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Abstract

In the thesis, we aim to develop a new framework for pricing advanced options quickly
and accurately. Specifically, we price European options under stochastic volatility models
and American options under the Black–Scholes model using expansion methods, which
are widely used in physical sciences.

Efficient and accurate pricing of option contracts has long been the central problem of
mathematical finance. Apart from the classic Black–Scholes model, which has a closed-
form solution, there is no universally accepted method for pricing of options. The Monte
Carlo simulation is general but slow, while finite-difference and numerical integration
(Fourier transform) methods are comparably accurate but are not always applicable to
exotic options and non-affine models. Furthermore, although those popular numerical
methods can provide decent estimates of option prices, their discrete nature makes it
difficult for them to achieve efficiency and accuracy simultaneously. While considerable
amount of research has been devoted to these methods, we believe that the potential of
expansion methods are underestimated.

The expansion methodology, which is widely used in mathematics and physics, divides an
unknown quantity into an infinite and converging series whose neighbouring terms are
related by algebraic or differential equations. Therefore, starting from the known leading
terms, we can work out the iteration equations and obtain any number of terms in the
series, as long as the iteration equations are exact and explicitly solvable. In the context
of finance, the option price can be expanded as an infinite series of analytical functions,
which are related by the pricing partial differential equation (PDE). Besides the flexibility
to deal with different models and options, the biggest advantage of expansion methods is
that, users can evaluate the formulae derived by the author by plugging in parameter
values, which greatly reduces computational intensity.

First, we show that European options under stochastic volatility models can be expanded
with various pairs of parameters in the volatility process, such as initial volatility, speed of
mean-reversion, volatility of volatility and long-term volatility. The methods use powers
of parameters as basis functions, and work with small parameter values. To achieve
better performance, a modified version of expansion with initial volatility and volatility of
volatility is proposed to reduce the pricing error when the parameters are large. The new
method uses bounded basis functions, rather than the unbounded power series, and the
numerical results confirm that the promotion from unbounded to bounded greatly improves
the ability of expansion methods to approximate option prices. Moreover, symmetry
considerations are also helpful for expansion methods. When the scale invariance is
broken, we are equipped with one more degree of freedom to fine-tune the convergence,
which is not proven or guaranteed.

Then, we show that the non-linear problem of American options under the Black–Scholes
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ii Abstract

model can be solved as a series of special functions that we defined earlier. Such special
functions remain in the same family under many operations, making explicit expression of
the option prices possible. We formally demonstrate two of the many ways of expansion,
which work numerically except in the case of low volatility and high interest rate. Thus, an
improved version, is proposed. It treats the Black–Scholes model as an advanced model
with an additional operator. The improved method is able to deal with reasonable values
of volatility, interest rate, moneyness and maturity. Finally, we outline the possibility
of combining advanced models with advanced option types. American options can be
treated similarly under many popular models, as long as the extra operators preserve the
closedness of the special functions.

The main contribution of the thesis is the demonstration that expansion methods can be
used efficiently with non-affine stochastic volatility models and American options, which
have no closed-form solutions. Additionally, explicit formulae, instead of formal relations
in terms of integrals, are derived and available for reproduction.
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1 Introduction

1.1 Background and motivation

An option is a financial instrument, that gives its holder the opportunity to trade
something in the future. With a European option, the holder can buy or sell an asset in
the future at a predefined price. It is like an insurance contract against market risk, as it
protects the holders (i.e. financial institutions or retail investors) from big losses when
the market moves against their prediction.

Like any insurance, protection comes with a price. Although millions of option contracts
are traded around the world everyday, the way in which they are priced is far from
unanimous or easy.

Even though the price of an option is agreed upon by the buyers and sellers, either in
the exchange or over the counter, the payoff of the option solely depends on the future
price movement of the underlying asset. Therefore, we can obtain a rough estimate of the
option price by assuming the future evolution of the underlying asset. Such an assumption
is called an option pricing model, the most famous of which is the Black–Scholes model
[1]. This Nobel prize-winning model is surprisingly simple, yet it explains most market
dynamics. It serves as a role model and benchmark for the more complicated models that
follow. However, there are some market characteristics that the Black–Scholes model is
unable to account for, such as the smile and time inhomogeneity of volatility. Advanced
models are thus needed to bridge the gap between theory and reality. Unfortunately,
closed-form solutions, such as in the European Black–Scholes case, are not common
among advanced models. Rather, numerical methods are usually required for option
pricing in most cases.

From both industrial and academic perspectives, there is great interest in a unified
framework for pricing different types of options under different types of models. This
thesis attempts to provide a new perspective, in which different option types and different
models are treated equally with expansion methods.

1.1.1 Stochastic volatility models
In the classical Black–Scholes model [1], the underlying asset is assumed to have a
constant volatility, which controls the amplitude of the geometric Brownian motion

dSt = St(µdt+
√
vt dWt), (1.1)

where µ is a constant drift, √vt is usually denoted by a constant σ and Wt is a Wiener
process. However, what we observed in the real market is that volatility is far from
constant. Sometimes the market moves much more dramatically than normal, such as
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2 Chapter 1. Introduction

during the financial crisis in 2008 [2]. One way of dealing with this problem is through
the introduction of stochastic volatility.

In a continuous-time setting, the variance (square of volatility) process of stochastic
volatility models is governed by an independent SDE, usually written in the following
form

dvt = f(vt) dt+ g(vt) dWt, (1.2)

where Wt is a Wiener process and g(vt) is a non-negative function. With extra terms,
this representation can be extended to include jumps [3, 4] and several coupled Wiener
processes [3, 5].

Another phenomenon observed in the market is that, although volatility is not constant
microscopically (in days), it does move around a certain level within a macroscopic time
frame (in years). Therefore, f(vt) in (1.2) is often proposed to be of the form

f(vt) = κ(θ − vt)vαt , (1.3)

where κ > 0. In such a setting, f(vt) is positive when vt < θ and negative when vt > θ.
In other words, there is a stochastic ‘force’ pulling the volatility back to its long-term
mean θ when vt moves away from θ due to the contribution g(vt) dWt, which usually
takes the form

g(vt) = ηvβt , (1.4)

where η > 0. With the introduction of this process, the mean-reverting stochastic volatility
models (1.1) and (1.2) greatly improve option pricing performance, with respect to the
real market [6–10].

While (1.1) and (1.2) cover a family of models, the Heston model [11] (α = 0 and β = 1
2 )

is particularly interesting due to the positivity of vt (under Feller’s condition) and the
tractability of the model. The option price can be written as an inverse Fourier transform,
and the fast Fourier transform (FFT) technique can be applied [12–14]. Unfortunately,
the FFT only applies to the Heston and 3/2 models, while other cases still rely on Monte
Carlo simulation.

At the same time, considerable research, with strong empirical evidence, suggests that
non-affine volatility models, for example, the continuous-time GARCH model (α = 0 and
β = 1) and the 3/2 model (α = 1 and β = 3/2), outperform the affine Heston volatility
specification with time-series and option price data in continuous time [15–18] and in
discrete time [19, 20]. In fact, according to [17], the simple continuous-time GARCH
diffusion model performs even better than the affine jump-diffusion model. Unfortunately,
due to the lack of known characteristic function of the GARCH model, the efficient FFT
methods cannot be applied. Therefore, in Chapter 3, prices produced using Monte Carlo
methods for all models and FFT for the Heston and 3/2 models are provided as a reference
for the methods developed in this thesis.

1.1.2 American options
The American option differs from the European option in one additional feature, an
American option can be exercised at any time before maturity. It is this simple addition
that makes the American option significantly more difficult to price than the European
version.
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The valuation of American options has long been a problem in financial research. The
first and most intuitive attempt to price American option was (binomial) tree methods
[21]. By going backwards in time, at every node of the tree, the expected value of holding
and the payoff of immediate exercise can be easily compared. If volatility is constant, the
number of nodes at each point in time grows as n+ 1, instead of 2n otherwise. When the
time step goes to zero, the discrete-time approximation converges to the continuous-time
value. The biggest drawback of this type of methods is that, although they produce the
finest result for the Black–Scholes model, they cannot be applied to advanced models.

From a PDE point of view, there are two representations of American option pricing.
The first corresponds to a linear complementary problem

BV [V − g(x)] = 0, with BV ≥ 0, V − g(x) ≥ 0, (1.5a)
V (0, x) = g(x), g(x) = (ex −K)+. (1.5b)

In this representation, the equation in (1.5a) governs the domain (t, x) ∈ [0,∞) ×
(−∞,∞), and therefore there is no need to explicitly calculate the moving boundary.
This representation is widely used in finite-difference methods [22–26].

The second representation bridges the ‘hold’ and ‘exercise’ regions with the ‘smooth-
pasting’ condition on the moving boundary.

BV = 0, with V (0, x) = 0, B(0) = 0, (1.6a)
V (t, B(t)) = 1− ex, ∂xV (t, B(t)) = −ex. (1.6b)

The equations above only govern the ‘hold’ region x ≥ B(t). The coupled option price
V (t, x) and the moving boundary B(t) should be solved simultaneously. The expansion
methods developed in the thesis are based on this representation.

The Monte Carlo simulation is widely used to price European options, but much research
was required to determine how it could be implemented for American options [27]. By
regressing the expected payoff of the next time step on the current stock price, we can
calculate the average ‘expected payoff’ of all the paths in the money rather than that of a
single path. The method works for most models; however, like most Monte Carlo methods,
a large number of paths must be generated to yield acceptable results. In addition, the
least-squares regressions at every time step are very computationally intensive.

American option pricing can also be treated as an optimal stopping problem of a stochastic
process [28, 29]. For an American put option, when the price is above the moving exercise
boundary, it is optimal to hold the option. When the price is below the moving boundary,
the put option should be exercised. However, although the stopping time approach is
conceptually important, it is not very helpful in terms of numerical computation. Early
exercise premium (EEP) [30–32] is another way to present the problem. American option
prices can be written as the sum of the corresponding European option and a premium,
which accounts for the early exercise feature. From a mathematical point of view, EEP
is a financial realisation of the Riesz decomposition of a supermartingale. With the
possibility of exercising at any time, the expected value of an American option is no
longer a martingale, as in the European case, but rather a supermartingale, which is the
Snell envelope of the payoff. This relationship was established [33] and applied [34] to the
American option under the Black–Scholes model. In order to calculate option prices, we
must solve the recursive integral equation for the unknown moving boundary and then
substitute the boundary to the formula for the EEP.
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There are many techniques for improving the performance of the basic ideas discussed
above. [35–38] provide a comprehensive representation of the methods.

1.1.3 Numerical methods
The most popular and widely used numerical method is the Monte Carlo simulation
[39]. The idea is to first generate paths, according to the model’s dynamical stochastic
differential equations (SDEs), for price and other variables in small time steps, until
maturity. Then, the discounted average payoff provides a good estimate of the option
price. Due to their intuitiveness, Monte Carlo methods are usually the first tool we use
to tackle a new problem when we know little about it. However, these methods are often
not optimal when we know enough about the problem, as they are inaccurate and slow
due to discretisation errors and the need for a large number of paths.

Finite-difference methods [40–42] solve the option pricing problem from the PDE per-
spective. Differentiation in the PDE is replaced with the difference of a few adjacent
points on a grid in variable space:

∂xV (x) = lim
δx→0

V (x+ δx)− V (x)
δx

≈ V (x+ ∆x)− V (x)
∆x , (1.7)

where ∆x takes a small value, and higher order differentials can be constructed similarly.
The pricing PDE is then transformed to an algebraic equation relating to values in a
small neighbourhood. The price at any time point can be obtained by solving the grid
backwards in time. The methods work well for low dimensional problems, because the
number of nodes in the mesh grows exponentially with the dimensionality.

The price of a European options can be written as an inverse Fourier transform:

V (k) ∝
∫ ∞
−∞

eikug(u) du, (1.8)

where g(u) involves the model characteristic function. The integral can be evaluated
numerically by carefully choosing the step of u-discretization, so that eiku is periodic
therefore computation is reduced [11, 12]. Such (semi)-analytical solutions are often
regarded as closed-form in finance community. In fact, they are not so different than
other numerical methods, in terms of discretization error. Furthermore, processes that
have an explicit characteristic function only cover a small part of models that we are
interested in.

1.2 Research questions and methodology

The idea of parameter expansion is heavily used in the physical sciences [43, 44], where the
solution to a problem can be written as an infinite power series of some model parameters.
Although, in many cases, the solution is wrapped up as a simple special function, credit
for solving the problem should be given to expansion methods, as special functions often
have an infinite series representation.

Option pricing problems share one important feature of a physical problem. The value
of many options is determined by a PDE with boundary conditions at maturity and
elsewhere. Therefore, it is natural to assume that the expansion methods, which have
been proven to be highly successful in physical sciences, can be used similarly in a finance
context.
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In this thesis, we attempt to answer the following questions:

• How well can expansion methods be applied to option pricing problems beyond the
European option under the Black–Scholes model?

• Expansion methods usually work well as expansion parameters go to zero. However,
do the methods work for reasonably large parameters that are realistic in the actual
market?

• Are the series solutions convergent? If not, how efficient and accurate are the
finite-term approximations?

The general methodology used in the research can be described as follows. For the sake
of simplicity, we take a model with one more parameter than the Black–Scholes model as
an example.

• Propose an expansion form. Assume we can choose a physical or dummy variable p,
such that the pricing PDE can be written as

BV = pLV, (1.9)

where B is the Black–Scholes operator and L is the operator associated with p.
The solution can therefore be written as

V =
∞∑
i=0

Vip
i. (1.10)

• Derive the iteration formula for Vi. After bringing the ansatz (1.10) back to (1.9)
and equating the coefficients of pi, we arrive at the relation of the form

Vi = B−1LVi−1. (1.11)

• Calculate the explicit form of Vi-terms in the above equation, up to a predefined
order N

V ≈
N∑
i=0

Vip
i. (1.12)

• Calculate the option prices using (1.12) with specific parameter values and compare
the results with those produced by reference methods (Monte Carlo methods and/or
FFT). Determine whether the formula works in all reasonable scenarios.

• If the results are not satisfying, we repeat the above steps attempting to find a new
expansion form with better numerical properties.

The real problems we solve in later chapters follow the same methodology, though the
technicalities involved are much more complicated.
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1.3 Related literature and contribution of the thesis

Previous papers have explored the possibility of applying the expansion idea to particular
models with some success. Hagan et al. [45] obtained option price asymptotics for the
SABR model. Lewis [46] derived the two series expansion for the Heston and 3/2 models.
Pagliarani and Pascucci [47] and Lorig et al. [48] introduced heat kernel expansion to
local volatility models. Papanicolaou et al. [49] and Chiu et al. [50] applied singular
perturbation methods to the family of Ornstein–Uhlenbeck driven stochastic volatility
models. Park and Kim [51–53] and Leung [54] solved the constant elasticity of variance
model (CEV) and Heston models using the homotopy analysis method (HAM), which was
originally developed by Liao [55, 56]. Zhu [57] solved American options under the Black–
Scholes model with the HAM. The HAM is an elegant and powerful framework for solving
complicated PDE problems. However, we find the homotopy concept is unnecessary in
some cases. The homotopy parameter p serves as an indicator for differentiating orders of
expansion, and such a role can also be played by model parameters.

The expansion methods described in Chapters 3 and 4 are the main contribution of the
thesis.

1.3.1 European options under stochastic volatility models

First, we consider mean-reverting stochastic volatility models, which are governed by
SDEs:

dSt = rSt dt+
√
vtSt dWt, (1.13a)

dvt = κ(θ − vt)vαt dt+ ηvβt dZt, (1.13b)
d[W,Z]t = ρdt, (1.13c)

where r is the risk-free interest rate, κ is the mean-reverting rate and η is the volatility of
volatility. The option prices under such models are solutions to the PDE:

∂tu−
v

2∂
2
xu+

(v
2 − r

)
∂xu+ ru

− ρηvβ+ 1
2 ∂x∂vu−

1
2η

2v2β∂2
vu− κ(θ − v)vα∂vu = 0, (1.14)

where x = lnS is the log-price and t denotes the time to maturity. In the current
literature, several papers have explored the possibility of writing the solution as an infinite
series, from the PDE point of view. Park and Kim [51] derived expansion series for
European, barrier and lookback options under the CEV model. In [52], Park and Kim
derived European and barrier options under stochastic volatility models. Leung [54]
solved lookback options under the Heston model.

Their methods can be summarised as follows. With the pricing PDE generally written as

BV + pOV = 0, (1.15)

where B is the Black–Scholes operator and O denotes the remaining operators

B = ∂t −
v

2∂
2
x +

(v
2 − r

)
∂x + r, (1.16)
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they propose that the option price can be written as

V =
∞∑
i=0

Vip
i, (1.17)

where p is a homotopy parameter. When p varies continuously from 0 to 1, the solution
V varies accordingly from the Black–Scholes solution to the advanced model solution,
which in this case is the Heston model. Substituting the ansatz (1.17) into the PDE
(1.15), they manage to derive iterative relations between Vi and Vi−1 in integral form

Vi(s, y) = B−1OVi−1(t, x) (1.18)

= eay+bs
∫ t

0

dt√
2πv(s− t)

∫ ∞
−∞

exp
(
− (x− y)2

2v(s− t) − ax− bt
)
OVi−1(t, x) dx,

where B−1 involves the double integral of x and t. However, the expansion terms Vi are
not given explicitly, nor is it proven that the integral (1.18) can always be analytically
evaluated. Since numerical analysis is given very briefly in those papers, we assume that
the integrals are evaluated numerically. However, numerical integration, which introduces
an additional discretisation error, can greatly undermine the accuracy and efficiency of
the methods.

In Chapter 3, we show that the option price of a stochastic volatility model can be
expanded in four different ways. More importantly, we contribute to the current literature
by proving that the iteration relations of the form (1.18) can be analytically evaluated
(i.e. an explicit formula, rather then a number, can be obtained as a result of the double
integral).

Expansion Form

(κ, η) V =
∞∑

i,j=0
uijκ

iηj

(η, v) V =
∞∑

i,j=0
uijη

i(v − θ)j

(η, θ) V =
∞∑

i,j=0
uijη

i(θ − v)j

(κ, v) V =
∞∑

i,j=0
uij

(
1
κ

)i
(v − θ)j

Table 1.1: Four ways of decomposing option price of stochastic volatility models.

It can be shown that the (κ, η)-expansion is equivalent to the results obtained by the
HAM [52] because the terms derived from both methods match when the sum is taken
to infinity and p is set to 1. By abandoning the HAM framework, which is widely used
in the literature, we are able to find three new methods ((η, v), (η, θ) and (κ, v)), which
are not equivalent to the HAM and, according to numerical analysis, outperform it for
long-term options. The results up to now have been published in our paper [58], for which
I took primary responsibility for the concept, computation and presentation.
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Apart from the unbounded power series (e.g. ηi) used in previous methods, we find that
the bounded power series (e.g. ηi/(1 + η)i) can greatly reduce pricing errors when the
expansion parameters go to infinity. This is due to the fact that, with respect to model
parameters, option prices are also bounded. Therefore, they can be approximated better
with bounded power series, which have similar asymptotic properties. All the power series
in the four methods above can be promoted to the corresponding bounded version

∞∑
i,j=0

uijP
iQj →

∞∑
i,j=0

ūij

(
P

1 + P

)i(
Q

1 +Q

)j
, (1.19)

where P and Q can be any expansion parameter κ, η or v − θ. Without loss of generality,
we only show the results for (η + 1, v + 1)-expansion

V =
∞∑

i,j=0
uij

(
η

1 + η

)i(
v − θ

1 + v − θ

)j
, (1.20)

which is modified from (η, v)-expansion. Although convergence is not guaranteed, the
error is bounded when η →∞ and v →∞. These are the best results we have obtained
so far, and the formula is available at [59].

1.3.2 American options under the Black–Scholes model
In Chapter 4, we consider American put options under the Black–Scholes model. The
renowned result for American option expansion was proposed by Zhu [57], who used the
HAM idea to construct the American option PDE:

(1− p)B [V (t, x, p)− V0(t, x)] = −pA[V (t, x, p), B(t, p)], (1.21a)
V (0, x, p) = (1− p)V0(0, x), (1.21b)

V (t, 0, p) +B(t, p) = 1, (1.21c)
∂xV (t, 0, p) +B(t, p) = (1− p) [1 + ∂xV0(t, 0)− V0(t, 0)] , (1.21d)

where B is the Black–Scholes operator,

A[V (t, x, p), B(t, p)] = BV (t, x, p)− B′(t, p)
B(t, p) ∂xV (t, x, p) (1.22)

and B(t) denotes the moving boundary. The solution can also be expanded as

V (t, x, p) =
∞∑
i=0

Vi(t, x)pi, B(t, p) =
∞∑
i=0

Bi(t)pi, (1.23)

with the European Black-Scholes formula being the leading term V0 and the American
option price being the sum of the infinite series

∑∞
i=0 Vi. Similarly to the case in the

previous subsection, the expansion terms Vi are also expressed in integral form (Equation
(23) in [57]). The option prices were obtained by numerical integration. Without the
explicit formula for Vi, the method is hard to implement in practice.

In Chapter 4, we will show that, with additional structures, the iteration relation (similar
to Equation (23) in [57]) can be evaluated analytically, and therefore explicit formulae
can be obtained.
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In order to prove the computability of integrals involved in later derivations, we introduce
new types of special functions that are closed under many operations including the
inverse Black–Scholes double integral. We also show that by carefully dealing with the
boundary conditions, the expansion terms can be written as special functions that we
defined. Therefore, when evaluating option prices, we only need to plug in values for the
parameters, which greatly improves computational efficiency.

For American options, because the option price is expanded as a power series of ‘dummy’
parameters, which serves as a formal indication of expansion order, there are many ways
to expand an option price. In Chapter 4, two expansion methods (ABS-I and II) are
proposed to show that boundary conditions can be dealt with in various ways. However,
numerical analysis shows that neither of them works in cases with low volatility and
a high interest rate. Therefore a modified method (ABS-III) is proposed to deal with
this particular occasion. This method also shows that American options under advanced
models can be expanded in the same framework, with minor modifications. Because this
method works in most cases, it is recommended for practical use [59].

In summary, our primary contribution in the thesis is that we showed that expansion
methods not only make formal sense, but are also practically usable. The proofs and
derivations of the explicit formulae for expansion terms of various options are given, and
their numerical validity is demonstrated.

1.4 Outline

The thesis is composed of six chapters. Chapter 1 briefly reviews the background of
stochastic volatility models, American options and expansion methods in finance, as
well as the motivation and contribution of the thesis. Chapter 2 defines a number of
mathematical notions that will be used in later chapters and generally compares the
procedure of series expansion to ODE and PDE. Chapter 3 applies the series expansion
methods to European options under stochastic volatility models. Chapter 4 applies the
series expansion methods to American options under the Black–Scholes model. Chapter
5 discusses a few validity issues and Chapter 6 concludes the thesis.

I hereby declare that I am the sole author of this thesis.





2 Mathematical preliminaries

Several mathematical results defined in this chapter will be used repeatedly in later
chapters. While the idea of series expansion has been applied to various option pricing
problems in the past [51, 52, 56, 57], the existing literature seems to ignore one crucial
aspect: computability. The main focus of this thesis and its main contribution is, the
procedure for obtaining expansion terms. The analytical form of expansion terms are
rigorously derived and expressed in the special functions defined in this chapter.

2.1 Solutions to the Black–Scholes equation

According to the Black–Scholes model, the price of the underlying asset is assumed to
follow the SDE, under the risk-neutral measure,

dSt = St
(
r dt+

√
v dWt

)
, (2.1)

whereWt is a Wiener process, v is the constant variance, and r is the risk-free interest rate.
The SDE (2.1) describes the simplest and most widely used diffusion process, and thus it
is of fundamental importance in mathematical finance. Many advanced models, such as
the stochastic volatility models used in Chapter 3, are extensions of the Black–Scholes
model, in the sense that one or more constants in (2.1) are assumed to have their own
dynamics.
In order to obtain pricing PDE for the European option price V (S, t), the time evolution
(derivative) of the option should be determined. With chain rule and Itô’s Lemma,

dV (S, t) = ∂tV dt+ ∂SV dSt + 1
2∂

2
SV d[S, S]t

= ∂tV dt+ ∂SV S
(
r dt+

√
v dWt

)
+ 1

2vS
2∂2
SV dt. (2.2)

Given the fact that Wt is a martingale

E
[

dWt

dt

]
= 0 (2.3)

and the assumption of no arbitrage, the expected value of an option grows at the risk-free
interest rate r

E
[

dV (S, t)
dt

]
= rV (S, t), (2.4)

for any realized stock price S at time t. Therefore, the celebrated Black–Scholes equation
is obtained:

∂tV + v

2S
2∂2
SV + rS∂SV − rV = 0. (2.5)

11



12 Chapter 2. Mathematical preliminaries

When the equation is being solved, the option price V (t, x) is often expressed as a function
of time to maturity t and log-price x = lnS. As a result, the Black–Scholes equation
becomes

∂tV −
v

2∂
2
xV +

(v
2 − r

)
∂xV + rV = 0. (2.6)

For the sake of argument, we might denote the Black–Scholes operator as follows.

Notation 2.1.1.

Bv = ∂t −
v

2∂
2
x +

(v
2 − r

)
∂x + r. (2.7)

With this notation, (2.6) can be abbreviated as BvV = 0. To simplify, we make the
following ansatz

V (t, x) = eax+btu(t, x), a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
, (2.8)

and the Black–Scholes equation (2.6) becomes the heat equation

∂tu−
v

2∂
2
xu = 0. (2.9)

Since the heat equation can be solved on various boundary (initial) conditions and is
related to the Black–Scholes equation as in (2.8), corresponding solutions can be obtained
for the Black–Scholes equation.

For European options, the underlying price moves on (0,∞). In log-price, the options are
defined on the half-plane (t, x) ∈ [0,∞)× (−∞,∞).

Lemma 2.1.2. For the homogeneous Black–Scholes equation[
∂

∂t
− v

2
∂2

∂x2 +
(v

2 − r
) ∂

∂x
+ r

]
g(t, x) = 0, (2.10)

with initial condition

g(0, x) = h(x), −∞ < x <∞, (2.11)

the solution is

g(t, x) = eax+bt
∫ ∞
−∞

1√
2πvt

e−
(x−y)2

2vt e−ayh(y) dy, (2.12)

where

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
.

Proof. Define

g(t, x) = eax+btu(t, x), a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
. (2.13)
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Then (2.10) with (2.11) becomes the homogeneous heat equation(
∂t −

v

2∂
2
x

)
u(t, x) = 0, (2.14)

with

u(0, x) = e−axh(x), −∞ < x <∞. (2.15)

The solution for the heat equation above is [60]

u(t, x) =
∫ ∞
−∞

1√
2πvt

e−
(x−y)2

2vt e−ayh(y) dy, (2.16)

and therefore

g(t, x) = eax+btu(t, x) = eax+bt
∫ ∞
−∞

1√
2πvt

e−
(x−y)2

2vt e−ayh(y) dy. (2.17)

Lemma 2.1.3. For the inhomogeneous Black–Scholes equation[
∂

∂t
− v

2
∂2

∂x2 +
(v

2 − r
) ∂

∂x
+ r + κ

]
g(t, x) = f(t, x), (2.18)

with initial condition

g(0, x) = 0, −∞ < x <∞, (2.19)

the solution is

g(t, x) = eax+bt−κt
∫ t

0

∫ ∞
−∞

1√
2πv(t− s)

e−
(x−y)2
2v(t−s) e−ay−bs+κsf(s, y) dy ds. (2.20)

Proof. Define

g(t, x) = eax+bt−κtu(t, x), a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
. (2.21)

Then, (2.10) with (2.11) becomes the inhomogeneous heat equation(
∂t −

v

2∂
2
x

)
u(t, x) = e−ax−bt+κtf(t, x), (2.22)

with

u(0, x) = 0, −∞ < x <∞. (2.23)

The solution for the inhomogeneous heat equation above is [60]

u(t, x) =
∫ t

0

∫ ∞
−∞

1√
2πv(t− s)

e−
(x−y)2
2v(t−s) e−ay−bs+κsf(s, y) dy ds (2.24)

and therefore

g(t, x) = eax+bt−ktu(t, x)

= eax+bt−κt
∫ t

0

∫ ∞
−∞

1√
2πv(t− s)

e−
(x−y)2
2v(t−s) e−ay−bs+κsf(s, y) dy ds. (2.25)
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The above two lemmas will be used extensively in Chapter 3 for European options under
stochastic volatility models. In order to compute the first term of the series, the payoff
often serves as the initial condition, taking the role of h(x) in Lemma 2.1.2. Higher order
terms are then calculated by Lemma 2.1.3 after the iteration relation is obtained by
breaking up the pricing PDE.

For American options, the price domain is different than for European options. In the
case of an American put option without dividends, the pricing PDE only governs the price
region above the undetermined exercise boundary x ∈ [B(t),∞). Fortunately, with the
front-fixing technique [61], the unknown boundary can be reduced to a straight line x = 0.
Written in log-price, the option price is defined on the quarter-plane (t, x) ∈ [0,∞)×[0,∞).
The following lemma deals with the additional boundary conditions on x = 0.

Lemma 2.1.4. The solution of[
∂

∂t
− v

2
∂2

∂x2 +
(v

2 − r
) ∂

∂x
+ r

]
g(t, x) = 0, (2.26a)

g(0, x) = 0, (2.26b)
g(t, 0) = h(t), (2.26c)

is

g(t, x) = eax+bt
∫ t

0

x√
2πv(t− s)3

exp
[
− x2

2v(t− s) − bs
]
h(s) ds. (2.27)

Proof. According to ansatz (2.8), the heat equation for u(t, x) is(
∂t −

v

2∂
2
x

)
u(t, x) = 0, (2.28a)

u(0, x) = 0, (2.28b)
u(t, 0) = e−bth(t). (2.28c)

The boundary conditions in (2.28) can be dealt with using the Laplace transform. Suppose
the solution is transformed as

ū(p, x) = L[u(t, x)] =
∫ ∞

0
e−ptu(t, x) dt. (2.29)

Then, heat equation (2.28) is transformed to

pū− v

2∂
2
xū = 0, (2.30a)

ū(p, 0) = L[e−bth(t)]. (2.30b)

The general solution to the ODE (2.30a) is

ū = Ae
√

2p
v x +Be−

√
2p
v x, (2.31)

where A and B are constants to be determined. Because u(t,∞) = 0, the first term in
the above solution vanishes A = 0. By setting x = 0, B can be determined

ū(p, x) = L[e−bth(t)]e−
√

2p
v x. (2.32)
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According to the convolution theorem, the Laplace inverse u can be expressed as

u = L−1[ū] = L−1
[
L[e−bth(t)]e−

√
2p
v x
]

= L−1
[
L[e−bth(t)]L

[
L−1

[
e−
√

2p
v x
]]]

= e−bth(t) ∗ L−1
[
e−
√

2p
v x
]

= e−bth(t) ∗ x√
2πvt3

e−
x2
2vt , (2.33)

where ∗ indicates convolution

[f(t) ∗ g(t)](s) =
∫ s

0
f(s− t)g(t) dt. (2.34)

Therefore the solution to heat equation (2.28) is

u(s, y) =
∫ s

0

y√
2πv(s− t)3

exp
(
− y2

2v(s− t) − bt
)
h(t) dt. (2.35)

Then, the Black–Scholes version is

g(s, y) = eay+bsu(s, y). (2.36)

The following result is also important for manipulating the boundary conditions at x = 0.
We state the lemma without proof because it can be checked by direct computation.

Lemma 2.1.5. The solution of

g(t, x)− ∂xg(t, x) = h(t, x), (2.37a)
g(t,∞) = 0, (2.37b)

is

g(t, x) = ex
∫ ∞
x

e−yh(t, y) dy. (2.38)

2.2 Black–Scholes special functions

The key to ensuring the computability of the expansion terms is to find a family of
functions that are closed under the operations involved in the computation. In other
words, we should not only write down the iteration relations for the expansion terms but
also ensure that they are integrable and expressible in terms of analytical functions.

In the series expansion context, the solution of a PDE (e.g. in a one-dimensional case) is
written generally as

V =
∞∑
i=0

piVi, (2.39)

with the iteration relation

Vi = B−1f(Vi−1, . . . , V0). (2.40)

The operator B−1 denotes the inverse Black–Scholes operator with various boundary
conditions, the expressions of which are given in the previous section. The following
special functions are defined with respect to the Black–Scholes equation (2.10).
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Definition 2.2.1. A Black–Scholes exponential (BSE) function is a function of the form

exp
(
− x2

2vt + ax+ bt

)∑
i,j

Aijx
itj−

1
2 , (2.41)

where Aij are constants, i, j ∈ N and

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
. (2.42)

The set of all such functions is denoted as Σ1.

Definition 2.2.2. A Black–Scholes damped exponential (BSDE) function is a function
of the form

exp
(
− x2

2vt + ax+ bt

)∑
i,j,k

Aijkx
itj−

1
2 e−kκt, (2.43)

where Aijk are constants, i, j, k ∈ N and

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
. (2.44)

The set of all such functions is denoted as Σ′1.

As defined above, a BSE function is also a BSDE function with κ = 0:

Σ1 ⊂ Σ′1. (2.45)

BSDE functions will be used for the pricing of European options under stochastic volatility
models.

Definition 2.2.3. A Black–Scholes complementary error (BSCE) function is a function
of the form

exp
(
− x2

2vt + ax+ bt

)∑
i,j

Aijx
it
j
2 + eax+bt erfc

(
x√
2vt

)∑
k,l

Bklx
kt

l
2 , (2.46)

where Aij and Bij are constants, i, j, k, l ∈ N and

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
. (2.47)

The set of all such functions is denoted as Σ2.

Obviously, a BSE function is also a BSCE function with Bkl = 0:

Σ1 ⊂ Σ2. (2.48)

BSCE functions will be used to construct solutions to American options.
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Definition 2.2.4. A Black–Scholes time (BST) function is a function of the form∑
i

Cit
i
2 , (2.49)

where Ci are constants, i ∈ N and the set of all such functions is denoted as Σ3.

BST functions are useful for describing the moving boundary of American options.

The Black–Scholes special functions have some asymptotic properties that make them
suitable for series expansion. For European calls under advanced models (extensions of
the Black–Scholes model), the Black–Scholes formula

C(t, x) = ex N(d+)−Ke−rt N(d−), d± =
x− lnK +

(
r ± v

2
)
t

√
vt

(2.50)

serves as the leading term V0. Asymptotically, European call option price C(t, x) under
any model should satisfy the same conditions

C(0, x) = (ex −K)+, C(t,∞) = ex −Ke−rt, C(t,−∞) = 0. (2.51)

Therefore, the higher order terms Vi, i > 0 should vanish in the above cases. It is possible
to verify that the BSDE functions indeed satisfy those conditions.

Lemma 2.2.5. If g(t, x) ∈ Σ′1,

g(0, x) = 0, g(t,−∞) = 0, g(t,∞) = 0. (2.52)

For an American put option under any model, the Black–Scholes formula for put options

P (t, x) = Ke−rt N(−d−)− ex N(−d+), d± =
x− lnK +

(
r ± v

2
)
t

√
vt

(2.53)

may seem like a good candidate for the leading term V0. However, (2.53) is not closed
under the double integral in the inverse Black–Scholes operator. Therefore, a new
function form is needed for V0 due to this difficulty. Details will be covered in Chapter 4.
Regardless of V0, the higher order terms Vi, i > 0 should satisfy the asymptotic properties:

Vi(0, x) = 0, Vi(t,∞) = 0. (2.54)

Simple calculation confirms that the above properties are satisfied by BSCE function.

Lemma 2.2.6. If g(t, x) ∈ Σ2 and x > 0,

g(0, x) = 0, g(t,∞) = 0. (2.55)

Furthermore, BSCE functions reduce to BST functions at x = 0.

Lemma 2.2.7. If g(t, x) ∈ Σ2, then e−btg(t, 0) ∈ Σ3.

This lemma relates the bulk and boundary of the ‘hold’ region of American put options.
The most desirable feature of BSDE and BSCE functions is that they are closed under
many operations.
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Lemma 2.2.8. If g(t, x) ∈ Σ′1, then ∂tg, ∂xg, Bg, xnt
m
2 g ∈ Σ′1.

Lemma 2.2.9. If g(t, x) ∈ Σ2, then ∂tg, ∂xg, Bg, xnt
m
2 g ∈ Σ2.

For differential operations in the above lemmas, the proof of closeness is trivial. However,
the closeness under integration due to the inverse Black–Scholes operator is not so
obvious.

Lemma 2.2.10. For inhomogeneous Black–Scholes equation[
∂

∂t
− v

2
∂2

∂x2 +
(v

2 − r
) ∂

∂x
+ r + κ

]
f(t, x) = g(t, x), (2.56)

with initial condition

f(0, x) = 0. (2.57)

If g(t, x) ∈ Σ′1, then f(t, x) ∈ Σ′1.

Proof. Without loss of generality, we define

g(t, x) = xntm−
1
2 e−pκt exp

(
− x2

2vt + ax+ bt

)
(2.58)

and

G(n) =
∫ ∞
−∞

exp
[
− (x− y)2

2v(s− t) −
x2

2vt

]
xn dx. (2.59)

Because

∂y exp
[
− (x− y)2

2v(s− t)

]
= x− y
v(s− t) exp

[
− (x− y)2

2v(s− t)

]
, (2.60)

it is easy to show that

G(n+ 1) = v(s− t)∂yG(n) + yG(n). (2.61)

For n = 0, the integral (2.59) can be computed explicitly:

G(0) =
√

2πvt(s− t)
s

exp
(
− y2

2vs

)
. (2.62)

If we assume

G(n) =
√

2πvt(s− t)
s

exp
(
− y2

2vs

)∑
i,j,k

Aijky
itjsk, (2.63)

then by Lemma 2.2.8, G(n+ 1) admits the same form as G(n). By induction, G(n) can
be written in the general form for arbitrary n:

G(n) =
√

2πvt(s− t)
s

exp
(
− y2

2vs

)∑
i,j,k

Aijky
itjsk. (2.64)
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Therefore,

f(s, y) = eay+bs−κs
∫ s

0

1√
2πv(s− t)

G(n)tme−pκt dt

= exp
(
− y2

2vs + ay + bs− κs
)∑
i,j,k

Aijky
isk−

1
2

∫ s

0
tm+je(1−p)κt dt. (2.65)

According to Lemma 2.2.13, the integral in the above equation can be written as∫ s

0
tm+je(1−p)κt dt = 1

[(p− 1)κ]m+j+1

{
(m+ j)!−(m+ j)! e(1−p)κs

m+j∑
i=0

[(p− i)κs]i

i!

}
.

(2.66)

Combing (2.65) and (2.66), the solution can be expressed as

f(s, y) = exp
(
− y2

2vs + ay + bs

)∑
i,j

Aijy
isj−

1
2 e−pκs +

∑
k,l

Bkly
ksl−

1
2 e−κs

 , (2.67)

where i, j, k, l ∈ N. Therefore,

f(t, x) ∈ Σ′1. (2.68)

Lemma 2.2.11. For inhomogeneous Black–Scholes equation[
∂

∂t
− v

2
∂2

∂x2 +
(v

2 − r
) ∂

∂x
+ r

]
f(t, x) = g(t, x), (2.69)

with initial condition

f(0, x) = 0. (2.70)

If g(t, x) ∈ Σ2, then f(t, x) ∈ Σ2.

Proof. Without loss of generality, we define

g1(t, x) = xnt
m
2 exp (ax+ bt) erfc

(
x√
2vt

)
, (2.71a)

g2(t, x) = xpt
q
2 exp

(
− x2

2vt + ax+ bt

)
, (2.71b)

and

G1(n) =
∫ ∞
−∞

exp
[
− (x− y)2

2v(s− t)

]
erfc

(
x√
2vt

)
xn dx, (2.72a)

G2(n) =
∫ ∞
−∞

exp
[
− (x− y)2

2v(s− t)

]
exp

(
− x2

2vt

)
xn dx. (2.72b)

Since

∂y exp
[
− (x− y)2

2v(s− t)

]
= x− y
v(s− t) exp

[
− (x− y)2

2v(s− t)

]
, (2.73)
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it is easy to show that

Gi(n+ 1) = v(s− t)∂yGi(n) + yGi(n), i = 1, 2. (2.74)

For n = 0, the integral (2.72) can be computed explicitly

G1(0) =
√

2πv(s− t) erfc
(

y√
2vs

)
, G2(0) =

√
2πvt(s− t)

s
exp

(
− y2

2vs

)
. (2.75)

If we assume

G1(n) =
√

2πv(s− t)

exp
(
− y2

2vs

)∑
i,j,k

Aijky
it
j
2 s

k
2 + erfc

(
y√
2vs

)∑
i,j,k

Bijky
it
j
2 s

k
2

 ,
(2.76a)

G2(n) =
√

2πvt(s− t)
s

exp
(
− y2

2vs

)∑
i,j,k

Cijky
it
j
2 s

k
2 , (2.76b)

then by Lemma 2.2.9, Gi(n+ 1) admits the same form as Gi(n), i = 1, 2. Using induction,
(2.76) is the general form for arbitrary n.

Therefore,

f(s, y) = eay+bs
∫ s

0

1√
2πv(s− t)

[
G1(n)tm2 +G2(p)t

q
2

]
dt

= exp
(
− y2

2vs + ay + bs

)∑
i,j,k

2Aijkyis
j+k+m+2

2

j +m+ 2 +
∑
i,j,k

2Cijkyis
j+k+q+2

2

j + q + 3


+ eay+bs erfc

(
y√
2vs

)∑
i,j,k

2
j +m+ 2Bijky

is
j+k+m+2

2 , (2.77)

and

f(t, x) ∈ Σ2. (2.78)

The above two lemmas not only guarantee the closeness of Σ′1 and Σ2 under operation B−1

but also show how to calculate the integral in G(n) from 0 to n by induction. However,
in some cases, the following general form is more convenient than the induction form.

Lemma 2.2.12.

G(n) =
∫ ∞
−∞

exp
[
− (sx− ty)2

2vst(s− t)

]
xn dx

=
√

2πvt(s− t)
s

bn2 c∑
i=0

n!
i! (n− 2i)!

(
vt(s− t)

2s

)i(
ty

s

)n−2i
. (2.79)

The following result can be used to calculate BSDE functions. The time integration
preserves the form ekttn and, consequently, the form of the BSDE functions.
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Lemma 2.2.13.∫ s

0
exp(kt)tn dt = (−k)−n−1

[
n!−n! exp(ks)

n∑
i=0

(−ks)i

i!

]
, k 6= 0. (2.80)

The following theorem is the most important tool to obtain the series solution of American
put options.

Theorem 2.2.14. For[
∂

∂t
− v

2
∂2

∂x2 +
(v

2 − r
) ∂

∂x
+ r

]
V (t, x) = 0, (2.81a)

V (0, x) = 0, (2.81b)

V (t, 0)− ∂xV (t, 0) = ebt
∑
i

λit
i
2 , (2.81c)

where

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
, (2.82)

V ∈ Σ2 if

∑
i

(
2
v

) i
2 λiΓ

(
1 + i

2
)

(a− 1)i = 0. (2.83)

Proof. Denote h = V − ∂xV . For

Bh(t, x) = 0, (2.84a)

h(t, 0) = ebt
∑
i

λit
i
2 , (2.84b)

the solution is

h(s, x) = eax+bs
∫ s

0

x√
2πv(s− t)3

exp
(
− x2

2v(s− t) − bt
)
ebt
∑
i

λit
i
2 dt

=
∑
i

λie
ax+bs x√

2πv

∫ s

0

t
i
2

(s− t) 3
2

exp
(
− x2

2v(s− t)

)
dt

=
∑
i

λie
ax+bs x√

2πv
L−1

{
L
{

exp
(
− x2

2vt

)
t−

3
2

}
L
{
t
i
2

}}

=
∑
i

λiΓ
(

1 + i

2

)
eax+bsL−1

{
exp

(
−
√

2p
v
x

)
p−(1+ i

2 )
}
, (2.85)

where L is short for Laplace transformation operator L{·}(p) and L−1 for L−1{·}(t).
Denote

Hi = ey+bs
∫ ∞
y

e(a−1)xL−1

{
exp

(
−
√

2p
v
x

)
p−(1+ i

2 )
}

dx. (2.86)
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The above equation can be evaluated using integration by parts,

Hi = −
√
v

2e
y+bs

∫ ∞
y

e(a−1)xL−1

{
exp

(
−
√

2p
v
x

)
p−(1+ i+1

2 )
(
−
√

2p
v

)}
dx

= −
√
v

2e
y+bs

∫ ∞
y

e(a−1)x∂xL−1

{
exp

(
−
√

2p
v
x

)
p−(1+ i+1

2 )
}

dx

= −
√
v

2e
y+bs+(a−1)xL−1

{
exp

(
−
√

2p
v
x

)
p−(1+ i+1

2 )
}∣∣∣∣∣
∞

y

+
√
v

2e
y+bs

∫ ∞
y

[
∂xe

(a−1)x
]
L−1

{
exp

(
−
√

2p
v
x

)
p−(1+ i+1

2 )
}

dx

=
√
v

2e
ay+bsL−1

{
exp

(
−
√

2p
v
y

)
p−(1+ i+1

2 )
}

+ (a− 1)
√
v

2Hi+1. (2.87)

The inverse Laplace transform in the last equality can be calculated for i ∈ N as

L−1

{
exp

(
−
√

2p
v
y

)
p−(1+ i+1

2 )
}

= t
i+1

2

Γ
(
i+3
2
) 1F1

[
− i+ 1

2 ; 1
2 ;− y2

2vs

]

−
√

2
v

t
i
2 y

Γ
(
i
2 + 1

) 1F1

[
− i2 ; 3

2 ;− y2

2vs

]
∈ Σ2, (2.88)

where 1F1[a; b;x] denotes confluent hypergeometric function, and therefore

Hi+1 −
√

2
v

Hi

a− 1 ∈ Σ2, (2.89)

By induction,

Hi −
(

2
v

) i
2 H0

(a− 1)i ∈ Σ2. (2.90)

Since for V − ∂xV = h and V (t,∞) = 0, the difference

V (s, y)−
∑
i

λiΓ
(

1 + i

2

)(
2
v

) i
2 H0

(a− 1)i

= ey
∫ ∞
y

e−xh(s, x) dx−
∑
i

λiΓ
(

1 + i

2

)(
2
v

) i
2 H0

(a− 1)i

=
∑
i

λiΓ
(

1 + i

2

)[
Hi −

(
2
v

) i
2 H0

(a− 1)i

]
∈ Σ2, (2.91)

and H0 /∈ Σ2, therefore, V ∈ Σ2 if

∑
i

(
2
v

) i
2 λiΓ

(
1 + i

2
)

(a− 1)i = 0. (2.92)



2.2. Black–Scholes special functions 23

The following notation and lemmas are used for deriving American option expansions. To
differentiate from B−1g := V , which is the solution of the inhomogeneous Black–Scholes
equation

BV = g, V (0, x) = 0, (2.93)

we introduce a different notation.

Notation 2.2.15.

I−1g := V (t, x), (2.94)

where [
∂

∂t
− v

2
∂2

∂x2 +
(v

2 − r
) ∂

∂x
+ r

]
V (t, x) = 0, (2.95a)

V (0, x) = 0, (2.95b)
V (t, 0)− ∂xV (t, 0) = g, (2.95c)

Notation 2.2.16.

Lj

(
N∑
i=0

λit
i
2

)
:= λtj , (2.96)

such that
N∑
i=0

(
2
v

) i
2 λiΓ

(
1 + i

2
)

(a− 1)i +
(

2
v

)j
λΓ (1 + j)
(a− 1)2j = 0. (2.97)

In other words, Li(g) denotes the tj-term needed to make

I−1 [ebt(g + Li(g))
]
∈ Σ2, where g ∈ Σ3. (2.98)

Notation 2.2.17.

Dnp f(p) = 1
n!

∂n

∂pn
f(p)

∣∣∣∣
p=0

(2.99)

Dnp picks out the coefficient of n-th power of the p-polynomial:

an = Dnp

( ∞∑
i=0

aip
i

)
. (2.100)

If f(p) is regular at p = 0, the sum of operators can be written as:

Lemma 2.2.18.
∞∑
i=0

piDipf(p) = f(p). (2.101)

Likewise, a similar relation can be proven for exponential functions.
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Lemma 2.2.19.

di +Dip exp

i−1∑
j=1

pjdj

 = Dip exp

 ∞∑
j=1

pjdj

 . (2.102)

Proof. Because when Dip is applied to

exp

 ∞∑
j=1

pjdj

 = exp

i−1∑
j=1

pjdj

 exp

 ∞∑
j=i

pjdj


= exp

i−1∑
j=1

pjdj


1 +

∞∑
j=i

pjdj + 1
2

 ∞∑
j=i

pjdj

2

+ · · ·

 , (2.103)

it picks out the coefficient of pi, and those terms that are higher order than i provide no
contribution. Therefore,

Dip exp

 ∞∑
j=1

pjdj

 = Dip exp

i−1∑
j=1

pjdj

1 +
∞∑
j=i

pjdj


= Dip exp

i−1∑
j=1

pjdj

+Dip exp

i−1∑
j=1

pjdj

 ∞∑
j=i

pjdj

= Dip exp

i−1∑
j=1

pjdj

+ di. (2.104)

The last equality holds because dipi is the lowest order p-power term.

2.3 Series solutions to ODE and PDE revisited

Series solution is a general method for solving differential equations. Most differential
equations do not have a closed-form solution, whereas within a particular parameter set,
a series solution yields highly accurate numerical values. In fact, many special functions,
which are solutions to a differential equation, are defined as an infinite sum of elementary
functions:

V (x, y, . . .) =
∞∑
i=0

Vi(x, y, . . .), (2.105a)

Vi(x, y, . . .) = f(i, x, y, . . .). (2.105b)

Solution (2.105) is often considered closed-form, although it is expressed as an infinite
sum.

However, in most cases, it is only possible to obtain Vi in terms of an iterative relation
regarding lower order terms:

V (x, y, . . .) =
∞∑
i=0

Vi(x, y, . . .), (2.106a)
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Vi(x, y, . . .) = f(Vi−1, Vi−2, . . . , V0). (2.106b)

Solution (2.106) is not as good as (2.105) because:

• the convergence of Vi in (2.105) is much easier to prove;

• the expression of Vi in (2.106) is usually complicated when i gets bigger;

• when the iterative relation in (2.106) is written as an integral, the integrability is
not ensured.

However, iterative relation (2.106) is often the first step towards the explicit expression
(2.105). In practice, (2.106) is often good enough for calculation, when the expansion
form is carefully chosen and the parameter values are modestly large.

The following simple example demonstrates the logic and general steps of series solution
methods. Consider the ODE

∂xV (x)− V (x) = 0, (2.107a)
V (0) = 1. (2.107b)

The solution is V (x) = ex. However, suppose we do not know the answer and try to
obtain the series solution. First, a leading term must be chosen because it serves as the
starting point V0 of the expansion. The simplest candidate could be a constant, which
satisfies the following ODE:

∂xV (x) = 0, (2.108a)
V (0) = 1. (2.108b)

The solution is easily obtainable:

V (y) =
∫ y

0
∂xV (x) dx+ V (0) =

∫ y

0
0 dx+ 1 = 1. (2.109)

Then, the solution of (2.107) can be regarded as the solution of

∂xV (x)− pV (x) = 0, (2.110a)
V (0) = 1, (2.110b)

if p = 1. The solution is written as a power series of p:

V (x) =
∞∑
i=0

Vi(x)pi. (2.111)

Now, substitute (2.111) back into (2.110), and we have
∞∑
i=0

∂xVi(x)pi − p
∞∑
i=0

Vi(x)pi =
∞∑
i=0

∂xVi(x)pi −
∞∑
i=1

Vi−1(x)pi = 0, (2.112a)

∞∑
i=0

Vi(0)pi = 1. (2.112b)

Because p is defined continuously on [0, 1], the coefficients of pi terms should equal. The
ODE (2.112) can be decomposed into two cases:
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• When i = 0

∂xV0(x) = 0, (2.113a)
V0(0) = 1. (2.113b)

• When i > 0

∂xVi(x)− Vi−1(x) = 0, (2.114a)
Vi(0) = 0. (2.114b)

In (2.109), we have chosen the leading term V0(x) = 1. Higher order terms can be
obtained by integrating the previous term

Vi(y) =
∫ y

0
Vi−1(x) dx+ Vi(0) =

∫ y

0
Vi−1(x) dx. (2.115)

The leading higher order terms are

V1(y) =
∫ y

0
1 dx = y, V2(y) =

∫ y

0
xdx = y2

2 , (2.116a)

V3(y) =
∫ y

0

x2

2 dx = y3

3 , V4(y) =
∫ y

0

x3

3 dx = y4

4 . (2.116b)

Because we know that the set of power terms is closed under integration, the result of
integration (2.115) is always a power term, if we start the iteration with a power term
V0(x) = 1. In this case, it is easy to guess the general form for Vi:

Vi(x) = 1
i!x

i. (2.117)

Therefore, the solution of (2.110) can be written as

V (x) =
∞∑
i=0

Vi(x)pi =
∞∑
i=0

1
i! (xp)

i = exp. (2.118)

Finally, if we set p = 1, the same solution V (x) = ex we obtained earlier by guessing is
recovered. When p = 0, V (x) = 1, as we proposed in (2.108). Even if we cannot obtain
the general expression (2.118), leading terms (2.116) are good enough when we calculate
V (x) in the proximity of x = 0.

The convergence of (2.118) can be checked,

lim
i→∞

Vi+1

Vi
= lim
i→∞

x

i+ 1 = 0, (2.119)

with x <∞. Therefore, the series is convergent for any x.

PDEs are expanded in the same way as in the above example, with more complicated
inverse operations. Suppose we want to solve the simplest advanced model beyond the
Black–Scholes with just one additional parameter p:

BvV + p∂vV = 0, (2.120a)
V (0, x) = (ex − 1)+, (2.120b)



2.3. Series solutions to ODE and PDE revisited 27

where Bv is the Black–Scholes operator. When p = 0, the solution reduces to the
Black–Scholes formula. Therefore, the series solution is expanded as

V =
∞∑
i=0

Vip
i, (2.121a)

V0 = ex N(d+)−Ke−rt N(d−), d± =
x− lnK +

(
r ± v

2
)
t

√
vt

. (2.121b)

After substituting (2.121) into (2.120) and equating the corresponding coefficients of pi,
we have

BvVi = −∂vVi−1. (2.122)

Higher order terms can be calculated iteratively. Direct calculation yields

V1 = B−1
v ∂vV0 = 1

4

√
t3

2πv exp
(
− x2

2vt + ax+ bt

)
∈ Σ1. (2.123)

As we have shown in Lemma 2.2.8 and Lemma 2.2.10, BSE functions are closed under ∂v
and B−1

v , and therefore higher order terms are also BSE functions:

Vi ∈ Σ1, i > 1. (2.124)

For the simple example, higher order terms are not only calculable; they are proven to
be certain types of functions (i.e. BSE functions). However, because the operation B−1

v

is far more complicated than the simple integration in the ODE case, we are not able
to derive the general form of the expansion terms. Convergence is hard to prove with
iteration relation (2.122).

The example above summarises the methods in the current literature [50–52, 54], which
replace the ∂v operator with additional operators other than Bv. In the case of the Heston
model,

∂v → −ρηv∂x∂v −
1
2η

2v∂2
v − κ(θ − v)∂v. (2.125)

The method is valid in some cases, especially for small parameter values, as demonstrated
by numerical examples. However, there are more ways to expand the solution, which
have better numerical accuracy and we will present them in the next chapter.





3 European options under stochastic
volatility models

3.1 Stochastic volatility models

Empirical evidence shows that equity volatility is far from constant, while the classical
Black–Scholes model assumes universal volatility. Stochastic volatility is an attempt to
account for this phenomenon by allowing the volatility to vary over time. Among these
models, mean-reversion is another desirable feature since it keeps the volatility around
a certain level, as it is observed in the market. In this chapter, the following setting is
employed. The stock price St and the variance process vt satisfy the following set of
SDEs, under a risk-neutral measure:

dSt = rSt dt+
√
vtSt dWt, (3.1a)

dvt = κ(θ − vt)vαt dt+ ηvβt dZt, (3.1b)
d[W,Z]t = ρdt, (3.1c)

where r is the risk-free interest rate, κ is the mean-reverting rate and η is the volatility
of volatility. The setting (3.1) covers several popular models with different choices of α
and β, as demonstrated in Table 3.1. More information on these models can be found in
[16, 62, 63].

α β
Heston model 0 1/2

GARCH model 0 1
3/2 model 1 3/2

Table 3.1: Stochastic volatility model specifications.

According to standard hedging arguments [63], the pricing PDE for vanilla options under
the model (3.1) is

∂tu−
v

2∂
2
xu+

(v
2 − r

)
∂xu+ ru

− ρηvβ+ 1
2 ∂x∂vu−

1
2η

2v2β∂2
vu− κ(θ − v)vα∂vu = 0, (3.2)

where x = lnS is the log-price and t denotes the time to maturity. The PDE (3.2) is
tractable in the case of European options under the Heston and 3/2 models, by inverse

29
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Fourier transform [11, 12]. For the GARCH model, because of its lack of characteristic
function, Monte Carlo methods are heavily relied on to produce option prices.

In order to solve the PDE (3.2), an initial condition should be imposed. The form of this
initial condition corresponds to the type of option. In this chapter, only European call
options are considered. Therefore,

u(0, x) = (ex − 1)+, x ∈ (−∞,∞). (3.3)

A put option can be solved using put-call parity. The strike is set to 1 for simplicity.
Given the option price u1 for strike 1, the option price uK for strike K can be obtained
by

uK(t, x) = Ku1(t, x− lnK). (3.4)

3.2 Power series expansions

After deriving the pricing PDE (3.2) from the model SDEs (3.1) and imposing the
boundary condition (3.3) for the option, we can start to write down the expansion form,
as we did in the previous chapter. First, we need to find a set of parameters (variables)
pi, such that when they are set to specific values pi = ci, the Black–Scholes model is
recovered. In the case of model (3.1), there are several ways to recover the Black–Scholes
model. The variance process vt is constant in the following cases.

1. κ = 0 and η = 0. In this case, the stochastic part ηvβt and the mean-reverting part
κ(θ − vt)vαt of the variance process vanish dvt = 0. This means that the variance
process remains at its initial value vt = v. The Black–Scholes model with volatility√
v is recovered. Therefore, model (3.1) admits (κ, η)-expansion

u(t, x) =
∞∑
i=0
j=0

uijκ
iηj . (3.5)

2. η = 0 and v = θ. Since the stochastic part ηvβt = 0, there is nothing that deviates
the variance process from long-term variance θ once the initial variance starts from
the long-term mean v0 = v = θ. From the PDE perspective, initial variance v and
long-term variance θ are both variables. Likewise, (η, v)-expansion

u(t, x) =
∞∑
i=0
j=0

uij(t, x; θ)ηi(v − θ)j (3.6)

and (η, θ)-expansion

u(t, x) =
∞∑
i=0
j=0

uij(t, x; v)ηi(θ − v)j (3.7)

are equally valid. The two expansion methods seem the same, however, the difference
of them will be explained in detail later in the chapter.
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3. κ =∞. Since the mean-reverting rate is infinitely large, the variance process returns
to the long-term volatility θ instantaneously:

vt =
{
v, t = 0,
θ, t > 0.

(3.8)

This process stays constant, except in the initial instance t = 0. It seems that the
option price can be expanded as a power series of κ−1:

u =
∞∑
i=0

ui(t, x)
κi

. (3.9)

However, it turns out that the coefficient ui of the above expansion can not be
uniquely determined. Therefore, the two-parameter (κ, v)-expansion

u(t, x) =
∞∑
i=0
j=0

uij(t, x, θ)
(v − θ)j

κi
(3.10)

is proposed.

Now that the forms of the expansion have been determined for each case, the iteration
relations for higher order terms can be derived.

3.2.1 (κ, η)-expansion
The first proposition shows how to derive expansion terms in (3.5).

Proposition 3.2.1. The solution of (3.2) with initial condition (3.3) can be written as

u(t, x) =
∞∑
i=0
j=0

uij(t, x)κiηj , (3.11)

with

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
, (3.12a)

u00(t, x) = ex

2 erfc
[
−x+ (1− a)vt√

2vt

]
− e−rt

2 erfc
[
−x− avt√

2vt

]
, (3.12b)

uij(s, y) = eay+bs
∫ s

0

dt√
2πv(s− t)

∫ ∞
−∞

dx exp
[
− (x− y)2

2v(s− t) − ax− bt
]

×
[
ρvβ+ 1

2 ∂x∂vui(j−1) + 1
2v

2β∂2
vui(j−2) + (θ − v)vα∂vu(i−1)j

]
. (3.12c)

Proof. Since (3.2) reduces to the Black–Scholes equation with volatility
√
v when η = 0

and κ = 0, the solution of (3.2) with initial condition (3.3) can be written as

u(t, x) =
∞∑
i=0
j=0

uij(t, x)κiηj , (3.13)



32 Chapter 3. European options under stochastic volatility models

u00(t, x) = ex

2 erfc
[
−x+ (1− a)vt√

2vt

]
− e−rt

2 erfc
[
−x− avt√

2vt

]
. (3.14)

With ansatz (3.13), (3.2) can be written as

∞∑
i=0
j=0

Bvuijκiηj −
∞∑
i=0
j=0

ρvβ+ 1
2 ∂x∂vuijκ

iηj+1

−
∞∑
i=0
j=0

1
2v

2β∂2
vuijκ

iηj+2 −
∞∑
i=0
j=0

(θ − v)vα∂vuijκi+1ηj = 0, (3.15)

where Bv is the Black–Scholes operator defined in Notation 2.1.1. In order to collect
coefficients of κiηj , the starting value of dummy indexes i and j must be shifted:

∞∑
i=0
j=0

Bvuijκiηj −
∞∑
i=0
j=1

ρvβ+ 1
2 ∂x∂vui(j−1)κ

iηj

−
∞∑
i=0
j=2

1
2v

2β∂2
vui(j−2)κ

iηj −
∞∑
i=1
j=0

(θ − v)vα∂vu(i−1)jκ
iηj = 0. (3.16)

The above equation holds if, for any i and j, the coefficients of κiηj satisfy the following
inhomogeneous Black–Scholes equation

Bvuij = ρvβ+ 1
2 ∂x∂vui(j−1) + 1

2v
2β∂2

vui(j−2) + (θ − v)vα∂vu(i−1)j , (3.17)

with the initial condition

uij(0, x) =
{

(ex − 1)+, for i = 0 and j = 0,
0, otherwise.

(3.18)

It should be noted that since the option price is regular at η = 0 and κ = 0, coefficients
with at least one negative index vanish

uij = 0, for i < 0 or j < 0. (3.19)

Therefore, in some cases (i < 1 or j < 2), the right-hand side of (3.17) may involve fewer
terms, due to negative indexes (i− 1 < 0 or j − 2 < 0).

The (0, 0)-component of (3.17) can be solved by Lemma 2.1.2

u00(s, y) = eay+bs
∫ ∞
−∞

dx 1√
2πvs

e−
(x−y)2

2vs e−ax(ex − 1)+

= ex

2 erfc
[
−x+ (1− a)vt√

2vt

]
− e−rt

2 erfc
[
−x− avt√

2vt

]
. (3.20)

The result agrees with the intuitive result (3.14). Higher order components of (3.17) can
be solved by Lemma 2.1.3

uij(s, y) = eay+bs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πv(s− t)

exp
[
− (x− y)2

2v(s− t) − ax− bt
]
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×
[
ρvβ+ 1

2 ∂x∂vui(j−1) + 1
2v

2β∂2
vui(j−2) + (θ − v)vα∂vu(i−1)j

]
. (3.21)

Although the iterative expression for uij is given, the coefficients should be calculated in
a particular order to ensure that when calculating uij , all the terms involved (Figure 3.1)
have been calculated.

u(i−1)j

ui(j−2) ui(j−1) uij

Figure 3.1: Terms involved in the calculation of uij .

Order 3.2.2. Let i, j, n ∈ N and O(1) = (0, 0). If O(n) = (i, j), then

O(n+ 1) =
{

(0, i+ 1), j = 0,
(i+ 1, j − 1), j 6= 0.

(3.22)

For (κ, η)-expansion, Order 3.2.2 illustrated in Figure 3.2 is recommended.

u00 u01 u02 u03 u04

u10 u11 u12 u13

u20 u21 u22

u30 u31

u40

Figure 3.2: Order of calculation for (κ, η), (η, v) and (η, θ)-expansion.

The following corollary shows the general form of the expansion terms uij for (κ, η)-
expansion.

Corollary 3.2.3. For solution (3.11), the coefficients uij, except the leading term u00,
are BSE functions,

uij ∈ Σ1, i+ j > 0. (3.23)

Proof. Define

w = 1
2
√

2πvt
exp

(
− x2

2vt + ax+ bt

)
, (3.24)

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
. (3.25)
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Since w ∈ Σ1, the leading few terms of the expansion, obtained by direct computation,
are

u10 = B−1
v (θ − v)vα∂vu00 = 1

2wv
αt2(θ − v) ∈ Σ1 (3.26a)

u01 = B−1
v ρvβ+ 1

2 ∂x∂vu00 = 1
2wρv

β− 1
2 t(avt− x) ∈ Σ1 (3.26b)

u02 = B−1
v

(
ρvβ+ 1

2 ∂x∂vu01 + 1
2v

2β∂2
vu00

)
= w

(
1
12a

4ρ2t4v2β+1 − 1
12a

3ρ2t4v2β+1 − 1
3a

3ρ2t3xv2β − 5
12a

2ρ2t3v2β

+1
6a

2βρ2t3v2β + 1
12a

2t3v2β + 1
4a

2ρ2t3xv2β + 1
2a

2ρ2t2x2v2β−1 + 1
4aρ

2t3v2β

− 1
12at

3v2β − 1
4aρ

2t2x2v2β−1 + 5
6aρ

2t2xv2β−1 − 1
3aβρ

2t2xv2β−1 − 1
6at

2xv2β−1

−1
3aρ

2tx3v2β−2 + 1
6ρ

2t2v2β−1 − 1
6βρ

2t2v2β−1 − 1
12 t

2v2β−1 − 1
4ρ

2t2xv2β−1

+ 1
12 t

2xv2β−1 + 1
12ρ

2tx3v2β−2 − 5
12ρ

2tx2v2β−2 + 1
6βρ

2tx2v2β−2 + 1
12 tx

2v2β−2

+ 1
12ρ

2x4v2β−3
)
∈ Σ1. (3.26c)

Using Lemma 2.2.8 and 2.2.10, without explicit calculation, we also have

u20 = B−1
v (θ − v)vα∂vu10 ∈ Σ1, (3.27)

u11 = B−1
v

[
(θ − v)vα∂vu01 + ρvβ+ 1

2 ∂x∂vu10

]
∈ Σ1. (3.28)

Since if

uij ∈ Σ1, for i+ j = k − 1 and k − 2, (3.29)

we have

uij = B−1
v

[
ρvβ+ 1

2 ∂x∂vui(j−1) + 1
2v

2β∂2
vui(j−2) + (θ − v)vα∂vu(i−1)j

]
∈ Σ1,

for i+ j = k. (3.30)

By induction,

uij ∈ Σ1, for i+ j > 0. (3.31)

3.2.2 (η, v)-expansion
The following results deal with the second expansion method, which is defined as in (3.6).

Proposition 3.2.4. The solution of (3.2) with initial condition (3.3) can be written as

u(t, x) =
∞∑
i=0
j=0

uij(t, x, θ)ηi(v − θ)j , (3.32)
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with

a = 1
2 −

r

θ
, b = −θ2

(
1
2 + r

θ

)2
, (3.33a)

u00(t, x) = ex

2 erfc
[
−x+ (1− a)θt√

2θt

]
− e−rt

2 erfc
[
−x− aθt√

2θt

]
. (3.33b)

For the Heston model,

uij(s, y) = eay+bs−jκs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
[
− (x− y)2

2θ(s− t) − ax− bt+ jκt

]
×
[

1
2
(
∂2
x − ∂x

)
ui(j−1) + ρj∂xu(i−1)j + ρθ(j + 1)∂xu(i−1)(j+1)

+1
2j(j + 1)u(i−2)(j+1) + θ

2(j + 1)(j + 2)u(i−2)(j+2)

]
. (3.34)

For the GARCH model,

uij(s, y) = eay+bs−jκs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
[
− (x− y)2

2θ(s− t) − ax− bt+ jκt

]
×
[

1
2
(
∂2
x − ∂x

)
ui(j−1) + 1

2j(j − 1)u(i−2)(j+2) + j(j + 1)θu(i−2)(j+1)

+1
2(j + 1)(j + 2)θ2u(i−2)(j+2)

+
j+1∑
n=0

3ρ(j + 1− n)(2n− 5)! !
(2n)! !

√
θ

(
−1
θ

)n−2
∂xu(i−1)(j+1−n)

]
. (3.35)

For the 3/2 model,

uij(s, y) = eay+bs−jκθs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
[
− (x− y)2

2θ(s− t) − ax− bt+ jκθt

]
×
[

1
2
(
∂2
x − ∂x

)
ui(j−1) + ρ(j − 1)∂xu(i−1)(j−1) + 2ρθj∂xu(i−1)j

+ ρθ2(j + 1)∂xu(i−1)(j+1) + 1
2(j − 1)(j − 2)u(i−2)(j−1)

+ 3
2θj(j − 1)u(i−2)j + 3

2θ
2j(j + 1)u(i−2)(j+1)

+1
2θ

3(j + 1)(j + 2)u(i−2)(j+2) − (j − 1)κui(j−1)

]
. (3.36)

Proof. From model definition (3.1), the Black–Scholes model can be recovered by setting
η = 0 and v = θ; therefore, the solution can be written as

u =
∞∑
i=0
j=0

uij(θ)ηi(v − θ)j , (3.37a)

u00 = ex

2 erfc
[
−x+ (1− a)θt√

2θt

]
− e−rt

2 erfc
[
−x− aθt√

2θt

]
. (3.37b)
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In the above expansion, v-derivatives in PDE (3.2) act only on the power terms (v − θ)j ,
while other derivatives act on the coefficients uij

∂vu =
∞∑
i=0
j=0

juijη
i(v − θ)j−1 =

∞∑
i=0
j=0

(j + 1)ui(j+1)η
i(v − θ)j , (3.38a)

∂2
vu =

∞∑
i=0
j=0

j(j − 1)uijηi(v − θ)j−2 =
∞∑
i=0
j=0

(j + 1)(j + 2)ui(j+2)η
i(v − θ)j , (3.38b)

∂nz u =
∞∑
i=0
j=0

∂nz uijη
i(v − θ)j , (3.38c)

where z denotes variables other than v. The v-terms in (3.2) should also be expanded in
terms of (v − θ)j

Lv = Lθ −
v − θ

2
(
∂2
x − ∂x

)
, (3.39a)

v = (v − θ) + θ, (3.39b)
v2 = (v − θ)2 + 2θ(v − θ) + θ2, (3.39c)
v3 = (v − θ)3 + 3θ(v − θ)2 + 3θ2(v − θ) + θ3, (3.39d)

v
3
2 =

∞∑
n=0

3(2n− 5)! !
(2n)! !

√
θ

(
−1
θ

)n−2
(v − θ)n. (3.39e)

Then, (3.37), (3.38) and (3.39) are substituted back into (3.2), and the starting values of
indexes i and j are shifted in order to have terms of the same form ηi(v − θ)j . For the
Heston model, (3.2) becomes
∞∑
i=0
j=0

Bθuijηi(v − θ)j −
∞∑
i=0
j=1

1
2
(
∂2
x − ∂x

)
ui(j−1)η

i(v − θ)j −
∞∑
i=1
j=1

ρj∂xu(i−1)jη
i(v − θ)j

−
∞∑
i=1
j=0

ρθ(j + 1)∂xu(i−1)(j+1)η
i(v − θ)j −

∞∑
i=2
j=1

1
2j(j + 1)u(i−2)(j+1)η

i(v − θ)j

−
∞∑
i=2
j=0

θ

2(j + 1)(j + 2)u(i−2)(j+2)η
i(v − θ)j +

∞∑
i=0
j=1

jκuijη
i(v − θ)j = 0. (3.40)

For the GARCH model, (3.2) becomes
∞∑
i=0
j=0

Bθuijηi(v − θ)j −
∞∑
i=0
j=1

∂2
x − ∂x

2 ui(j−1)η
i(v − θ)j −

∞∑
i=2
j=2

j(j − 1)
2 u(i−2)jη

i(v − θ)j

−
∞∑
i=2
j=1

j(j + 1)θu(i−2)(j+1)η
i(v − θ)j −

∞∑
i=2
j=0

θ2(j + 1)(j + 2)
2 u(i−2)(j+2)η

i(v − θ)j

−
∞∑
i=1
j=0

j+1∑
n=0

3ρ(j + 1− n)(2n− 5)! !
(2n)! !

√
θ

(
−1
θ

)n−2
∂xu(i−1)(j+1−n)η

i(v − θ)j



3.2. Power series expansions 37

+
∞∑
i=0
j=1

jκuijη
i(v − θ)j = 0. (3.41)

For the 3/2 model, (3.2) becomes

∞∑
i=0
j=0

Bθuijηi(v − θ)j −
∞∑
i=0
j=1

1
2
(
∂2
x − ∂x

)
ui(j−1)η

i(v − θ)j

−
∞∑
i=1
j=2

(j − 1)ρ∂xu(i−1)(j−1)η
i(v − θ)j −

∞∑
i=1
j=1

2jρθ∂xu(i−1)jη
i(v − θ)j

−
∞∑
i=1
j=0

(j + 1)ρθ2∂xu(i−1)(j+1)η
i(v − θ)j −

∞∑
i=2
j=3

1
2(j − 1)(j − 2)u(i−2)(j−1)η

i(v − θ)j

−
∞∑
i=2
j=2

3θ
2 j(j − 1)u(i−2)jη

i(v − θ)j −
∞∑
i=2
j=1

3θ2

2 j(j + 1)u(i−2)(j+1)η
i(v − θ)j

−
∞∑
i=2
j=0

θ3

2 (j + 1)(j + 2)u(i−2)(j+2)η
i(v − θ)j +

∞∑
i=0
j=1

jκθuijη
i(v − θ)j

+
∞∑
i=0
j=2

(j − 1)κui(j−1)η
i(v − θ)j = 0. (3.42)

The above equations hold if the coefficients of ηi(v−θ)j satisfy the following inhomogeneous
Black–Scholes equations. For the Heston model,

Bθuij + jκuij = 1
2
(
∂2
x − ∂x

)
ui(j−1) + ρj∂xu(i−1)j + ρθ(j + 1)∂xu(i−1)(j+1)

+ 1
2j(j + 1)u(i−2)(j+1) + θ

2(j + 1)(j + 2)u(i−2)(j+2). (3.43)

For the GARCH model,

Bθuij + jκuij = 1
2
(
∂2
x − ∂x

)
ui(j−1) + 1

2j(j − 1)u(i−2)j + j(j + 1)θu(i−2)(j+1)

+ 1
2(j + 1)(j + 2)θ2u(i−2)(j+2)

+
j+1∑
n=0

3ρ(j + 1− n)(2n− 5)! !
(2n)! !

√
θ

(
−1
θ

)n−2
∂xu(i−1)(j+1−n). (3.44)

For the 3/2 model,

Bθuij + jκθuij = 1
2
(
∂2
x − ∂x

)
ui(j−1) + ρ(j − 1)∂xu(i−1)(j−1) + 2ρθj∂xu(i−1)j

+ ρθ2(j + 1)∂xu(i−1)(j+1) + 1
2(j − 1)(j − 2)u(i−2)(j−1)

+ 3
2θj(j − 1)u(i−2)j + 3

2θ
2j(j + 1)u(i−2)(j+1)
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+ 1
2θ

3(j + 1)(j + 2)u(i−2)(j+2) − (j − 1)κui(j−1). (3.45)

All equations should be solved with the initial condition (3.18), and the terms with
negative indexes vanish by definition. For (3.40), (3.41) and (3.42), u00 satisfies the
homogeneous Black–Scholes equation with an initial condition that can be solved by
Lemma 2.1.2 and other terms satisfy the inhomogeneous Black–Scholes equation that
can be solved by Lemma 2.1.3.

As in the previous case, after the iterative expression for uij is given, the coefficients
should be calculated in a particular order to ensure that when calculating uij , all the terms
involved (Figure 3.3) have been calculated. For (η, v)-expansion, the order illustrated in

u(i−2)(j+1) u(i−2)(j+2)

u(i−1)j u(i−1)(j+1)

ui(j−1) uij

u(i−1)j u(i−2)(j+1) u(i−2)(j+2)

u(i−1)0 · · · u(i−1)(j−1) u(i−1)j u(i−1)(j+1)

ui(j−1) uij

u(i−2)(j−1) u(i−2)j u(i−2)(j+1) u(i−2)(j+2)

u(i−1)(j−1) u(i−1)j u(i−1)(j+1)

ui(j−1) uij

Figure 3.3: Terms involved in the calculation of uij under the Heston model (above), the
GARCH model (middle) and the 3/2 model (below).

Figure 3.4 is recommended.

u00 u01 u02 u03 u04

u10 u11 u12 u13

u20 u21 u22

u30 u31

u40

Figure 3.4: Order of calculation for (κ, η), (η, v) and (η, θ)-expansion.

The following corollary shows the general form of (κ, η)-expansion coefficients uij .
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Corollary 3.2.5. For solution (3.32), the coefficients uij, except the leading term u00,
are BSDE functions,

uij ∈ Σ′1, for i+ j > 0. (3.46)

Proof. Define

w = 1
2
√

2πθt
exp

(
− x2

2θt + ax+ bt

)
, (3.47a)

a = 1
2 −

r

θ
, b = −θ2

(
1
2 + r

θ

)2
. (3.47b)

For the Heston and GARCH models, the leading terms in Order 3.2.2 are

uO(1) = u00 /∈ Σ′1 (3.48a)

uO(2) = u01 = w (1− e−κt)
κ

∈ Σ′1. (3.48b)

For the 3/2 model,

uO(1) = u00 /∈ Σ′1 (3.49a)

uO(2) = u01 =
w
(
1− e−κθt

)
κθ

∈ Σ′1. (3.49b)

One can check that when n > 2, uO(n) does not involve u00 on the right-hand side of
(3.40). Therefore, if

uO(k) ∈ Σ′1, 2 ≤ k ≤ n− 1, (3.50)

by Lemma 2.2.8 and 2.2.10, (3.43)– (3.45) give

uO(n) ∈ Σ′1. (3.51)

By induction

uO(n) ∈ Σ′1, n ≥ 2. (3.52)

3.2.3 (η, θ)-expansion
The following proposition shows how to derive expansion terms in (3.7), and how it differs
from the previous (η, v)-expansion.

Proposition 3.2.6. The solution of (3.2) with initial condition (3.3) can be written as

u(t, x) =
∞∑
i=0
j=0

uij(t, x, v)ηi(θ − v)j , (3.53)

with

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
, (3.54a)
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u00(t, x) = 1
2e

x erfc
[
−x+ (1− a)vt√

2vt

]
− 1

2e
−rt erfc

[
−x− avt√

2vt

]
(3.54b)

uij(s, y) = eay+bs−jκvαs
∫ s

0

dt√
2πv(s− t)

∫ ∞
−∞

dx exp
[
− (x− y)2

2v(s− t) − ax− bt+ jκvαt

]
×
[
ρvβ+ 1

2 ∂x∂vu(i−1)j − (j + 1)ρvβ+ 1
2 ∂xu(i−1)(j+1) + 1

2v
2β∂2

vu(i−2)j

−(j + 1)v2β∂vu(i−2)(j+1) + 1
2(j + 1)(j + 2)v2βu(i−2)(j+2)

+κvα∂vui(j−1)

]
. (3.54c)

Proof. Since when η = 0 and v = θ, the Black–Scholes model is recovered, besides (3.37)
in the Proposition 3.2.4, the option price can also be written as

u =
∞∑
i=0
j=0

uij(v)ηi(θ − v)j , (3.55a)

u00 = 1
2e

x erfc
[
−x+ (1− a)vt√

2vt

]
− 1

2e
−rt erfc

[
−x− avt√

2vt

]
, (3.55b)

where the Black–Scholes model with variance v is used as a starting point. The difference
with Proposition 3.2.4 is that θ is regarded as expansion parameter, and is used in all
structural constants a, b and in the inverse Black–Scholes operator B−1

v .

The v-derivatives act on both the coefficients uij(v) and the power terms

∂vu =
∞∑
i=0
j=0

∂vuijη
i(θ − v)j −

∞∑
i=0
j=0

juijη
i(θ − v)j−1

=
∞∑
i=0
j=0

∂vuijη
i(θ − v)j −

∞∑
i=0
j=0

(j + 1)ui(j+1)η
i(θ − v)j , (3.56a)

∂2
vu =

∞∑
i=0
j=0

∂2
vuijη

i(θ − v)j − 2
∞∑
i=0
j=0

j∂vuijη
i(θ − v)j−1 +

∞∑
i=0
j=0

j(j − 1)uijηi(θ − v)j−2

=
∞∑
i=0
j=0

∂2
vuijη

i(θ − v)j − 2
∞∑
i=0
j=0

(j + 1)∂vui(j+1)η
i(θ − v)j

+
∞∑
i=0
j=0

(j + 1)(j + 2)ui(j+2)η
i(θ − v)j , (3.56b)

∂nz u =
∞∑
i=0
j=0

∂nz uijη
i(v − θ)j , (3.56c)

where z denotes variables other than v. With ansatz (3.55) and derivatives (3.56), (3.2)
becomes
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∞∑
i=0
j=0

Bvuijηi(θ − v)j −
∞∑
i=1
j=0

ρvβ+ 1
2 ∂x∂vu(i−1)jη

i(θ − v)j

+
∞∑
i=1
j=0

(j + 1)ρvβ+ 1
2 ∂xu(i−1)(j+1)η

i(θ − v)j −
∞∑
i=2
j=0

1
2v

2β∂2
vu(i−2)jη

i(θ − v)j

+
∞∑
i=2
j=0

(j + 1)v2β∂vu(i−2)(j+1)η
i(θ − v)j −

∞∑
i=2
j=0

1
2(j + 1)(j + 2)v2βu(i−2)(j+2)η

i(θ − v)j

−
∞∑
i=0
j=1

κvα∂vui(j−1)η
i(θ − v)j +

∞∑
i=0
j=1

κvαjuijη
i(θ − v)j = 0, (3.57)

with initial condition (3.18). The coefficients of ηi(θ − v)j satisfy

Bvuij + κvαjuij = ρvβ+ 1
2 ∂x∂vu(i−1)j − (j + 1)ρvβ+ 1

2 ∂xu(i−1)(j+1) + 1
2v

2β∂2
vu(i−2)j

− (j + 1)v2β∂vu(i−2)(j+1) + 1
2(j + 1)(j + 2)v2βu(i−2)(j+2)

+ κvα∂vui(j−1). (3.58)

Similarly they can be solved by Lemma 2.1.2 and 2.1.3.

u(i−2)j u(i−2)(j+1) u(i−2)(j+2)

u(i−1)j u(i−1)(j+1)

ui(j−1) uij

Figure 3.5: Terms involved in the calculation of uij .

The terms involved in every iteration of (η, θ)-expansion are shown in Figure 3.5. The
order illustrated in Figure 3.6 (Order 3.2.2) can be applied. The following corollary

u00 u01 u02 u03 u04

u10 u11 u12 u13

u20 u21 u22

u30 u31

u40

Figure 3.6: Order of calculation for (κ, η), (η, v) and (η, θ)-expansion.

ensures the form of the coefficients uij .
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Corollary 3.2.7. For solution (3.53), the coefficients uij, except the leading term u00,
are BSDE functions,

uij ∈ Σ′1, for i+ j > 0. (3.59)

Proof. Define

w = 1
2
√

2πvt
exp

(
− x2

2vt + ax+ bt

)
, (3.60)

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
. (3.61)

For the Heston and GARCH models, the leading terms in Order 3.2.2 are

uO(1) = u00 /∈ Σ′1 (3.62)

uO(2) = u01 = w (1− e−κt)
κ

∈ Σ′1. (3.63)

For the 3/2 model,

uO(1) = u00 /∈ Σ′1 (3.64)

uO(2) = u01 = w (1− e−κvt)
κv

∈ Σ′1. (3.65)

One can check that when n > 2, uO(n) does not involve u00 on the right-hand side of
(3.40). Therefore, if

uO(k) ∈ Σ′1, 2 ≤ k ≤ n− 1, (3.66)

by Lemma 2.2.8 and 2.2.10, (3.40) gives

uO(n) ∈ Σ′1. (3.67)

By induction,

uO(n) ∈ Σ′1, n ≥ 2. (3.68)

3.2.4 (κ, v)-expansion
The next proposition shows how to derive expansion terms in (3.10).

Proposition 3.2.8. The solution of (3.2) with initial condition (3.3) can be written as

u(t, x) =
∞∑
i=0
j=0

uij(t, x, θ)κ−i(v − θ)j , (3.69)

with

a = 1
2 −

r

θ
, b = −θ2

(
1
2 + r

θ

)2
, (3.70a)
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u00(t, x) = 1
2e

x erfc
[
−x+ (1− a)θt√

2θt

]
− 1

2e
−rt erfc

[
−x− aθt√

2θt

]
. (3.70b)

For the Heston model,

ui0(s, y) = eay+bs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
(
− (x− y)2

2θ(s− t) − ax− bt
)

×
(
ρηθ∂xui1 + η2θui2

)
, (3.71a)

ui(j>0)(t, x) = 1
j

[
−Bθu(i−1)j + 1

2
(
∂2
x − ∂x

)
u(i−1)(j−1) + ρηj∂xu(i−1)j

+ρηθ(j + 1)∂xu(i−1)(j+1) + η2

2 j(j + 1)u(i−1)(j+1)

+η2θ

2 (j + 1)(j + 2)u(i−1)(j+2)

]
. (3.71b)

For the GARCH model,

ui0(s, y) = eay+bs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
(
− (x− y)2

2θ(s− t) − ax− bt
)

×
(
ρηθ

3
2 ∂xui1 + η2θ2ui2

)
, (3.72a)

ui(j>0)(t, x) = 1
j

[
−Bθu(i−1)j + 1

2
(
∂2
x − ∂x

)
u(i−1)(j−1) + η2

2 j(j − 1)u(i−1)j

+η2θ

2 j(j + 1)u(i−1)(j+1) + η2θ2

2 (j + 1)(j + 2)u(i−1)(j+2)

+
j+1∑
n=0

3ρη(j + 1− n)(2n− 5)! !
(2n)! !

√
θ

(
−1
θ

)n−2
∂xu(i−1)(j+1−n)

]
. (3.72b)

For the 3/2 model,

ui0(s, y) = eay+bs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
(
− (x− y)2

2θ(s− t) − ax− bt
)

×
(
ρηθ2∂xui1 + η2θ3ui2

)
, (3.73a)

ui(j>0)(t, x) = 1
jθ

[
−Bθu(i−1)j + 1

2
(
∂2
x − ∂x

)
u(i−1)(j−1) + ρη(j − 1)∂xu(i−1)(j−1)

+2ρηθj∂xu(i−1)j + ρηθ2(j + 1)∂xu(i−1)(j+1)

+1
2η

2(j − 1)(j − 2)u(i−1)(j−1) + 3
2η

2θj(j − 1)u(i−1)j

+3
2η

2θ2j(j + 1)u(i−1)(j+1) + 1
2η

2θ3(j + 1)(j + 2)u(i−1)(j+2)

−(j − 1)ui(j−1)

]
. (3.73b)

Proof. From (3.1), it has been shown that when 1
κ → 0 (κ→∞), the variance process is

constant at vt = θ. Therefore the option price can be expanded at 1
κ = 0 and v = θ

u =
∞∑
i=0
j=0

uij(θ)κ−i(v − θ)j , (3.74)
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u00 = ex

2 erfc
[
−x+ (1− a)θt√

2θt

]
− e−rt

2 erfc
[
−x− aθt√

2θt

]
. (3.75)

As in (3.38), the derivatives involved in this expansion are

∂vu =
∞∑
i=0
j=0

juijκ
−i(v − θ)j−1 =

∞∑
i=0
j=0

(j + 1)ui(j+1)κ
−i(v − θ)j , (3.76a)

∂2
vu =

∞∑
i=0
j=0

j(j − 1)uijκ−i(v − θ)j−2 =
∞∑
i=0
j=0

(j + 1)(j + 2)ui(j+2)κ
−i(v − θ)j , (3.76b)

∂nz u =
∞∑
i=0
j=0

∂nz uijκ
−i(v − θ)j , (3.76c)

where z indicates variables other than v. The power terms of v in (3.2) are expanded as
in (3.39). Then for the Heston model, (3.2) becomes

∞∑
i=0
j=0

Bθuijκ−i(v − θ)j −
∞∑
i=0
j=1

1
2
(
∂2
x − ∂x

)
ui(j−1)κ

−i(v − θ)j −
∞∑
i=0
j=1

ρηj∂xuijκ
−i(v − θ)j

−
∞∑
i=0
j=0

ρηθ(j + 1)∂xui(j+1)κ
−i(v − θ)j −

∞∑
i=0
j=1

η2

2 j(j + 1)ui(j+1)κ
−i(v − θ)j

−
∞∑
i=0
j=0

η2θ

2 (j + 1)(j + 2)ui(j+2)κ
−i(v − θ)j +

∞∑
i=−1
j=1

ju(i+1)jκ
−i(v − θ)j = 0. (3.77)

For the GARCH model, (3.2) becomes

∞∑
i=0
j=0

Bθuijκ−i(v−θ)j−
∞∑
i=0
j=1

1
2
(
∂2
x − ∂x

)
ui(j−1)κ

−i(v−θ)j−
∞∑
i=0
j=2

η2

2 j(j−1)uijκ−i(v−θ)j

−
∞∑
i=0
j=1

θη2

2 j(j + 1)ui(j+1)κ
−i(v − θ)j −

∞∑
i=0
j=0

θ2η2

2 (j + 1)(j + 2)ui(j+2)κ
−i(v − θ)j

−
∞∑
i=0
j=0

j+1∑
n=0

3ρη(j + 1− n)(2n− 5)! !
(2n)! !

√
θ

(
−1
θ

)n−2
∂xui(j+1−n)κ

−i(v − θ)j

+
∞∑

i=−1
j=1

ju(i+1)jκ
−i(v − θ)j = 0. (3.78)

For the 3/2 model, (3.2) becomes

∞∑
i=0
j=0

Bθuijκ−i(v − θ)j −
∞∑
i=0
j=1

1
2
(
∂2
x − ∂x

)
ui(j−1)κ

−i(v − θ)j
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−
∞∑
i=0
j=2

ρη(j − 1)∂xui(j−1)κ
−i(v − θ)j −

∞∑
i=0
j=1

2ρηθj∂xuijκ−i(v − θ)j

−
∞∑
i=0
j=0

ρηθ2(j + 1)∂xui(j+1)κ
−i(v − θ)j −

∞∑
i=0
j=3

η2

2 (j − 1)(j − 2)ui(j−1)κ
−i(v − θ)j

−
∞∑
i=0
j=2

3θη2

2 j(j − 1)uijκ−i(v − θ)j −
∞∑
i=0
j=1

3θ2η2

2 j(j + 1)ui(j+1)κ
−i(v − θ)j

−
∞∑
i=0
j=0

θ3η2

2 (j + 1)(j + 2)ui(j+2)κ
−i(v − θ)j +

∞∑
i=−1
j=2

(j − 1)u(i+1)(j−1)κ
−i(v − θ)j

+
∞∑

i=−1
j=1

θju(i+1)jκ
−i(v − θ)j = 0. (3.79)

The coefficients for κ−1(v − θ)j result in

Bθui0 = ρηθ∂xui1 + η2θui2, (3.80a)

jui(j>0)(t, x) = −Bθu(i−1)j + 1
2
(
∂2
x − ∂x

)
u(i−1)(j−1) + ρηj∂xu(i−1)j

+ ρηθ(j + 1)∂xu(i−1)(j+1) + η2

2 j(j + 1)u(i−1)(j+1)

+ η2θ

2 (j + 1)(j + 2)u(i−1)(j+2) (3.80b)

for the Heston model,

Bθui0 = ρηθ
3
2 ∂xui1 + η2θ2ui2, (3.81a)

jui(j>0)(t, x) = −Bθu(i−1)j + 1
2
(
∂2
x − ∂x

)
u(i−1)(j−1) + η2

2 j(j − 1)u(i−1)j

+ η2θ

2 j(j + 1)u(i−1)(j+1) + η2θ2

2 (j + 1)(j + 2)u(i−1)(j+2)

+
j+1∑
n=0

3ρη(j + 1− n)(2n− 5)! !
(2n)! !

√
θ

(
−1
θ

)n−2
∂xu(i−1)(j+1−n) (3.81b)

for the GARCH model and

Bθui0 = ρηθ2∂xui1 + η2θ3ui2, (3.82a)

jθui(j>0)(t, x) = −Bθu(i−1)j + 1
2
(
∂2
x − ∂x

)
u(i−1)(j−1) + ρη(j − 1)∂xu(i−1)(j−1)

+ 2ρηθj∂xu(i−1)j + ρηθ2(j + 1)∂xu(i−1)(j+1)

+ 1
2η

2(j − 1)(j − 2)u(i−1)(j−1) + 3
2η

2θj(j − 1)u(i−1)j

+ 3
2η

2θ2j(j + 1)u(i−1)(j+1) + 1
2η

2θ3(j + 1)(j + 2)u(i−1)(j+2)

− (j − 1)ui(j−1) (3.82b)

for the 3/2 model. Using Lemma 2.1.3, we can solve these equations for ui0.
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As shown previously, when κ goes to infinity, stochastic volatility reduces to constant
volatility θ, regardless of the initial volatility v. Therefore, the calculation order of
(κ, v)-expansion is different than previous expansions, because the expansion terms exhibit
a unique structure.

Corollary 3.2.9. For all models in Proposition 3.2.8, the expansion coefficients are

u0j = 0, for j ≥ 1. (3.83)

Proof. When κ = ∞, the variance process is constant vt = θ and the Black–Scholes
model with variance θ is recovered. Therefore the solution is

u|κ=∞ =
∞∑
j=0

u0j(v − θ)j = 1
2e

x erfc
[
−x+ (1− a)θt√

2θt

]
− 1

2e
−rt erfc

[
−x− aθt√

2θt

]
. (3.84)

Since the above solution (Black–Scholes solution with variance θ) does not depend on
the initial variance v, the higher order coefficients are

u0j = 0, for j ≥ 1. (3.85)

The expansion coefficients for the Heston model look like a lower triangular matrix.

Corollary 3.2.10. For the Heston model in Proposition 3.2.8, the expansion coefficients
are

uij = 0, for j > i. (3.86)

Proof. Assume that

u(i−1)j = 0, for ∀i and j ≥ i. (3.87)

Because for the Heston model (3.80), uij is linear in four terms:

uij = Au(i−1)(j−1) +Bu(i−1)j + Cu(i−1)(j+1) +Du(i−1)(j+2), for j ≥ 1. (3.88)

If j ≥ i+ 1, then j − 1 ≥ i and

u(i−1)(j−1) = u(i−1)j = u(i−1)(j+1) = u(i−1)(j+2) = 0, (3.89)

consequently,

ui(j+1) = 0, for j ≥ i. (3.90)

By the previous corollary,

u0j = 0, for j ≥ 1. (3.91)

By induction,

uij = 0, for j > i. (3.92)
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u(i−1)(j−1) u(i−1)j u(i−1)(j+1) u(i−1)(j+2)

uij

ui0 ui1 ui2

(Heston model)
u(i−1)1 · · · u(i−1)j u(i−1)(j+1) u(i−1)(j+2)

uij

ui0 ui1 ui2

(GARCH model)
u(i−1)(j−1) u(i−1)j u(i−1)(j+1) u(i−1)(j+2)

ui(j−1) uij

ui0 ui1 ui2

(3/2 model)
Figure 3.7: Terms involved in the calculation of uij .

For the (κ, v)-expansion, the terms involved in the calculation of uij are shown in Figure
3.7.

As shown in Figure 3.8, the expansion terms can be calculated as in Order 3.2.11 for the
Heston model, and Order 3.2.12 for the GARCH and 3/2 models.

Order 3.2.11. Let i, j, n ∈ N and O(1) = (0, 0). If O(n) = (i, j), and then

O(n+ 1) =


(i+ 1, 1), j = 0,
(i, j + 1), 0 < j < i,

(i, 0), j = i.

(3.93)

Order 3.2.12. Let i, j, n ∈ N and O(1) = (0, 0). If O(n) = (i, j), and then

O(n+ 1) =


(1, 2i+ 1), j = 0,
(1, 2i), j = 1,
(i, 0), j = 2,
(i+ 1, j − 2), j ≥ 3.

(3.94)

Like in the previous cases, we could show that the expansion terms are all BSE functions,
except u00.

Corollary 3.2.13. In Proposition 3.2.8, the expansion coefficients

uij ∈ Σ1, for j ≥ 1. (3.95)
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u00 0 0 0 0

u10 u11 0 0 0

u20 u21 u22 0 0

u30 u31 u32 u33 0

(Heston model)
u00 0 0 0 0 0 0

u10 u11 u12 u13 u14 u15 u16

u20 u21 u22 u23 u24

ui0 ui1 ui2

(GARCH and 3/2 model)
Figure 3.8: Order of calculation for (κ, v)-expansion.

Proof. For the Heston model,

u11 = 1
2
(
∂2
x − ∂x

)
u00 = 1

2
√

2πθt
exp

(
− x2

2θt + ax+ bt

)
∈ Σ1, (3.96)

u10 = B−1ρηθ∂xu11 ∈ Σ1, (3.97)
u1j = 0 ∈ Σ1, j > 1. (3.98)

For the GARCH model,

u11 = 1
2
(
∂2
x − ∂x

)
u00 = 1

2
√

2πθt
exp

(
− x2

2θt + ax+ bt

)
∈ Σ1, (3.99)

u10 = B−1ρηθ
3
2 ∂xu11 ∈ Σ1, (3.100)

u1j = 0 ∈ Σ1, j > 1. (3.101)

For the 3/2 model,

u11 = 1
2θ
(
∂2
x − ∂x

)
u00 = 1

2θ
√

2πθt
exp

(
− x2

2θt + ax+ bt

)
∈ Σ1, (3.102)

u10 = B−1ρηθ2∂xu11 ∈ Σ1, (3.103)

u1j = −j − 1
jθ

u1(j−1) ∈ Σ1, j > 1. (3.104)

Therefore, for all models,

u1j ∈ Σ1, j ≥ 0. (3.105)

Suppose

uij ∈ Σ1, j ≥ 0. (3.106)
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Then,

u(i+1)j ∈ Σ1, (3.107)

because the calculation of u(i+1)j only involves BSE functions

uik, k = 0, 1, . . . , j + 2, (3.108)

which are closed under B−1 and differential operators. By induction,

uij ∈ Σ1, for i > 1. (3.109)

3.3 Bounded basis expansions

In the last section, we expanded the option prices with powers of parameters pi. Concep-
tually, in the infinite-dimensional function space, all sets of basis vectors are equivalent.
However, in practical calculations only a limited number of terms can be evaluated.
Therefore, we have to cut off the polynomial to a certain degree:

u =
∞∑

i,j=0
uijp

iqj ≈
N∑

i,j=0
uijp

iqj , (3.110)

where p and q are expansion parameters and N is the largest power we calculate to. With
a cut off limit of N , basis vector sets are no longer equivalent. If more appropriate basis
vectors are chosen, the approximation error will be smaller.

For stochastic volatility models, the option price can be calculated using the Black–Scholes
formula

C(v̄) = 1
2e

x erfc
[
−
x+

(
v̄
2 + r

)
t

√
2v̄t

]
− 1

2e
−rt erfc

[
−
x−

(
v̄
2 − r

)
t

√
2v̄t

]
, (3.111)

with v̄ being the average variance in the period [0, t]

v̄ = 1
t

∫ t

0
vs ds, (3.112)

and the SDE for variance process vt is

dvt = κ(θ − vt)vαt dt+ ηvβt dZt. (3.113)

Because C(v̄) is continuous on 0 ≤ v̄ <∞ and

C(0) =
(
ex − e−rt

)+
, C(∞) = ex, (3.114)

C(v̄) is bounded with respect to v̄. Therefore, the option price obtained under stochastic
volatility models is also bounded with respect to parameters (η, κ and v) of the SDE
(3.113).

Figure 3.9 shows the asymptotic behavior of functions xi and
(

x
1+x

)i
. As x→∞,

lim
x→∞

xi =∞, i ≥ 1, (3.115)
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Figure 3.9: Asymptotic behavior of xi (left) and
(

x
1+x

)i (right).
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Figure 3.10: Asymptotic behavior of model parameter v.

lim
x→∞

(
x

1 + x

)i
= 1, i ≥ 1. (3.116)

Figure 3.10 shows the asymptotic behavior of option prices with respect to a parameter of
the variance process (3.113), which is the initial variance v. It confirms the boundedness
of the option price and it looks very similar to Figure 3.9 of the bounded function(

x

1 + x

)i
, i ≥ 1. (3.117)

Therefore, in the following propositions, we use (3.117) instead of xi, as basis functions
of expansion.

First, we have to determine how basis functions behave under differentiation and multi-
plication, because these operations are not as trivial as those for xi.

Lemma 3.3.1. For i, k ∈ N, and x > −1,

x

(
x

1 + x

)i
=
∞∑
k=0

(
x

1 + x

)i+k+1
, (3.118a)



3.3. Bounded basis expansions 51

x2
(

x

1 + x

)i
=
∞∑
k=0

2(k)

k!

(
x

1 + x

)i+k+2
, (3.118b)

∂x

(
x

1 + x

)i
= i

(
x

1 + x

)i−1
− 2i

(
x

1 + x

)i
+ i

(
x

1 + x

)i+1
, (3.118c)

x∂x

(
x

1 + x

)i
= i

(
x

1 + x

)i
− i
(

x

1 + x

)i+1
, (3.118d)

x2∂x

(
x

1 + x

)i
= i

(
x

1 + x

)i+1
, (3.118e)

∂2
x

(
x

1 + x

)i
= i(i− 1)

(
x

1 + x

)i−2
+ i(2− 4i)

(
x

1 + x

)i−1
+ 6ii

(
x

1 + x

)i
+ i(−2− 4i)

(
x

1 + x

)i+1
+ i(i+ 1)

(
x

1 + x

)i+2
, (3.118f)

x∂2
x

(
x

1 + x

)i
= i(i− 1)

(
x

1 + x

)i−1
− i(3i− 1)

(
x

1 + x

)i
+ i(3i+ 1)

(
x

1 + x

)i+1
− i(i+ 1)

(
x

1 + x

)i+2
, (3.118g)

x2∂2
x

(
x

1 + x

)i
= i(i− 1)

(
x

1 + x

)i
− 2i2

(
x

1 + x

)i+1
+ i(i+ 1)

(
x

1 + x

)i+2
,

(3.118h)

x3∂2
x

(
x

1 + x

)i
= i(i− 1)

(
x

1 + x

)i+1
− i(i+ 1)

(
x

1 + x

)i+2
. (3.118i)

Proof. Suppose

k∑
l=0

i(k−l)

(k − l)! = (i+ 1)(k)

k! , (3.119)

then

k+1∑
l=0

i(k+1−l)

(k + 1− l)! =
k∑
l=0

i(k−l)

(k − l)! + i(k+1)

(k + 1)! = (i+ 1)(k)

k! + i(k+1)

(k + 1)!

= (k + 1)(i+ 1)(k) + i(i+ 1)(k)

(k + 1)! = (i+ k + 1)(i+ 1)(k)

(k + 1)! = (i+ 1)(k+1)

(k + 1)! . (3.120)

Because (3.119) holds for k = 0, by induction, it holds for k ∈ N. If

1
(1− y)i =

∞∑
k=0

i(k)

k! y
k, (3.121)

then

1
(1− y)i+1 = 1

(1− y)i
1

1− y =
∞∑
k=0

i(k)

k! y
k
∞∑
l=0

yl



52 Chapter 3. European options under stochastic volatility models

=
∞∑
k=0

k∑
l=0

i(k−l)

(k − l)!y
k =

∞∑
k=0

(i+ 1)(k)

k! yk. (3.122)

Because (3.121) holds for i = 0, by induction, it holds for i ∈ N. Define

y = x

1 + x
. (3.123)

Because when 0 < x <∞, 0 < y < 1. Therefore, (3.121) can be used to prove the first
two identities of this lemma. The rest can be proved by direct computation.

In this section, we show the validity of bounded basis version of the (η, v)-expansion.
However all four expansion methods introduced earlier in the last section can be modified
in the same way.

3.3.1 (η + 1, v + 1)-expansion

Proposition 3.3.2. The solution of (3.2) with initial condition (3.3) can be written as

u(t, x) =
∞∑
i=0
j=0

uij(t, x, θ)XiY j , (3.124)

with

X = η

1 + η
, Y = v − θ

1 + v − θ
, a = 1

2 −
r

θ
, b = −θ2

(
1
2 + r

θ

)2
, (3.125)

and

u00(t, x) = 1
2e

x erfc
[
−x+ (1− a)θt√

2θt

]
− 1

2e
−rt erfc

[
−x− aθt√

2θt

]
. (3.126)

For the Heston model,

uij(s, y) = eay+bs−jκs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
[
− (x− y)2

2θ(s− t) − ax− bt+ jκt

]

×

{
1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k) + ρ

[
j∂x

i−1∑
k=0

u(i−1−k)j − (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ ρθ

[
(j + 1)∂x

i−1∑
k=0

u(i−1−k)(j+1) − 2j∂x
i−1∑
k=0

u(i−1−k)j + (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ 1
2

[
j(j + 1)

i−2∑
k=0

(k + 1)u(i−2−k)(j+1) − j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)j

+(j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1) − (j − 2)(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ θ

2

[
(j + 1)(j + 2)

i−2∑
k=0

(k + 1)u(i−2)(j+2) − (j + 1)(4j + 2)
i−1∑
k=0

(k + 1)u(i−2−k)(j+1)
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+6j2
i−2∑
k=0

(k + 1)u(i−2−k)j − (j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ κ(j − 1)ui(j−1)

}
. (3.127)

For the GARCH model,

uij(s, y) = eay+bs−jκs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
[
− (x− y)2

2θ(s− t) − ax− bt+ jκt

]

×

{
1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k)

+ ρ

[
j+1∑
k=0

j−k+1∑
l=0

i−1∑
m=0

3(j − k − l + 1)(2k − 5)! !
(2k)! !

√
θ

(
−1
θ

)k−2
k(l)

l! ∂xu(i−1−m)(j−k−l+1)

+
j∑

k=0

j−k∑
l=0

i−1∑
m=0

6(j − k − l)(2k − 5)! !
(2k)! !

√
θ

(
−1
θ

)k−2
k(l)

l! ∂xu(i−1−m)(j−k−l)

+
j−1∑
k=0

j−k−1∑
l=0

i−1∑
m=0

3(j − k − l − 1)(2k − 5)! !
(2k)! !

√
θ

(
−1
θ

)k−2
k(l)

l! ∂xu(i−1−m)(j−k−l−1)

]

− 1
2

[
j(j − 1)

i−2∑
k=0

(k + 1)u(i−2−k)j − 2(j − 1)2
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ θ

[
j(j + 1)

i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

−j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)j + (j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

−(j − 2)(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ θ2

2

[
(j + 1)(j + 2)

i−2∑
k=0

(k + 1)u(i−2−k)(j+2) − (j + 1)(4j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

+6j2
i−2∑
k=0

(k + 1)u(i−2−k)j − (j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ κ(j − 1)ui(j−1)

}
. (3.128)

For the 3/2 model,

uij(s, y) = eay+bs−jκθs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
[
− (x− y)2

2θ(s− t) − ax− bt+ jκθt

]

×

{
1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k) + ρ(j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)
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+ 2ρθ
[
j∂x

i−1∑
k=0

u(i−1−k)j − (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ θ2

[
(j + 1)∂x

i−1∑
k=0

u(i−1−k)(j+1) − 2j∂x
i−1∑
k=0

u(i−1−k)j + (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ 1
2

[
(j − 1)(j − 2)

i−2∑
k=0

(k + 1)u(i−2−k)(j−1) − (j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ 3θ
2

[
j(j − 1)

i−2∑
k=0

(k + 1)u(i−2−k)j − 2(j − 1)2
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ 3θ2

2

[
−j(j + 1)

i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

−j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)j + (j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

−(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ θ3

2

[
(j + 1)(j + 2)

i−2∑
k=0

(k + 1)u(i−2−k)(j+2) − (j + 1)(4j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

+6j2
i−2∑
k=0

(k + 1)u(i−2−k)j − (j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
− κ(j − 1)ui(j−1) + κθ(j − 1)ui(j−1)

}
.

(3.129)

Proof. From the model definition (3.1), the Black–Scholes model can be recovered by
setting η = 0 and v = θ. Thus, the solution can be written as

u =
∞∑
i=0
j=0

uij(θ)
(

η

1 + η

)i(
v − θ

1 + v − θ

)j
, (3.130a)

u00 = 1
2e

x erfc
[
−x+ (1− a)θt√

2θt

]
− 1

2e
−rt erfc

[
−x− aθt√

2θt

]
. (3.130b)

In the above expansion, v-derivatives in (3.2) act only on the power terms

Y j =
(

v − θ
1 + v − θ

)j
, (3.131)

which can be obtained by replacing x with v − θ in Lemma 3.3.1.

After decomposing all v-terms to Y -terms in (3.2) and shifting the starting value of
indexes i and j, the PDE (3.2) can be written in terms of XiY j . For the Heston model,
(3.2) becomes
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∞∑
i=0
j=0

BθuijXiY j −
∞∑
i=0
j=1

1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k)X
iY j − ρ

 ∞∑
i=1
j=1

j∂x

i−1∑
k=0

u(i−1−k)jX
iY j

−
∞∑
i=1
j=2

(j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)X
iY j

− ρθ
 ∞∑
i=1
j=0

(j + 1)∂x
i−1∑
k=0

u(i−1−k)(j+1)X
iY j

−
∞∑
i=1
j=1

2j∂x
i−1∑
k=0

u(i−1−k)jX
iY j +

∞∑
i=1
j=2

(j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)X
iY j


− 1

2

 ∞∑
i=2
j=1

j(j + 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1)X
iY j −

∞∑
i=2
j=1

j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)jX
iY j

+
∞∑
i=2
j=2

(j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)X
iY j

−
∞∑
i=2
j=3

(j − 2)(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)X
iY j


− θ

2

 ∞∑
i=2
j=0

(j + 1)(j + 2)
i−2∑
k=0

(k + 1)u(i−2)(j+2)X
iY j

−
∞∑
i=2
j=0

(j + 1)(4j + 2)
i−1∑
k=0

(k + 1)u(i−2−k)(j+1)X
iY j +

∞∑
i=2
j=1

6j2
i−2∑
k=0

(k + 1)u(i−2−k)jX
iY j

−
∞∑
i=2
j=2

(j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)X
iY j

+
∞∑
i=2
j=3

(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)X
iY j


+ κ

 ∞∑
i=0
j=1

juijX
iY j −

∞∑
i=0
j=2

(j − 1)ui(j−1)X
iY j

 = 0. (3.132)

For the GARCH model, there is a particular term that needs special attention. Because

Y = v − θ
1 + v − θ

, (3.133)

then

v
3
2 =

(
Y

1− Y + θ

) 3
2

=
∞∑
i=0

Y iDiY
(

Y

1− Y + θ

) 3
2

. (3.134)
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According to the previous lemma,

∂v

∞∑
j=0

ujY
j =

∞∑
j=0

juj
(
Y j−1 − 2Y j + Y j+1) . (3.135)

Therefore,

v
3
2 ∂v

∞∑
j=0

ujY
j =

∞∑
j=0

∞∑
i=0

jujDiY
(

Y

1− Y + θ

) 3
2 (
Y j+i−1 − 2Y j+i + Y j+i+1)

=
∞∑
j=0

j∑
i=0

(j − i+ 1)uj−i+1DiY
(

Y

1− Y + θ

) 3
2

Y j

− 2
∞∑
j=1

j−1∑
i=0

(j − i)uj−iDiY
(

Y

1− Y + θ

) 3
2

Y j

+
∞∑
j=2

j−2∑
i=0

(j − i− 1)uj−i−1DiY
(

Y

1− Y + θ

) 3
2

Y j . (3.136)

Then, (3.2) becomes

∞∑
i=0
j=0

BθuijXiY j −
∞∑
i=0
j=1

1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k)X
iY j

− ρ

 ∞∑
i=1
j=0

j∑
k=0

i−1∑
l=0

(j − k + 1)∂xu(i−1−l)(j−k+1)DkY
(

Y

1− Y + θ

) 3
2

XiY j

−2
∞∑
i=1
j=1

j−1∑
k=0

i−1∑
l=0

(j − k)∂xu(i−1−l)(j−k)DkY
(

Y

1− Y + θ

) 3
2

XiY j

+
∞∑
i=1
j=2

j−2∑
k=0

i−1∑
l=0

(j − k − 1)∂xu(i−1−l)(j−k−1)DkY
(

Y

1− Y + θ

) 3
2

XiY j


− 1

2

 ∞∑
i=2
j=2

j(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)jX
iY j −

∞∑
i=2
j=2

2(j − 1)2
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)X
iY j

+
∞∑
i=2
j=3

(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)X
iY j


− θ

 ∞∑
i=2
j=1

j(j + 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1)X
iY j −

∞∑
i=2
j=1

j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)jX
iY j

+
∞∑
i=2
j=2

(j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)X
iY j
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−
∞∑
i=2
j=3

(j − 2)(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)X
iY j


− θ2

2

 ∞∑
i=2
j=0

(j + 1)(j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+2)X
iY j

−
∞∑
i=2
j=0

(j + 1)(4j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1)X
iY j +

∞∑
i=2
j=1

6j2
i−2∑
k=0

(k + 1)u(i−2−k)jX
iY j

−
∞∑
i=2
j=2

(j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)X
iY j

+
∞∑
i=2
j=3

(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)X
iY j


+ κ

 ∞∑
i=0
j=1

juijX
iY j −

∞∑
i=0
j=2

(j − 1)ui(j−1)X
iY j

 = 0. (3.137)

For the 3/2 model, (3.2) becomes

∞∑
i=0
j=0

BθuijXiY j −
∞∑
i=0
j=1

1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k)X
iY j

− ρ
∞∑
i=1
j=2

(j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)X
iY j − 2ρθ

 ∞∑
i=1
j=1

j∂x

i−1∑
k=0

u(i−1−k)jX
iY j

−
∞∑
i=1
j=2

(j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)X
iY j

− ρθ2

 ∞∑
i=1
j=0

(j + 1)∂x
i−1∑
k=0

u(i−1−k)(j+1)X
iY j

−
∞∑
i=1
j=1

2j∂x
i−1∑
k=0

u(i−1−k)jX
iY j +

∞∑
i=1
j=2

(j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)X
iY j


− 1

2

 ∞∑
i=2
j=3

(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)X
iY j

−
∞∑
i=2
j=3

(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)X
iY j


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− 3θ
2

 ∞∑
i=2
j=2

j(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)jX
iY j

−
∞∑
i=2
j=2

2(j − 1)2
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)X
iY j

+
∞∑
i=2
j=3

(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)X
iY j


− 3θ2

2

 ∞∑
i=2
j=1

j(j + 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1)X
iY j

−
∞∑
i=2
j=1

j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)jX
iY j

+
∞∑
i=2
j=2

(j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)X
iY j

−
∞∑
i=2
j=3

(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)X
iY j


− θ3

2

 ∞∑
i=2
j=0

(j + 1)(j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+2)X
iY j

−
∞∑
i=2
j=0

(j + 1)(4j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1)X
iY j +

∞∑
i=2
j=1

6j2
i−2∑
k=0

(k + 1)u(i−2−k)jX
iY j

−
∞∑
i=2
j=2

(j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)X
iY j

+
∞∑
i=2
j=3

(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)X
iY j

+ κ

∞∑
i=0
j=2

(j − 1)ui(j−1)X
iY j

+ κθ

 ∞∑
i=0
j=1

juijX
iY j −

∞∑
i=0
j=2

(j − 1)ui(j−1)X
iY j

 = 0. (3.138)

The above equations hold if the coefficients of XiY j satisfy the following inhomogeneous
Black–Scholes equations:
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Bθuij + jκuij = 1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k)

+ ρ

[
j∂x

i−1∑
k=0

u(i−1−k)j − (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ ρθ

[
(j + 1)∂x

i−1∑
k=0

u(i−1−k)(j+1) − 2j∂x
i−1∑
k=0

u(i−1−k)j + (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ 1
2

[
j(j + 1)

i−2∑
k=0

(k + 1)u(i−2−k)(j+1) − j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)j

+(j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1) − (j − 2)(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ θ

2

[
(j + 1)(j + 2)

i−2∑
k=0

(k + 1)u(i−2)(j+2) − (j + 1)(4j + 2)
i−1∑
k=0

(k + 1)u(i−2−k)(j+1)

+6j2
i−2∑
k=0

(k + 1)u(i−2−k)j − (j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ κ(j − 1)ui(j−1) (3.139)

for the Heston model,

Bθuij + κjuij = 1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k)

+ ρ

[
j+1∑
k=0

j−k+1∑
l=0

i−1∑
m=0

3(j − k − l + 1)(2k − 5)! !
(2k)! !

√
θ

(
−1
θ

)k−2
k(l)

l! ∂xu(i−1−m)(j−k−l+1)

+
j∑

k=0

j−k∑
l=0

i−1∑
m=0

6(j − k − l)(2k − 5)! !
(2k)! !

√
θ

(
−1
θ

)k−2
k(l)

l! ∂xu(i−1−m)(j−k−l)

+
j−1∑
k=0

j−k−1∑
l=0

i−1∑
m=0

3(j − k − l − 1)(2k − 5)! !
(2k)! !

√
θ

(
−1
θ

)k−2
k(l)

l! ∂xu(i−1−m)(j−k−l−1)

]

− 1
2

[
j(j − 1)

i−2∑
k=0

(k + 1)u(i−2−k)j − 2(j − 1)2
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ θ

[
j(j + 1)

i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

−j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)j + (j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

−(j − 2)(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
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+ θ2

2

[
(j + 1)(j + 2)

i−2∑
k=0

(k + 1)u(i−2−k)(j+2) − (j + 1)(4j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

+6j2
i−2∑
k=0

(k + 1)u(i−2−k)j − (j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ κ(j − 1)ui(j−1) (3.140)

for the GARCH model and

Bθuij + κθjuij = 1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k) + ρ(j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

+ 2ρθ
[
j∂x

i−1∑
k=0

u(i−1−k)j − (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ θ2

[
(j + 1)∂x

i−1∑
k=0

u(i−1−k)(j+1) − 2j∂x
i−1∑
k=0

u(i−1−k)j + (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ 1
2

[
(j − 1)(j − 2)

i−2∑
k=0

(k + 1)u(i−2−k)(j−1) − (j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ 3θ
2

[
j(j − 1)

i−2∑
k=0

(k + 1)u(i−2−k)j − 2(j − 1)2
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ 3θ2

2

[
−j(j + 1)

i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

−j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)j + (j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

−(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ θ3

2

[
(j + 1)(j + 2)

i−2∑
k=0

(k + 1)u(i−2−k)(j+2) − (j + 1)(4j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

+6j2
i−2∑
k=0

(k + 1)u(i−2−k)j − (j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
− κ(j − 1)ui(j−1) + κθ(j − 1)ui(j−1) (3.141)

for the 3/2 model, with the initial condition (3.18) and the terms with negative indexes
vanish by definition. For all models, u00 satisfies the homogeneous Black–Scholes equation
which can be solved by Lemma 2.1.2. Higher order terms satisfy the inhomogeneous
Black–Scholes equation which can be solved by Lemma 2.1.3.

Because the method is an extension of the (η, v)-expansion, the calculation follows Order
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3.2.2. The coefficients uij also have the same form as in Proposition 3.2.4, by which the
following corollary can be proven.

Corollary 3.3.3. In Proposition 3.3.2, the expansion coefficients

uij ∈ Σ′1, for i+ j > 0. (3.142)

3.4 Symmetry breaking

Symmetry (invariance) is an important tool for analysing the structure of an object. The
solution of PDE (3.2) exhibits scale invariance. For model definition (3.1), the option
price is invariant under the following scaling.

Proposition 3.4.1. The European option price under the Heston model is invariant
under the scaling

C(t, x, r, v, θ, ρ, η, κ) = C

(
t

λ
, x, λr, λv, λθ, ρ, λη, λκ

)
, for λ ∈ (0,∞). (3.143)

Proposition 3.4.2. The European option price under the GARCH model is invariant
under the scaling

C(t, x, r, v, θ, ρ, η, κ) = C

(
t

λ
, x, λr, λv, λθ, ρ,

√
λη, λκ

)
, for λ ∈ (0,∞). (3.144)

Proposition 3.4.3. The vanilla option price under the 3/2 model is invariant under the
scaling

C(t, x, r, v, θ, ρ, η, κ) = C

(
t

λ
, x, λr, λv, λθ, ρ, η, κ

)
, for λ ∈ (0,∞). (3.145)

The propositions can be proven by substituting the scaled parameters in the PDE (3.2)
and the boundary conditions (3.3). Up to an overall constant, the PDE and boundary
conditions stay the same.

For the four expansion methods introduced in Section 3.2, the expansion coefficients
uijκ

iηj are scale-invariant. For example, in (κ, η)-expansion, as we have shown in (3.26a)

u10κ = 1
2wv

αt2(θ − v)κ, (3.146a)

w = 1
2
√

2πvt
exp

(
− x2

2vt + ax+ bt

)
. (3.146b)

Because vt and r/v are scale-invariant, so are a, bt and w consequently. For the Heston
and GARCH models, vα = 1 → 1 and κ → λκ. For the 3/2 model, vα = v → λv and
κ→ κ. Therefore, in both cases, u10κ and higher order terms are scale-invariant.

However, for the (η + 1, v + 1)-expansion

V =
∞∑

i,j=0
uij

(
η

1 + η

)i(
v − θ

1 + v − θ

)j
, (3.147)
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the scale-invariance is broken, because the scaling effect cannot be expressed by an overall
constant. For the Heston and GARCH models,

λη

1 + λη
6= λ′

η

1 + η
. (3.148)

For all models,

λv − λθ
1 + λv − λθ

6= λ′
v − θ

1 + v − θ
. (3.149)

The breaking of scale invariance gives us one more degree of freedom to fine-tune the
convergence of the finite-term approximation

V =
N∑

i+j=0
uij

(
η

1 + η

)i(
v − θ

1 + v − θ

)j
(3.150)

because the convergence is different when we choose different λ-value.

The fine-tuning, however, does not work for the terms

ui0

(
η

1 + η

)i
(3.151)

in the 3/2 model because η does not change under scaling. In this case, there is another
degree of freedom we can use. Instead of scaling η, we scale ‘1’ in the basis function

η

1 + η
→ η

γ + η
. (3.152)

Because γ is not a model parameter but a pure gauge choice, the option price stays the
same as we change 1 to γ. Such symmetry is also called gauge invariance. Similarly, the
symmetry is broken for a finite-term approximation and can be used for convergence
fine-tuning.

3.4.1 (η + γ, v + 1)-expansion
With the additional parameter, we can also expand the option price as follows.

Proposition 3.4.4. The solution of (3.2) with initial condition (3.3) can be written as

u(t, x) =
∞∑
i=0
j=0

uij(t, x, θ)XiY j , (3.153)

with

X = η

γ + η
, Y = v − θ

1 + v − θ
, a = 1

2 −
r

θ
, b = −θ2

(
1
2 + r

θ

)2
, (3.154)

u00(t, x) = 1
2e

x erfc
[
−x+ (1− a)θt√

2θt

]
− 1

2e
−rt erfc

[
−x− aθt√

2θt

]
. (3.155)

For the Heston model,

uij(s, y) = eay+bs−jκs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
[
− (x− y)2

2θ(s− t) − ax− bt+ jκt

]
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×

{
1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k) + ργ

[
j∂x

i−1∑
k=0

u(i−1−k)j − (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ ρθγ

[
(j + 1)∂x

i−1∑
k=0

u(i−1−k)(j+1) − 2j∂x
i−1∑
k=0

u(i−1−k)j + (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ γ2

2

[
j(j + 1)

i−2∑
k=0

(k + 1)u(i−2−k)(j+1) − j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)j

+(j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1) − (j − 2)(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ θγ2

2

[
(j + 1)(j + 2)

i−2∑
k=0

(k + 1)u(i−2)(j+2) − (j + 1)(4j + 2)
i−1∑
k=0

(k + 1)u(i−2−k)(j+1)

+6j2
i−2∑
k=0

(k + 1)u(i−2−k)j − (j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ κ(j − 1)ui(j−1)

}
. (3.156)

For the GARCH model,

uij(s, y) = eay+bs−jκs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
[
− (x− y)2

2θ(s− t) − ax− bt+ jκt

]

×

{
1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k)

+ ργ

[
j+1∑
k=0

j−k+1∑
l=0

i−1∑
m=0

3(j − k − l + 1)(2k − 5)! !
(2k)! !

√
θ

(
−1
θ

)k−2
k(l)

l! ∂xu(i−1−m)(j−k−l+1)

+
j∑

k=0

j−k∑
l=0

i−1∑
m=0

6(j − k − l)(2k − 5)! !
(2k)! !

√
θ

(
−1
θ

)k−2
k(l)

l! ∂xu(i−1−m)(j−k−l)

+
j−1∑
k=0

j−k−1∑
l=0

i−1∑
m=0

3(j − k − l − 1)(2k − 5)! !
(2k)! !

√
θ

(
−1
θ

)k−2
k(l)

l! ∂xu(i−1−m)(j−k−l−1)

]

− γ2

2

[
j(j − 1)

i−2∑
k=0

(k + 1)u(i−2−k)j − 2(j − 1)2
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ θγ2

[
j(j + 1)

i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

−j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)j + (j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

−(j − 2)(j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
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+ θ2γ2

2

[
(j + 1)(j + 2)

i−2∑
k=0

(k + 1)u(i−2−k)(j+2)

−(j + 1)(4j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1) + 6j2
i−2∑
k=0

(k + 1)u(i−2−k)j

−(j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1) + (j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ κ(j − 1)ui(j−1)

}
. (3.157)

For the 3/2 model,

uij(s, y) = eay+bs−jκθs
∫ s

0
dt
∫ ∞
−∞

dx 1√
2πθ(s− t)

exp
[
− (x− y)2

2θ(s− t) − ax− bt+ jκθt

]

×

{
1
2
(
∂2
x − ∂x

) j−1∑
k=0

ui(j−1−k) + ργ(j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1) + 2ρθγ
[
j∂x

i−1∑
k=0

u(i−1−k)j

−(j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]
+ ρθ2γ

[
(j + 1)∂x

i−1∑
k=0

u(i−1−k)(j+1)

−2j∂x
i−1∑
k=0

u(i−1−k)j + (j − 1)∂x
i−1∑
k=0

u(i−1−k)(j−1)

]

+ γ2

2

[
(j − 1)(j − 2)

i−2∑
k=0

(k + 1)u(i−2−k)(j−1) − (j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ 3θγ2

2

[
j(j − 1)

i−2∑
k=0

(k + 1)u(i−2−k)j − 2(j − 1)2
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

+(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
+ 3θ2γ2

2

[
−j(j + 1)

i−2∑
k=0

(k + 1)u(i−2−k)(j+1)

−j(3j − 1)
i−2∑
k=0

(k + 1)u(i−2−k)j + (j − 1)(3j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1)

−(j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]

+ θ3γ2

2

[
(j + 1)(j + 2)

i−2∑
k=0

(k + 1)u(i−2−k)(j+2)

−(j + 1)(4j + 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j+1) + 6j2
i−2∑
k=0

(k + 1)u(i−2−k)j

−(j − 1)(4j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−1) + (j − 1)(j − 2)
i−2∑
k=0

(k + 1)u(i−2−k)(j−2)

]
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− κ(j − 1)ui(j−1) + κθ(j − 1)ui(j−1)

}
. (3.158)

Proof. The proposition can be proven in the same way as in Proposition 3.3.2, with two
identities:

η

(
η

γ + η

)i
= γ

∞∑
k=0

(
η

γ + η

)i+k+1
, (3.159a)

η2
(

η

γ + η

)i
= γ2

∞∑
k=0

(k + 1)
(

η

γ + η

)i+k+2
. (3.159b)

In this particular expansion, although the scaling of the parameter (η → η/γ) and gauge
transformation (1→ γ) are equivalent

η

γ + η
= η/γ

1 + η/γ
, (3.160)

they are fundamentally different in nature. Scale invariance is a general property of the
model and therefore is expansion-independent and is determined by model specifications,
while gauge choice has no physical significance and is expansion-specific, with respect
to η/(γ + η). However, both of them can be used to achieve better convergence with
finite-term approximation.

3.5 Numerical performance

3.5.1 Parameter and computational settings
In this section, option prices calculated using expansion methods are compared with
those calculated using popular numerical methods. Due to its general applicability, prices
obtained using Monte Carlo methods are the benchmark prices for every model. Options
are priced by simulating 3× 108 paths using Euler discretisation with daily time steps.
The prices for the Heston and 3/2 models using the FFT are calculated as well [64, 65].

For the calculation in Table 3.3–3.5, we use the parameter estimates presented in Table 3.2.
It should be noted that empirical estimates of these model parameters vary greatly in
the extant literature, depending on the estimation method and data being used. The
parameters are chosen in a reasonable range to demonstrate the validity of the expansion
methods.

Model\Parameter K r v θ κ η ρ
Heston model 1 0.04 0.05 0.04 6 0.2 −0.8

GARCH model 1 0.04 0.05 0.04 6 1 −0.8
3/2 model 1 0.04 0.05 0.04 60 2 −0.8

Table 3.2: Parameter values in numerical computations.

In each cell of Table 3.3–3.5, the option prices are calculated using the expansion methods
introduced in this chapter, the Monte Carlo simulation and the FFT (only calculated
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Time\Moneyness 0.4 0.6 0.8 1 1.2 1.4 1.6
1 week (κ, η) 0 0 0 0.0129 0.2008 0.4008 0.6008

(η, v) 0 0 0 0.0129 0.2008 0.4008 0.6008
(η, θ) 0 0 0 0.0129 0.2008 0.4008 0.6008
(κ, v) 0 0 - - - 0.4008 0.6008

(η + 1, v + 1) 0 0 0 0.0129 0.2008 0.4008 0.6008
MC 0 0 0 0.0129 0.2008 0.4008 0.6008
FFT 0 0 0 0.0129 0.2008 0.4008 0.6008

IV (η + 1, v + 1) - - - 0.2223 0.2496 - -
IV MC - - - 0.2226 - - -

1 month (κ, η) 0 0 0 0.0268 0.2034 0.4033 0.6033
(η, v) 0 0 0 0.0268 0.2034 0.4033 0.6033
(η, θ) 0 0 0 0.0268 0.2034 0.4033 0.6033
(κ, v) 0 0 - 0.0289 0.1753 0.4272 0.6036

(η + 1, v + 1) 0 0 0 0.0268 0.2034 0.4033 0.6033
MC 0 0 0 0.0268 0.2034 0.4033 0.6033
FFT 0 0 0 0.0268 0.2034 0.4033 0.6033

IV (η + 1, v + 1) - - 0.1807 0.2186 0.2453 0.2644 0.2602
IV MC - - 0.1824 0.2188 0.2434 - -

3 months (κ, η) 0 0 0.0003 0.0473 0.2126 0.4101 0.6100
(η, v) 0 0 0.0003 0.0473 0.2126 0.4101 0.6100
(η, θ) 0 0 0.0002 0.0472 0.2126 0.4100 0.6099
(κ, v) 0 0 0.0001 0.0474 0.2139 0.4104 0.6099

(η + 1, v + 1) 0 0 0.0003 0.0473 0.2126 0.4101 0.6100
MC 0 0 0.0003 0.0473 0.2126 0.4101 0.6100
FFT 0 0 0.0003 0.0473 0.2126 0.4101 0.6100

IV (η + 1, v + 1) - - 0.1835 0.2123 0.2336 0.2500 0.2634
IV MC - - 0.1836 0.2123 0.2336 0.2512 0.2785

1 year (κ, η) 0.0484 - 0.0062 0.0499 0.5251 0.4578 0.3955
(η, v) 0 0.0002 0.0153 0.1009 0.2569 0.4440 0.6405
(η, θ) 0 - 0.0156 0.1009 0.2576 0.4440 0.6401
(κ, v) 0 0.0001 0.0148 0.1009 0.2574 0.4443 0.6407

(η + 1, v + 1) 0 0.0002 0.0153 0.1009 0.2569 0.4440 0.6405
MC 0 0.0002 0.0153 0.1009 0.2569 0.4440 0.6405
FFT 0 0.0002 0.0153 0.1009 0.2569 0.4440 0.6405

IV (η + 1, v + 1) 0.1747 0.1762 0.1922 0.2044 0.2141 0.2222 0.2290
IV MC 0.1515 0.1762 0.1922 0.2044 0.2141 0.2221 0.2288

Table 3.3: Prices for the Heston model. The table shows the calculated call option prices and
implied volatilities (IV) in terms of moneyness and time to maturity. The model parameters are
shown in Table 3.2. ‘-’ indicates a divergent result and ‘0’ indicates a number with a magnitude
of less than 1 × 10−4.

for the Heston and 3/2 models) and implied volatilities are inverted from the prices of
the (η + 1, v + 1)-expansion. Theoretically, more terms generate more accurate results.
However, practically, the number of terms is limited by computational resources. In the
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Time\Moneyness 0.4 0.6 0.8 1 1.2 1.4 1.6
1 week (κ, η) 0 0 0 0.0129 0.2008 0.4008 0.6008

(η, v) 0 0 0 0.0129 0.2008 0.4008 0.6008
(η, θ) 0 0 0 0.0129 0.2008 0.4008 0.6008
(κ, v) 0 0 - - - 0.4008 0.6008

(η + 1, v + 1) 0 0 0 0.0129 0.2008 0.4008 0.6008
MC 0 0 0 0.0129 0.2008 0.4008 0.6008

IV (η + 1, v + 1) - - - 0.2221 0.2463 - -
IV MC - - - 0.2225 0.3294 0.5897 0.8120

1 month (κ, η) 0 0 0 0.0268 0.2035 0.4033 0.6033
(η, v) 0 0 0 0.0268 0.2035 0.4033 0.6033
(η, θ) 0 0 0 0.0268 0.2034 0.4033 0.6033
(κ, v) 0 - - - - - 0.6044

(η + 1, v + 1) 0 0 0 0.0268 0.2035 0.4033 0.6033
MC 0 0 0 0.0268 0.2034 0.4033 0.6033

IV (η + 1, v + 1) - - 0.1837 0.2182 0.2489 0.2605 0.2514
IV MC - - 0.1823 0.2184 0.2485 - -

3 months (κ, η) 0 0 0.0003 0.0471 0.2127 0.4101 0.6100
(η, v) 0 0 0.0003 0.0471 0.2127 0.4101 0.6100
(η, θ) 0 0 0.0001 0.0473 0.2127 0.4100 0.6099
(κ, v) 0 0.0061 - - - - -

(η + 1, v + 1) 0 0 0.0003 0.0471 0.2127 0.4101 0.6100
MC 0 0 0.0003 0.0471 0.2127 0.4101 0.6100

IV (η + 1, v + 1) - - 0.1837 0.2115 0.2358 0.2553 0.2658
IV MC - - 0.1841 0.2115 0.2358 0.2558 0.2489

1 year (κ, η) 0.3717 -0.1084 0.0131 0.0597 0.4795 0.3930 0.4709
(η, v) 0 0.0002 0.0152 0.1007 0.2570 0.4441 0.6406
(η, θ) - - 0.0157 0.1014 0.2578 0.4440 0.6401
(κ, v) 0 - 0.0147 0.1019 0.2577 0.4438 0.6407

(η + 1, v + 1) 0 0.0002 0.0152 0.1007 0.2570 0.4441 0.6406
MC 0 0.0002 0.0152 0.1007 0.2569 0.4441 0.6406

IV (η + 1, v + 1) - 0.1780 0.1920 0.2038 0.2142 0.2234 0.2315
IV MC 0.1628 0.1782 0.1919 0.2037 0.2141 0.2234 0.2317

Table 3.4: Prices for the GARCH model. The table shows the calculated call option prices and
implied volatilities (IV) in terms of moneyness and time to maturity. The model parameters are
shown in Table 3.2. ‘-’ indicates a divergent result and ‘0’ indicates a number with a magnitude
of less than 1 × 10−4.

calculations, the series is truncated up to 5th order terms

u =
5∑

i+j=0
uijX

iY j , (3.161)

where X and Y are respective expansion parameters.
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Time\Moneyness 0.4 0.6 0.8 1 1.2 1.4 1.6
1 week (κ, η) 0 0 0 0.0129 0.2008 0.4008 0.6008

(η, v) 0 0 0 0.0129 0.2008 0.4008 0.6008
(η, θ) 0 0 0 0.0129 0.2008 0.4008 0.6008
(κ, v) 0 0 0 0 0 0.4008 0.6008

(η + 1, v + 1) 0 0 0 0.0129 0.2008 0.4008 0.6008
MC 0 0 0 0.0129 0.2008 0.4008 0.6008
FFT 0 0 0 0.0129 0.2008 0.4008 0.6008

IV (η + 1, v + 1) - - 0.2491 0.2229 0.2349 - -
IV MC - - - 0.2230 - - -

1 month (κ, η) 0 0 0 0.0271 0.2034 0.4033 0.6033
(η, v) 0 0 0 0.0271 0.2034 0.4033 0.6033
(η, θ) 0 0 0 0.0271 0.2034 0.4033 0.6033
(κ, v) 0 0 0.0483 0.292 0.0997 0.4758 0.6041

(η + 1, v + 1) 0 0 0 0.0271 0.2034 0.4033 0.6033
MC 0 0 0 0.0271 0.2034 0.4033 0.6033
FFT 0 0 0 0.0271 0.2034 0.4033 0.6033

IV (η + 1, v + 1) 0.2072 0.2101 0.2033 0.2209 0.2344 0.2389 0.2348
IV MC - - 0.2041 0.2209 0.2344 - -

3 months (κ, η) 0 0 0.0006 0.0481 0.2124 0.4100 0.6100
(η, v) 0 0 0.0006 0.0481 0.2124 0.4100 0.6100
(η, θ) 0 0 0.0005 0.0482 0.2124 0.4100 0.6100
(κ, v) 0 0.0001 0.0003 0.0503 0.2147 0.4105 0.6097

(η + 1, v + 1) 0 0 0.0006 0.0481 0.2124 0.4100 0.6100
MC 0 0 0.0006 0.0481 0.2124 0.4100 0.6099
FFT 0 0 0.0006 0.0481 0.2124 0.4100 0.6099

IV (η + 1, v + 1) - 0.1858 0.2024 0.2167 0.2287 0.2374 0.2418
IV MC - 0.1815 0.2019 0.2166 0.2293 0.2400 -

1 year (κ, η) -0.0772 -0.2796 -0.2790 -0.0869 0.1732 0.4196 0.6338
(η, v) 0 0.0003 0.0166 0.1019 0.2570 0.4438 0.6404
(η, θ) 0 0.0001 0.0167 0.1021 0.2573 0.4438 0.6402
(κ, v) 0 0.0001 0.0152 0.1015 0.2576 0.4444 0.6407

(η + 1, v + 1) 0 0.0003 0.0168 0.1021 0.2570 0.4438 0.6403
MC 0 0.0003 0.0166 0.1019 0.2570 0.4438 0.6404
FFT 0 0.0003 0.0166 0.1019 0.2570 0.4438 0.6404

IV (η + 1, v + 1) 0.1813 0.1870 0.1989 0.2074 0.2144 0.2203 0.2252
IV MC 0.1708 0.1869 0.1980 0.2069 0.2144 0.2208 0.2270

Table 3.5: Prices for the 3/2 model. The table shows the calculated call option prices and
implied volatilities (IV) in terms of moneyness and time to maturity. The model parameters are
shown in Table 3.2. ‘-’ indicates a divergent result and ‘0’ indicates a number with a magnitude
of less than 1 × 10−4.

3.5.2 Accuracy of expansion methods

Unlike the model parameters of the Heston model, which are bounded by Feller’s condition,

2κθ ≤ η2, (3.162)
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the parameters of the GARCH and 3/2 models can be arbitrarily large. As the convergence
of the expansion methods is unproven, it is no surprise that some of the expansion methods
fail to produce accurate results in some cases.

• (κ, η)-expansion
As is evident for all three models, (κ, η)-expansion is extremely accurate for short-
term options. The shorter the maturity, the more accurate the price is. However,
when the maturity becomes longer than three months, the series fails to be conver-
gent, possibly because (κ, η)-expansion starts with the Black–Scholes solution u00
with an initial variance v, which is very close to the average of stochastic variance
process {vt; t ≥ 0}. Therefore only small corrections to u00 (i.e. a few higher-order
terms) are needed. However, the difference between initial variance v and effective
variance

v̄ = 1
t

∫ t

0
vs ds (3.163)

becomes bigger as the maturity increases. Therefore, v is no longer a good estimate
for v̄.

• (κ, v)-expansion
Contrary to the previous case, this method works well with long-term options.
With either large κ or large t, the method produces convergent results, though not
as accurately as the other methods. The reason for large κ is obvious, because
of the κ−i factor in the expansion form. The convergence for long-term options
can also be explained by effective variance. Due to mean-reversion, the variance
process fluctuates around long-term variance θ. In a long enough time frame, the
fluctuations cancel each other, making the effective variance stable and close to θ,
which is the starting point of this expansion.

• (η, v) and (η, θ)-expansions
These two expansions seem to work for both long-term options and short-term
options, in all three models. The convergence rate of the series is generically
dependent on the magnitude of η and v − θ. For the parameter values in Table 3.2,
the methods produce accurate results for all three models

• (η + 1, v + 1) expansion
This bounded basis expansion outperforms other expansion methods dominantly.
For both long-term and short-term options with either large or small expansion
parameters, this method produces results very close to the ones given by Monte
Carlo methods. Detailed comparison with its unbounded version, (η, v)-expansion,
will be discussed later.

In terms of implied volatility, because the prices produced by expansion and Monte Carlo
methods are approximate values, they can be outside of the theoretical price bounds,
which makes the implied volatility not applicable in those cases. However, in those cases
when calculable, the implied volatilities are not constant across moneyness and maturity.
In general, (η + 1, v + 1)-expansion is preferable since it works in most cases. Especially
for multi-year options, which are most challenging to obtain using Monte Carlo methods,
very few terms are needed to obtain a convergent result, given that the parameters are
reasonably large. For ultra short-term options, (κ, η)-expansion is more effective.
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3.5.3 Numerical convergence

i\j 0 1 2 3 4 5
0 9.925(−2) 1.585(−3) −1.598(−5) 3.173(−7) −7.888(−9) 2.194(−10)
1 4.240(−4) −2.297(−5) 2.794(−7) −6.886(−10) −2.612(−10)
2 −3.032(−4) 1.510(−6) 1.291(−7) −1.099(−8)
3 2.412(−7) 1.763(−7) −3.223(−9)
4 3.250(−6) −1.070(−7)
5 −9.217(−8)

Table 3.6: Magnitude of uijη
i(v − θ)j in (η, v)-expansion. Numbers in the table are denoted

by a(b) = a× 10b.

To give a general picture of a convergent result, Table 3.6 shows the convergence of the
(η, v)-expansion for the Heston model with x = 0 and t = 1. The higher order terms
converge well:

|uij | < 1× 10−6, i+ j = 6. (3.164)

The small magnitude of higher order terms ensures that the sum is a good approximation
for practical purposes. In Table 3.3, we can see that the value does agree with the
reference prices produced using the Monte Carlo and the FFT.

Although results in some methods converge well for extreme parameters, such as in
(η + 1, v + 1)-expansion, convergence is not proven theoretically. Therefore, expansion
methods should be used with caution: it is always beneficial to check the solution matrix
uijX

iY j , such as Table 3.6, if higher order terms are small enough.

3.5.4 Unbounded vs. bounded series expansion

η\v 0.04 0.24 0.44 0.64 0.84 method
0 0.0993 0.1265 0.1597 0.2738 0.6822 (η, v)

0.0993 0.1263 0.1479 0.1671 0.1850 (η + 1, v + 1)
0.0993 0.1263 0.1476 0.1658 0.1819 FFT

0.5 0.0985 0.1248 0.1531 0.2517 0.6241 (η, v)
0.0986 0.1249 0.1459 0.1641 0.1808 (η + 1, v + 1)
0.0985 0.1249 0.1458 0.1637 0.1794 FFT

1 0.0956 0.1197 0.1367 0.2009 0.4998 (η, v)
0.0955 0.1216 0.1422 0.1599 0.1759 (η + 1, v + 1)
0.0954 0.1212 0.1419 0.1596 0.1752 FFT

1.5 0.0936 0.1117 0.1078 0.1157 0.3001 (η, v)
0.0918 0.1177 0.1382 0.1556 0.1712 (η + 1, v + 1)
0.0915 0.1166 0.1370 0.1545 0.1700 FFT

2 0.0967 0.1003 0.0607 -0.0150 0.0084 (η, v)
0.0881 0.1139 0.1344 0.1517 0.1670 (η + 1, v + 1)
0.0876 0.1118 0.1318 0.1490 0.1643 FFT

Table 3.7: Prices of the Heston model calculated using (η, v), (η+1, v+1) and FFT for extreme
η and v values.
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Table 3.7 compares (η, v)-expansion with its bounded counterpart, (η + 1, v + 1). Both
are truncated to 6th-order terms

6∑
i+j=0

uijX
iY j , (3.165)

where in (η, v)

X = η, Y = v − θ, (3.166)

and in (η + 1, v + 1)

X = η

1 + η
, Y = v − θ

1 + v − θ
. (3.167)

Parameters η and v range from 0 to extremely large values. The other parameters are

x = 0, t = 1, r = 0.04, θ = 0.04, κ = 6, ρ = −0.8. (3.168)

Though values like η = 2 make no financial sense because they violate Feller’s condition,
they are calculated to test the approximability of the methods from a mathematical
point of view. The numbers show that (η + 1, v + 1) produces much more accurate prices
than (η, v). Even in the worst case of η = 2 and v − θ = 0.8, (η + 1, v + 1) produces
a reasonable (about 3% error) approximation of the real value, while (η, v) produces
completely unusable results. The reference prices are produced by the FFT, because for
the Heston model, they are generally considered accurate. The result corroborates our
hypothesis that bounded basis functions capture asymptotic behavior better than power
series, which explode at infinity.

Method\λ 0.001 0.01 0.1 1 10 100
(η, v) 0.124754 0.124754 0.124754 0.124754 0.124754 0.124754

(η + 1, v + 1) 0.124755 0.12476 0.124799 0.12492 0.123746 0.106067

Table 3.8: Breaking of scale invariance.

Table 3.8 shows the breaking of scale invariance for the Heston model numerically, with
the expansion terms specified in (3.165), (3.166) and (3.167). The parameters used are

x = 0, t = 1
λ
, r = 0.04λ, v = 0.24λ,

θ = 0.04λ, η = 0.5λ, κ = 6λ, ρ = −0.8. (3.169)

Because (η, v) is scale-invariant, the first row does not change over λ. However, the second
row changes as λ scales, as described in (3.148) and (3.149). With the additional degree
of freedom, the convergence can be fine-tuned. For example, when λ = 100, the series
is not convergent, because it is far from the ‘real’ value. In this case, we can scale the
parameter set to λ = 0.001. In the region of λ < 1, the price is stable as λ gets smaller.
This signals that the series may have been convergent already. The same rule applies to
the gauge parameter γ in (3.160).
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3.6 Summary

In this chapter, we showed how expansion methods can be applied to European options
under most popular stochastic volatility models. After the solution is written as a power
series of parameters or variables, the pricing PDE is transformed to a set of solvable
(in)homogeneous Black–Scholes equations, that relate neighbouring terms of the expansion
terms. Given a specific order, the two-dimensional expansion matrix can be calculated
up to an arbitrary order of terms.

With bounded basis functions, the expansion methods are able to approximate prices of
extreme parameter values. Furthermore, scale invariance is broken in these expansion
methods, which gives us one more tool with which to fine-tune the convergence of the
result.

The numerical results show the validity of all the expansion methods with the affine Heston
model and the non-affine GARCH and 3/2 models. However, (η + 1, v + 1)-expansion is
shown to result in better convergence than the other expansion methods and is therefore
recommended for practical use (code available online [59]).



4 American options under the
Black–Scholes model

The holder of an American option has the right to exercise it at any time before expiration.
However, such flexibility makes American option much harder to price than its European
counterpart. Although nowadays most exchange-traded equity options are American,
only a few computationally intensive numerical methods (e.g. the least-squares Monte
Carlo method, tree methods and finite-difference methods) can be used to calculate their
prices. The problem is even more difficult to overcome for advanced models (stochastic
volatility and/or jumps), as none of the above methods produce satisfying results.
In this chapter, with the same series expansion logic demonstrated in the previous chapter,
the American option will be examined from an analytical viewpoint.

4.1 Problem setting

Under the Black–Scholes model, price dynamics are governed by the SDE:

dSt = rSt dt+
√
vSt dWt, (4.1)

where r is the interest rate and v is the variance.

S1

t
B(t)

Figure 4.1: Moving exercise boundary of American put option.

Without dividends, an American call option should always be held rather than exercised,
since the continuation value of an American call is greater than or equal to the immediate
value of exercising it:

73
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e−r(T−t)E
[
(ST −K)+] ≥ e−r(T−t) (E[ST ]−K)+

=
(
e−r(T−t)E [ST ]− e−r(T−t)K

)+
=
(
St − e−r(T−t)K

)+
≥ (St −K)+. (4.2)

Because x+ is a convex function, the first inequality is held by Jensen’s inequality. Since
it is never optimal to exercise an American call, it has the same value as its European
counterpart. However, with dividends, American call options should still be solved with
early exercise boundary [66].

However, the last inequality of (4.2) does not hold for American put options. Depending
on the current price, the holder of an American put option may exercise it at any time to
sell the equity at the strike price. In order to account for the hold-exercise criterion, we
introduce the exercise boundary B(t) (Figure 4.1) below which the put option should be
exercised. In the region above the boundary B(t), using the same hedging argument as
for European put options, we obtain the same PDE as that of European put options for
t > 0 and S > B(t) (

∂t −
σ2

2 S2∂2
S − rS∂S + r

)
V = 0, (4.3)

with

V (0, S) = 0, (4.4a)
V (t, B(t)) = 1−B(t), (4.4b)

∂SV (t, B(t)) = −1. (4.4c)

Hereafter, the strike is set to 1 for simplicity, and the option prices of arbitrary strike K
can be obtained by scaling

PK(t, S) = KP1(t, S/K). (4.5)

The boundary conditions (4.4b) and (4.4c) at the exercise boundary S = B(t) are called
the smooth pasting conditions of American put options (Figure 4.2). The conditions
reflect the fact that regardless of execution costs, there is no difference between exercise
and hold when the price is at the exercise boundary exactly.

What makes the American option difficult to price is the fact that there are two coupled
unknown functions V (t, S) and B(t) that must be solved simultaneously.

In order to reduce the irregular domain (t,∞)× (B(t),∞) to a regular one (0,∞)× (0,∞),
the front-fixing technique [61] is required. If we change the independent variables (t, S)
to (t, x) with

x = lnS − d(t), d(t) = lnB(t), (4.6)

then the derivatives in t and S change accordingly

∂tV → ∂tV − d′(t)∂xV, (4.7a)
∂SV → e−x∂xV, (4.7b)
∂2
SV → e−2x (∂2

x − ∂x
)
V. (4.7c)

Now, the PDE becomes, for t > 0 and x > 0,

BV :=
[
∂t −

v

2(∂2
x − ∂x)− r(∂x − 1)

]
V = d(t)′∂xV, (4.8)



4.2. Series expansion 75

S0

V

1

1B(t)

Figure 4.2: Smooth pasting around moving boundary.

with

V (0, x) = 0, (4.9a)
V (t, 0) = 1− ed(t), (4.9b)

∂xV (t, 0) = −ed(t). (4.9c)

The PDE (4.8) and boundary conditions (4.9) is the problem we are trying to solve.

4.2 Series expansion

In [57], Zhu pioneered the method of expanding the price V and moving boundary B of
an American put option as an infinite series

V =
∞∑
i=0

Vi, B =
∞∑
i=0

Bi. (4.10)

Though he succeeded in obtaining the formula that relates the unknown terms Vi and
Bi to previously calculated terms Vj and Bj , j < i, the formula (Equation (23) in [57])
involves double integrals that can only be evaluated numerically. Therefore, this method
is hard to apply to high order terms.

Fortunately, there are many ways to perform the expansion (4.10). In order to ensure
that Vi and Bi can be written explicitly, the leading terms V0 and B0 and iterative step

Vi = B−1f(Vi−1, Vi−1, . . . , V0) (4.11)

should be carefully chosen so that every step is analytically computable.

The set of BSCE functions (Σ2) is closed under many operations (see Section 2.2).
Therefore it is an ideal basis for the expansion. I−1, Li and Dip are defined in Notation
2.2.15, 2.2.16 and 2.2.17.
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Proposition 4.2.1 (ABS-I). The solution of (4.8) with the initial and boundary condi-
tions (4.9) can be written as

V =
∞∑
i=0

Vi(t, x), d =
∞∑
i=0

di(t), (4.12)

with

V0(t, x) = −xeax+bt erfc
(

x√
2vt

)
, d0 = bt, R0 = 0,

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
, (4.13)

then for i ≥ 1,

Vi(t, x) = fi + ui + wi, (4.14a)

fi(t, x) = eax+bt erfc
(

x√
2vt

)
Di+1
p

[
(1− exp) e−(ax+bt)p

]
, (4.14b)

ui(t, x) = −fi−1 + B−1

i−1∑
j=0

d′j∂xVi−1−j

 , (4.14c)

wi(t, x) = I−1 [−ui(t, 0) + ∂xui(t, 0) + (Ri −Ri−1)ebt
]
, (4.14d)

Ri(t, x) = Li
{
e−bt[−ui(t, 0) + ∂xui(t, 0)]−Ri−1

}
, (4.14e)

di(t) = −e−bt∂xVi(t, 0)−Dip exp

i−1∑
j=1

djp
j

 . (4.14f)

Proof. Define functions

V̄ :=
∞∑
i=0

piVi =
∞∑
i=0

pi (fi + ui + wi) , d̄ :=
∞∑
i=0

pidi. (4.15)

For x > 0,

lim
t→0+

erfc
(

x√
2vt

)
= 0, (4.16)

therefore, for i ≥ 0,

fi(0, x) = 0. (4.17)

By Lemma 2.2.10 and 2.1.4,

ui(0, x) = 0, wi(0, x) = 0, (4.18)

therefore,

V̄ (0, x) =
∞∑
i=0

pi (fi + ui + wi) = 0. (4.19)
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And by Lemma 2.1.4,

wi(t, 0)− ∂xwi(t, 0) = −ui(t, 0) + ∂xui(t, 0) + (Ri −Ri−11i>0)ebt, (4.20a)

fi(t, 0)− ∂xfi(t, 0) = ebt
(−bt)i

i! . (4.20b)

therefore,

V̄ (t, 0)− ∂xV̄ (t, 0) = ebt
∞∑
i=0

pi
(−bt)i

i! + ebt

[
R0 +

∞∑
i=1

pi (Ri −Ri−1)
]

= ebt(1−p) + ebt(1− p)
∞∑
i=0

piRi. (4.21)

By Lemma 2.2.19,

di +Dip exp

i−1∑
j=1

pjdj

 = Dip exp

 ∞∑
j=1

pjdj

 , (4.22)

therefore,

∂xV̄ (t, 0) = −ebt
∞∑
i=0

piDip exp

 ∞∑
j=1

pjdj

 = − exp

 ∞∑
j=0

pjdj

 = −ed̄. (4.23)

By definition,

Bui =

−Bfi−1 +
i−1∑
j=0

d′j∂xVi−1−j

1i>0, (4.24a)

Bwi = 0, (4.24b)

therefore,

BV̄ =
∞∑
i=0

piB(fi + ui + wi) =
∞∑
i=0

piBfi +
∞∑
i=1

pi

−Bfi−1 +
i−1∑
j=0

d′j∂xVi−1−j


= (1− p)

∞∑
i=0

piBfi + p

∞∑
i=1

pi−1
i−1∑
j=0

d′j∂xVi−1−j

= (1− p)
∞∑
i=0

piBfi + p

( ∞∑
i=0

pid′i

) ∞∑
j=0

pj∂xVj


= (1− p)

∞∑
i=0

piBfi + pd̄′∂xV̄ . (4.25)

According to (4.25), (4.19), (4.21) and (4.23), V̄ and d̄ are the solutions of

BV̄ = (1− p)
∞∑
i=0

piBfi + pd̄′∂xV̄ , (4.26)
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with

V̄ (0, x) = 0, (4.27a)

V̄ (0, x)− ∂xV̄ (0, x) = ebt(1−p) + ebt(1− p)
∞∑
i=0

piRi, (4.27b)

∂xV̄ (0, x) = −ed̄. (4.27c)

By setting p = 1,

V =
∞∑
i=0

Vi, d =
∞∑
i=0

di (4.28)

are the solutions of

BV = d′∂xV, (4.29)

with

V (0, x) = 0, (4.30a)
V (t, 0)− ∂xV (t, 0) = 1, (4.30b)

∂xV (t, 0) = −ed. (4.30c)

As in the last chapter, the above proposition states that if it is convergent, the sum
of expansion series

∑
i Vi and

∑
i di serves as the option price and log-boundary for

American put options respectively. This expansion is computable because of the following
corollary, which ensures that the expansion terms can be expressed in terms of BSCE
functions (Definition 2.2.3) and BST functions (Definition 2.2.4):

Corollary 4.2.2. For i ≥ 0,

Vi ∈ Σ2, di ∈ Σ3. (4.31)

Proof. According to the definitions,

V0 = −xeax+bt erfc
(

x√
2vt

)
∈ Σ2, d0 = bt ∈ Σ3. (4.32)

Consider Vi and di. Assume that for 0 ≤ j ≤ i− 1,

Vj ∈ Σ2, dj ∈ Σ3. (4.33)

Because d′i ∈ Σ3 and ∂xVi ∈ Σ2,

i−1∑
j=0

d′j∂xVi−1−j ∈ Σ2. (4.34)
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By Lemma 2.2.10,

ui = −fi−1 + B−1

i−1∑
j=0

d′j∂xVi−1−j

 ∈ Σ2. (4.35)

Since e−bt[−ui(t, 0) + ∂xui(t, 0)] ∈ Σ3, according to Theorem 2.2.14

wi ∈ Σ2. (4.36)

Therefore,

Vi = fi + ui + wi ∈ Σ2. (4.37)

Since e−bt∂xVi(t, 0) ∈ Σ3 and by Lemma 2.2.19,

di = −e−bt∂xVi(t, 0)−Dip exp

i−1∑
j=1

pjdj

 ∈ Σ3 (4.38)

By induction for i ≥ 0,

Vi ∈ Σ2, di ∈ Σ3. (4.39)

One key difference between the expansion methods in this chapter and the last chapter
is the expansion basis p, which serves as a purely formal structure to decompose the
option price. In other words, the expansion coefficients Vi and di are not the derivatives
of the option price with respect to any model parameter. As a result, the method of
decomposition is not unique.

Proposition 4.2.3 (ABS-II). The solution of (4.8) with initial and boundary conditions
(4.9) can be written as

V =
∞∑
i=0

Vi(t, x), d =
∞∑
i=0

di(t), (4.40)

with

V0(t, x) = 0, d0 = bt, R0 = −1, a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
, (4.41)

then for i ≥ 1,

Vi(t, x) = ui + wi, (4.42a)

ui(t, x) = B−1

i−1∑
j=0

d′j∂xVi−1−j

 , (4.42b)

wi(t, x) = I−1
[
ebt

(−bt)i

i! − ui(t, 0) + ∂xui(t, 0) + (Ri −Ri−1)ebt
]
, (4.42c)

Ri(t, x) = Li

[
(−bt)i

i! + e−bt[−ui(t, 0) + ∂xui(t, 0)]−Ri−1

]
, (4.42d)

di(t) = (−bt)i

i! − e−btVi(t, 0)−Dip exp

i−1∑
j=1

djp
j

 . (4.42e)
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Proof. Define functions

V̄ :=
∞∑
i=0

piVi =
∞∑
i=0

pi (ui + wi) , d̄ :=
∞∑
i=0

pidi. (4.43)

By Lemma 2.2.10 and 2.1.4,

ui(0, x) = 0, wi(0, x) = 0, (4.44)

therefore,

V̄ (0, x) =
∞∑
i=0

pi (ui + wi) = 0. (4.45)

And by Lemma 2.1.4,

wi(t, 0)− ∂xwi(t, 0) = ebt
(−bt)i

i! − ui(t, 0) + ∂xui(t, 0) + (Ri −Ri−11i>0)ebt, (4.46)

therefore,

V̄ (t, 0)− ∂xV̄ (t, 0) = ebt
∞∑
i=0

pi
(−bt)i

i! + ebtR0 + ebt
∞∑
i=1

pi (Ri −Ri−1)

= ebt(1−p) + ebt(1− p)
∞∑
i=0

piRi. (4.47)

By Lemma 2.2.19,

di +Dip exp

i−1∑
j=1

pjdj

 = Dip exp

 ∞∑
j=1

pjdj

 , (4.48)

therefore,

V̄ (t, 0) = ebt
∞∑
i=0

(−bt)i

i! pi − ebt
∞∑
i=0

piDip exp

 ∞∑
j=1

pjdj


= ebt(1−p) − ebt exp

 ∞∑
j=1

pjdj


= ebt(1−p) − ed̄. (4.49)

By definition,

Bui =

i−1∑
j=0

d′j∂xVi−1−j

1i>0, (4.50a)

Bwi = 0, (4.50b)

therefore,

BV̄ =
∞∑
i=0

piB(ui + wi) =
∞∑
i=1

pi

i−1∑
j=0

d′j∂xVi−1−j


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= p

∞∑
i=1

pi−1
i−1∑
j=0

d′j∂xVi−1−j

= p

( ∞∑
i=0

pid′i

) ∞∑
j=0

pj∂xVj


= pd̄′∂xV̄ . (4.51)

By (4.51), (4.45), (4.47) and (4.49), V̄ and d̄ are the solutions of

BV̄ = pd̄′∂xV̄ , (4.52)

with

V̄ (0, x) = 0, (4.53a)

V̄ (0, x)− ∂xV̄ (0, x) = ebt(1−p) + ebt(1− p)
∞∑
i=0

piRi, (4.53b)

V̄ (0, x) = ebt(1−p) − ed̄. (4.53c)

By setting p = 1,

V =
∞∑
i=0

Vi, d =
∞∑
i=0

di (4.54)

are the solutions of

BV = d′∂xV, (4.55)

with

V (0, x) = 0, (4.56a)
V (t, 0)− ∂xV (t, 0) = 1, (4.56b)

∂xV (t, 0) = 1− ed. (4.56c)

Similar to the previous expansion, the expansion terms can be expressed as BSCE
functions.

Corollary 4.2.4. For i ≥ 0,

Vi ∈ Σ2, di ∈ Σ3. (4.57)

Proof. According to the definitions,

V0 = 0 ∈ Σ2, d0 = bt ∈ Σ3. (4.58)

Consider Vi and di. Assume that for 0 ≤ j ≤ i− 1,

Vj ∈ Σ2, dj ∈ Σ3. (4.59)
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Because d′i ∈ Σ3 and ∂xVi ∈ Σ2,

i−1∑
j=0

d′j∂xVi−1−j ∈ Σ2. (4.60)

By Lemma 2.2.10,

ui = B−1

i−1∑
j=0

d′j∂xVi−1−j

 ∈ Σ2. (4.61)

Since e−bt[−ui(t, 0) + ∂xui(t, 0)] ∈ Σ3, according to Theorem 2.2.14

wi ∈ Σ2. (4.62)

Therefore,

Vi = ui + wi ∈ Σ2. (4.63)

Since e−btVi(t, 0) ∈ Σ3 and by Lemma 2.2.19

di = (−bt)i

i! − e−btVi(t, 0)−Dip exp

i−1∑
j=1

pjdj

 ∈ Σ3. (4.64)

By induction for i ≥ 0

Vi ∈ Σ2, di ∈ Σ3. (4.65)

Two methods of decomposing the American put options are presented above. However,
the numerical results in the next section indicate that the methods fail in cases with high
interest rates and low volatility. Fortunately, the expansion methods are very flexible. The
Black–Scholes operator Bv determines the structure of the expansion terms. Therefore,
it can be decomposed as

Bv = ∂t −
v

2
(
∂2
x − ∂x

)
− r (∂x − 1)

= ∂t −
θ

2
(
∂2
x − ∂x

)
− r (∂x − 1)− v − θ

2
(
∂2
x − ∂x

)
= Bθ −

v − θ
2

(
∂2
x − ∂x

)
. (4.66)

Consequently, the PDE (4.8) is transformed to

BθV :=
[
∂t −

θ

2
(
∂2
x − ∂x

)
− r (∂x − 1)

]
V = d′∂xV + v − θ

2
(
∂2
x − ∂x

)
V, (4.67)

with unchanged boundary conditions. The ‘effective’ volatility has been replaced by an
arbitrary constant, θ, which will be set to interest rate r. We applied this technique in
the last chapter and set θ to long-term volatility. In this case, volatility can be increased
to achieve better convergence.
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Proposition 4.2.5 (ABS-III). The solution of (4.8) with initial and boundary conditions
(4.9) can be written as

V =
∞∑
i=0

Vi(t, x), d =
∞∑
i=0

di(t), (4.68)

with

V0(t, x) = 0, d0 = bt, R0 = −1, a = 1
2 −

r

θ
, b = −θ2

(
1
2 + r

θ

)2
. (4.69)

then for i ≥ 1,

Vi(t, x) = ui + wi, (4.70a)

ui(t, x) = B−1
θ

i−1∑
j=0

d′j∂xVi−1−j + v − θ
2

(
∂2
x − ∂x

)
Vi−1

 , (4.70b)

wi(t, x) = I−1
[
ebt

(−bt)i

i! − ui(t, 0) + ∂xui(t, 0) + (Ri −Ri−1)ebt
]
, (4.70c)

Ri(t, x) = Li

[
(−bt)i

i! + e−bt[−ui(t, 0) + ∂xui(t, 0)]−Ri−1

]
, (4.70d)

di(t) = (−bt)i

i! − e−btVi(t, 0)−Dip exp

i−1∑
j=1

djp
j

 . (4.70e)

Proof. The PDE (4.8) is decomposed as

BθVi =
i−1∑
j=0

d′j∂xVi−1−j + v − θ
2

(
∂2
x − ∂x

)
Vi−1. (4.71)

The rest of the proof follows Proposition 4.2.3.

In our numerical calculation using this method, we ensure that the volatility is larger
than or equal to the interest rate:

θ =
{
v, v ≥ r,
r, v < r.

(4.72)

According to this definition, the ratio r/θ is bounded from above.

Obviously, the extra operator

v − θ
2

(
∂2
x − ∂x

)
(4.73)

does not change the form of a BSCE function. Therefore, the expansion terms have the
same form as in previous propositions.

Corollary 4.2.6. For i ≥ 0,

Vi ∈ Σ2, di ∈ Σ3. (4.74)
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The code for Proposition 4.2.5 can be found at [59].

After deriving the formula for Vi and di, the option price V can be calculated as

y =
N∑
i=0

di(t), (4.75a)

x = lnS − y, (4.75b)

V =


N∑
i=0

Vi(t, x), x ≥ 0,

N∑
i=0

Vi(t, 0) + ey − ex+y, x < 0.
(4.75c)

Although this definition ensures that the price is continuous at x = 0, the price may not
equal the execution price below the moving boundary (x < 0). Alternatively, we can
define

V =


N∑
i=0

Vi(t, x), x ≥ 0,

N∑
i=0

1− ey, x < 0.
(4.76)

This definition guarantees the execution price, but the price may be discontinuous at
x = 0.

4.3 Numerical results

In this section, as reference, the prices obtained using the binomial tree method (the
average of 1000 and 1001 steps) are presented as the ‘true’ prices [36].

In Table 4.1, the parameter values used to calculate using Proposition 4.2.1 are

v = 0.09, r = 0.1, t = 1, x = 0. (4.77)

The table shows the convergence of the expansion terms in this proposition. Both Vi and
di are decreasing in magnitude.

i 0 1 2 3 4 5
di -0.116806 -0.0500598 -0.0615439 -0.00681467 -0.0205322 -0.00531739
Vi 0 0.14847 0.059714 0.0035771 0.0163554 0.00353447

6 7 8 9 10 11
-0.00639416 -0.0038259 -0.00182383 -0.0020473 -0.000450435 -0.000738586
0.00438134 0.00277584 0.000943652 0.00144181 0.0000988823 0.000442853

Table 4.1: Convergence of Proposition 4.2.1.

For Propositions 4.2.1, 4.2.3 and 4.2.5, Tables 4.2, 4.4 and 4.6 show the boundaries and
prices in terms of moneyness and times to maturity. The prices obtained using the tree
method are extremely close to those produced using expansion methods. The relative
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error at the moving boundary is less than 1% and grows bigger as the stock price moves
away from the boundary. This occurs because the option price is expanded as powers of
the log-distance to the boundary x = lnS − d(t). Option prices below the boundary at
which the put option should be exercised, differ from the options’ intrinsic value, because
the definition (4.75c) is employed.

Tables 4.3, 4.5 and 4.7 show the boundary and prices for various volatilities and interest
rates for the propositions. In Tables 4.3 and 4.5, the straightforward expansion of
Propositions 4.2.1 and 4.2.3 fail to produce convergent results in case with low volatility
and high interest rates. This may be due to the fact the structural parameters

a = 1
2 −

r

v
, b = −v2

(
1
2 + r

v

)2
(4.78)

play an important role in those propositions and the expansion terms are expressed in
powers of a and b. Therefore, the ratio r/v is important for achieving convergence of the
series, because

a→∞, b→ −∞, if r

v
→∞. (4.79)

Table 4.7 confirms the validity of the volatility breakdown v = θ + (v − θ) in Proposition
4.2.5. Therefore, it shows that the option prices with low volatility and high interest
rates, which the previous propositions are unable to deal with, can be priced with a high
degree of accuracy.

4.4 American options beyond the Black–Scholes model

All the expansion methods we proposed for European options under stochastic volatility
models and American options under the Black–Scholes model are inspired by the notion
that one can decompose a price to a series of coefficients and find computable relations
among them. Therefore, it is appropriate to synthesise the methods to explore American
options under advanced models.

Suppose the PDE of a European option beyond the Black–Scholes model can be written
as

BV = OV, (4.80)

where O represents the advanced dynamics. As discovered earlier, the PDE of an American
put option under the Black–Scholes model is

BV = d′∂xV, (4.81)

with boundary conditions

V (0, x) = 0, (4.82a)
V (t, 0) = 1− ed(t), (4.82b)

∂xV (t, 0) = −ed(t). (4.82c)

An American option beyond the Black–Scholes model can be regarded as the combination
of the two problems

BV = OV + d′∂xV, (4.83)
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Time\Distance −0.2 −0.1 0 0.1 0.2
0.01 78.172 86.393 95.479 105.52 116.61
Tree 21.828 13.607 4.5519 0.0414 0.0000

Expansion 21.839 13.617 4.5312 0.0136 0.0000
0.03 76.801 83.773 92.584 102.32 1.1308
Tree 24.199 16.227 7.4473 1.0484 0.0140

Expansion 24.224 16.252 7.4410 0.7727 0.0036
0.1 71.879 79.439 87.793 97.027 107.23

Tree 28.121 20.561 12.223 4.9207 1.1108
Expansion 28.170 20.610 12.256 4.6009 0.8297

0.3 67.146 74.208 82.013 90.638 1.0017
Tree 32.854 25.792 17.987 10.644 5.2976

Expansion 32.904 25.842 18.037 10.512 4.9747
1 61.874 68.382 75.574 83.522 92.306

Tree 38.126 31.618 24.426 17.427 11.838
Expansion 38.109 31.602 24.410 17.331 11.439

3 59.037 65.246 72.108 79.692 88.073
Tree 40.963 34.754 27.892 21.459 16.281

Expansion 41.072 34.863 28.001 21.142 15.097

Table 4.2: American put option prices under the Black–Scholes model by Proposition 4.2.1.
The first column indicates time to maturity in years. The first row indicates log-distance between
the stock price and the moving boundary lnS − d(t). In each cell, the top number is the nominal
price of the stock, the middle number is the price calculated using the tree method, and the
bottom number is the price calculated using the proposition. The other parameters are r = 0.1,
v = 0.32 and K = 100.

with the same boundary conditions (4.82). We will show that the extra OV term does
not change the general structure and computability of the problem.

To provide a concrete example, we consider the CEV model, the pricing PDE of which is

∂tV −
v

2S
2−α∂2

SV − rS∂SV + rV = 0, (4.84)

where t denotes the time to maturity and 0 < α < 2. Written in log-price x, the operator

O = v

2
(
e−αx − 1

) (
∂2
x − ∂x

)
. (4.85)

Thus, the PDE for a CEV American option is, for t > 0 and x > 0,

BV = d(t)′∂xV + v

2
(
e−αx − 1

) (
∂2
x − ∂x

)
V, (4.86)

with

V (0, x) = 0, (4.87a)
V (t, 0) = 1− ed(t), (4.87b)

∂xV (t, 0) = −ed(t). (4.87c)

The boundary conditions are the same as in the Black–Scholes model. The expansion
can be performed as in Proposition 4.2.3.
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Volatility\Interest 0.02 0.04 0.06 0.08 0.1
0.1 88.869 90.180 − − −

Tree 11.131 9.8204 − − −
Expansion 11.149 9.3152 − − −

0.2 75.971 79.153 81.889 84.227 86.024
Tree 24.058 20.847 18.111 15.773 13.976

Expansion 24.225 20.899 18.111 15.767 13.945
0.3 64.775 67.912 70.728 73.273 75.574

Tree 35.313 32.096 29.272 26.727 24.426
Expansion 35.755 32.341 29.363 26.738 24.410

0.4 55.150 58.105 60.840 63.377 65.733
Tree 44.997 41.922 39.160 36.623 34.267

Expansion 45.805 42.457 39.456 36.748 34.292
0.5 46.911 49.632 52.207 54.642 56.946

Tree 53.288 50.419 47.800 45.358 43.054
Expansion 54.517 51.305 48.371 45.679 43.201

Table 4.3: American put option prices under the Black–Scholes model by Proposition 4.2.1.
The first column indicates volatility and the first row indicates interest rates. In each cell, the
top number is the nominal price of the stock, the middle number is the price calculated using the
tree method, and the bottom number is the price calculated using the proposition. The other
parameters are x = 0 (at the moving boundary), t = 1 and K = 100.

Proposition 4.4.1. The solution of (4.86) with initial and boundary conditions (4.87)
can be written as

V =
∞∑
i=0

Vi(t, x), d =
∞∑
i=0

di(t), (4.88)

with

V0(t, x) = 0, d0 = bt, R0 = −1, (4.89)

then for i ≥ 1,

Vi(t, x) = ui + wi, (4.90)

ui(t, x) = B−1

 i∑
j=1

d′j−1∂xVi−j + v

2

i∑
j=1

(−αx)j

j!
(
∂2
x − ∂x

)
Vi−j

 , (4.91)

wi(t, x) = I−1
[
ebt

(−bt)i

i! − ui(t, 0) + ∂xui(t, 0) + (Ri −Ri−1)ebt
]
, (4.92)

Ri(t, x) = Li

[
ebt

(−bt)i

i! + e−bt[∂xui(t, 0)− ui(t, 0)]−Ri−1

]
, (4.93)

di(t) = (−bt)i

i! − e−btVi(t, 0)−Dip exp

i−1∑
j=1

djp
j

 . (4.94)
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Time\Distance −0.2 −0.1 0 0.1 0.2
0.01 78.330 86.568 95.673 105.73 116.85
Tree 21.670 13.432 4.3693 0.0348 0.0000

Expansion 21.682 13.444 4.3394 0.0134 0.0000
0.03 76.054 84.053 92.892 102.66 1.1346
Tree 23.946 15.947 7.1547 0.9488 0.0115

Expansion 23.974 15.975 7.1352 0.7035 0.0036
0.1 72.249 79.848 88.245 97.526 107.78

Tree 27.751 20.152 11.788 4.6323 1.0091
Expansion 27.807 20.208 11.811 4.2898 0.7568

0.3 67.560 74.666 82.519 91.197 1.0079
Tree 32.440 25.334 17.488 10.253 5.0416

Expansion 32.517 25.412 17.559 10.116 4.7630
1 62.104 68.636 75.854 83.832 92.649

Tree 37.896 31.364 24.146 17.195 11.657
Expansion 37.924 31.392 24.174 17.269 11.717

3 58.726 64.902 71.728 79.271 87.608
Tree 41.274 35.098 28.272 21.765 16.526

Expansion 41.285 35.109 28.283 21.818 16.612

Table 4.4: American put option prices under the Black–Scholes model by Proposition 4.2.3.
The first column indicates time to maturity in years. The first row indicates log-distance between
the stock price and the moving boundary lnS − d(t). In each cell, the top number is the nominal
price of the stock, the middle number is the price calculated using the tree method, and the
bottom number is the price calculated using the proposition. The other parameters are r = 0.1,
v = 0.32 and K = 100.

Proof. Define functions

V̄ :=
∞∑
i=0

piVi =
∞∑
i=0

pi (ui + wi) , d̄ :=
∞∑
i=0

pidi. (4.95)

By definition,

Bui =

 i∑
j=1

d′j−1∂xVi−j + v

2

i∑
j=1

(−αx)j

j!
(
∂2
x − ∂x

)
Vi−j

1i>0, (4.96)

Bwi = 0, (4.97)

therefore,

BV̄ =
∞∑
i=0

piB(ui + wi) =
∞∑
i=1

pi

 i∑
j=1

d′j−1∂xVi−j + v

2

i∑
j=1

(−αx)j

j!
(
∂2
x − ∂x

)
Vi−j

 .
(4.98)

Because

pd̄′∂xV̄ + v

2
(
e−pαx − 1

) (
∂2
x − ∂x

)
V̄
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Volatility\Interest 0.02 0.04 0.06 0.08 0.1
0.1 89.050 91.608 85.671 − −

Tree 10.952 8.3919 14.329 − −
Expansion 10.975 8.4145 12.161 − −

0.2 76.956 79.718 82.086 84.199 86.120
Tree 23.115 20.287 17.914 15.801 13.880

Expansion 23.270 20.376 17.938 15.794 13.920
0.3 66.470 69.162 71.612 73.835 75.854

Tree 33.715 30.883 28.394 26.165 24.146
Expansion 34.098 31.177 28.574 26.253 24.174

0.4 57.541 60.035 62.378 64.572 66.619
Tree 42.772 40.079 37.657 35.436 33.381

Expansion 43.447 40.648 38.077 35.716 33.551
0.5 49.974 52.239 54.410 56.481 58.452

Tree 50.469 47.959 45.673 43.550 41.557
Expansion 51.464 48.839 46.382 44.086 41.941

Table 4.5: American put option prices under the Black–Scholes model by Proposition 4.2.3.
The first column indicates volatility and the first row indicates interest rates. In each cell, the
top number is the nominal price of the stock, the middle number is the price calculated using the
tree method, and the bottom number is the price calculated using the proposition. The other
parameters are x = 0 (at the moving boundary), t = 1 and K = 100.

= p

( ∞∑
i=0

pid′i

) ∞∑
j=0

pj∂xVj

+ v

2

[ ∞∑
i=0

(−pαx)i

i! − 1
] ∞∑

j=0
pj
(
∂2
x − ∂x

)
Vj


=
∞∑
i=1

pi

 i∑
j=1

d′j−1∂xVi−j + v

2

i∑
j=1

(−αx)j

j!
(
∂2
x − ∂x

)
Vi−j

 , (4.99)

V̄ and d̄ satisfy the PDE:

BV̄ = pd̄′∂xV̄ + v

2
(
e−pαx − 1

) (
∂2
x − ∂x

)
V̄ . (4.100)

By setting p = 1, V and d satisfy PDE

BV = d(t)′∂xV + v

2
(
e−αx − 1

) (
∂2
x − ∂x

)
V. (4.101)

The boundary conditions are proven in the same way as in Proposition 4.2.3.

We can also show that the expansion terms are within the same function family as those
in the Black–Scholes model.

Corollary 4.4.2. For i ≥ 0, in Proposition 4.4.1

Vi ∈ Σ2, di ∈ Σ3. (4.102)

Proof. Define

V0 = 0 ∈ Σ2, d0 = bt ∈ Σ3 (4.103)
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Time\Distance −0.2 −0.1 0 0.1 0.2
0.01 78.439 86.689 95.806 105.88 117.02
Tree 21.561 13.311 4.2446 0.0348 0.0000

Expansion 21.569 13.319 4.2020 0.0309 0.0000
0.03 76.186 84.199 93.054 102.84 113.66
Tree 23.814 15.801 7.0030 0.8998 0.0104

Expansion 23.836 15.823 6.9681 0.6481 0.0031
0.1 72.386 79.999 88.413 97.711 107.99

Tree 27.614 20.001 11.629 4.5283 0.9734
Expansion 27.671 20.058 11.645 4.1525 0.7162

0.3 67.679 74.797 82.663 91.357 100.97
Tree 32.321 25.203 17.377 10.144 4.9680

Expansion 32.409 25.291 17.425 9.9769 4.6563
1 62.135 68.669 75.891 83.873 92.694

Tree 37.865 31.331 24.109 17.164 11.633
Expansion 37.901 31.367 24.145 17.236 11.681

3 58.559 64.718 71.524 79.047 87.360
Tree 41.441 35.282 28.476 21.930 16.659

Expansion 41.429 35.270 28.464 22.004 16.780

Table 4.6: American put option prices under the Black–Scholes model by Proposition 4.2.5.
The first column indicates time to maturity in years. The first row indicates log-distance between
the stock price and the moving boundary lnS − d(t). In each cell, the top number is the nominal
price of the stock, the middle number is the price calculated using the tree method, and the
bottom number is the price calculated using the proposition. The other parameters are r = 0.1,
v = 0.32 and K = 100.

Consider Vi and di. Assume that for 0 ≤ j ≤ i− 1,

Vj ∈ Σ2, dj ∈ Σ3. (4.104)

Because d′i ∈ Σ3, ∂xVi ∈ Σ2 and ∂2
xVi ∈ Σ2,

i∑
j=1

d′j−1∂xVi−j + v

2

i∑
j=1

(−αx)j

j!
(
∂2
x − ∂x

)
Vi−j ∈ Σ2. (4.105)

By Lemma 2.2.10,

ui = B−1

 i∑
j=1

d′j−1∂xVi−j + v

2

i∑
j=1

(−αx)j

j!
(
∂2
x − ∂x

)
Vi−j

 ∈ Σ2. (4.106)

Since e−bt[−ui(t, 0) + ∂xui(t, 0)] ∈ Σ3, according to Theorem 2.2.14

wi ∈ Σ2 (4.107)

Therefore

Vi = ui + wi ∈ Σ2. (4.108)
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Volatility\Interest 0.02 0.04 0.06 0.08 0.1
0.1 89.051 91.241 93.029 94.524 95.798

Tree 10.951 8.7590 6.9710 5.4760 4.2110
Expansion 10.968 8.7643 7.0301 5.6246 4.4560

0.2 77.296 79.887 82.093 84.070 85.844
Tree 22.794 20.121 17.907 15.930 14.156

Expansion 22.949 20.222 17.929 15.924 14.161
0.3 67.003 69.527 71.842 73.966 75.891

Tree 33.221 30.535 28.169 26.034 24.109
Expansion 33.598 30.851 28.375 26.141 24.145

0.4 58.213 60.555 62.765 64.845 66.799
Tree 42.158 39.593 37.287 35.168 33.201

Expansion 42.825 40.186 37.747 35.492 33.408
0.5 50.740 52.871 54.919 56.880 58.754

Tree 49.779 47.378 45.194 43.166 41.270
Expansion 50.766 48.284 45.952 43.762 41.706

Table 4.7: American put option prices under the Black–Scholes model by Proposition 4.2.5.
The first column indicates volatility and the first row indicates interest rates. In each cell, the
top number is the nominal price of the stock, the middle number is the price calculated using the
tree method, and the bottom number is the price calculated using the proposition. The other
parameters are x = 0 (at the moving boundary), t = 1 and K = 100.

Since Vi(t, 0) ∈ Σ3 and by Lemma 2.2.19

di = (−bt)i

i! − e−btVi(t, 0)−Dip exp

i−1∑
j=1

pjdj

 ∈ Σ3. (4.109)

By induction for i ≥ 0

Vi ∈ Σ2, di ∈ Σ3. (4.110)

Although the results above apply to the CEV model, we can generalise them to other
advanced models as well. The expansion can be performed, as long as the operator O
only involves differential operators, as BSCE functions are closed under differentiation.

4.5 Summary

In this chapter, we showed how to apply expansion methods to American options under
the Black–Scholes model and beyond. Because the Black–Scholes formula is not a
good leading term for expanding American option, it is crucial to use BSCE functions
as expansion terms. With BSCE functions, the expansion terms can be calculated
analytically up to any order. The decomposition of the boundary condition at x = 0
(Theorem 2.2.14) is also important for ensuring the computability of BSCE functions.

The form of the expansion is highly flexible, as there are a number of ways to rewrite
the PDE and every boundary condition in terms of the dummy variable p, which will be
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set to 1 in the end. The inaccuracy caused by low volatility and high interest rates can
be avoided by regarding the Black–Scholes model as an advanced model with an extra
operator and artificial volatility θ, which is bounded from below. Other advanced models,
such as the CEV model, can be solved similarly, as long as the extra operator does not
break the closedness of BSCE functions.

The numerical results show the validity of three expansion methods of the Black-Scholes
model. The code for Proposition 4.2.5, which works in most cases, is available at [59].



5 Discussion

The current literature on expansion methods for option pricing [51, 52, 54, 57] has
identified the formal relations between expansion terms in terms of the double integral

V =
∞∑
i=0

Vip
i, Vi =

∫ s

0
dt
∫ ∞
−∞

dxf(Vi−1, . . . , V0). (5.1)

The authors show the validity of the methods by numerically evaluating those integrals
in a few special cases. However, the limitations of the methods are not mentioned in the
literature. In order to improve the pricing performance and our theoretical understanding
of the methods, we derived the explicit formula for the leading terms (code available at
[59])

V =
∞∑
i=0

Vip
i, Vi = fi(t, x). (5.2)

We proved that the terms can be calculated up to arbitrary order i, as claimed in Chapter
1.

We also numerically demonstrated that although all the expansion methods work asymp-
totically, it is critical to choose appropriate basis functions when the expansion parameters
change from infinitesimally small to moderately large. In the case of European options
under stochastic volatility models, without the restriction of the HAM framework which
dominates the current literature, the option price can be expanded in four different ways

V =
∞∑

i,j=0
VijP

iQj , (5.3)

where (P,Q) = (κ, η), (η, v − θ), (η, θ − v) or (1/κ, v). Like all expansion methods, these
methods all converge with very few terms when the respective parameters go to zero

P → 0, Q→ 0. (5.4)

Unfortunately, this fast convergence does not occur when P or Q is large enough to
cover the domain calibrated by real market data. If we consider the behaviour of large
parameters of option price, the expansion parameters can be promoted to their bounded
version:

P → P

1 + P
, Q→ Q

1 +Q
. (5.5)

The numerical results confirm that the modified expansion method indeed provides a
very accurate approximation of the option price, even with some unrealistically large
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parameters (with a less than 3% error; see Table 3.7). The accuracy of Proposition 3.3.2
makes it usable for most practical applications.

For American options under the Black–Scholes model, the non-linear term d′∂xV in the
pricing PDE

BvV = d′∂xV (5.6)

and the boundary conditions

V (t, 0) = 1− ed, ∂xV (t, 0) = −ed, (5.7)

arising from the front-fixing technique are taken care of by the choice of BSCE functions,
as the expansion coefficients Vi and BST functions as di in

V =
∞∑
i=0

Vi(t, x)pi, d =
∞∑
i=0

di(t)pi. (5.8)

The two methods are proven and their validity is numerically demonstrated, but the series
does not converge in cases with high interest rates and low volatility. Thus, a modified
expansion to the pricing PDE

BθV = d′∂xV + v − θ
2

(
∂2
x − ∂x

)
V (5.9)

is proposed. The transformation of (5.6) to (5.9) has been demonstrated (Table 4.7) to
overcome the aforementioned limitations, making Proposition 4.2.5 the best method for
pricing American options.

Expansion methods have many advantages over other numerical methods. First of all,
they are quick to evaluate, because the formula series contains much more information
about the ‘real’ solution than the discretisation steps used by conventional methods like
the Monte Carlo and finite-difference methods. Our numerical experiments also confirm
that expansion methods with explicit formulae produce results within a second1, while
Monte Carlo methods may take minutes, or even hours, to produce results for multi-year
options, with the same accuracy and complexity.

Secondly, expansion methods are general. Monte Carlo methods should be used with
care when dealing with path-dependent options (e.g. American options [27]), finite-
difference methods are inefficient for solving high-dimensional problems [40–42], and
Fourier transform methods cannot deal with non-affine models without characteristic
functions [11, 12]. Expansion methods may be applicable to any problem with a PDE
representation.

Expansion methods are set apart from other methods because they serve as the first step
towards an exact solution, which is the ultimate goal for a problem. In this thesis, we
show that all the terms in the series can be derived, once all lower order terms are known:

Vi = gi(t, x, . . .), i = 0, 1, 2, . . . (5.10)

Once Vi is expressed in terms of i

Vi = g(i, t, x, . . .), i = 0, 1, 2, . . . , (5.11)
1The expansion prices are evaluated in MATLAB, with a 2.6 GHz Intel Core i5 processor and 8 GB

memory. With code [59], a single price takes about 0.2 second to evaluate.
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a closed-form solution can be achieved.

Now, we can affirmatively answer the questions we asked in Chapter 1.

• How well can expansion methods be applied to option pricing problems beyond
European options under the Black–Scholes model?
Expansion methods can be applied to European options under stochastic volatility
models and to American options under the Black–Scholes model with a high degree
of accuracy, with (η + 1, v + 1) and ABS-III-expansion being the respective best
choice. American options under advanced models are outlined but not numerically
illustrated.

• Expansion methods usually work well as expansion parameters go to zero. However,
do the methods work for reasonably large parameters, that are realistic in the actual
market?
There are many ways to expand an option price. When one carefully chooses basis
functions (e.g. bounded functions in (η + 1, v + 1)-expansion), the method can be
used for extremely large parameter values (Table 3.7) that are calibrated by market
data.

• Are the series solutions convergent? If not, how efficient and accurate are the
finite-term approximations?
Convergence is not always guaranteed, but when one choose the appropriate expan-
sion form, pricing errors can be arbitrarily small, even for finite-term approximations.

Though expansion methods can be efficient in many cases, they may not be appropriate
when dealing with models without a PDE representation (e.g. discrete-time GARCH
models). In such cases, the discrete nature of Monte Carlo methods becomes an advantage,
because the simulation’s time step can be chosen to match the model’s time step. Models
with jumps are also difficult to apply to expansion methods, as their pricing equation,
partial integro-differential equation (PIDE), involves integration, which destroys the
closedness of expansion terms much more often than differentiation. Though they are not
entirely impossible to solve, jump models require extra care, compared to models without
jumps.

The flexibility of expansion methods is a double-edged sword. On one hand, it provides
plenty of options to achieve better convergence and fewer terms. On the other hand, for
researchers, it can be difficult when facing a new option, because the obvious method of
expansion is usually not optimal in terms of the domain of applicability. In our experience,
dozens of methods have to be tried before we can obtain a satisfying result.

Regarding the structure of expansion methods, the expansion terms are very specific
to the option type we are investigating. As we demonstrated in the previous chapters,
European and American options must be treated in completely different ways even though
they differ in only one feature, when they can be exercised. We did not consider exotic
options in this thesis, but we expect that they would have to be treated differently as well.
Thus, the expansion formulae for different option types under different models should be
derived individually.

However, this inconvenience should not disencourage researchers from exploring expansion
methods because they provide better speed and accuracy.





6 Conclusion

In this thesis, expansion methods are applied to various types of options under various
models that have no analytical solutions. Our numerical results confirm the validity of
the methods. Due to their general applicability, the expansion methods have the potential
to overcome some of the drawbacks of popular numerical methods.

For the sake of argument, several mathematical notions are introduced in Chapter 2.
In addition to the solutions to the Black–Scholes equation with different boundary
conditions, we introduce Black–Scholes special functions, which are closed under many
operations. Finally, we demonstrate the similarity between the solutions of simple ODEs
and PDEs, which serves as a general introduction to expansion methods.

Through numerical examples, we demonstrate that the expansion methods can be applied
to European options under stochastic volatility models. The four expansion methods
((κ, η), (η, v), (η, θ), and (κ, v)) are proposed because the stochastic volatility models
can be extended from the Black–Scholes model in various ways. They all work for
small parameter values, although convergence is not guaranteed. A modified version
of (η, v)-expansion, (η + 1, v + 1)-expansion, is proposed to improve convergence. This
method uses bounded basis functions, instead of unbounded power series, to approximate
the bounded target function, option price. The bounded basis functions can be also
applied to the other three methods. The numerical results confirm that the error of
(η + 1, v + 1)-expansion is indeed bounded, as the parameters go to infinity.

Scale invariance is a form of internal symmetry of the stochastic volatility models. For
the four original unbounded power series expansions, the symmetry is preserved with a
finite-term approximation. However, for the bounded series expansions (e.g. (η+1, v+1)),
the symmetry is broken due to the form of the expansion basis functions. Thus, by scaling
λ, we could obtain different values for the expansion series, which we could use as tools
to fine-tune the convergence of (η + 1, v + 1)-expansion. It should be noted that the
fine-tuning does not work for parameters that do not change through scaling, such as η in
the 3/2 model. Furthermore, the fine-tuning cannot replace information that is contained
in the form of a truncated series. Including more terms in a expansion is always beneficial,
even when scaling can be performed.

American options are particularly difficult to price because the coupled boundary/price
pair must be solved simultaneously and there is a non-linear term in the pricing PDE. In
Chapter 4, we prove that the prices of American put options without dividends under
the Black–Scholes model can be represented by BSCE functions introduced in Chapter
2. Though the numerical results confirm the general validity of the expansion methods
(ABS-I and ABS-II), the truncated series cannot be used in cases of low volatility and
high interest rates. An improved version, ABS-III, is proposed to deal with this difficulty.
It further expands volatility to a modestly high level relative to the interest rate. With
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the decomposition, this method is able to deal with reasonable volatility, interest rate,
moneyness and maturity.

American options under many popular advanced models can be treated similarly as long
as the extra operators preserve the closedness of Black–Scholes special functions. ABS-III
can be regarded as an advanced model with a fixed volatility of θ and an additional
operator v−θ

2 (∂2
x − ∂x). The pricing PDE is formally similar to that of an advanced

model, however, it is a Black–Scholes PDE dynamically. The greatest advantage of
expansion methods is that American options under advanced models are not significantly
more difficult to price than those under the Black–Scholes model, unlike other numerical
methods (e.g. tree methods and finite-difference methods).

In comparison to numerical methods, such as the Monte Carlo and integral transform
methods, expansion methods are more efficient when computing a family of option prices
with the same model parameters, since we can simplify the formula by substituting
the common parameters. For example, if we calculate multiple option prices with
different levels of moneyness, we can write the solution as a single variable function of
moneyness u(x, parameters)→ ū(x), which greatly reduces computation time. However,
for the integral transform method (FFT), every numerical integration is independent and
simplification is not possible. Thus, the computation time grows linearly with respect to
the number of option prices.

Furthermore, expansion methods deal with option types and model dynamics in a single
framework. Model dynamics correspond to the additional operators in the pricing PDE,
and option type corresponds to the boundary conditions with which the PDE should
be solved. When used in combination, they cover a great number of the options we are
interested in. This thesis is an initial attempt to price complicated options with expansion
methods. More follow-up research is required to deal with exotic options and advanced
models.
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