

Tampereen teknillinen yliopisto. Julkaisu 1167
Tampere University of Technology. Publication 1167

Janne Lautamäki

On the Development of Real-Time Multi-User Web
Applications

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB216,
at Tampere University of Technology, on the 8th of November 2013, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2013

ISBN 978-952-15-3170-5 (printed)
ISBN 978-952-15-3185-9 (PDF)
ISSN 1459-2045

iii

ABSTRACT

With the increasing popularity of the World Wide Web (WWW), end-user applications
are moving from desktop to the browser. Web applications have several benefits over
native applications: web applications have worldwide availability for any browsing
capable device without prior installations. In addition, web applications are easy to
distribute and update – once deployed, a web application is instantly available
worldwide and further modifications to the system are propagated automatically. The
current trend seems to be that web applications are offering collaboration, social
connections, and user to user interactions as key features. This can be seen, for example,
in the popularity of Facebook, Flickr, and Twitter.

Despite all the benefits of the Web, web applications are suffering from the
shortcomings in underlying technologies. The Web is strongly rooted in information
sharing, and the current technical solutions isolate users rather than make them aware of
each other. Since the data cannot be pushed from server to a client, the client must
always initiate the communication, which causes a considerable impediment for real-
time multi-user web applications, like online chats that have several concurrent users
continuously interacting with each other. For such systems, it would be practical if the
server could push messages to clients. As a further obstacle, most web application
frameworks isolate users in their private sessions that only interact indirectly via the
database.

The main contribution of this thesis is to make the development of real-time multi-user
web applications easier. We elaborate on the difficulties in implementation and design
and introduce methods of circumventing them. The main argument is that the Web, the
available technology stack, and the frameworks are difficult to use for developing real-
time multi-user web applications. However, by selecting the proper approach, the
problems can be solved.

In this thesis, we have divided the frameworks in groups based on how they make
separation of concerns between the client and the server. The separation is important as
it determines the thickness of the client and thus where to locate the business logic and
the application state. In addition, it has effect on the synchronization of the state
between the clients. To collect experiences and for backing up our assumptions, we
have implemented real-time multi-user web applications for several frameworks and
studied how the frameworks should be used for enabling real-time multi-user
application development.

Keywords: Real-time, Collaboration, Multi-user, Web applications, Thin client, Thick
client

iv

v

ACKNOWLEDGEMENTS

With much gratitude, I wish to acknowledge the following people for their professional
support and guidance.

First of all, I would like to thank Professor Tommi Mikkonen, my supervisor, who has
always been ready to help me and give me helpful suggestions for my research and this
thesis. I would also like to thank Dr. Riku Suomela for giving the first push for this
work during the MoMUPE project.

I also wish to express my gratitude for my colleagues (past and present) and all the co-
authors. Especially I would like to thank Timo Aho, Janne Kuuskeri, Tommi Mikkonen,
Kari Systa, and Mikko Tiusanen who have helped me in proofreading and have all
given valuable feedback. I am grateful to my pre-inspectors Joao Araujo, and Jari Porras
for gentle criticism and careful work. Furthermore, I thank for my opponents Olaf
Droegehorn and Jari Porras beforehand and hope that they will offer a decent but gentle
show during the defense.

No acknowledgement would be complete without a word of gratitude to my friends,
relatives, grandparents, parents, and my own family for their support and understanding.
So, thank you for all that you have done.

Janne Lautamäki
Tampere, October, 8th, 2013

vi

vii

CONTENTS

List of Included Publications .. ix
1. Introduction... 1

1.1. Motivation and Background .. 1
1.2. Research Problem and Aim ... 3
1.3. Introduction to Included Publications .. 3
1.4. Scope of the Research and Methodology ... 5
1.5. Organization of the Thesis ... 6

2. Web Applications .. 7
2.1. Basics of the Web .. 7
2.2. Architecture of Web Applications .. 9
2.3. Partitioning the Application ... 11
2.4. Web Application Frameworks ... 12

2.4.1. Native Web Client – MUPE .. 13
2.4.2. Thick Client Framework – The Lively Kernel 14
2.4.3. Thin Client Framework – Vaadin .. 15
2.4.4. Mainstream Framework – Node.js .. 15

2.5. Summary ... 16
3. Multi-User Applications in the Web .. 17

3.1. Sample Multi-User Systems .. 17
3.2. Real-Time Sample Systems ... 18
3.3. Implementation Examples ... 20

3.3.1. Native Web Client – MUPE .. 21
3.3.2. Thick Client Framework – The Lively Kernel 22
3.3.3. Thin Client Framework – Vaadin .. 24
3.3.4. Mainstream Framework – Node.js .. 26

3.4. Summary ... 26
4. Developing Multi-User Real-Time Web Applications ... 29

4.1. The Guideline for Designing the System .. 29
4.2. Alternatives for Communication .. 30

4.2.1. Ajax with Polling .. 30
4.2.2. Comet ... 31
4.2.3. WebSocket ... 31
4.2.4. WebRTC .. 32
4.2.5. Other Standards and Protocols .. 32

4.3. Abstracting the Communication... 33
4.4. Shared Data between the Clients .. 34
4.5. Summary ... 35

5. Related Research ... 37
5.1. Real-Time Multi-User Applications ... 37

viii

5.2. Real-Time Multi-User Web Applications... 39
5.3. Web Frameworks .. 41

6. Conclusion .. 43
6.1. Research Questions Revisited .. 44
6.2. Future Work .. 45

6.2.1. Real-Time Multi-User Web Application Framework 45
6.2.2. Tool Support ... 46
6.2.3. Navigation Buttons ... 47
6.2.4. Context Awareness ... 47

References .. 49

ix

LIST OF INCLUDED PUBLICATIONS

This thesis is a compound of the following Publications which are referred to in the text
by their roman numerals.

I. Janne Lautamäki, Anssi Heiska, Tommi Mikkonen, and Riku Suomela.
"Supporting mobile online multiuser service development." In the 3rd IET
International Conference on Intelligent Environments. IE 07, pp. 198-204, 2007.

II. Anssi Jääskeläinen and Janne Lautamäki. "Analyzing context-aware service
development under MUPE platform." In the Eighth International Workshop on
Applications and Services in Wireless Networks. ASWN’08, pp. 26-34. IEEE,
2008.

III. Janne Lautamäki and Riku Suomela. "Using player proximity in mobile
multiplayer games: experiences from Sandman." In Proceedings of the 2008
International Conference on Advances in Computer Entertainment Technology,
pp. 248-251. ACM, 2008.

IV. Janne Kuuskeri, Janne Lautamäki, and Tommi Mikkonen. "Peer-to-peer
collaboration in the lively kernel." In Proceedings of the 2010 ACM Symposium
on Applied Computing, pp. 812-817. ACM, 2010.

V. Timo Aho, Adnan Ashraf, Marc Englund, Joni Katajamäki, Johannes Koskinen,
Janne Lautamäki, Antti Nieminen, Ivan Porres, and Ilkka Turunen. "Designing
IDE as a Service." Communications of Cloud Software 1, no. 1, p. 10, 2011.

VI. Janne Lautamäki, Antti Nieminen, Johannes Koskinen, Timo Aho, Tommi
Mikkonen, and Marc Englund. "CoRED: browser-based Collaborative Real-time
Editor for Java web applications." In Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work, pp. 1307-1316. ACM, 2012.

VII. Juha-Matti Vanhatupa and Janne Lautamäki. “Content Generation in a
Collaborative Browser-Based Game Environment.” Handbook of Digital
Games, ISBN: 978-1-118-32803-3, p. 26, Wiley-IEEE Press, 2014.

The permissions of the copyright holders of the original Publications to reprint them in
this thesis are hereby acknowledged.

x

1

1. INTRODUCTION

As the users of web applications are linked via servers, it seems reasonable to assume
that they could interact with each other. However, traditionally this has not been the
case. Web 2.0, the second phase in the Web‘s evolution [O’Reilly07], offers more
interactions and collaboration. It emphasizes social interactions and collective
intelligence, and thus presents new opportunities. Along with Web 2.0, the division
between the publisher and consumer has faded. This can be seen in social networking
sites and wikis, but also in the blogs, the product reviews, and the comment sections.
Technically, some new abstractions have been added, but the underlying model is still
the three-tier client-server-database architecture [Murugesan07].

Being just a large collection of static interlinked hypertext documents, the Web has
traditionally had no high performance or real-time requirements. The typical workflow
is that a user clicks a link, waits for a page to load, reads it, and finally starts the same
workflow again by clicking a next link. With a web application, the workflow is
different. The user interface should remain responsive while the client-side application
constantly communicates with the server.

In a way, all the web applications are multi-user systems as multiple users can access
and use them simultaneously. However, in this thesis a multi-user system refers to a
system where users interact. For applications with slow asynchronous interactions, such
as email, social media, blogging, and online shopping, the Web offers a well-suited
platform. However, in multi-user web applications with real-time interactions the
situation is more complex. In context of this thesis, the real-time does not indicate hard
real-time constraints [Liu73] but fast interactions between the users as defined by
[Ellis89]. In the real-time multi-user applications, the several users are using the system
at the same time and are interacting with each other using a browser. The most typical
examples are online chats, multi-player games, and collaborative editors. We speculate
that the real-time multi-user features are currently getting more common. For enabling
these features, the conventions for developing web applications need to be changed.

1.1. Motivation and Background

Douglas Englebart demonstrated the first collaborative real-time text editor in the year
1968 in “The Mother of All Demos” [Engalbart68]. Multi-player games working on the
predecessors of Internet also existed, the most famous example probably being Maze
War from the year 1973 [Colley04]. The earliest examples of collaborative native
applications in the Internet date back to the 80s. Mail Transition Plan [Cerf80] from the

2

year 1980 describes an email system working over the Internet. [Richman87] underlines
the importance of groupware by saying: “Like an electronic sinew that binds teams
together, the new groupware aims to place the computers squarely in the middle of
communications among managers, technicians, and anyone else who interacts in groups,
revolutionizing the way they work.” Soon after the email, the first non-demo real-time
multi-user online applications emerged. Some of the first examples were Internet Relay
Chat (IRC) [Oikarinen13], an early form of instant messaging, and Multi User
Dungeons (MUD) [William02], which are ancestors of massively multiplayer online
role playing games (MMORPG) like World of Warcraft [WoW13]. After the first
examples, lots of multi-user desktop applications and games, which are using Internet as
a communication channel, have been created.

All the above examples have dedicated desktop client applications. However,
[Taivalsaari11] claims that web applications offer significant benefits over native
applications. For example, the delivery is simpler as they are instantly globally
accessible for all browsing capable devices after deployment. The same applies to
adding new features and bug fixes: the application running on a server is updated and
the modifications became immediately available for all of the users [Jazayeri07].
Especially in the world of mobile devices, it is challenging to develop native
applications as the number of different operating systems, versions, screen sizes, and
additional capabilities has exploded. Writing code just for the Web instead of multiple
separate device types reduces development costs. Differences between browsers exist,
but they seem more likely to become standardized than operating systems. Furthermore,
JavaScript libraries are hiding some of the differences. Thus, the old “write once, run
anywhere” slogan [Wong02] is finally coming true.

Web applications excel in many ways desktop applications, but also pitfalls and
obstacles exist. The technology stack of the Web is in many ways outdated and
originally not intended for the complex use cases of today. For example, the HTTP
request-response pattern is used for interacting with the server, and therefore the
communication is always initiated by the client. When considering real-time
communication between the users, native applications can take a direct peer-to-peer
connection by using sockets and send messages to both of the directions. In a browser,
this is not so straightforward.

The Web is strongly rooted in information sharing, and the current technical solutions
rather isolate users into private sessions than make them aware of each other.
Furthermore, many frameworks use databases for storing and sharing data and tend to
require refreshes for showing new data. [Edwards97] discusses the strengths and
weaknesses of asynchronous collaboration like email, group calendars, and knowledge
databases. The database creates an additional gap that has to be overcome when
developing real-time multi-user application.

3

Web applications are distributed applications by their nature and always divided
between at least two components. The first is a client that consists of a web browser and
a web page containing the user-interface and the client-side logic. The second is a server
that is a computer with the stack of software running somewhere in the Internet.
Traditionally, the majority of the logic has been on the server, and this we call a thin
client approach. In contrast, if logic is on the client-side, then after exceeding a certain
limit the approach is called a thick client approach. In addition, it is possible to
implement native applications that act as clients and they are referred with a custom
client term.

1.2. Research Problem and Aim

In this work, the main contribution is that we explain and analyze the current model of
developing web applications. We are pinpointing problems that hinder developing
multi-user real-time web applications and identify solutions to circumvent them.
Furthermore, we are aiming to extend and describe the solutions at the abstract level.
The included publications describe some more concrete examples.

Thus the main research question of the thesis can be formalized as follows:
How to easily develop web applications with real-time multi-user features?

To answer the main research question we have divided it to on several sub-questions:
Q1: How to enable communication?
Q2: How to enable multicasting?
Q3: How should the application be partitioned between the client and the server?
Q4: How do development tools and frameworks support the development process?

The answers to these questions are summarized at the conclusion.

This thesis focuses on a developer point-of-view, actual implementations, and
technologies that enable real-time multi-user applications. The same theme could be
studied from other perspectives, say, the business or user centric perspective, to name a
few, but these fall beyond the scope of this thesis. We do not suggest any technological
improvements on protocols or web browsers as they are slow and difficult to realize and
standardize globally. As we are concentrating on the solutions and combinations of
technologies already available in most web browsers, they can be exploited immediately
in concrete application examples.

1.3. Introduction to Included Publications

The contributions of the research in the included Publications are divided as follows.

First, Publication [I] discusses how the development of MUPE (Multi-User Publishing
Environment) applications could be simplified. The MUPE framework enables rapid

4

development of real-time multi-user mobile applications and an experienced developer
can use it for easily building complex applications. However, because of the client
server architecture and proprietary XML format, the learning curve is quite steep. To
reduce the learning curve, we implemented a toolset to help new users and for helping
experienced developers to complete MUPE applications even faster than before. The
toolset was implemented as a plugin for Eclipse IDE [Eclipse2013], and it automates
tasks like creating a new MUPE project and makes some tasks like editing the
proprietary XML format easier. For testing the capabilities of the toolset, an example
game, Dung Beetle, was implemented. The author has written most of the article and
designed and implemented most of the plugin components presented.

In [II] some MUPE applications implemented by beginners and more experienced
developers were introduced and analyzed. Our experiences backed up the assumption
that by using the Eclipse plugin introduced in [I] it is possible even for beginners to
implement complex MUPE application. Code quality metrics were used for analyzing
the projects, and a conclusion was drawn that the quality of applications made by
beginners was quite high. Reasons for this were application skeletons, editor, and
snippets offered by the toolset. The author has written about half of the article and
implemented Sandman and Dung Beetle used as examples.

[III] presents a complex real-time multi-user game called Sandman. Sandman is
implemented using MUPE, and it is a bit like a tag game enhanced with mobile devices.
The game uses Bluetooth to measure player proximity, and is played physically by
running, chasing, and evading. Furthermore, the game contains a mechanism for
grouping the users and calculating the winning side. The game was tested with several
user groups and, based on these test games, some analysis on the game was done. The
author has designed and implemented the application described (excluding the
graphics). Field tests were also monitored and mostly organized by the author. In
addition, he has written half of the text.

In [IV] we moved from custom clients and mobile devices to the browser and tried to
implement the same multi-user real-time experience for the browser. For implementing
the client-side features, we used the Lively Kernel [Taivalsaari08] that is a desktop-like
environment running inside a browser. On top of the Lively Kernel, we built a real-time
multi-user environment and example multi-user applications. The author has designed
and implemented the client-side features excluding the communication parts. In addition
he has written half of the article.

Publication [V] introduces a browser-based IDE called Arvue that uses CoRED as its
code editor. CoRED is described more in detail in [VI]. Arvue is intended for creating
and hosting Vaadin applications. In addition to CoRED, Arvue contains a graphical
editor for editing user interfaces, connections to Git version control system [Git13], and
an auto scaling framework for a scalable hosting of web applications. In addition,
security concerns attached to hosting multiple untrusted applications are introduced and

5

partially solved. The author has implemented a part of CoRED that has been used as the
code editor of Arvue, and has participated in writing the article.

For Publication [VI] we have developed a browser-based multi-user real-time code
editor called CoRED. CoRED is implemented with Vaadin, and can be used as an editor
component in web-based IDEs like Arvue described in [V]. CoRED contains tools for
collaboratively editing Java code and Vaadin applications. Furthermore, it offers
highlighting, indentations, semantic error checking, and code completion, which is a
toolset often available in desktop based tools, but virtually unknown in browser-based
systems. The author has implemented some of the server-side functionalities like
resolving code completions and checking the errors. The author has also written half of
the article.

In [VII] a browser-based multi-player role-playing game example implemented with
Node.js [NodeJS13] is presented. The book chapter concentrates mostly on the dynamic
content generation in a computer role playing game but also introduces how NowJS
[NowJS13] can be used for enabling multi-player features in browser-based games. The
author has written the parts concerning web applications and multi-user paradigm and
participated in writing the other parts.

1.4. Scope of the Research and Methodology

In [Johansen88], the topology of groupware systems is presented. In the original
presentation, the systems are divided into a 2-by-2 matrix (see Table 1), but later many
modifications like a 3-by-3 matrix in [Grudin94] have been presented. Our work
concentrates on the same time and the different place quarter of the Table 1. The
application types in our quarter include video conferencing, instant messaging, chats,
MUDs, virtual worlds, shared screens, and multi-user editors. Most of the current and
traditional web-based collaboration sites are located in the different place and time
quarter but we speculate that a trend towards the same time exists.

Table 1. 2-by-2 matrix by Johansen
Time
Same Different

Pl
ac

e

Sa
m

e

Face to face interactions (decision
rooms, single display groupware,
shared table, wall displays,
roomware, …)

Continuous task (team rooms,
large public displays, shift work,
groupware, project management,
…)

D
iff

er
en

t

Remote interactions (video
conferencing, instant messaging,
chats/MUDs/virtual worlds,
shared screens, multi-user editors,
…)

Communication + coordination,
(email, bulletin boards, blogs,
asynchronous conferencing,
group calendars, workflow,
version control, wikis, …)

6

In [Järvinen00] the taxonomy of research methods for studying information systems is
presented. This thesis concentrates on man-made artifacts by evaluating the earlier
approach, and after that, by building new ones. In this thesis we do evaluation on the
Web of today, on real-time multi-user native applications, and on some applications and
frameworks available in the Web. We use our findings to construct new applications
and to outline the changes that should be made for making the Web and frameworks
more appealing for real-time multi-user applications.

[Nunamaker90] proposes that system development and empirical research
methodologies are complementary to each other. Furthermore, the author claims that
system development, especially the development of a software system, is a research
domain as well as a research methodology. In airplane design, starting from the Wright
brothers and in many other fields the research progress has been: 1) Build a system, 2)
develop theories and principles for observing behavior, 3) encode expertise in tools for
easy access, and 4) use these tools to help the development of a new system. Most of the
Publications made in context of this thesis fall in the first phase, which contains the
design, development, analysis, observations, and evaluation of a software system. In the
proposed taxonomy, this thesis falls in the second category and hopefully challenges the
processes and concepts in a domain and expands the horizons of human knowledge.

1.5. Organization of the Thesis

The introductory part of this thesis is organized as follows. Chapter 2 elaborates the
background regarding the Web and web applications. Chapter 3 shows the current
situation for browser-based multi-user web applications. Chapter 4 discusses findings
and lessons that we have come by during the work. Chapter 5 contains related research
and some comparison of different approaches. Chapter 6 completes the introduction
with concluding remarks, reviews the research question, and elaborates different
possible branches of future work.

7

2. WEB APPLICATIONS

The World Wide Web (WWW) has evolved from a static collection of hypermedia
pages to a platform for dynamic web applications. The promise of web applications is to
be globally accessible in a device-independent fashion. Furthermore, they require no
installs or updates; an up-to-date web browser is enough. The current trend is that web
applications are replacing their native counterparts as the web applications are
becoming more practical to use. [Taivalsaari08]

Earlier, the most web applications were implemented using plugin-based approaches
such as Flash [Adobe13a], Java [Java13], Microsoft Silverlight [Microsoft13],
Shockwave [Adobe13b], and Quicktime [Apple13]. The problem with plugins is that
they are not universally available and require installing and updating. The current trend
is that proportion of rich internet applications (RIA) implemented using standard web
technologies like HTML, CSS, DOM, and ECMAScript is growing, whereas plugins
based solutions are becoming increasingly rare. [Taivalsaari08]

2.1. Basics of the Web

The Web is based on relatively simple technologies described in W3C recommendation
[Jacobs04]. Even though in the illustration the technology stack of the Web (Figure 1)
seems clear and well-founded, practice is more complicated. [Mikkonen08] discusses
how the current technologies make it possible to build web pages that behave much like
desktop applications, but the development environments and tools have not yet adapted
to this paradigm shift. In the desktop world, it is possible to implement complex
applications with a single programming language. In the Web, different syntaxes are
commonly mixed in a single file and several ways to implement the same functionality
exist. The following summarizes the basic building blocks of web applications.

Figure 1. Technology Stack of the Web

8

eXtensible Hypertext Markup Language ((X)HTML) [Raggett99] defines the basic
structure of a web page. The declarative nature of HTML makes it an easy language to
write or generate. For defining a simple static web page, a single HTML file is enough,
and CSS, ECMAScript, or binary data like images can be used for enchasing the page.
For making easily reusable code, additional content is often introduced in separate files,
but non-binary formats can also be easily embedded in an HTML file as well.

Cascading Style Sheets (CSS) [Bos11] is a language that allows authors to control
style (e.g., fonts, spacing, and color) of HTML elements. Prior to CSS, HTML markup
was used for presentational attributes. By using CSS, that information can be moved to
another file, resulting in simpler HTML code. More recently introduced CSS3 offers
interesting new features like visual effects, transformations, transitions, and animations
[McFarland12].

ECMAScript [Ecma11] is a prototype-based object oriented scripting language used
for implementing the dynamic client-side content in the Web. [Paulson07] declares that
a trend from compiled to dynamic languages exists, and explains why the dynamic
languages boost productivity. Several different ECMAScript dialects exist like
JavaScript, Jscript, and ActionScript. We have used JavaScript and, therefore, later in
this thesis we use term JavaScript instead of ECMAScript. Use of JavaScript as a
programming language has been analyzed in [Mikkonen07]. Furthermore,
[Crockford08] presents good and bad characteristics of JavaScript. As an alternative for
JavaScript some plugin-based approaches like Flash, Java, or Microsoft Silverlight can
be used for implementing the client-side logic.

Extensible Markup Language (XML) [Bray06] and JavaScript Object Notation
(JSON) [Crockford06] are text-based data formats that are both human and machine
readable. In the Web, the formats can be used for language independent messaging and
for exchanging representations or data. Libraries for manipulating the formats exist for a
number of programming languages.

Document Object Model (DOM) [Wood98] is a platform neutral interface that allows
scripts to dynamically access and alter the content, structure, and style of a web page.
While rendering an HTML document, the browser assembles the elements included in
the document to the DOM that acts as a shared data structure between a browser and a
JavaScript application.

Uniform Resource Identifier (URI) [Berners-Lee05] provides simple means for
identifying and addressing different types of a resource. In the Web, the resource can be
for example (X)HTML, CSS, or JavaScript formatted document but some media types
like images and video are present as binary formats [Freed96]. For instance,
http://www.example.com/ is a valid URI. The beginning of a URI defines the protocol to
use, and the rest identifies the hostname for the resource.

9

HTTP Hypertext Transfer Protocol [Fielding99] is a protocol that is used in the Web
for transferring resources. HTTP is a generic, stateless request-response protocol that
follows the client-server computing model. In modern web applications, the demands
have changed from what was adequate in the static Web, and sometimes consecutive
requests are combined to sessions or different protocols are used for enabling
bidirectional communication.

2.2. Architecture of Web Applications

The architecture of a web application often follows the three-tier architecture (Figure 2).
The tiers are named as presentation logic, business logic, and data logic [Peacock00].
To roughly connect the theory and practice, the presentation logic runs on the web
browser that acts as a client (Tier 1), the business logic runs on the web server (Tier 2).
Furthermore, a database server is used for enabling persistence (Tier 3). The
communication between the tiers is pull-based: upper layers always initiate the
communication by asking for data from the layer directly below. For pulling, the
browser uses HTTP for requesting new updates from the server, and the server uses
queries (arrow between the middle and right box Fig 2) for getting the related data from
the database. In this thesis we often use terms: client-side (a web browser), server-side
(a web server), and database because they more concretely reflect the structure of the
implementation.

In static web pages, HTML and CSS describe the user interface (UI), and if application
logic is needed, it runs on the server-side. Each interaction causes a request that is
responded with a new HTML document. The approach works well for hypertext and
some form-based applications, but is hardly acceptable for most web applications, as the
full page reloading is time consuming and not very user friendly. The current trend is
that client-side (Figure 2 left) contains a JavaScript client for communicating with the
server. JavaScript virtual machines have become increasingly efficient and rich in
features, and this makes it possible to transfer more of the business logic to the client-
side. The evaluations in [Anttonen11b] show that technologies have matured and are
now ready for use. For implementing user interfaces and client-side functionalities, the
JavaScript libraries [Dojo13] [Bibeault08] [Prototype13] are often utilized.

Figure 2. Three-tier architecture of web applications

10

Sometimes the standard technology stack is not flexible enough or does not offer the
APIs needed. Custom clients and browser extensions can be implemented to avoid these
restrictions. Currently, many mobile devices have their own custom applications for
accessing Facebook, email, or weather services, for instance. Custom clients, commonly
referred as apps may, for example, enable an effortless picture upload or GPS for
tracking. These clients can be adapted to the special features of the device, but they lack
the versatility and universality of the browser approach.

Server-side (middle in Figure 2) of a web application consists of a web server and a
web application. For hosting a web application, a developer does not typically need to
alter the web server, but just configure it to find and serve the application and other
content.

A web application framework (WAF) is often used for implementing the server-side
logic of a web application. [Shan06] defines that WAF is a reusable, skeletal, semi-
complete, and modular platform that can be specialized to produce custom web
applications, which commonly serve the web browsers via the HTTP protocol. The
frameworks simplify development considerably as they hide parts of the technology
stack mentioned earlier. Contrary to the restricted set of programming languages
available for the implementing client-side features, there are numerous frameworks and
languages including Python [Rossum94] and Java [Java13] can be used for developing
the server-side of a web application. However, by selecting a web application
framework like Node.js [NodeJS13] or Vaadin [Grönroos13], the language is often
predefined by the framework.

The third tier (Figure 2 right) of the architecture is the Database tier. For a simple web
application this tier is not necessarily needed, but often it is inevitable. Lots of different
types of databases for different needs are available, but basically they are all used for
persistently storing and logically organizing the data. Alongside easy UI creation, the
trend in web application frameworks is to aim at as easy database connectivity as
possible.

In a web application, the HTTP protocol is used for implementing communication
between the client and the server (arrow between the left and middle boxes in Fig 2).
The relationship between the server and clients is asymmetric. The client initiates
communication by sending a request consisting of the URI, the method, and some other
headers to the server [Fielding99]. The server responds with a status line, header, and
payload data. In the original approach, after each user interface event, the whole
document was always downloaded and rendered. In the context of web applications, this
kind of behavior would be time and bandwidth consuming and would reduce the
responsiveness. The performance can be dramatically improved by updating only parts
of the user interface using the Ajax framework [Crane05, O’Reilly07]. Originally, Ajax
stood for Asynchronous JavaScript and XML, but today the term is widely used for

11

other programming languages and notations than JavaScript and XML. In JavaScript,
libraries are commonly used for enabling the Ajax communication.

2.3. Partitioning the Application

Distributed applications consist of computer nodes that are communicating over the
network for achieving a common goal [Andrews00]. As a web application consist of at
least the server and clients and use HTTP for communicating over the network, they can
be seen as a form of distributed computing. As the application is divided between the
computing nodes, it is necessary to select which component takes responsibility of what
functionality. [Zhao02] criticizes ad hoc solutions that have created infrastructure that
makes implementing, upgrading, and maintaining a web application very complicated.
Furthermore, they make an observation that request-reply nature of HTTP creates a
difficult segmentation between the execution of application and user interface. In their
follow-up paper [Zhao03], the authors concentrate more on the software architecture of
web applications. They divide the application in accordance with the three-tier
architecture like in Figure 2, and make an observation that there is a problem in
mapping the traditional functionalities (presentation, application, and database logics)
on the tiers. The proposed approach is to split presentation logic across the HTTP
channel so that the client contains part of it and the server contains the rest.

Currently, the clients of web applications seem to be getting thicker. That is mostly due
to the adoption of scripting languages in general, Ajax, and Flash [O’Reilly07].
[Kuuskeri09] proposes a partitioning that aims at moving most, if not all, of the
application logic to the client-side. The need for the server still exists, at least for
serving the application, managing the database, and for enabling communication
between the clients, but the JavaScript application itself can run inside the browser. This
approach enhances the responsiveness and robustness of the user interface, and makes
the development much more straightforward because the separation of concerns is clear:
only one language, in this case JavaScript, is needed for implementing the application.

In the context of this thesis, thick and thin clients represent two extremes. In the thick
client approach, the application logic and the state are stored at the client-side. In the
thin client approach, the application, including its state, runs on the server-side and only
the user interface is shown to the client. The thick client approach utilizes the
processing power of a modern PC, and in some cases, the client can run independently
after its initial download. For devices with limited processing capabilities, the thin client
approach may be a better option. In addition, it is important to notice that users are able
to view and modify the source code of a JavaScript based thick client and, therefore,
some precautions should be made. Furthermore, in approaches that base on HTML and
CSS, graphical designers have been able to partially generate the pages, but with the
thick client approach it is more difficult for non-programmers to participate in a project.

12

RESTful web services are currently becoming more popular in the field of web
applications [Richardson07]. In a RESTful web application a consumer is responsible
for maintaining application state and logic. The RESTful service stores data and offers
URIs and representations for the resources. The requests from the consumer contain all
the necessary context information for responding and therefore the server does not need
to maintain the state of the client. As the consumer of a RESTful interface needs to be
able to store its own state, a thick client approach can well be utilized. When combining
the thin client approach and a RESTful interface, the connections to the interface can be
done in the server-side.

In general, no partitioning is universally the best; the different approaches fit to different
purposes. In most of the frameworks, the application logic is somehow partitioned
between the client and server. The important thing is to aim at a good separation of
concerns based on the current needs and design which parts of the application are where
and why. To make the concept clear, let us consider a simple drawing application. In the
case of a thick client, the whole drawing application is implemented with JavaScript and
an initial version of image is downloaded from the server at the beginning, the editing is
performed locally, and finally the image is uploaded back to the server. In a thin client
approach, only the user interface and visible parts of the image are downloaded at the
beginning. During the editing, the requests are sent to the server that updates the
drawing and then returns the modified image as a response. Both of the approaches have
their pros and cons. With the thick client, the user interface of the application is fast and
responsive, and after the startup the amount of communication is minimal. As a
downside, more data has to be downloaded at the beginning and system may start up
slowly. Furthermore, the image processing may be resource consuming. In the thin
client system, minimal amount of data is downloaded at the start, but more bandwidth is
needed during the editing. The thick client system could possibly be used even in offline
mode. Naturally, this is not possible in the thin client approach.

2.4. Web Application Frameworks

A web application framework is an application framework that can be used while
developing a web application. The aim, like in all application frameworks, is to
facilitate the development process. In case of web application frameworks it is possible
to offer libraries, template engines, session management, and other solutions that can be
reused in web applications of all kind. Furthermore, the frameworks are hopefully tested
in different projects and developed by professional and, therefore, the applications
utilizing a framework are more secure and less prone to errors.

In the following subsections, some web application frameworks are introduced. At first
we present a discontinued custom client example MUPE (Multi-User Publishing
Environment) [Suomela04]. MUPE was not based on a standard web browser, but

13

followed the client-server architecture and offers good support for the real-time multi-
user applications at framework level. After MUPE, we present the Lively Kernel
[Ingalls08, Taivalsaari08] and Vaadin [Grönroos13]. Frameworks are selected because
they offer the good examples of a thick and a thin client based approach. However, they
do not represent the mainstream of web application frameworks and, therefore, we also
introduce JavaScript based Node.js [NodeJS13]. In Node.js and MUPE, the thickness of
a client is related to selections made by a developer, whereas with the Lively Kernel and
Vaadin the thickness is predefined.

2.4.1. Native Web Client – MUPE

MUPE (Multi-User Publishing Environment) [I, II, III, Koivisto03, Koskinen06,
Suomela04, and Suomela05] was a client-server environment for implementing multi-
user applications and games for Java ME-based [Oracle13a] mobile devices. MUPE
server was built on top of Java and client-side on top of Java ME. MUPE server was a
package that contains MUPE Core, Context Manager, and MUPE Service that can be
extended to a new MUPE application. The high-level architecture of the MUPE
framework is presented in Figure 3. In the first versions of MUPE, HTTP requests and
responses were used for realizing the networking between the client and Core, but for
enabling the bidirectional communication, the implementation was changed to use TCP
sockets. Furthermore, Context Manager was used to provide external information, such
as weather forecast or XML feed, to the service [MUPE08]. Instead of HTML, the
framework used a specific XML-based language for defining the user interfaces and
client-side functionalities. However, during the latter phases of the framework
development some experiments with client-side JavaScript were made.

Initially, MUPE client, which, in essence, is a special-purpose browser for browsing
MUPE applications, has to be installed on the mobile device, but after installation it can
be used to browse and access all MUPE applications. In MUPE, the developer is
somewhat free to choose how the application logic is partitioned between the client and
server. However, the most straightforward approach is to implement most of the logic at
the server-side using Java and then UIs and simple client-side functionalities using
XML scripting. To support persistence, any methods commonly used in Java can be
used.

Figure 3. Contexts and the MUPE framework

14

As a custom client, MUPE offers features that are not available for a standard browser.
For example, it has permissive access to the device APIs like camera or GPS module.
Therefore, the features of the device can be used more freely as a component of the
application. Furthermore, MUPE offers bidirectional TCP socket communication
between a client and the server. For applications like image processing MUPE could
easily use the camera of the device, and GPS location could be added to the picture.

2.4.2. Thick Client Framework – The Lively Kernel

The Lively Kernel [IV, Ingalls08, Taivalsaari08] is a web application framework
written entirely using JavaScript. For application developers, the Lively Kernel provides
a rich set of user interface widgets, an event model, and a number of other useful
features such as modules, classes, and networking. New applications can be
implemented by extending JavaScript prototypes and by following certain Lively Kernel
specific conventions. In Figure 4, a block structure of the components of the Lively
Kernel framework is presented. The Lively Kernel box contains all the libraries, tools,
and UI components that the Lively Kernel offers. The Lively Kernel is built on top of a
JavaScript library called Prototype [Prototype13]. The components within solid black
line are provided by the browser [Sun08]. Developers implement new Lively Kernel
applications using JavaScript and the applications are completely executed on the client-
side. Several applications can be run, and they all remain active while another
application or networking is used.

A Lively Kernel application does not necessarily need a server except for bootstrapping
the system. After the initial startup, the system can be run independently without
networking, if no active applications need further communication. XMLHttpRequests
[Kester07] can be used for communicating with the server. In the Lively Kernel
example applications for viewing the weather and stocks contexts are implemented.

The same origin policy [Ruderman01] prevents direct downloads of HTML from
different domains, but in the Lively Kernel the problem was circumvented by utilizing
the security bug available in certain version of Safari web browser. The more general
approach to circumventing the same origin policy is the use of a server-side proxy or
specific technologies like CORS [Kester10] or JSONP [Ippolito05]. For implementing
the server-side the developer is free to select the language [IV]. Often a simple JSON

Figure 4. High-level block structure of the Lively Kernel.

15

database like Persevere [Persevere13] that can be manipulated using HTTP/REST
[Richardson07] interface may be enough.

2.4.3. Thin Client Framework – Vaadin

Vaadin [V, VI, Grönroos13] web applications are implemented almost like any Java
Standard Edition desktop applications; the most obvious difference is that instead of
Java GUI widget toolkits like Swing [Eckstein98] or AWT [Zukowski97], the Vaadin
applications use a custom set of GUI components. The developer can implement server-
side applications using the full power and flexibility of Java, and the business logic of
the Vaadin application runs on the server-side. Vaadin is capable of automatically
rendering the UI components over the network on any browser, and as a user interacts
with the components, the Vaadin framework automatically uses AJAX for non-blocking
communication with the business logic running on the server. Furthermore, the session
management is offered automatically by the system.

Vaadin consists of the server-side framework and a client-side engine. The client-side
engine renders the user interface components and communicates over HTTP with the
server. In Figure 5, the components inside the big light rectangle belong to Vaadin
framework. In most cases, the only parts a developer needs to touch are the business
logic of the Java application (second from the right box in Figure 5) and the connections
to selected services (boxes on the right-hand side of the Figure 5). If the need for
custom made client-side components arises, they can be implemented by using Java,
JavaScript, and Google Web Toolkit (GWT) [Google13a, Perry07]. For storing
permanent data in a Vaadin application, Vaadin offers the Persistence module, but any
other solution including databases can be also used like in any other Java application.

2.4.4. Mainstream Framework – Node.js

Node.js [VII, NodeJS13] is a platform built on the V8 JavaScript engine [Google13b]. It
is intended for developing JavaScript-based network applications. By using libraries
like Express [Express13], it can be extended to more complete web application
framework. Node.js allows using JavaScript at both client and server-side and the
developer is free to choose how the applications are partitioned between the client and
the server. Furthermore, it is up to the developer to select how the client-side application
communicates with the server. Data interchange formats like JSON or XML can easily

Figure 5. The basic architecture of vaadin framework.

16

be used. Lots of additional libraries like Mongojs [MongoJS13] and Socket.IO
[SocketIO13] are available for making development easier. Mongo.js allows user to use
the Mongo database [Mongo13] and Socket.IO can be used for realizing WebSockets
[Hickson11] communication between the client and the server.

2.5. Summary

In this chapter, we explained the technology stack behind web applications. We
described the three-tier architecture that is by our best knowledge the most usual
architecture for implementing web applications. The three tiers are client-side, server-
side, and the database, which all have their own responsibilities. The database is used
for storing the data, the client-side presents data to the user, and the rest of application
logic is somehow divided between the client and the server depending on the framework
and architectural selections. The issues regarding partitioning the application between
the client and server are discussed and some pros and cons were listed. Furthermore, we
also listed some notes about communication between the client and server.

The main findings of this Chapter are summarized in Table 2. In that we present the
frameworks and discuss on how the separation of concerns is made. The separation is
important as it sets boundaries on how the applications are implemented. In the next
column, we describe what is special in the framework and in the final column we list
where the framework has been used and explained with more details.

Table 2. Findings from example frameworks summarized
Frame-
work:

Separation of
concerns:

Notes: Utilized in
Publication

MUPE
Developer makes
the separation

XML is used for scripting and
describing user interfaces on the client-
side. Java is used on the server-side

[I] to [III]

The
Lively
Kernel

All the
application logic
on the client-side

The thick client-side engine is
implemented using JavaScript. Server-
side is needed only for bootstrapping,
communication and persistency

[IV]

Vaadin
All the
application logic
on the server-side

GWT-based client-side engine and UI
components. The thick server-side is
implemented using Java. Listener
methods of the UI components located
on the server-side.

[V] and
[VI]

Node.js
Developer makes
separation

JavaScript is used both on client- and
server-side.

[VII]

17

3. MULTI-USER APPLICATIONS IN THE WEB

While Web 2.0 can be regarded as a marketing term, the applications still differ from
the original Web by often allowing users to interact with other users [Taivalsaari08]. As
typical examples, one can mention user generated content in Wikipedia, social media,
and blogs. In addition, commenting and rating of news, blogs, images, articles, and
purchases occurs in many different forms. The common nominator between the
examples is that the users mostly work in their own private sandboxes but the outcomes
are shared with the community.

3.1. Sample Multi-User Systems

The most of Web 2.0 systems offer multi-user features and [Kaplan10] makes division
to different application types based on self-presentation and social presence. In the
following, some common types of multi-user web applications are explained, and to
make things more concrete some widely used web applications have been presented as
examples.

Wiki pages are currently one of the most common forms of collaborative projects. Wiki
is a web site that allows users to create and edit its content. In the Wiki approach,
collaboration is slow and asynchronous, but results generated via collaboration can be
impressive. Wikis have been built for many different purposes: Wikipedia
(http://wikipedia.org/) is an encyclopedia, Wiktionary (http://www.wiktionary.org/) is a
dictionary, Wikitravel (http://wikitravel.org/) is for creating a worldwide travel guide,
OpenStreetMap (http://www.openstreetmap.org/) is used for mapping the world, and so
on. Furthermore, lots of Wikis has been built on specific themes like popular culture and
hobbies. Memory Alpha (http://memory-alpha.org/) is Wiki for everything related to
Star Trek and Wookieepedia (http://starwars.wikia.com/) concentrates on Star Wars
alone. Finally, many projects and organizations use a Wiki as their internal
communication channel.

Social Networking sites refer to the web pages like like Facebook
(http://www.facebook.com/), Google+ (http://plus.google.com/), and Twitter
(http://twitter.com) that enable users to connect by creating personal information
profiles and do casual everyday socialization and interactions. Sites offer features such
as posting messages, liking, commenting and recommending. Many other web sites like
blogs and news have embedded the possibility to like or comment on their content using
social media. In addition to casual social media, there are sites like LinkedIn
(http://www.linkedin.com/) and Klout (http://klout.com/) for very specific purposes.

18

Many other sites, like YouTube (http://www.youtube.com/), last.fm
(http://www.last.fm/) and geocaching.com (http://www.geocaching.com/), have included
features associated with social networking.

Internet is full of single player games. Probably the simplest way to update a single
player game to a multiplayer game is to add a high score table and, thus, make it
possible for users to compete against the scores of other players. When user identities at
the shared high score table are connected with the Facebook accounts things are already
becoming interesting, even if the level of interactions is low. If we really want to create
a multi-player game, then the players have to be able to interact inside a game. As an
example, we can mention FarmVille (http://www.farmville.com/) that allows the player
perform various farm management related tasks like planting, growing, and harvesting
crops. Players can also invite their friends to their neighbors in the game and help each
other in various farm related tasks. In Travian (http://www.travian.com/), the player is a
leader of a small medieval village and develops ones realm while fighting with other
players. In Urban Dead (http://www.urbandead.com/), the player plays a survivor or a
zombie in the world after a zombie apocalypse.

In web stores like Amazon (http://www.amazon.com/) the commenting mechanism can
be used for reviewing the products and for giving recommendations about products that
could appeal for the taste of the regular buyer. On auction sites like eBay
(http://www.ebay.com/), and Finnish Huuto.net (http://www.huuto.net/), recommending
can be used for evaluating the reliability of the users.

3.2. Real-Time Sample Systems

Examples listed in Section 3.1 are multi-user but not real-time multi-user systems. In
the following, the real-time systems are elaborated and the list of application types is
extended with real-time sample systems.

In this thesis, real-time refers to a behavior that the actions made by one user are
mediated to related users as soon as possible. [Ellis89] defines that in the real-time
system the notification time must be comparable to response time. Roughly, this means
that mediating message from user to another should not be much slower than sending a
message to the server [Shen02]. [Fettweis12] analyses in more detail how human
physiology defines the strict time constraints of what can be considered as real-time.

In comparison to conventional web applications, real-time multi-user web applications
are more challenging to implement. As the speed of communication is ultimately
limited by the speed of light, the modifications to the state are not immediately
propagated from one user to all the other users. Furthermore, the technology stack of the
Web may not allow the server to immediately forward the message. Lag in messaging
causes conflicts as the perception of the data is slightly unsynchronized between the
parties [Lamport78]. More lag leads to more conflicts. In a collaborative editor, for

19

example, a conflict exists if one deletes a sentence that another is editing. While
designing a multi-user application the selection needs to be made if we want to use
locks [Gray98] and wait for synchronizing the views or if the users have their own data
running little out of sync. In the first alternative, the user experience may not be as
smooth and interactions are more by turns based than continuous and in the latter case
there is a risk that software does not know how to smoothly merge unsynchronized data.

Collaborative online editors allow people to edit the same document together using
different computers. These are an interesting special case of the multi-user web
applications. In many of the browser-based editors, other users can be invited for real-
time collaboration sessions. The most obvious example is of course Google Drive
[Google10] but other examples like Cloud9IDE (http://c9.io/), Codenvy
(http://codenvy.com/), Codev (http://codev.it/), Firepad (http://www.firepad.io/),
MobWrite (I) and SynchroEdit (http://www.synchroedit.com/) also exist. Furthermore,
in [V] and [VI] we have introduced CoRED that is a browser-based real-time
collaborative editor for source code. Publication [VI] elaborates methods for avoiding
conflicts while editing text. In contrast to synchronous editing, version control systems
such as CVS, SVN, and Git can be seen as the examples of asynchronous text editing.

Many of the current browser-based games seem to be asynchronous by nature, but in
games there is huge potential for impressive demonstrations after the implementation of
real-time multi-user applications gets easier and technologies such as WebGL
[Marrin11] mature and impressive 2D and 3D become standard features [Anttonen11a].
In [VII] we describe a collaborative browser-based game and briefly introduce some
others. [Nokia03] addresses differences between multi- and single-player games. When
designing a framework for gaming, those differences should be accounted. Furthermore,
proposals concerning network drops, latencies, and user communities can be broadened
on all multi-user applications. Ultimately the same problems have to be tackled in all
kinds of multi-user and concurrent applications [Ellis89] and finally, if chased long
enough, we end up thinking about time, clocks and the ordering of events in distributed
systems [Lamport78].

Finally, communicative web applications like chats and messengers could benefit from
real-time features. For example, Apache Wave [Apache13], previously known as
Google Wave, was an attempt to create a collaborative environment which would
eventually displace email and instant messaging [Fried10]. The revolutionary feature of
the system was that it worked differently if the users were simultaneously online. In the
online mode, the users were able to see edits and messages in real-time. If the receiver
was not available, then the system worked asynchronously by email and showed
messages as the receiver came online. Wave was not adopted by masses, but the same
basic idea, excluding visible editing, is currently available, for example, in Facebook
messaging.

20

Situation awareness between the users is considered one of the key aspects of a
distributed real-time multi-user application. To be able to work together users need to be
aware of each other. At the simplest case, the awareness can be enabled by exposing a
list of online users, but additional information may be useful [You04]. Often friend lists
are used for allowing users to select the people they want to interact with [Ellison07].
Familiar names and maybe even pictures are needed to identify other users.

There are no reasons to assume that users would dislike real-time multi-user
applications running inside the browser. In [Mogan10] three brainstorming real-time
applications were offered to users; first of them was a native application, second was a
plugin-based and third was a web application. As a result, based on the opinions of the
users, the web application version seemed to be the most appealing. In addition, the
collaborative web applications are not just appealing for the users, but based on
[Chui12] can also provide huge annual savings for enterprises.

3.3. Implementation Examples

For demonstrating the differences between the frameworks and for explaining their
effect on the implementations of real-time multi-user web applications we have selected
four example frameworks. We use the Lively Kernel as an example of the thick client,
Vaadin represents the thin client systems, and MUPE and Node.js are compromises
between the two. In the following subsections, we use this fast-paced game called Dung
Beetle (Figure 6) as an example and concentrate on how the separation of concerns
differs depending on the thickness of the client. Furthermore, we explain the
communication needs and describe how the data is synchronized between the players.

Dung Beetle, our example application, is a real-time two-player game where players are
controlling their dung beetles that collect pieces of dung. Users act simultaneously and
views are kept as synchronized as possible. At the beginning of the game, new piles of
the dung start dropping on the gaming board randomly. Beetles collect them by pushing

Figure 6. Three game situations from MUPE implementation of Dung Beetle

21

dung towards their lairs on the sides of the gaming board. The winner is the beetle that
first collects a pile of dung on each hole of its lair. Furthermore, it is also possible to
bite an opponent. Biting paralyzes the opponent for a short moment. In Figure 6, the
player controlling the black beetle is filling black holes with dung. In the leftmost
picture, the white beetle has bitten the black and the black one has paralyzed for a
moment. In the middle picture the game is going on normally. The black beetle has been
able to collect five dung piles, and the white has only collected four. Furthermore, the
black beetle is just pushing its sixth pile of dung towards the left. In the rightmost
picture, the black beetle has managed to fill all the holes and has won.

3.3.1. Native Web Client – MUPE

MUPE was a framework for real-time multi-user applications and therefore many
features like bidirectional communication, support for multicast, and policies for
synchronizing the states were natively available. Compared with the other frameworks
used in this thesis, in MUPE the implementation of the example game was the easiest.
In Chapter 4, we discuss our lessons from MUPE and explain how to transfer some of
its features to web application frameworks.

The MUPE version of Dung Beetle is not strictly synchronized between the clients, but
each of the clients stores its separate view to the state. Figure 7 presents some typical
game actions. At first, the server randomizes the locations of new dung piles and sends
the notifications of new dung pile to the players. Then the first Player1 moves and new
location is rendered. Then the movement notification is sent to the server that relays it to
the Player2 which then updates the location of Player1. The client-side of application is
implemented using XML scripting. Clients use functions like
clientMoveBeetle(int fromX, int fromY, int toX, int toY) for
communicating. In addition, similar methods for sending notifications about the
position of dung piles and special action like biting and winning are used. Clients
consume actions immediately after sending or receiving them.

Depending on the game and the latencies, the selected approach could cause problems
as the events are possibly executed in different time and order between the players.

Figure 7. Sequence diagram of Dung Beetle for MUPE and Node.js

22

Dung Beetle was designed to be tolerant to these problems, but some minor issues
remain. For example, sometimes when the beetle bites another, from the perspective of
the bitten beetle the biter has not visited the neighboring tile. This is because the lag
causes movements to be executed in different order for the beetles. In addition it is
possible to accidentally copy a piece of dung if it is pushed simultaneously in horizontal
and vertical directions. If the game end is almost a tie, then both of the players may
think they have won. However, if the players stop playing or play really slow, then
states between the players would eventually synchronize.

3.3.2. Thick Client Framework – The Lively Kernel

Publication [IV] presents a set of real-time multi-user features implemented on the
Lively Kernel. The set contain simple login capabilities, chat, friend list and Dung
Beetle game. A screenshot from the multi-user Lively Kernel is presented in Figure 8.
The left most item is a friend list that shows all the users who are online. By clicking
any user, a chat panel opens and user private chat can be started. Our example game
Dung Beetle is at right. The implementation of Dung Beetle was quite straightforward
to do with The Lively Kernel, except the framework did not offer any support for
making communication between the players nor the server-side and therefore some
extra work was needed to implement the communication between the players.

As an example of the extremely thick client, the Lively Kernel does not necessarily
need server-side except for the initial download. Therefore, a small server layer is
implemented for enabling the login capabilities and communication between the users.
The communication is done using DojoX [DojoX13], an extension of Dojo toolkit that
offers the server push feature. The simplified class diagram is available in Figure 9. All
the applications, LivelyChat, DungBeetle, and FriendListPanel are
positioned to MainWindow. Furthermore, all multi-user applications are connected to
Dojox that is connected to the Server. Method Subscribe() is used for
connecting a new initialized application with Dojox. Methods PublishMessage()

Figure 8. The Lively Kernel implementation of collaborative features

23

and ReceiveMessage() enable the communication between the users. Finally,
Leave() disconnects the application.

In a Figure 10, sequence diagram is used for presenting some typical game actions. The
diagram starts with and an event that randomizes a new dung location. This event is
fired by a timer. Both of the clients are able to randomize new locations and this is done
in turns. Immediately after the randomization, the dung pile is rendered on the screen of
Client1. The server forwards the location to the Client2 which, after receiving the
message, renders it on the screen. As a next event, a user of Client1 decides to press an
arrow key and the beetle moves. The movement is rendered immediately on the screen
of Client1 and then, after going over network, on the screen of the Client2. From the
sequence diagram it can be inferred that the events are immediately consumed by the
client that initiates them and on the other client. In the diagram, the actions are only
fired by Client1, but in real game situations, both clients would constantly fire new
events without waiting for the network or any responses.

In the Lively Kernel implementation of the Dung Beetle, the thick client approach is
followed and the tasks are run on the client-side. The MUPE version does the

Figure 10. Sequence diagram of Dung Beetle for the Lively Kernel

Figure 9. Simplified class diagram of the Lively Kernel implementation

24

randomization of new dung pile locations on the server. With the Lively Kernel
implementation, the task is more complicated. Technically, the locations could, of
course, be randomized in the thin server layer, but this would be against the selected
ideology. Another approach could be to promote one of the clients to the master client
who would always randomize the location. This approach would benefit the master
client as it would see a new dung ball immediately and other player just after network
delays. Our solution was to randomize new locations for dung balls on both of the
clients based on a randomized timer. Other features requiring communication follow the
same patterns as in the MUPE version. Game runs unsynchronized and independently in
the clients and the thin server layer is used for relaying messages between the instances.
As the Lively Kernel Implementation follows the MUPE implementation, its problems
afflict the Lively Kernel version, too.

3.3.3. Thin Client Framework – Vaadin

A Vaadin implementation of the collaborative features experimented in the Lively
Kernel has also been implemented (Figure 11). The page is simply divided into four
panels. On the top left panel, the user can login to the system and in the top right there is
a list of online users. The bottom left panel contains the chat screen and in the bottom
right there is Dung Beetle, our example game. As with the Lively Kernel, the
implementation of the user interface of the game was quite an easy task. At the time
when the game of the example was implemented, no guidelines enabling the
communication between the players existed, but later a tutorial for broadcasting
messages to other users has been added [Vaadin13].

Figure 11. Vaadin implementation of collaborative features

25

The class diagram in Figure 12 presents a simplified structure of the system. In the
Vaadin version of Dung Beetle, the game runs on the server and only the client-side
engine common to all Vaadin applications is sent to the browser. For the browser, the
game and the other panels appear as collections of GUI components like text fields,
images, and buttons. User actions, like clicks and keyboard events, are sent to the server
for processing and the client-side engine processes the responses and modifies the view
accordingly. The server-side contains the game logic and knows how the components
are related to the game.

On the server-side, CollaborationChannel and synchronized Java methods are used for
modifying the state of the game. Therefore, unlike in the previous Dung Beetle versions,
there is no risk of conflicting states or synchronization problems as only the single
instance of the state exists, on the server. The state is then only mirrored to panels on
the client-side. The downside of the approach is the network latency that affects the
game. The round trip to the server and back always takes place before the view can be
modified or new action taken. Hence, depending on the network configuration, the
game may not be as smooth as in the Lively Kernel and in MUPE frameworks, where a
player can continuously take actions without waiting for the server and the view
updates: notifications of each action are sent to the server but we do not need to wait for
any confirmations. In the Vaadin version, the view simply does not change until the
roundtrip to the server has completed.

The sequence diagram in Figure 13 presents some typical game actions. At first, the
server randomizes a new dung location and updates the state of the game. Then the
server sends message to clients and views are updated accordingly. Then Player1 moves
the Beetle. The notification is sent to the Server that updates the state of the application
accordingly. As the state of the game is again changed, the server sends messages to
both clients that again use the received description for updating the views.

Figure 12. Class structure of real-time collaboration in Vaadin framework

26

3.3.4. Mainstream Framework – Node.js

Many third party libraries that extend Node.js exists. For implementing real-time multi-
user applications NowJS [NowJS13] or MeteorJS [Meteor13] can be used. In [VII] we
perform some hands-on experiencing with NowJS: in brief, the NowJS introduces a new
namespace called now, which can be used for calling functions and sharing
synchronized variables over a WebSocket [Hickson11]. With MeteorJS the applications
are also implemented using JavaScript and it contains methods for synchronizing the
clients and server-side. Furthermore, MeteorJS contains some additional features like
automatic updates of the visible page if an HTML template or data in the database
changes and methods for compensating networking latency.

No Dung Beetle implementation for Node.js has been implemented, but similar
conventions as in our MUPE implementation could be used, and by utilizing NowJS
library, the task should not be too difficult. It is important to notice that Node.js and
NowJS allows several different solutions, but in the following we will describe only one
of the possibilities. For client-side, we could implement a JavaScript application that
would be able to store and show the state of the game and process key events. Server-
side would relay actions and randomize the locations of new dung piles. The sequence
diagram in Figure 7 can be also used for our NowJS-based game. In Figure 7, the server
first randomizes the locations of dung pile and uses synchronized now namespace for
calling client-side functions. As the players move, the movement handler function from
the server is called over the now namespace. Furthermore, the namespace is used for
notifying the other player of the new location.

3.4. Summary

In this Chapter, we introduced some commonly known examples of multi-user and real-
time multi-user web applications. Furthermore, we discussed the current trends and
presented some different categories of multi-user web applications. From our
perspective, the most interesting of categories are editors and games. This is because

Figure 13. Sequence diagram of Dung Beetle for Vaadin

27

many of the online editors already support real-time collaboration and in games there is
potential for impressive real-time multi-player demonstrations.

As an example, we presented a real-time two-player game called Dung Beetle and
described observations collected during the implementations. Dung Beetle is
implemented for three different frameworks that are MUPE, Vaadin and the Lively
Kernel. We used these example frameworks to explain how multi-user applications are
implemented and discussed about communication and synchronizing data between the
clients. We also discussed how the game could have been implemented using Node.js.
Table 3 summarizes, for each, the responsibilities of the client and the server, discusses
on how the communication between clients and the server can be enabled, and makes
some remarks about challenges and problems.

28

29

4. DEVELOPING MULTI-USER REAL-TIME WEB
APPLICATIONS

This chapter concentrates how to implement real-time multi-user web applications. The
current trend in web applications is to get rid of plugins like Flash and Silverlight and
use JavaScript instead [Lawrel12]. However, many web applications like Facebook,
Twitter, and weather forecasts, offer custom clients – commonly called apps – for
mobile devices these exist to provide improved user experience. For a developer, the
most fundamental difference between these native applications, custom clients, and web
browsers is that the technology stack of the browsers is restricted to technologies
described in the previous chapters. By implementing a native client, it is possible to
select the most suitable standards and techniques for that particular case. However, with
the browser approach, the potential number of users is much higher since the application
is available for wider variety of devices and no installations are needed.

4.1. The Guideline for Designing the System

Before implementing a real-time multi-user web application for a new framework, three
obstacles have to be tackled. First the bidirectional communication between the client
and the server has to somehow be enabled. Second, a solution for the grouping of the
users and for sending the messages inside the server has to be found. Finally, it has to be
designed how the shared application state is synchronized between the clients. After
these tasks, the actual implementation of the application should not be much more
difficult than implementing a normal web application. It should be noted that some
frameworks or third party libraries may offer ready-made solutions for these problems.

For multi-user real-time web application the bidirectional communication is an essential
feature as the system needs to be able to push messages from server to client. Therefore,
the logical first step in application development is to study the alternatives on how the
server push can be enabled for the selected web application framework. In Section 4.2,
some different alternatives are described.

Many of the current web application frameworks allow enabling bidirectional
communication, but in many web application frameworks, the developer needs to select
and implement the abstractions or uses third party libraries. In Sections 4.3, we describe
how the publish/subscribe pattern can be used at the server-side for creating groups and
communication channels. Publish/subscribe pattern is not the only possible abstraction
for this, but it should be possible to use it for the most of the purposes and frameworks.

30

Often the multi-user real-time application has a state that needs to be synchronized
between the clients. For example, in Dung Beetle game, the state of the game is
synchronized. Depending on the thickness of the client, the methods for synchronized
the state may vary. In Section 4.4 some methods for synchronizing the states are
discussed.

4.2. Alternatives for Communication

As already discussed, the current web technologies were originally designed for viewing
static documents, not for real-time multi-user web applications. The HTTP protocol is
fundamentally asymmetric: client initiates the communication by sending HTTP request
to the server that respond with an HTTP reply. Pull-based communication is a valid
approach for accessing static interlinked documents, but it is not a good starting point
for implementing multi-user web applications as there might be a need for incremental
updates flowing from the server without client initiative.

However, in the default case, in order to deliver a message, the server needs to wait
until a request is made and then piggyback message with the response. The crucial
missing operation from HTTP is the server initiated communication, often referred to as
“server push”. In collaborative application like chat the need for this is obvious, but in
news sites, weather forecasts, or stock market pages, the data at the server-side updates
constantly, and in some cases it would be a required feature to be able to push new data
to the active users as soon as possible.

4.2.1. Ajax with Polling

In a browser environment, the client-side application is implemented using JavaScript or
plugin-based techniques. For asynchronous non-blocking communication, a JavaScript
application can use XMLHttpRequests [Kester07]. [Garett05] coined this kind of a
communication framework with term Ajax. Today, Ajax is an important part of web
applications, and many JavaScript libraries offer simple interfaces for Ajax
communication.

In HTTP based-communication, the server is not able to send notifications to the client,
but the server is able to queue notifications and send them later together with further
responses. The queue-based approach is used in the Vaadin framework. Queuing is a
good addition to a request-response-based system, but it does not solve the notification
problem, because if no requests are made the events just accumulate on the server.
Using queues forces the client to poll the server; how often will depend on the case.

In a simple browser-based chat application, the user first writes a message in the field,
and then pushes a button for submitting the message to the server, and finally the
message is stored as a new row to messages table in the database. For acquiring a new

31

message, the client regularly initiates new requests. Depending on the need, polling can
be done more or less often, but the trade-off between latency and efficiency exists: if
done too often, most of the responses do not contain any payload data and bandwidth is
wasted; if done too rarely, the latency grows.

4.2.2. Comet

Server push solves the polling problem as the server is able to initiate the messaging
when needed. Many solutions for emulating server push exist. Most of them fall under
Comet, an umbrella term coined by Russell for the low latency server initiated data
transfer [Russel06]. Comet is not an explicit set of technologies but a term to describe
server push data functionality, and it can be implemented in several different ways.
Commonly used approaches rely on long-held HTTP requests that allow the server to
push data without explicit request. To be more accurate, an explicit request is made, but
the server delays the response until it has something meaningful to respond with. The
downside of Comet is that if no response has been received in the timeframe defined by
the browser, the connection timeouts, and thus the connection has to be periodically
renewed [McCarthy08, Mueller11, Resig06].

4.2.3. WebSocket

The developers of real-time multi-user web applications would most often like to find a
working effective standard answer for enabling bidirectional communication. In
connected devices and custom client systems the traditional way to do this is to use
socket connections or libraries build on top of them. An accompanying to the HTML5
specification [Hickson08] defines a socket standard for browsers. WebSocket
[Hickson11] is a bidirectional, full-duplex communication channel over a TCP socket.
Both the server and client can use WebSocket for sending data at any time or even at the
same time. The data can be sent without HTTP headers, and this reduces bandwidth
usage dramatically in case of small incremental updates. However, the approach is not
universally available among the browsers, and in some browsers the feature has to be
manually enabled because of security concerns [Roth10].

[Gutwin11] presents some measured performance differences between Comet
techniques and WebSockets. In their wide area network configuration, the round-trip
latencies between client and server for Comet was little less than 200ms and for
WebSockets less than 100ms. In another test, they tested how many packages of 500
bytes it was possible to send per second. By using XMLHttpRequests, it was possible to
send around 20 packages from client, but by using WebSockets the rate was over 3000
packages. From server to client the rate was 20 notification packages by using Comet
and over 5000 by using WebSockets. Even if the differences seem huge and the
numbers would vary greatly depending on the network setting, both approaches are
probably good enough for many real-life cases and networking is not the main
limitation in delivering real-time multi-user applications in the browser. [Fettweis12]
defines four types of physiological real-time constraints: muscular, audio, visual, and

32

tactile. Based on the study it can be summarized that WebSockets are enough for the
first two. Visual and tactile constraints seem to be something that we cannot achieve
with the state-of-the-art web technologies.

4.2.4. WebRTC

Another free standardized open source API for real time communication is WebRTC
that aims at real-time communication without plugins and is already available for
Google Chrome [Bregkvist12]. WebRTC brings peer-to-peer (p2p) real-time
communication to browsers and, thus, fills one missing key piece of the platform.
WebRTC is a part of the Chrome project, but the goal is to make it a cross-industry
solution. WebRTC offers MediaChannel and DataChannel for easily streaming media
and data between JavaScript based client-side applications. The web server is still
needed, but only for serving the content and enabling users to discover each other. With
MediaChannel it is possible to implement communicating web applications like Skype
for the browser, and the DataChannel can be used in many other domains like in
gaming, remote desktop applications, real-time text chat, and file transfer. Compared
with other solutions, the advantage of WebRTC is that the messages travel directly
between the clients. Therefore, the lag is reduced as the messages are directly routed
between the clients. In addition to JavaScript API, a C++ counterpart for native
applications is planned [Dutton13]. In thick client applications, WebRTC seems a very
appealing approach, in particular in cases where the server has no need to monitor or
control the messaging between the clients.

4.2.5. Other Standards and Protocols

Several standards and protocols for implementing bidirectional communication exist.
PubSubHubbub [Winn09], extends Atom [Nottingham05] and RSS feed [Winer03]
protocols and provides near-instant notifications for the new feed items. Basically news
sites and blogs could enable real-time features by using PubSubHubbub approach.
Furthermore, application types like messaging and chatting can be implemented using
PubSubHubbub.

In a native client environment XMPP [Saint-Andre09] is often used for enabling
bidirectional communication in applications like file transfer, games, instant messaging,
or voice over IP. It is an open technology for real-time communication, using XML. It is
standardized and proven technology with over fifteen years of development and
millions of users. With the help of JavaScript libraries, XMPP can also be used for
enabling communication between a browser and a server.

Sometimes an additional notification channel is used for signaling the client that new
data has become available for downloading. In modern web applications WebSockets
could be used as a notification channel. Notifications can be used for enabling
bidirectional communication in a RESTful system. In RESTful systems, the data is
presented as resources with unique URIs. For example, in a RESTful chat application,

33

each chat message could be exposed as a resource with a URI. The approach could, of
course be based on polling but by polling we could easily end up polling several
different URIs constantly. This could also be averted, for example, by exposing a
resource called new notifications and by polling that.

It is also suggested that in a RESTful architecture a new HTTP method called WATCH
alongside GET [Khare04] could be added. Instead of getting a representation of a
resource, WATCH would make a long-running request and changes to the resource
would cause a NOTIFY to the client. This would be a very RESTful answer to
bidirectional communication, but in practice it is a significant implementation challenge
to introduce a new HTTP method across the public Internet.

4.3. Abstracting the Communication

Comet and WebSockets can be seen as an answer to enabling the bidirectional
communication between the server and client. For enabling direct communication
between two clients WebRTC can be used. However, to make communication in
general simpler in a framework for multi-user applications, a layer of abstraction needs
to be built on top of them. WebSocket simply enables passing and receiving messages.
[Eugster03] mentions Message Passing as the ancestor of the distributed communication
and suggests that even if complex interaction schemes can be built on top of it, it would
help developers if the communication pattern was less primitive. Furthermore, they list
several alternative communication paradigms that could be built on top of the existing
primitives like Remote Procedure Call (RPC), Notifications, Distributed Shared
Memory (DSM), Message Queuing, and Publish/Subscribe model.

Most web application frameworks offer the databases as a standard solution for enabling
the communication between the users. In applications like Flickr or Twitter, users can
upload new data (pictures or text) to the system and to see the new content, the other
users reload the page. Hoverer, along with the databases, we need another pull-based
layer for communication. The database and server may be located on different
computers and, therefore, network lag can again be an issue. Furthermore, as with
HTTPRequests, we do not want to end up constantly querying the database for changes.
To solve the problem, many database systems offer database triggers. The lowest
common nominator between the systems seems to be a possibility to write a change log
and then poll the log to find updates. Depending on the database engine there may be
more advanced alternatives. Some database engines are even able to make an external
function call when triggering takes place.

Luckily, in many frameworks the direct function-based communication between the
users is allowed. In particular, in Vaadin it is easy to implement a communication class
that enables interactions between the users. For example, the singleton pattern
[Geary03] or static classes can be used. With a shared class or object it is easy to
implement a capability for creating new channels and enable subscribing to channels

34

[Vaadin13]. This does not mean that databases have become obsolete. For example, in
two-player Tetris where the players see each other’s actions, the game actions could be
function calls, and the high scores could be stored into the database.

In publish/subscribe pattern (Figure 14) users subscribe and unsubscribe to specific
communication channels [Eugster03]. A publisher sends messages to a channel that
forwards them to the subscribed users. [Hall96] provides an example called Corona in
which publish/subscribe paradigm is used for enabling collaboration. [Huang04] studies
the model in a mobile environment. The findings presented in the paper support the
assumption that the model would also suit web applications. Publish/subscribe is able to
quickly adapt in a dynamic environment with frequent connections and disconnections.
The architecture can also be extended to use a message broker if we need to deliver
messages to the users that are not currently online.

4.4. Shared Data between the Clients

A naïve approach to the consistency of a distributed system would be to hope that the
distributed data stays synchronized. However, this is difficult to ensure as latencies
differ and, therefore, data storages see updates at different time and in different order.
The consistency models are used for defining how to synchronize data. The list of
different consistency models is long, but for example causal, eventual, and sequential
consistency models are commonly used. In a system with sequential consistency
[Lamport79], every node of the systems sees the operations in the same order. In
eventual consistency [Vogels09], the order does not matter, but given a sufficiently long
period of time without changes, the updates are propagated throughout the system and
the replicas will be synchronized. In causal consistency [Ahamad93], the operations that
are causally related are replicated to every node in the same order. The operations that
are not causally related may be seen in different order by different nodes.

For example, in the collaborative text editor, the straightforward implementation would
be just multicast messages like “add x to location 5” or “remove location 5”. It turns out
that things are more complicated because of network lag. If users add “x” and “y”
simultaneously to location 5, then how it is decide if “xy” or “yx” is the correct
outcome? What if one user deletes the whole text and another tries to do “add x to
location 5”. Furthermore, how to ensure that all the clients have made the similar

Figure 14. Publish/Subscribe pattern [Eugster03]

35

decision and how to decide which client hold the right version of data? In our work,
eventual consistency is used. In the case of a text editor, the documents between the
clients may vary while editing, but eventually all the distributed versions of the
document are synchronized. Basically, in the example above, the system just somehow
decides which of the outcomes is the right one and replaces the other outcome.

Sometimes, estimates for the future data are needed and the real data has to be somehow
merged to the prediction. For example, in real-time multiplayer games like first person
shooters and MMORPGs predictive algorithms make the movements and actions of the
players smoother [Nokia03]. Nevertheless, with a high lag and a poor algorithm this can
cause characters colliding with the obstacles and other random effects.

In [VI] we ensured eventual consistency in a collaborative code editor by storing the up-
to-date data on the server and then mirroring it to the clients using algorithm presented
in [Fraser09]. While using this approach, the client versions cannot drift apart because
they just mirror common data. If application is fast paced, there may be problems on
how the mirrored version on the client is adjusted to the real version on the server. If a
conflict occurs, the mirrored version on a client can always be replaced by the version
on the server, but this should be done smoothly and in user friendly way. In MUPE and
the Lively Kernel implementations of Dung Beetle, the thick client approach was used.
Hence the game was smooth to play, but it also caused some special situations in cases
when Beetles interacted with each other’s by biting or by simultaneously pushing the
same pile of dung. In the Vaadin implementation, the data is stored at the server and,
therefore, no problems with the synchronization of situations existed, but in case of
slow network the game was not so smooth to play.

4.5. Summary

In this chapter, we concentrated on the key problems in enabling a real-time multi-user
approach for web applications and discussed how to implement multi-user real-time
web application. In the most current frameworks it is possible to bypass the problems,
but the frameworks do not offer any out-of-the-box solutions. MUPE was a multi-user
application framework used in J2ME-based mobile devices and it contained many
helpful features that could be transferred to the browser world. Our opinion is that there
are three separate problems: how to enable the bidirectional communication between the
client and server, how to build helpful abstraction on top of the communication, and
how to share data between the clients.

No single best solution for the problem exists, but Table 4 describes a possible solution.

36

Table 4. Solutions for problems in real-time multi-user web applications
Problem Solution

Bidirectional
communication
between the client
and the server

WebSockets enable bidirectional communication and
decrease the lag and data overhead when compared with
other alternatives available. However, it may be necessary
to include Comet fallback alternative to ensure
compatibility.

Abstracting the
communication
between the clients

To form user groups and for abstracting the
communication inside the server, for example, the
publish/subscribe pattern can be used.

Shared data between
the clients

For enabling an easier development process, we suggest
storing application logic and state at the server-side.
Therefore, only one state exists and can be mirrored to
each of the clients. However, certain benefits can be gained
by thickening the client-side, but then the synchronization
of the states is more difficult

37

5. RELATED RESEARCH

All the separate aspects and fields that we addressed in this dissertation are widely
studied, but to our best knowledge this is among the first attempts to combine all of
them. In gaming, multi-player real-time native games have been around almost as long
as consumers have been able to do networking. Furthermore, lots of research papers
have been written concerning web applications and multi-user web applications, but it
seems that in this stage they still mostly concentrate on example custom-built web
applications and more rarely on custom-made multi-user web applications. Examples of
real-time multi-user web applications are even less known, although some examples do
exist. Furthermore, we were also able to find some solutions that aim for more generic
frameworks for implementing real-time multi-user applications. In the following some
approaches that touch our research are presented.

5.1. Real-Time Multi-User Applications

Collaborative editing is probably the most commonly used example of real-time multi-
user applications. In the early ages of computing, the term teamware was used for
describing the collaborative systems and WYSIWIS (What You See Is What I See) was
used to describe simultaneous editing. In [Magnusson93] a native system built on top of
the Mjølner Orm environment [Magnusson90] is presented. The system follows the
client-server architecture, and it supports collaborative text and code editing. In a later
article [Minör93] authors describe what kind of situations collaborative editing is
needed in and how it should be implemented. The paper divides synchronous and
asynchronous collaborative editing into two categories and explains the situations where
they can be used. Furthermore, the paper presents the third method: the semi-
synchronous editing that is a model for combining the good features of both extremes.
The semi-synchronous editor presented relies on three concepts: 1) hierarchical
organization that uses a specific grammar for partitioning the document; 2) fine-grained
version control that maintains the versions; and 3) active diffs that provide group
awareness by showing the differences between the versions.

GroupKit introduced in [Roseman96] is a groupware toolkit that enables developers to
build synchronous and distributed native applications. The infrastructure of GroupKit
automatically takes care of some tasks and offer groupware programming abstractions
for developers. The goal of the toolkit was to reduce the level of the difficulty of
implementing a multi-user to only slightly more difficult than that of a single-user
application. To reduce the difficulty, the authors offered abstractions, widgets, and
primitives for remote procedure calls, sharing data, session management, registration

38

process, and conferencing events, all of which can be extended for the further
functionalities. For remote messaging, one-to-one (unicast) and one-to-many (multicast)
communication was offered. The paper explains how applications were implemented
using GroupKit and what a GroupKit program looked like. The article also compares
GroupKit with the other groupware toolkits of that age.

[Ellis98] discusses operational transformation in real-time group editors as well as
related issues, algorithms, and achievements. Operational transformations have become
a solution often selected for enabling communication as they can widely be used in
different application domains. In a nutshell, operational transformation algorithms are a
method for maintaining the consistency in real-time multi-user editors. As a minimal
example, a text editor can be implemented using two operations: O1 = Insert[0,
"x"] that inserts character "x" in position "0", and O2 = Delete[2, "c"] that
deletes the character "c" in position "2". In a more complex text editor, additional
operators like Move and Replace could come in handy. In addition to the operations,
the rules for resolving conflicts from concurrent operations are needed.

Plugin-based application frameworks for the web browser often offer some support for
real-time multi-user applications. For example, Flash contains XMLSockets [Adobe13c]
that are similar to WebSockets. Disney has offered a huge amount of Flash-based
games, and some of them even have multi-player mode. Furthermore, they also offer
examples and guidelines on how to enable communication between the players [Lee04].
However, to our best knowledge, no complete frameworks for making real-time multi-
user applications exist for Flash. Furthermore, Flash is a component that user has to
separately install and update, and many device manufacturers have decided not to
support Flash-based content [Lawler12]. Other plugin-based approaches like for
example Microsoft Silverlight seem to offer the same kind of feature set, and also share
the same limitations as Flash.

MUPE was not the only custom client framework for implementing multi-user
applications for Mobile devices. WidSets by Nokia offered some similar features. After
initial WidSets client installation the selection of widgets could be browsed and used.
For WidSets, an SDK containing an emulator for creating widgets were offered. In
some simple tasks, like in simple UIs or in showing RSS feeds, WidSets was an even
more advanced framework than MUPE was. In addition, the documentation of the
framework promised that it could be used for creating multi-user applications although
this was not an essential part of the system. Unfortunately, the testing of these features
was difficult as limited number of code examples were available and only one instance
of the emulator could be launched at a time. However, while MUPE was never a
commercial success, WidSets was able to attract a regular user base and small number
of third party programmers to the community [Nokia13].

[Sun06] offers a method for converting existing single-user native applications to
collaborative ones. The invention reused generic operation transformations and a

39

collaboration engine by creating an application-specific adapter for mapping special
operations to a set of primitive operations. In this way, a generic collaboration
framework can be used without changing the original application. However, as a down-
side, a collaborative adapter has to be implemented for each converted application. As
an example of their approach, they have created adapters for MS Word and PowerPoint
and extended them to multi-user applications that they have named CoWord and
CoPowerPoint [Sun06]. Those applications are promised to allow users to be able to
collaboratively view and edit documents over the Internet.

Simultaneous collaboration can be used in a wide variety of fields. [Kurki10] describes
the components for building a fiction web service described in [Hypén10]. The system
can for example, be used for adding and searching information in Finnish libraries.

In [Wilde11] a system for exposing user interface elements over a RESTful HTTP
interface is described. Each UI element has its own URI, and specific monitor resource
is used for sending update notifications to the user agents. The system uses an extension
of the QT framework [Digia13] and Remote-MVC pattern [Stirbu10] for presenting the
UI elements. The described approach supports multi-displays and multi-users. As an
example application, a Texas Hold’em game with the server running on a Ubuntu
laptop, a TV used as a public display, and Nokia N900 smartphones as private gaming
devices is presented. While playing, the public information is presented on the TV
screen and private information on the smartphones. The approach is promising and even
if the QT framework is used as a presenting layer, nothing seems to prevent developers
from mimicking the same infrastructure and using the browser-based UI-libraries
instead.

Some commercial collaborative frameworks have emerged recently. One of those is
beWeeVee [beWeeVee13] that uses operational transformations. It can be used for
implementing desktop applications with .NET or web applications on Microsoft
Silverlight. Data structure changes are transformed by beWeeVee to canonical
operations that can be propagated to remote sites over peer-to-peer or client-server
architectures. Furthermore, beWeeVee enables features such as unlimited undo and
change playback.

5.2. Real-Time Multi-User Web Applications

There is a variety of good real-time multi-user web application examples available.
[VII] list some game examples, [VI] some collaborative editors, and in Section 3.2 some
additional examples. In addition to these there are plenty of scientific publications that
concentrate on some fields of the area; in following, we list a few.

Real-time collaboration can be used to enable virtual laboratories that are accessed
using browser [Jara09]. In these laboratories students can train and learn laboratory
tasks through the Internet and a teacher can guide them remotely in real-time.

40

Some methods for tuning traditional web applications or pages towards the multi-user
paradigm exist. For example, [You04] introduces the People Awareness Engine that can
be added to a normal single-user web application or page and is then used for real-time
communication with other users. People Awareness Engine does not make the original
page collaborative but it makes the people at the same site visible and enables
interaction.

Furthermore, [Lowet09] proposes a method for co-browsing single-user web
applications. At least in theory, the approach supports all web pages, but the model of
collaboration is limiting for multi-user applications, since all of the browsers share
exactly the same view and state. Earlier implementations have made it possible to
browse static pages, but because of the dynamic nature of web applications, this
approach works differently. [Lowet09] presents two approaches. The first one
synchronizes the output of the JavaScript engine by synchronizing the changes made on
DOM level. The second one synchronizes the input, like the UI events and incoming
data for the JavaScript engine, and thus indirectly also synchronizes the output and the
DOM tree.

Another example working at DOM level is presented in [Heinrich12] that proposes a
method for converting conventional web applications into multi-user web applications
by utilizing a generic collaboration engine and operational transformations to
synchronize DOM between the users. The method is named Generic Collaborative
Infrastructure (GCI). DOM mutation events are the same for all applications and,
therefore sending the DOM events is a better way to generalize application behavior
than sending of application specific events. As an example, single-user text and graphic
editors are converted to collaborative ones. The approach may be valid for
synchronizing the views between the users, but often it is desirable to show different
information in different clients even when collaborating, and in such situations, the
synchronization of DOM is not the right alternative.

Heinrich et al. have extended their work in several articles. In [Heinrich13a] they
analyze which kind of web applications are suitable for transforming from single-user to
multi-user using GCI. [Heinrich13b] makes an observation that there are two different
approaches for implementing collaborative web applications: (1) Concurrency control
libraries and (2) transformation approaches that are capable of converting single-user
applications to multi-user application. Multiple examples of both categories are
explained. Furthermore, they came up with a new approach that uses source code
annotations that would be interpreted at runtime by the collaboration engine. They claim
that by using annotations, multi-user web applications are easier and faster to
implement. Furthermore, in [Heinrich13c] a reusable set of workspace awareness
widgets is introduced. The library can be used for enhancing collaborative applications
with features that allow user to be aware of other users and their actions.

41

5.3. Web Frameworks

In Chapter 4, technical selections for implementing real-time multi-user web
applications are elaborated. While the real-time multi-user web applications and
frameworks are not a widely studied field, many of the enabling facilities are more
deeply researched. Next, we present some interesting highlights of the research that is
closely related to our work.

In Section 4.2, we presented up-to-date approaches like Comet and WebSockets for
enabling the server push. At the 1990s a company called PointCast implemented the
push-based PointCast Network that was first used for displaying live news and
information in screensavers [Ramakrishnan98], and during the browser wars, Netscape
and Microsoft integrated the technology into their browsers. However, time was not yet
right for the technology. The main argument against the PointCast Network was that it
used too much bandwidth for the internet infrastructure at the time. Therefore, many
networks banned the technology, and it was more or less replaced by pull-based RSS
feeds.

For abstracting the communication, different alternatives exist. In Section 4.3,
publish/subscribe abstraction was presented, but in multi-user web application
approaches like Remote Procedure Call (RPC), Notifications, Distributed Shared
Memory (DSM), or Message Queuing could be used as well. In systems utilizing
Remote Procedure Call [White75], it is possible to invoke functions over the network.
From a developer point of view, remote procedure calls look exactly like local
procedure calls: parameters can be passed and return value used. However, it should be
noted that even if local procedure calls are cheap, the RPCs are not, because they
require networking. In Distributed shared memory [Hennessy07], the physically
separated memories can be addressed as one address space. This shared memory can
then be used for messaging between different components in a distributed system.
Message Queuing [Dickman98] provides an asynchronous communication protocol
where messages are placed in queues to be retrieved latter.

Section 4.4 discusses synchronizing the data between the users. However, sometimes it
does not make sense to synchronize or even allow all the edits. For example, one
meaningful edit may consist of several smaller increments. [Jiang08] discusses on how
to implement constraints on the collaborative graphic design system so that
collaborators are not able to break semantic consistency. For example, if one of the
users draws a face then he probably does not want other users to move an eye to a
wrong place. The same kind of problem is presented and solved in a real-time
collaborative Web IDE Collabode [Goldman11]. In publication, they have concentrated
on an algorithm that only synchronizes error-free edits to collaborating users. The
algorithm is useful and we have adopted it with some modifications to CoRED that is
presented in [VI].

42

Open Cooperative Web Framework (OpenCoWeb) [OpenCoWeb13] is an open source
project aiming for collaborative web applications. It sends notifications of user changes,
resolves the conflicting changes, and uses operational transformations for converging
the data of the applications. In addition, the framework offers the so called Coweb client
and server for enabling the collaboration. Based on the JavaScript interface, the
framework seems quite a low level system, which allows implementing a wide variety
of application types on top of it. As a downside, this also makes it more difficult to use.
For example, content is synchronized using
CollabInterface.sendSync(name, value), in which name identifies the
property changed and value contains new property in JSON format. The rest of the
framework seems to work on the same abstraction level. As a simple example, the
authors offer the implementation of cooperative shopping list that can be filled by
several authors simultaneously. The simple example consists of half a dozen files.

[West12] discuss the meaning of trust in collaborative web applications and explain
certain characteristics that make them advantageous to attackers. Authors are not
concentrating on real-time collaborative applications, but in many cases the security
concerns and methods for avoiding them can be applied to real-time applications.

43

6. CONCLUSION

The Web is becoming a platform for web applications, and the variety of applications is
constantly growing. When the users of web applications are connected to a single server
it seems reasonable to assume that they could somehow interact with each other. Along
with Web 2.0 some collaborative features have emerged to the Web and users have
adopted them. However, it should be noted that new collaborative features are mostly
slow, asynchronous collaboration such as updating wiki pages, sending messages,
posting blog entries, or adding comments. These are not the features that we are
searching for. We want to implement multi-user applications where users can interact
with each other in real-time. Well-known examples like chats and collaborative text
editors like Google Docs exist, but the standards for implementing the feature are still
missing.

The main contributions of this thesis are: pinpointing the main difficulties in the
implementation of real-time multi-user web applications, and the finding of the
solutions. As a result of the research, we came to the conclusion that the technological
stack has not changed much since when the Web just contained interlinked hypertext
documents. Web applications are still constructed using the same building blocks as
they were used fifteen years ago. For client-side, these building blocks are HTTP
communication, HTML markup, CSS style sheet, and JavaScript scripting language.
For server-side, a variety of alternatives exists, but solutions mostly build on the same
conventions. The gap between client-side and server-side and another between server-
side and the database are by default pull-based; in the first case pull operations are
called request and in the second queries. Normally, the server cannot freely push new
data to the client, nor can the database inform the server about new data being stored.

The problem described above is technical in its nature, but it affects also coding
conventions and the architecture of web applications. We considered an alternative
structure for the client-server based architecture by studying MUPE (Multi-User
Publishing Environment) by Nokia Research Center and came to the conclusion that
many of the features that were available in MUPE could be transferred to web
applications just by implementing the server differently. We also made a suggestion that
the database should not be used for enabling real-time communication. The database
can be used in applications, but it should be used for storing the data, not for performing
real-time interactions. As an example, in a web-based two-player game, the interactions
between the players do not need to be stored in the database, but the high scores or other
permanent outcomes definitely should.

44

Finally, we presented problems, discussion, and solutions concerning real-time multi-
user web applications. We were able to find three separate problems: how to enable the
bidirectional communication between the client and server, how to build helpful
abstraction on top of the communication, and how to solve concurrency and consistency
problems.

6.1. Research Questions Revisited

The research questions presented in Chapter 1 are revisited in the following. The main
question was divided to several sub-questions and before the main question, the sub-
questions are answered:

Q1: How to enable communication?
There are several valid alternatives for implementing communication between
distributed components in web-based multi-user applications. For slow paced
applications, it may be the best alternative to select XMLHttpRequests and polling since
the approach is easy to implement and not so resource consuming if done infrequently.
In real-time multi-user web applications, the selected technology depends on the parties
that are communicating. If all communication travels through the server, WebSockets
are the fast and obvious alternative. For enabling the direct messaging between the
clients, WebRTC can be used. For supporting older browsers, Comet communication
may be necessary to implement as a fallback. Enabling the communication is discussed
with more details in Section 4.2.

Q2: How to enable multicasting?
The content that arrives to the server can be divided into two separate parts. The first
part is content that has a short lifespan and becomes meaningless after it has been
relayed to the selected group of users. Groups can be managed, for example, by using
the Publish/Subscribe pattern. More information about the internal structure of the
server is offered in Section 4.3. After the data has been relayed to selected group of
users, it can be consumed, and incorporated to the application state. How the
incorporation is done depends on the partitioning of the application and is discussed
with more detail in answer to Q3. As usual, the content with longer a lifespan can be
permanently stored in files or database. In gaming, these contain permanent outcomes,
such as the high score points, and, in a real-time text editor, the complete text.

Q3: How should the application be partitioned between the client and the server?
No single answer to the problem of partitioning exists. In a thin client system, multi-
user web applications are easier to implement as the state of the application is stored
and synchronized on server-side, and only the user interface is mirrored to the clients.
However, the latencies in communication cause the server-centric approach to be less
responsive than thick client applications. The partitioning choice must be based on the
selected framework and the application under development. More detailed answers to
this question are offered in Section 4.4.

45

Q4: How do development tools and frameworks support the development process?
The web application frameworks seldom offer help for implementing real-time multi-
user web applications. However, if they would offer help, then it should be easier for the
development tools to facilitate the implementation of real-time multi-user applications.
The tools can, for example, help developers to follow the conventions and offer code
completions and other supporting features. If features are not incorporated to a
framework, then the best that development tools can offer are libraries, extensions, code
snippets, and guidelines. In Chapter 3, we present three web application frameworks
and explain how they support the implementation of real-time multi-user applications.
In Chapter 5, the scope is broadened and some alternative approaches are presented.

Our main research question that we presented in the first Chapter was:
How to easily develop web applications with real-time multi-user features?

The current technology stack of web applications enables developing multi-user real-
time web applications. By nature, these have more complicated requirements and are
more difficult to implement than most web applications. However, sophisticated
development tools and frameworks may facilitate the multi-user paradigm and leverage
the implementation to be just slightly more difficult. Currently, no mainstream
framework offers a complete solution for easy development of real-time multi-user web
applications and therefore framework can be selected based on other needs and
experiences. However, some frameworks already offer support some features and are,
therefore, better starting point for implementing real-time multi-user web applications.
For enabling the easy implementation of multi-user applications, abstractions on top of
the communication layer are needed.

No solution that fits all the frameworks exists and, therefore, the issues need to be
tackled one by one, so, the sub-questions above are needed to give the detailed answer.
[IV], [VI], and [VII] present real-time multi-user example implementations for the
Lively Kernel, Vaadin and Node.js. Section 4.1 presents some guidelines for extending
web application frameworks to support multi-user real-time features.

6.2. Future Work

This work concentrates on describing the different approaches for real-time multi-user
features and it could be extended to several directions, some of which are described
next.

6.2.1. Real-Time Multi-User Web Application Framework

Earlier we made an observation that custom client framework MUPE had a plethora of
helpful features that could be transferred to web applications. Vaadin is a web
application framework that has certain quality in the way how it enables easy web

46

application development. One obvious future work would be to implement an
application framework that combines the best parts of MUPE and Vaadin to a real-time
multi-user web application framework. Its superiority over conventional frameworks
could be proven by organized coding sessions where inexperienced developers would
implement real-time multi-user web applications under the supervision and guidance of
experienced developers using different frameworks. Earlier we have had several
intensive courses called code camps on several different themes. Code camp
concentrating on multi-user real-time web applications would be a logical continuation.

In our real-time multi-use framework, the user interface and communication between
the client and the server could be enabled using Vaadin. This selection leads us to the
thin client approach that reduces the level of distribution and, therefore, makes the
programming model simpler. However, as a side effect we lose the ability to run client-
side logic and, therefore, the responsiveness may not be high enough for all the possible
application types.

For enabling the communications between the users, shared objects with synchronized
Java methods could be used. A shared object between the users could be implemented
using the singleton pattern, a design pattern that restricts the instantiation of a class to
one object [Geary03]. Synchronization of Java methods is necessary as several users are
accessing to shared objects simultaneously and concurrent requests could otherwise
potentially lead to incorrect functionality [Oracle13b].

Singleton based classes could be used for imitating the class structure of MUPE. In
simple applications, a single channel could be used for broadcasting all the messages,
but often the further division to, say, chat rooms, game instances, or editable documents
is needed. This further division can be done using the singleton based Lobby room
channel that is able to serve and create communication channels for users to subscribe.
In this framework, everything happens at the server-side and the needed parts are
mirrored to the clients.

6.2.2. Tool Support

Another interesting branch for future work would be studying tool support. To the best
of our knowledge, there are not much tools available for helping development of real-
time multi-user applications for a browser. The usual tools like Eclipse or Emacs
[Stallman86] can of course be used, but they do not offer much support for developing
real-time multi-user features. It seems that instead of trying to create specific tools, the
best approach is to include multi-user features in a framework. Without support in the
framework, there is not much that can be done just by implementing better tools. Of
course, an IDE could offer scripts, code snippets, and additional multi-user libraries. In
Java-based systems like Vaadin, Eclipse could offer a lot of help, if multi-user features
would be embedded inside the system. Code completion and error checking would work
immediately because of the reflective nature of Java.

47

6.2.3. Navigation Buttons

One interesting theme for future work could to investigate how the navigation buttons
of the browser should be supported in a real-time multi-user application. The browser
provides additional facilities not available in other systems, such as bookmarking, back
and forward buttons, and cloning windows. The facilities can be used for navigating
inside a web application and, therefore, the server has no control of the exact client state
[Queinnec04]. Most of the time a meaning for those facilities can be invented. When
considering the simple drawing application described in Section 2.2, the back button
could be used for an undoing edits, forward could then be used as a redo, and
bookmarking as a save. Obviously, the meaningful implementation of the buttons totally
depends on current application.

In a multi-user environment, the meaningful interpretations for actions associated with
navigation buttons are even more difficult to make. Notifications between the users
bring a new level of difficulty on top of these issues. Bookmarking could perhaps be
used for saving a snapshot of the state, but back and forward button could not be used to
go back and forward in the state of the application, since the actions would have an
effect on other users, too. In other words, even if we would be able to undo an action by
pushing the back button, a notification sent cannot be unsent. In our example
applications, these facilities are ignored and the web applications are mostly considered
as single page systems where the back button will not undo the last action but backs to
the previous page and out from the system.

6.2.4. Context Awareness

Context awareness indicates that a system is somehow linked with changes in the real
world, and it is, therefore, possible to react to changes in the environment [Dey00].
Many web applications already benefit from the mobile and context aware aspects. As
an example, the Geolocation API can be used in direction services. In Google Maps at
“Get Directions” service “My Location” is pre-filled, and therefore in the basic case of
navigation, the user only fills in the destination field [Schutzberg09]. In MUPE related
research, we have studied context awareness [Suomela04], but in browser-based web
applications, the implementation of context awareness is more difficult.

The value of context awareness is more difficult to define on desktop and laptop
computers. However, it could be interesting to study how to utilize context awareness in
multi-user web applications. As the location API [Popescu10] is already available in the
browsers, it would be the easiest starting point. A chat service could suggest Tampere-
channel automatically for a person who is in Tampere, Finland. In games or social
media, people standing nearby each other could be automatically grouped. In player
proximity based.games, the positioning data could be used for interacting with players
nearby. Geocaching can also perhaps be seen as a form of position-based multi-user
application.

48

Currently, applications utilizing context awareness could be easily developed for the
browser. Many browsers implement W3C Geolocation API for resolving physical
location. By using the API, the device can be located based on other information
available. Huge databases have been collected for mapping IP, Wi-Fi, and Bluetooth
MAC addresses and radio-frequency and GSM/CDMA cell identifiers to physical
locations. If a device has a Global Positioning System (GPS) module, then it can be
used in web application. The GPS modules of the devices are also used for continuous
updating of Geolocation database [Vaughan-Nichols11]. As an example, in the author’s
office, Google Chrome 22 is able to find the current location with the accuracy of about
10 m.

49

REFERENCES

[Adobe13a] Adobe Flash Platform, http://www.adobe.com/flashplatform/ (last accessed
27. March 2013)

[Adobe13b] Adobe Shockwave Player,
http://www.adobe.com/products/shockwaveplayer/ (last accessed 27. March 2013)

[Adobe13c] Reference for the Adobe Flash Platform, XMLSocket class,
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/XMLSoc
ket.html (last accessed 12. September 2013)

[Ahamad93] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip
W. Hutto. "Causal memory: Definitions, implementation, and programming."
Distributed Computing 9, no. 1, pp. 37-49, 1995.

[Andrews00] Gregory R. Andrews. "Foundations of multithreaded, parallel, and
distributed programming." University of Arizona, Wesley, USA, 2000.

[Anttonen11a] Matti Anttonen, and Arto Salminen. “Building 3D WebGL
Applications.“ Technical report, Tampere University of Technology, p48. Tampere,
Finland, 2011.

[Anttonen11b] Matti Anttonen, Arto Salminen, Tommi Mikkonen, and Antero
Taivalsaari. "Transforming the web into a real application platform: new technologies,
emerging trends and missing pieces." In Proceedings of the 2011 ACM Symposium on
Applied Computing, pp.800-807. ACM, 2011.

[Apache13] Apache Software Foundation. Apache Wave.
http://incubator.apache.org/wave/ (last accessed 23. July 2013)

[Apple13] Apple QuickTime player, http://www.apple.com/quicktime/what-is/ (last
accessed 2. September 2013)

[Berners-Lee05] Tim Berners-Lee, Roy Fielding, and Larry Masinter. "Uniform
resource identifiers (URI): generic syntax." RFC 3986, p. 61. 1998.

[beWeeVee13] BeWeeVee – Life collaboration framework, http://www.beweevee.com
(last accessed 2. September 2013)

[Bibeault08] Bear Bibeault, and Yehuda Kats. “jQuery in Action.” Dreamtech Press, p.
452. 2008.

[Bos11] Bert Bos, Tantek Çelik, Ian Hickson, and Håkon Wium Lie. "Cascading style
sheets level 2 revision 1 (css 2.1) specification." W3C Recommendation, p. 487, 2011.

50

[Bray06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François
Yergeau, and John Cowan. "Extensible Markup Language (XML) 1.1. (Second
Edition)" W3C recommendation , p. 45. 2006.

[Bregkvist12] Adam Bergkvist, Daniel C. Burnett, Cullen Jennings, and Anant
Narayanan. "WebRTC 1.0: Real-time communication between browsers." Working
draft, W3C, 2012.

[Cerf80] V. Cerf and J. Postel. “Mail Transition Plan.” RFC 771, p. 9. 1980.

[Chui12] M. Chui, J. Manyika, J. Bughin, R. Dobbs, C. Roxburgh, H. Sarrazin, G.
Sands, and M. Westergren. “The Social Economy: Unlocking Value and Productivity
through Social Technologies.” McKinsey Global Institute, p. 170. 2012.

[Colley04] Steve Colley. “Steve Colley's Story of the original Maze: Stories from the
Maze War 30 Year Retrospective.” http://www.digibarn.com/history/04-VCF7-
MazeWar/stories/colley.html (last accessed 27. March 2013)

[Crane05] Dave Crane, Eric Pascarello, and Darren James. “Ajax in action.” Dreamtech
Press, p. 650. 2005.

[Crockford06] Douglas Crockford. "The application/json media type for javascript
object notation (json)." RFC 4627, p.10. 2006.

[Crockford08] Douglas Crockford. JavaScript: the good parts. Yahoo Press, p. 156.
2008.

[Dey00] Anind K. Dey. "Providing architectural support for building context-aware
applications." PhD diss., p. 170. Georgia Institute of Technology, 2000.

[Dickman98] Alan Dickman, and Peter Foreword By-Houston. “Designing applications
with MSMQ: message queuing for developers.” Addison-Wesley Longman Publishing
Co., Inc., p.370. 1998.

[Digia13]Qt, http://qt.digia.com/ (last accessed 13. September 2013)

[Dix96] Alan Dix. "Challenges and perspectives for cooperative work on the Web."
SIGCHI Bulletin 28, no. 2, pp. 47-49. 1996

[Dojo13] Dojo toolkit, http://dojotoolkit.org/ (last accessed 2. September 2013)

[DojoX13] DojoX, http://dojotoolkit.org/reference-guide/1.7/dojox/index.html (last
accessed 2. September 2013)

[Dutton13] Sam Dutton. “Getting started with WebRTC. HTML5 Rocks tutorials”,
http://www.html5rocks.com/en/tutorials/webrtc/basics/ (last accessed 2. September
2013)

[Eclipse13] Eclipse IDE. http://www.eclipse.org/ (last accessed 12. September 2013)

[Ecma11] Ecma international. "ECMA-262 ECMAScript Language Specification." p.
245. 2011.

51

[Eckstein98] Robert Eckstein, Marc Loy, and Dave Wood. “Java swing.” O'Reilly &
Associates, Inc., p. 1252. 1998.

[Edwards97] W. Keith Edwards, Elizabeth D. Mynatt, Karin Petersen, Mike J.
Spreitzer, Douglas B. Terry, and Marvin M. Theimer. "Designing and implementing
asynchronous collaborative applications with Bayou." In Proceedings of the 10th annual
ACM symposium on User interface software and technology, pp. 119-128, ACM, 1997.

[Ellis89] Clarence A. Ellis and Simon J. Gibbs. "Concurrency control in groupware
systems." In ACM SIGMOD Record, vol. 18, no. 2, pp.399-407, ACM, 1989.

[Ellis98] Clarence A. Ellis and C. Sun. "Operational transformation in real-time group
editors: issues, algorithms, and achievements." In Proceedings of the ACM conference
on Computer supported cooperative work, pp. 59-68, 1998.

[Ellison07] Nicole B. Ellison. "Social network sites: Definition, history, and
scholarship." Journal of Computer-Mediated Communication 13, no. 1, pp. 210-230,
2007.

[Engalbart68] Douglas C. Engelbart. "The mother of all demos." 1968.
http://www.youtube.com/watch?v=JfIgzSoTMOs (last accessed 28. June 2013)

[Eugster03] Patrick T. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. "The many faces of publish/subscribe." ACM Computing Surveys 35, no. 2,
pp. 114-131, 2003.

[Express13] Express web application framework for node. http://expressjs.com/ (last
accessed 30. June 2013)

[Fettweis12] G. Fettweis. “A 5G Wireless Communications Vision” Microwave
Journal, 2012.

[Fielding99] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, and Tim Berners-Lee. "Hypertext transfer protocol–HTTP/1.1." p.176.
1999.

[Fraser09] Neil Fraser. "Differential synchronization." In Proceedings of the 9th ACM
symposium on Document engineering, pp. 13-20, ACM, 2009.

[Freed96] Ned Freed and Nathaniel Borenstein. "Multipurpose internet mail extensions
(MIME) part one: Format of internet message bodies." 1996.

[Fried10] Ina Fried, and Lowensohn, Josh. “Google pulls plug on Google Wave.”
August 4, 2010. http://news.cnet.com/8301-13860_3-20012698-56.html (last accessed
2. September 2013)

[Garett05] Jesse James Garrett. "Ajax: A new approach to web applications." (2005).
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications (last accessed
28. June 2013)

[Geary03] David Geary. "Simply Singleton, Navigate the deceptively simple Singleton
pattern." JavaWorld How-To-Java, 2003.

52

[Git13] Git User’s Manual. http://www.kernel.org/pub/software/scm/git/docs/user-
manual.html (last accessed 12. September 2013)

[Goldman11] Max Goldman, Greg Little, and Robert C. Miller. “Real-time
collaborative coding in a web IDE.” In Proceedings of the 24th annual symposium on
User interface software and technology, pp 155-164. ACM, New York, 2011.

[Google10] Google Inc. “Laying the Foundation for a New Google Docs.”
http://googleenterprise.blogspot.com/2010/04/laying-foundation-for-new-google-
docs.html (last accessed 2. September 2013)

[Google13a] Google Web Toolkit Overview, http://developers.google.com/web-
toolkit/overview (last accessed 2. September 2013)

[Google13b] V8 JavaScript Engine, https://code.google.com/p/v8/ (last accessed 12.
September 2013)

[Gray98] J. N. Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L. Traiger.
"Granularity of locks and degrees of consistency in a shared data base." Readings in
Database Sys, pp. 175-193. 1998.

[Grudin94] Jonathan Grudin. "Computer-supported cooperative work: History and
focus." Computer 27, no. 5, pp. 19-26, 1994.

[Grönroos13] Marko Grönroos. “Book of Vaadin.” Vaadin Limited, p. 596. 2013.

[Gutwin11] Carl A. Gutwin, Michael Lippold, and T. C. Graham. "Real-time groupware
in the browser: testing the performance of web-based networking." In Proceedings of
the conference on Computer Supported Cooperative Work, pp. 167-176, ACM, 2011.

[Hall96] Robert W. Hall, Amit Mathur, Farnam Jahanian, Atul Prakash, and Craig
Rassmussen. "Corona: a communication service for scalable, reliable group
collaboration systems." In Proceedings of the conference on Computer supported
cooperative work, pp.140-149, ACM, 1996.

[Heinrich12] Matthias Heinrich, Franz Lehmann, Thomas Springer, and Martin Gaedke.
"Exploiting single-user web applications for shared editing: a generic transformation
approach." In Proceedings of the 21st international conference on World Wide Web, pp.
1057-1066, ACM, 2012.

[Heinrich13a] Matthias Heinrich, Franz Lehmann, Franz Josef Grüneberger, Thomas
Springer, and Martin Gaedke. “Analyzing the suitability of web applications for a
single-user to multi-user transformation.” In Proceedings of the 22nd international
conference on World Wide Web companion. International World Wide Web
Conferences Steering Committee, pp. 249-252, Republic and Canton of Geneva,
Switzerland, 2013.

[Heinrich13b] Matthias Heinrich, Franz Josef Grüneberger, Thomas Springer, and
Martin Gaedke. “Exploiting annotations for the rapid development of collaborative web
applications.” In Proceedings of the 22nd international conference on World Wide Web.

53

International World Wide Web Conferences Steering Committee, pp. 551-560, Republic
and Canton of Geneva, Switzerland, 2013.

[Heinrich13c] Matthias Heinrich, Franz Josef Grüneberger, Thomas Springer, Philipp
Hauer and Martin Gaedke. "GAwI: A Comprehensive Workspace Awareness Library
for Collaborative Web Applications". Web Engineering Lecture Notes in Computer
Science Volume 7977, pp. 482-485, 2013.

[Hennessy07] John L. Hennessy, and David A. Patterson. “Computer architecture: a
quantitative approach.” Morgan Kaufmann, p. 484. 2011.

[Hickson08] Ian Hickson and D. Hyatt. "Html 5: W3c working draft." 2008.

[Hickson11] Ian Hickson. "The websocket api." W3C Working Draft WD-websockets-
20110929, 2011.

[Huang04] Yongqiang Huang, and Hector Garcia-Molina. "Publish/subscribe in a
mobile environment." Wireless Networks 10, no. 6, pp. 643-652, 2004.

[Hypén11] Kaisa Hypén, and Antti Impivaara. "Read, describe and share! Building an
interactive literary web service: an article about Kirjasampo." Collection Building 30.1,
pp. 61-67, 2011.

[Ingalls08] Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and
Tommi Mikkonen. "The lively kernel a self-supporting system on a web page." In Self-
Sustaining Systems. Springer Berlin Heidelberg, pp. 31-50, 2008.

[Ippolito05] Bob Ippolito. "Remote json-jsonp.", 2005.
http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/ (last accessed 28.
June 2013)

[Jacobs04] Ian Jacobs and Norman Walsh. "Architecture of the world wide web,
volume one." W3C Recommendation, 2004.

[Jara09] Carlos A. Jara, Francisco A. Candelas, Fernando Torres, Sebastian Dormido,
Francisco Esquembre, Oscar Reinoso. “Real-time collaboration of virtual laboratories
through the Internet” Computers & Education, Volume 52, Issue 1, pp. 126-140. 2009.

[Java13] Java, http://www.java.com/en/ (last accessed 27. March 2013)

[Jazayeri07] Mehdi Jazayeri. "Some trends in web application development." In Future
of Software Engineering, pp. 199-213. IEEE, 2007.

[Jiang08] Bo Jiang; Jiajun Bu; Chun Chen; Bo Wang, "Semantic consistency
maintenance in collaborative graphics design systems," 12th International Conference
on Computer Supported Cooperative Work in Design, 2008.

[Johansen88] Robert Johansen. “Groupware: Computer support for business teams.”
The Free Press, 1988.

[Järvinen00] Pertti Järvinen. "Research questions guiding selection of an appropriate
research method." In Proceedings of the 8th European Conference on Information
Systems, vol. 3, no. 5.6, pp. 124-131. 2000.

54

[Kaplan10] Andreas M. Kaplan, Michael Haenlein, “Users of the world, unite! The
challenges and opportunities of Social Media”, Business Horizons, Volume 53, Issue 1,
pp. 59-68. 2010.

[Kester07] Anne Van Kesteren, and Dean Jackson. "The xmlhttprequest object." World
Wide Web Consortium, Working Draft WD-XMLHttpRequest-20070618, 2007.

[Kester10] Anne Van Kesteren. "Cross-origin resource sharing." W3C Working Draft
WD-cors-20100727, 2010.

[Khare04] Rohit Khare, and Richard N. Taylor. "Extending the representational state
transfer (rest) architectural style for decentralized systems." In Proceedings. 26th
International Conference on Software Engineering, pp. 428-437. IEEE, 2004.

[Koivisto03] Ari Koivisto. “Multi-User Publishing Environment Server.” M Sc. Thesis,
Tampere University of Technology, p.54. 2003.

[Koskinen06] Kimmo Koskinen and Riku Suomela. "Rapid prototyping of context-
aware games." In Proceedings of the 2nd International Conference on Intelligent
Environments, p.8. Athens, Greece, 2006.

[Kurki10] Jussi Kurki and Eero Hyvönen. "Collaborative metadata editor integrated
with ontology services and faceted portals." Workshop on Ontology Repositories and
Editors for the Semantic Web, the Extended Semantic Web Conference, p. 5. 2010.

[Kuuskeri09] Janne Kuuskeri, and Tommi Mikkonen. "Partitioning web applications
between the server and the client." In Proceedings of the symposium on Applied
Computing, pp. 647-652. ACM, 2009.

[Lamport78] Leslie Lamport. "Time, clocks, and the ordering of events in a distributed
system." Communications of the ACM 21, no. 7, pp. 558-565.1978.

[Lamport79] Leslie Lamport. "How to make a multiprocessor computer that correctly
executes multiprocess programs." IEEE Transactions on Computers,100, no. 9, pp. 690-
691. 1979.

[Lawrel12] Ryan Lawrel. “Steve Would Be Proud: How Apple Won The War Against
Flash.” http://techcrunch.com/2012/06/30/steve-jobs-war-against-flash/ (last accessed
27. March 2013)

[Lee04] Newton Lee. "Jabber for multiplayer flash games." Computers in Entertainment
2, no. 4, p.14. 2004.

[Liu73] C. L. Liu and James W. Layland. “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment.” Journal of the ACM 20.1, pp.
46-61, 1973.

[Lowet09] Dietwig Lowet and Daniel Goergen. "Co-browsing dynamic web pages." In
Proceedings of the 18th international conference on World Wide Web, pp. 941-950.
ACM, 2009.

55

[Magnusson90] Boris Magnusson, Sten Minör, G. Hedin, M. Bengtsson, L. Dahlin, G.
Fries, A. Gustavsson, D. Oscarsson, and M. Taube. “An Overview of the Mjølner Orm
Environment”, In Proceedings of the 2nd International ConferenceTechnology of
Object-Oriented Languages and Systems, Paris, 1990.

[Magnusson93] Boris Magnusson, Ulf Asklund, and Sten Minör. "Fine-grained revision
control for collaborative software development." In ACM SIGSOFT Software
Engineering Notes, vol. 18, no. 5, pp. 33-41. ACM, 1993.

[Marrin11] Chris Marrin. "Webgl specification." Khronos WebGL Working Group,
2011.

[McCarthy08] Phil McCarthy, and Dave Crane. ”Comet and Reverse Ajax: The Next-
Generation Ajax 2.0.” Apress, p. 148. 2008.

[McFarland12] David Sawyer McFarland. “CSS3: The Missing Manual.” O'Reilly
Media, p. 637. 2012.

[Meteor13] Meteor platform, http://www.meteor.com (last accessed 10. January 2013)

[Microsoft13] Microsoft Silverlight, http://www.microsoft.com/silverlight/ (last
accessed 2. September 2013)

[Mikkonen07] Tommi Mikkonen and Antero Taivalsaari. "Using JavaScript as a real
programming language." Sun Microsystems Laboratories Technical Report TR-2007-
168, p. 14. 2007.

[Mikkonen08] Tommi Mikkonen and Antero Taivalsaari. "Web Applications: Spaghetti
code for the 21st century." In Proceedings of the 6th ACIS International Conference on
Software Engineering Research, Management and Applications, IEEE Computer
Society, pp. 319-328. Prague, Czech Republic, 2008.

[Minör93] Sten Minör and Boris Magnusson. "A model for semi-(a) synchronous
collaborative editing." In Proceedings of the Third European Conference on Computer-
Supported Cooperative Work, pp. 219-231. Springer Netherlands, 1993.

[Mogan10] Stephen Mogan and Weigang Wang. "The Impact of Web 2.0
Developments on Real-Time Groupware." In Second International Conference on
Social Computing, pp. 534-539. IEEE, 2010.

[Mongo13] The MongoDB 2.4 Manual, http://docs.mongodb.org/manual/ (last accessed
12. September 2013)

[MongoJS13] A Node.js module for mongodb. http://github.com/gett/mongojs (last
accessed 2. September 2013)

[Mueller11] Rob Mueller. “HTTP keep-alive connection timeouts”
http://blog.fastmail.fm/2011/06/28/http-keep-alive-connection-timeouts/, 2011 (last
accessed 2. September 2013)

56

[MUPE08] “MUPE documentation”
http://web.archive.org/web/20081231130417/http://www.mupe.net/documents/ (last
accessed 2. September 2013)

[Murugesan07] Murugesan, San. "Understanding Web 2.0." IT Professional 9, no. 4,
pp. 34-41. 2007.

[NodeJS13] Node.js platform, http://nodejs.org/ (last accessed 28. June 2013)

[Nokia03] Forum Nokia, “Overview of Multiplayer Mobile Game Design.” Forum
Nokia, p.21. 2003.

[Nokia13] Nokia WidSets, http://www.developer.nokia.com/Community/Wiki/
Category:WidSets (last accessed 25. February 2013)

[Nottingham05] Mark Nottingham and Robert Sayre. "RFC 4287-the atom syndication
format." IETF Proposed standard, p.43. 2005.

[NowJS13] NowJS, http://nowjs.com/ (last accessed 10. January 2013)

[Nunamaker90] Jay F. Nunamaker Jr and Minder Chen. "Systems development in
information systems research." In System Sciences, Proceedings of the Twenty-Third
Annual Hawaii International Conference on, vol. 3, pp.631-640. IEEE, 1990.

[O’Reilly07] Tim Oreilly. "What is Web 2.0: Design patterns and business models for
the next generation of software." Communications & Strategies 1, p. 17. 2007.

[Oikarinen13] Jarkko Oikarinen. “IRC History”, http://www.irc.org/
history_docs/jarkko.html (last accessed 2. September 2013)

[OpenCoWeb13] Open Cooperative Web Framework – Project intro.
http://opencoweb.org (last accessed 2. September 2013)

[Oracle13a] Java For Mobile Devices, http://www.oracle.com/technetwork/java/
javame/javamobile/overview/getstarted/index.html (last accessed 12. September 2013)

[Oracle13b] Synchronized Methods. http://docs.oracle.com/javase/tutorial/essential/
concurrency/syncmeth.html (last accessed 2. September 2013)

[Paulson07] Linda Dailey Paulson. "Developers shift to dynamic programming
languages." Computer 40, no. 2, pp. 12-15. 2007.

[Peacock00] Robert Peacock. "Distributed architecture technologies." IT Professional 2,
no. 3, pp. 58-60. 2000.

[Perry07] Bruce W. Perry. “Google web toolkit for ajax.” O'Reilly Media, Inc., p. 40.
2007.

[Persevere13] Persevere, Documentation. http://www.persvr.org/Documentation (last
accessed 20. March 2013)

[Popescu10] Andrei Popescu. "Geolocation api specification." World Wide Web
Consortium, Proposed Recommendation, 2012.

57

[Prototype13] Prototype Core Team. “Prototype Javascript Framework.”
http://www.prototypejs.org/ (last accessed 2. September 2013)

[Queinnec04] Christian Queinnec. "Continuations and web servers." Higher-Order and
Symbolic Computation 17, no. 4, pp. 277-295. 2004.

[Raggett99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. "HTML 4.01
Specification." W3C recommendation 24, p. 389. 1999.

[Ramakrishnan98] Satish Ramakrishnan and Vibha Dayal. "The pointcast network." In
ACM SIGMOD Record, vol. 27, no. 2. p. 520. ACM, 1998.

[Resig06] John Resig. “Pro JavaScript Techniques.” Apress, p. 362. 2006.

[Richardson07] Leonard Richardson and Sam Ruby. “RESTful web services.” O'Reilly
Media, p. 422. 2008.

[Richman87] Louis S. Richman. "Software catches the team spirit." Fortune 115, no. 12,
pp. 125-136. 1987.

[Roseman96] Mark Roseman and Saul Greenberg. "Building real-time groupware with
GroupKit, a groupware toolkit." ACM Transactions on Computer-Human Interaction 3,
no. 1, pp. 66-106. 1996.

[Rossum94] Guido Van Rossum. "Python programming language." (1994)
http://www.python.org/ (last accessed 28. June 2013)

[Roth10] Gregor Roth, “HTML5 Server-Push Technologies, Part 1.”
http://today.java.net/article/2010/03/31/html5-server-push-technologies-part-1 (last
accessed 2. September 2013)

[Ruderman01] Jesse Ruderman. "The same origin policy." (2001). http://www-
archive.mozilla.org/projects/security/components/same-origin.html (last accessed 28.
June 2013)

[Russel06] Alex Russell. "Comet: Low latency data for browsers." (2006)
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/ (last accessed
28. June 2013)

[Saint-Andre09] Peter Saint-Andre, Kevin Smith, and Remko Tronçon. “XMPP: The
Definitive Guide: Building Real-Time Applications with Jabber Technologies.”
O'Reilly, p. 288. 2009.

[Schutzberg09] Adena Schutzberg. “How Google Maps uses the W3C Geolocation API
and Google Location Services.” http://apb.directionsmag.com/entry/how-google-maps-
uses-the-w3c-geolocation-api-and-google-location-services/161053 (last accessed 2.
September 2013)

[Shan06] Tony C. Shan and Winnie W. Hua. "Taxonomy of java web application
frameworks." In Conference on e-Business Engineering, pp. 378-385. IEEE
International, 2006.

58

[Shen02] Haifeng Shen and Chengzheng Sun. "Flexible notification for collaborative
systems." In Proceedings of the conference on Computer Supported Cooperative Work,
pp. 77-86. ACM, 2002.

[SocketIO13] Introducing socket IO. http://socket.io/ (last accessed 30. June 2013)

[Stallman86] Stallman, Richard. “GNU Emacs manual.” Free Software Foundation, p.
354. 1986.

[Stirbu10] Vlad Stirbu. "A restful architecture for adaptive and multi-device application
sharing." In Proceedings of the First International Workshop on RESTful Design, pp.
62-65. ACM, 2010.

[Sun06] Chengzheng Sun, Steven Xia, David Sun, David Chen, Haifeng Shen, and
Wentong Cai. "Transparent adaptation of single-user applications for multi-user real-
time collaboration." ACM Transactions on Computer-Human Interaction 13, no. 4, pp.
531-582. 2006.

[Sun08] “The Sun Labs Lively Kernel A Technical Overview”, http://www.lively-
kernel.org/development/media/LivelyKernel-TechnicalOverview.pdf (last accessed 2.
September 2013)

[Suomela04] Riku Suomela, Eero Räsänen, Ari Koivisto and Jouka Mattila. ”Open-
Source Game Development with the Multi-User Publishing Environment (MUPE)
Application Platform.” In Proceedings of the Third International Conference on
Entertainment Computing, Lecture Notes in Computer Science 3166, pp. 308-320.
Springer, 2004.

[Suomela05] Riku Suomela, Kimmo Koskinen, and Kari Heikkinen. "Rapid prototyping
of location-based games with the multi-user publishing environment application
platform." In Proceedings of the IEE International Workshop on Intelligent
Environments, pp. 143-151. 2005.

[Taivalsaari08] Antero Taivalsaari, Tommi Mikkonen, Dan Ingalls and Krzysztof
Palacz. "Web browser as an application platform: the lively Kernel experience, Sun
Microsystems." Inc., Mountain View, CA, p. 20. 2008.

[Taivalsaari11] Antero Taivalsaari, Tommi Mikkonen, Matti Anttonen and Arto
Salminen. "The death of binary software: End user software moves to the web." In
Ninth International Conference on Creating, Connecting and Collaborating through
Computing, pp. 17-23. IEEE, 2011.

[Vaadin13] Vaadin 7 Wiki. “Broadcasting messages to other users”.
http://vaadin.com/wiki/-/wiki/Main/Broadcasting%20messages%20to%20other%20
users (last accessed 2. September 2013)

[Vaughan-Nichols11] Steven J. Vaughan-Nichols. “How Google–and everyone else–
gets Wi-Fi location data.” http://www.zdnet.com/blog/networking/how-google-8211
and-everyone-else-8211gets-wi-fi-location-data/1664 (last accessed 2. September 2013)

59

[West12] Andrew G. West, Jian Chang, Krishna K. Venkatasubramanian, Insup Lee,
“Trust in collaborative web applications”, Future Generation Computer Systems,
Volume 28, Issue 8, pp. 1238-1251. 2012.

[White75] James E. White. "High-level framework for network-based resource
sharings." RFC 707, p. 27. 1975.

[Wilde11] Erik Wilde and Cesare Pautasso. “Rest: from research to practice.” Springer
Verlag, p. 528. 2011.

[William02] Stewart William. "MUD History", http://www.livinginternet.com/
d/di_major.htm (last accessed 22. February 2013)

[Winer03] Dave Winer. "RSS 2.0 Specification." Berkman Center for Internet &
Society at Harvard Law School, 2003.

[Winn09] Joss Winn. "PubSubHubbub: Realtime RSS and Atom Feeds." (2009).
http://seo-website-designer.com/PubSubHubbub (last accessed 28. June 2013)

[Vogels09] Werner Vogels. "Eventually consistent." Communications of the ACM 52,
no. 1, pp. 40-44. 2009.

[Wong02] William Wong. “Write Once, Debug Everywhere.”
http://electronicdesign.com/article/embedded-software/write-once-debug-everywhere
2255 (last accessed 6. June 2012)

[WoW13] World of WarCraft, http://eu.battle.net/wow/en/ (last accessed 22. February
2013)

[Wood98] Lauren Wood, Arnaud Le Hors, Vidur Apparao, Steve Byrne, Mike
Champion, Scott Isaacs, Ian Jacobs et al. "Document object model (DOM) level 1
specification." W3C Recommendation, p. 212. 1998.

[You04] Yu You. “Situation Awareness on the world wide web.” Phd thesis, Jyväskylä,
Finland, p. 171. 2004.

[Zhao02] Weiquan Zhao, David Kearney and Gianpaolo Gioiosa. "Architectures for
web based applications." In 4th Australasian Workshop on Software and Systems
Architectures, p 10. 2002.

[Zhao03] Weiquan Zhao and David Kearney. "Deriving architectures of web-based
applications." In Web Technologies and Applications. Springer Berlin Heidelberg, pp.
301-312. 2003.

[Zukowski97] John Zukowski. “Java AWT reference. Vol. 3.” O'Reilly, p. 1045. 1997.

PUBLICATION I

Janne Lautamäki, Anssi Heiska, Tommi Mikkonen, and Riku
Suomela. "Supporting mobile online multiuser service
development." In the 3rd IET International Conference on
Intelligent Environments. IE 07, pp. 198-204, 2007.

SUPPORTING MOBILE ONLINE MULTIUSER SERVICE
DEVELOPMENT

J. Lautamäki1, A. Heiska2, T. Mikkonen3, R. Suomela2,
1 TUT Institute of Software Systems,

P.O.Box 553 FI-33101 Tampere,
+358405198898,

janne.lautamaki@tut.fi
2 TUT Institute of Software Systems,

P.O.Box 553 FI-33101 Tampere,
anssi.heiska@iki.fi

3 TUT Institute of Software Systems,
P.O.Box 553 FI-33101 Tampere,

tommi.mikkonen@tut.fi
4 Nokia Research Center,

P.O.Box 100, FIN-33721 Tampere,
+358504835717,

riku.suomela@nokia.com

Keywords: MUPE, Eclipse plug-ins, multi-player Mobile
games

Abstract
Mobile phones have emerged as the dominant
communication platform. Since the early days, mobile
phones have gradually become open platforms for
applications and services, and more and more are expected
of services. Multi-User Application Platform (MUPE) is a
platform for rapid development of multi-user context-
aware mobile application. This paper studies and analyzes
which aspects of MUPE development are the most
difficult and how to help developers with these problems.
Moreover, an Eclipse plug-in toolset which solves at least
some of these problems is presented. In addition example
game development process with MUPE and toolset is
introduced and analysed, and some feedback from MUPE
workgroups is presented.

1 Introduction
Mobile phones have emerged as the dominant
communication platform mainly due to the ease of one-to-
one communications. Since the early days, mobile phones
have gradually become open platforms for applications
and services, and online services can already be accessed
with mobile phones. However, creating a mobile online
service is a complex task. Mobile networks have certain
features that make them very different compared to
landline networks. For instance, latencies in
communication are higher, and roaming makes peak
latencies even longer. These usually result in longer
waiting times, but when accessing WWW, this is not fatal,
just inconvenient. Perhaps therefore, apart from WWW
services, we are yet to see an explosion of truly mobile
services.

In comparison to conventional WWW services, mobile
online multi-user services (e.g. messengers, online games)
are even more challenging to implement, since several
simultaneous slow connections can be available.
Synchronizing data or user interface between different
users is hard to implement in real-time. If one user
modifies something in his view, it can take several
seconds to distribute the modification to the other clients.
This results in services being updated slowly. To
overcome these issues, there are several ways to design
services, as presented in for example. [7]

For a service to gain from the mobility dimension, it needs
to be context-aware. Context awareness refers to
applications ability to react to changes in the environment
(e.g. [1]), and it introduces a further layer of difficulty into
the service development. A good example is location;
most mobile phones can be attached to a GPS device, or
they even may include a built-in module. To use location
in a service, there needs to be a set of APIs to access the
information, and the information needs to be conveyed to
other users of the service.

To simplify these problems, Multi-User Publishing
Environment (MUPE) application platform [2] has been
introduced for online multi-user services. The platform is
accompanied with Eclipse-based tools for development,
with an intention to ease the development of mobile online
multi-user services.

In this paper we introduce the tools which are a set of
Eclipse plug-ins whose goal is to lower the learning curve
of beginners and helping experienced developers to
complete MUPE services faster than before. The paper is
structured as follows. Section 2 introduces MUPE at a
level that is necessary for addressing the associated tools,

mailto:janne.lautamaki@tut.fi
mailto:tommi.mikkonen@tut.fi
mailto:riku.suomela@nokia.com

and discusses Eclipse and related plug-in development.
Section 3 addresses the tools we have developed, and
Section 4 provides a simple example on using the tools
and some information on observed usability. Section 5
finally concludes the paper.

2 Background

2.1 MUPE platform

MUPE is an Open Source application platform for
creating mobile multi-user context-aware applications.
The platform can be used to create mobile games, virtual
worlds, collaboration applications, and any other user
authenticated services. MUPE is built entirely on top of
Java (client-side on J2ME and server-side on J2SE).

The MUPE application platform has a client-server
architecture, where the end-users use MUPE client to
connect their mobile devices to the MUPE server in the
internet. Any external information source in the Internet
can be added to MUPE with the context components. The
MUPE core connects the different parts of MUPE as
illustrated in Figure 1.

In comparison to traditional applications, MUPE
applications are deployed differently. MUPE only requires
a single client install, after which the user is free to
browse new services, and use them with out any need for
extra installations. In contrast, a typical Symbian or J2ME
application needs to be first located, then downloaded and
installed, and this is not always easy to do. When using
python platform, the platform must first be installed on
phone and then user has to do the same steps as with
Symbian and with J2ME applications. Mobile phones
offer help in finding and installing these applications, but
still, the install process takes time.

In contrast to the traditional browser based approach, web
browsers, MUPE platform has an access to the
information supplied by the mobile phone, provided that it
can be accessed from J2ME. For example MUPE clients
can gain an access to Bluetooth, GPS, camera APIs, and
other kind of services of the phone, something which is
not available in web browsers. Furthermore, MUPE
platform is also designed to enable easy creation of multi-
user client-server applications, which are quite a
demanding to create from the scratch.

Finally, MUPE applications also use less bandwidth when
updating page than a regular web browser. A problem
when using web browsers is that the entire web page has
to be reloaded each time the user requests a change. AJAX
partly solves this problem. With AJAX, every user action
that normally would generate an HTTP request takes the
form of a JavaScript call to the Ajax engine instead. If the
engine needs something from the server in order to
respond the engine makes those requests asynchronously.
[2] This resembles a lot like ideology behind MUPE.
MUPE still uses even less bandwidth, and there is also a
possibility that the server takes active role and pushes data
to client even without a request.

2.2 MUPE applications

As already shown in Figure 1, MUPE services are
developed with J2SE for server-side functionality, and
XML for client-side UIs and functionality. MUPE
applications are written to be run by the MUPE server,
which is the only component requiring programming in a
basic application. The client user interface and
functionality is created with client UI scripts that the client
downloads from the server as illustrated in Figure 2. [2]

MUPE server-side J2SE development can be considered
straightforward, because of the popularity of Java and
availability of good tool support. However, MUPE client-
side development is a different thing, because the XML
that is written can be considered proprietary in its content,
and mastering new language takes time. Furthermore, the
lack of tool support has been a problem. While regular
XML editors have been available, the problems remain
that they cannot check connections between server and
client -side, and they do not fully comprehend MUPE
syntax because of some non-standard features. For
example in MUPE platform there is a syntax to include
XML files inside XML file by using !#file.xml#!

notation. Instead, included XML files act just like their
content would be placed where they were included.

Still, XML and related content is where MUPE excels.
The XML allows the developer to create and modify the
client functionality while the client is running, since the
MUPE client interprets the XML at runtime. This allows
very rapid service creation, where the developer can

Client
(XML)

MUPE
Core

External
Contexts

MUPE
Server (J2SE)

Wireless network

Figure 1. The MUPE application platform structure [5]

Log on to a service

ServerClient

Push UI and functionality

Other clients

Push data

Make a function call

M
ak

in
g

a
fu

nc
tio

n
ca

ll Push data
Return value

C
on

ne
ct

in
g

to
a

se
rv

ic
e

Se
rv

er
Ev

en
t

e.
g.

Ti
m

er

Push dataPush data

Figure 2. Client-server interactions

constantly keep the client-server system running, while at
the same time developing it.

XML files and Java-classes are both stored on the server-
side. As soon as a user logs on to a server client acquires
some of those XML file and interprets content of them to
the user interfaces and functionalities to be presented for
the user. After that the content of XML files is stored also
on the client-side until it is deleted or sent again. Clients
can make function calls to acquire XML content from
server-side. For example !#XMLfunction#! written in an
XML file calls XMLfunction function from server-side and
returns its return value in to place were call originally was
made. As a result, XML content stored on the client-side
is changed. Server can use PushData–function to push
data to active clients. Pushed data changes XML content
stored on the client-side and also modifies user interface
and functionalities. Data pushing can be result of server
event (e.g. timer) or actions of other clients. It is also
possible to read the content of XML file from server-side
by using getDynamicXML function. Interactions are
presented at figure 2.

2.3 Past experiences

In the past, we have organised several occasions for
testing development of mobile services, as seen in for
example [[2] and [2]]. These events have revealed several
issues. In addition a foreseen issue is that true learning
curve of the platform was been overly steep for some
greenfield developer.

To be truly mobile services need to be context aware.
They need to know the environment in which they are
used, and the services need to react to this. Context-
awareness, however, is not complex from application
designer perspective. As an example, consider the
following location can be expressed precisely in numbers,
and an inaccurate location can be expressed as an area
(circle, square or polygon). Obtaining this information is
also easy in MUPE, since there are ready made scripts that
can be used. The real problem is getting this far – since we
are dealing with an application platform that has
thousands of lines of code, it is imperative that the
developers know the code at least to some extent.

There are several paths in learning sufficient skills with a
certain platform, and development tools have proven to be
a very successful way of reaching this goal.

2.4 Eclipse and plug-ins

Eclipse is an open-source platform-independent software
framework. So far this framework has typically been used
to develop Integrated Development Environments (IDEs),
such as the Java IDE called Java Development Toolkit
(JDT) and compiler (ECJ) that is delivered and deployed
as part of Eclipse. MUPE uses J2SE for server-side and
XML for client-side functionality. Eclipse already has a
good IDE for Java development Toolkit and its design
allows easy extensions by third parties. Because of that we

chose to create a plug-in set with editor and a different
kind of wizards to help developers with creating MUPE
programs and editing MUPE XML format.

The design of Eclipse allows easy extensions by third
parties. It provides possibility to make different kind of
wizards; tools to manage workspaces; and to easily
customize the programming experience. It was chosen
because of JDT and good support for creating new editors
and wizards. [6]

Eclipse has a wizard for creating new plug-ins so it is
quite an easy task to create a new plug-in. Eclipse even
has a set of template plug-ins. In MUPE plug-ins we have
mainly used wizard and editor templates. Even if it is easy
to create a new plug-in, it is not always easy to add right
kind of functionality to it.

3 MUPE Tools

3.1 Background and motivation

As already discussed, the learning curve for making a new
MUPE application has been steep, and the goal of MUPE
toolset is to lower it as much as possible. Indeed, MUPE is
easy and fast to use if you master it, but if you are
beginner then it can be hard to accomplish anything in
reasonable time just by reading tutorials by yourself.

Before starting the work with tools, several workshops
had been organized in which people had tried MUPE and
used it to make their own applications. Without MUPE
toolset, it sometimes took the first three hours to get
environment working on each laptop, and this leaves less
time for service development. For effective MUPE
development, the user needs Sun Java Wireless toolkit or
other cell phone emulator for testing applications. User
also needs Eclipse or other environment for developing
Java-programs.

The previous workshops had revealed several key points
to improve. There has been a lot of confusion about which
java-methods or XML hooks could be called from which
XML and how the XML files are related with each other.
Also adding new pictures or new classes to the MUPE
project had been consider being quite a hard. Not to
mention to creating an entire new MUPE project. A goal
of the toolset is to help people in doing the easiest and
most straightforward tasks and thus leave more time for
the harder ones. We have also hoped that the new toolset
will courage people to learn MUPE by themselves outside
any organized event.

A new MUPE project can be divided into three main
areas:

1. Creating the service itself. A new service should
be as easy to create as any Java project, since
most tasks associated with this are mechanical
(copying, etc.).

2. Creating the server-side. Each new content object
inside the service should have support for easy
instantiating.

3. Modifying the UI of the classes (XML) should
support the special nature of MUPE projects.

For XML and Java there are already good tools available
in Eclipse. The toolset needs to be built on top of these
features.

3.2 Creating a new project

Before toolset available there were a lot of problems in
creating a new MUPE projects. To get empty project to
run in Eclipse environment user had to import all template
files. Importing them is not as easy as it sounds because
Eclipse import -wizard has a dozens of different kind
methods to use depending in which format those template
files are distributes.

Figure 3 presents the simplest possible MUPE application.
Mupe application needs two external jars MupeCore and
ContentClasses to work. MupeCore is for connecting
MupeClient to MupeServer. And ContentClasses is server
itself which is to be extended. At least four Java classes
are needed to be implemented for server-side
functionality, and for client-side functionality there also
has to be some XML files.

After several tries and failures user normally gets the
template project in the package viewer of Eclipse but it is
not all the user has to do. After importing the project the
user has to link his new project to the MupeCore.jar and
ContentClasses.jar files which he had to first download

from the MUPE site. It is also possible that user has
selected a wrong version from Java compiler. Of course
when there is a workshop full of first timers there will be a
lot of confusion.

With MUPE toolset user just selects file->new->“create a
new MUPE project” from the menu. (figure 4) Then he
just writes down the name of new project and selects
which one of the several project templates he is going to
use and then the new project is ready to roll.

3.3 Creating a new class

The basic MUPE server structure contains a World class
for storing the content inside the application and four
classes representing the content: User, item, Service and
Room. The User class represents a single connected end-
user in the system; the Room a location in the game
world; Services provide add-on features for other objects
and an item in any other data inside the application [2].
Normally all user created classes are extended from those
four classes. For every class running on the server-side
there has to also be a XML folder for the client-side
functionality.

So creating a new Java-class for a MUPE project is not as
straight forward, as with normal J2SE. For every class
created user also has to create a folder and XML files
needed. In figure 5 can be seen BaseExtensions class and
BaseExtensions XML folder. Toolset offers easier way to
create new classes with all things necessary. User just
selects from which of the server classes a new MUPE
class is extended. Tool can then offer the list of XML files
there is available in the super class and it copies selected
XML files from the super class to the new XML folder.

Figure 3. The simplest possible MUPE application
(created with Minimum-project-template)

Figure 4. Select a wizard

3.4 MUPE XML editor

Previously XML files needed for the MUPE programs
were created and edited by using any regular text or XML
editor available. Some of the editors were quite a good
and some were not. With good editor like XMLBuddy it is
easy to edit MUPE XML files. It finds out where tags start
and where they end. It also helps user with attributes and
other things available in normal XML. However, when
using MUPE there are also things that regular XML editor
can not find out and even some things that normal editor
points out as mistakes or errors. For example:
!#file.xml#! notation previously presented would be
such.

There are also a different kind of notations for calling
methods from Java-classes and sending information
between client-side XML and server-side java files which
regular XML editor can not check. MUPE editor knows
which XML files are related to which Java classes. In
figure 6 the user is trying to get content to text attribute.
He has written: !# which have specific meaning in MUPE
syntax. Editor notices what user is trying to do and offers
completion proposals.

If user makes a little spelling mistake like in Figure 7 or
something like it - it can be quite a hard to find it out, if he
is using just regular editor. MUPE editor checks relations
between files and reports errors found. It also checks that
every tag has the beginning and the end. User can also use
MUPE editor to jump to right file just with couple of
clicks and see where methods or files are defined.

Toolset also helps user to refactor his project. One of the
common mistakes when using MUPE is that when user
changes the name of the class, he forgets to change name
of the XML folder. Toolset also has some extensions for
JDT. It can for example check if file, which
getDynamicXML function tries to call really exist.

We have also created a set of code snippets to use. Before
these snippets developer had to check from MUPE
website how the certain feature has to be implemented.
Off course most common features could also be
remembered, but it is quite a boring to write same text
dozens of times. These snippets try to cover all the most
commonly used functionalities so the user can just select
what kind of functionality he wants to implement and then
snippet is copied to the right place.

3.5 Experiences

There are a lot of articles about Eclipse concerning its
architecture and low level interfaces. Something between
them is missing. However, to implement certain
functionality the developer has either to extend an
available extension point or to extend an Eclipse class. For
this process we could not find enough material. There
were a lot of examples on how to create a simple plug-in,
but not many examples on how to create more complex
environment were found.

Due to the above, it usually takes a lot of time to find
which class to extend or which extension point to use.
Sometimes naming conventions of Eclipse are not so
easily followed or understood. For example there are
classes called IWorkbenchWindowPulldownDelegate and
IWorkbenchWindowPulldownDelegate2. There is a certain
difference between them, and the developer has to know
which one of them to implement.

Figure 6. MUPE completion proposals

Figure 7. Editor has found a problem from a resource.

Figure 5. Create a new MUPE class

4. Usability tests

4.1 Case Example

In this project we have created wide variety of
little games and applications and a couple of
larger ones. One reason for creating these
applications is to test usability of our tools. One
example game is Dung Beetle. The idea of Dung
Beetle is that every player has a dung beetle1 to
control. Many dung beetles, known as rollers, are
noted for rolling dung into spherical balls, which
are used as a food source or brooding chambers.

It took about 8 hours to create this two player game. In
first four hour a new project was created using the
BattleBoard-project-template. Some pictures were drawn
with Gimp, and user interfaces were designed and
implemented. Thus, after the first four hours of
implementation, we had a single playable prototype of the
game. Beetle could be moved, and dung could be rolled.
In the next four hours the game took its final form. The
game was modified to a multi-playable form. Timers to
drop more dung on the board were added, and the winning
condition was checked. First test game was also played.
Figure 8 presents the final user interface of the game.

The total number code lines at the server-side was 314.
105 of those come from battleBoard-template, which
contains two rooms. One is a lobby room where players
enter when logging on, and another is a game room, where
the player can move from lobby room and which contains
a tile map and selector. Extending battleBoard-template to
Dung Beetle took about 200 lines of server-side Java
code.

341 lines of XML were needed for client-side UIs and
functionalities. 255 of those come from template, so the
developer had to write about 90 lines of XML. Those 90
extra XML lines contain moving the beetle, pushing dung
piles, biting other beetle, checking winning conditions,
high score listing and collision checks. 200 lines of added
Java contain timers for dropping more dung and for biting,
high score listings and double player capabilities and
interactions between players.

1 Dung beetle refers to those beetles which feed partly or
exclusively on feces.

4.2 Feedback

We have arranged several MUPE workshops after starting
of the tool development. In most of them, we have
collected some feedback about toolset. Still the number of
answers has been quite a limited, and the questions we
have asked have varied from one inquiry to the next so
there is no possibility to make any statistical analysis from
them. Nevertheless, all participants who had given
feedback have said that toolset was useful. Most of the
people who had new ideas for tools had hoped for
graphical user interface editor.

Still, it is pretty certain that beginners at least thought that
toolset helped them. We have also monitored users in
those workshops and we have noticed that toolset not only
helps them but it also gives ideas what kind of
applications can be created and what kind of
functionalities can be made. Project templates give them a
hint what kind of projects it is possible to create and code
snippets give ideas about possible functionalities.

Based on our own and colleagues experience, it is quite a
certain that the toolset also speeds up and helps the work
of the experienced MUPE developers. Common mistakes
and failures in logic are eliminated because of the editor.
Commonly used functionalities are available as code
snippets and code completion makes it faster to write text.

5. Conclusions and future development
MUPE platform enables rapid creation of multi-player
mobile games. But because of the client-server
architecture and proprietary XML format, the learning
curve for making new MUPE applications is quite a steep.
The goal of the toolset was to lower learning curve as
much as possible. Toolset should also help experienced
developers to complete MUPE services faster than before.

This paper presented some of the problems facing those
who tried to develop MUPE applications before toolset
existed. It also presented a set of Eclipse plug-ins that can
support MUPE application development. Toolset should
have solved at least some of the problems in MUPE
development previously presented.

When creating MUPE applications and organizing
workshops we have noticed that some tasks in creating
new MUPE applications are more difficult than others.
MUPE applications have a certain structure and we have
noticed that for users who use MUPE at first time it is
quite a difficult to start a new MUPE project. Because of
that we have automated this part of application
development. The software developers of today do not
like to use just plain text editor when creating complex
software systems. They demand an editor that has features
specifically designed to simplify and speed up input of
source code.

As for the future, we have thought that a WYSIWYG
editor for creating and editing client-side interfaces would

Figure 8. Three different game situations.

be quite a nice. Eclipse has a good support for making
graphical editors. Eclipse has a framework called GEF
(Graphical editing framework) which is intended be used
to create that kind editor. Problem is that making
WYSIWYG editor is quite a demanding task and there is a
possibility that in short-term, there are no resources for
making it.

Another problem with WYSIWYG editor would be that in
MUPE XML syntax elements are normally anchored to
each other. When we would drag and drop an item to the
view, we should tell editor how a new item is related to
the old ones. Editor should know to which of the existing
items we are anchoring the new item. It should also know
to which part of the new item is anchored to which part of
the old one. For example we can anchor a centre of the
new item to a bottom left corner of the existing one. Thus,
adding a new XML element would not be straight forward
WYSIWYG editing. One solution for this editing problem
could be to create a tool, which would have a preview
window but not editing capabilities, but anyway, many of
these XML elements are created at runtime so view would
not be complete.

Acknowledgements
We would like to thank the entire personnel of the MoMUPE
project, and TEKES (Finnish Funding Agency for Technology
and Innovation) for support.

References
[1] A. K. Dey. Providing Architectural Support for Building

Context-Aware Applications. PhD thesis, College of
Computing, Georgia Institute of Technology, 2000.

[2] J.J. Garrett. Ajax: A New Approach to Web Applications
http://www.adaptivepath.com/publications/essays/archives/
000385.php

[3] K. Koskinen, R. Suomela. Rapid Prototyping of Context-
Aware Games, In proceedings of the 2nd International
Conference on Intelligent Environments (IE06), July 5-6,
Athens, Greece, 2006

[4] R. Suomela., K. Koskinen, K. Heikkinen. Rapid
Prototyping of Location- Based Games with the Multi-User
publishing Environment Application Platform. Proceedings
of The IEE International Workshop on Intelligent
Environments, June 2005, 143-151.

[5] R. Suomela, E. Räsänen, A. Koivisto, J. Mattila: Open-
Source Game Development with the Multi-User Publishing
Environment (MUPE) Application Platform. Proceedings of
the Third International Conference on Entertainment
Computing 2004, 308-320, Lecture Notes in Computer
Science 3166 Springer 2004

[6] Eclipse (software)
http://en.wikipedia.org/wiki/Eclipse_%28software%29

[7] Overview of Multiplayer Mobile Game Design. Available
online at: http://www.forum.nokia.com/main.html (2004)

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://en.wikipedia.org/wiki/Eclipse_%28software%29

PUBLICATION II

Anssi Jääskeläinen and Janne Lautamäki. "Analyzing
context-aware service development under MUPE platform."
In the Eighth International Workshop on Applications and
Services in Wireless Networks. ASWN’08, pp. 26-34. IEEE, 2008.

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not
endorse any of Tampere University of Technology's products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain
a License from RightsLink.

Analyzing Context-Aware Service Development under MUPE Platform

Anssi Jääskeläinen
Lappeenranta University of Technology

jaaskela@lut.fi

Janne Lautamäki
Tampere University of Technology

Janne.lautamaki@tut.fi

Abstract

Context-awareness indicates that a computer
system is linked with changes in the real world.
Context information can be used for numerous
different purposes, but the real break through is still
pending. Context information is useful only when it is
not static, and hence in desktop computers there is
very limited need for context awareness. In mobile
phones situation is different. MUPE is an Open
Source application platform for creating mobile multi-
user context-aware services. It is based on client-
server architecture and both server and client are
capable context providers. A typical client context
would be GPS location or Bluetooth ID. Typical
server context would be information like weather or
stock market. This paper introduces context-aware
services made by professional and non-professional
and compares those against each other to point out
that context-awareness under MUPE is easily and
rapidly utilizable even for non-professionals
developers.

1. Introduction

Mobile phones have emerged as the dominant
communication platform. Since the early days, mobile
phones have gradually become open platforms for
applications and services, and online services can
already be accessed with mobile phones. Mobile
networks have features that make them very different
compared to traditional networks. In particular,
latencies in communication are higher. This usually
results in longer waiting times, but when accessing
World Wide Web (WWW), this is not fatal, just
inconvenient. In comparison to WWW services,
mobile online multi-user services (e.g. messengers,
online games) are more challenging to implement.
Synchronizing data or user interface between different
users is hard to implement in real-time since several

different slow connections may exist. If user sends
data to the server, it can take several seconds to push
the information to the other clients. This results in
services being updated slowly. Perhaps therefore, apart
from WWW services, we are yet to witness an
explosion of truly mobile services.

One way to gain from mobility dimension is to
create services that are context-aware. Context-
awareness refers to services’ ability to react to changes
in the environment [1]. This although introduces a
further layer of difficulty into the service development,
since context-awareness requires more functionality
from both the client and the server side. A good
example of context-awareness is location; most mobile
phones can be attached to a GPS device, or they even
may include a built-in module. To use location in a
service, there needs to be a set of APIs to access the
information, and the information needs to be conveyed
to other users of the service.

Context awareness is not yet very well known
concept. Most people think that mobile applications
are like desktop applications, but more difficult to use
and install. GPS navigators are the only commonly
used context aware applications. However there is no
real reason why there could not be wide variety of
applications using and sharing contexts.

Another important factor is persistence, which
means that the service is running all the time and the
user has constant access to it. For example in
persistent multi-user games such as Travian [2] it is
important to be aware if someone is attacking.

In this paper we present some persistent context-
aware services made by both professionals and non-
professionals. When we are speaking about
professionals and non-professionals in this paper we
are only meaning MUPE, which means that non-
professional MUPE developer might be a professional
Java developer.

Main point of this paper is to show that it is
possible to use multiple different contexts for many
variable purposes under MUPE. We are also trying to

mailto:jaaskela@lut.fi
mailto:Janne.lautamaki@tut.fi

Mupe
Service

Mupe
Core

Context
Manager

Mupe
Client GPS

location

Time

Weather

pulse

Information

Bluetooth
id

Bluetooth
id

Fig. 1. The MUPE application platform structure and ways to get content

make clear that it is so easy that even a non-
professional developer can benefit from the power of
context awareness. Paper also contains a comparison
between the main differences/similarities of
approaches and implementations to demonstrate the
introduced point.

The rest of this paper is structured as follows.
Section II introduces MUPE and tells about the
context-awareness. Section III presents one service
made by professional and one service made by non-
professional, then section IV compares these
developed services against each other and shows few
reference services to point out the power of context-
awareness. Section V finally concludes this paper.

2. Context-awareness under MUPE
platform

To overcome the introduced issues of mobility and
context-awareness numerous ways to design services
have been proposed [3]. In this paper we use an
application platform called MUPE (Multi-User
Publishing Environment). MUPE is an open source
platform for creating mobile multi-user context-aware
services. It is mostly aimed for relatively small
projects. In huge projects with good resources and
professional programmers there is no need for
platform at all. In projects with bigger developer
teams it is a lot more convenient to just use Symbian
C++ or J2ME and create application from scratches,
because with platform there always comes some

restrictions.

TABLE I
Client side context types

C
on

te
xt

Description

C
la

ss

Se
rv

ic
e

C
am

er
a Many services use camera to add

personality to user interfaces, identify
different items or just capturing images
that can be shared with other users.

D
ev

ic
e

co
nt

ex
t

D
et

ec
to

r,
C

am
Q

[9
]

B
ar

co
de A form of using camera on such devices

that supports barcode reading. If barcode
reading is not supported by the device it is
entered by hand. En

vi
ro

nm
en

t
al

co
nt

ex
t

Pr
od

uc
t

co
nt

ro
l[

9]

B
lu

et
oo

th
ID Bluetooth can be used to detect the

devices that are nearby. Bluetooth is
available in most phones, so it can be
used freely in all designs. D

ev
ic

e
co

nt
ex

t

In
se

ct
op

ia
,

Sa
nd

m
an

[9
]

G
PS

Any device with Bluetooth can use an
external GPS device. There are also few
devices on the market that has build in
GPS device. Sp

at
io

-
te

m
po

ra
l

co
nt

ex
t

Tr
av

el
le

r[
9]

TABLE II
Server side context types

C
on

te
xt

Description
C

la
ss

Se
rv

ic
e

Se
ar

ch
en

gi
ne Uses search engine hit count to do

something in the service. Se
rv

ic
e

co
nt

ex
t

N
et

bu
bb

le
[9

]

St
oc

k
m

ar
ke

t

Retrieves information about the stocks

Se
rv

ic
e

co
nt

ex
t

St
oc

k
sy

st
em

[1
0]

W
ea

th
er Weather information can be used for

example to show weather, modify
climate or maybe change the
appearance of user interface.

En
vi

ro
nm

en
ta

l
co

nt
ex

t

G
re

en
ho

us
e

[9
]

2.1. MUPE

MUPE Platform is based on client-server
architecture and it can be used to create e.g. mobile
games, virtual worlds, collaboration applications, and
any other user authenticated services. MUPE is built
entirely on top of Java (client-side on J2ME and
server-side on J2SE) [4]-[6]. End-users use MUPE
client, which is just one installation to the phone, to
connect their mobile devices to MUPE service. This
service is actually a package that also contains MUPE
Core components and context manager but commonly
this whole package is called just as the server or
service. Figure 1 illustrates this structure in the upper
left corner. In the following we introduce the main
components.

MUPE Service is the actual service, game,
etc.
MUPE Core connects clients to the service
and makes contexts offered by Context
Manager available for the service. Usually
developers do not have to change anything
inside the Core and new features to it can be
requested from the Core developers.
Context Manager brings external information
to the service through the Core. It is
specialized to handle external information
sources such as the Internet or XML feed.
MUPE client is applications installed on
mobile phone. It is used to browse MUPE
services over wireless network.

Service, Core and Context Manager normally runs
on a single web server, but since they are separate
components, they can be distributed to different
servers if need arises.

With its modular structure MUPE combines the
best parts of stand alone and browser based
applications. In comparison to stand alone
applications, MUPE services are deployed differently.
MUPE only requires a single client install, after which
the user is free to browse new services, and use them
without extra installations. In contrast to the browser
based approach, MUPE client has also an access to the
context information supplied by the mobile device,
and so the MUPE services are not tied only to context
information available in internet.

2.2. Context-awareness

Context-awareness indicates that a computer
system is somehow linked with changes in the real
world. [7] Context information can be used for several

different purposes. Under MUPE platform contexts
can be divided into a two different categories with

different roles (Fig. 1); device (client) context (Tab. I)
and server context (Tab. II). Client side context-
awareness requires from the device, that it has ability
to collect information about its environment. So client
can monitor the real world around the user and
accesses information stored inside the phone e.g. GPS
location or Bluetooth ID. Role of the server is to
provide contexts from Internet e.g. weather, stock
market, etc.

It is fairly easy to get one context and use it as an
element in a game or service. One can create games
that are based on collecting Bluetooth ids or mapping
locations with GPS. It is also possible to combine the
server side context the client side context. For example
a client can determine its location using GPS, a server
can download a weather report, and the two contexts
can be combined to the temperature in the current
location of the user. Another example could be speed
dating. Server side has some stored information about
preferences of the users and client side uses bluetooth
ID to locate other clients nearby. When two clients are
nearby, the server compares preferences of users, and
if they match then associated users can start speed
dating.

It is possible to use wide variety of different
contexts inside MUPE services. Contexts available at
client side are limited to those accessible from J2ME.
Though, under series 60 phones it is possible to
implement a context provider plug-in that can access
contexts that are normally only available for Symbian
applications. At the server side only limit what can be
used as a context is imagination.
2.3. Classification of context

Context information can be used for several
different purposes according to their classifications.
One classification is presented by ePerSpace [8] which
categorizes different contexts into the following
groups: environmental context (e.g. temperature),
personal context (e.g. heart beat), task context (e.g.
events), social context (e.g. social network), spatio-
temporal context (e.g. location, time), device context
(e.g. Bluetooth id), service context (e.g. service
specific data) and Access context (e.g. network
capabilities). Table 1 and Table 2 present some of the
contexts used under MUPE and classifies those
according to ePerSpace categorization.

2.4. Persistent applications

Persistence means that the state of the application
continues its evolving and time passes even when

users are not online. For example in “World of the
World Craft” which is currently the most popular
massive multiplayer online role playing game, this is
done by using client-server architecture. So game
world is running at the server-side and users use
special client to log in and log out when ever they
want.

It is also possible, but not common, to create
persistent single player game worlds without server-
side. One example of that is Nintendo GameCubes
Animal Crossing [10], which slogan is: "It's playing,
even when you're not". Idea is that when user quits the
game, a time stamp is stored on memory card. When
user continues playing the game checks from
GameCubes clock how much actual time has passed
and generates calendar evens about what has been
happened while user was away.

2.5. Creating context-aware persistent services

With MUPE, professionals and non-professionals
can easily create context-aware services. Eclipse based
tool [11] [12] offers snippets and other ways to make
implementing of context-aware services easier. Client
side context-awareness is easiest thing to implement,
developer just grasps code snippet and then places it in
one of the XML files, after that the context
information is ready for use. Server side contexts are
little bit harder; snippet has to be modified to get it
work, since user has to select web site which is used as
a context provider and then he has to implement
methods to parse right data from the site. Persistent
aspect comes from the fact that the server is running
all the time and users can connect and disconnect as
they want. It is just up to the developer if persistency
is exploited in the service. MUPE offers both context-
awareness and persistency almost by default, so
problems are not in using those, but in inventing a fun
and intuitive usage.

3. Selected services

To demonstrate the power of context-awareness we
have selected two different services for thorough
testing. In this comparison both services are camera
games, which have been chosen since camera already
have wide penetration in mobile environment and
camera works reliable under MUPE. Games are
selected, since most of the MUPE services developed
are games, but equally test services could be general
applications. Both of these games are relatively small
in size, and they are created by quite a small team.

Fig. 2. Screenshot of CamQ. Fig. 3 Screenshot of Wizard Card Game.

3.1. CamQ

In CamQ player uses camera to create a picture
quizzes for the other players. Quizzes are created by
taking pictures and describing them using three
words. It is also possible to give a hint or a comment
for the picture. Player should try not to make quiz too
obvious or too hard, because the goal is to get equal
amount of correct and incorrect answers from the
other players, who are doing everything they can to
come up with the three correct words related to
picture! (Fig. 2)

This game was developed in The Helsinki Institute
for Information Technology (HIIT) and its visual
outlook was created by graphical designer. Game went
thru several different stages including focus group
sessions and multiple functional prototypes. First
version was based on old finish television quiz
“Kymppitonni” where players tried to guess a word
based on verbal hints given by another player. It was a
good and working demo, but the problem was that it
was synchronous, so there had to be four players
present at the same time. This caused problem since
sometimes in real life, it is difficult to find players
online. Little by little CamQ was pushed towards
asynchronous game mode with no waiting and no real
time actions between the players.

Final published version of CamQ does not limit the
number of participants in any way and it is totally
asynchronous. So it is online multiplayer game but
there is no constant need for other online players.
Other players are just needed to create more content to
game and to solve quizzes other players have created.

3.2. Wizard Card Game

In Wizard Card Game player uses camera to collect
up to 20 pictures and uses those as an army. Game
logic determinates attack and defence values for
monsters by calculating the hash value of the pictures.
After that the army is created and player can use it to
attack against other players (Fig. 3).

This game was developed as an exercise work on
game development course which took place at the
Tampere University of Technology. In the beginning
of the course there was two hours hand on demo about
using MUPE platform. Game theme and mechanics
was also discussed with course staff, but afterwards
students did not need any other help to finish their
exercise work, except MUPE WWW site.

Game itself is essentially two player game, but any
number of players can join to create an army and there
is no theoretical limit about how many simultaneous
duels can be going on at the same time.

Fig. 4. UML of CamQ

Fig. 5. UML of Wizard Card Game

Fig. 6. UML of Camera Template

TABLE III
Complexity Comparison for camera services

Camera
Template CamQ

Wizard
Card
Game

Number of Attributes 3 22 28

Number of Classes 5 10 10
Number of methods 18 165 98
McCabe Cyclomatic
compexity average 1,111 2,107 2,173

McCabe Cyclomatic
compexity max 2 7 33

Total Lines of Java
Code 104 1650 1020

Total Lines of XML
code 188 5280 557

4. COMPARISON OF SERVICES

In this comparison we demonstrate that there are
no significant differences between the context-aware
services developed by professionals and non-
professionals when speaking about operability. Of
course we do not claim that MUPE changes non-
professionals to professional but this similarity is our
key point in proofing that it is easy even for non-
professional developers to create context-aware
services in a relatively small time with MUPE. On the
other hand this comparison also states the obvious fact
that there are big differences between the services
although they are not necessarily visible to end users.

In generally, comparison of MUPE services is
rather difficult thus they are usually based on a
different logic, graphics etc. but it is not an idea of this
comparison to study general service elements. We are
just pointing out that even a MUPE first timer can
create a context-aware service in just few days despite
the fact that it may sound difficult.

4.1. Used metrics and tools

For understanding the differences between the
services in a code level we have collected several
different metrics. We used simple LOC (Lines of
Code) measurement separately for XML and Java and
also calculated classes, methods and attributes inside
the service. Metrics were collected with Eclipse plug-
in called Metrics [13]. These values shows from high
level of view what the services look like. After these
simple values we used McCabe’s Cyclomatic
Complexity calculations to go beneath the surface of
the service. As a summary of McCabe it can be said
that any complexity above ten is likely to cause
problems in testing and maintaining and that way will
require fixing [14].

We have reverse engineered UML charts for games
with eUML2 plug-in [15] inside eclipse. The reverse
engineering is always a bit inaccurate and therefore
the produced charts have been slightly modified. Also
all unmodified classes have been removed from the
images just to keep those simple.

4.2. Results

In CamQ camera is really important game element
and without pictures game could not exist. Player
needs to carefully select picture to get right answers
from other players because they make their guesses
totally based on the picture. In the Wizard Card Game

camera is just a kind of random element. It is nice to
have possibility to custom your cards with own
pictures, but still it is just some kind of spice. One
could argue that strength of card is based on picture,
but in this case it is not good argument thus Wizard
Card Game uses a simple hash function to transform
image to numbers and it is quite random. Of course it
is possible to develop better algorithms that could e.g.
calculate colour or brightness.

Simplified UML charts of these services only

consider the actual service and it does not take into
account the interactivity with the client. Point of these
charts is to prove that even the main structure of
developed services looks approximately equally
complicated. (Fig. 4&5)

Similarities between the CamQ and Wizard Card
Game are mostly due to MUPE, since it automatically
creates a certain skeleton for the services. Camera
Template (Fig. 6) has been used as a base for both of
these complete games. All classes in Camera Template
have counterparts in the example games. E.g. MyUser
of Camera Template is named as Player in both of
them. MyImage is named as QuizImage in CamQ.
Camera Template has just one room:
“ImagesContainer”, while both of the examples have
several rooms. Developers can of course modify or
even replace pre generated skeleton but usually there
is no need to do that.

Although the high level structure is similar,
services created by professionals are usually more
complex in functionality than the ones made by non-
professional. In Table III we present some metrics
collected from both our test services and from Camera
Template.

When carefully comparing Table III and UML
charts (Fig. 4-6) it can be noticed that in Table III
there are 10 classes in both example projects but in the
charts there are only 8 and 9 classes. This is due the
few simplifications we have made for the UML charts.
For example because of special nature of
BaseExtensions class we left it away from all the UML
charts.

The couple of first metrics look quite a like for both
of the examples. This is mostly due the template used.
Greatest difference in the measurements between the
services is the total number of XML code lines, which
CamQ has about ten times more than Wizard has.
Some of these lines come from the eye candy which is
the visible form of difference between professional and
non-professional but there is also the invisible part
that mostly consists of XML scripting language. When
using MUPE it is possible to create functionalities for
client-side using XML scripting. XML scripting is a
powerful tool and it makes services run a lot faster,
because they do not have to make so many slow server
calls over hi-latency wireless network. However
MUPE XML is proprietary format and there is quite a
steep learning curve for learning its full potential.

When comparing number of the XML lines to
number of the Java lines we notice that in CamQ there
are about three lines of XML for every line of Java
code. In Wizard Card Game the relation is opposite.

There are two Java lines for every XML line.
Professional MUPE service developer is reducing the
number of server calls by using XML scripting while
amateur designer is tying to minimize the need of
XML because he already knows how to do things with
Java.

 XML file written by professional developer
typically contains simple functions such as checking
the device resolution and doing some calculations to
reduce the server load and this is also the case in
CamQ vs. Wizard Card Game. CamQ has also about
twice more Java methods than Wizard Card Game
has.

Another noticeable difference between these
services is the maximum complexity value, which is
really high in a couple of classes inside the Wizard
Card Game. These high values can be tracked into
those functions which controls AI (complexity 33) and
attack (complexity 24). High values are probably due
to lack of planning, thus developers had to create
working functionality in a short amount of time. Much
of this complexity is due to multiple exceptions which
are handled by using IF –statements although there
are better and less complex ways to do this.

When we checked the services out without UML or
metrics we noticed that there are lots of differences
that are mostly invisible or hard to notice to the end
users. Context dependable difference is the way how
retrieved contexts are used inside the service.
Professionals prefer to build their own context-aware
functionality instead of using those offered by MUPE
and they also try to use retrieved context inventively
instead of repeating old ways. This can be noticed in
richer user interfaces and versatile functionalities. E.g.
in a camera case, output is usually something more
than just image on the screen. Non-professionals tend
not to use contexts at all if they are not somehow
forced to do so. This can be typically explained by the
lack of knowledge and by tendency to create
conventional desktop applications for mobile
environment.

 Professionals try to develop services that work in
every situation. For instance in our test case both
services look fine when using the resolution they are
designed for. In the Figure 3 it can be noticed that
Wizard Card Game does not occupy the whole screen.
This is because Wizard has not been designed for
240x320 resolution and it does not contain functions
for scaling graphics. CamQ on the other hand is
designed to work with all common screen resolutions

As a reverse side, it can be said that services made
by non-professionals tend to work better as they are

TABLE V
Complexity comparison professionals

Product
Control

Net
Bubble

Sand
man

Dung
Beetle

Number of
Attributes 176 104 36 15

Number of
Classes 59 32 9 9

Number of
methods 441 192 92 43

McCabe
Cyclomatic
compexity
average

1,482 1,4 1,978 1,465

McCabe
Cyclomatic
compexity
max

8 7 11 6

Total Lines of
Java Code 4798 1833 997 326

Total Lines of
XML code 2692 1410 1067 391

TABLE IV
Complexity comparison non-professionals

MSS Tanked
SW

Face
book

Tourism
Essen-

tials
Number of
Attributes 5 32 1 8

Number of
Classes 7 10 6 8

Number of
methods 24 71 39 27

McCabe
Cyclomatic
compexity
average

2,25 1,324 1,821 1,815

McCabe
Cyclomatic
compexity
max

17 14 7 7

Total Lines of
Java Code 296 446 512 308

Total Lines of
XML code 205 680 412 334

less complex and offer less functionality that may
cause malfunctions or problems. Generalization of
course is impossible because there were really good
and working services in those made by professionals
and also really bad non working services under those
made by the non-professionals.

4.3. Reference services

To widen the results of our study and to get a
reference point for thoroughly tested services we have
included few additional services. Services in Table IV
are developed by non-professionals during a code
camp sessions and services in Table V are made by
professional developers.

Code camps are one form of group working, which
lasts about one week. During a code camp a group has
to design and implement an application with given
properties. It has been a common habit in the
Lappeenranta University of Technology code camps
that groups help each others although there has always
been a competition between the groups about the best
idea & application. Group also gets help from the
instructors.

Noticeable in the services developed under the code
camps, is the fact that these have been designed,
implemented and tested in a very short period of time.
In our cases groups have four days to design in
implement a working service and the actual
implementation process took place during the last 48

hours. For this reason it is justified to assume that the
appearance, used techniques and quality are no where
near of those developed but the professionals, but
when services were returned we noticed that the
assumption was mainly wrong. This proves that it is
easy to create fully functioning services with MUPE in
a rapid manner, but if one wants to be absolutely sure
that game works in all situations and with many
different phone models it takes a lot more time and
effort.

Tables IV and V shows the values for selected
services and by comparing these two tables with table
III we can notice few similarities and differences.
Main similarity between the two groups of services is
that the average complexity among professional
developers is lower than in those made by non-
professional and same also goes to maximum
complexity value. Of course there are exceptions such
as TankedSW which has the lowest average
complexity after the Camera Template, which can be
explained with the fact that complexity is only
dependable of Java and does not include dependences
to the client device. So if you know Java well enough
are already half MUPE professional. Another
difference can be noticed in the LOC values which in
generally is higher in the services developed by
professional. Exception is Dung Beetle which is a
really small game developed by a highly qualified
MUPE professional.

Apart from these few noticeable differences there is

not much else that can be noticed with the numerical
comparison. Invisible differences are mostly the same
as in CamQ vs. Wizard case. Every service in table V
developed by professionals support at least two
different resolutions and e.g. NetBubble four different
resolutions. Another difference is again the
functionality of XML. Services developed by non-
professionals only contain the needed parts and
nothing to reduce the server load. Since we did not
find any major differences in the tested services, we
came in to a conclusion that MUPE platform offers
easy and rapid way even for non-professional
developers to implement context-aware mobile
services.

5. Conclusion

Multiple different services with context-awareness
have been built by multiple different authors using
MUPE platform with or without Eclipse-based tools.
Nothing restricts development process to Eclipse but if
certainly makes the development process easier than
using other tools without MUPE support. Existence of
the MUPE tools also makes it really simple to build a
new MUPE services from the scratch, thus tools
generate the basic environment skeleton automatically
and developers only need to add their own
functionalities to the code.

This can also be noticed when comparing the
services made by professionals to those made by the
non-professionals. Of course this superficial study and
short descriptions of services would not tell the whole
truth, but the quality of services made by non-
professionals is generally about the same than those
made by professionals. This strangeness can be
explained by the fact that non-professionals only add
few simple own functionalities to pre generated
skeleton and are less likely to break something. It is
also possible that non-professional under MUPE is a
professional in Java which all ready makes him half
way to MUPE professional.

As a result of our study we confirmed that it is
possible for non-professional service developers to
design and implement quite impressive context-aware
services in a short amount if there are professional
instructors available. If instructors are not available it
is still possible for non-professionals to create context-
aware services easily but the quality is more
dependable of developers’ knowledge of Java and
XML. Differences between contexts used by
professionals and non-professionals are minor but it is
still obvious that functionalities offered by MUPE

tools are more commonly used by non-professionals
thus they offer easy way to add context-awareness to
service. Professionals prefer to build their own
context-aware functionality or modify those offered by
MUPE tools and use the available context more
inventively.

MUPE tool that was mentioned earlier formed one
problem to this comparison since it contains a
template projects for camera and Bluetooth. The effect
of these templates is that students rather use camera
and Bluetooth as a context in their projects than try to
use other available contexts with no ready made
template.

Acknowledgement

We would like to thank the entire personnel of the
MoMUPE project and numerous authors of services
presented.

References

[1] A. K. Dey. Providing Architectural Support for
Building Context-Aware Applications. PhD thesis, College
of Computing, Georgia Institute of Technology, 2000.
[2] Browser game Travian. Available:
http://www.travian.com/
[3] Overview of Multiplayer Mobile Game Design.
Available: http://www.forum.nokia.com/main.html
[4] K. Koskinen, R. Suomela. “Rapid Prototyping of
Context-Aware Games”, Proceedings of the 2nd
International Conference on Intelligent Environments
(IE06), Jul 2006
[5] R. Suomela., K. Koskinen, K. Heikkinen. ”Rapid
Prototyping of Location- Based Games with the Multi-User
publishing Environment Application Platform”, Proceedings
of The IEE International Workshop on Intelligent
Environments, Jun 2005, pp.143-151.
[6] R. Suomela, E. Räsänen, A. Koivisto, J. Mattila:
“Open-Source Game Development with the Multi-User
Publishing Environment (MUPE) Application Platform”,
Proceedings of the Third International Conference on
Entertainment Computing 2004, pp. 308-320
[7] Context-awareness, Available:
http://en.wikipedia.org/wiki/Context_awareness
[8] EU-project ePerSpace. Available: http://www.ist-
eperspace.org/
[9] Public MUPE services. Available:
http://www.mupe.net/applications/
[10] Animal Crossing. Available:
http://en.wikipedia.org/wiki/Animal_Crossing
[11] Lautamäki, A. Heiska, T. Mikkonen, R. Suomela,
“Supporting Mobile Online Multiuser Service
Development”, Proceedings of the 3rd IET International
Conference on Intelligent Environments, 2007, pp.197-204.

[12] Pyy. M, Heikkinen. K, Porras. J, “Automating
Context-Aware Service Development”, Proceedings of
Context-Aware Proactive Systems 2007 (CAPS'07), Jun
2007.
[13] Metrics Eclipse plug-in, Available:
http://metrics.sourceforge.net/

[14] S.L.Pfleeger, N.E. Fenton: Software Metrics: A
Rigorous and Practical Approach, 1997, ISBN 0534956009
[15] Soyatec eUML2 Eclipse plug-in. Available:
http://www.soyatec.com/euml2/installation/

PUBLICATION III

Janne Lautamäki and Riku Suomela. "Using player
proximity in mobile multiplayer games: experiences from
Sandman." In Proceedings of the 2008 International
Conference on Advances in Computer Entertainment
Technology, pp. 248-251. ACM, 2008.

Using Player Proximity in Mobile Multiplayer Games –
Experiences from Sandman

Janne Lautamäki
Tampere University of Technology

P.O.BOX 553
FI-33101 Tampere
+358405198898

janne.lautamaki@tut.fi

Riku Suomela
Nokia Business Center

P.O.BOX 100
FIN-33720 Tampere

+358504835717

Riku.suomela@nokia.com

ABSTRACT
In addition to using Bluetooth as a communication channel, it can
be used to discover other devices nearby. In games, such
information can be used in many ways, such as to group people
or direct player to player interaction for instance. In this paper,
we explore the possibility to use social proximity in multiplayer
gaming using mobile phones. As an example, we describe
Sandman, which is a context-aware game built on the Multi-User
Publishing Environment (MUPE) platform. The game is
available for mobile phones with an access to the internet,
Bluetooth, and Java MIDP 2.0

General Terms
Experimentation, Human Factors.

Keywords
Context-Aware, pervasive game, Bluetooth, MUPE, multiplayer
mobile games, proximity.

1. INTRODUCTION
Context-awareness refers to services’ ability to react to changes
in the environment [1]. A good example of context-awareness is
proximity; many mobile phones have Bluetooth capability, which
can be used to detect nearby devices by scanning for their BTUID
(Bluetooth Unique Identifier) [2].

In this paper, we present a sample game that uses social
proximity in player-to-player interaction. It is called Sandman,
and it is based on people monitoring other players in the real
world. The game is almost like tag game with digital scoring.

The rest of this paper is structured as follows. Section 2
presents background. Section 3 presents our example proximity
game. Section 4 discusses things that effect how the game is
played. In Section 5 we present the actual test games and results
and Section 6 finally concludes this paper.

2. Background
Many context-aware games use the real world as the gaming
arena [3]. In player proximity based games, the device monitors
the area around player and tries to find other devices nearby. In
our case we used Bluetooth to sense proximity and MUPE
(Multi-User Publishing Environment) [4] for implementing the
game.

In our game the proximity has two states: another person is
in the proximity, or is not. In addition to the two states, the
transition from one state to another is important, that is, enter
proximity, and leave proximity. With a more complex sensor
than Bluetooth it would be possible to detect the distance also,
but we are only focusing on discrete stages, and their transitions.

MUPE is an Open Source application platform for creating
mobile multi-user context-aware applications. It has a client-
server architecture, where the end-user uses client to connect
their mobile devices to the MUPE server. External information
can be added to MUPE server with context components. Client
has an access to the most information supplied by the mobile
phone; it can gain an access to Bluetooth, GPS, camera APIs, etc.
The MUPE core connects the different parts of MUPE as
illustrated in Fig. 1.

In comparison to traditional applications, MUPE
applications are deployed differently. MUPE only requires a
single client install, after which the user is free to browse new
services, and use them with out any extra installations. Client-
side of MUPE is build on top of J2ME, and therefore MUPE
services are available for the majority of mobile phones.

Client
(XML)

MUPE
Core

External
Contexts

MUPE
Server (J2SE)

Wireless network

Figure 1. The MUPE application platform structure

���������� 	� �
�� ��
�	
� �� �
�� ������ ��
�� �� �
�	 �� 	��� ���� ���
������
� �� ��
������ ��� ��
�
�	�� ��	���	 ��� �������� 	�
	 ������
��
��	 �
�� �� ���	����	�� ��� ����	 �� ��������
�
��
�	

�
�� 	�
	 ������
��
� 	��� ��	���
�� 	�� ���� ��	
	��� �� 	�� ���	 �

�� �� ���� �	�������� 	�
���������� 	� ���	 �� ������� �� 	� �����	����	� 	� ���	�� �������� ����� �������
����������
�����
 ����
�������� 	�
��
���� �������	����� ���������� ��� � !����
�
� "
�
��
#�����
�	 ��� $#% &' ()(*�++ (,&,(�� �)� ���-+����

248

mailto:janne.lautamaki@tut.fi
mailto:Riku.suomela@nokia.com

3. Example game: Sandman
We aim at using the real world as the gaming arena. In previous
attempt, Assassin [5], the players look at other players in the real
world, and switch to the mobile phone UI only to take photos of
other players. In our sample game Sandman, the players look for
other players, and only a single button press is required. With
games like these, the players are most of the time focusing on
real world, and only occasionally focus on the digital device for
short periods of time. Sandman uses the social proximity as the
main form of game mechanics. Social proximity is very important
in many children games, such as tag, hide and seek, police and
robber.

In Sandman, every player acts as a Sandman who has the
power to put others to sleep. Players are divided into two teams.
The objective of a team is to put all the players in the opposing
team to sleep. The state machine representing the different states
for the player in the game is given in fig. 2. Sprinkling the sand
into air (A and E) causes all the players nearby to fall asleep (C).
Also the sandman who sprinkled the sand is affected, if he has
not used stimulants to stay awake (B). Players can protect
themselves by drinking coffee (D). If a player is drinking coffee
while sleeping sand is sprinkled then caffeine protects him from
falling asleep (E). Only limited number of coffee doses is
available for a player. One dose effects one minute and counters
all the sleeping effects.

When sand is sprinkling the phone scans all the nearby
Bluetooth devices and sends their BTUIDs forward to the MUPE
server. If the BTUID is recognized then the related player falls
asleep. Bluetooth is only used for detecting nearby players; the
GPRS connection is used to connect the client to the server.

Our tests showed that using BTUID detection is slow. The
total time the scanning takes is related to the number of nearby
devices. In average it takes about twenty seconds to collect all
the BTUIDs nearby. Hence, it is not fast to put another player to
sleep. We do not consider this a major problem; it might even
make playing the game more interesting. Those seconds give the
players a chance to try to escape if a situation is noticed. Running
does not always help, since some of the BTUIDs are normally
founded fast.

To summarize, the players are trying to minimize the group
members and maximize the opponents in the “in proximity”
state. The movement in the real world is reflected in the
transitions. The simple idea of the game eases the design of a
simple and intuitive user interface. In the game room a player has
two actions: “Press to Attack” i.e. throw sand and “Press to
Defend” i.e. drink coffee, which are enough to play (fig. 3). Lots
of other little things are available in UI for making playing more
interesting but the game itself is all about pressing two buttons
and monitoring actions of the other players in the real world.

Rules should be considered before the session starts. They
depend on players and playing area and, obviously change from
session to session. The gaming area should be limited. The
distance between people during the game has a great effect on
how the game is played and how long it lasts. If the people who
start the game are near each others, the tension is higher as the
players are all the time in the border of the transition between
“in proximity” and “out proximity”. If the players are more apart
there is no possibility for entering the proximity range.

The service itself can not provide strict rules because the
game takes place in real world and the device only acts as a
judge whether the player successes when trying to sprinkle
sleeping sand. In bigger games something like armbands are
mandatory for recognizing team mates.

4. Players and Environment
The two key aspects of Sandman are the players and the

environment. Environment is a level of the game, and players are
its characters. The game session is very different if it is played in
large outdoor spaces with limited cover, compared to indoor
game, where the players do not need to have visual contact at all
during the game. Bluetooth reaches through walls so sometimes a
player does not see who sprinkled the sleeping sand.

Lots of possible strategies are available. One strategy is to
avoid other players and wait till most of them have fallen to
asleep. Hiding player and his team mates win the session if other
players play well and the player succeeds in hiding. Other
strategy would be that a player actively tries to find a big
concentration of other team players and then puts all of them to
sleep. In this case, one quickly runs out of coffee and falls asleep
soon but with help of his team mates, he can still win. All
players rely entirely on their own team to win.

We hypothesis, that the environment has a huge effect on
how the game is played. It gives lots of ideas to people what can
be done. If we are gaming inside then it is natural that players act
as they are supposed to act inside buildings. When playing
outside at park players are more likely to run around and chase
each others.

Another big factor is the effect of age. With young children
the game can resemble a lot like the tag game. If the players are
little older and are working at a same office, they can play the
session while working. Session can be started at morning and can
be played when ever there is enough time or convenient
situations. Simple games like these can make the morning coffee
break more interesting, and still not require the players to spend
time playing the game – it is all about timing.

Awake

Sprinkle sand Drink Coffee

Sprinkle sand
while drinking coffee

Asleep

A

B

C

D

E

Figure 2. State machine of the game

249

5. Test results
We have tested the game in different occasions with

different people. Designing the game has been highly iterative
process. At early tests we had lots of cruder graphics and not so
many functionalities and game has slowly evolved to its current
form. The main point of these test sessions has been to gain ideas
and get some feedback.

In focus group session we had six students aged around 25.
They tried out couple of applications and one of applications was
an early prototype of Sandman. The interview was organized in a
laboratory and it was recorded on a VCR. The players had no
chance to escape from laboratory room and so they could not
really chase each other. Instead that they tested the user
interfaces and discussed about the idea of game.

The participants liked the game and gave some valuable
comments for future work. It was also noticed that game was
very easy to play. They also gave impression that game would
suit better for little younger players and proposed new play
modes. They also questioned why the player has to always fall
asleep. We decided to introduce the coffee as a game element.

The participants also suggested that the non-player BTUIDs
could somehow affect to the game. That kind of item is for
example people not playing the game or other Bluetooth device,
such as printer. It would be possible to for example use them as a
coffee automates to refill ones thermos bottle or something like
that.

Finally the game was tested with two test groups. First of
them consisted of university students, whose ages varied around
25 years. The second group consisted of 11 years old elementary
school students. In first group there were eight players and in
second there were eleven. All test subjects were males. With
elementary school students all phones were Nokia N95 and with
university students there were a variety of Nokia N95, N70 and
7610 phones.

Many things varied between the tests. The gaming area and
the age group were different. Students played in sauna
compartment of Tampere University of Technology and children
played outside, at the park nearby their elementary school. In the
first test the players were asked to stay inside the building and in
the second one they were not allowed leave from park.

Both of the tests took little over one hour. The first thing
was to explain rules, then couple of test games were played in a
single room, so that everyone has change to get used with user
interface. After that the real games were played. Each game
session took about ten minutes. Finally there was debriefing
session with feedback forms and free conversation.

Test game with university students was organized in
conjunction with a gaming evening of a game development
course and there were a lot of games to be tested. Space was also
very limited and it only consisted of couple of rooms and long
corridors. Some of the players just sit and tried to play without
moving. Winner was the player whose coffee lasted the longest.
There was no time to plan strategies or other thing like that,
because player had to constantly monitor if effect of coffee has
ended and then drink a new one. Some players decided to keep
distance from other players. When they come back, other players
had run out of coffee and players hiding in corridor won the
session because they still had coffee left.

Younger test group was much more willing to run and chase
each others. It was lots more fun to test game with younger test
group. Problems were opposite than with older test group. When
explaining the rules there was constant swarm of questions and
the participants were really enthusiastic about starting the game
session. When game started they run wildly around the park
pointing each others with mobile phones and shouting things like
“I am sprinkling sand at you”, “I am drinking coffee”. With them
it was more like a random thing who actually won. There were
no strategies, just a constant chasing.

Figure 3. Example screenshots of the game UI

250

Even though the sessions were totally different, we can
draw some conclusions on. As expected, the school children were
very prone to run around whereas it is more of an effort as people
grow up. The open environment was a totally different
environment – where people had so many visible threats that the
strategies were bound to be chaotic. On the other hand, the game
session indoors was too small compared to the Bluetooth range,
so the level was not optimal for game play. It would be nice to try
to but things other way around.

In Table 1, we present some of the results from the
questionnaire we made for both of the test groups. Answers are
in a scale from one to five. The key finding from questionnaire
was that both age groups told that game was fun to play. But in
question “Would you like to play it again” only children told that
they would like to play again. We are not drawing any conclusion
why this is, as the environment, age or the game itself to name a
few had an effect on the experience. Based on questionnaire it
also seemed that children also tried more actively to get into
situations where sprinkling the sand was possible while students
played more passive way. This is probably partly due the
environment, but younger group’s habit to play games probably
also influenced to the results. Children answered more positively
to all questions. Younger players tend to answer 0.5 points more
positive. From the 29 questions asked only in four the difference
between groups was zero.

Table I

Aspect 11 years (11
participants)

25 years (8
participants)

Playing the game was fun. 5 4

I would like to play it again. 5 2

I would like to play other
games with same battle
system.

4,5 3

I actively tried to get
situations, where I could
sprinkle sand.

4 1

Commenting was voluntary and most comments came from
elementary school students. There were comments like: “Game
was totally great! It would be fun to play it with my own mobile
phone too.”, “Game should have faster pace.”, “Coffee was too
effective, texts were fun, it was hard to put people asleep.”,
“Simple but boring.”, “Game was nice, but probably a bit too
simple.”. Most of the comments were positive. Negative
comments mostly claimed that game was too simple.

We consider that with the normal tag game the results
would be same. Basically we learned that digital scoring and
mobile devices did not affect so much to adults, but it certainly
made children run. Playing tag game is more common for kids
than for adults as adults tend to prefer sports. It would be
interesting to try to disguise this game to look more like sport
than playing and then try to test if adults would like it more. A
possible setup would be e.g. competitive orienteering where
people would be bound to meet up in certain locations.

To test Bluetooth as proximity detector, we took different
models of Nokia phones, and placed them in single room. There

were seven phones and 25 tests for each, so the total number of
devices to be found was 150. There were slight problems with
the platform but no problems with finding BTUIDs. Tests were
made in a single room, so it is possible that there are
asymmetries between founding the devices if distance is greater.
A bigger problem is the time the scan takes. Depending on the
device and amount of other devices nearby, scanning can last
from a couple of seconds up to almost a minute. It is not always
the case that the oldest phone is the slowest; it is more like a
random thing. Games that depend on Bluetooth as a proximity
detector is definitely unfair to some of the players.

6. CONCLUSION
In this paper, we presented a case example how the player

proximity in the real world can be used in mobile multiplayer
games. A sample game implemented with MUPE works in most
phones. Bluetooth is used to detect other players nearby. The
game was tested with several groups. These groups had a totally
different kind of a game experience, which was due to both the
age and the environment they played in. Different kind of
strategies and game situations were described. Moreover, an
extended discussion was given to analyze the game.

Implementing other game modes from the first person
shooter genre would make more variance to game play. Other
methods to sense proximity like GPS and WI-FI could also be
tried out. It would be interesting to test Sandman in events with
high density and number of people.

Also some platform-related issues were discovered. With
MUPE there is no way to invite other users to a certain service or
to create groups of friends. If MUPE wants to be “the mobile
Facebook”, then at least these features should be included.

To gain a deeper understanding of the differences, further
study is needed on the effect of the environment as a game level,
and the effect of the age and the group dynamics.

REFERENCES
[1] Dey, A. K., 2000. Providing Architectural Support for

Building Context-Aware Applications. PhD thesis, College
of Computing, Georgia Institute of Technology.

[2] Bray, J., and Sturman, C., 2001, Bluetooth: connect without
cables, Prentice Hall Inc, Upper Saddle River.

[3] Schilit, B., Adams, N. & Want, R., 1994. Context-Aware
Computing Applications. IEEE Workshop on Mobile
Computing Systems and Applications, In Proceedings of the
Workshop on Mobile Computing Systems and Applications.

[4] Suomela, R., Räsänen, E., Koivisto, A., Mattila, J., 2004.
Open-Source Game Development with the Multi-User
Publishing Environment (MUPE) Application Platform.
Proceedings of the Third International Conference on
Entertainment Computing 2004, 308-320, Lecture Notes in
Computer Science 3166 Springer.

[5] Suomela R., and Koivisto A., 2006. My photos are my
bullets - using camera as the primary means of player-to-
player interaction in a mobile multiplayer game. 5th
International Conference on Entertainment Computing –
ICEC, Lecture Notes in Computer Science 4161 Springer.

251

PUBLICATION IV

Janne Kuuskeri, Janne Lautamäki, and Tommi Mikkonen.
"Peer-to-peer collaboration in the lively kernel." In
Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 812-817. ACM, 2010.

 Peer-to-Peer Collaboration in the Lively Kernel

Janne Kuuskeri
Department of Software Systems
Tampere University of Technology

P.O. Box 553
FI-33101 Tampere, Finland

janne.kuuskeri@tut.fi

Janne Lautamäki
Department of Software Systems
Tampere University of Technology

P.O. Box 553
FI-33101 Tampere, Finland

janne.lautamaki@tut.fi

Tommi Mikkonen
Department of Software Systems
Tampere University of Technology

P.O. Box 553
FI-33101 Tampere, Finland

tommi.mikkonen@tut.fi

ABSTRACT
With the increasing popularity of the World Wide Web, end-user
applications are moving from the desktop to the browser. More
and more applications that we have come to know as desktop
applications are now making their way into the web. This has
made online collaboration a key aspect for many applications.
Collaborative applications like Facebook, Flickr and Google Docs
are just an early hint of how we can benefit from users being able
to share data. Still, collaborative features are not easy to
implement in web applications. Most web programming
environments aim at easy user interface creation and persistence,
but not for online collaboration and pushing data from one user to
another. The Lively Kernel is a highly dynamic web programming
platform and runtime environment developed at Sun
Microsystems Laboratories. By utilizing the Lively Kernel
platform, it is easy to implement desktop like applications for the
web using JavaScript. In this paper we summarize the experiences
from adding peer-to-peer collaboration into the Lively Kernel.
These additions include persistent data storage, communication
channels between users and user identification.

Categories and Subject Descriptors
D.2.6 [Software engineering]: Programming Environments

General Terms
Design, Experimentation

Keywords
Collaboration, JavaScript, Lively Kernel, Web Application

1. INTRODUCTION
During the recent years, web applications have become more and
more popular. Today, it is not unusual for complex applications to
use the web as their only platform, with no traditional user
interface for the desktop. Good examples of these are applications

like Flickr, Picnik and Google Docs. We believe that the
transition from the desktop to the web has only started, and the
variety and importance of web applications is constantly rising.
Web applications are easy to adopt since they need neither
installation nor updating. They are also easy and cheap to publish
and maintain; there is no need for intermediates like shops or
distributors [1]. Furthermore, in comparison to conventional
desktop applications, web applications have a whole new set of
features available, like online collaboration, user created content,
shared data, and distributed workspace.

Many web applications are a fragmented mixture of different
kinds of technologies like AJAX, HTML, CSS, DOM and JSP
[2]. Moreover, most of them use JavaScript [3] to add client side
functionality and to create more dynamic web pages. This easily
leads to applications that rely on a number of technologies, and
consequently the code base may become very difficult to
maintain. To overcome such obstacles, the Lively Kernel is a
platform for developing and hosting client side applications that
are implemented using JavaScript only [4]. The Lively Kernel
provides a rich set of user interface components and an MVC
model for event handling thus making the creation of complex
web applications much easier.

As the web gains more and more central role in computing, it is
only natural that applications move into the web as well. The
Lively Kernel helps in this transition by making the browser a
platform for applications rather than just being a document
viewer. However, in its current state the Lively Kernel does not
take full advantage of capabilities of the web. In the situation
where all users are connected to a single server, it only seems
logical to assume that users can somehow collaborate with each
other. One good example of a truly collaborative environment is
the recently introduced Google Wave (http://wave.google.com), in
which users are able to send messages and share data in real time.

In this paper we present some new features for the Lively Kernel
in order to make it a collaborative platform, where peer-to-peer
communication is possible between different Lively Kernel
instances running in different browsers. To add peer-to-peer
collaboration to the Lively Kernel, we have extended the platform
with a variety of new features and applications such as user
identification, friend list, chatting, two player gaming and data
sharing. Furthermore, we have implemented a concept of remote
wormholes into the platform. These wormholes connect two
remote Lively Kernel instances, and users can use them for
sharing objects, including even ones that include runnable code.
With these extensions developers are able to implement truly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’10, March 22–26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

812

mailto:tommi.mikkonen@sun.com
mailto:tommi.mikkonen@sun.com
mailto:tommi.mikkonen@sun.com

collaborative applications and users are able to interact with each
other in real time.

The rest of the paper is structured as follows. In Section 2 we
describe the original Lively Kernel and its features. In Section 3
we provide an overview of features we have created and discuss
more about technical details. In Section 4, we draw some final
conclusions.

2. THE LIVELY KERNEL
Currently, most web applications – excluding some rare
exceptions – are separate instances that do not interact with each
other. In collaborative applications, the server commonly plays a
major role by providing a single state that is shared. This is partly
a result of lacking mechanisms and interfaces to carry out the
interaction between different clients in real time and partly
because it is just impossible. In contrast, desktop applications
have multiple means for communication; they may share files or
communicate directly via various messaging protocols, whose
features vary considerably.
In the Lively Kernel, the user interface already resembles to the
ones we are familiar with from the desktop. Therefore, it is only
natural to provide the collaborative services resembling those of
conventional desktops to Lively Kernel applications as well.

2.1 Origins of the Lively Kernel
The Lively Kernel (http://research.sun.com/projects/lively/) by
Sun Microsystems Laboratories is an interactive web application

platform that has been written entirely in JavaScript. Being a web
application itself, users of the Lively Kernel do not need to install
anything in order to use it. The only thing that is required is a
compatible web browser. The list of compatible browsers includes
the latest versions of Firefox, Safari, Opera and, Google Chrome.
The Lively Kernel can be hosted on a web server for others to use
or it can reside on user's local machine in which case no web
server is required. A screenshot of the Lively Kernel is provided
in Figure 1.
For application developers the Lively Kernel provides a rich set of
user interface widgets, an event model and other useful features
such as modules, classes and networking. Applications are
implemented purely in JavaScript. There may be several
applications running simultaneously inside the Lively Kernel, and
they all remain active while another application is used. However,
due to the restrictions of the client-side JavaScript environment,
the applications share the same virtual machine that executes them
in a single process, and parallel executions have been executed in
terms of the JavaScript eventing system at the level of
implementation.
Due to the higher level of abstraction, writing applications for the
Lively Kernel is easier than writing them directly for the web
browser. In fact, implementing applications using the Lively
Kernel resembles the traditional way of implementing desktop
applications. With the Lively Kernel, developers need not to
worry about things commonly associated with using JavaScript
inside browsers, like manipulating the Document Object Model
(DOM) directly or defining cascading style sheets (CSS). With the

Figure 1. The Lively Kernel running in Safari browser [4]

813

Lively Kernel, developers only have to know how to write
JavaScript and familiarize themselves with the Lively Kernel
APIs.
The Lively Kernel is based on the Morphic user interface
framework [5]. Within the framework there are four important
main concepts, World, Morph, Wormhole, and Hand. These are
introduced in the following:
Worlds. The concept of a world simply refers to a workspace
within the platform. This is very similar to a virtual desktop used
by many windowing systems. Inside the main world, it is possible
that there are so-called sub-worlds, which can be accessed from
the main world.
Morphs. Similarly to other Morphic implementations, Lively
Kernel morphs are simply graphical objects. All morphs reside in
a world and they can be seen as objects, applications or widgets.
In Figure 1 we can see several morphs and a world as a canvas for
them.
Wormholes. Inside a Lively Kernel instance, there can be only one
visible world at a time, but the world can contain links to other
worlds. These links are called wormholes. In Figure 1, two blue
circular wormholes can be seen at the bottom left corner. These
wormholes act as links between local worlds running inside a
single instance of the Lively Kernel – in other words a single web
page. The user can use the wormholes for dragging objects from
one world to another. Wormhole icons can also be clicked in
order to move to another world, each of which can contain a
different set of morphs.
Hands. The morphs in a world are manipulated using a hand,
which is a generalization of the cursor. In terms of the underlying
implementation, the hand is also a morph that has all the
properties of a regular morph as well.

2.2 Collaboration through wormholes
We have amended the Lively Kernel with persistence and peer to
peer collaboration. They have been implemented as a part of the
platform. With these additions we were able to make the Lively
Kernel more appealing for both, the end users and the developers
and to turn the Lively Kernel into a collaborative platform in
which users can share data, and thus gain the full benefits of being
online.
Furthermore, we have extended the concept of wormholes. Instead
of being used inside one browser only, the concept has been
extended for sending live morphs between remote users, each
having their own worlds. The scheme has been illustrated in
Figure 2. In the figure, rectangles represent different Lively
Kernel instances belonging to different users. Circles represent the
different worlds running inside different Lively Kernel instance.
Finally, arcs inside a rectangle represent local wormholes and
arcs that cross the boundaries rectangles are the new wormholes
that enable connections from one user to another.
Since the scheme connects different users directly, this can
considered as a peer-to-peer system. However, due to the
restrictions of the browser as a platform, behind the scenes the
traffic is actually routed through the server. These restrictions are
associated with the current security model in browsers, namely the
same origin policy [6], which makes it impossible to bypass the
server. Nevertheless, these new kinds of wormholes open a whole
new set of possibilities for developers and end users, since live

morphs can now be shared with other users and sent back and
forth.

3. IMPLEMENTATION
The implementation we have composed to enable peer-to-peer
collaboration can be divided into three main parts; the server side
implementation and the related communication channels, the
serialization of transferred data and the user interface which
enables the use of the collaborative features. Next, we describe
how these different components are implemented.

3.1 Amendments to the user interface
For a user of any collaborative application, one of the key
requirements is to see who else is online. For computer programs
this is fairly straightforward as we could just use some unique
string of characters to represent a client. However, for users to be
able to identify one another there needs to be some familiar name
associated with the user. The most common technique for
accomplishing this is to require the users to register and log in to
the system before they start using it. Our login screen can be seen
in Figure 3. This screen can be used for both to register a new
user and to login as an existing user.

In most community based applications and platforms, users are
able to form groups of users they want to collaborate with, into
their own lists. These lists are generally known as user's friends
[7]. We have also added friend list to the Lively Kernel. This list
can be made visible from the main application manager, and it is
automatically updated as users become online.

The application manager and the friend list are presented on the
left side of Figures 4 and 5. By clicking on a friend on the list, a
new window is opened. This window is called friend panel, and it
is presented on the right side of Figure 4. besides enabling
chatting, it opens a wormhole between the two users. The
wormhole can then be used for sending all kinds of objects that
live inside the Lively Kernel, including basic morphs, pictures and
applications. Moreover, since morphs can contain program code,

Figure 2. Wormholes between Lively Kernels and worlds

Lively
Kernel

World

Wormhole

Legend:

814

also this code can be set through the wormhole from one user to
another. Hence, the wormhole essentially acts as a peer-to-peer
communication mechanism that is readily available for users.

For example, such wormhole can be used to initiate games or
other applications. User could suggest that “Let’s play a game of
Dung Beetle” to a friend and then the game itself could be
dragged and dropped on the very same chat screen to initialize the
game for the friend too. The Dung Beetle is actually a two player
game that we have created to demonstrate the collaborative
features (see Figure 5). The idea of the game is simple: many
dung beetles, known as rollers, are noted for rolling dung into
spherical balls, which are used as a food source or brooding

chambers. Both players have a dung beetle to control and they are
trying to collect falling piles of dung to all of the chambers before
the opponent does it first.

3.2 Server side implementation
The server side of our application is also implemented in
JavaScript. It uses Rhino JavaScript engine and embeds Jetty web
server, as already described in [8]. Essentially it provides Lively
Kernel application developers access to server side functions and
modules. Client side application may use whichever
functionalities provided by the server for example database, file
I/O, and networking and then the server side platform dynamically
replaces those invocations with RPC stubs upon application
loading. Hence, when the Lively Kernel is loaded, the server
inspects and instruments the code and sends it to the browser and
whenever a "server side" function is called in the browser, an Ajax
request is made in the background. This way application
developers may implement their web applications in a more
natural an concise way and not worry about the networking
details. They can just use modules and services provided by the
server as if they were local.

In the context of adding collaboration to the Lively Kernel, there
are two interesting modules provided by the server: friends and
database. The friends module can be used to send either multicast
messages to all users or private messages to a selected user.
Messages are delivered asynchronously and received by other
Lively Kernel applications via Comet channels. Applications are
free to create new channels or register into existing channels. The
database module, on the other hand, comprises basic create, read,
update and delete (CRUD) operations against the database. With
these two modules we are able to turn the Lively Kernel into a
fully collaborative platform.

3.3 Serialization
One of the key ideas from the start was to create a new kind of
wormhole to send objects and applications from one user to
another. Sending an object over HTTP is divided into three steps.

Figure 4. Friends list and the friend panel

Figure 5. Friends list and Dung Beetle game

Figure 3. Login screen

815

First, the object is serialized into text, then the text is sent to a
friend and finally the receiving application deserializes the text
back into object. How the object is serialized and what is the
actual textual format is a compromise of many different aspects.
Different formats may vary from easily readable JSON and XML
to some compact binary formats.
In case of the Lively Kernel the serialization should support a tree
of objects. However, for JavaScript this creates a problem.
Serialization would easily extend to object’s prototype and in
worst case to the entire top-level scope and everything it refers to.
Hence, there should be some limit in how deep the serialization
goes into. Sometimes it is intentional to serialize the whole object
tree and sometimes it is not. In our case, we want to be able to
serialize a JavaScript object and the child-objects it refers to and
then deserialize them into a new scope and have all of the
references from the deserialized object to prototypes and parent
scopes resolved correctly to refer to objects in the new scope. In
our study we have identified three different approaches on how to
serialize and deserialize objects. Each of the different approaches
have their benefits and flaws.
The first and the easiest way is to simply send source code over
the web, as shown in Listing 1. With this method, the receiver
needs detailed instructions on how to initialize object. Another
alternative would be to define a robust standard on initializing
incoming objects. Furthermore, in most cases the state of the
system must be preserved. Hence all the variables have to be sent
together with the object. With this approach the hostile client has
a good opportunity to upload whatever code it wishes to other
users.
The second approach is to take an object and then serializing it
back to source code. This approach has been demonstrated in
Listing 2. This piece of code can then be sent to friend and then
deserialized again by using eval() function that is readily available
in JavaScript interpreters. Basically this approach has the same
benefits as the first one, but there is no need for extra information,
because all the variables are included in the serialized object.
Nevertheless the problem associated with hostile clients remains.
Other users can send hostile code and it is virtually impossible to
create adequate safety mechanisms for the receiver.
There is one more problem with both of the above approaches.
Even if all the variables are serialized along with the object, it is
still possible that some structures that affect to the object are lost
in the serialization process. For example, in the Lively Kernel it is
easy to create a new timer for moving your object but if you do
not have reference from object to timer then timer does not get
serialized with your object. Then, even if the timer is adequately
serialized, it still has to be started. The same thing is applicable to
mouse and keyboard events, for example.
Difficulties when serializing events results from the structure of
the Lively Kernel. Timers and events are not easily accessible
from the object itself, because they are not stored inside morphs.
In the present implementation, we decided that not to worry about
this problem. In the future, an easy workaround would be to add a
new method called refreshEvents(), which would reinitialize
timers and other events after the deserialization process.
Also further problems emerge with the second approach. Most of
the serialization algorithms use recursion. However, many of the
current JavaScript virtual machines are not designed for deep
recursion. While there is no limit for call stack size in the

definition of the language, the actual maximum size of call stack
varies from browser to browser, and it can be as low as 100 [9].
Recursion can of course always be transformed to loop structures
by using stack, but this makes code more complicated. Other thing
is that there are circular references inside the Lively Kernel and
they should be detected. For example, a DOM node has references
to its children and these children also have references back to the
DOM node. When serializing this kind of structure, it is easy to
end up in an infinite loop or an exception. So when serializing it
is mandatory to keep track of items that are already visited. One
must also keep in mind that there can be multiple references to
single object and when serializing it should be serialized only
once and all the references should point to that single instance.
Finally, the third approach is to serialize object to some kind of
formatted XML-structure and use custom deserializer for
deserializing the object. This approach has been sketched in
Listing 3. With a custom serializer it is easier to draw the line on
what kind of objects can be sent through the wormhole. In our
case only the objects whose source code is already available for

Listing 2: Object serialized to source code
{

 x : 0, y : 0, width : 60, height : 30,

 constructor : function Rectangle() {

 Class.initializer.apply(this,

 arguments);

 },

 documentation : 'primitive rectangle',

 initialize : function(x, y, w, h) {

 this.x = x; this.y = y;

 this.width = w; this.height = h;

 return this;

 },

 copy : function() {

 return new Rectangle(this.x, this.y,

 this.width,this.height);

 },

 maxX : function() { return this.x + this.width;},

 maxY : function() { return this.y + this.height;},

 ...

Listing 1: Source code
Object.subclass("Rectangle", {

 documentation: "primitive rectangle",

 initialize: function(x, y, w, h) {

 this.x = x; this.y = y;

 this.width = w; this.height = h;

 return this;

 },

 copy: function() {

 return new Rectangle(this.x, this.y,

 this.width, this.height);

 },

 maxX: function() { return this.x + this.width;},

 maxY: function() { return this.y + this.height;},

 ...

816

both users, and can therefore be trusted, can be send. With this
approach there is still the same event and timer problem as with
second alternative. However, also solution to that problem can be
the same, and composing a practical implementation is not hard.

4. CONCLUSIONS
In this paper, we presented new features for enabling community
aspects into the Sun Labs Lively Kernel platform. We created a
simple login mechanism to identify old and new users, and this
way demonstrated the database capabilities of the server. We also
created a friend list for users to see who is online. The friend list
can be used for opening private chats between friends, but it can
also act as an extension to wormholes by offering a channel to
send all kinds of objects available in the Lively Kernel. We also
presented a multiplayer game to demonstrate how communication
channel can be used to send actions from one user to another.

Adding online collaboration to the Lively Kernel platform has
made it much more appealing to the users and allowed for totally
new kinds of applications to be implemented. Sharing data or
even applications themselves gave us the true power of online
collaboration. Seeing this as a proof of concept, we plan continue
our study and apply these same techniques on another platform
called Lively for Qt [10].

Lively Kernel version 0.8.5., which we have used as the base for
our work, lacks the support for collaborative features. However,
the researchers at Sun Microsystems Laboratories have developed
the platform further and they have added some new collaborative
aspects in it. Those features do not conflict with our additions and
with careful work, the two versions could probably be combined.
The new version with collaborative features from Sun
Microsystems is called Lively Wiki because it has wiki like
features; users can contribute to the community by creating their

own content and then saving and sharing it for other users to use
(http://livelykernel.sunlabs.com). However, this requires reloading
of the page and thus, is somewhat limited approach to true online
collaboration of applications.

We are also planning on implementing remote controlled objects
on top of the wormhole concept. In this scenario users would be
able to share user interface components via the wormhole. For
example, they could share a text editor where both users would be
able to write and the changes would immediately be visible to
both users. This idea could be extended into worlds themselves.
Hence, when the user enters to a world, it would actually be a
remote world inside a remote Lively Kernel.

Acknowledgements
This research has been supported by the Academy of Finland
(grant 115485).

REFERENCES
[1] O'Reilly, T. What is Web 2.0: Design Patterns and Business

Models for the Next Generation of Software.
Communications & Strategies, No. 1, p. 17, First Quarter
2007.

[2] Paulson, L.D. Building rich web applications with Ajax.
Computer , vol.38, no.10, pp. 14-17, Oct. 2005.

[3] Crockford, D. JavaScript: The Good Parts. O'Reilly Media,
2008.

[4] Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K. Web
Browser as an Application Platform: The Lively Kernel
Experience. Sun Microsystems Laboratories Technical
Report TR-2008-175, January 2008.

[5] Maloney, J.H. Morphic: The Self User Interface Framework.
Self 4.0 Release Documentation, Sun Microsystems
Laboratories, 1995.

[6] Ruderman, J. The same origin policy. 2001,
http://www.mozilla.org/projects/security/components/same-
origin.html.

[7] Boyd, D.M., Ellison, N.B. Social Network Sites: Definition,
History, and Scholarship. Journal of Computer-Mediated
Communication vol. 13, no. 1, pp. 210-230, 2008.

[8] Kuuskeri, J. and Mikkonen, T. Partitioning web
applications between the server and the client. Proceedings
of the 2009 ACM Symposium on Applied Computing,
Honolulu, Hawaii, 2009

[9] Maximum Call Stack Size in Modern Day Browsers.
http://novemberborn.net/javascript/callstack-size

[10] Mikkonen, T., Taivalsaari, A. and Terho, M. Lively for Qt:
A Platform for Mobile Web Applications. In Proceedings of
the Sixth ACM Mobility Conference, Nice, France,
September 2-4, 2009.

Listing 3: Object turned to XML:
<g xmlns="http://www.w3.org/2000/svg"

 type="Morph" id="161:Morph"

 transform="translate(- 29, -14)">

 <rect x="0" y="0" width="60" height="30"

 stroke-width="1" stroke="rgb(0,0,0)"

 fill="rgb(0,0,204)"/>

 <field xmlns="" name="origin" family="Point">

 <![CDATA[{"x":0,"y":0}]]>

 </field>

 <field xmlns="" name="fullBounds" family="Rectangle">

 <![CDATA[{"x":0,"y":0,"width":60,

 "height":30}]]>

 </field>

 <field xmlns="" name="scalePoint" family="Point">

 <![CDATA[{"x":1,"y":1}]]>

 </field>

</g>

817

http://www.w3.org/2000/svg
http://novemberborn.net/javascript/callstack-size
http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html

PUBLICATION V

Timo Aho, Adnan Ashraf, Marc Englund, Joni Katajamäki,
Johannes Koskinen, Janne Lautamäki, Antti Nieminen, Ivan
Porres, and Ilkka Turunen. "Designing IDE as a Service."
Communications of Cloud Software 1, no. 1, p. 10, 2011.

Designing IDE as a Service

Timo Aho∗ Adnan Ashraf† Marc Englund‡ Joni Katajamäki∗∗ Johannes Koskinen∗

Janne Lautamäki∗ Antti Nieminen∗ Ivan Porres† Ilkka Turunen∗∗

Tampere University of Technology∗
P.O.Box 553, FI-33720 Tampere, Finland

firstname.surname@tut.fi, except antti.h.nieminen@tut.fi

Åbo Akademi University†
Joukahainengatan 3-5, FIN-20520 Turku, Finland

firstname.surname@abo.fi

Vaadin Ltd.‡
Ruukinkatu 2-4, FI-20540 Turku, Finland

marc.englund@vaadin.com

JAMK University of Applied Sciences∗∗
Rajakatu 35, FI-40200 Jyväskylä, Finland
firstname.surname@jamk.fi

Abstract

While the popularity of web applications is growing, most of the software is still developed using desktop
tools. Nevertheless, a browser-based development environment could offer a multitude of advantages. For
example, only an up-to-date web browser is needed and therefore the user has no need to carry out complex
tool installation and update procedures. Furthermore, publishing the applications to the web is easy to offer
as a feature of an IDE, and since the users are already connected via server, collaborative features are easier
to implement. For beginning businesses, effortless publishing offers new possibilities.

In this paper, we present Arvue, a browser-based tool that enables simple development and publishing of
web applications. Arvue applications are created on the browser using a user interface designer and an
integrated code editor. The applications are stored in a version control system provided by Arvue and they
can easily be published to the cloud. Publishing the user-created applications may impose resource usage
and security issues, which are also addressed in the paper.

Keywords: Cloud, Integrated development environment

1 Introduction

One of the main trends of software engineering is that the applications are moving from desktop to
the web browser. The trend has multiple benefits: Web applications are available globally and can
be accessed using any up-to-date web browser. They are also easy and inexpensive to maintain.
Updates are distributed automatically just by updating the application on the server. The web,
and especially the usage of the cloud [1], makes it possible for anybody with modest software
development skills to create applications and then with small effort and relatively low costs to
offer it to the global market.

Despite the success of the web as an application platform, the vast majority of software is devel-
oped using a desktop based integrated development environments (IDEs). However, an IDE inside
a browser offers several benefits. The developer does not need to worry about installing, configur-
ing or updating the environment as the latest version available on the cloud is automatically used.
Along with an IDE, there can be additional developing tools such as a development server or a test
harness. Since the developers are connected to the cloud, the created projects can easily be stored
in the cloud. In addition, it is possible to implement a set of communication, collaboration and
project management tools. Furthermore, it reduces errors if we develop and test applications in the
same environment as the actual hosting is done.

In this paper, we describe Arvue1, that provides the IDE and the hosting as a service. The most
visible part of Arvue is a browser-based development environment. The environment contains a
visual user interface (UI) designer and a code editor along with an easy way to preview and publish
applications. The applications are stored in a version control system integrated with the IDE.
We also identify the potential risks related to user-created applications and give our solutions to
monitoring and controlling the resource usage of applications as well as to addressing the security
concerns.

The paper is organized as follows. In the next section, we give an overview of the technologies used
in our implementation. Section 3 discusses the most relevant related work. In Section 4, the overall
view of our architecture is presented, as well as more detailed descriptions of the components.
Finally, in Section 5 we draw some concluding remarks and discuss possibilities for future work.

2 Background

As already mentioned in the introduction, the benefits of hosting applications in the cloud are
evident [1]. The philosophy of cloud computing is to see applications as a service instead of a
product. In the cloud, the resources behind the applications can be scaled up and down according
to one’s needs without owning heavy server infrastructure. In an IDE and hosting service like
Arvue, the scaling is naturally a very desirable feature because of unpredictable and changing
needs. When selecting the cloud provider, the most typical commercial alternatives are Amazon
Web Services2 and Google App Engine3. It is also possible to build cloud of your own by using
open-source cloud computing frameworks like OpenNebula4 and Eucalyptus5.

A remarkable part of web applications is based on Java programming language. Especially Java
Servlet [9] is a fundamental building block for Java based web applications and is used in huge
number of tools and frameworks. In this work, for implementation, we use Vaadin [4], that is
an open-source framework for developing Java Servlet based web applications. For client side
features, Vaadin framework extensively relies on the facilities of Google Web Toolkit6 (GWT).
GWT is an open-source development system that allows the developer to write applications in Java
and then compile the source code to JavaScript which can be run on all browsers. When using
Vaadin, the developer can implement server side application using the full power and flexibility of
Java and Vaadin automatically takes care of the client side.

When using web servers like Apache Tomcat7 or Jetty8, all the served web applications are located
1Available at http://www.arvue.com.
2http://aws.amazon.com
3http://code.google.com/appengine
4http://www.opennebula.org
5http://www.eucalyptus.com
6http://code.google.com/webtoolkit
7http://tomcat.apache.org
8http://eclipse.org/jetty

http://www.arvue.com
http://aws.amazon.com
http://code.google.com/appengine
http://www.opennebula.org
http://www.eucalyptus.com
http://code.google.com/webtoolkit
http://tomcat.apache.org
http://eclipse.org/jetty

on the same Java virtual machine. However, Java lacks many important supportive features to
run multiple applications on a single Java virtual machine. To patch this up, a widely adapted
OSGi9 specification [17] has been published. OSGi introduces the dynamic component model
which allows, e.g., updating, installing and removing components on-the-fly in a single Java virtual
machine [6, Section 15.1].

Vaadin framework is compatible with OSGi. As the framework can be configured as an OSGi bun-
dle, it is possible for other OSGi bundles to use it directly. In this way, Vaadin web applications can
use the Vaadin framework bundle like a dynamic library resulting in very lightweight applications.
Thus, the typical size of the Vaadin application bundle file in OSGi is less than 100 kilobytes, and
the starting up of an application is a light and fast operation.

3 Related Work

Many web-based IDEs are released during the past few years. Their type varies from simple pro-
gramming language tutorials to complete solutions for developing and deploying web applications.
The scientific literature mostly seems to concentrate on the collaborative side of IDEs [18, 3, 11, 7]
or on solving the technical challenges [19]. On the other hand, some of the web IDEs, such as js-
Fiddle10 concentrate only on the client side development with, e.g., JavaScript, HTML, and CSS.
In addition, for example JavaWIDE11 [5, 10] allows the development of Java applets running on
the client browser. Nevertheless, some IDEs also support server side development. Because our
Arvue is designed for creating software with a thin client and for doing most of the computation
in a cloud, we here limit to the IDEs from this category. In addition, we further concentrate on the
IDEs that offer some kind of deployment and hosting service for the created applications.

A popular way to include server side functionality in a web application is NodeJS12. It is an engine
which allows the developer to write the server side code with JavaScript. Some web IDEs that
incorporate NodeJS development include Cloud913 and AkShell14. Both of them offer GitHub15

integration and use Ace16 as their client side editor component. In addition, web IDEs offer various
other technologies for web application development. For example, eXo Cloud IDE17 supports a
variety of solutions like Java Spring and REST services and includes the wide selection of lan-
guages include HTML, JavaScript, PHP, Java, Groovy, and Ruby. For these languages, it offers
development aids like automatic code completion.

On the other hand, Coderun18 is a web IDE for developing C# applications. It allows debugging
applications while they are in execution. The client side code is generated using Sharpkit19 —
a C# to JavaScript translator similar to GWT for Java. Finally, a web IDE worth mentioning is
Kodingen20. Its goal is to provide an easy way to deploy, develop and host web applications using
various languages and frameworks. It supports a wide selection of editors and source code control
tools.

9OSGi originally stood for Open Services Gateway initiative framework. The longer form is at present seldom used because the
specification has moved beyond the original focus.

10http://jsfiddle.net
11http://www.javawide.org
12http://nodejs.org
13http://cloud9ide.com
14http://www.akshell.com
15http://github.com
16http://ace.ajax.org
17http://cloud-ide.com
18http://coderun.com
19http://sharpkit.net
20http://kodingen.com

http://jsfiddle.net
http://www.javawide.org
http://nodejs.org
http://cloud9ide.com
http://www.akshell.com
http://github.com
http://ace.ajax.org
http://cloud-ide.com
http://coderun.com
http://sharpkit.net
http://kodingen.com

Figure 1. Overall view of Arvue architecture

The mentioned IDEs differ from our solution especially in their basic philosophy. Our intention is
to present a useful editor for a single task: creating and publishing small Vaadin based web appli-
cations. Because of our narrow application area, we are able to present much more comprehensive
process tools than is possible with a general use IDE. As a concrete example, our IDE contains the
graphical editor for implementing the application UI and supports only single framework.We will
cover the issue more in detail in the following sections.

4 Architecture

In this section, we describe the Arvue architecture and components. The overall architecture of
Arvue components is presented in Figure 1. Arvue can be divided roughly in four different com-
ponents:

• Arvue IDE, both graphical UI and collaborative code editor (CoRED) [11], for creating ap-
plications. Components are presented in Section 4.1.

• Version controlling services component covered in Section 4.2.

• Arvue auto scaling framework for hosting applications is described in Section 4.3.

• Monitoring resource usages and security of the applications is covered in Section 4.4.

Arvue IDE runs on a dedicated Jetty WebServer as there is, at least for the start, no need for
scaling features for the IDE component. The applications created and published using Arvue IDE
are hosted on Amazon Web Services cloud to get high scalability.

As can be seen from the figure, Arvue offers all the tools needed for creating, publishing and
hosting the applications. Furthermore, the application sources can be downloaded from the system
and edited with an external IDE and then uploaded back to the repository.

Let us now go through the components one by one in the following subsections.

Figure 2. Screenshots of the Arvue IDE. Code editor at left and graphical UI designer at right.

4.1 Arvue IDE

Arvue IDE is a browser-based tool for creating Vaadin applications. Furthermore, the applications
can be published to the cloud with a single click. Besides being used to create Vaadin applications,
the IDE itself is a Vaadin application and could run within the same infrastructure as applications
created with it. Arvue IDE contains a visual UI designer and a code editor CoRED (Collaborative
Real-time Editor) [11], along with tools for previewing and publishing applications.

In the UI designer presented in Figure 2 (right), the user can create user interfaces by dragging and
dropping Vaadin components such as layouts, containers and various kinds of UI elements to the
middle panel. The position and size of the elements can be set using a simple drag and drop based
interface. Further properties of an element, such as its style and whether it is enabled or read-only,
can be set by selecting the element and defining its properties in a side panel view. In addition,
there is also a hierarchical view of the component structure of the created UI.

Java source code for the designed application UI is automatically generated. The code can be
further edited in the code editor illustrated in Figure 2 (left). With the editor, the user can add
listeners for the UI components to attach functionalities. The UI components can also be added
and modified in the code editor. The changes created to the code are reflected back to the UI
designer, making a round trip between the UI designer and the code editor.

The code editor component offers various features to help the programmer. It uses Ace editor for
Java syntax highlighting, automatic indentation and other basic code editor features. Additionally,
our code editor checks errors in the user code. Once a while the code is compiled on the server side
using Java Development Kit (JDK) compiler. The possible errors are presented in the code editor
along with the error descriptions from the compiler. In addition the editor offers an automatic code
completion. For example, when the user types ”myButton.”, a list of the fields and methods of the
myButton object is shown for the user to select. In addition to the field and method suggestions,
there are some Vaadin-specific suggestions. All the suggestions are also generated on the server
side using JDK tools. Furthermore, CoRED can work in collaborative mode, meaning that several
developers can edit the same source file simultaneously. For further details on the features and

implementation of the code editor, we refer to [11].

4.2 Version Control

The code generated by Arvue IDE is saved to Git21 distributed revision control system. Git is
meant for managing revisions in a file that has frequent changes possibly by multiple users. The
system allows rolling back to previous revisions or assigning creator information for code lines of
a file. In practice, Arvue version control system is implemented as an easy-to-use wrapper library
built around the JGit22 that handles all the operations necessary to interact with the repository.

One of the primary features of the version control component is automatic saving. It automatically
commits code changes to Arvue Git repository and generates associated commit messages. Hence,
the revisions can be tracked later on. The component also includes features like manual saving and
loading of previous work from a specific external repository. This can be done with a simple user
interface in the general view of the editor.

4.3 Publishing of Arvue Applications in the Cloud

The Arvue auto scaling framework takes care of sharing the workload on the distributed servers.
It serves the web applications end user sessions to a scalable application server tier. The server
level is dynamically scaled according to the workload in the typical cloud fashion. The framework
consists of a number of subcomponents as shown in Figure 3.

An application server instance runs on a dynamically provisioned virtual machine (VM). Each
application server runs multiple web applications under OSGi [17] environment. In OSGi environ-
ment, the web applications are run as specific components, called OSGi bundles. Bundles can be
loaded and unloaded in dynamic fashion and they can communicate with each other.

There are multiple implementations for the OSGi standard [17]: e.g., free open-source Apache
Felix23 and Eclipse Equinox24 as well as commercial ones like Makewave Knopflerfish25. From
the open-source implementations, Apache Felix is certified to be compliant with the OSGi specifi-
cation. Thus, we selected to use this one.

In addition to web applications, each application server also runs a local controller. The local
controller logs application server and application performance. The main performance metrics are
load average and resource consumption. The application specific data is generated by the Resource
Manager which is described in 4.4. On regular intervals, each local controller sends performance
data to the global controller as can be seen in Figure 3. Another task of the local controller is to
control OSGi Felix for loading and unloading of web applications.

The compiled Arvue applications are stored in an application repository. When HTTP load bal-
ancer receives a new user session request for a web application not deployed on any application
server, it directs the request to the global controller that selects a server and forwards the HTTP
request. This causes the server to load the web application from the application repository. After a
period of inactivity, the application is unloaded from the server.

The global controller acts as the capacity manager for application servers. Management includes
starting and stopping application server instances when there is a need for scaling of the service.

21http://git-scm.com
22http://www.eclipse.org/jgit
23http://felix.apache.org
24http://www.eclipse.org/equinox
25http://www.knopflerfish.org

http://git-scm.com
http://www.eclipse.org/jgit
http://felix.apache.org
http://www.eclipse.org/equinox
http://www.knopflerfish.org

�����

�������

��	
�
��
�������

�����

�����

��	
�
��
�������

���
����������

������������

�
�
�

�������
�

�
�

	�� ����
�

��
�������

��
���

�����������

���!�

��������
��

����

����

����
��
�

���

"
�
�
�

"
�
�
�

Figure 3. An abstract view of Arvue auto scaling framework.

While the scaling decisions are made by the global controller, the actual lower level tasks are
done by a cloud provisioner. In our case, the provisioner is Amazon Web Services cloud, Amazon
EC226.

All the HTTP requests are routed through a high performance HTTP load balancer and proxy. This
way HTTP request load is balanced among the application server instances. As an implementation
of the balancer, we use HAProxy27. For its functions, the balancer maintains configuration infor-
mation about application servers that are running and about the web applications executed on each
of them.

4.4 Security Issues on the Application Servers

Despite its many merits, OSGi unfortunately does not solve all the security problems attached to
hosting multiple untrusted applications. In addition, the hosted applications are publicly available
in the web which makes the situation even trickier. Some of the vulnerabilities are implied by Java
principles [8, 2] and some by the OSGi features [14, 15]. The security issues can be splitted in two
categories: the permission control of untrusted OSGi bundles and the more complicated matter of
resource usage monitoring and controlling.

Because of the application environment, we are able to solve permission-based vulnerabilities
moderately simply with the OSGI permissions. The OSGi Security model is based on the Java
2 Specification [16]. The basic idea is that code can be forced to authenticate before it has a

26http://aws.amazon.com/ec2
27http://haproxy.1wt.eu

http://aws.amazon.com/ec2
http://haproxy.1wt.eu

Figure 4. Resource Manager component

permission to execute specific method calls. In our case, authentication by bundle’s location is
enough. We refer to literature [6, Section 14.7] for more details on the permissions.

For monitoring resource consumption, we have implemented a monitoring component called Re-
source Manager. In practice, Resource Manager is a simple profiling tool, which is augmented
with per-application limits such as memory allocation or CPU time used. When one of the limits
is reached, Resource Manager tries to interrupt or stop the misbehaving application. In addition to
monitoring, it provides resource usage information for the global controller via local controller.

The Resource Manager contains three different components as shown in Figure 4: the dynamic
servlet registration bundle with a service call proxy to add monitoring aspect to web applications,
Resource Manager for actual profiling tasks, and ArvueResourceCollector to capture the resource
usage data from Resource Manager component.

Resource Manager is based on the Java Virtual Machine Tool Interface (JVMTI) [13] that provides
a way to inspect the state of applications running in the Java virtual machine. The Resource
Manager is hooked to the Java virtual machine so that when the virtual machine starts a new thread,
the Resource Manager is called by the JVMTI. Similarly, it is called when threads are stopped.
Memory allocations can be easily covered by instrumenting the code to call the Resource Manager
via Java Native Interface (JNI) [12] whenever a new object is allocated. The instrumentation is
carried out when the class file is loaded, so no preliminary changes to the code are required. To
track the release of the memory JVMTI callbacks are used. CPU time is monitored with a separated
thread that collects periodically (like once a second) the used CPU time on all the active threads.

5 Concluding Remarks

In this paper, we described a web based integrated development environment and hosting service
called Arvue. With the introduced system it is fast and easy even for the beginner without any
specific tools installed on the computer to create and publish Vaadin [4] based web applications.

The most visible part of Arvue is a browser-based IDE. The IDE contains a visual UI designer and
a code editor along with an easy way to preview and publish applications. The applications are
stored in an integrated version control system and can be published to cloud for anybody to access
with a web browser. We also identified the challenges related to running user-created applications
and gave our solutions for monitoring and controlling the resource usage of applications and for
scaling the system up and down. Decisions concerning the security problems of user-created web
applications are also illustrated.

There are plenty of browser-based development tools that have at least some of the features of
Arvue. However, Arvue is intended for a neatly targeted use: creating and publishing small web
applications for Arvue Java framework. The goal of Arvue is to take the process from beginning to
publishing and hosting to the web. Thus, we are able to serve well suited tools for this exact need
and make the process as flexible as possible. For example, we offer a graphical editor for creating
the Vaadin application user interfaces. In addition, the Vaadin web applications can be developed
purely with Java. There is no need for combining different languages and web development tech-
niques. This is in contrast with the previously available tools which are meant for more general
application development.

Since Arvue is still in the early proposal phase, we have numerous directions for future improve-
ment. The collaborative capabilities of the tool have to be improved; in addition to those already
implemented in the editor component as described in [11] we should have more tools for project
management and for architectural design. Another obvious direction for future work is to perform
a series of usability studies in order to find out how programmers wish to use the system. Based
on the results, we can further refine the implementation and focus on the parts that provide most
support for the actual development work.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., and Zaharia, M. A view of cloud computing. Communications
of the ACM 53, 4 (2010), 50–58.

2. Geoffray, N., Thomas, G., Muller, G., Parrend, P., Frénot, S., and Folliot, B. I-JVM: A
Java virtual machine for component isolation in OSGi. In Proceedings of the IEEE/IFIP
International Conference on Dependable Systems & Networks (DSN) (2009), IEEE, pp. 544–
553.

3. Goldman, M., Little, G., and Miller, R. C. Real-time collaborative coding in a web IDE. In
Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technol-
ogy (UIST) (2011), ACM, pp. 155–164.

4. Grönroos, M. Book of Vaadin, 4th ed. Uniprint, Turku, Finland, 2011.
5. Hall, M. S. Java WIDE - Java Wiki Integrated Development environment: Nifty tools and

assignments. Journal of Computing Sciences in Colleges 27, 1 (2011), 91.
6. Hall, R. S., Pauls, K., McCulloch, S., and Savage, D. OSGi in action: Creating modular

applications in Java. Manning Publications, Greenwich, CT, 2010.
7. Hartmann, B., Dhillon, M., and Chan, M. K. HyperSource: Bridging the gap between source

and code-related web sites. In Proceedings of the Annual Conference on Human Factors in
Computing Systems (CHI) (2011), ACM, pp. 2207–2210.

8. Java Community Process. Java specification request 121: Application isolation API specifi-
cation, 2006. Version 2.7, final.

9. Java Community Process. Java specification request 315: Java servlet 3.0 specification, 2009.
Version 3.0, final.

10. Jenkins, J., Brannock, E., and Dekhane, S. JavaWIDE: Innovation in an online IDE (tutorial).
Journal of Computing Sciences in Colleges 25, 5 (2010), 102–104.

11. Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T., Mikkonen, T., and Englund, M.
CoRED—Browser-based collaborative real-time editor for Java web applications. In Pro-
ceedings of the 15th ACM Conference on Computer Supported Cooperative Work (CSCW)
(2012), ACM.

12. Oracle. Java native interface specification, 2006. Version 6.0.
13. Oracle. JVM tool interface, 2006. Version 1.2.1.
14. Parrend, P. Software Security Models for Service-Oriented Programming (SOP) Platforms.

PhD thesis, Institut National des Sciences Appliquées de Lyon, France, 2008.
15. Parrend, P., and Frénot, S. Java components vulnerabilities: An experimental classification

targeted at the OSGi platform. Tech. Rep. 6231, Institut National de Recherche en Informa-
tique et en Automatique, Le Chesnay Cedex, France, 2007.

16. Sun Microsystems. Java 2 security architecture, 2002. Version 1.2.
17. The OSGi Alliance. OSGi service platform: Core specification, 2009. Release 4, version 4.2.
18. van Deursen, A., Mesbah, A., Cornelissen, B., Zaidman, A., Pinzger, M., and Guzzi, A.

Adinda: A knowledgeable, browser-based IDE. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE) (2010), vol. 2, ACM, pp. 203–
206.

19. Wu, L., Liang, G., Kui, S., and Wang, Q. CEclipse: An online IDE for programing in the
cloud. In Proceedings of the IEEE World Congress on Services (SERVICES) (2011), pp. 45–
52.

PUBLICATION VI

Janne Lautamäki, Antti Nieminen, Johannes Koskinen, Timo
Aho, Tommi Mikkonen, and Marc Englund. "CoRED: browser-
based Collaborative Real-time Editor for Java web
applications." In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, pp. 1307-1316. ACM,
2012.

CoRED – Browser-based Collaborative Real-Time Editor
for Java Web Applications

Janne Lautamäki, Antti Nieminen, Johannes Koskinen,
Timo Aho, and Tommi Mikkonen
Tampere University of Technology

Korkeakoulunkatu 10, FI-33720, Tampere, Finland
{janne.lautamaki, antti.h.nieminen,

johannes.koskinen, timo.aho, tommi.mikkonen}@tut.fi

Marc Englund

Vaadin Ltd.
Ruukinkatu 2-4, FI-20540, Turku, Finland

marc.englund@vaadin.com

ABSTRACT

While the users of completed applications are heavily
moving from desktop to the web browser, the majority of
developers are still working with desktop IDEs such as
Eclipse or Visual Studio. In contrast to professional
installable IDEs, current web-based code editors are simple
text editors with extra features. They usually understand
lexical syntax and can do highlighting and indenting, but
lack many of the features seen in modern desktop editors.
In this paper, we present CoRED, a browser-based
collaborative real-time code editor for Java applications.
CoRED is a complete Java editor with error checking and
automatic code generation capabilities, extended with some
features commonly associated with social media. As a proof
of the concept, we have extended CoRED to support Java
based Vaadin framework for web applications. Moreover,
CoRED can be used either as a stand-alone version or as a
component of any other software. It is already used as a part
of browser based Arvue IDE.

Author Keywords
Development tools, collaboration architectures, Vaadin.

ACM Classification Keywords
D.2.3.c. Program editors. D.3.2.h. Development tools.
H.5.3.c. Computer-supported cooperative work. J.8.s. Web
site management/development tools.

General Terms
Design, Experimentation.

INTRODUCTION
It is widely recognized that communication problems are a
major factor in the delay and failure of software projects
[2]. Numerous tools and methods have been proposed to
solve issues in different phases of projects, starting from

capturing requirements and ending at customer
documentation. One of the most promising approaches to
communication problems is offered by agile methods that
advocate close and frequent communication between the
client and the developers. In reality, this is often
implemented in the form of a team that shares the same
premises, encouraging frequent informal communication.

While the software development community is already
struggling with communication issues, the emerging
practice of global software engineering is raising even more
challenges: Software work is undertaken at geographically
separated locations across national boundaries in a
coordinated fashion, involving both real time (synchronous)
and asynchronous interaction [13]. This emphasizes the
need for timely, precise and uniform forms of
communication across the planet. Then, since the
development takes place at the global scale, also the
necessary communication should take place at such scale.

In almost any other field, the recent standard answer to
global communication problems has been the World Wide
Web, or simply the Web. Indeed, in a relatively short time,
the Web has become the platform for all types of
applications that enables real-time collaboration in forms
and scale that would have been difficult to imagine a few
decades ago. Recently, the collaborative capabilities of the
Web have been further enriched with a new invention –
social media. Facebook, Linkedin and other services enable
us to be in contact with the friends, colleagues, and
enthusiasts of different topics in real time all over the
planet.

While the users of completed applications are heavily
moving from desktop to browser, the majority of
developers are still working with desktop IDEs such as
Eclipse or Visual Studio. At present, most of the available
web-based code editors are just text editors with some extra
features like code highlighting, indentations and
collaboration clued on top and they are not yet as usable as
the best of the desktop editors. However, the web editors
offer their own possibilities. For example, real-time
collaborative editing sits very naturally in the environment.
In addition, we get the general web-based application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW’12, February 11–15, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1307

benefits like automatic distribution, installation and
updating of applications [9] and independence on the
development environment. Steps towards the direction are
also proposed in [1, 14].

In this paper, we describe an experiment where the
collaborative capabilities of the Web in general and the
features of social media in particular are harnessed to help
solving some of the communication problems of software
development. As a concrete technical contribution, we
introduce the browser based editor CoRED1 (Collaborative
Real-time Editor) intended for collaborative real-time
editing of Java based source codes. CoRED contains
highlighting, indentation, semantic error checking and some
code completions. In addition, we present a number of
features inspired by social media services, which we
believe will be helpful for developing software applications.
To the best of our knowledge, the similar set of
functionalities is not offered by any of the previously
existing web-based code editors.

We have selected Java and Vaadin [6] as the target
language and framework, meaning that CoRED is an editor
initially aimed for those two. Nevertheless, it can be
extended for other environments with reasonable amount of
work. The web applications based on Vaadin are
implemented just like desktop Java applications. Because of
the strong typing and good tool support in Java it is possible
to augment CoRED with many features. These features
include semantic error checking and code completion. This
could just be dreamed of for weakly typed dynamic
languages like JavaScript.

The rest of this paper is structured as follows. In the next
section, we give an overview to the Vaadin framework, to
the Ace editor, and to Java Developer Kit (JDK) which we
are using as a base of our work. We also give a brief
introduction to Arvue IDE which is going to use our editor
as a building block. After this, we describe the technology
behind our solutions and discuss the collaborative features.
Moreover, we explain how CoRED could be extended for
different frameworks. Then, we compare our editor with
other code editors available in the web. Towards the end of
the paper, we draw some final conclusions.

BACKGROUND
In this section, we give brief introduction to tools we are
using in CoRED. We also show Arvue IDE as an example
because it is going to be the first actual web application
using CoRED. Tools we are using are the Vaadin
framework, Ace editor, and Java Developer Kit (JDK). As a
framework, Vaadin is obviously the lowest layer of our
architecture. Vaadin is used for communicating over
HTTP(S) and for making a separation of concerns between
the client and the server [18]. On the client side, we use Ace

1CoRED is available for testing at
http://jlautamaki.virtuallypreinstalled.com/CoRED

editor as a front-end, and on the server side JDK as a tool
for analyzing the source code. Vaadin also offers us a way
for packaging the whole CoRED as a deliverable
component as presented in Figure 1. CoRED can be used as
a part of Vaadin based application like Arvue IDE or as it
is.

Arvue
Arvue2 is a cloud based IDE and hosting solution for the
users who need a simple web-based tool for implementing
and publishing Java based Vaadin applications. The basic
philosophy of Arvue is to create applications “in the web
for the web”. In other words, the goal is to implement web
applications in the web and publish them with minimal
effort. No other tool except the browser is needed, implying
that no installation is necessary in any phase of the
development.

Applications are created in the browser-based visual editor
that contains both the GUI (see Figure 2) and the code
editor. On the GUI side, the user can create a new GUI just
by dragging and dropping elements and layouts. The
created GUI is then converted to source code and it can be
further modified with the code editor (namely CoRED).
Arvue is a round trip tool between the GUI and the text
editor, meaning that same GUI edits can be done from both
of the editors. The code editor is also used to implement
features behind the GUI. Finally, the new application can
effortlessly be deployed to a cloud type environment, which

2Arvue@dev.vaadin.com wiki.
http://dev.vaadin.com/wiki/Arvue

Figure 1. Architecture of CoRED Vaadin component and
Arvue IDE using it.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1308

scales up by starting more server instances when needed.
Every server is able to host multiple applications, which
share many resources while not interfering with each other.

Arvue utilizes the Vaadin framework in its implementation.
While editing is done inside a browser, most of the
processing is carried out on the server side, as is common in
Vaadin based system. For example, the server side of the
CoRED utilizes JDK for semantic error checking and it also
eases the implementation of code completion. Furthermore,
our code editor is implemented as a custom Vaadin
component whose client side is a Google Web Toolkit
(GWT) [12] widget. Additionally, the client side widget
uses JavaScript based Ace editor for basic editor
capabilities.

The Vaadin Framework
Vaadin is an open source framework for developing Rich
Internet Applications (RIA) using the Java programming
language. The Vaadin framework relies extensively on the
facilities of GWT [12]. GWT is an open source

development system that allows the developer to write
AJAX applications [10] in Java and then compile the source
code to JavaScript which can be run on all browsers. In the
Vaadin framework, GWT is used for compiling the client
side engine and for communication between the client and
the server.

From the developer perspective, individual Vaadin
applications are implemented similarly to Java Standard
Edition desktop applications. However, instead of usual UI
libraries like AWT, Swing or SWT, the developer has to
use the specific set of Vaadin UI components and the
framework knows how to use the browser as a view. In
addition, new custom made UI components can be
implemented. In this case the client side of the customized
UI component can be either developed in Java and then
compiled with GWT or written directly with JavaScript.
The use of any combination of Java and JavaScript is also
possible. Thus, this enables us to use readily made
JavaScript applications as a part of the Vaadin client side
component.

Figure 2. Arvue IDE with the graphical UI editor tab opened.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1309

Java Developer Kit (JDK)
Usually, Java applications run on top of a Java Runtime
Environment (JRE) and are only compiled using a Java
bytecode compiler included in developer kits like the Sun
JDK3. However, this is not enough in order to develop the
code editor applications, which can create other new
applications on the fly. Instead, we need to run the
application on the developer kit. JDK contains the
necessary tools for compiling, executing, debugging and
documenting the programs. Furthermore, it includes
tools.jar package, which contains useful Sun specific
APIs for compiling, diagnosing, and parsing the source
code.

For our purposes, JDK provides a couple of very useful
features: JavaCompiler4 is an interface for invoking Java
compiler from the program. The compiler generates
complete error and warning diagnostics during compilation
(for example, error messages) and they can be collected
using DiagnosticCollector. In addition, by extending
ClassLoader and StandardFileManager, the source and
destination of compilation can be redirected. Finally, the
offered API contains TreePathScanner5 that can be used for
processing source code. The scanner visits all the child tree
nodes of the source code and can, thus, be used for finding
Classes, Methods, Variables and other kinds of Java
structures.

Ace
Ace6 is an open source code editor written using JavaScript.
It can be easily embedded in any web page and it has
support for several different programming languages,
including Java. Ace offers a lot of basic text editor features
such as undo/redo, search/replace, and customization of
appearance using themes. It also implements many features
important specifically for programmers like syntax
highlighting and automatic indentation.

It is easy to extend the behavior of Ace without editing its
source code. It is possible, for example, to implement your
own keyboard handler. Another feature important to us is
that Ace supports markers for showing code errors. Also
custom markers like underlining are possible. Moreover,
Ace offers information useful in integrating the editor into a
broader framework. For example, the position of the cursor

3JDK File Structure for Windows.
http://download.oracle.com/javase/6/docs/technotes/tools/
windows/jdkfiles.html
4Java Compiler (Java Platform SE6).
http://download.oracle.com/javase/6/docs/api/javax/tools/Ja
vaCompiler.html
5TreePathScanner (Compiler Tree API).
http://download.oracle.com/javase/6/docs/jdk/api/javac/tree
/com/sun/source/util/TreePathScanner.html
6Ace – Ajax.org Cloud9 Editor. http://ace.ajax.org/

in screen coordinates is needed for displaying a suggestion
box at a suitable position.

ARCHITECTURE OF CORED
In CoRED, most of the hard work such as checking code
errors and generating code suggestions is done on the server
side. The client side editor does the interaction with the
user. CoRED utilizes the Vaadin framework to tie these two
sides together.

Separation of concerns
Both the client side and the server side of CoRED are
designed to be easily customizable. Most of the features of
the editor, such as error checking or code suggestions are
implemented as replaceable and extendable components. A
part of the CoRED architecture is presented in Figure 3.
The main component, CollaborativeCodeEditor, and its
client side counterpart act as glue between the server side
components and the front-end editor. For example, when
the user needs code suggestions, the main CoRED
component requests suggestions from the server and then
displays a widget for the user for selecting among the
suggestions. The suggestions are generated by server side
suggester components, and the selected suggestion is finally
sent to the front-end editor.

The front-end editor component is typically a wrapper for a
third-party JavaScript code editor. We have implemented a
prototype component with three possible choices for the
front-end editor: Ace, CodeMirror7 and Eclipse Orion8.
Wrapping a JavaScript editor inside a Vaadin GWT
component was quite straightforward using JavaScript
Native Interface (JSNI)9 calls. Eventually, we chose Ace as
our front-end editor because of its good support for
indentation, syntax highlighting and customizable markers
among other things.

CoRED has a possibility for flexible component add-ons.
For example error checking and code completion
components can be added by simply implementing the
corresponding interfaces. Next we present the implemented
components in detail.

Error Checking
Error checker is an example of component for extending
CoRED. For checking errors, there are basically two
possible approaches. First, we may use our own or third
party library for parsing and error searching. Second, it is
possible to compile the code from source to bytecode and
then get compiling diagnostics.

For our implementation, we decided to use the latter
solution with Java SE Development Kit (JDK). This way

7CodeMirror. http://codemirror.net/
8Orion – Eclipsepedia. http://wiki.eclipse.org/Orion
9Coding Basics - JavaScript Native Interface (JSNI).
http://code.google.com/webtoolkit/doc/latest/
DevGuideCodingBasicsJSNI.html

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1310

we get all-inclusive error and warning diagnostics from
JavaCompiler and we do not need to stumble with the
parser-compiler incompatibility. However, a basic problem
with compiling is its consumption of computing resources.
If we use a third party library or some kind of separate
incremental parser like in Eclipse SDK for error checking,
we could have better changes to tune the balance between
efficiency and accuracy. However, we think that the
approach is sufficient for our prototype.

In error checking, our basic procedure is to first compile the
code and then ask for compiling diagnostics. Error
diagnostics offered by JDK contain all the information
needed for the message to user: in addition to the actual
error message, line and column numbers are available. For
efficiency reasons we do not save the files but only compile
in memory. Furthermore, we compile only when we assume
that the user wants the errors to be checked. In practice we
wait for a while after the last edit and compile when user is
in an idle state planning the next modifications. No
compilation is done during code editing and even during the
compilation the user interface is not blocked.

With just a few users, the compiling happens in the blink of
an eye and most of the delay is caused by network
communication. However, with multiple users, the
continuous compiling is an efficiency problem. To make
the system more scalable we compile less frequently when
the number of users increases. In practice this is
implemented with a separate worker thread for
compilations.

Suggestions and Code Completions
While editing the source code, the code editor also suggests
possible code completions. The suggestions can be invoked
in two ways, by using a special key combination or by
typing a dot after, e.g., an interface or an object name.

In either case, the server side client analyzes the code with
all the implemented suggestion components. In fact, we
have implemented two different suggestion components:
one for standard Java suggestions and another for Vaadin
specific ones. Based on the cursor location in the text the
components resolve suitable suggestions. In addition to the
actual inserted text, each suggestion includes a visible name
of the suggestion and a longer description. These are passed
to the editor and then shown to the user as seen in Figure 4.

Figure 3. A part of the CoRED class hierarchy.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1311

To help resolving the suggestions, we use tools offered by
JDK. With TreePathScanner it is possible to build a tree of
classes, methods, variables or other parts of Java syntax.
The currently visible variables, their types and methods,
and the visibility scopes can be tracked down. To calculate
the suggestions, the whole document is scanned with linear
time operation. A suggestion may be related to a class
originating from an imported package. For resolving those
suggestions, we load the class and use reflection10 to ask for
its public methods and variables.

Collaborative features
It is natural to consider web applications as multiuser
applications. The main requirement for a multiuser
application is the shared data [11]. When all the users are
connected to the same system it seems only reasonable to
assume that in addition to interacting with the system, they
are communicating with each other. In our case

10Reflection (Java SE Documentation)
http://download.oracle.com/javase/6/docs/technotes/guides/
reflection

collaboration means simultaneous editing of code document
and some features inspired by social media.

Collaborative editing
For collaborative editing, we decided to use Neil Frasers

Figure 5. Neil Fraser’s Differential synchronization with
shadows [11]

Figure 4. CoRED with generated listener, error tooltip and suggestion box opened (last two cannot normally be opened
simultaneously)

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1312

Differential Synchronization with shadows [5]. It is a robust
and convergent collaborative editing algorithm with open
source implementations available on various languages,
including Java and JavaScript.

The basic idea of Differential Synchronization is the
following: the server stores the shared document, and each
client has a separate shadow copy of the document both on
server and client side, along with the copy they are editing
(Figure 5). When a client changes its document, the
differences between the newly edited document and the
latest shadow are calculated using Myer’s algorithm [8]. A
patch (made using Bitap matching algorithm [18])
containing the differences is sent to the server. The patch is
used both for keeping the server side shadow in sync, and
for applying the changes to the shared document. The
algorithm is symmetrical in a sense that the changes made
to the shared document by other clients, is communicated to
the client in the same way as the changes from the client to
the server.

Differential synchronization is relatively easy to implement
and it meets three basic demands often set for collaborative
editing [16]: Firstly, it has high responsiveness. The edits
can be done locally and only the differences are delivered to
the server. Therefore the local actions are as quick as in a
single-user editor. Secondly, it has high concurrency rate
and multiple users can simultaneously edit any part of the
document. Finally, it is able to hide communication
latencies to some extent. Naturally, when latencies grow the
conflict rate rises.

In addition to differential synchronization, there are plenty
of ways to implement collaborative editing. One approach
would be to lock the document or a subsection of the
document before editing. A drawback with the locking
approach is that a user must wait for the lock to be
confirmed by a server, resulting to a loss in usability [15].

Another commonly used technique in collaborative editing
is Operational Transform (OT) [3, 4, 7], used in e.g.
Ethercodes11 and Google Docs12. In OT, each operation
(insert, delete, etc.) is recorded and sent to other clients who
then transform the operation to take into account all the
concurrently executed operations. In practical use, the OT
implementations must deal with quite a large number of
different editor actions including cut, paste, auto-
corrections, auto-indentation, and suggestions, which may
make the implementation problematic [5].

Features inspired by social media
In addition to plain collaboration in the form of writing
code collaboratively, there are also some features inspired
by social media. Perhaps the most obvious feature is the
option to write comments in a fashion normally associated
with text rather than code, as demonstrated in Figure 6.
When some text is selected (“HelloWorld” in the figure), a
popup is shown that allows the user to add a note referring
to that text. When a user places the cursor on top of an
existing note, the note popup is shown. Other users can
reply to the original note, thus extending the note to a
discussion, as also shown in Figure 6.

The notes reside in their original logical positions even
though the document is modified. The start and the end
positions of a note are marked with a marker. When a user
inserts (or deletes) text before a marker, it is moved forward
(or backward). The positions of markers are kept in
synchronization similarly to the differential synchronization
algorithm by sending, along with the text differences, also
the position changes of markers from the client to the server
and back.

11 EtherCodes: Online Collaborative Code Editing.
http://gigaom.com/collaboration/ethercodes-online-
collaborative-code-editing/
12 Google Docs. http://docs.google.com/

Figure 6 . A note related to “HelloWorld” and a reply in CoRED. The method called
“method1” is locked by another editor.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1313

In CoRED, it is also possible to lock portions of the
document to be edited only by one editor. For example, if a
user wanted to make changes to a specific function without
anybody interfering, he/she could lock a function by
selecting the function and clicking a "Lock for me" button
in a popup that showed up after selecting. After locking, the
locked area is shown as grey for other users and they are
unable to edit it although they can still add notes to it. Like
notes, locks also have a start marker and an end marker
which retain their logical positions.

The locking requests are sent to the server, and if no one
else had an overlapping lock, the lock is granted. Users are
disallowed to do any operations that would modify (or
delete) a portion locked by another user. Such actions are
already blocked on the client side, but the validity of edits is
also checked on the server side. The additional server side
check is needed because a lock may have been granted to
editor A while editor B was editing the same part of the
document. Thus, when B sends its modifications to the
server, they are discarded.

Performance considerations
The most time-consuming operation on the server side
CoRED is the compiling of the edited Java source code.
The result of the compilation is needed to present the user
with error messages and code suggestions.

In our brief experiments, when running the server on a
laptop containing Core 2 Duo processor, the compilation of
a typical Java file with a couple of hundreds of lines, took
tens of milliseconds. For sufficient user experience, the
compilation needs to be done at most once a second, which
could be managed on quite modest hardware.

Another heavy operation is applying patches to the
collaborative document. The resource consumption of
patching depends on the density of edits done on the
document. It should be noted that there is a practical
usability limit on how many people can edit the same
document simultaneously, which is most likely a more
constraining factor than the performance of patching. In our
brief tests where a few people edited the same document
simultaneously, there were no performance issues.

Editing multiple documents can be done on separate
instances of CoRED, which could easily be distributed on
multiple server machines if needed. Consequently we do
not presently consider this as a major performance
bottleneck.

CUSTOMIZING THE EDITOR
CoRED can be customized and extended in several ways.
As mentioned, it is possible to use new error checkers and
suggesters instead of, or in addition to, the existing
components. For example, it is possible to use CoRED for
another language than Java by implementing custom
suggesters and error checkers, and changing the syntax
highlighting and indentation of the front-end editor.

Suggestions
In case of Java based frameworks, it is possible to use our
Java suggester. The required jar files of the target
framework just have to be added to classpath. If the need
for special suggestions related to a specific framework
arises, it is possible to create custom suggesters by
implementing the Suggester interface in Figure 3.

For example, when developing for Vaadin framework, there
is often a need to add an anonymous listener for an UI
component, such as ClickListener for a button. We have
developed a Vaadin specific suggester, which is to be used
in addition to the standard Java suggester. It generates
empty skeletons for anonymous listeners where applicable.
For example, let us assume that there is a Vaadin Button
called myButton defined in the scope of the cursor. When
the user types “myButton.”, one of the suggestions is to add
an anonymous ClickListener. An illustration of the above
case can be seen in Figure 4. The anonymous skeletons are
created using Java reflection. Similar suggesters can be
easily developed for other Java frameworks.

The suggestion feature is not limited to Java language,
although we have not implemented any non-Java
suggesters. It is possible to develop arbitrary suggesters for
any language. However, creating a useful suggester for a
dynamically typed language such as JavaScript is more
difficult.

Error checking
As our error checker relies on the Java compiler, it can be
used with any Java-based framework as long as the correct
libraries are in the classpath. The standard Java error
checking is most likely sufficient for most Java projects.
Although it is possible to create custom error checkers by
implementing the ErrorChecker interface (Figure 3).

Once again, things get more difficult with non-Java
frameworks. Error checkers can be created for any language
but CoRED offers no support for non-Java ones. The Ace
editor we use as a front-end, contains a JavaScript error
checker that is not a part of the CoRED architecture.

Front-end editor
Ace, the front-end editor used in CoRED, is highly
customizable. It offers the possibility to change its
appearance and define custom highlighting rules in separate
configuration files. Ace already contains the files for the
most popular languages such as JavaScript, HTML, XML,
PHP, C++. Thus, adapting the front-end to be used for
developing for other languages than Java is very simple.

If Ace, for some reason, does not meet our requirements, it
is even possible to use another front-end, leaving the rest of
CoRED intact. The front-end component must implement
the FrontEnd interface (Figure 3). The interface defines the
methods needed for the editor, including setting and getting
the editor text, changing the cursor position, setting
callbacks for changes, displaying error markers, and so on.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1314

RELATED WORK AND COMPARISON
CoRED is not the first in the field of collaborative browser-
based code editors. The first collaborative editor was
presented as early as 1968 in the demo, retrospectively
named as “The Mother of All Demos”13. Naturally, the
demo in 1968 did not work on the browser. One of the first
collaborative editors runnable in a browser (using Java
Applets) was REDUCE [17]. The Web 2.0 phenomenon
introduced the browser-based collaborative editors to a
larger audience. One of the most successful was Writely
that later evolved to Google Docs. The step from a text
editor to simple code editor is quite short, and currently lots
of browser based collaborative code editors are available.

Most of the browser based code editors have some of the
same features as CoRED, but none has exactly the same
ones. Many of the competing editors like CodeMirror and
Ace are aimed for only code editing, not for creating
applications. Like in the desktop world, also in the web
there are wide variety of different languages and
frameworks. Thus, it is virtually impossible to create one
IDE that would support the whole project from writing the
code from scratch to publishing it for all of the frameworks.
As CoRED is a part of Arvue IDE, our goal is exactly the
whole process from beginning to deploying to the web.
Akshell14 has the similar kind of framework approach. It
allows a developer to implement both the client and the
server with JavaScript. The system also takes care of
deploying. In addition, Orion project by Eclipse community
limits the frameworks that the user can use. Orion is still in
a proposal phase but it looks promising.

When comparing the features of other editors, most code
editors have code coloring and indenting available for
several different programming languages. To the best of our
knowledge, there is only one other example of the browser
based editor with code completion and error checking. The
editor, named WWWorkspace15, uses Eclipse as a back-
end. As our editor has probably some scalability issues
because of JDK, one can only imagine the situation with a
massive editor like Eclipse. Like CoRED, WWWorkspace
is also using strongly typed Java language. Most of other
code editor examples are aimed for weakly typed dynamic
languages like JavaScript. JavaScript has its own good
sides, but it is virtually impossible to do semantic checking
for weakly typed interpretive language.

As a further comparison, CoRED can be easily extended to
support any Java based framework. As a downside, CoRED
is heavily dependent of the server side and it cannot be used
in offline mode like, for example, Google Docs.

13 Wikipedia – The Mother of All Demos.
http://en.wikipedia.org/wiki/The_Mother_of_All_Demos
14Akshell. http://www.akshell.com/
15WWWorkspace.
http://www.willryan.co.uk/WWWorkspace/

FUTURE WORK
Since we are still working with the editor, it is obvious that
numerous directions to future work exist. To begin with,
introducing support for other phases of development work,
such as requirements or project management, would be
natural extensions. Then, also these tasks could be turned
collaborative as well as more closely linked with
development activities. Currently, we assume that these
features come from environments that use CoRED as a
component.

Another obvious direction for future work is to perform the
series of usability studies in order to find out how
programmers wish to use the facilities of the system. This
could take place in the form of a coding camp, where
students would take part in the experiment, and provide
feedback on the system. Based on the results, we can then
further refine the implementation and focus on parts that
provide most support for the actual development work. In
addition, the results of such studies could also help us to
identify more potentially useful features that are
commonplace in social media but not widely applied in
software development.

Finally, in order to gain experiences from a larger user base,
we are going to publish CoRED in the open Vaadin
Directory16 as a re-usable add-on for all the Vaadin
Community. CoRED can be used as a component of other
Vaadin projects or as a stand-alone application. It will also
be used as a part of the IDE called Arvue. Currently, Arvue
is in an early alpha stage. The other components are going
to be the graphical designer for generating user interfaces
and the capability to save applications to Git version
management. In addition the developed applications can be
published directly to the offered cloud. Arvue is mostly
designed for creating small Vaadin applications and for
testing purposes, but there is no obvious reason why it
could not be used more generally.

CONCLUSION
In this paper, we described the browser based editor
CoRED intended for collaborative real-time editing of the
Java based source codes. We extended the system to offer
some Vaadin framework specific features for developing
the web applications in the web. As editing features,
CoRED contains highlighting, indentation, semantic error
checking and code completion. As a combination, this set
of features is unique when compared with other browser
based code editors. CoRED is going to be published in the
Vaadin Directory as a re-usable add-on. It will also be used
as a part of the web based IDE called Arvue.

CoRED is built to be modular and many of its parts can be
replaced or extended. In this paper, we gave a small
summary of what kind of modifications are needed to
extend CoRED to different frameworks. In the case of Java

16Directory – vaadin.com. http://vaadin.com/directory

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1315

based frameworks, just small additions for the suggestion
component and error checker are needed. However, for
non-Java frameworks more laborious modifications are
needed and the benefit of using CoRED is smaller.
Fortunately, communication from client to server and
collaborative features should work without problems in
frameworks of all kind.

As a further contribution, we discussed on how the web
applications should be developed and made a small
comparison between our editor and other web based code
editors available. As a piece of future work it would be
interesting to do more experimentation on the usability as
well as the scalability of our system.

REFERENCES
1. Begel, A., DeLine, R., and Zimmermann, T. Social

media for software engineering. In Proceedings of the
Workshop on Future of Software Engineering Research,
pp. 33–38. Santa Fe, NM, USA, 2010.

2. Curtis, B., Krasner, H., and Iscoe, N. A Field Study of
the Software Design Process for Large Systems.
Communications of the ACM 31(11), pp. 1268–1287.
1988.

3. Davis, A. H., Sun, C., and Lu, J. Generalizing
operational transformation to the standard general
markup language. In Proceedings of the 2002 ACM
conference on Computer supported cooperative work,
pp. 58–67. New York, NY, USA, 2002.

4. Ellis, C. A., and Gibbs, S. J. Concurrency control in
groupware systems. In Proceedings of the 1989 ACM
SIGMOD International Conference on Management of
Data, pp. 399–407. Portland, OR, USA, 1989.

5. Fraser, N. Differential Synchronization. In Proceedings
of the 2009 ACM Symposium on Document Engineering,
pp. 13–20. New York, NY, USA, 2009.

6. Grönroos, M. Book of Vaadin. Uniprint. 2011.

7. Ignat, C-L., and Norrie M. C. Customizable
collaborative editor relying on treeOPT algorithm. In
Proceedings of the eighth conference on European

Conference on Computer Supported Cooperative Work,
pp. 315–334. Norwell, MA, USA, 2003.

8. Myers, E. W. An O(ND) difference algorithm and its
variations. Algorithmica 1(1), pp. 251–266. 1986.

9. O’Reilly, T. What is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software.
O’Reilly. 2005.

10. Paulson, L. D. Building rich web applications with Ajax.
Computer 38(10), pp. 14–17. 2005.

11. Patterson, J. F., Hill, R. D., Rohall, S. L., and Meeks S.
W. Rendezvous: an architecture for synchronous multi-
user applications. In Proceedings of the 1990 ACM
conference on Computer-supported cooperative work,
pp. 317–328. New York, NY, USA, 1990.

12. Perry, Bruce W. Google Web Toolkit for Ajax. O’Reilly
Short Cuts. O’Reilly, 2007.

13. Sahay, S. Global Software Alliances: The Challenge of
‘Standardization’. Scandinavian Journal of Information
Systems 15, pp. 3–21. 2003.

14. Storey, M-A., Treude, C., van Deursen, A, and Cheng,
L-T. The impact of social media on software engineering
practices and tools. In Proceedings of the Workshop on
Future of Software Engineering Research, pp. 359–364.
Santa Fe, NM, USA, 2010.

15. Sun. C. Optional and Responsive Fine-Grain Locking in
Internet-Based Collaborative Systems. IEEE
Transactions on Parallel and Distributed Systems 13(9),
pp. 994–1008. 2002.

16. Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D.
Achieving Convergence, Causality-Preservation, and
Intention-Preservation in Real-Time Cooperative Editing
Systems. ACM Transactions on Computer-Human
Interaction 5(1), pp. 63–108. 1998.

17. Sun, C., Jia, X., Zhang, Y., Yang, Y., and Zhang, Y.
REDUCE: a prototypical cooperative editing system. In
Proceedings of the Seventh International Conference on
Human-Computer Interaction, pp. 89–92. 1997.

18. Sun, W. Manbed, U. Fast text searching with errors.
Communications of the ACM, 35(10), pp. 83–91. 1992.

Session: Toolkits and Software Development February 11-15, 2012, Seattle, WA, USA

1316

PUBLICATION VII

Juha-Matti Vanhatupa and Janne Lautamäki. “Content
Generation in a Collaborative Browser-Based Game
Environment.” Handbook of Digital Games, ISBN: 978-1-118-
32803-3, p. 26, Wiley-IEEE Press, 2014.

[Book Title], Edited by [Editor’s Name].
ISBN 0-471-XXXXX-X Copyright © 2000 Wiley[Imprint], Inc.

Chapter 0

Content Generation in a Collaborative
Browser-Based Game Environment

Juha-Matti Vanhatupa

Janne Lautamäki

Department of Software Systems

Tampere University of Technology

Abstract
Procedural content generation is a common method in installable computer games. It has

been used from early rogue-like computer role-playing to modern strategy games for

generating dungeons and world maps. However, procedural content generation is not well

explored in browser environment. This chapter presents an approach using content

generation methods to create content for a multiplayer browser-based game. The

proposed approach has been applied to build a collaborative browser-based fantasy

themed game, where players join their forces to complete quests generated by the game.

All the quests in the game are generated dynamically at run-time based on simple quest

templates. Our example game is implemented using client and server-side JavaScript.

Presented methods can be used as a supplement to pre-created content. The generated

content can be used for expanding overall game content and for increasing the

replayability of the game.

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 2

1. Introduction
Currently, the software industry is experiencing a paradigm shift from conventional

(binary) software towards web-based software. More and more applications are written

for the Web and universally accessed by any device with a Web browser. Ideally, these

applications will also support user collaboration by allowing multiple users to interact by

using the same application and shared data over the Web [1]. Computer games are also

experiencing the same paradigm shift. In recent years the quality of browser-based games

has increased, bringing those closer to traditional computer games.

Today, browser-based games are an emerging genre, and browser-based

environments are one of the upcoming trends of gaming. Browser-based games need no

binary installations; therefore they are available for the huge number of potential players

that necessarily have not ever owned a single computer. They are also available for any

computer or mobile phone connected to the Internet. Furthermore, updating is an easy

task; a developer can update a running application on a server and modifications spread

out immediately [2].

Currently there is a myriad of technologies that can be used to implement

browser-based games [3], as well as for web application development in general. In

addition many web applications and games are developed using a combination of several

technologies, which makes the application development even more complex. Partly this

complexity derives from the fact that the Web is strongly rooted in information sharing

and the original technology stack does not offer much support for a much more dynamic

approach that web applications represent. However, as web development technologies

evolve and become more sophisticated, the most likely the number of different

technologies needed for developing a single web application will decrease. Some

attempts toward using single language for the whole web application have been taken.

For example, in GWT [4] and Vaadin [5] approaches, the whole application is

implemented using just Java, and with NodeJS [6], both the client and server are

implemented with JavaScript.

Browser-based games containing a persistent game world gather huge online

communities since the same players are playing the game for a long time [7]. The players

are using forums, wikis, social media, and IRC-channels to connect each other. An active

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 3

online community can be very strong motivation for a player to play a certain browser-

based game. Although online communities mostly form along of long-term browser-

based games, short-term browser-based games can also gather a faithful player group.

Instead of strict clans or teams, these players form looser communities that constitute a

huge mass of potential players for all browser-based games. Recent popularity of social

networking services like Facebook, which are also application platforms where browser-

based game can be deployed, helps to gather potential players [8]. The application

platform can automate the registration process. Furthermore, it offers tools for users to

advertise games by sending invitations through the platform or simply by telling others

which games they liked.

“The honeymoon period” is a common phenomenon in browser-based games [9].

When a player starts to play a new game, the beginning is usually exiting and new. There

are many things to learn and new places to explore. The player learns how the game is

played, and depending on the game type, starts to gather experience for his character or to

develop his empire. The honeymoon period can last for weeks or even months, but as the

player’s character levels up or the empire of expends, the initial fascination can quickly

fade unless new challenges appear. We claim that procedural content generation can be

used to expand the length of the period by creating new challenges and later ease the

disappointment of the end of the honeymoon period.

The sizes of computer games have been constantly growing. Consequently, the

sizes of development teams have grown and the time needed to develop of a single

computer game has multiplied. Production of game content can be seen as one of the

main challenges in the project. Nowadays a typical time span from an idea to a finished

product is about two years and demands the work contribution of 20-50 people [10].

Massive amount of this time and resources are spent by programming the game content.

Content generation can be used to alleviate the burden that software developers

experience in manual content creation. Procedural content generation refers to content

generated algorithmically instead of manual creation. It is a common method in

installable computer games and has been used from generating dungeons in early rogue-

like computer role-playing games to world map generation in modern strategy games.

Compared with desktop based games, the most of browser-based games still contain quite

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 4

a limited amount of content and maybe therefore the content generation is not well

explored among them. However, there are no technical limitations and as the browser

based games are becoming more complex, we speculate that content generation is

becoming relevant quite a soon.

This chapter looks at possibilities and limitations of procedural content generation

in browser-based games. We present a prototype computer role-playing game (CRPG)

relying heavily on content generation. In the game, fantasy characters like warriors and

wizards are used for accomplishing quests generated by the game. The quests consist of

different types of rooms filled with fantasy monsters and treasures. All the quests in the

game are produced dynamically at run-time based on simple quest templates.

Furthermore, the creation of new quest templates is designed to be simple and

straightforward. The main contributions of this article are: an approach using procedural

content generation at run-time in browser-based game environment, a realization of this

approach and lessons learned from making this implementation. We aim to prove that

run-time procedural content generation, JavaScript scripting language, NodeJS

framework, and used software libraries are very applicable tools for making browser-

based games.

The implementation language of our prototype game is JavaScript. NodeJS

framework allows using JavaScript at both client and server-side, and NowJS [11] library

helps us to implement multi-player aspects into the game. The game flow is turn-based,

however in this multiplayer environment a single player has only a few seconds to carry

out his turn, after which all actions are processed and revealed to the other players at the

same time. Most player actions are resolved at the server; however, a database is used as

a permanent storage for collected experience points and the treasures. The players work

together to complete the quests produced by the game. Although the game is a simple

prototype, it demonstrates well the outstanding possibilities of content generation in a

browser environment.

The rest of this chapter is structured as follows. In the next part of this chapter, we

give and an abstract overview on how the Web can be utilized as a gaming platform.

After that, the approach is extended for the multi-player games. In fourth part we describe

content generation and explain how it can be used for both, reducing work needed for

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 5

implementing the game and for increasing the replayability of the game. In fifth part of

this chapter, our example game called Caves is presented and we demonstrate the

possibilities of content generation in a browser-based multi-player environment. In the

sixth part, we discuss related work and finally, the seventh part concludes the chapter.

2. Web as a Gaming Platform
The architecture of a web application or web-based game often follows three-tier

architecture (see Fig. 1) that is presented in more detail in [12]. The tiers are named as the

presentation, business, and data logic. Traditionally, the browser has contained the

presentation logic and acted as a client. The business logic runs on the web server and the

data logic on the database server. However, a trend towards thicker clients is an emerging

trend, and a number of advantages can be gained by moving some or the most of the

business logic from server to browser.

In designing browser-based game the partitioning between the client and the

server is one of the key design problems. Two possible extremes are thin and thick client.

In a thick client system, the functionalities and state of the game are located on the client

side. In a thin client system, the game logic mostly runs on the server and the

programming language for the game can be selected more freely and the source code is

The Client Side Server The Database
Tier 1 Tier 2 Tier3

The Server Side
Tier 2

Web Server Database

Figure 1. Three tier architecture of the web applications.

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 6

not exposed to the players. Thin client approach makes cheating more difficult and

prevents direct stealing of the source code. Furthermore, it is also possible that the game

with a thin client works better in the mobile devices with limited processing capabilities.

As a downside, the processing of each action requires a server request and the user

experience depends on a lot of networking configuration. By lifting some or the most of

the game logic from the server to the client it is possible to reduce communication and

CPU needs and therefore serve more clients. For the user, the thick client provides a more

responsive platform and often an improved Graphical User Interface (GUI). In some

cases, a thick client can run totally independently after it has been downloaded from the

server. Still, for the sake of persistence and communication, the thick client requires the

server and at least a periodic internet connection.

The structure of the Web and somewhat outdated APIs of the browser have been

limiting browser-based game development. Consequently, many more graphical games

are implemented using plugin based techniques such as Adobe Flash [13]. However, the

obstacles are being worked out and a trend away from the plugins seems to exist [14]. For

example HTML5 [15] and WebGL [16] standards are offering an important set of tools

for developing the client side and can be used through JavaScript APIs. HTML5

introduces new canvas element for drawing, methods for user interaction especially drag-

and-drop support, offline web applications and audio support. Upcoming features that

allow playing of audio and video in the browser without plug-ins can be very useful for

game developers. WebGL utilizes a graphics processing unit (GPU) of the computer for

drawing 2D and 3D graphics on a canvas. The hardware accelerated approach offers a

long-awaited graphics boost for browser-based games and allows implementing

complicated 3D games like Quake II for the browser [17].

The standards mentioned above strengthen the position of JavaScript among the

game development language of the Web. Previously, performance issues have also been

limiting the use of JavaScript when developing full-scale browser-based games.

However, this obstacle is mostly withdrawn, since the performance of JavaScript engines

in browsers has increased significantly in recent years.

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 7

3. Real-Time Multiplayer Games in Browser
Many installable games enable players to compete against or with each other over the

internet. Typical examples are Call of Duty, Civilization, Counter Strike, and World of

Warcraft, to name a few. The browser-based games have made their breakthrough in

casual playing, while multiplayer games are not yet the main stream. The Web is strongly

rooted in information sharing and the current technical solutions rather isolate users

rather than make them aware of each other. Many problems exist when using the Web as

a multiplayer gaming platform. The current technologies for creating browser-based

applications are often referred to “Web 2.0” technologies. While Web 2.0 is mostly a

marketing term, the applications still often users some interactions with other users [18].

As the users of the browser-based games are already connected through the game server,

it seems as a natural addition to offer multiplayer games.

Still the majority of current browser-based games seem to be single player games

or games that just indirectly enable the competition against other players. As an example,

high score lists and Facebook posts generated by the game can be mentioned. Some

games have asynchronous multiplayer features. FarmVille allows the player to perform

various farm management related tasks such as planting, growing and harvesting crops.

Players can also help friends in various farm related tasks, like watering the plants. In

Urban Dead, the player controls a survivor or a zombie in the world after zombie

apocalypse. The most common form of interaction seems to be punching or healing the

characters that have run out of action points. We would like to see more games with real-

time interaction and therefore in this chapter we introduce some problems and solutions

related to real-time multi-user browser based games. In our chapter, the real-time does

not implicate strict constrains on response time, but implies fast interactions between the

users as defined in [19].

In the three-tier architecture of web application, the communication between the

tiers is handled using asymmetric communication. Browser requests information from the

web server, and the server makes queries for the database. As the server and database are

not capable of initiating communication, the real-time communication between the

players is difficult to initiate. In the simplest form, the problem can be evaded by making

the client poll the updates. New requests are initiated and the updates that are stored in

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 8

the queue can be sent with responses. Depending on the need, polling can be done often

or scarcely. Still, there always is a trade-off between the latency and the efficiency. If

done too often, most of the responses do not contain any payload data, and bandwidth

and processing power is constantly wasted; if done too scarcely, the updates have to

queue before they get delivered and latencies grow. Several imitations of the server push

exist. Most of them fall under an umbrella term Comet [20]. The downside of these

approaches is that the server must keep connections open to all clients it updates and for

avoiding the connection timeout, the connection has to be renewed by the time to time

[21]. WebSockets [22] introduce a standard implementation for the server push and if

they at some point come universally available among the browsers, the problem of bi-

directional communication is solved.

Another free standardized open source API for real time communication is

WebRTC that aims for real-time communication without plugins and is already available

for Google Chrome [23]. WebRTC brings the peer to peer real-time communication

(RTC) to browsers and thus fills one missing key piece of the platform. The attempt is

part of the Chrome project, but it aims to cross industry solution. WebRTC offers

MediaChannel and DataChannel for easily streaming media and data between JavaScript

based client-side applications. The web server is still needed, but only for serving the

content and for enabling users to discover each other. In gaming, the MediaChannel

could be used for implementing communicative features like a point-to-point audio

channel between the team members and the DataChannel could be used for streaming

other game data. Compared with other solutions, like WebSockets, the big advantage of

WebRTC is that the messages are traveling directly between the client applications and

therefore the less computing power and bandwidth is needed on the server-side. The lag

is also significantly reduced since as the messages need not to visit the server but can be

routed directly using the shortest route between the clients.

WebSockets, Comet, and polling all enable bidirectional communication between

the client and the server, and WebRTC between the two clients, but the cap between the

server and database must still be crossed if we want to use a database as a messaging

channel in a multiplayer game. The problem can be solved by utilizing database triggers,

but using databases for real-time communication is generally difficult and increases lag.

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 9

In many of the games, some data must be permanently stored, but this data is often

something that we do not need to mediate to other parties in real-time. For example, in

two player Tetris where the players can see others actions on real-time, it is not

reasonable to store game actions to the database, whereas high scores could be stored.

In many web application frameworks, the users seem to work in their own

sandboxes that only interact within each other through the database. However, the direct

communication between the users is not necessarily blocked and it may be easily enabled

at the server. With a shared class or object it is easy to implement a capability for creating

new message channels and enable the subscribing to channels. In publish/subscribe

pattern (see Fig. 2) the users are subscribing and unsubscribing to specific

communication channels based on the application logic and the interests. A publisher

does not send the notifications directly to other users but publishes them for a channel

that mediates the message [18].

Publisher

Channel

Notify()
Subscribe()

Unsubscribe()

Subsciber

Notify()Notify

Publisher Publish

Publisher

Figure 2. Publish/Subscribe pattern.

The sharing and synchronization of the data is another important aspect in

multiplayer game. It is a matter of situation and opinion about how and where the data

must be synchronized and what consistency model is to be used. Two extremes seem to

be that the state of the game is stored at the server and mirrored to all clients. In this

server driven alternative, WebSockets can be used for communication. In another

extreme, where each of the client holds a unique perception to the state and they are

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 10

somewhat synchronized through the system, WebRTC could be used for enabling the

communication between clients. In a first person shooter and other fast phased games, the

estimation of the future data may be needed and later as the data is synchronized the

estimation is adjusted to it.

In a game with large user base and lively data exchange, the data exchange and

visibility between the users must be limited. This is needed for simplifying the problem

and limiting the bandwidth usage. In most cases the interactions between the users are

logically not from all-to-all, but more like from many-to-many. As a result, messaging

that has no effect on a player can be eliminated. When limiting the visibility, the

important concepts are: who can communicate to whom, who are visible to each other,

and so on. In games, people in close proximity in the game world are visible to each other

and can interact. For example, in old games like MUDs people in the same room can see

each other, whereas in more recent game the game world can be more dynamically

fragmented to areas in which players can interact and observe each other’s.

4. Content Generation
Content generation can be used as a method to alleviating an enormous programming

task of the game developers. Content is generated using a random or pseudo-random

process. To be useful the generation process must be able to produce enough possible

variation, but also be robust. Although, the content generation is an excellent method for

reducing the burden of the application developers, it has some disadvantages as the

randomly generated content does not easily relate to the game storyline [24]. Without

additional operations it is possible, that game gets maybe gets unlimited amount of

content, but the new content is not connected to the other parts of game. For example,

rogue-like game Adom contains a pre-written narrative, but some of the dungeon levels

are randomized because of replayability. For additional content, the game contains

location called Infinite Dungeon that is not related to the story itself, but offers a player

an infinite amount of dungeon levels for harvesting treasures and experience points.

The content to be generated depends on the type of the game. CRPGs can benefit

from the generation of quests, non-player characters (NPCs), items, areas and computer

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 11

graphics. Content generation is especially good for CRPGs, because CRPGs typically

contain huge fantasy worlds, which requires a lot of effort from the developers. The sizes

of these fantasy worlds have been constantly growing as the genre has evolved. In

addition, the sophisticated and long storylines of CRPGs are another good application

area for content generation as the implementation of quests and storylines requires a

massive amount of development work. For example, a part of the side-quests in CRPG

can be generated instead of manual programming; therefore the number of side-quests

and variation in the game can be increased without significant amount of extra work.

In some games, the random generation plays the very important role. In Slaves to

Armok: God of Blood – Chapter II: Dwarf Fortress, for example, each game begins from

generating the world completely from the scratch, with historical events and figures. The

game is a good example of benefits of content generation, although it is using only ASCII

graphics, the game has rich content and deep gameplay. The game is also very difficult

and takes dozens of hours to learn to play it well. Minecraft, allows the players to build

constructions out of textured cubes in 3d world. The world is mainly composed of 3d

cubes that can be used for constructing buildings and items. In Minecraft, the gameworld

is initially randomized Earth-like area and as the player moves towards the edges, the

new areas are generated. It is said that it would be possible to stretch the size of generated

gaming area to be nearly eight times than the surface of Earth before running into

technical limits.

There are two different timing options when the content generation is executed. It

can be done at 1) development time, before the distribution or 2) at run-time while the

player is playing the game. Both of these have advantages and disadvantages.

4.1. Content Generation at Development Time
If the content is generated at development time, then the game developer explicitly starts

the generation process and after the process is also able to verify the results. In case of

non-satisfactory results, the process can be repeated as often as needed. Finally, when

satisfactory content is generated, the game can be distributed to players. Later, when the

game is at the hands of a consumer, it may be impossible to tell which parts of the game

were programmed traditionally and which were produced by a content generation

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 12

algorithm. In games like Civilization, for example, both manually build and pre-

generated verified maps can be included in the distributed package. Furthermore, if the

player replays the game, the pre-generated content does not change for the new game.

This feature allows experienced players to write more complete walkthroughs for the

game to help beginners to solve the game.

The main disadvantage of a development time generation is that all the content is

shipped with the game. This is problematic, because the size of the package grows.

Especially this happens if the storyline of the game is heavily branched, for example

because of many different races and character classes and there is different pre-generated

content that varies based on these selections. By generating the content during the

development time, the game also loses the ability to generate more material at the run-

time and the replayability of the game does not differ from the game with manually

created content. However, the pre-generated content is not as problematic for a browser

based game as the content is stored on the server side and can therefore be altered on the

fly. Furthermore, the whole package need not to be shipped because the client requests

data based on need.

4.2. Content Generation at Run-Time
The content can also be generated at run-time while needed in the game. For example, in

CRPG, the new background story can be presented to the player at each time when the

new player character is created. The world can be created, for example by using fractal

algorithms like in Armok. When descending to the dungeons, the new level or parts of it

can actually be generated at the fly. While using content generation at run-time, in theory

the game can offer an unlimited amount of content. Each time when the new game starts,

the content could be new and fresh. In reality, the generation process is not able to

generate an unlimited number of new interesting stories and areas and therefore it can

drift to repetitious behavior if it is run enough times with starting values almost identical.

Disadvantages of run-time generation include the need for robust generation

algorithms as the developer is not available to verify the results while the game is already

running. Also, when using run-time generation, it is usually easier for the player to spot

which parts of the game are generated, since those are different at each playtime.

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 13

However, this is a minor disadvantage. Traditionally, the content generation algorithms

are shipped with the game and that sets some frames for the dispersion of generated

content. However, in the games like Diablo III that requires constant internet

connectivity, the content generation can be done on the server side and therefore

algorithms can easily be extended later. As the browser-based games are constantly

connected to the server, and therefore this same applies to them.

5. Example Game: Caves
To demonstrate the possibilities of content generation in a browser-based environment,

we have implemented a browser-based prototype game. The game is implemented by

using Node.js framework and therefore both; the client and the server side could be

implemented by using JavaScript. The most client actions are resolved at the server (at

tier 2 in the three lair architecture). However, certain data, for example the main

attributes of player characters like experience points and cold pieces collected are written

into the database for persistent storage. The usage of persistent storage allows the players

to continue with the same characters at different playtimes. The used database used is

MongoDB [25] that is an open source document-oriented NoSQL database. Since

NoSQL database is used, we can store documents with dynamic schemas instead of SQL

tables. MongoDB was chosen because of its easiness to use, certainly there is plethora of

other options for a database to be used with server-side JavaScript.

The quests in the game are created at run-time based on quest templates. Each

quest contains several rooms with monsters and to advance in the quest, the players have

to defeat the enemies. A screenshot of Caves game in action is shown in Fig. 3. Two

players are trying to defeat a group of orcs.

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 14

Figure 3. Caves game in action.

Caves game contains chat that enables players to communicate with each other

while solving the quest although the fast processing gameplay of Caves limits messaging

to only short messages. In Fig. 3, chat is visible below the player attributes. Another

option for communication in a similar fast proceeding games is using an external

program like Skype that allows players to talk each other using microphones, but that

approach would compromise the anonymity of the players as the user identifiers used in

another contexts should be shared. For allowing audio communication as a feature of the

game, WebRTC could be used.

5.1. Game Architecture
For implementing Caves game Node.js that is a framework for writing highly scalable

Internet applications was used. By using Node.js the whole web application is

implemented with JavaScript. At the client-side the code runs on the web browser and at

the server-side the code is run on V8 JavaScript engine that is an engine built for Google

Chrome. Another software framework used in the implementation was NowJS, a

framework built on top of Node.js. Fig. 4 presents the game architecture of Caves. The

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 15

overall game architecture follows the three tier architecture of web application presented

earlier in Fig. 1.

Figure 4. The game architecture.

The client-side is responsible for logging the players, and delivering player data to

server. Similarly, when the game is running client parses moves of the player and delivers

those to server, and results of those actions are resolved in server. After each quest the

player data is written into the database.

The NowJS framework works on client and server, for application developer it

makes those parts act like they were a single program. NowJS introduces a new magic

namespace called now. The namespace now can be used for sharing synchronized

variables between the client and the server and calling functions in server from client and

vice versa. In Listing 1, we demonstrate the use of now namespace from the client-side.

Listing shows the part of code, which resolves the results of the player actions. As the

player character tries to move to a certain position, the client calls a server function

moveTo to find out whether it is possible.

Listing 1. Function calling from the client.

1. if (player_moving) {

2. now.moveTo(player, player_id, x, y);

3. }

4. updatePlayerStatsToUI(player);

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 16

In line 2, the client calls a server-side function and parameters are passed on the server to

correspond the results. The player is an object that contains the attributes of the player

character and player_id is a unique identifier assigned for the player. Coordinates x and

y point out the location to where the player wants to move ones character. In line 4, the

user interface of the client is synchronized for presenting the current situation. The

player_id is not needed in the later function call, since in the client context in which it is

performed; there is only one player character available.

Fig. 5 presents a sequence diagram of the same situation, a player making his

move in the game. The player chooses a new direction for the character and presses a

keyboard to change it. The player character is not moved instantly to the new location,

instead only the moving direction is updated. The moving direction of the player

character is all the time visible in the user interface. The player character is moved when

the game loop commands all the player characters to move. This is done through the now

namespace.

Player Client Server

Presses key to change
moving direction

Based on the moving
direction a new location
is calculated.

Server checks if
the location contains
enemies or other
obstacles

The location was free,
therefore the location is
updated and the character
drawn to the screen.

Game loop commands
player characters to
move one step.

Figure 5. A player makes a move in Caves.

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 17

Similarly as player characters, the game monsters are moved. Currently monsters

in level are moved towards the closest player character or to attack if they are already in

adjacent location in the level.

5.2. Characters
In Caves, each player controls a fantasy character that starts at first experience level and

collects experience points for further levels by adventuring and defeating enemies.

Currently, there are two basic character classes for a player to select, but adding more

character classes would be a simple task.

Our example character classes are Warrior and Wizard. Warriors are experts in

close combat and dedicate their lives to practice this deadly art. They are also trained to

use different weapons that can be found by searching the rooms. Wizards are weaker at

close combat and they do not have as many hit points as warriors. Furthermore, they are

not able to use weapons found in the rooms. However, they can blast enemies from a

distance by using magical spells.

5.3. Quests
Quests in CRPGs are individual tasks for the player character to solve. Those have been

one of the easiest ways for game designers to introduce storytelling elements into games

[26]. Quests can also be used to guide the player through the game storyline. A common

approach in CRPGs is that a game contains the main quest that is followed throughout the

game and while advancing in the massive main quest, the smaller side quests are offered.

By completing those smaller side quests, experience points and some rewards are gained.

These can be experience points, money, items, meeting new NPCs or gaining valuable

information about the game world.

In Caves, quests consist of series of rooms containing items and monsters. As the

players have completed all the rooms of the quest, it is considered as solved and the

players are able to save their characters and stop playing, or continue adventure by

starting a new quest. The quests are generated at run-time by using quest templates. The

quest templates are located in a separated directory on the server. When a new quest is

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 18

needed in the game, the server uses one of the templates and generates a new quest. The

used template is chosen based on the experience level of the player character. Listing 2

shows the structure of a quest template configuration file.

Listing 2. An example quest template.

1. min_rooms: 2

2. max_rooms: 4

3. max_width: 9

4. max_height: 7

5. enemies: humanoids

6. material: stone

7. difficulty: 3

8. treasures: 24

9. treasure_size: 3

Lines one and two define low and high limits for the number of rooms in the quest.

Respectively lines three and four define the maximum size of a single room. Enemies

define the type of enemies that are used. At the moment, the only supported enemy types

are humanoids (goblins, orcs and trolls), but new types would be straightforward to

implement. Line six defines what material the room walls are made of. Currently, the

possible material options are stone and wood. Line seven defines the base difficulty of

the quest and therefore determines the number of enemies in the quest. Value three means

normal difficulty, the range of difficulty values is from one to ten. Line eight tells the

probability of a treasure in a room and line nine scales the size of the treasure. Again,

three is normal and values can vary from one to ten.

5.4. Monsters
Rooms in quests are filled with monsters that must be defeated to complete the quest. In

Caves there are three types of humanoid monsters:

Goblins are weak, but numerous. The rooms are inhabited by these evil, little

creatures. They are usually destroyed by a single hit or a magical blast.

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 19

Orcs are basic enemies of Caves. They are stronger than goblins. However, they

are still no match for well equipped, experienced warrior.

Trolls are strong and fearsome enemies, but luckily they are also rare. They are

hard to defeat in combat, however they are still vulnerable to magic.

Listing 3 shows a piece of server-side code that determines how the monsters are

created. As the room is generated, the create_monsters function is called and

performed at the server. At this point, the details, i.e. how many rooms the quest will

contain, are already known by the server. The function arguments are the number of

monsters to be created and the name of monster type. The list named monsters contains

of all currently active monsters, which are in the same room as the player characters. In

the create_monster function attributes that are general to all monsters are initialized.

Later rest of the attributes, for example how much experience is gained from killing the

monster and hit points are initialized based on the type of the monster.

Listing 3. Monster creation.

1. function create_monsters(number, mon_name) {

2. for (i = 0; i < number; ++i) {

3. var mon = new Monster(mon_name);

4. attackNearestPlayerTactic(mon);

5. do {

6. mon.x = random_number(level[0].length -1);

7. mon.y = random_number(level.length - 1);

8. } while (!isFree(mon.x, mon.y));

9. monsters.push(mon);

10. }

11. }

In line 3 a new monster is created and in line 4, the created monster is initialized

to move towards the nearest player, and attack if they are in the adjacent square.

Although the solution is simple, it is reasonably fair and predictable for the players and

suits well into multiplayer games containing large enemy swarms. The same solution has

been used in a legendary arcade game Gauntlet and its later versions. Most likely a more

complex solution would be needed if monsters with advanced behavior were added into

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 20

the game. By advanced behavior we mean e.g. monsters that could attack from a range

instead of close combat. Inside do while –loop, lines 6 and 7 the starting location for

monster is given. A new place is drawn until it a free one is found. The variable level is a

two dimensional array containing the current room. When the monster has been created,

it is pushed into an array containing monsters of the current room in line 9.

5.5. Lessons Learned from Proof-of-Concept Implementation
The use of software framework Node.js and its extension NowJS speeds up the game

development significantly. Some kind of synchronization between the server and clients

is mandatory while implementing multiplayer browser-based game and therefore it is

nice to have the framework that offers the easy synchronization of variables and

functions as a feature. To prevent cheating, the content generation algorithms and

template files have to be stored and executed at the server-side and only results are

exposed to the clients. By using modern browser plugins, it is easy to investigate and

modify the JavaScript code and therefore the visibility of program code should be limited

whenever possible so that the players cannot gain unfair advantage. Cheating has always

been problem in online multiplayer games, whether those have been implemented using

installable client software or not, therefore it should be prepared already in the

development phase of the game. Browser-based implementation opens new ways of

cheating like browsing the source code for advantage, since it is usually more easily

accessible in browser-based environment than it was in compiled binary format.

As overall, JavaScript language with described frameworks suited well for

developing games to browser-based environment. However, debugging applications to

find bugs can sometimes be difficult since JavaScript is not compiled, but interpreted on

the fly by the JavaScript engine of the browser. Furthermore, JavaScript is an error

tolerant until the end and often the error that causes the problem has happened a long

before it causes actual effects. For example, if the developer makes a typo while trying to

assign a new value for variable, no error happens, just a new variable with the typo is

introduced and a value is assigned for it. Errors of that kind can be very difficult to

pinpoint. Some tools like FireBug and Google Chrome Developer Tools exists, but most

often more traditional ways like printing test prints and outputting client messages to the

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 21

user interface has be used to find bugs. A good solution for implementing a JavaScript

application is to create the application incrementally and test new and old features as

often as possible. Also the multiplayer features should be tested in early phase and tests

should be conducted through the whole development process.

In the following we present the rights and wrongs of proof-of-concept

implementation.

The rights:

1) NowJS enables sharing variables and function calling between client and server,

which rapidly speed up the development.

2) Modular architecture enables extending the game easily. For example adding new

character classes, monsters and quest templates is very easy.

3) The implementation is very light-weight and a regular laptop computer can be

used for running server of the application without performance problems.

The wrongs:

1) Testing of JavaScript applications can be difficult, since there is no error

messages as the application is not compiled. This can be addressed by iterative

development process.

2) The updating of user interface is not as smooth as it we wanted, and some jitter

can be noticed when playing the game. However, similar synchronization

problems were found on other applications using the same frameworks, described

in the related work section.

6. Related Work
Currently there are a couple of tools for quest generation, although those are used in

traditional binary environments. GrailGM [27] is a run-time game master that offers

quests and actions to the player. GrailGM acts as a game master and finds suitable quests

from the quest library for the player character at the run-time. The offered quests are

based on the history of the player character and current world state. Traditionally, CRPGs

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 22

relay on combat-based quests, since the combat systems of CRPGs have been robust for a

long time and those are easier to implement. Combat-based quests are also an easier

target for content generation tools. However, GrailGM aims at creating non-combat

quests. Furthermore, the special abilities of the player character can also be used in the

quest selection process, and those can be used in the plot of the selected quest.

SQUIGE [28] is a side-quest generator designed for automatically producing side-

quests. NPCs and other elements for a side-quest are given to SQUIGE and it produces

quest outline based on those. Afterwards the developer reviews the quests and accepts or

declines (and asks the system to produce another) the outline. The developer also adds

dialogue and places the items for the quest. Finally, the quest is given to a programmer or

a scripting system, which creates the script to control the side-quest.

A few game examples using the same frameworks as us can be found on the Web.

Although none of those seem to use content generation. Browser-based games [29]

presents a good tutorial on how to implement multi-player browser based games using

NodeJS and NowJS. The games and applications utilizing NodeJS and NowJS most often

offer multi-user real-time features and therefore it is easy to find examples just by using

search engines. For example, Browserquest [30] is a MMORPG where players are

adventuring together and the content generation methods presented in this chapter could

be easily applied to the game. Another example, Fireflies [31] is a collaboratively

jumping puzzle. Furthermore, NowJS has organized a hackathon for implementing real-

time multiplayer games and the results like Multiplayer Tetris and Battle snakes are

available for playing in here: http://nowjs.com/rtt/1/results. By studying the examples we

come to a conclusion that games with fast real-time interactions and competitive aspect

like Battle Snake are problematic, as the smallest synchronization problems or lag may

evoke the feeling that game is not fair. The competitive games with less real-time

interactions between the players like Multiplayer Tetris seem to be a more viable

alternative. Collaborative games like Browserquest and Fireflies where players have the

shared goal are easier approach since the small problems can be solved just by trying

again and it does not matter so much which of the players achieved the goal. As a side

note, in Browserquest, the online communication between the players was enabled, but it

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 23

would be beneficial for other examples too, although the missing communication can also

be seen as a game element.

Ben Nadel has written a blog article [32] about Realtime Messaging And

Synchronization With NowJS and Node.js and discusses about how the shared scope

between the local and remote context blurs the line between client and server code and

thus makes the synchronization of states easier. Furthermore, he discusses on how the

capability to invoke client-based functions from the server and visa verse makes the life

of a developer even easier. These are the same conclusions that we made after our

prototype game project.

7. Conclusions
The current paradigm shift towards web-based software is visible among all kinds of

software and there is no reason to assume that gaming could be some sort of an

exception. The number of browser-based games has exploded in recent years and

technologies for implementing them are evolving at fast rate. Although use of content

generation is still rare in browser-based games, it seems to offer as huge potential in

browser-based environment as it offers in binary environment. By using content

generation, new additional content can be generated instantly as it is needed in the game.

When playing the browser-based games, the users are connected through the server, and

therefore it seems only reasonable to assume that the games are not played alone but

together. Although most of the current browser based games are still single player games

or games where competing happens asynchronously through highscore lists, the number

of multiplayer browser-based games has increased rabidly in recent years and we believe

that this development accelerates as frameworks and tools used to developed browser-

based games mature.

In this chapter, we discussed possibilities and limitations of content generation in

browser-based multiplayer environment. To demonstrate these possibilities, we have

implemented a proof-of-concept browser-based game called Caves. Although Caves is a

simple example, it shows true our assumptions that run-time content generation can be

used in browser-based game environment and that implementation of multi-player games

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 24

is possible even with the frameworks of today. Another studied concept was how to use

JavaScript language in both client and server-side. By utilizing JavaScript and

frameworks, it was possible to implement Caves with a rather small code base. The

software frameworks we used as a base of implementation were Node.js and its extension

NowJS. Both of the frameworks carried out well what they promised and speeded the

game development significantly. Based on the experiences collected while implementing

the game, it seems that JavaScript environment scales up also for more complex games.

References
[1] A. Taivalsaari, T. Mikkonen, M. Anttonen and A. Salminen, “The Death of

Binary Software: End User Software Moves to the Web," in Proc. 9th

International Conf. on Creating, Connecting and Collaborating through

Computing (C5), Kyoto, Japan, 2011, pp.17-23.

[2] M. Jazayeri, "Some Trends in Web Application Development," in Proc. Conf. on

Future of Software Engineering (FOSE), Minneapolis, MN, 2007, pp.199-213.

[3] J-M. Vanhatupa, “On the Development of Browser Games - Technologies of an

Emerging Genre,” in Proc. 7th International Conf. on Next Generation Web

Services Practices (NWeSP), Salamanca, Spain, 2011, pp. 363-368.

[4] Google Web Toolkit Overview. Available: https://developers.google.com/web-

toolkit/overview

[5] M. Grönroos, Book of Vaadin. Uniprint, 2012.

[6] Node.js platform, Available: http://nodejs.org/

[7] J-M. Vanhatupa, “Browser Games for Online Communities,” International

Journal of Wireless & Mobile Networks (IJWMN), vol. 2, no. 3, pp. 39-47, Aug.

2010.

[8] Facebook social utility, Available: http://www.facebook.com/

[9] D. Anderson, “The Dark Side MMOGs: Why People Quit Playing,” in Proc. 14th

Conf. on Computer Games: AI, Animation, Mobile, Interactive Multimedia,

Educational & Serious Games (CGames), Louisville, Kentucky, 2009, pp. 76-80.

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 25

[10] J. Smed and H. Hakonen, Algorithms and Networking for Computer Games, John

Wiley & Sons Ltd., West Sussex, England, 2006.

[11] NowJS library, available: http://nowjs.com/

[12] R. Peacock, "Distributed Architecture Technologies," in IT Professional, vol. 2,

no. 3, pp. 58-60, May/Jun 2000.

[13] Adobe Flash Platform. Available: http://www.adobe.com/flashplatform/

[14] A. Taivalsaari, T. Mikkonen, D. Ingalss and K. Palacz, “Web Browser as an

Application Platform: The Lively Kernel Experience,” Sun Microsystems

Laboratories Technical Report TR-2008-175, Jan. 2008.

[15] I. Hickson and D. Hyatt (editors). 2010. HTML5. W3C Working Draft, Available:

http://www.w3.org/TR/2010/WD-html5-20100304/

[16] Khronos Group. 2011. WebGL Specification, Version 1.0. Technical

Specification, Available: https://www.khronos.org/registry/webgl/specs/1.0/

[17] M. Anttonen, A. Salminen, T. Mikkonen and A. Taivalsaari, ”Transforming the

Web into a Real Application Platform: New Technologies, Emerging Trends and

Missing Pieces,” in Proc. the 26th ACM Symposium on Applied Computing,

TaiChung, Taiwan, (SAC), 2011. pp. 800-807.

[18] P. Eugster, P. Felber, R. Guerraoui and A-M. Kermarrec, “The Many Faces of

Publish/Subscribe,” in ACM Computing Surveys, vol. 35, no. 2, pp. 114-131, Jun.

2003.

[19] C. Ellis and S. Gibbs, “Concurrency Control in Groupware Systems,” in Proc. the

1989 ACM SIGMOD international conference on Management of data, New

York, (SIGMOD'89), 1989, pp. 399-407.

[20] A. Russell. 2006. Comet: Low Latency Data for the Browser, Available:

http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/

[21] J. Resig, Pro JavaScript TM Techniques, Springer-Verlag, New York, 2006, pp.

287-304.

[22] I. Hickson, The Web Sockets API, Available: http://www.w3.org/TR/websockets/

[23] A. Bergkvist, D. Burnett, C. Jennings and A. Narayanan, “WebRTC 1.0:

Real-time Communication Between Browsers,” Available:

http://dev.w3.org/2011/webrtc/editor/webrtc.html

Wiley STM / Editor: Book Title,
Chapter ?? / Authors?? / filename: ch??.doc

page 26

[24] J-M. Vanhatupa. “Towards Extensible and Personalized Computer Role-Playing

Game Fantasy Worlds,” in Proc. 4th Computer Science and Electric Engineering

Conference (CEEC), Colchester, UK, 2012, pp. 187-190.

[25] MongoDB an open source NoSQL database, Available: http://www.mongodb.org/

[26] S. Tosca, “The Quest Problem in Computer Games,” in Proc. First International

Conf. on Technologies for Interactive Digital Storytelling and Entertainment

(TIDSE 2003), Darmstadt, Germany, 2003.

[27] A. Sullivan, M. Mateas and N. Wardrip-Fruin, ”Rules of Engagement: Moving

Beyond Combat-based Quests,“ in Proc. Intelligence Narrative Technologies III

Workshop, ACM, New York, 2010.

[28] C. Onuczko, D. A. Szafron and J. Schaeffer, “Stop Getting Side-Tracked by Side-

Quests,” in AI Game Programming Wisdom 4. Charles River Media, 2008, pp.

513-528.

[29] Building a Multiplayer Game Server, available:

https://sites.google.com/site/vadimtutorials/assignments/9buildingamultiplayerga

meserver

[30] Browserquest game, http://browserquest.mozilla.org/

[31] Fireflies, game, http://bearhanded.com/fireflies-our-html5-multiplayer-game/

[32] B. Nadel, “Realtime Messanging and Syncronization with NowJS and Node.js,

available: http://www.bennadel.com/blog/2171-Realtime-Messaging-And-

Synchronization-With-NowJS-And-Node-js.htm

	1167 Janne Lautamäki kannet etu A4
	Lautamäki1167 nimiö A4
	01intro
	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	1. INTRODUCTION
	1.1. Motivation and Background
	1.2. Research Problem and Aim
	1.3. Introduction to Included Publications
	1.4. Scope of the Research and Methodology
	1.5. Organization of the Thesis

	2. WEB APPLICATIONS
	2.1. Basics of the Web
	2.2. Architecture of Web Applications
	2.3. Partitioning the Application
	2.4. Web Application Frameworks
	2.4.1. Native Web Client – MUPE
	2.4.2. Thick Client Framework – The Lively Kernel
	2.4.3. Thin Client Framework – Vaadin
	2.4.4. Mainstream Framework – Node.js

	2.5. Summary

	3. MULTI-USER APPLICATIONS IN THE WEB
	3.1. Sample Multi-User Systems
	3.2. Real-Time Sample Systems
	3.3. Implementation Examples
	3.3.1. Native Web Client – MUPE
	3.3.2. Thick Client Framework – The Lively Kernel
	3.3.3. Thin Client Framework – Vaadin
	3.3.4. Mainstream Framework – Node.js

	3.4. Summary

	4. DEVELOPING MULTI-USER REAL-TIME WEB APPLICATIONS
	4.1. The Guideline for Designing the System
	4.2. Alternatives for Communication
	4.2.1. Ajax with Polling
	4.2.2. Comet
	4.2.3. WebSocket
	4.2.4. WebRTC
	4.2.5. Other Standards and Protocols

	4.3. Abstracting the Communication
	4.4. Shared Data between the Clients
	4.5. Summary

	5. RELATED RESEARCH
	5.1. Real-Time Multi-User Applications
	5.2. Real-Time Multi-User Web Applications
	5.3. Web Frameworks

	6. CONCLUSION
	6.1. Research Questions Revisited
	6.2. Future Work
	6.2.1. Real-Time Multi-User Web Application Framework
	6.2.2. Tool Support
	6.2.3. Navigation Buttons
	6.2.4. Context Awareness

	REFERENCES

	02välilehti1
	Lautamäki PI
	04välilehti2
	Lautamäki PII
	1. Introduction
	2. Context-awareness under MUPE platform
	2.1. MUPE
	2.2. Context-awareness
	2.3. Classification of context
	2.4. Persistent applications
	2.5. Creating context-aware persistent services

	3. Selected services
	3.1. CamQ
	3.2. Wizard Card Game

	4. COMPARISON OF SERVICES
	4.1. Used metrics and tools
	4.2. Results
	4.3. Reference services

	5. Conclusion
	Acknowledgement
	References

	06välilehti3
	07julkaisu3
	08välilehti4
	09julkaisu4
	10välilehti5
	11julkaisu5
	Introduction
	Background
	Related Work
	Architecture
	Arvue IDE
	Version Control
	Publishing of Arvue Applications in the Cloud
	Security Issues on the Application Servers

	Concluding Remarks

	12välilehti6
	13julkaisu6
	14välilehti7
	15julkaisu7
	1167 Janne Lautamäki kannet taka A4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

