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Abstract

Recent technological advances have made it possible to observe the behavior
of biological systems at the genetic level in a high-throughput manner. The
ability to do measurements at the system level has made it possible to move
from a traditional reductionistic approach to a more global system level
approach. Thus, instead of looking at the behavior of the individual compo-
nents, the goal of this new approach, the systems biology, is to understand
the structural and dynamical properties of the system as a whole.

Living systems differ from non-living systems, for example, by their abil-
ity to process information from their environment and to propagate infor-
mation over time through the mechanism of evolution. As information pro-
cessing is a fundamental property of all living systems, we can gain insight
into the system level properties by studying the information processing and
flow. For example, how information is propagated through the evolution or
how the system responses to a perturbation.

The content of this thesis is two-fold. In the first part we introduce new
signal processing methods for the computational analysis of the biological
data. The purpose of the proposed methods is to improve the reliability and
the quality of the microarray data. We introduce an unsupervised approach
that can be used to verify the clinically determined class labels for the sam-
ples. Next we discuss the identification and quantification of the microarray
noise sources. We introduce a simulation model that can be used to simu-
late microarray data with realistic biological and statistical characteristics
by utilizing the noise properties of real data. Finally, we discuss how supple-
mental measurement data can be used to improve the quality of microarray
data. As a case study, we show how the cell population distribution can be
estimated using fluorescent activated cell sorter data.

The second part of the thesis introduces an information-based approach
for studying the complex systems. By using the Kolmogorov complexity
based information measure we show how the information processing and
flow in biological systems can be used to characterize their structure and
behavior at the system level. We show that through the information flow,
we can discover evolutionary relationships between organisms. In addition
we study the information processing of an innate immunity cell macrophage
and show that the dynamics of its information processing exhibit criticality.
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Chapter 1

Introduction

Advances in biological research have often followed technological break-
throughs. More advanced technologies have made it possible to study biolog-
ical organisms in more detail and to obtain more knowledge about their prop-
erties. For example, the development of new imaging technologies played an
important role in the discovery of the double helix structure of DNA (

, ). In the last ten years we have seen major advances in
both the technology and knowledge. Microarray technologies have made it
possible to measure the behavior of biological systems at the genetic level
in a highly parallel manner by measuring the expression of all the genes
simultaneously ( , ). At the same time the genome se-
quencing projects have provided large amounts of information about the
DNA sequences ( ) :

, ). Increase in knowledge and the availability of the high-
throughput measurement technologies have made it possible to move from
a reductionistic approach, where only a few components of the system are
studied, to a more global system level approach ( , ; ,

). In the system level approach, instead of looking at individual genes
or proteins, the goal is to understand the structure and dynamics of a system
as a whole.

There are two main types of information that are embedded in biological
systems ( , ). All the genetic information about the
building blocks of life, that is the genes, is stored in the genome. Thanks to
the genome sequencing projects, this library of building blocks is available for
several organisms. While the genes contain information about the molecules
that appear within an organism, they do not tell us much about the system.
Equivalently, a catalog of the individual components used in an airplane tells
us very little about how to assemble a plane or how an airplane behaves in
the air under different weather conditions ( , ; ,

). Thus, the other type of information, the regulatory network is in a

1



2 CHAPTER 1. INTRODUCTION

key role in understanding the behavior of the system. In a biological system
a regulatory network determines which molecules interact with each other
and how the system responds to different stimuli or perturbations.

Using microarray technology we can study how a biological system be-
haves at the genetic level. The system under study can be stimulated using
specific drugs that make the system divert from its original behavior (

, ). The response of the system can then be measured by perform-
ing the microarray experiments at several time instants after the stimulus.
This type of analysis can give insight into which genes are responsible for
generating the response and thus makes it possible to uncover parts of the
genetic regulatory network. However, this approach is not sufficient for the
full characterization of the behavior of the system. Many important cellular
functions happen through, for example, protein interactions. Thus, there
are several regulatory networks that operate at the different levels. To gain
more information, measurements should be made simultaneously at several
different cellular levels ( , )

In addition to multiple cellular levels, networks can operate in different
time scales. Some operations, like the response to a change in the environ-
mental conditions happens quickly, typically in a few minutes, while some
operations like a cell or a life cycle can take from hours to years. In addition,
the genetic information also operates through the evolution in a time scale
of tens to millions of years. Because of the different levels of operation and
the different time scales, the problem of uncovering the regulatory structure
of biological systems is extremely difficult.

Instead of trying to uncover the genetic regulatory network in detail we
can look at the emergent properties of the complex networks ( ,
, ). It is assumed that the properties that are observed in many
large networks, such as robustness and adaptability are key elements in
sustaining life ( , ). Understanding this kind of system
level properties helps us to gain insight into the living systems.

Living systems differ from non-living systems by their ability to process
information from their environment and to propagate information over time
through the mechanism of evolution. As the information processing is a
fundamental property of all living systems, it makes it extremely attractive
to analyze the systems by studying their information flow ( , ).
That is, how the information is propagated through the evolution or how a
system responds to a perturbation.

While microarray and other high-throughput measurement technologies
have already helped us to gain significant insight into biological systems,
there are still several fundamental problems for the applicability of the mea-
surement technologies. A major problem is the lack of the biological ground
truth information. Thus, it is not possible to objectively evaluate the ob-



tained results or the algorithms that have been developed for the analysis.
In addition, as microarray measurements can usually be done only by using a
population of cells, the response of the individual cells can not be measured.

We will introduce the basic concepts of molecular biology in Chapter 2
and the fundamentals of microarray technology and the analysis of biological
data in Chapter 3. In Chapter 4 we will discuss how signal processing
methods can be used to improve the reliability of the microarray data and
to verify the performance of the analysis algorithms. We will first discuss
how the reliability of clinically assigned class labels can be evaluated, and
we will show that there is a fair chance that the original labeling of samples
done by several pathologists may not be reliable. Next, we will discuss how
microarray data with realistic biological and statistical characteristics can
be simulated and how the obtained data can be used for example in the
experimental design or in the verification of data analysis methods. Finally,
we will show how the complementary data, measured along the microarray
experiment can be used to improve the quality of the microarray data.

The last part of the thesis in Chapter 5 focuses on analyzing complex
systems at the system level. We will introduce an information-based ap-
proach that can be used to study the information processing and flow in
the biological systems. We will show how the structure and dynamics of a
system can be characterized through the information processing. We will
also show that our information based approach can directly be applied to
real measurement data. As an example, by using the data from a microarray
experiment we will study and quantify the dynamics of an innate immunity
cell macrophage.






Chapter 2

Biological Background

It is the current understanding that the thousands of genes and their prod-
ucts are the building blocks of living systems. Information about the orga-
nization and the function of molecular components are embedded into our
genome. However, it has become clear that the dynamical behavior of liv-
ing systems can not be determined solely based on the genetic information.
Functional forms of the molecules, like proteins that are constructed based
on the genetic information, play an important role in the dynamical behav-
ior of systems. Thus, to understand life, the biological systems need to be
studied at different cellular levels.

2.1 The Genome

Life is specified by genomes. The genome includes all the genetic information
about the organism. In practice, the genetic information is stored in a
deoxyribonucleic acid (DNA) sequence. DNA has a double helix structure
which is constructed of individual nucleotides each containing a different
base adenine (A), guanine (G), cytosine (C), or thymine (T) ( ,

).

The size of the genome varies significantly between different organisms,
ranging from only a few thousand base pairs in the single cell organisms up
to billions of base pairs in the eukaryotes. The size of the human genome is
about 3 x 10? base pairs ( , ).

The genome sequence can be divided into genes and non-coding regions.
A gene is considered to be a region of the DNA that codes for a protein or
some other molecules, together with the promoter region that controls when
the gene product is produced (Figure 2.1). Genes contains regions known as
introns and exons. Exons are the part of the gene sequence that is used to

5



6 CHAPTER 2. BIOLOGICAL BACKGROUND

Figure 2.1: Illustration of a gene and the DNA double helix structure in a
chromosome (Access Excellence at the National Health Museum, 2006).

code a gene product. Intron regions are spliced out from the sequence before
gene product is coded (Lodish e/ al., 2001). Thus, introns are a type of non-
coding region that is located within genes. Only about 1% of the human
genome is covered by the genes, remaining 99% being the non-coding region.
According to current knowledge, the human genome includes about 25 000
genes (The Genome International Sequencing Consortium, 2004).

y &

2.2 The Cell

Cells are the basic structural and functional units of life. Each cell contains
information and the structures that are needed to sustain life (Lodish et al.,
2001). Genetic information, that is the DNA sequence, is stored in the
chromosomes (Figure 2.1). In the eukaryotic organisms the chromosomes
are located inside the nucleus of the cell! (Figure 2.2).

DNA sequence contains instructions of how different molecules, involved
in cellular functions, are built. Before the sequence can be read the chro-
mosome structure needs to unfold. Reading a gene from the DNA sequence
is initiated by ribonucleic acid (RNA) polymerase. Once the RNA poly-
merase has bound to the promoter region of the gene, DNA unwinds and
becomes single-stranded. A copy of one strand of the DNA is synthesized
of nucleotides, containing a base adenine (A), guanine (G), cytosine (C),
or uracil (U). As a result a messenger RNA (mRNA) molecule is obtained.
This process is known as transcription (Lodish et al., 2001).

'In addition, some genetic information is stored in the mitochondrial genome.
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Figure 2.2: Structure of a eukaryotic cell. Different cellular components are
shown, including the nucleus, ribosomes and mitochondria (Science Primer,
2006).

The mRNA then moves to another cellular organelle, the ribosome, for
protein synthesis. At the ribosomes mRNA is decoded to make proteins.
A specialized RNA molecule known as transfer RNA (tRNA) binds to the
mRNA. Binding tRNA molecules deliver amino acids that bind together
forming a long polypeptide chain. This process is known as translation
(Lodish et al., 2001).

Once the entire mRNA sequence has been decoded at the ribosome,
the mRNA has been translated into a protein. Right after and already
during the translation the protein starts to acquire its functional form by
folding into its secondary and tertiary structures. In the process, post-
translational modifications, including attachment of functional groups or
structural changes, may occur (Figure 2.3) (Lodish et al., 2001).

This process where a gene is first transcribed to form a mRNA molecule
which in turn is then translated to form a protein is called the central dogma
of molecular biology (Crick, 1970). While it would be convenient to assume
that there is direct connection that one gene makes one protein, this is not
the case. Many genes are known to have several protein products (Lodish
et al., 2001).

In addition to the protein synthesis, there are several other tasks that
cells need to perform. For example, cells need to produce descendents by
division. Cell division is performed through the cell cycle. The cell cycle
can be divided in distinctive phases (Figure 2.4). Before entering the cell
cycle, cells can operate in a quiescent state, usually denoted as Gy. Once
the cell cycle is initiated the cell enters the first growth phase G;. Next, the
cell enters the synthesis phase S where the DNA is replicated, resulting in a
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Figure 2.3: An overview of protein synthesis. The DNA sequence of a gene
is first transcribed into a mRNA which is then translated into a protein
(Science Primer, 2006).

copy of all genetic information. After replication the cell enters the second
growth phase Ga, where the cell further grows as it prepares for division.
The final phase in the cell cycle is mitosis M, the actual division of the cell.

During the cell division several control mechanisms monitor the cell for
DNA damage (L.odish et al.,, 2001). There are several “checkpoints” along the
cell division process that will prevent the division if certain conditions are
not met. If something goes wrong, programmed cell death called apoptosis is
initiated. This is a vital control mechanism to prevent the damaged cell from
dividing further. A failure to enter apoptosis has been found to be related
to the emergence of several types of cancers (Vaux ef al., 1988; Lockshin
and Zakeri, 2001).

While all cells share the same genetic material, DNA, there are several
different morphological and functional forms of cells, known as cell types.
Different cell types emerge from stem cells through differentiation. There
are more than 200 different types of cells present in the human body, each
capable to perform very different tasks (Lodish et al., 2001).

2.3 Cellular Networks

As the cell is able to control which proteins are produced and to perform
operations like differentiation, cell division or apoptosis, there needs to be a
control mechanism for these processes (Sonenberg et al., 2000). This kind of
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G2

\

Figure 2.4: Ilustration of the cell cycle of an eukaryotic cell. During the G
phase the cell grows. During the S phase the genetic material is replicated.
Then the cell enters the second growth phase GGo and finally the cell divides
at the M phase.

control occurs through interactions between different molecules. The com-
plexity of these interactions is a key issue when determining the complexity
of an organism. A current estimate of the number of genes in the human
genome is about 25 000 (The Genome International Sequencing Consortium,
2004). Several other organisms, like plants have about the same number or
even more genes. Thus, the number of genes does not correlate with the
observed complexity of an organism. Therefore, the complexity has to be
due to the underlying regulatory mechanism that controls the amounts of
gene products and their interactions (Levine and Tjian, 2003). This kind of
control appears at different levels. For example, a mRNA is produced when
a gene product is needed. The control signal, an indication that the mRNA
needs to be produced can originate from the protein level through a protein
that is coded by a different gene (Sonenberg et al., 2000).

As a cell is a highly complex system there are numerous control mecha-
nisms that operate independently of each other in a highly parallel manner.
Several different subnetworks that control, for example, metabolism and
transcription have been identified (Sonenberg ef al,, 2000). Still, these in-
dependent subnetworks are dependent and closely connected to each other
through the gene products that are needed in the reactions.

Regulatory mechanisms can be studied as a genetic regulatory network.
Genes can be considered to be the nodes of the regulatory network and their
states, or the expression levels, are regulated by the other genes or proteins
(Kauffman, 1969). Control mechanisms and interactions can be studied at
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different cellular levels and at different levels of detail ( ,

). For example, we can study the behavior of the cell at gene, protein or
metabolite level, yielding genetic regulatory, protein-protein interaction or
metabolic networks, respectively. Inputs of the network can be taken from
different cellular levels, or the network can be modeled, for example, at the
genetic level using only gene to gene interactions.

Different types of models can be used to model the behavior in different
levels of detail, ranging from a simple binary model ( , ) to
continuous differential equation models ( , ;

, ; ) ). The selection of the model class depends on
the level of detail required and the goal of the modeling. For example, if
we are interested in understanding the general properties that emerge in a
large complex network, Boolean networks, where each gene has the state
on or off, can be sufficient models ( , : , ).
If we want to predict how different interactions between the gene products
occur, then obviously more detailed models are needed ( , ;

9 )'



Chapter 3

Microarray Technology

Traditionally, research in molecular biology has focused on studying indi-
vidual genes or proteins and their behavior under different conditions. A lot
of information has been obtained using this approach. However, this tradi-
tional approach is not sufficient for understanding the system as a whole.
The introduction of microarray technology has allowed us to study biologi-
cal systems at the system level by looking at the expression of thousands of
genes simultaneously.

A microarray is a microscopic slide containing numerous probes, that is
binding sites for genetic material, in predetermined locations ( ,
). Several different types of gene expression microarrays, based on differ-
ent manufacturing technologies, have been introduced ( , ;
; , ). The most common type of microar-
ray is the CDNA microarray, where complementary DNA is hybridized to the
slide. Microarrays where instead of genetic material other types of samples
are hybridized have also been introduced. These include, for example, tis-
sue, lysate, and protein microarrays ( , ; ,
; , ; , ). In addition, several different
types of microarray chips that have been designed to find a specific type of
biological information from the samples, are available ( , ;
, ; , ). For example, the ChIP-chip mi-
croarrays can be used to find transcription factors that bind to a specific
gene ( : , ). In this chapter, we focus solely on
the cDNA mlcroarray technology.

Performing a microarray experiment is a highly complex process that in-
volves several consecutive steps (Figure 3.1). These steps include extraction
and isolation of the biological sample, reverse transcription and labeling of
the RNA, preparation of the microarray slide by printing the probes, hy-
bridization of the labeled sample to the slide, reading the slide by a laser
scanner, extraction of the information from the scanned image using image

11
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Figure 3.1: Outline of a microarray experiment (Duggan et al., 1999).

processing, and finally performing computational analysis using the obtained
data (Duggan et al., 1999; Zhang et al.,, 20041). Many of these steps are sen-
sitive to different types of errors. Thus, there are several potential sources
of noise and systemic bias in a microarray experiment. (Dror el al. 2003;
Cho and Lee 2004; Publication IT).

3.1 Sample Preparation

Before we can perform a microarray experiment, a biological sample needs
to be obtained. Typical samples may include, for example, cancer tumors
of different types (Zhang et al., 2001). In addition, normal tissues can be
used as reference samples. A requirement for the biological sample is that
it contains enough genetic material so that a sufficient amount of RNA
can be isolated (Brownstein and Khodursky, 2003). There are several well
established protocols available that can be used for the RNA extraction

(Coombs et al., 1999).

To obtain good quality data, a very small homogeneous population of
cells, or even a single cell, needs to be obtained. Recently, sophisticated
technologies, such as the laser capture micro-dissection, have been devel-
oped. These technologies can be used to obtain pure samples (Fmmert-Buck
et al., 1996). The isolated RNA sample is reverse transcribed to complemen-
tary DNA (cDNA). In many cases the amount of available cDNA from the
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sample is not enough to perform a microarray experiment. In these cases, a
polymerase chain reaction (PCR) amplification can be used to amplify the
genetic material and obtain more cDNA ( , ). In the next
step, the cDNA is labeled using a fluorescent dye, typically Cy3 (green) or
Cyb (red). If the purpose is to hybridize two samples to the same slide, then
different samples are labelled with different dyes ( , ).

3.2 Array Fabrication

Microarrays can be fabricated using different technologies and materials
( , ). They can be printed, for example, on
a glass, plastic, or silicon slide using printing with fine pointed pins, photo
lithography, or ink-jet printing ( , ; , ;

’ ) ’ )

Gene expression microarrays that are based on the hybridization of the
expression product can be divided into two groups depending on the type
of the hybridization setup. The first type of microarrays are the spotted or
two channel microarrays (Figure 3.2). In these arrays two samples, labeled
with different dye colors, are hybridized to one slide. To prepare the slide,
small fragments of the PCR products or DNA clones are printed to the slide
using a robotic printing machine with fine pointed print pins ( ,

). Recently, two channel microarrays have been prepared using ink-jet
printing of the oligonucleotides ( ) ). With this approach,
a sequence corresponding to the mRNA of a specific gene is printed to the
spot. With two channel microarrays we assume that a specific gene product
will only bind to one spot.

The second type of arrays are the oligonucleotide or single channel mi-
croarrays (Figure 3.2). These are usually constructed by printing short
oligonucleotide sequences to the slide using photo lithography (

, ). In photo lithography, specific areas on the chip are lighted.
This causes chemical coupling to occur at the illuminated sites allowing the
nucleotides to bind. This process is repeated several times to build up piles
of nucleotides, as illustrated in Figure 3.3 ( , )

Numerous microarrays with different types of probes are commercially
available. These include, for example, the whole genome chips for several
different organisms including the human. The whole genome chips contain
corresponding probes for all the known genes present in a genome. In ad-
dition to readily available arrays, custom microarrays can be prepared in
well equipped laboratories or ordered from commercial manufacturing com-
panies. Thus, special array layouts can be designed for specific research
problems.
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Figure 3.2: Two types of microarrays. On the left is a typical two channel
microarray printed on a glass slide (Agilent Technologies, 2006). On the
right, a single channel array is shown (Affymetrix, 2006). In two channel
microarrays the spots are typically arranged in several subarrays whereas in
single channel arrays they are in one subarray.

Actual size of GeneChip™

Millions of DNA strands built up in each cell

500,000 cefls on each GeneChip” array

Actual strand = 25 base pairs

Figure 3.3: Illustration of a single channel microarray. Piles of nucleotides
can be built using photo lithography. Each pile is a probe with a specific
nucleotide sequence. Typically, one probe includes 25 nucleotides. The
expression products of several genes can bind to the same probe sequence.
The intensity level for the individual genes is obtained by computationally
combining the intensity levels of a set of probes (Affymetrix, 2000).
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3.3 Microarray Experiment

Once the cDNA sample has been labeled with a fluorescent dye and the
microarray chips have been acquired, the sample can be hybridized to the
microarray slide. In the hybridization, the microarray slide is covered with
the sample and the cDNA sequences bind to the corresponding probes. As
the hybridization is a highly sensitive process, specific hybridization cham-
bers are usually used. These chambers are used to keep the temperature
constant and to prevent the hybridization solution from evaporating. Mi-
croarray slides are kept in the hybridization chamber typically overnight.
Once the hybridization process is completed, the microarray slide is washed
to remove any unbound material from the slide. Once the slide has dried, it
is ready to be analyzed.

Fluorescent dyes that have bound to the cDNA can be read from the
slide using a laser excited microscope, known as microarray scanner. As
the dyes have bound to each fragment of the cDNA in the sample, the
amount of emitted light is proportional to the amount of cDNA present
in the sample. In the case of the two channel microarray, each slide is
scanned twice using lasers with different wavelengths. Thus, the intensity
information for the Cy3 and Cy5 dyes can be read independently, resulting
in intensity measurements of both samples.

3.4 Data Preprocessing

Even though there are significant differences between different microarray
technologies, for example how the slides are fabricated and how the experi-
ment is conducted, all technologies produce a similar outcome. As a result a
digital image is obtained. To be able to do computational analysis with the
microarray data, intensity information needs to be extracted from the image
( ) ; , ). Subsequently, information from different
probes can be combined and different kinds of quality control methods can
be applied to make sure the obtained data is of good quality.

While different array technologies require very different algorithms for
the data preprocessing, the workflow is still the same ( ,
). In the following we discuss the required analysis steps in the context

of two channel microarrays.

3.4.1 Image Processing

To be able to extract intensity information from the scanned microarray
slides, spot areas need to be identified from the slide image. This can be
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Figure 3.4: An example of a grid alignment over a microarray slide. The
grid alignment for one subarray from a ¢cDNA microarray image is shown

( , 2005).

done with a two step process. First, a rectangular grid is aligned over the
slide such that each spot is assigned into a block of its own (Figure 3.4).
Next, a segmentation algorithm is applied to each block. As a result a
boundary between the spot area and the background is obtained (Figure
3.5). There are several different algorithms available that can be used for
these tasks ( , : , ).

Once the spots are segmented using an automatic or interactive segmen-
tation algorithm, different statistics can be computed from the spot. Usually,
at least the spot area and spot surrounding, that is the background, inten-
sity values are computed ( , ). In addition, several parameters
that characterize the quality of the spot can be computed. For example, the
number of pixels in the spot area or spot roundness can be quantified. If the
spot area is small compared to other spots, it may indicate that information
from the spot is not reliable. This kind of quality parameters are important
when the reliability of the individual data points are evaluated.

Most microarray scanners come bundled with an analysis software. Thus,
the extraction of information from the microarray slide can be done in a very
straightforward manner. However, the algorithms that are used to extract
information have an impact on the obtained data ( , ).
This issue is briefly discussed in Publication II.

3.4.2 Quality Control

After the image processing, spot intensity values are available. The first
step in the analysis is to compensate for technological limitations and to
transform the data in a form suitable for the analysis ( , ;
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Figure 3.5: Examples of spot segmentation using different algorithms. There
is a clear difference in the segmentation accuracy (Tuimala and Laine, 2005).

enbush, 2002). During the hybridization the genetic material and thus the
fluorescent dyes can attach to areas other than the spots. When the microar-
ray slide is scanned background area will yield non-zero intensity reading.
Thus, it is assumed that there is an additive hybridization bias that can be
observed from the background area. Therefore, before any further analysis
the background intensity is subtracted from the spot intensity

=1 — 1. (3.1)

Here I? is the spot and I? is the background intensity. Index i € {3,5}
corresponds to the dye color red or green. The background intensity can be
estimated globally for the entire slide or independently for each spot. While
the background subtraction is a common practice in the microarray analysis,
there are counter arguments why it should not be done (Gottardo et al.,
2003). For example, the binding properties of the spot and the background
area are different. Thus, the assumption about an additive noise model may
not hold.

Binding efficiencies of all the probes are not similar. Some probes bind
extremely well and will be observed at high intensity levels while others
have significantly lower binding efficiency (Hein et al, 2005; Dror et al.,
2003; Weng et al., 2006). In addition, the variation within large intensity
values is much larger than within small intensity values. To compensate this
a log transform can be applied

I =logy(I), (3.2)

where [ is the background subtracted intensity value. This transformation
has the property that it makes the variation of intensities more independent
of the absolute magnitude of the intensity values (Durbin et al., 2002).

When a reference sample is available, instead of using log intensity values
directly, log ratios can be used. With a two channel microarray, reference
sample is usually readily available in the other dye channel. With a single
channel microarray, reference sample can be from other microarray chip. A
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Figure 3.6: An intensity scatter plot and a MA-plot are shown. Intensity
plot (a) shows that there is a clear linear relationship between different dyes.
However, there is an observable dye bias on both scatter plots. Scatter plots
also show the saturation of intensity values. In addition, a group of erroneous
measurements can be identified from the MA-plot. A cluster of points at
the lower left corner includes bad quality data.

log ratio is obtained from the intensity values as

It
R= logz(ﬁ) = 10%2(It) —logy (1), (3-3)

where I' is the test and I” reference sample intensity and R is the obtained
log ratio. Conveniently, log transformed cDNA intensity ratio data is usually
approximately Gaussian distributed (Zhang et al., 2004).

Once the data is presented in the desired form, the next step in the
analysis is to remove all bad quality data (Speed, 2003). This data can
be identified using spot quality statistics that were extracted by the image
processing algorithms. Typically, spots that have a very low intensity value
or spots that could not be segmented at all are candidates for the removal.
In addition, saturated spots can be removed. Saturation may indicate that
several genes have bind to the same spot or that there is some other kind of

hybridization error.

The quality of the data can be assessed using different types of scatter
plots (Figure 3.6). The most commonly used scatter plot is the MA-plot
(Chambers et al., 1983; Bolstad et al., 2003), where the product of intensities
from two channels is plotter against the ratio of intensities. These kinds of
plots can be used to identify the bad quality data points, as illustrated in
Figure 3.6.

If replicated microarray experiments are available, it is not necessary to
remove bad quality data directly. Instead, replicated values can be used to
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Figure 3.7: Original MA-plot after quality filtering and a lowess fit to the
data is shown on the left (a). On the right (b) MA-plot of the lowess
normalized data is shown. Clearly, the systematic bias has been removed.

compute a combined expression statistic for the gene expression (

, ; , ). Most straightforward way to combine the
replicates is to compute a mean or median over all the replicates. Also more
advanced replicate combining methods have been proposed ( ,

). There are several different ways to perform the replication of mi-
croarray data ( , ). One slide can include more than one probe
for an individual gene or several similar arrays can be hybridized using the
same sample yielding technical replicates. Alternatively, the whole biological
experiment can be repeated resulting in biological replicates.

3.4.3 Normalization

After the data extraction and quality filtering, intensity values are not yet
directly comparable. Due to various sources of systemic bias, for exam-
ple, different dyes have different incorporation efficiencies, the data needs to
be compensated for biases before further analysis are made. This process
is called normalization ( ) ). There are two different nor-
malization steps, within slide and between slide normalization ( ,

). The goal of the normalization process is to remove variation from
the data that is not from a biological origin.

Within slide normalization is particularly important with the two chan-
nel microarray data, because of the above mentioned fluorescent dye bias.
This kind of bias can be addressed using a robust local regression. The most
commonly used method is to fit a curve to the log ratio data using locally
weighted scatter plot smooth (lowess) algorithm (Figure 3.7) ( ,

).
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This normalization approach is based on the assumption that the genes
that are not differentially expressed should have the same expression value
with both dye colors ( , ). Examples of this kind of genes are the
control spots and house keeping genes whose expression should be the same
under all conditions. However, it has proven to be more robust to do the
normalization using all the genes. If the number of under-expressed and
over-expressed genes is approximately the same, then on the average there
should not be any significant bias due to the differential expression of genes.
This assumption has proven to hold under most conditions and thus, lowess
normalization can be done using all the genes. Another type of error that
can be addressed by within slide normalization is uneven hybridization. Dif-
ferent areas of the slide might have different hybridization efficiencies. This
problem can be solved by doing the above described lowess normalization
separately for each subarray of spots ( , ).

After the within slide normalization the intensity values within the slide
are comparable. If a microarray experiment includes several slides, further
between slide normalization might be needed to compensate the systematic
differences between the slides. If the lowess normalization has already been
applied, the data distribution should have a zero mean. Thus, if the variation
of data is the same at different slides, further between slide normalization is
not needed. This is the case with some high quality microarray technologies

( ) )-

If the data from different arrays have different statistical characteristics,
such as the mean or variance, between slide normalization is needed. Several
different approaches have been proposed including a median and quantile
normalization ( , : , :

, ). With this kind of approach each slide is normalized to have
the same median or quantile values.

Normalization schemes that are based on global statistics of the dataset
are sufficient for most large scale analyzes. However, a much more detailed
model based normalization algorithms have been proposed. These models
try to identity and compensate errors from different sources ( ,

; , ). The model based approach makes it possible
to asses the reliability of individual intensity values through the p-values
yielding a more reliable analysis of the data. The model based approach
and different sources of error will be discussed in more detail in Chapter 4.

3.5 Data Analysis

After the normalization, microarray data is ready to be used in the sub-
sequent data analysis ( , ). The goal of the data analysis
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is to extract biologically interesting information from a large dataset using
computational methods. Data analysis can be done in unsupervised fashion
without using any additional knowledge or alternatively in supervised fash-
ion, where additional information, for example, clinically determined class
labels for the samples is used. A special characteristic of the microarray
data analysis is that the number of observations (samples) m is typically
much smaller than the number of variables (genes) n. Thus, a dataset is
R™ ™ dimensional, where n > m. Here, we will briefly discuss some of the
most common analysis tasks and introduce standard computational meth-
ods for the analysis. These methods have been applied to real biologically
motivated data analysis tasks in Publication I and Publication IV.

3.5.1 Unsupervised Analysis

In the unsupervised analysis microarray data is analyzed without utilizing
any additional information. A goal of this kind of analysis is to extract
information about the underlying structure of the dataset. Thus, common
unsupervised tasks include the clustering of data, for example, to find func-
tional modules, or the projection of the data in a lower dimensional space
for illustration.

Unsupervised analysis can be applied to a dataset in gene-wise or sample-
wise. That is, we may want to study the similarities between the individual
genes or samples. When the sample-wise analysis is performed it is of interest
to exclude uninformative genes from the analysis. Thus, the genes that do
not change their expression between the samples can be removed as they
do not contribute any information to the analysis. To remove uninformative
genes, a fold change can by used to measure information ( ,

). For example, a 5 percentile and 95 percentile can be compared. The
pth percentile is obtained from m ordered values by computing the rank
k = p(m + 1)/100, rounding k to the nearest integer, and selecting the
kth value. For example, if the fold change between the 5 percentile and
95 percentile is less that two-fold the gene is deemed to be uninformative
and can be removed. In addition, the genes can be removed if the maximum
intensity over all the samples does not exceed a given threshold. This kind of
filtering of uninformative genes can significantly improve the results obtained
with the unsupervised analysis as we remove the characteristics that can not
be reliably detected from the data.

If the analysis is done gene-wise, additional standardization of the gene
expression profiles over all the samples can be applied. This is needed to
bring the variation between the genes into the same scale, and thus to make
the expression profiles comparable. The most common gene-wise standard-
ization method is to make the expression profile to have zero mean and unit
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variance

i = M’ (3.4)

Oy,

where x; is the expression profile of gene ¢ and p,, and o, are the mean
and standard deviation of x;, respectively. An alternative standardization
method is to apply a fixed norm standardization

3 (3.5)

Tr; =
||
where |@;| is the norm of @;. This method is more appropriate especially if
the variance of the data is expected to change in time during the experiment
due to biological reasons.

Clustering algorithms can be used to find co-regulated genes or to mea-
sure the similarity between samples. Hierarchical clustering is an often used
tool for gene expression analysis ( , ; ) ).
First, the distances between the genes or the samples are computed using
a distance metric. Possible choices of the metric include the Euclidean dis-
tance

> i — wil?, (3.6)
=1

or correlation )
d(ZIJ, y) =1-— Zi:l(xi — ,um)(yz _ :U’y)
(n—1)oz0y

: (3.7)

where & and y are two expression profiles of length n, p, and p, are the
means and o, and o, are the standard deviations of & and y, respectively.

Based on the selected distance metric, the expression profiles are linked
using a linkage method. Again, there are several options for the linkage
method including, for example, the single linkage

l(r,s) = min(d(xri, s5)),4 € 1,...,np,j € 1,...,ng, (3.8)
complete linkage
l(r,s) = max(d(zp, xs5)),% € 1,...,np, 5 €1,...,ng, (3.9)

and average linkage

1 Ny Mg
I(r,s) = - DO dwr, x), (3.10)
i=1 j=1

where n, is the number of objects in the cluster r and ng is the number of
objects in the cluster s. Based on the linkage, a tree that represents the
distances between different samples is obtained.
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In addition to hierarchical clustering, several other more advanced clus-
tering methods are available. These include, for example, the kmeans clus-
tering ( , ), fuzzy c-means clustering (

, ), and self-organizing maps ( , ; ) ).
These methods find the cluster structure using more advanced measures
for cluster similarity than the hierarchical clustering. Typically, this means
that a fixed number of clusters is specified and then the algorithm finds a
cluster structure that minimizes the given cost function. For example, the -
means algorithm clusters n data points x1, x2, .. ., z, into k disjoint clusters
U, Us,...,Ug. The clustering is carried out in such a way that the sum

k
S>> (@n— ), (3.11)

m=1z,€U,,

where p,, is the centroid of the cluster U,,, is minimized. The minimum
of the expression in Equation 3.11 can be found by iterating two steps:
(i) Assign each data point to the cluster that has the closest centroid, (ii)
Recalculate the positions of the centroids. The algorithm minimizes the sum
of point-to-centroid distances for all clusters. The method is guaranteed to
converge to a local optimum ( , ).

Recent research has also focused on so called biclustering methods, where
both the samples and the genes are clustered simultaneously ( ,
; , ). Obtained biclusters are allowed to overlap with
each other. Thus, the difference to the traditional clustering methods is that
the same genes and samples are allowed to appear in several clusters.

Dimensionality reduction techniques can be used to visualize or to find
similarities in the data. Multidimensional scaling (MDS) is a commonly used
method for this purpose ( , ). The basic form of the
MDS is known as a classical or metric multidimensional scaling. MDS takes
a general distance matrix D™*" as an input and the goal of the algorithm
is to find a configuration of points @y = (zf,.. .,xi)T, k € 1,...,n that
produce the given distance structure in the p-dimensional Euclidean space.
That is, d7; the distance between x; and ; in the configuration space
approximates d; ; the distance between ¢ and j in D for all pairs of 4, j. The
only requirements for the input matrix D are the symmetry d;; = d;;, non-
degeneracy d;; = 0, and triangular inequality d;; + dji > di, Vi, j, k. Thus,
D can include distances computed by any metric that fulfills these criteria

( , 2005).

When dissimilarities between d; ; and d;-i ; are treated as Euclidean dis-
tances, the solution is obtained by minimizing the cost function

E=) (dij—d;;) (3.12)
i?j
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The result obtained with this approach is analogous to the principal com-
ponent analysis (PCA) ( , )

In modern multidimensional scaling more complex dissimilarity measures
can be used to measure the difference between d; ; and d; ; (

, ). Instead of trying to approximate the dissimilarities themselves,
as done in classical MDS, non-metric scaling can be used to approximate a
nonlinear, but monotonic, transformation of dissimilarities ( , ).
This will make the MDS more general by allowing only the rank of the dis-
tances to be preserved. Non-metric scaling can be done by minimizing the

stress function .
Ei,j(di,j - dz’,j)

(i)
where ¢; ; = f(d; ;) is a monotonic transformation of d; ;. Several different
methods have been proposed to minimize the stress function. Typically, this
includes two iterative steps, searching the optimal coordinates and the op-
timal monotonic transformation ( , ; , ).

S =

(3.13)

3.5.2 Supervised Analysis

In the supervised analysis, in addition to the expression data, some other bi-
ological knowledge is utilized. This kind of biological knowledge may include
the clinical class labels for the samples or the functional categories of genes
( ; ; , ; , ; ;

). Several unsupervised clustering methods can easily be extended to
take advantage of, for example, the functional categories of genes.

A typical supervised analysis task is to find the differentially expressed
genes between two types of samples, for example, between two different types
of cancers. This can be done by using a statistical test to test the similarity
of samples in two groups ( , ). Commonly used tests
include two-sample t-test and Mann-Whitney test.

Parametric two sample #-test assumes that the testable data is normally
distributed. Then the null hypothesis “means g and po of two populations
are equal” is tested against the alternative “means are not equal” hypothesis
with a predetermined significance level a. The test statistic is given as

M1 — p2
2 27
/%1y %2
n1+n2

where p; and pg are the means, o1 and o9 are the standard deviations of
the two corresponding populations, and n; and ne denote the number of
samples in the populations. By using the value of the test statistic a p-
value for the significance can be obtained. If the p-value is smaller than the

t = (3.14)



3.5. DATA ANALYSIS 25

significance level «, the null hypothesis should be rejected. Non-parametric
version of the t-test can also be defined. In this case, the p-value is obtained
by randomly permuting the labels of the samples and computing the p-value
from the obtained empirical distribution.

Unlike #-test, the Mann-Whitney test is non-parametric and does not
make the normal distribution assumption. It does, however, assume that
both samples are from the same distribution. The test statistic is given by

nl(nl + 1)
2

where Ry is the sum of ranks in the first population. Terms n; and ng denote
the number of samples in the populations.

U=nings + — Ry, (3.15)

In addition to these basic statistical tests, numerous methods specially
designed to detect differentially expressed genes from microarray data have
been proposed ( , : , : ,

). For example, the weighted voting algorithm is based on correlating
the expression profiles with ideal class labels ( , ). Higher the
degree of correlation, more significant the gene is deemed to be. With this
kind of methods a p-value can be obtained from an empirical distribution
estimated by permuting the class labels.

A problem in finding the differentially expressed genes by testing individ-
ual genes is that the number of tests is equal to the number of genes. Thus,
if we are testing 10 000 genes with significance level o = 0.05 we will find
500 false positives, that is differentially expressed genes, by chance. This is
known as the multiple testing problem. The experiment wide significance
level a. is dependent on the number of tests n

ae=1—(1-a)". (3.16)

To compensate the increase in ., several computational approaches have
been proposed. The most straightforward approach is to use the Bonferroni
correction ( , ). This method controls the family-
wise error rate (FWER) which is the number of false positives. This is done
by adjusting the significance level a so that the experiment wide significance
level will be, for example, a, = 0.05. This can be done by dividing the
desired significance level by the number of tests a = a./n.

An alternative approach is to use the false discovery rate (FDR) correc-

tion ( , ). In this approach, a predetermined
rate of false positives is allowed. The false discovery rate is defined as
V
- — 3.17
V+5S’ (3.17)

where V is the number of false positives and S is the number of true positives.
One wants to keep the value of () under the threshold q. As V and S are
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random variables the value of () can not be computed directly. However,
there are algorithms to ensure that the expected value of ) is less than q.
Let p1,...,pn be the p-values from n independent tests. We can order these
in the increasing order of magnitude, denoted by p(y),...,p(). Then, given
q we can find the largest k, the number of significant tests, by

Vi <k:pu < —q. (3.18)

Instead of just finding the differentially expressed genes, the goal of the
supervised analysis can be the classification or class discovery of the samples.
That is, given a set of samples with the known class labels assign a new
sample to the class whose members are the most similar.

Because the number of genes n is a significantly larger than the number
of samples m, we need to take care not to overfit the classifier. Thus, a key
issue in the microarray data classification is the selection of the features that
are used in the classification. A large number of papers have been published
proposing how the features should be selected. These include statistical

methods based on ttest ( , ), different kinds of clustering
methods ( ) ), methods based on information theoretic criteria
( ) ; , ), and many more. A problem

is that methods for feature subset selection make assumptions about the
properties of data. Thus, different algorithms will select different sets of
features and the classification accuracy will depend on the feature selection
algorithm. Ideally, the classification should be done without any feature
selection, utilizing all available features. However, this is usually not possible
without significantly overfitting the classifier. In addition, most of the genes
do not contain any information about the class separation and thus, to
reduce noise, they should not be included as features.

Feature subset selection can be done before the classification is consid-
ered. This kind of a filter approach typically selects a list of genes that give
the best separation between the classes of samples in terms of the feature

selection criteria ( , ). Alternatively, feature selection can
be done using a wrapper approach where the features are selected along the
classifier design ( , ).

In addition to feature subset selection, selection of the classification algo-
rithm needs to be considered. Numerous different classification algorithms
have been used with microarray data, including the nearest neighborhood,
support vector machine, Bayesian, and linear discriminant classifiers (

) ). The nearest neighborhood classifier is often used as it is in-
tuitive and simple. It is based on a distance metric, like the correlation or
Fuclidean distance, between samples. Sample can be classifier using the k
nearest neighborhood classifier as follows. Find k nearest samples in terms
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of the distance metric. Perform a majority vote and assign the sample the
the class that has the majority of k nearest neighbors ( , ).






Chapter 4

Microarray Data Quality

As discussed in the previous chapter, a microarray experiment includes sev-
eral steps that may contribute stochastic variation or systemic bias to the
data. To obtain a good quality data, these sources of error should be con-
trolled during the experiment and systemic biases should be removed from
the data by the preprocessing and normalization.

In addition to the microarray experiment process, error sources may lead
back to the sample preparation. Identification of a right type of high quality
samples is not always straightforward. In the case of cancer research the
samples of interest are usually different types of tumors ( , ;

, ; , ). It is a challenging task to dissect
a tumor in such a way that only cancer cells are present in the sample.
This may lead to sample heterogeneity ( , ). Further-
more, identification of the cancer tumor type is not always unambiguous and
the classification of cancer types is constantly changing to incorporate new
knowledge ( , ). This may lead to revision and introduction
of new cancer types.

If the sample is, for example, from a cell culture, sample heterogeneity or
unambiguous of the sample origin are not issues. However, even with a cell
culture there are issues that need to be taken into account in the experiment
design. As numerous cells live in the culture they are at the different phase of
their live span. Thus, they may have a different response to a given stimulus.
This will lead to a problem since with microarray technology we are only
able to observe the average behavior of the entire population!. To observe
the behavior in more detail, the cell population should be synchronized or
individual cells should be observed ( , ).

In this chapter, signal processing methods that can be used to improve
the quality and reliability of microarray data are discussed. The presented

1Unless a single cell experiment is conducted.

29
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methods can be used to address the problems that have been raised above.

4.1 Class Label Verification

Classification algorithms can be used to find the class labels for new samples.
Once we have samples with a known ground truth, a classifier can be trained.
By using the obtained classifier, a class label can be assigned for new samples
according to the classification outcome. This class discovery problem has
been studied in several publications ( , ; , ).
However, to be able to address this problem one need to have the training
samples with the known ground truth.

It is not always obvious how to obtain a biological ground truth of sam-
ples unambiguously. In the field of cancer research it is common to look
for available tumor samples from an institutional database. Based on the
information at the database the samples that are relevant for the experiment
at hand can be obtained. This kind of approach possesses several dangers.
Normally pathologists use several different types of information including
topological properties and histopathological diagnosis of the tumor to deter-
mine the type of the tumor. With these features the tumor is assigned to a
class which is then used as a basis for the treatment. It is not uncommon
that different pathologists make a different diagnosis as all the characteris-
tics of the cancer tumors are not always clear ( , ;

I )'

Another source of error may be the information stored in the institu-
tional database. Even though the initial diagnosis of a pathologist would be
correct, the classification criteria may have chanced over time ( ,

). This has happened, for example, with the leiomyosarcomas (LMS).
Recently, a new class of sarcoma tumors known as the gastrointestinal stro-
mal tumors (GIST) has emerged ( , : ,

). Thus, if one looks for LMS tumors from the institutional database,
one will obtain a number of tumors that in the light of current knowledge
are GIST (Publication I).

Computational methods can be used to help in the verification of class la-
bels. In the verification we can not rely on the available class labels, and thus
supervised analysis techniques are not directly applicable. We could study
the prediction error of a classifier and identify the samples that are not clas-
sified correctly. By repeating this analysis using several different classifiers,
we could conclude that those samples that are constantly classified wrong
have potentially wrong class label. However, it is more straightforward to
evaluate the reliability of class labels using an unsupervised approach.

Multidimensional scaling (MDS) can be used to illustrate a microarray
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Figure 4.1: Two dimensional MDS representation with (a) labels from the
institutional clinical database and (b) after pathological re-review and vali-
dation. Samples from patients with GIST are denoted by squares and those
from patients with LMS by circles. The spread of the populations is demon-
strated by ellipses whose size corresponds to the variance of the class spread.
Dashed and dotted ellipses correspond to LMS and GIST, respectively. In
(a) the ellipses are overlapping, thus there is no visible separation between
LMS and GIST. In (b) with the corrected class labels GIST and LMS appear
as a distinct clusters.

dataset in a lower dimensional space. In Figure 4.1(a) two dimensional
MDS presentation of the microarray data from 60 samples is shown. From
60 samples 30 are from GIST and 30 from LMS according to the institutional
database. As these are distinct types of tumors, we should expect to see a
clear separation between them in the MDS space ( , ).

However, all the samples appeared mixed together in a one big cluster of
points. This observation raises a doubt about the reliability of class labels.
In subsequent pathological re-analysis of the tumors it prove out that 11 of
the samples that were originally labeled as LMS were in fact GIST. With
the corrected class labels there were more evident separation of classes in
the MDS presentation of the data (Figure 4.1(b)).

If the unsupervised analysis of microarray data is successful, we should
see as many clusters as there are different classes of data. If the assigned
class labels are consistent with the obtained clusters, that is, each cluster
includes samples of different type, we can trust that the class labels are
correct. Then, the supervised analysis, for example, the identification of
differentially expressed genes can be done with confidence. If the result is
not what is expected, then in addition to erroneous class labels we should
considered whether there are some other type of biological variation between
the samples that could explain the observed behavior. For example, sample
heterogeneity or different experiment conditions may cause variation that
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can be more prominent than the differences between cancer types.

It should be noted that different types of samples are not always separa-
ble by unsupervised analysis. Thus, unsupervised analysis can only be used
to estimate the quality of biological ground truth if distinct clusters can be
observed in the first place.

4.2 Errors and Noise in Microarray Data

As discussed earlier, numerous steps in a microarray experiment contribute
to the quality of data ( , ). Thus, there are several sources
that may cause errors in the form of stochastic fluctuation or systemic bias.
Some of the sources are due to human interaction in the process and some are
due to the properties of the materials involved in the experiment. Errors
that originate from the human interaction can be controlled with a good
experimental design and detailed laboratory work ( , ). Still,
there remains a large number of error sources that can not be controlled
directly. As microarray technology has matured, better protocols and array
manufacturing techniques have been introduced ( , ). This
has improved the quality of data significantly. It should be noted that this is
the reason why the data from different technologies have different statistical
characteristics. The technology in use determines what kind of sources of
error are present in the obtained data.

One source of error, present in all measurements, is stochastic fluctua-
tions within the cell. Several studies have tried to characterize the structure
of this type of intrinsic noise ( , ; , ). How-
ever, as a microarray experiment typically is a measurement from a cell
population, this kind of variation is averaged out and thus, is not a signifi-
cant source of error in the microarray studies.

More important error sources are those related to the sample preparation
and experimental setup, for example, the sample heterogeneity. Further-
more, the amplification of cDNA with a PCR may cause errors in replicated
cDNA fragments. A microarray experiment itself also contains several po-
tential error sources. There may be quality problems within the slide. Some
probes may have a sequence other than expected due to printing errors or
there might be a difference in binding efficiency of the surface within or be-
tween different slides. Further problems may arise from uneven hybridization
or from a change in conditions during the hybridization (

, 2002).
There have been several studies focusing on characterizing the proper-
ties of microarray noise ( , ; , ;

) ) ) ) ) ) ) ?
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, : , ; , ). These include both
global approaches where all the sources of error are modeled together and
more detailed approaches where error sources have been identified and mod-
eled separately. An example of a detailed model is the hierarchical error
model that has been proposed to model the noise in cDNA microarray data

( , ). This model includes different terms for different error
sources. The error model is defined at the log scale in two stages as
y = X+e (4.1)
X = p+gi+c+ri+ bi, (4.2)

where p is the ground truth intensity, g; is the noise specific to the gene
i, ¢; is the noise specific to the chip j, 7;; is the noise specific to the chip
J and gene 4, b;;; is the noise specific to the gene 4, chip j, and biological
sample k, and e is the random noise independent of the gene ¢, chip j,
and biological sample k. It should be noted that this kind of separation of
variances is a common technique in analysis of variance (ANOVA). Thus,
the model parameters could be estimated using the proposed Bayesian or
more traditional ANOVA approach ( , ).

This model is one example of the characterization of microarray noise.
To estimate the model parameters, assumptions about different noise terms
need to be made. In the case of hierarchical error model all sources of error
are assumed to be from a zero mean Gaussian distribution with the standard
deviation dependent of the noise type ( , ). As the model is
formulated at the log scale, this means that the noise is multiplicative and,
thus, nonlinear in nature.

When compared to traditional methods, the model based analysis has
proven to improve the results when applied to normalization and analysis
of microarray data ( , : , : ,

). However, a problem is that each microarray technology requires a
model of its own. As the noise characteristics and the underlying technology
are very different, the formulation and assumptions about the noise need to
be different as well ( , ; , ; , ). In
addition, it is difficult to estimate whether the proposed noise model really
works well as there is no ground truth about the data available. Thus, the
validation has been done based on the statistical properties of the data or
by comparing the scatter plots. Here less scatter would indicate a better
performance. To be able to utilize the model based analysis effectively, an
additional control data that can be used to tune the model parameters needs

to be generated ( , ). This kind of data can be obtained by
performing the experiment with replicates. Then, the statistical properties
of the data can be reliably estimated ( , ).

Even though there are practical problems that limit the applicability
of the model based approach to data analysis, the characterization of the
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statistical properties of microarray data has other uses as well. Error models
can be used to simulate microarray data with realistic characteristic.

The simulation of microarray data is of interest as it provides a way
to obtain a realistic ground truth data. A major problem in developing
algorithms for biological applications is that the ground truth of the data
is not known. This makes it difficult to estimate the performance of the
algorithms. Having a realistic simulated data available, the performance of
the algorithms can be evaluated and compared objectively (

). It should be pointed out that a problem with this approach is that
a model based evaluation of algorithms always favors the one that makes
the same assumptions about the data as the model does. Thus, to get an
objective estimate of the algorithms performance, the algorithms should be
tested using data generated with several different models.

In addition to data analysis algorithm evaluation, there are also other
applications where simulated microarray data can be used. By changing the
noise parameters, the effect of different error sources can be studied. This
information can be used to refine the microarray experiment protocols. If
we have an accurate enough computational model about the system we are
studying, it would be possible to model the entire microarray experiment.
This would help to find potential problems in the experimental design, and
make it possible to redesign the experiment such that a hypothesis can
reliable be tested when real data is generated.

Simulation of realistic microarray data is a challenging task as there are
several steps that effect the outcome as discussed earlier. First, simulated
ground truth data from biological system under study needs to be obtained.
Depending on the usage of simulated data, there are several options how
this can be done. In the ideal case a kinetic model for the system could be
used. However, in practice this kind of models are rarely available. Instead,
a random network model with realistic reaction kinetics can be used to
simulate the behavior of a mock system ( , ; , ).
This kind of data, simulated using a network with random connections,
should still have the essential characteristics of real system ( ,

). If we are only interested in simulating realistic data, not to model the
system, the ground truth data can be generated directly from a distribution
that corresponds to the properties of real data.

As a next step, there is a need to model biological and stochastic vari-
ation due to different error sources. We have implemented several noise
models that have been proposed earlier ( , ; ,

; : ; ; ; : ). Along
with the models, methods for estimating the model parameters from a real
measurement data have been proposed ( , ; ,

). These methods can be used to estimate realistic parameters for the
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Figure 4.2: Gene expression profiles of the selected genes, simulated as ex-
plained in Publication II. Selected noise free expression profiles (a) and the
same expression profiles after the hierarchical error model has been applied
(b) are shown.

simulation. Selected gene expression profiles, simulated using a random net-
work model as explained in Publication II, are shown in Figure 4.2(a). The
same expression profiles after the hierarchical error model has been applied
are shown for comparison in Figure 4.2(b).

Finally, a microarray experiment including the slide manufacturing pro-
cess needs to be simulated. We have developed a simulation model that
includes all the error sources that are commonly observed in microarray
images. These error sources can be used to test the robustness of image pro-
cessing algorithms and also to test, for example, how different normalization
methods perform when spatial errors are introduced into microarray slides.
Examples of simulated slides are shown in Publication II.

We have proposed a modular framework that can be used to model re-
alistic microarray data. Our approach uses noise models that have been
developed earlier. A ground truth data generation can be done using avail-
able network simulation programs ( , ; , ).
For the microarray slide manufacturing and hybridization we have devel-
oped a model that takes into account several possible sources of error. Our
simulation approach is discussed in detail in Publication II.

4.3 Supplemental Measurement Data

Along a microarray experiment, other measurement technologies can be used
to obtain a supplemental data. For example, we can measure the concen-
trations of cell populations, the amount of cell mass, or the phase of cell
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cycle ( ; ; , ; : )-
We can use this kind of data to verify that the experiment is performed
as planned. In addition, we can also use it to improve the quality of the
obtained microarray data.

An example of an application where a microarray experiment can benefit
from a supplemental measurement data is the cell cycle studies. To be
able to study the cell cycle behavior with microarrays, we need to obtain a
synchronized cell population?. There are several methods that can be used
to obtain an approximately synchronous population of cells ( ,

; , ,0). Once a synchronized population is let
to grow freely, it will start to lose the synchrony. This significantly limits the
time frame when we can study the behavior of a synchronized population.
As a solution, computational methods that can be used to invert the effect
of the loss of synchrony have been proposed ( , ;

, ). These methods are based on modeling the loss of
synchrony by convolution. Thus, by deconvolving time series expression
data, we can obtain data that corresponds to a measurement from an ideal
synchronized population. For this purpose, we need to obtain an estimate
of the cell population distribution.

A fluorescence activated cell sorter (FACS) is a device that can be used
to measure the amount of DNA within a cell ( , ). This
process is based on fluorescent dyes that bind to the genetic material within
a cell. As the cells are run through a measurement point and the fluorescent
is illuminated with a laser, the amount of emitted light can be measured.
The amount of light is relative to the amount of genetic material. This
process can be done for tens of thousands of cells in a high-throughput
manner (Figure 4.3). As the amount of DNA within the cell is dependent
on the phase of the cell cycle, this kind of data can be used to estimate the
distribution of a cell population.

When we are conducting a time series experiment to measure the cell
cycle behavior we can perform a FACS analysis along microarray measure-
ments. As a FACS experiment is significantly simpler and cheaper to per-
form than a microarray experiment, the data can easily be generated in a
more dense intervals. Thus, we can assume that we have obtained K FACS
measurements from the time instants 71, ...,Tk.

Let us assume that the wild type asynchronous cell population is dis-
tributed as p(t) = 2079, ¢ € [0,1] ( , ). Here, ¢ denotes the cell

2By a synchronous cell population we mean that all the cells in the population are at
the same phase of the cell cycle and thus, by definition have the same amount of DNA.
More strict definition of synchrony would require that in addition to the same amount of
DNA, all the cells should be at the same state of their life cycle, that is to be of the same
age.
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Figure 4.3: Example of the histogram that is obtained with FACS. The
amount of DNA, corresponding to different phases of the cell cycle, is marked
to the figure. There is about the same number of cells in all the phases of
the cell cycle.

cycle phase normalized to the interval ¢ € [0,1]3. As we know N, the total
number of cells used in the FACS measurement, we can compute the num-
ber of cells at each small time interval [tg, ;] as ¢(t) = N(2(17t0) — 2(01—t1)),
where t; > tyg. Furthermore, the cumulative number of cells at time ¢ is
C(t) = _ye(i) = N(2 —2071). That is, for a given ¢, C(t) is the total
number of cells at the earlier phases of the cell cycle.

By using a measured asynchronous FACS histogram h, and the cumula-
tive number of cells C(t), we can estimate a mapping that we call the DNA
replication function f(¢). This function maps the number of cells - cell cycle
phase -space to number of cells - amount of DNA -space as

) | 3

where h,(7) is the value of FACS histogram of the asynchronous population
at the point i, and K € N making f(¢) to be a discrete approximation of
the DNA replication function.

K
> hali) = C(t)
i=0

f(t) = argmin (
K

The function f(t) presents the amount of DNA that is present at each
time instant of the cell cycle. Having this information, we can use a FACS
histogram of a synchronous population to evaluate the number of cells that
this amount of DNA corresponds to. Thus, the distribution of the cell

3 As the observed FACS data is discrete, for convenience the cell cycle phase variable ¢
needs to be a discrete variable as well.
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population is obtained by

@) t—1
2(t) = 3 ho(i) = 3 (i), (4.4)
i=0 i=0

where f(t) is the value of the DNA replication function and hs(i) is the
value from a FACS histogram of a synchronous population at the point
1. The obtained distribution is obviously discrete. By using the obtained
estimate of f(t), this population estimation process can be repeated for all
FACS measurements from the time instants 71, ..., Tx. Thus, for each time
instant T}, we can obtain a separate estimate of the population distribution
over the cell cycle phase ¢ (Publication IIT).

Traditionally, a population estimate is obtained by estimating the num-
ber of cells in each phase of the cell cycle by hand, as demonstrated in Figure
4.3 ( ) ). These cell counts are then used to draw the cell
population distribution. As the proposed estimation method is automatic
and non-parametric, it provides a more objective estimate of the population
distribution.



Chapter 5

Information in Biology

A reductionistic approach to molecular biology, where the effects of a sin-
gle gene or a group of connected genes have been studied, has helped us to
understand how different parts of the organism interact and what the under-
lying control mechanisms are. This reductionistic approach, however, has
its limitations. Focusing on studying individual genes in isolation from the
rest of the system offers only a limited view to the behavior of the system.
Thus, a system level approach to biology has recently become a major field
of research ( ) ).

In the system level approach computational models have an essential
role. We can model the behavior of the system and make predictions on the
effects of different stimuli. Building these kinds of models requires a lot of
biological knowledge and extensive measurements of the system. While there
have been several successful attempts to model the behavior of biological
systems, these have focused only on a fraction of the system ( ,

; , ). There is still not enough knowledge and data
that would make it possible to model real biological systems in detail at the
system level.

Instead of trying to model a system in detail we can use qualitative
modeling ( , ). In this approach the focus is on understand-
ing general emergent properties of large networks. With this approach we
can address several fundamental questions of biology. For example, why is
an organism able to robustly process information from a variable environ-
ment while maintaining adaptability. This kind of a behavior is observed
with several biological systems, for example with an innate immunity cell
macrophage ( , ).

To understand the behavior of real organisms at the system level, we
can look at how information is propagated within and between organisms.
It can be argued that studying information processing is a key factor in un-
derstanding life ( , ; , ). Living systems differ

39
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from non-living systems, for example, in their ability to process information
from their environment and to propagate information over time through the
mechanism of evolution. This difference between living and non-living sys-
tems motivates to study biology as an information science ( , ).

Information theory has successfully been applied in biological research
to quantify the information in genetic sequences or proteins ( , ;
, : , ). Using genome sequences,

evolutionary relationships between different organisms have been shown (

, ). Here we will show how the information-based approach can be
applied to study the information processing of biological systems. We will
show that the information-based approach can be used to uncover informa-
tion flow at different levels. We can study how information is propagated
through evolution in the structure of a regulatory network or how a system
responds to a perturbation. Thus, the information-based approach can be
used to study both the structural and dynamical properties of the system.
We will demonstrate the applicability of our approach by using a simple
computational model class, Boolean networks. In addition, we will show
how the proposed approach can be applied to real data by studying the evo-
lutionary relationships through metabolic networks of different organisms
and characterizing the dynamical behavior of macrophage using time series
microarray data.

5.1 Information Theory

Here some fundamental results of information theory and interesting new
developments are discussed. The presented results will form basic tools that
allow us to study biological systems through the concepts of information
content and processing.

There are two commonly used definitions for information, Shannon in-
formation ( , ) and Kolmogorov complexity ( , ;
, ; , ). Both theories provide a measure of infor-
mation using the same unit: a bit. A natural interpretation of information
is the length of the description of an object in bits. Here we discuss the
fundamental differences between these two theories and give definitions for
information. In addition, we discuss how information can be used to measure
the similarity of two objects.

5.1.1 Shannon Information

In Shannon information theory the amount of information is measured by
entropy. For a discrete random event x with k possible outcomes, the entropy
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H is given as

k k
H=> pli=-)Y pilogp, (5.1)
i=1 =1

where p; is the probability of an event x; to occur ( , ).
Quantity I; = —logp; is the information content of an event x;. Natural
interpretation for entropy is that it is the expected number of bits that are
needed to encode the outcomes of a random event z. It can be observed that
entropy is maximized when the probabilities of all events are equal, that is
piZﬁ,ViEL...,k( , )

As indicated earlier, Shannon information measures information of a
distribution. Thus, it is based on the underlying distribution of the observed
random variable realizations. The distribution can be obtained based on
assumptions about the data generation process or it can be estimated from
the data. This distribution based definition has some obvious drawbacks.
For example, consider the bit strings

11111111111111110000000000000000

and
01000101010011010110010011101101.

If we assume that both strings are from a random variable X with alphabet
{0,1} they have exactly the same information content, empirical entropy
H =1, even though the first one obviously shows a simpler bit pattern.

5.1.2 Kolmogorov Complexity

Unlike Shannon information, Kolmogorov complexity! or algorithmic infor-
mation is not based on statistical properties, but on the information content
of the object itself ( , ). Thus, Kolmogorov complexity
does not consider the origin of an object. The Kolmogorov complexity K (x)
of a finite object x is defined as the length of the shortest binary program
that with no input outputs x on a universal computer. Thus, it is the min-
imum amount of information that is needed to generate x. Unfortunately,
in practice this quantity is not computable ( , ).

While the computation of Kolmogorov complexity is not possible, an
upper bound can be estimated using lossless compression ( ,
). Several real-life compression algorithms, like the Huffman ( )

), Lempel-Ziv ( , ), and arithmetic coding (
, ) have proven to give useful approximations of Kol-
mogorov complexity in practical applications ( , ).

! Algorithmic information theory was independently introduced by R.J. Solomonoff
( , ), A.N. Kolmogorov ( , ) and G. Chaitin ( , ).
However, this theory is commonly known as Kolmogorov complexity.
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5.1.3 Information Distance

As information is an absolute measure, related to a single object or a dis-
tribution, it is not directly suitable for comparing the similarities of two
objects. Small or large information alone does not tell much about the simi-
larity of objects. Thus, measures to jointly compare the information content
of two objects have been proposed.

With Shannon information a joint entropy between two discrete random
variables X and Y is defined as

H(X,Y)=-> p(z,y)logp(z,y), (5.2)
x,y

where p(z,y) is the probability of observing a pair of events x and y and the
sum is computed over all the pairs of  and y ( ) ).
In a similar manner we can define conditional entropy, that is the entropy
of X given Y

H(X|Y) = Zp z,y) log (;,)) = H(X,Y) - H(Y). (5.3)

Mutual information is one of the best known information-based mea-
sures of similarity ( , ). It is a measure of how much
information can be obtained about random variable X by observing Y. The
mutual information of X relative to Y is defined as

(z,y)
V)= plz,y)log Y (5.4)
% p(z)p(y)

and by using the notations of joint and conditional entropy it can be written
as

I(X;Y)=H(X)- HX|Y)=H(X)+ H(Y) - H(X,Y). (5.5)

Thus, mutual information is simply the sum of entropies of X and Y minus
the joint entropy ( , ).

Information-based similarity measures can also be defined based on Kol-
mogorov complexity. This topic has been studied in recent years with the
goal of finding an information measure than can be approximated computa-
tionally ( , ; ) ).

We denote as K(x,y) the length of the shortest binary program that
outputs x and y, and a description how to tell them apart. Analogously to
Shannon information, we can define a conditional Kolmogorov complexity
K (z|y) as the length of the shortest binary program that with a given input
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y outputs x ( , ). Thus, information about y, contained
in  can be defined as ( , )
I(z;y) = K(y) — K(ylx). (5.6)

It can be shown that the relation
K(z,y) = K(x) + K(y|lz) = K(y) + K(z|y) (5.7)

holds up to an additive precision? ( , ). Therefore, there
exists a symmetry property I(y;z) = I(x;y), up to an additive precision.

Kolmogorov complexity based similarity measure, or information dis-
tance, between two objects is the shortest binary program that computes x
from y, or vice versa. Thus, information distance can be defined as (

, 1998)
drp(z,y) = max(K (y|z), K(z[y))- (5.8)

This is a measure of absolute information distance between two objects.
As the size of an object has a direct impact to the Kolmogorov complexity of
the object, we should define a normalized version of the information distance
that takes the size of an object into account. A normalized information
distance can be defined as ( , )

max(K (z]y), K (y|x))
max(K (z), K(y))

dnip(w,y) = (5.9)

While normalized information distance can be motivated solely from the
information theory point of view, it has some general properties that make
it interesting in other ways. The normalized information distance has been
shown to incorporate all effective computable distance metrics including,
for example, the Euclidean and Hamming distances. Thus, the normalized
information distance can be argued to be a universal measure of similarity.

5.1.4 Normalized Compression Distance

While normalized information distance, like Kolmogorov complexity itself,
is not computable, it has been shown that this metric can be approximated
by any real-life compression algorithm that fulfills several natural criteria of
a normal compressor ( , ).

Let us denote compressed length of a string = by C(z). Similarly,
compressed length of the concatenation of strings x and y is denoted by

2There is a constant ¢ > 0, independent of z and y such that equalities in Equation
5.7 holds up to ¢ additive precision.



44 CHAPTER 5. INFORMATION IN BIOLOGY

C(zy). A compressor C is considered to be normal if it asymptotically
fulfills the following criteria ( , ): 1) Monotonic-
ity C (zy) > C(x); 2) Idempotency C(zx) = C(x), and C (A) = 0 where
A is the empty string; 3) Symmetry C(xy) = C(yx); and 4) Distributivity
C(zy)+C(2) < C(xz)+C(yz). Details about these properties can be found

in ( , ). Earlier work has demonstrated that sev-
eral real-life compression algorithms approximate a normal compressor in
sufficient detail ( , ).

By using a compressor C' instead of the Kolmogorov complexity K, we
can write Equation 5.9 in a computable form. After we apply Equation
5.7, to the the numerator of Equation 5.9, the numerator can be written
as max{K(z,y) — K(y), K(z,y) — K(x)} ( , ). For compres-
sion convenience we can approximate K (x,y) by the concatenation of these
strings K (z,y) = K(xy) = K(yz)3. Using these properties the normalized
compression distance (NCD) can be defined as

C(zy) — min(C(z), C(y))

max(C(), O(y)) (5.10)

dyep(x,y) =

It can be shown that this approximation has the same metric properties as
the normalized information distance, up to an additive constant ( ,

; , ). However, it is important to understand
the limitations that are faced when a normal compressor is approximated
with a real-life compression algorithm in real-life applications.

When we estimate NCD we are inherently limited to the metrics that are
covered by the compression algorithm. Thus, even though NCD is shown
to be quasi-universal ( , ), this does not hold in
applications where real compression algorithms are used. However, if the
compression algorithm is able to uncover the similarities that are of interest
in the underlying analysis task, NCD will be an effective analysis tool as has
been shown in several applications ( ) ;

, ). Furthermore, it has been observed that the performance
of the NCD is not dependent of the compression algorithm, but several
very different algorithms will yield consistent results ( ,

).

As NCD is an asymptotic approximation of the normalized information
distance it only holds only up to an additive precision. In addition, as
Kolmogorov complexity is not computable, we can not directly determine
how good our approximation is. These problems are observed in practice
in the dynamic range of NCD. In theory, NCD should cover the range [0, 1]
of distances. In practice, the observed distances does not cover this full

3This holds up to an additive precision. In addition to objects  and y we need to
encode the separator between these objects in the term K(z,vy).
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range and in some cases the distances may even exceed one. The range of
observable distances is related to how accurately the normalized information
distance is approximated ( , ). Thus, the range is
dependent of the amount of data and the compression algorithm. Even
though the range of distances is more limited when a small amount of data
is used, NCD is still able to uncover the differences between different objects
remarkably well.

Additional problems are caused by the limitations in the implementa-
tions of the compression algorithms. For example, the popular gzip com-
pression program is implemented using a block size of 32 kilobits. This
means that if the length of a bit string is, for example, 100 kilobits simi-
larities between x and y in the estimation of the term C(zy) in Equation
5.10 are not found. This is because the codebook that is used in compres-
sion is cleared always after 32 kilobit block of data. Thus, if the amount of
data is less than 32 kilobits the assumption about stream-basedness of the
gzip compressor does not hold. Other limitation comes from the fact that
Lempel-Ziv algorithm only looks for repetitions in a bit string. Thus, the es-
timated NCD between bit strings x and Z, where Z is x with all bits flipped,
is approximately one even though these strings are obviously similar. Even
with these limitations, gzip is a powerful compression tool and it has been
shown to perform well in real applications ( , ).

5.2 Discrete Networks

Discrete network models are commonly used to model genetic regulatory
networks at the system level ( , : )

; , ). Even though these models introduce numer-
ous assumptions and simplifications, significant insights about the behavior
and structure of biological systems have been obtained ( , ;

, 1999).

When discrete computational models are used to model biological sys-
tems one needs to understand the limitations of the model and thus, use the
model only to address the questions that can be answered reliably at the
selected level of abstraction. For example, the model class may operate in
synchronous fashion. This is clearly not true in real biological systems and
the significance of this assumption depends on whether it is an important
characteristic in our modeling task. Similarly, the model can be simplified
by using abstract regulators so that genes and proteins can not be distin-
guished. In the model, the regulators are only considered as nodes in the
network. Furthermore, we may choose not to consider the quantities of re-
action products. It may be enough to know whether the product is present
or absent. When we are working with discrete systems, the data we are
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processing is inevitably discrete. This can be a useful property as the quan-
tization reduces noise in the data, or it may be a problem as the dynamic
range of the data can be very limited.

Here we will focus on the Boolean network model ( , ;

, ). This is a simple dynamical system model where each
node can have only two possible states, on or off. Despite the apparent
simplicity, this model class is able to produce highly complex behavior, for
example, in the form of a phase transition. Furthermore, as this model
has been studied extensively, several of its properties are well understood
( , : , : , , ). Thus, as
there are several earlier results which our approach can be compared, this
model is an excellent choice for the illustration of our information-based
analysis approach.

Boolean network model class can be defined as follows. Let s;(¢) € {0,1},
it =1,...,N, where N is the number of nodes in the network, be the state
of i:th node in a Boolean network at time t. The state of this node at time
t + 1 is determined by the states of nodes ji, j2,. .., ji, at time ¢ as

si(t+1) = fi(3j1 (t), 552 ), Sk (t)), (5.11)

where f; : {0,1}% — {0,1} is a Boolean function of k; variables. A binary
vector s (t) = (s1(t),...,sn (t)) is the state of the network at time ¢. In the
classical model, all nodes are updated synchronously as the system transi-
tions from state s (t) to state s (t + 1) ( , ). It should be noted
that this model can directly be generalized to a larger alphabet by defining
si(t) €{0,...,L —1} and f; : {0,...,L — 1}* — {0,...,L — 1}, where L is
the size of the alphabet.

To construct a Boolean network, the inputs ji, j2, .. ., ji, for each node 7
needs to be determined. This can be done by selecting the inputs randomly
among all N nodes or by selecting the inputs using some systematic pattern.
The number of inputs k; can be endowed with a probability distribution, such
as the power-law ( , : , ) or
Poisson distribution, with a mean K = E [k;]. The mean K is known as the
average connectivity of the network.

Once the connections have been set, we can choose a Boolean function

fi for each node. Functions can be parameterized by the bias b = E [f;],

the probability that the function outputs one on an arbitrary input vec-

tor. If b = 0.5, then the function is said to be unbiased. The functions can

be selected randomly among all 22% Boolean functions or they can be se-

lected from some class of functions ( , ; , ;

, : , ). If both the functions and connections

are selected randomly, then the obtained network is called random Boolean
network (RBN) ( , )



5.2. DISCRETE NETWORKS 47

As a Boolean network is a discrete system, it has a finite state space.
A boolean network with N nodes has 2V different states. Thus, the state
space is S = {0,1}". We can define a transition from state s; as F(s;) where
F =(f1,..., fn) and f; is the Boolean function of node i with predetermined
connections from the nodes ji, jo, . . ., ji,. As the state space is finite, at some
point any trajectory, that is a path from any initial state, will return to one
of the previously visited states. This kind of a state cycle where the same
states are repeated infinitely is known as an attractor cycle and the states
within the cycle are called attractor states. A set of states that leads to the
same attractor is called the basin of attraction ( , ).

5.2.1 Quantization of Microarray Data

Measurement data that can be obtained with microarray technology is con-
tinuous in nature?. To utilize measurement data in the context of discrete
models, the data needs to be quantized into elements of a discrete alphabet.

In quantization some information contained in the data is lost. However,
quantization can be seen as a noise removal process. Reducing the precision
of data representation removes noise from the data and makes it possible to
emphasize meaningful trends in the data. Thus, the quantization algorithm
needs to make a trade-off between data presentation accuracy and noise
reduction. If the modeling approach is qualitative, then it may be of interest
to quantize to a small number of levels, even to a binary domain. Even in
the binary domain the most important characteristic of gene expression,
whether the gene is regulated or not, is captured.

Standard approach for data quantization is to cluster the samples in k
classes using the A-means clustering algorithm ( , ). To
take the noise into account in the quantization, a noise floor can be applied
before the kmeans clustering. Purpose of the noise floor is to remove all
variation, that can be assumed to be due to the noise and are not of biological
origin. This can be done by setting all the intensity values below a threshold
to a constant value.

After the quantization, the information content of microarray data can
be estimated in a more straightforward manner. Estimation of Kolmogorov
complexity from the quantized data can be considered as a lossy compression
of the original data or alternatively the compression of essential features of
the data. As the unquantized microarray data is extremely noisy, informa-
tion can not be estimated reliably by using a general purpose compression

“Microarray data is actually discrete with the dynamic range depending on the scanner.
However, after prepossessing the obtained intensity values are floating point numbers and
thus effectively continuous.



48 CHAPTER 5. INFORMATION IN BIOLOGY

algorithm. Thus, the compression of microarray data would require a spe-
cially designed compression algorithm. So far this has not been seen as an
important research problem and only very little work has been done in order
to compress microarray expression data effectively ( , ).

If we estimate information, or Kolmogorov complexity, from the quan-
tized microarray data we can compare the samples in terms of their infor-
mation content. By using normalized information distance instead of a more
specific distance measure like correlation, we can potentially uncover more
detailed similarities between the samples. In addition, by estimating the
information content we avoid the problem of feature subset selection. In
practice, to reliably separate different classes of samples using a traditional
distance measure, a subset of informative features needs to be identified.
Thus, the class separation accuracy is dependent on the selected features.
With information distance, we can obtain a reliable separation even with all
the features (Publication V).

5.3 Structure

Properties of a network are related to its structure. Traditionally, networks
have been analyzed assuming that the connections between different nodes
are selected randomly ( , ; , , ). Re-
cent discoveries have shown that this assumption does not hold for most
real world networks ( , : , : ,

; , ). Instead, several networks, including gene regu-
latory networks show a scale free structure ( , ). Characteristic
property of a scale free network is the existence of hubs, that is, the nodes
that have a very high number of connections. In a random topology all the
nodes have approximately the same number of connections.

Network structure determines the robustness of the network to structural
perturbations. If the nodes are knocked out randomly from the network,
then a network with a scale free structure is highly robust to structural
perturbations ( , ). Knockouts have a significant
effect to a scale free network only if a knockout hits a hub. However, if the
number of nodes is high compared with the number of hubs, probability for
a hub knockout is very small.

Structure of the network can be characterized using summary statistics,

that can be computed for any given network ( ) ;

, ). Input and output degrees are defined as a distribution

of the number of inputs and outputs for each node. Input and output degree

distributions characterize the connectivity of a network. For example, if a

network has a scale free input degree distribution, then there must exist
highly connected nodes, that is, the hubs.
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Clustering coefficient is a measure for the connectivity of a network

( , ). It is defined for a given node as the num-
ber of neighboring nodes that are connected to each other. That is, for a
set of nodes N = nq,...,n; we have a set of connections (edges) E = {e;;},
where 7,5 € 1,...,k. Thus e;; is an edge between the nodes n; and n;. We

can define a neighborhood B for the node n; as its immediately connected
neighbors B; = {n;} : e;; € E. The connectivity k; of the node n; is the
size of the neighborhood |B;|. The clustering coefficient C; for the node n;
is the proportion of links between the neighborhood nodes divided by the
number of links that could possibly exist. For each neighborhood the maxi-
mum number of links is k;(k; — 1). Thus, the clustering coefficient is given
as

[{em}]
L= emil € By ey € E. 12
C Filki — 1) ny, N € Bi, e, € (5.12)

The clustering coefficient for the whole network is the average of the clus-
tering coefficients of all the nodes

k
Ci=-> Ci (5.13)
=1

SRS

Another measure of network topology is characteristic path length (
, ). First, the path length L;;, that is the minimum number
of edges that are needed to get from the node n; to the node n;, is computed.
The characteristic path length L is then L;; averaged over all pairs of nodes.

Topological statistics like clustering coefficient and characteristic path
length can be used to determine the type of network and to compare different
network topologies ( , ). For a network with regular
wiring the clustering coefficient and characteristic path length are both high,
whereas in a random network both statistics have a small value. Other
network topologies can have a high clustering coefficient and still a low
average path length. Networks with this kind of topology are known as small
world networks and they have the property that L > L, but C > C)., where
L, and C, denotes the characteristic path length and clustering coefficient
of a random network, respectively. Usually this kind of a network also has
a scale free topology ( , ).

While these topological statistics can successfully be used to compare and
classify different types of networks, it is not obvious what measures are able
the uncover all the interesting characteristics of a network. Furthermore,
measures like the characteristic path length and clustering coefficient are
most useful in the comparison of different topologies. They are not that
informative when, for example, two scale free networks are compared. This
is a problem if we want to compare networks that have the same topological
properties.
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Instead of computing individual statistics from networks, we should com-
pare the entire networks directly. While there are several aspects that make
this comparison difficult, for example a difference in the number of nodes,
we can do the comparison using the information-based approach. Thus, we
can compare the networks by their information content (Publication VI).

To demonstrate the benefits of the information-based network analysis,
we downloaded metabolic network structures for 107 different organisms
from the KEGG database ( , : , ).
The information content of these networks has been formed through millions
of years of evolution. Thus, it is expected that the information distance
between the species will be a function of their evolutionary history. The
information distance is a powerful tool for reconstructing phylogenies, as
has been shown by applying the NCD to mitochondrial genomes ( ,

).

It has been shown that the choice of distance metric such as the Jaccard
index, the Simpson index, and the Korbel distance, all of which are defined
in terms of the number of enzymes within the organisms and shared between
the organisms, produce different phylogenies from the metabolic networks
( , : , ). By using the information-based
approach this issue can be avoided. A phylogenetic tree, computed using
the NCD to measure information between the metabolic networks and using
the complete linkage method to construct a tree from the obtained distances
is shown in Figure 5.1. It should be noted that to compress networks effec-
tively we need to present the network structure in a form from which the
compression algorithm can find similarities effectively. Details about the
network presentation are discussed in Publication VI.

This result shows that the organisms are clearly grouped into the three
domains of life. The bacteria form three distinct clades, with parasitic bac-
teria, encoding more limited metabolic networks, separating from the others
as has been observed previously ( , ). The fact that the
phylogenetic tree reproduces the known evolutionary relationships between
species suggests that closely related organisms are also close in terms of the
information content of their networks.

5.4 Dynamical Behavior

While the structural analysis of a system can uncover important insight into
the robustness and connections between different components, it does not
consider the behavior of the system. To understand the behavior we need
to look at the dynamics of the system, for example by studying its response
to perturbations. Most dynamical systems can operate in the ordered or
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chaotic regime or at the phase transition boundary between the two regimes
( , ). This phase transition area can also be referred to as
the edge of chaos ( , ).

When a network is operating in the ordered regime, it is intrinsically ro-
bust while its dynamical behavior is simple. The robustness can be observed
through both the structural and transient perturbations. Perturbations of
any size have a small effect to the behavior of the network. Networks in
the chaotic regime, on the other hand, are extremely sensitive to perturba-
tions. Even a small perturbation will quickly propagate through the entire
network. Thus, networks in the chaotic regime are not robust and will fail
under perturbations. A phase transition between the ordered and chaotic
regimes represents a tradeoff between the need for stability and the need to
have a wide range of dynamical behavior to respond to variable perturba-
tions ( , ).

By varying the parameters K and b in the random Boolean network
model, dynamical phase transition can take place. The parameter

o =2b(1-bK (5.14)

determines the dynamical regime. If ¢ > 1 then the system is chaotic and
for 0 < 1 the system is ordered. ( , :

, , : , ). It is easy to see that for
unbiased random Boolean networks the critical connectivity is K. = 2.

Dynamical behavior of a system can be characterized using an order
parameter. For random Boolean networks one order parameter is the slope
of the Derrida curve ( , ). This order parameter
is based on the annealed approximation of a Boolean network. That is, the
state of a node in a network is determined based on a distribution of all
possible states of the node ( , ).

The Derrida curve is defined as follows. Let s()(¢) and s (t) be two
states of the system at time ¢. A normalized Hamming distance between
the states is d(t) = 1 Zfil(sgl)(t) ® 352) (t)), where @ is XOR operator and
N is the number of nodes. The Derrida curve can be drawn by plotting
the expected distance d(t + At) versus the distance d(t). The expectation
here is relative to the distribution over the state space of a particular sys-
tem or over some ensemble of systems, or both ( ,

). In practice, the state space of a dynamical system can be sampled
for constructing an empirical Derrida curve (Figure 5.2). If the slope of the
Derrida curve at the origin is greater than 1, then the system can be said to
be chaotic; if less than 1, ordered; and if equal to 1, critical.

In addition to the Derrida curve several other order parameters have
been proposed for Boolean networks. In the case of random Boolean net-
works these are all equivalent in terms of the phase transition (
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Figure 5.2: Derrida curve for Boolean networks from ensembles K = 1,2, 3,4
with b = 0.5. The slope of the Derrida curve at the origin determines the
dynamical regime.

, ; , ; , ). Order pa-
rameters are usually defined in the context of a specific model class. Thus,
the definition is dependent on the selected distance metric, in the case of
Derrida curve, the Hamming distance. Making the definition of an order
parameter dependent of a model class poses limitations for measuring the
behavior. For example, the order parameter can only be used with one type
of a model class and thus, the properties of different model classes can not
be compared. Furthermore, the purpose of an order parameter is to study
the propagation of information through the system. Thus, instead of look-
ing at the propagation of individual bits, it is more justified to study the
propagation of information.

We propose a new information-based order parameter for measuring the
information propagation through a system. This measure is based on the
normalized information distance and thus it can directly be applied to any
model class as it makes no assumptions about the model or the alphabet
the model is using. We have defined our order parameter analogously to
the Derrida curve. Instead of using the Hamming distance as the mea-
sure of similarity, we are using the normalized information distance. In
computational applications normalized compression distance can be used
as an approximation. Thus, the information-based Derrida curve is ob-
tained by computing the distances between the states s(M)(¢) and s (¢)
using d(t) = dnop (s (t), s (t)) (Figure 5.3).

When compared with the traditional Derrida curve for random Boolean
networks, our information based version has an interesting property. For
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Figure 5.3: Information-based Derrida curve for Boolean networks from en-
sembles K = 1,2,3,4 with b = 0.5. The dynamical regime can be observed
throughout the curve.

a critical network the curve stays at the diagonal for all the distances, not
just close to the origin. With the traditional approach that is based on the
Hamming distance the dynamical regime can be characterized only by using
very small perturbations, as the order parameter is defined by the slope at
the origin. Our information-based version allows us to use perturbations of
any size as the same dynamical behavior is observed throughout the curve.
For example, when a stimulus is given to a biological system, it is usually
not known what the exact response is. Thus, our measure allows the usage
of biological data even though the size of the response, or the perturbation,
is not known.

We have applied our information-based order parameter to real microar-
ray data, measured from a mouse macrophage, with the aim to characterize
the dynamical behavior of a living system. The macrophage is an innate im-
mune cell responsible for initiating the host defense against an infection. The
macrophage is able to recognize a broad variety of pathogens and rapidly
mount appropriate responses to each ( , ). Thus, to perform
these functions the macrophage needs to be both robust and adaptable (

, 2006).

To characterize the dynamical behavior we need measurement data that
shows responses to perturbations. For the macrophage several ligands that
are known to cause a different response are available ( , ). Thus,
as we measure the response for each stimulus at times ¢t and ¢ + 1 we can
construct the information-based Derrida curve that shows how the pertur-
bations propagate in the system.
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Figure 5.4: Information-based Derrida curve computed using the time-course
microarray data from the murine bone marrow-derived macrophages treated
with various toll-like receptor stimuli. The red line shows the least-squares
fit of the data points with residual distances being orthogonal to the main
diagonal.

We have generated a microarray dataset that includes time series mea-
surements from six different stimuli ( , ). To reduce the
amount of noise in the data we choose to binarize the measurement data
using the k-means approach. After computing the distances between all the
pairs of stimuli at times ¢ and ¢ + 1, an information-based Derrida curve
can be constructed. The result is shown in Figure 5.4 ( , ).
Based on our order parameter, dynamics of the macrophage seems to oper-
ate at the phase transition boundary between order and chaos. Thus, this
observation supports the hypothesis that living systems operate at the edge
of chaos ( ) ).

5.5 Correlation of Structure and Dynamics

Information-based analysis allows us to use the same approach for comparing
both the dynamical and structural similarities between networks. In addition
to the order parameters, the dynamical behavior between different networks
can be compared by measuring the similarity of time series data. Similar
networks should produce dynamics of similar complexity. The structural
comparison of networks can be done as discussed in Section 5.3. As the
same approach can be used for both structural and dynamical comparisons,
this allows us to study whether there is a correlation between dynamical and
structural complexity.
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Figure 5.5: The normalized compression distance (NCD) applied to net-
work structure and dynamics. Six ensembles of random Boolean networks
(K =1,2,3 each with random or regular topology; N = 1000) were used to
generate 150 networks from each ensemble.

We draw several networks from different network ensembles. As an ex-
ample we used Boolean networks with the connectivity K = 1, 2,3 and with
regular and random wiring. After computing the distances between differ-
ent networks within the ensembles, the results can be illustrated as shown
in Figure 5.5.

This result shows that there is a clear correlation between the dynamical
and structural complexity. A complex structure will yield more complex
dynamics. It is interesting to observe that the networks at the critical regime
show the most variation in dynamical behavior, ranging in dynamics from
ordered to chaotic. This observation further supports the hypothesis that
networks at the critical regime are the most evolvable. Even though we
have demonstrated the applicability with Boolean networks, this approach
is directly applicable to any model class.

5.6 Basin Structure

So far we have applied the information-based approach to compare the net-
work structure and dynamics and to define an order parameter for the dy-
namical behavior. As the analysis of dynamics is based on sampling the
state space of a network, it can be argued that analyzing the entire state
space as a whole would give a more global view to the properties of the
system. As the size of the state space grows exponentially with the number



5.6. BASIN STRUCTURE 57

Figure 5.6: Basin of attraction illustration for K =1 (top left), K = 2 (top
right), K = 3 (bottom left), and K = 4 (bottom right) random Boolean
networks with N = 16 nodes.

of nodes in the network, it is evident that this kind of an analysis can not
be done for very large networks (Wuensche, 1999).

By extracting features from the state space, networks from different en-
sembles can be distinguished. Useful state space properties that can suc-
cessfully be used as features include the total number of attractor states,
number of Garden of Eden states and transient lengths (Publication VII).

In addition, networks from different ensembles can be compared in terms
of their basin structure. A basin includes all the states of the state space that
lead to the same attractor cycle. Basins can be illustrated as a tree, where
each node is a state and each edge is a state transition (Wuensche, 1999).
Alternatively, the basin structure can be illustrated as a two dimensional
grid, where each point is a state (Publication VII). This grid can be obtained
by using 21V/2) least significant bits as indices at the vertical axis and 2/V/21
most significant bits as indices at the horizontal axis; analogously to the
construction of the Karnaugh map (I<arnaugh, 1953). By assigning all the
states in a given basin the same color, we have a color image presentation
of the basin structure. This kind of an illustration shows a clear separation
between the networks from different dynamical regimes (Figure 5.6).

Instead of visually comparing the images, information-based approach
can be used to compare the information content of the basins. Using the
same coding for the basin structure, that is, a different symbol for the states
in each basin, we can compute the information distance between the basins.
An example of the basin comparison is shown in Figure 5.7. It can be seen
that while there are a number of outliers, different dynamical regimes can
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Figure 5.7: MDS presentation of the NCD matrix computed from the state
space presentations. Ensembles from different dynamical regimes are clearly
separable.

still be observed. As we are working with small networks, N = 16 in this
example, it is not surprising to see outliers. Again, we observe that the
networks at the critical regime show the most variation, while the networks
in the ordered and chaotic regimes are more compactly clustered. This is
consistent with the observation that was made when structure and dynamics
were compared.

5.7 General Laws of Biology

Since systems biology is a relatively new field of research, general laws for the
system behavior have not yet been formulated. However, there are several
properties that are observed over and over again with different organisms
and in different contexts.

The most well known general property of biological systems is the scale
free structure of the regulatory networks ( , ;

, ; , ). Scale free networks are common in the real
world appearing, for example, in the world wide web, social networks, power
grids, phone lines, and in biological systems ( ) ). Most of the
identified biological networks show a scale free structure ( , ;

, ). For example, the gene regulatory network of E. coli
which has a scale free output and Poisson input degree connectivity (

, ). In addition, metabolic networks that have been identified for
hundreds of organisms show a scale free structure ( , ;

, ), although this property is inherently dependent on how the
network structure is presented ( ) ). The observation that scale free



5.7. GENERAL LAWS OF BIOLOGY 59

topology is a fundamental property of many biological systems has helped
to form hypotheses and to understand the properties of biological systems.

Another hypothesized general property of biological systems is that the
dynamics of the system operate at the critical regime, at the edge of chaos
( , ). While the evidence for this hypothesis is not yet as
convincing as the evidence for the scale free property, several independent
pieces of evidence that support critical or slightly ordered dynamics do exist
( , 2005; , 2004; , 2006; :

)i

We believe that in the future the information-based approach will prove
to be an important tool in uncovering general laws for biology. Information
processing is a key property of all living systems. Thus, information is a
powerful tool that can be used to understand how systems behave, evolve
and interact. In this chapter we have presented some basic approaches that
can be used to address these questions. However, there is still a need to
further develop the methodology before the full power of the information-
based approach can be utilized.






Chapter 6

Conclusions

We have introduced signal processing methods that can be used to estimate
and improve the quality and reliability of microarray data and data analysis
algorithms. First, we discussed the basic methodology of microarray data
analysis and applied the methods to real biologically motivated data analy-
sis tasks. Next, we discussed the reliability of clinically defined class labels
for cancer tumors. We showed that as the classification of different cancer
types evolves over time, clinical databases do not provide a reliable source
for the ground truth information of class labels. Thus, to obtain reliable
class labels, all the samples should be re-classified by a single pathologist.
We demonstrated how the unsupervised learning approach can be used to
gain confidence about the class labels. Our case study showed that multi-
dimensional scaling can be used to verify the reliability of class labels. This
is an important sanity check, since if the supervised analysis would be done
using incorrect class labels, the conclusions would be erroneous.

As the second computational approach we discussed the identification
and quantification of microarray experiment error sources. As we do not
have the ground truth information about microarray data available, we pro-
posed using knowledge about microarray noise characteristics to simulate
data with realistic biological and statistical characteristics. Simulated mi-
croarray data can then be used to validate data analysis algorithms or to
improve the experimental setup. As we have a detailed simulation model
available, we can study the effects of each error source and focus on im-
proving those steps that have the largest effect to the quality of obtained
data.

The third computational method involves using supplemental measure-
ment data in addition to microarray measurements. As a case study, we
introduced a computational method that can be used to estimate the dis-
tribution of a synchronous cell population. Our approach is based on using
a fluorescent activated cell sorter to measure the number of cells at each

61
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phase of the cell cycle. The obtained cell count histograms are then used to
estimate the distribution of the cell population. The obtained distribution
estimates can then be used to improve the quality of microarray data, for
example, by inverting the effects of cell population asynchrony by deconvo-
lution.

Next we showed how an information-based approach can be used to
analyze biological systems at the system level. We used a Kolmogorov com-
plexity based measure of similarity to compare different network structures
and to quantify the dynamical behavior. This analysis showed that by ana-
lyzing information processing and flow in a system, we can uncover impor-
tant insight into the properties of the system. By studying the structure of
metabolic networks we showed that a phylogenetic tree can be built solely
on the basis of how information has been propagated from one organism to
another in evolution. In addition, we used microarray data to quantify the
dynamical behavior of an innate immunity cell macrophage. We showed that
the robustness and adaptability that have experimentally been observed in
the macrophage can be explained by the fact that information propagation
of the macrophage has the characteristics of the critical regime.



Bibliography

Access Excellence at the National Health Museum (2006). http://www.
accessexcellence.org/. Retrieved Oct 26.

Aderem, A. (2001) Role of toll-like receptors in inflammatory response in
macrophages. Critical Care Medicine, 29(Suppl 7), S16-S18.

Affymetrix (2006). http://www.affymetrix.com/. Retrieved Oct 26.
Agilent Technologies (2006). http://www.agilent.com. Retrieved Oct 26.

Albert, R. and Barabdsi, A.-L. (2002) Statistical mechanics of complex net-
works. Reviews of Modern Physics, 74(1), 47-97.

Aldana, M. and Cluzel, P. (2003) A natural class of robust networks. Pro-
ceedings of the National Academy of Sciences USA, 100(15), 8710-8714.

Aldana, M., Coppersmith, S. and Kadanoff, L. P. (2003) Boolean dynamics
with random couplings. In Perspectives and Problems in Nonlinear Sci-
ence. A Celebratory Volume in Honor of Lawrence Sirovich, (Kaplan, E.,
Marsden, J. E. and Sreenivasan, K. R., eds), Springer Applied Mathemat-
ical Sciences Series. Springer-Verlag, New York, 23-89.

Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosen-
wald, A. and Boldrick, J. C. (2000) Distinct types of diffuse large B-cell
lymphoma identied by gene expression proling. Nature, 403, 503-511.

Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D. and
Levine, A. (1999) Broad patterns of gene expression revealed by cluster-
ing analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proceedings of the National Academy of Sciences USA, 96(12),
6745-6750.

Antonescu, C. R., Viale, A., Sarran, L., Tschernyavsky, S. J., Gonen, M.,
Segal, N. H., Maki, R. G., Socci, N. D., DeMatteo, R. P. and Besmer, P.
(2004) Gene expression in gastrointestinal stromal tumors is distinguished
by KIT genotype and anatomic site. Clinical Cancer Research, 10(10),
3282-3290.

63


http://www.accessexcellence.org/
http://www.accessexcellence.org/
http://www.affymetrix.com/
http://www.agilent.com

64 BIBLIOGRAPHY

Arita, M. (2004) The metabolic world of Escherichia coli is not small. Pro-
ceedings of the National Academy of Sciences USA, 101(6), 1543-1547.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry,
J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris,
M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C.,
Richardson, J. E., Ringwald, M., Rubin, G. M. and Sherlock, G. (2000)
Gene ontology: tool for the unification of biology. Nature Genetics, 25(1),
25-29.

Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein, M. and Teichmann,
S. A. (2004) Structure and evolution of transcriptional regulatory net-
works. Current Opinion in Structural Biology, 14(3), 283-291.

Balagurunathan, Y., Dougherty, E. R., Chen, Y., Bittner, M. L. and Trent,
J. M. (2002) Simulation of cDNA microarrays via a parameterized random
signal model. Journal of Biomedical Optics, 7(3), 507-523.

Bar-Joseph, Z., Farkash, S., Gifford, D. K., Simon, I. and Rosenfeld, R.
(2004) Deconvolving cell cycle expression data with complementary infor-
mation. Bioinformatics, 20(Suppl 1), 123-i30.

Barabadsi, A.-L. (2002) Linked: The New Science of Networks. Perseus Books
Group, Cambridge, Massachusetts.

Barabdsi, A.-L. and Albert, R. (1999) Emergence of scaling in random net-
works. Science, 286(5439), 509-512.

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate:
a practical and powerful approach to multiple testing. Journal of the
Royal Statistical Society, 57(1), 289-300.

Bennett, C. H., Gacs, P., Li, M., Vitanyi, P. M. B. and Zurek, W. (1998)
Information distance. IEEE Transactions on Information Theory, 44(4),
1407-1423.

Blake, W. J., Keern, M., Cantor, C. R. and Collins, J. J. (2003) Noise in
eukaryotic gene expression. Nature, 422(6932), 633—-637.

Bolouri, H. and Davidson, E. H. (2002) Modeling transcriptional regulatory
networks. Bioessays, 24(12), 1118-1129.

Bolstad, B. M., Irizarry, R. A., Astrand, M. and Speed, T. P. (2003) A com-
parison of normalization methods for high density oligonucleotide array
data based on variance and bias. Bioinformatics, 19(2), 185-193.

Borg, I. and Groenen, P. J. F. (2005) Modern Multidimensional Scaling.
Springer Series in Statistics, 2nd edition, Springer, New York.



BIBLIOGRAPHY 65

Bornholdt, S. (2005) Systems biology: less is more in modeling large genetic
networks. Science, 310(5747), 449-451.

Brownstein, M. J. and Khodursky, A. B. (2003) Functional Genomics Meth-
ods and Protocols. Methods in Molecular Biology, Humana Press, Totowa,
New Jersey.

Buck, M. J. and Lieb, J. D. (2004) ChIP-chip: considerations for the design,
analysis, and application of genome-wide chromatin immunoprecipitation
experiments. Genomics, 83(3), 349-360.

Chaitin, G. J. (1969) On the length of programs for computing finite bi-
nary sequences: statistical considerations. Journal of the Association of
Computer Machinery, 16(1), 145-159.

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A.
(1983) Graphical Methods of Data Analysis. The Wadsworth statis-
tics/probability series, Duxbury Press, Boston, Massachusetts.

Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., Win-
kler, J., Lockhart, D. J., Morris, M. S. and Fodor, S. P. A. (1996) Accessing
genetic information with high-density DNA arrays. Science, 274(5287),
610-614.

Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B. and
Tyson, J. J. (2004) Integrative analysis of cell cycle control in budding
yeast. Molecular Biology of the Cell, 15(8), 3841-3862.

Cho, H. and Lee, J. K. (2004) Bayesian hierarchical error model for analysis
of gene expression data. Bioinformatics, 20(13), 2016-2025.

Churchill, G. A. (2002) Fundamentals of experimental design for cDNA mi-
croarrays. Nature Genetics, 32(Suppl), 490-495.

Cilibrasi, R. and Vitanyi, P. (2005) Clustering by compression. IEEE Trans-
actions on Information Theory, 51(4), 1523-1545.

Cleveland, W. S. (1979) Robust locally weighted regression and smoothing
scatterplots. Journal of the American Statistical Association, 74(368),
829-836.

Coombs, N. J.; Gough, A. C. and Primrose, J. N. (1999) Optimisation of
DNA and RNA extraction from archival formalin-fixed tissue. Nucleic
Acids Research, 27(16), el2.

Cooper, S. (2004) Bacterial growth and division. In Encyclopedia of Molec-
ular Cell Biology and Molecular Medicine Volume 1, (Meyers, R. A., ed.).
2nd edition, Wiley, Hoboken, New Jersey.



66 BIBLIOGRAPHY

Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory.
Wiley-Interscience, Hoboken, New Jersey.

Crick, F. (1970) Central dogma of molecular biology. Nature, 227(5258),
561-563.

Csete, M. E. and Doyle, J. C. (2002) Reverse engineering of biological com-
plexity. Science, 295(5560), 1664-1669.

Cui, X. and Churchill, G. A. (2003) Statistical tests for differential expression
in cDNA microarray experiments. Genome Biology, 4(210).

de Jong, H. (2002) Modeling and simulation of genetic regulatory systems:
a literature review. Journal of Computational Biology, 9(1), 67-103.

de Schipper, J. P., Liem, R. S., van den Ingh, H. F. and van der Harst,
E. (2004) Revision of gastrointestinal mesenchymal tumours with CD117.
European Journal of Surgical Oncology, 30(9), 959-962.

Dembélé, D. and Kastner, P. (1999) Fuzzy c-means method for clustering
microarray data. Nucleic Acids Research, 27(16), el2.

Derrida, B. and Pommeau, Y. (1986) Random networks of automata: a
simple annealed approximation. Europhysics Letters, 1, 45—49.

Ding, C. and Peng, H. (2003) Minimum redundancy feature selection from
microarray gene expression data. In Proc. Computational Systems Bioin-
formatics, 523-528, Stanford, California.

Dror, R. O., Murnick, J. G., Rinaldi, N. J., Marinescu, V. D., Rifkin, R. M.
and Young, R. A. (2003) Bayesian estimation of transcript levels using
a general model of array measurement noise. Journal of Computational
Biology, 10(3-4), 433-452.

Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J. M. (1999) Ex-
pression profiling using cDNA microarrays. Nature Genetics, 21(Suppl),
10-14.

Durbin, B. P., Hardin, J. S., Hawkins, D. M. and Rocke, D. M. (2002) A
variance-stabilizing transformation for gene-expression microarray data.
Bioinformatics, 18(Suppl 1), S105-S110.

Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster
analysis and display of genome-wide expression patterns. Proceedings of
the National Academy of Sciences USA, 95(25), 14863—-14868.

Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang,
Z., Goldstein, S. R., Weiss, R. A. and Liotta, L. A. (1996) Laser capture
microdissection. Science, 274(5289), 998-1001.



BIBLIOGRAPHY 67

Erdos, P. and Rényi, A. (1959) On random graphs. Publicationes Mathe-
maticae, 6, 290-297.

Flyvbjerg, H. (1988) An order parameter for networks of automata. Journal
of Physics A: Mathematical and General, 21(19), L955-1L.960.

Fraser, H. B., Hirsh, A. E., Giaever, G., Kumm, J. and Eisen, M. B. (2004)
Noise minimization in eukaryotic gene expression. PloS Biology, 2(6),
el37.

Getz, G., Levine, E. and Domany, E. (2000) Coupled two-way clustering
analysis of gene microarray data. Proceedings of the National Academy of
Sciences USA, 97(22), 12079-12084.

Gilchrist, M., Thorsson, V., Li, B., Rust, A. G., Korb, M., Kennedy, K., Hai,
T., Bolouri, H. and Aderem, A. (2006) Systems biology approaches iden-
tify ATF3 as a negative regulator of innate immunity. Nature, 441(7090),
173-178.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A.,
Bloomfield, C. D. and Lander, E. S. (1999) Molecular classification of can-
cer: class discovery and class prediction by gene expression monitoring.
Science, 286(5439), 531-537.

Gottardo, R., Raftery, A. E., Yeung, K. Y. and Bumgarner, R. E. (2003).
Robust estimation of cDNA microarray intensities with replicates. Tech-
nical Report 438 Department of Statistics, University of Washington.

Guelzim, N., Bottani, S., Bourgine, P. and Kepés, F. (2002) Topological and
causal structure of the yeast transcriptional regulatory network. Nature
Genetics, 31(60), 60—63.

Haab, B. B., Dunham, M. J. and Brown, P. O. (2001) Protein microar-
rays for highly parallel detection and quantitation of specific proteins and
antibodies in complex solutions. Genome Biology, 2(2).

Harris, N. L., Jaffe, E. S., Stein, H., Banks, P. M., Chan, J. K., Cleary,
M. L., Delsol, G., Wolf-Peeters, C. D., Falini, B., Gatter, K. C., Grogan,
T. M., Isaacson, P. G., Knowles, D. M., Mason, D. Y., Muller-Hermelink,
H.-K., Pileri, S. A., Piris, M. A., Ralfkiaer, E. and Warnke, R. A. (1994)
A revised European-American classification of lymphoid neoplasms: a
proposal from the international lymphoma study group. Blood, 84(5),
1361-1392.

Harris, S. E., Sawhill, B. K., Wuensche, A. and Kauffman, S. (2002) A model
of transcriptional regulatory networks based on biases in the observed
regulation rules. Complexity, 7(4), 23-40.



68 BIBLIOGRAPHY

Hartemink, A. J., Gifford, D. K., Jaakkola, T. S. and Young, R. A. (2001)
Maximum-likelihood estimation of optimal scaling factors for expression
array normalization. In Proc. SPIE Microarrays: Optical Technologies
and Informatics, (Bittner, M. L., Chen, Y., Dorsel, A. N. and Dougherty,
E. R., eds), vol. 4266, 132-140, San Jose, California.

Hastie, T., Tibshirani, R. and Friedman, J. (2001) The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction. Springer-Verlag,
New York.

Hein, A.-M. K., Richardson, S., Causton, H. C., Ambler, G. K. and Green,
P. J. (2005) BGX: a fully Bayesian integrated approach to the analysis of
affymetrix genechip data. Bioinformatics, 6(3), 349-373.

Heller, M. J. (2002) DNA microarray technology: devices, systems, and
applications. Annual Review of Biomedical Engineering, 4, 129-153.

Hood, L. and Galas, D. (2003) The digital code of DNA. Nature, 421(6921),
444-448.

Huang, X. and Pan, W. (2002) Comparing three methods for variance esti-
mation with duplicated high density oligonucleotide arrays. Functional &
Integrative Genomics, 2(3), 126-133.

Huffman, D. A. (1952) A method for the construction of minimum-
redundancy codes. Proceedings of the Institute of Radio Engineers, 40,
1098-1102.

Hughes, T. R., Mao, M., Jones, A. R., Burchard, J., Marton, M. J., Shan-
non, K. W., Lefkowitz, S. M., Ziman, M., Schelter, J. M., Meyer, M. R.,
Kobayashi, S., Davis, C., Dai, H., He, Y. D., Stephaniants, S. B., Cavet,
G., Walker, W. L., West, A., Coffey, E., Shoemaker, D. D., Stoughton, R.,
Blanchard, A. P., Friend, S. H. and Linsley, P. S. (2001) Expression profil-
ing using microarrays fabricated by an ink-jet oligonucleotide synthesizer.
Nature Biotechnology, 19(4), 342-347.

Ideker, T., Galitski, T. and Hood, L. (2001) A new approach to decoding
life: systems biology. Annual Review of Genomics and Human Genetics,
2, 343-372.

Ideker, T., Thorsson, V., Siegel, A. F. and Hood, L. E. (2000) Testing for
differentially-expressed genes by maximume-likelihood analysis of microar-
ray data. Journal of Computational Biology, 7(6), 805-817.

Jaeger, J., Sengupta, R. and Ruzzo, W. L. (2003) Improved gene selection
for classification of microarrays. In Proc. Pacific Symposium on Biocom-
puting, 53-64, Kauai, Hawaii.



BIBLIOGRAPHY 69

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. and Barabéasi, A.-L. (2000)
The large-scale organization of metabolic networks. Nature, 407(6804),
651-654.

Johnson, R. A. and Wichern, D. (1998) Applied Multivariate Statistical Anal-
ysis. 4th edition, Prentice Hall, Upper Saddle River, New Jersey.

Jornsten, R. (2001). Data Compression and Its Statistical Implications with
an Application to the Analysis of Microarray Images. PhD thesis, Univer-
sity of California Berkley.

Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Research, 28(1), 27-30.

Karnaugh, M. (1953) The map method for synthesis of combinational logic
circuits. Transactions of American Institute of Electrical Engineers, 72(9),
593-599.

Kauffman, S. A. (1969) Metabolic stability and epigenesis in randomly con-
structed genetic nets. Journal of Theoretical Biology, 22, 437-467.

Kauffman, S. A. (1993) The Origins of Order: Self-organization and selec-
tion in evolution. Oxford University Press, New York.

Kauffman, S. A. (1995) At Home in the Universe: The Search for the Laws
of Self-Organization and Complexity. Oxford University Press, New York.

Kauffman, S. A. (2000) Investigations. Oxford University Press, New York.

Kauffman, S. A. (2004) The ensemble approach to understand genetic reg-
ulatory networks. Physica A, 340(4), 733-740.

Kesseli, J., Rdmo, P. and Yli-Harja, O. (2005) Tracking perturbations in
Boolean networks with spectral methods. Physical Review E, 72(2),
026137.

Kesseli, J., Rémo, P. and Yli-Harja, O. (2006) Iterated maps for annealed
Boolean networks. Physical Review E, 74(4), 046104.

Kitano, H. (2002) Systems biology: a brief overview. Science, 295(5560),
1662-1664.

Kitano, H. and Oda, K. (2006) Robustness trade-offs and hostmicrobial sym-
biosis in the immune system. Molecular Systems Biology, 2(2006.0022).

Knezevic, V., Leethanakul, C., Bichsel, V. E., Worth, J. M., Prabhu, V. V.,
Gutkind, J. S., Liotta, L. A., Munson, P. J., III, E. F. P. and Krizman,
D. B. (2001) Proteomic profiling of the cancer microenvironment by anti-
body arrays. Proteomics, 1(10), 1271-1278.



70 BIBLIOGRAPHY

Kocsor, A., Kertész-Farkas, A., Kajén, L. and Pongor, S. (2005) Application
of compression-based distance measures to protein sequence classification:
a methodological study. Bioinformatics, 22(4), 407-412.

Kohonen, T. (2001) Self-Organizing Maps. 3rd edition, Springer, New York.

Kolmogorov, A. N. (1965) Three approaches to the quantitative definition
of information. Problems in Information Transmission, 1(1), 1-7.

Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P.,
Leighton, S., ans M. J. Mihatsch, J. T., Sauter, G. and Kallioniemi, O.
(1998) Tissue microarrays for high-throughput molecular profiling of tu-
mor specimens. Nature Medicine, 4(7), 844-847.

Krasnogor, N. and Pelta, D. (2004) Measuring the similarity of protein struc-
tures by means of the universal similarity metric. Bioinformatics, 20(7),
1015-1021.

Krishnapuram, B., Hartemink, A. J., Carin, L. and Figueiredo, M. A. (2004)
A bayesian approach to joint feature selection and classifier design. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1105—
1111.

Kruskal, J. B. (1964a) Multidimensional scaling by optimizing goodness of
fit to a nonmetric hypothesis. Psychometrika, 29, 1-27.

Kruskal, J. B. (1964b) Nonmetric multidimensional scaling: a numerical
method. Psychometrika, 29, 115-130.

Lahdesmiki, H., Aho, T., Huttunen, H., Linne, M.-L., Niemi, J., Kesseli,
J., Pearson, R. and Yli-Harja, O. (2003) Estimation and inversion of the
effects of cell population asynchrony in gene expression time-series. Signal
Processing, 83(4), 835-858.

Léhdesmaki, H., Shmulevich, I., Dunmire, V., Yli-Harja, O. and Zhang, W.
(2005) in silico microdissection of microarray data from heterogeneous cell
populations. BMC' Bioinformatics, 6(54).

Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber,
G. K., Hannett, N. M., Harbison, C. T., Thompson, C. M., Simon, I.,
Zeitlinger, J., Jennings, E. G., Murray, H. L., Gordon, D. B., Ren, B.,
Wyrick, J. J., Tagne, J.-B., Volkert, T. L., Fraenkel, E., Gifford, D. K.
and Young, R. A. (2002) Transcriptional regulatory networks in Saccha-
romyces cerevisiae. Science, 298(5594), 799-804.

Lehmussola, A., Ruusuvuori, P. and Yli-Harja, O. (2006) Evaluating the
performance of microarray segmentation algorithms. Bioinformatics, to
appear.



BIBLIOGRAPHY 71

Leung, Y. F. and Cavalieri, D. (2003) Fundamentals of cDNA microarray
data analysis. Trends in Genetics, 19(11), 649-659.

Levine, M. and Tjian, R. (2003) Transcription regulation and animal diver-
sity. Nature, 424(6945), 147-151.

Li, M., Chen, X., Li, X., Ma, B. and Vitanyi, P. (2004) The similarity metric.
IEEE Transactions on Information Theory, 50(12), 3250-3264.

Li, M. and Vitanyi, P. (1997) An Introduction to Kolmogorov Complexity
and Its Applications. 2nd edition, Springer-Verlag, New York.

Lipshutz, R. J., Fodor, S. P.,; Gingeras, T. R. and Lockhart, D. J. (1999)
High density synthetic oligonucleotide arrays. Nature Genetics, 21(Suppl
1), 20-24.

Lockshin, R. A. and Zakeri, Z. (2001) Programmed cell death and apoptosis:
origins of the theory. Nature Reviews Molecular Cell Biology, 2(7), 545~
550.

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D. and
Darnell, J. E. (2001) Molecular Cell Biology. Freeman, New York.

Luque, B. and Sole, R. V. (1997) Phase transitions in random networks:
simple analytic determination of critical points. Physical Review E, 55(1),
257-260.

Luque, B. and Sole, R. V. (2000) Lyapunov exponents in random Boolean
networks. Physica A, 284(1-4), 33-45.

Ma, H.-W. and Zeng, A.-P. (2003) Reconstruction of metabolic networks
from genome data and analysis of their global structure for various organ-
isms. Bioinformatics, 19(2), 270-277.

Mendes, P. (1993) GEPASI: a software package for modelling the dynamics,
steady states and control of biochemical and other systems. Computer
Applications in the Biosciences, 9(5), 563-571.

Mendes, P., Sha, W. and Ye, K. (2003) Artificial gene networks for objective
comparison of analysis algorithms. Bioinformatics, 19(Suppl 2), ii122-
ii129.

Nykter, M., Aho, T., Kesseli, J. and Yli-Harja, O. (2003) On estimation
of statistical characteristics of microarray data. In Proc. Finnish Signal
Processing symposium, Tampere, Finland.

Nykter, M., Price, N. D., Larjo, A., Aho, T., Aldana, M., Ramsey, S., Kauff-
man, S. A., Hood, L., Yli-Harja, O. and Shmulevich, I. (2006) Information
flow in complex networks and evolution: a universal approach. Submitted.



72 BIBLIOGRAPHY

Ohnishi, Y., Tanaka, T., Ozaki, K., Yamada, R., Suzuki, H. and Nakamura,
Y. (2001) A high-throughput SNP typing system for genome-wide associ-
ation studies. Journal of Human Genetics, 46(8), 471-477.

Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T,
Gillespie, J. W., Emmert-Buck, M. R., Roth, M. J., III, E. F. P. and
Liotta, L. A. (2001) Reverse phase protein microarrays which capture
disease progression show activation of pro-survival pathways at the cancer
invasion front. Oncogene, 20(26), 1981-1989.

Pettinen, A., Aho, T., Smolander, O.-P., Manninen, T., Saarinen, A., Taat-
tola, K.-L., Yli-Harja, O. and Linne, M.-L. (2005) Simulation tools for

biochemical networks: evaluation of performance and usability. Bioinfor-
matics, 21(3), 357-363.

Pitkénen, J.-P., Tormé&, A., Alff, S., Huopaniemi, L., Mattila, P. and Renko-
nen, R. (2004) Excess mannose limits the growth of phosphomannose iso-
merase PMI40 deletion strain of Saccharomyces cerevisiae. Journal of
Biological Chemistry, 279(53), 55737-55743.

Podani, J., Oltvai, Z. N., Jeong, H., Tombor, B., Barabasi, A.-L. and Sza-
thmary, E. (2001) Comparable system-level organization of archaea and
eukaryotes. Nature Genetics, 29(1), 54-56.

Preli¢, A., Bleuler, S., Zimmermann, P., Wille, A., Bithlmann, P., Gruissem,
W., Hennig, L., Thiele, L. and Zitzler, E. (2006) A systematic comparison
and evaluation of biclustering methods for gene expression data. Bioin-
formatics, 22(9), 1122-1129.

Quackenbush, J. (2001) Computational analysis of microarray data. Nature
Reviews Genetics, 2(6), 418-427.

Quackenbush, J. (2002) Microarray data normalization and transformation.
Nature Genetics, 32(Suppl), 496-501.

Ramo, P., Kesseli, J. and Yli-Harja, O. (2006) Perturbation avalanches and
criticality in gene regulatory networks. Journal of Theoretical Biology,
242(1), 164-170.

Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon,
1., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T. L.,
Wilson, C. J., Bell, S. P. and Young, R. A. (2000) Genome-wide location
and function of DNA binding proteins. Science, 290(5500), 2306-2309.

Rissanen, J. and Langdon, G. G. (1979) Arithmetic coding. IBM Journal
of Research and Development, 23, 149-162.



BIBLIOGRAPHY 73

Rocke, D. M. and Durbin, B. (2001) A model for measurement error for
gene expression array. Journal of Computational Biology, 8(6), 557-569.

Salgado, H., Santos-Zavaleta, A., Gama-Castro, S., Peralta-Gil, M.,
Penaloza-Spinola, M. 1., Martinez-Antonio, A., Karp, P. D. and Collado-

Vides, J. (2006) The comprehensive updated regulatory network of Es-
cherichia coli K-12. BMC Bioinformatics, 7(5).

Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantita-
tive monitoring of gene expression patterns with a complementary DNA
microarray. Science, 270(5235), 467-470.

Science Primer (2006). http://www.ncbi.nlm.nih.gov/About/primer/.
Retrieved Oct 26.

Serra, R., Villani, M. and Semeria, A. (2004) Genetic network models and
statistical properties of gene expression data in knock-out experiments.
Journal of Theoretical Biology, 227(1), 149-157.

Shannon, C. E. (1948) A mathematical theory of communication. Bell Sys-
tem Technical Journal, 27, 379-423.

Shedden, K. and Cooper, S. (2002a) Analysis of cell-cycle-specific gene
expression in human cells as determined by microarrays and double-
thymidine block synchronization. Proceedings of the National Academy
of Sciences USA, 99(7), 4379-4384.

Shedden, K. and Cooper, S. (2002b) Analysis of cell-cycle gene expression in
Saccharomyces cerevisiae using microarrays and multiple synchronization
methods. Nucleic Acids Research, 30(13), 2920-2929.

Shmulevich, I., Gluhovsky, 1., Hashimoto, R. F., Dougherty, E. R., and
Zhang, W. (2003) Steady-state analysis of genetic regulatory networks
modeled by probabilistic Boolean networks. Comparative and Functional
Genomics, 4(6), 601-608.

Shmulevich, I. and Kauffman, S. A. (2004) Activities and sensitivities in
Boolean network models. Physical Review Letters, 93(4), 048701.

Shmulevich, I., Kauffman, S. A. and Aldana, M. (2005) Eukaryotic cells
are dynamically ordered or critical but not chaotic. Proceedings of the
National Academy of Sciences USA, 102(38), 13439-13444.

Shmulevich, 1., Liahdesméki, H., Dougherty, E. R., Astola, J. and Zhang,
W. (2003) The role of certain Post classes in Boolean network models of

genetic networks. Proceedings of the National Academy of Sciences USA,
100(19), 10734-10739.


http://www.ncbi.nlm.nih.gov/About/primer/

74 BIBLIOGRAPHY

Shmulevich, I. and Zhang, W. (2002) Binary analysis and optimization-
based normalization of gene expression data. Bioinformatics, 18(4), 555—
565.

Snijders, A. M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy,
J., Hamilton, G., Hindle, A. K., Huey, B., Kimura, K., Law, S., Myambo,
K., Palmer, J., Ylstra, B., Yue, J. P., Gray, J. W., Jain, A. N., Pinkel,
D. and Albertson, D. G. (2001) Assembly of microarrays for genome-wide
measurement of DNA copy number. Nature Genetics, 29(3), 263-264.

Solomonoff, R. (1964) A formal theory of inductive inference. Information
and Control, 7, 1-22.

Sonenberg, N., Hershey, J. W. B. and Mathews, M., eds (2000) Translational
Control of Gene Expression. 2nd edition, Cold Spring Harbor Laboratory
Press, New York.

Speed, T. (2003) Statistical Analysis of Gene Expression Microarray Data.
Chapman & Hall/CRC, New York.

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen,
M. B., Brown, P. O., Botstein, D. and Futcher, B. (1998) Comprehensive
identification of cell cycle-regulated genes of the yeast Saccharomyces cere-
visiae by microarray hybridization. Molecular Biology of the Cell, 9(12),
3273-3297.

Stauffer, D. (1987) On forcing functions in Kauffman random Boolean net-
works. Journal of Statistical Physics, 46(3-4), 789-794.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L.,
Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S.
and Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-

based approach for interpreting genome-wide expression profiles. Proceed-
ings of the National Academy of Sciences USA, 102(43), 15545-15550.

Tabus, I., Rissanen, J. and Astola, J. (2003) Classification and feature gene
selection using the normalized maximum likelihood model for discrete
regression. Signal Processing, Special issue on Genomic Signal Processing,

83(4), 713-727.

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitro-
vsky, E., Lander, E. S. and Golub, T. R. (1999) Interpreting patterns
of gene expression with self-organizing maps: methods and application
to hematopoietic differentiation. Proceedings of the National Academy of
Sciences USA, 96(6), 2907-2912.



BIBLIOGRAPHY 75

Tanay, A., Sharan, R., Kupiec, M. and Shamir, R. (2004) Revealing mod-
ularity and organization in the yeast molecular network by integrated

analysis of highly heterogeneous genomewide data. Proceedings of the
National Academy of Sciences USA, 101(9), 2981-2986.

The Genome International Sequencing Consortium (2001) Initial sequencing
and analysis of the human genome. Nature, 409(6822), 860-921.

The Genome International Sequencing Consortium (2004) Finishing the eu-
chromatic sequence of the human genome. Nature, 431(7011), 931-945.

Trotter, M. J. and Bruecks, A. K. (2003) Interpretation of skin biopsies
by general pathologists: diagnostic discrepancy rate measured by blinded
review. Archives of Pathology and Laboratory Medicine, 127(11), 1489
1492.

Tseng, G. C., Oh, M.-K., Rohlin, L., Liao, J. C. and Wong, W. H. (2001)
Issues in cDNA microarray analysis: quality filtering, channel normaliza-

tion, models of variations and assessment of gene effects. Nucleic Acids
Research, 29(12), 2549-2557.

Tu, Y., Stolovitzky, G. and Klein, U. (2002) Quantitative noise analysis
for gene expression microarray experiments. Proceedings of the National
Academy of Sciences USA, 99(22), 14031-14036.

Tuimala, J. and Laine, M. M., eds (2005) DNA Microarray Data Analysis.
2nd edition, CSC — Scientific Computing Ltd, Helsinki.

Tusher, V. G., Tibshirani, R. and Chu, G. (2001) Significance analysis of
microarrays applied to the ionizing radiation response. Proceedings of the
National Academy of Sciences USA, 98(9), 5116-5121.

Vaux, D. L., Cory, S. and Adams, J. M. (1988) Bcl-2 gene promotes
haemopoietic cell survival and cooperates with c-myc to immortalize pre-
B cells. Nature, 335(6189), 440-442.

Venter, J. C., Adams, M. D., Myers, E. W., W., P., Mural, R. J., Sutton,
G. G., Smith, H. O., Yandell, M., Evans, C. A. et al. (2001) The sequence
of the human genome. Science, 291(5507), 1304-1351.

Watson, J. D. and Crick, F. H. (1953) Molecular structure of nucleic acids.
Nature, 171(4356), 737-738.

Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of ‘small-world’
networks. Nature, 393(6684), 440-442.

Weng, L., Dai, H., Zhan, Y., He, Y., Stepaniants, S. B. and Bassett, D. E.
(2006) Rosetta error model for gene expression analysis. Bioinformatics,
22(9), 1111-1121.



76 BIBLIOGRAPHY

Wuensche, A. (1999) Discrete dynamical networks and their attractor basins.
Complexity International, 6, 2-23.

Xavier, A. C. G., Siqueira, S. A. C., Costa, L. J. M., Mauad, T. and Saldiva,
P. H. N. (2005) Missed diagnosis in hematological patients — an autopsy
study. Virchows Archiv, 446(3), 225-231.

Yang, Y. H., Buckley, M., Dudoit, S. and Speed, T. (2002a) Comparison
of methods for image analysis on cDNA microarray data. Journal of
Computional and Graphical Statistics, 11(1), 108-136.

Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J., and Speed,
T. P. (2002b) Normalization for cDNA microarray data: a robust com-

posite method addressing single and multiple slide systematic variation.
Nucleic Acids Research, 30(4), el5.

Yockey, H. P. (2005) Information Theory, Evolution, and The Origin of Life.
Cambridge University Press, New York.

Zhang, W., Shmulevich, I. and Astola, J. (2004) Microarray Quality Control.
John Wiley and Sons, Hoboken, New Jersey.

Zhu, D. and Qin, Z. S. (2005) Structural comparison of metabolic networks
in selected single cell organisms. BMC' Bioinformatics, 6(8).

Ziv, J. and Lempel, A. (1977) A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3), 337-343.



Publications

7









	nykter_etu.pdf
	nykter_nimio.pdf
	Matti Nykter
	Signal Processing Methods and Information Approach to Systems Biology


	nykter.pdf
	takakansi.pdf



