrained by the maximum clock frequency as previously
described.

The code generator includes a numerically controlled oscil-
lator (NCO) driving the GPS C/A-code generator implemented
with on two linear-feedback shift registers (LFSR), G1 and G2.
The code selection is done via setting the initial state of the
G2 LFSR. Fig. 3 illustrates the replica code generator.

The carrier replica generator will have a NCO generating
the carrier phase, and a second NCO driving the generation
of a linearly spaced set of frequencies around it. The block
diagram is shown in Fig. 4.

To aid in the processing of the huge amount of signals that
need to be handled in the acquisition and A-GPS cases, we
use a post-integrator block, which will take care of coherent
integration, amplitude detection and non-coherent integration
of samples that are correlated with replica code and carrier
and pre-integrated in the receiver core processing blocks. The
structure of the post-integrator is depicted in Fig. 5. The
post-integrator has the possibility of bypassing the amplitude

169

i
i

“thesis” — 2018/10/5 — 11:01 — page 170 — #190 i
i

i
i

i
i

SHIFT REG

SHIFT REG

G2 INIT REG

 G1 LOGIC

 G2 LOGIC

C/A-code

generator

CODE

SETTER

CODE

NCO

Fig. 3. Block diagram of the common replica code generator.

CARR

NCO

BIN

NCO

F
re

q
 b

in
 g

e
n

e
ra

ti
o

n

Fig. 4. Block diagram of the common carrier replica generator.

Coherent Non-coherent

 bypass

AMPL

DET

MemoryMemory

Mixer Bank

Carrier

Generator

Fig. 5. Block diagram of the common post-integrator block.

detector so that the coherently integrated samples are stored
into the non-coherent integration memory for use by the
receiver software algorithms.

A. Correlator

The correlator is the oldest and most widely used archi-
tecture used for GNSS signal tracking. Correlator architecture
optimization and implementation have been discussed by the
authors in [6]. In this paper, the receiver based on the tradi-
tional correlator architecture is time-multiplexed to minimize
the implementation area. The block diagram of the receiver
is shown in Fig. 6. To optimize the correlator architecture,
time-multiplexing is used so that multiple channels (PRN
replicas) and/or carrier replicas can be processed using single
datapath. The different code phase fingers are processed in
parallel within the correlator block. This allows using a
largish number of fingers to cover larger segments of code
for the acquisition case. The carrier and code generators for
the receiver are maximally time-multiplexed to optimize the
receiver gate count. The code and carrier replica generators are
implemented in such a way that the same number of replicas
will be generated as are needed in the correlators. This may
lead to an optimistic area estimation as the allocation might

Code

NCO

Code

Generator

Carrier

NCO

Input

Samples

Correlator block

Shift register

SW algorithms

Code replica control

Carrier Replica control

ADET

ADET

ADET

sin/cos

map

Carrier

NCO

Code

NCO

Code

Generator

Fig. 6. Block diagram of time-multiplexed correlator based architecture.

be difficult to realize. When used in the acquisition mode,
the correlator will generate an enormous amount of outputs
within each coherent integration interval, which are difficult
to process in the receiver software. It would be possible to
aid the processing by adding a post-integrator block after the
correlators to process the data already in hardware. In our
paper, we have not included the post-integrator as a part of
the correlator in the area evaluation.

B. Matched Filter

The matched filter is another well-known architecture for
performing correlation operation especially for signal acqui-
sition. The matched filter use in GPS signal acquisition has
been presented e.g. in [7]. The architecture that we will use
in this paper is based on the one documented in [8]. The
block diagram of the matched filter based receiver channel is
depicted in Fig. 7. We have used a custom version of the code
generator in the MF, as the code code can be frozen within the
MF during the operation. The original design was not designed
for tracking functionality, but it can be easily implemented
in the receiver software. This additional functionality would
require bypassing the absolute value function after the coherent
and non-coherent integrators. The way that the carrier removal
is done before the matched filter core and the clever method of
using adjustable decimation for sample rate adjustment allows
for carrier and code tracking in a similar fashion as with the
traditional correlator based design. The MF core performs the
calculation of the result in bit-serial manner, meaning that each
bit as well as real and imaginary part of the input data samples
are multiplied by the code replica and summed one after each.
The results are combined at the output so that a single complex
output is generated. This will take a number of clock cycles
to do, but there is still a possibility to multiplex the different
replica codes in a way shown in [9]. The bandwidth of the
MF is limited by its length, which limits all signals to be
processed at the same time to within its pass band. This is not
practical for GPS receivers except for the cold-start acquisition
case, where the signals are spread over a wider frequency
range. Thus, our implementation utilizes the code multiplexing
possibility only for the acquisition case.

170 Publication 6

i
i

“thesis” — 2018/10/5 — 11:01 — page 171 — #191 i
i

i
i

i
i

CHIP

NCO

REF

GEN

CARR

NCO

DATA SHIFT REG

REF SHIFT REG

MULTIPLY & SUM

INTEGRATOR
Carrier

NCO

IF

Removal

Fig. 7. Block diagram of a high sensitivity matched filter architecture.

GC BlockCode

Generator

GC Core

Block

IF Removal

Block

Mixer Bank

Carrier

Generator

Integrator
Integrator

Integrator

Fig. 8. Block diagram of a group correlator based receiver (based on [10]).

C. Group Correlator

The group correlator (GC) is a more recent architecture
for GNSS receivers. It can be seen as a hybrid between
the traditional correlator and matched filter architectures. The
group correlator receiver was presented in [10]. The group
correlator based receiver is illustrated in Fig. 8. A coarse
carrier removal block is inserted before the GC core block as
its bandwidth is limited. A post-integration processing similar
to the one used in the MF architecture is also needed after the
core. Combined with the coherent post-integration, the GC
will perform a full correlation over range of code-phases less
than the full code period. This makes it more flexible than
the MF, but the flexibility comes with additional complexity.
As the length of the correlated segments in the GC is much
smaller than in the MF, the bandwidth of the block is larger.
This allows processing signals from multiple satellites within
one time-multiplexed block without issues. Also, the GC can
utilize more than one input within a single block with less
penalty than the MF. This allows running both tracking and
acquisition in parallel.

IV. EVALUATION RESULTS

In this section, we will introduce the gate count estimation
method that will be used to compare the implementations, and
shortly discuss how embedded static RAM (SRAM) memories
were handled. After the estimation method has been intro-
duced, we will show the estimates for the three architectures,
and present the overall winner.

I/O buffers

R
o

w

D
e

c
o

d
e

Column

Decode

w0 w1∙cols

h
1
∙r
o
w
s

h
0

Memory array

Fig. 9. Conceptual floorplan of an embedded SRAM.

TABLE IV
MEMORY AREA PARAMETERS USED IN THE EVALUATION

Parameter Value

w0 53.3 µm
w1 1.266 µm
h0 26.3 µm
h1 0.613 µm
kgates/mm2 500

A. Area Estimation Method

The authors have presented a full description of the gate
count estimation methodology in [11]. The article included
gate count estimations of some GNSS receiver test cases which
achieved very good accuracy when compared with actual gate
counts. We will refer the reader to that article for an in-depth
treatment of the method.

In the original article [11] the authors did not include the
embedded SRAM memories in the gate count estimates. For
this evaluation, we have included the memories in the gate
counts. The area of the memory has been converted to gates
according to a typical value of gates/mm2 given by the silicon
foundry. We developed a simple model for the memory area
based on the conceptual SRAM floorplan illustrated in Fig. 9.
The area parameters for the used low-power 65 nm CMOS
technology are shown in Table IV. The “gate count” of a
SRAM block is given by:

gates = (h0 + h1 · c) × (w0 + w1 · r) × gates/µm2 (2)

where c and r denote the rows and columns in the memory
array, respectively.

B. Test Case Evaluation

The results of the gate count estimation are listed in Table V
along with key implementation parameters. The columns Blks
and Ch denote the number of blocks and channels, and Freq
and Code mean the number of carrier frequencies and replica
code phases per channel. The area is given in kilogates and
is shown as a total for the whole receiver as well as divided
by the number of independent channels (Blks × Ch) or by
the number of total cells in the receiver. The per-channel
number is an indication of how well the receiver can be
configured to operate on different satellites and is an indication

171

i
i

“thesis” — 2018/10/5 — 11:01 — page 172 — #192 i
i

i
i

i
i

TABLE V
AREA ESTIMATES OF THE RECEIVERS (IN KILO-GATES)

Parameters Area
Arch Blks Ch Freq Code Total /ch /cell

Acquisition
Corr 21 8 8 64 4663 28 0.054
MF 1 12 4 2046 1205 100 0.012
GC 5 4 9 512 1925 96 0.021

Tracking
Corr 1 16 1 5 53 3 0.658
MF 16 1 1 8184 5964 373 0.046
GC 1 16 1 64 125 8 0.122

A-GPS
Corr 6 16 4 64 1425 15 0.058
MF 3 1 4 2046 703 234 0.029
GC 3 4 4 512 578 48 0.024

Worst-case
Corr 21 8 8 64 4663 28 0.054
MF 16 1 4 8184 10698 669 0.020
GC 7 4 9 512 2692 96 0.021

of the receiver’s area-efficiency in tracking modes as well as
flexibility to switch between the track and acquisition modes.
The per-cell number estimates the raw correlating power of
the receiver and is an indication of the area-efficiency in the
signal search modes. We have evaluated the receivers for four
different cases. First three are the ones described earlier, and
the fourth one is a worst case scenario, which defines a receiver
capable of meeting all the test case criteria with a single
hardware configuration. This case will test the adaptability of
the different architectures for varying situations, but it is not
a realistic design goal for a GPS receiver due to the overly
stringent set of requirements.

As we can see from the results, the main advantage of the
traditional correlator architecture is the flexibility. The receiver
can be easily configured via the receiver software to adapt
to varying signal conditions. The downside comes from the
same flexibility and it is the relatively large area per cell. The
matched filter based architecture has the best efficiency for the
acquisition case. It starts to lose its efficiency when the search
space can be limited such as in the A-GPS case and is the worst
in the tracking case, where only a few code phases are needed.
This is due to the length of the MF being equal to the spreading
code length. Especially in the tracking case, when the code
needs to be sampled at a higher rate, this makes the MF very
large. In the worst-case example, the MF implements much
more code phases than needed for the search mode. As the
per-cell area was computed for all implemented code phases, it
makes the MF look more effective for the search than it really
is. The corrected per-cell number for the MF in the worst-
case example should be four times higher as only every fourth
code phase is useful. The group correlator based architecture
shows great promise in the evaluation, as it achieves good
overall area-efficiency in all modes. However, there are still a

large number of unnecessary code phases implemented in the
tracking modes.

V. CONCLUSIONS

We have presented a gate count estimate based evaluation of
three GPS receiver architectures for four different use-cases.
The results show that the group correlator based receiver offers
good trade-off between flexibility and computational power in
most of the cases. The traditional correlator is still the best
choice for pure tracking mode and the matched filter offers
the best raw search-power in cold-start like conditions.

In our evaluation, we did not look into the hybrid use-cases,
where the receiver needs to alternate between searching for
satellites and tracking them. Also, we did not look into how the
receivers would work with different external aiding. Digging
more deeply into these interesting real-world cases is left for
future research, as the subject is too wide to be covered in this
paper.

Another important dimension that is missing in this paper
would be to add consideration of power consumption into
the equation. The authors have scratched the subject for the
correlator based receivers in [6], but there is still much more
to do.

Nevertheless, we have shown in this paper that it is feasible
to compare the GNSS receiver complexity at a high level
mapping pre-defined use-cases to architecture realizations and
comparing their suitability. This allows for the architectural
level optimization of the receivers.

REFERENCES

[1] Navstar GPS Space Segment/Navigation Users Interface. GPS Interface
Specification, IS-GPS-200F, Sep. 2011. [Online]. Available: http:
//www.gps.gov/technical/icwg/IS-GPS-200F.pdf

[2] F. van Diggelen and C. Abraham, “Indoor gps: The no-chip challenge,”
GPS World, vol. 12, no. 9, 2001.

[3] P. Misra and P. Enge, Global Positioning System: Signals, Measurements
and Performance. Ganga-Jamuna Press, 2006.

[4] 3GPP2 C.S0036-0 v1.0, Recommended Minimum Performance Specifi-
cation for C.S0022-0 Spread Spectrum Mobile Stations, 2011. [Online].
Available: http://www.3gpp2.org/Public html/specs/C.S0036-0 v1.0.pdf

[5] 3GPP TS 25.171, Requirements for support of Assisted Global
Positioning System (A-GPS); Frequency Division Duplex (FDD), 2011.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/25171.htm

[6] V. Eerola, “Correlator design and implementation for gnss receivers,” in
NORCHIP, 2013, Nov 2013.

[7] ——, “Rapid parallel GPS signal acquisition,” in Proc. of the 13th
International Technical Meeting of the Satellite Division of The Institute
of Navigation (ION GPS 2000), Salt Lake City, UT, Sep. 2000, pp. 810–
816.

[8] V. Eerola and T. Ritoniemi, “Signal acquisition system for spread
spectrum receiver,” U.S. Patent 6,909,739, Jun. 21, 2005.

[9] ——, “Matched filter and spread spectrum receiver,” U.S. Patent
7,010,024, Mar. 7, 2006.

[10] V. Eerola, S. Pietilä, and H. Valio, “A novel flexible correlator archi-
tecture for GNSS receivers,” in Proc. of the 2007 National Technical
Meeting of The Institute of Navigation (ION NTM 2007), San Diego,
CA, Jan. 2007, pp. 681–691.

[11] V. Eerola and J. Nurmi, “High-level parameterizable area estimation
modeling for ASIC designs,” Integration, the VLSI Journal, 2014.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S016792601400008X

172 Publication 6

i
i

“thesis” — 2018/10/5 — 11:01 — page 173 — #193 i
i

i
i

i
i

173

i
i

“thesis” — 2018/10/5 — 11:01 — page 174 — #194 i
i

i
i

i
i

This thesis was typeset in LATEX2ε.
The figures were prepared with Microsoft Visio, Matlab, and Forest.

ISBN 978-952-15-4217-6

ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

	Title Page
	Abstract
	Preface
	Table of Contents
	List of Publications
	List of Figures
	List of Tables
	List of Abbreviations
	1. Introduction
	1.1 Research Problem and Scope of the Thesis
	1.2 Main Contributions
	1.3 Author's Contribution
	1.3.1 Publications
	1.3.2 Patents

	1.4 Thesis Outline

	2. Introduction to GNSS Receiver Technology
	2.1 Global Navigation Satellite Systems
	2.2 Direct-Sequence Spread-Spectrum Systems
	2.3 GNSS Receivers
	2.4 GNSS Receiver Signal Processing Tasks
	2.4.1 Signal Acquisition
	2.4.2 Signal Tracking
	2.4.3 Data Reception
	2.4.4 Measurement Processing

	3. Gate Count Estimation
	3.1 Earlier Work
	3.2 Estimation Method Summary
	3.3 Parameterized Model Creation
	3.4 Estimation Method Flow
	3.5 Gate Count Estimation Accuracy
	3.6 Memory Mapping to a Gate Count Estimate
	3.7 Small Example

	4. Baseband Hardware Optimization
	4.1 General GNSS Receiver Baseband Considerations
	4.2 Correlator
	4.2.1 Correlator Functionality
	4.2.2 Word Length Optimization
	4.2.3 Time-Multiplexed Correlator Architectures
	4.2.4 Advanced Correlator Functionality
	4.2.5 Correlator-Based Receiver for Gate Count Comparison

	4.3 Matched Filter
	4.3.1 Matched Filter Functionality
	4.3.2 Reduction Adder Tree
	4.3.3 Input Multiplexing with 1-bit MF Core
	4.3.4 Integrating the MF Output Signal
	4.3.5 Input Decimation to a Multiple of the Chipping Rate
	4.3.6 MF-Based Receiver for Gate Count Comparison

	4.4 Group Correlator
	4.4.1 Derivation of the GC structure
	4.4.2 GC Implementations
	4.4.3 GC-Based Receiver for Gate Count Comparison

	5. Architecture Comparison
	5.1 Test Cases
	5.1.1 Acquisition
	5.1.2 Tracking
	5.1.3 Assisted GPS
	5.1.4 Worst Case

	5.2 Comparison Results

	6. Conclusions and Future Work
	Bibliography
	Publications

