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ABSTRACT 
 
Considerable study has been devoted to the implementation of GNSS receivers for diverse 

applications, and to finding solutions to some of the non-idealities associated with such 

receivers. However, not much research is devoted to innovations in their performance 

evaluation, even though this is an integral step in the overall implementation process. This 

research work attempts to address this issue through three different perspectives: by 

focusing on innovation in the testing procedures and test-bench implementation, its 

automation and its application to advanced multi-frequency, multi-constellation GPS and 

Galileo receivers. Majority of this research was conducted within the GREAT, 

GRAMMAR, and FUGAT projects funded by EU FP6/FP7 and TEKES respectively, 

during which the author was responsible for designing test-scenarios and performing 

validations of the implemented receiver solution. 

The first part of the research is devoted to the study and design of sources of test signals for 

an advanced GNSS receiver test-bench. An in-depth background literature study was 

conducted on software-based GNSS signal simulators to trace their evolution over the past 

two decades. Keeping their special features and limitations in view, recommendations have 

been made on the optimum architecture and essential features within such simulators for 

testing of advanced receivers. This resulted in the implementation of an experimental 

software-based simulator capable of producing GPS L1 and Galileo E1 signals at 

intermediate frequency. Another solution investigated was a GNSS Sampled Data 

Generator (SDG) based on wideband sampling. This included designing the entire radio 

front-end operating on the bandpass-sampling principle. The low noise amplifier designed 

as part of this SDG has been implemented on a printed circuit board. 

Phase noise (PN) from the radio front-end’s local frequency generator (LFG) is a source of 

error that has hitherto not been included in any GNSS signal simulator. Furthermore, the 

characterization of the baseband tracking loops in presence of this phase noise has not yet 

been included in the typical receiver test scenarios. The second part of this research 

attempts to create mathematical models representing the LFG’s phase noise contribution, 
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first for a free running oscillator and later for a complete phase-locked loop (PLL). The 

effect of such phase noise was studied on the baseband correlation performance of GPS and 

Galileo receivers. The results helped to demonstrate a direct relation between the PN and 

the baseband tracking performance, thus helping to define guidelines for radio front-end 

PLL circuit design in order to maintain a minimum baseband tracking performance within 

the GNSS receiver. 

The final part of this research work focusses on describing the automated test-bench 

developed at Tampere University of Technology (TUT) for analyzing the overall 

performance of multi-frequency multi-constellation GNSS receivers. The proposed test-

bench includes a data capture tool to extract internal process information, and the overall 

controlling software, called automated performance evaluation tool, that is able to 

communicate between all modules for hands-free, one-button-click testing of GNSS 

receivers.  Furthermore, these tools have been applied for the single frequency GPS L1 

performance testing of the TUTGNSS receiver, with recommendations on how they can be 

adapted to testing of advanced multi-frequency, multi-constellation receivers. 
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1. INTRODUCTION 
 

1.1 Background and Motivation 

Global Navigation Satellite Systems (GNSS) include the American NAVSTAR Global 

Positioning System (GPS), European GALILEO, Russian GLONASS, and the Chinese 

BeiDou-2/COMPASS system. Satellite navigation systems that are planned to be regional 

in their geographic scope include the Indian Regional Navigation Satellite System 

(IRNSS), and Japanese Quasi-zenith Satellite System (QZSS). The architecture of each of 

these systems is similar, consisting of three segments – Space, Ground, and User [29], 

[30], [31]. The Space Segment consists of a constellation of satellites which transmit the 

radio-navigation signals towards the Earth, the Ground Segment consists of a network of 

ground-based monitoring, control, tracking and uplink stations, and the User Segment 

consists of the receivers that provide the position, velocity, time (PVT) and navigation 

solutions.  

Receiver design and innovation has attracted considerable attention and effort from the 

GNSS research community. This also includes research in overcoming limitations of 

power, size, speed, and cost, finding solutions to errors introduced due to atmospheric 

composition and multipath, and innovations in multi-frequency, multi-constellation 

receiver design. However, in-depth discussions, studies, and debates on the testing and 

performance evaluation of GNSS receivers are sorely missing from industrial and 

academic discourses. This has resulted in a considerable growth in the diversity of testing 

procedures, and yet the number of receiver parameters to be tested or innovation in the 

methodology of performing these testing procedures has remained limited and even 
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primitive in some cases. It has been noticed from a background literature review that very 

few research manuscripts are dedicated to innovations in testing and performance 

evaluation of GNSS receivers.  

The prototype Global Navigation Satellite System receiver (TUTGNSS) [1], developed at 

the Department of Electronics and Communications Engineering (ELT) of Tampere 

University of Technology, is now in the performance testing phase. TUTGNSS is a GPS 

L1/L5 + Galileo E1/E5a dual-frequency dual-constellation receiver, jointly developed by 

TUT and its international partners under two European Union and a TEKES research 

grant. These included the Galileo Ready Advanced Mass Market Receiver (GRAMMAR), 

Galileo Receiver for Mass Market (GREAT), and Future GNSS Applications and 

Techniques (FUGAT) projects, aimed at a highly innovative approach to developing a 

prototype consumer–grade dual-frequency dual-constellation GNSS receiver, targeted at 

mass market applications with the widest potential exploitation (this is also the definition 

of ‘advanced’ GNSS receivers that is henceforth targeted in this manuscript). 

With the advent of such advanced GNSS receivers capable of multi-frequency, multi-

constellation operations, it is no longer sufficient to continue using the testing procedures 

and the related test-bench infrastructure that was used until now for ‘simple’ single 

frequency single constellation receivers.  

Therefore, it was during the implementation of these projects that the author had the 

opportunity to conduct research on advanced GNSS receiver technology and contribute 

towards the creation of an innovative test plan, design the corresponding test scenarios and 

test facility, execute receiver testing, document test results and the user manual, 

troubleshoot the dual-frequency, dual-constellation prototype receiver, and facilitate the 

approval of the project from the external reviewers. This thesis manuscript is an 

accumulation of the experiences and scientific publications emanating from working on 

these projects, technologies and ideas during the past four years. 

1.2 Research Objectives and Scope 

Three major questions related to test-bench solutions for advanced GNSS receivers were 

addressed during the progress of this research: 
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- Is it possible to design innovative sources of test signals? 

- Is it possible to locate new test parameters within the receiver that could offer 

new view-points for determining its performance? 

- Is it possible to automate the entire testing process to improve reliability, 

accuracy and efficiency? 

Therefore, the primary objective of this research work was to investigate novel techniques 

for performance evaluation of GNSS receivers. Building on this objective, the research 

scope included investigating innovative sources of test signals, inclusion of new 

parameters to test, adapting the test-cases and procedures for multi-frequency, multi-

constellation receivers, and introducing automation and open-box testing (where it is 

possible to access the signal-flow within the system) into the overall test-plan. As 

mentioned in Section 1.1, the TUTGNSS receiver is capable of GPS L1/L5 + Galileo 

E1/E5a operation and consequently, this combination of frequencies and constellations 

sets the scope of the research work. Some of the research results are presented for the GPS 

L1 mode due to limitations of test-infrastructure within the research group.  

The scope of the research was also bounded by the limitations of time, and the need for 

investigating multiple leads in an effort to diversify the research area. As an example, the 

radio front-end is the source of a number of RF non-linearities. However, here the scope is 

limited to the study of how the phase noise from its local frequency generator affects the 

receiver performance. It would be interesting for the future to investigate, e.g., the effect 

of differential group delay on the position accuracy of a multi-frequency receiver. 

1.3 Linking the Thesis Topic to the Chapters and Publications 

A block-diagram schematic of a typical GNSS receiver test-bench is shown in Fig. 1.1 

Block 1 represents the source of test signals for Block 2, which denotes the receiver-

under-test (RUT). Block 3 represents some intelligence, either human or machine, which  
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Fig. 1.1 Block Diagram of a typical GNSS receiver test-bench 

Table 1.1 Linking the Thesis topic to the chapters and publications 

Block Chapters Publications 

Block 1 3, 4 [P1], [P2], [P3] 

Block 2 5 [P4], [P5], [P6] 

Block 3 6 [P7] 

 

 

Test Signal 
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RUT 

Intelligence 
(Human/Machine) 

1 2 

3 

Command and 
Control Messages 

Status Messages 

Command and 
Control Messages 

Receiver Responses 

Test Scenarios 

Fig. 1.1 Block Diagram of a typical GNSS receiver test-bench 
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controls the entire testing process. It provides the test-scenarios and individual test-

commands to Block 1, and simultaneously receives the responses from Block 2. In case of 

GNSS receivers, the communication between Blocks 1 and 2 and Block 3 can be full-

duplex. This thesis work deals with innovation within each of these three Blocks. The 

Chapters within this manuscript are dedicated to describing the basic theory about these 

Blocks, while the novel research is then presented within the attached Publications [P1] – 

[P7]. The relation between the Publications, Thesis Chapters and the Block that each 

refers to is shown in Table 1.1 

1.4 Research Methodology   

This research utilized mostly a practical implementation methodology to reach the stated 

objectives and results. The research topic focusses more on innovations in the peripheral 

technologies associated with a GNSS receiver such as, source of test signals, test 

procedures, and test automation, rather than core signal processing tasks such as, 

acquisition, tracking and PVT computation. As can be deduced, the scope for innovation 

is more towards how these peripheral processes can be implemented with better efficiency 

and accuracy, and how they can be adapted for advanced receivers. This required working 

with software tools such as Matlab, Simulink, C language, VHDL, Agilent ADS, Qt, etc. 

and practically implementing the solutions. The need for creating breakthrough 

knowledge in the theoretical domain was out of scope of the research problem. However, 

the thesis does create new theoretical knowledge about the effect of phase noise on signal 

tracking, as this was necessary to demonstrate the need for proposing new parameters for 

more complete receiver characterization. 

Another aspect of the methodology has been the focus on research collaboration. Due to 

the wide scope and inter-disciplinarity of the research topic, it was necessary to perform 

work-breakdown and delegate within the research group individual tasks related to the 

receiver design, development and performance evaluation. Furthermore, in situations 

where expert advice was necessary, as in the case of Simulink-based GNSS simulator 

implementation, and phase noise studies, collaborations with external research groups was 
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emphasized. The benefit has been a thorough peer-review of all the work performed and 

of every publication, and inclusion of best practices due to diversity of ideas. It should be 

noted however, that the bulk of the research work was performed by this researcher, as 

described in more detail in Chapter 7. 

1.5 Main Contributions 

This research has addressed the problem of innovations in GNSS receiver performance 

validation through three different perspectives - innovations in implementation of a test-

bench, its automation techniques and application methodologies. The following are the 

main contributions and outcomes from this thesis work: 

1. It presents an in-depth study of the state-of-art in software-based simulators for 

GNSS signals, including their evolution through three distinct generations [P1]. 

2. It describes essential modules and components of such simulators for testing 

advanced GNSS receivers, and proposes some mathematical models for their 

implementation [P1].  

3. Based on this study, a GNSS signal simulator in software, called TUTGSSS and 

capable of producing GPS L1 and Galileo E1 B/C signals was implemented [P1]. 

4. The thesis describes an alternate solution for generating test-signals for performance 

testing of advanced GNSS receivers: a bandpass-sampling based sampled data 

generator, which is essentially a radio front-end capable of processing multiple 

GNSS frequencies [P2], [P3]. 

5. Implementation of the LNA within this radio front-end is described. The design, 

simulation, implementation and test results prove that the LNA successfully satisfied 

requirements of wide bandwidth, high gain, high linearity, frequency stability and 

low noise figure, and compares very well with the state-of-art in such amplifiers [P2].  

6. The design and simulation of the filter stage and frequency planning for the 

bandpass-sampling analog-to-digital converter (ADC) of the radio frequency front-

end (RF FE) is presented next. Optimum sampling frequency was computed to be 
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538.5 MHz and the resulting digital intermediate frequencies were 28.25 MHz and 

155 MHz [P3].  

7. This thesis presents an analytical approach to the evaluation of the effects of the RF 

FE’s local frequency generator phase noise on the baseband tracking performance of 

a GNSS receiver, both in terms of a free running oscillator (FRO) and a PLL [P4], 

[P5], [P6].  

8. The relation between integration time, PLL parameters and phase noise has been 

shown, and a criterion for radio front-end design has been presented [P4], [P5], [P6].  

9. During this study a PLL phase noise model for GNSS applications was implemented 

which included PN contributions from each of its constituent building blocks [P6].  

10. It includes a study on state-of-art in multi-frequency, multi-system GNSS receiver 

performance testing scenarios [P7].  

11. An Automated Performance Evaluation Tool (AutoPET) was implemented for 

automated testing of GNSS receivers [P7].  

12. A Data Capture Tool (dCAP) was implemented to access the signals at every stage of 

signal processing from inside the receiver hardware to identify the origin of signal 

anomalies [P7]. 

13. This thesis demonstrates the results of the GPS L1 performance evaluation of the 

TUTGNSS prototype receiver using the AutoPET and dCAP. Recommendations are 

made on how this testing can be enhanced to cover more advanced dual-frequency 

dual-constellation operating modes of the receiver [P7]. 

1.6 Thesis Outline 

Because the thesis focus is on three different modules within the overall test-bench, the 

Chapters may at first glance appear as disjointed or unrelated to each other. It is hoped 

that Fig. 1.1 and Table 1.1, which describe how the individual Chapters within this thesis 

manuscript contribute to the overall research theme, will help the reader to view each 

Chapter as part of the whole. 
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Chapter 2 introduces the fundamental theory of satellite-based global navigation systems, 

including an introduction to the different receiver architectures. Chapter 3 describes the 

software-based GNSS signal simulators. This includes a description of the various 

modules and components that constitute a typical software-based simulator. Chapter 4 

presents the background information about bandpass-sampling based receiver radio front-

end design. Chapter 5 presents an introduction to our study on the effects of radio front-

end PLL phase noise on GNSS receiver performance. Chapter 6 describes the state-of-art 

in GNSS receiver testing. The most important parameters-to-test of a typical receiver are 

listed, followed by the commonly used procedures for testing each of these parameters. 

This chapter also describes how these procedures can be adapted for a multi-frequency, 

multi-constellation receiver testing environment. Chapter 7 is a summary of the scientific 

publications emanating from this research work. The manuscript concludes with a 

summary of the main results and proposals for future work in the continuation of this 

research direction. 

      



    

 

 
 

2. BASICS OF GNSS 
 

2.1 Concept of Satellite Positioning 

As discussed in Section 1.1, a typical satellite-based navigation system consists of three 

segments, viz. Space segment, User segment and Control segment. The Space segment 

consists of man-made satellites revolving in medium-Earth orbits. These satellites 

continuously transmit digital navigation data modulated on fixed analog frequencies. The 

User segment consists of electronic receivers that receive signals transmitted by the 

satellites and extract the digital navigation data which is then used in complex processing 

algorithms to calculate accurately the position and velocity of the user on the surface of 

the Earth. The Control segment consists of ground stations that control the movement and 

well-being of the satellites and also the signals they transmit. The Control segment also 

monitors the satellites continuously to record their real time ‘health’ and sends correction 

data to the satellites in case there is a slight error in their position. Figs. 2.1 [34], 2.2 [35] 

and 2.3 [36] explain exactly how the three segments work to help a user know his current 

position velocity and time (PVT) using GNSS.  

The satellites transmit accurate timing and self-identification information. This 

information helps the receiver know exactly when the signal was transmitted (and hence 

calculate the delay in propagation from the satellite to the Earth) and which satellite 

transmitted it. The receiver receives such signals simultaneously from all satellites 

currently visible in the sky overhead. To determine the position of the user, the receiver 

must compute the solution for four variables: x, y, z and Δt (3D location and the receiver 

clock bias). This is performed using the process of trilateration. 
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Fig. 2.1 GPS Space, User and Control segments and their inter-relation 

 

Fig. 2.2 Estimating the position of a receiver by trilateration with three satellites 
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Fig. 2.3 Concept of GNSS operation 

The locus of all points equidistant from one ‘visible’ satellite is a circle on the surface of 

the earth. Similar circles can be drawn for other ‘visible’ satellites once their distance 

from the receiver is measured. The exact location of the receiver is at the point where all 

such circles meet. Since there are four unknowns, information from four satellites is 

necessary and enough for estimation of receiver position. The distance between the 

receiver and one satellite is called the pseudorange. It is expressed by (1) [31]: 

ρs =  + ctu      (1) 

where ρs is the pseudorange between one satellite and the user, xs, ys, zs are the coordinates 

of satellite position, xu, yu, zu are the coordinates of user position, c is a constant that 

defines the speed of light, and tu is the offset between satellite system and the user receiver 

clocks. Once the distance between the user and at least four satellites is established, this 

information can be used to find the three dimensional position of the user (that is, to solve 
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(1) and determine values for coordinates of user position xu, yu, zu) and solve for time 

offset between the receiver and satellite clocks. 

2.2 GNSS Signal Structure 

The various signals and codes that make up the composite GNSS signals vary from one 

constellation to another, and are described in detail in the following references [37], [38], 

[39], [40], [41], [42], and shown in Fig. 2.4 here. These references provide considerable 

information on the structure and description of various GNSS signals, and hence are not 

discussed again here. 

2.3 GNSS Signal Spectrum 

Fig. 2.4 [43] shows the overall frequency spectrum of the various satellite-based 

navigation system signals currently in the planning and/or completion stages throughout 

the world. As the figure shows, the frequency band of interest is from 1164 MHz to 

1615.5 MHz resulting in a total bandwidth of 451.5 MHz. However, there is a 259 MHz 

band in between Galileo E6 and Galileo E2 (1300 MHz and 1559 MHz) that is not of 

interest (if we ignore the Galileo search and rescue (SAR) signal at 1544 MHz). 

Therefore, the entire spectrum of interest can be divided into two sub-spectrums of 

bandwidth 136 MHz and 56.5 MHz respectively. This relaxes the sampling frequency 

requirement considerably, as shown in Section 4. 
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Fig. 2.4 GNSS frequency spectrum 
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2.4 GNSS Receiver Structure 

The User segment consists of a GNSS receiver which receives signals from the satellites 

and/or other sources, e.g., cellular base stations [14].  A block schematic of a typical 

GNSS receiver is shown in Fig. 2.5 [44].  

Fig. 2.5 Block diagram of a typical GNSS receiver 

The antenna receives the signals from the satellite and forwards them into the analog radio 

front-end. The radio front-end is responsible for signal amplification, filtering out of band 

noise, frequency downconversion from RF to an intermediate frequency (IF), and analog 

to digital conversion. The digitized signal is then passed to the baseband processing unit, 

where the satellite acquisition and carrier and code signal tracking processes are 

performed. Acquisition is a process during which the receiver searches for visible 

satellites in the sky, and when found, the tracking process will keep track of the acquired 

satellites during their relative motion with respect to the receiver. Tracking the satellite is 

necessary to be able to demodulate the navigation message from the composite signal and 

measure pseudoranges for subsequent navigation processing [45], [46], and [47]. 

2.5 RF Front-end Architecture Evolution 

Wireless transceiver implementation began with the development of the Monodyne 

receiver in 1890’s, followed by the invention of the Superheterodyne receiver in 1915. 

Since then, the evolution has been concentrated on developing advanced information 

modulation and encoding schemes and simultaneously developing hardware and software 

capable enough to implement these schemes [48], [49]. The current state of wireless 
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receiver architecture can be described by Fig. 2.6. The evolution of radio transceiver with 

respect to integration on silicon can be described by the comparative study presented in 

Table 2.1.  

Fig. 2.6 Current state of wireless receiver architecture 

Table 2.1 Evolution of radio transceiver with respect to integration on silicon 
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A typical receiver is considered to consist of an antenna, RF front-end, High Speed Signal 

Processing (HSSP) unit, Low Speed Signal Processing (LSSP) unit, Protocol Stack (PS), 

Local Control (LC) unit and finally, a Human Interface (HI) unit. One can clearly 

distinguish a pattern in the evolution; with each new generation, there is an attempt to 

move the ADC closer to the antenna.  

The ideal software defined radio (SDR) architecture is given in Fig. 2.7. In this 

architecture, the behavior of the radio in the physical layer is defined in software, thus 

enabling on-the-air software upgrades of the physical layer behavior. Consequently, the 

analog front-end is configurable to support wide range of frequencies and applications. 

Fig. 2.7 Ideal SDR architecture 

2.6 Receiver Radio Front-end Architectures 

This section describes briefly the various radio front-end architectures such as direct 

conversion, superheterodyne, and the direct bandpass-sampling, which are used in typical 

communications receivers. 

2.6.1 Direct conversion Architecture 

Direct conversion receivers perform downconversion of the high frequency carrier signal 

directly to the baseband frequency or zero frequency (also called direct current (DC)), as 

shown in Fig. 2.8 [50]. It does not contain an intermediate frequency processing stage. Its 

benefits are reduced component count, better suitability for integration on silicon, and the 

ease of frequency planning. The most important drawbacks of this architecture are pink 

noise (flicker or 1/f noise) that usually affects low frequency signals, and local oscillator 

(LO) leakage creating a DC offset that can potentially drive the successive stages into 

non-linearity. The Low IF architecture attempts to overcome these disadvantages. It has an 

IF stage where the RF carrier is downconverted to a non-zero, yet very low IF.

ADC Computer Various 
Applications 



2. Basics of GNSS 
 

17 
 

 

Fig. 2.8 Block diagram of direct downconversion receiver 

This ensures that channel selection can be done with highly selective filters and yet the 

signal is not contaminated by pink noise or DC offset. 

2.6.2 Superheterodyne Architechture 

In this architecture, the RF carrier signal is first downconverted to an intermediate 

frequency, usually much higher than the baseband frequency. The benefit of this 

architecture is that sufficient SNR is maintained, and it is also possible to achieve good 

selectivity in the IF filters. Drawbacks include, image frequency problems, difficulty to 

integrate on silicon because of the bulky RF filters, and necessity for complex frequency 

planning. Fig. 2.9 shows a typical architecture for superheterodyne receivers. 

 

Fig. 2.9 Block diagram for superheterodyne receiver 
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2.6.3 Direct Bandpass-Sampling Architecture 

This architecture directly samples the RF signal bandwidth and converts it to digital IF 

using the principle of intentional, yet non-destructive aliasing. The RF signal from the 

antenna is filtered to remove any out of band noise, amplified and then directly digitized 

using a high speed ADC. After the ADC, digital filters are employed to separate the IF 

bands to be demodulated in the baseband processor. Fig. 2.10 shows the block diagram of 

a bandpass-sampling RF front-end [51]. The design principle of this architecture is 

described in detail in Section 4.  

 

Fig. 2.10 Block diagram of direct bandpass-sampling receiver architecture 

 



    

 

 
 

3.  SOFTWARE-BASED GNSS SIGNAL 

SIMULATORS 

3.1 Introduction and background 

Another solution to investigate novel sources for test GNSS signals was to use a software-

based GNSS signal simulator. The primary motivation for investigating this solution was 

the ease with which it could be designed and implemented within the research group 

without the need for expensive commercial components. This Chapter presents the general 

introduction to the theory, including an overview of the essential components of such 

simulators. Publication [P1] extends this discussion by describing a detailed literature 

review of state-of-art in software-based simulators. This is followed with information 

about the first results of the TUT’s GNSS Signal Simulator in Software (TUTGSSS) 

developed in the research group using the Matlab programming environment.  

GNSS signal simulators are used for imitating the satellite signals arriving at a receiver 

under test. They provide a deterministic and repeatable source of signals, independent of 

satellite constellations available and visible at the time of testing [72] – [110]. Simulators 

have a modular design, where each module is responsible for a particular functionality. 

The different modules include (but not limited to): The signal generation module, 

including error signals generation, the transmission channel module, the satellite 

constellation module, and the receiver RF FE module. Fig. 3.1 shows the block diagram of 

a typical software-based GNSS simulator. The satellite constellation module gives a real-

time view of the geometry of the satellites in the sky. Based on this geometry, signals 

from the visible satellites are generated at an intermediate frequency and combined to 
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form a composite navigation signal-in-space, e.g., Galileo E1 or GPS L1. This composite 

signal flows through the transmission channel module, which simulates non-idealities and 

other effects, e.g., interference and multipath signals, and additive white Gaussian noise, 

within a typical transmission path between the satellite and receiver. The RF FE module 

simulates the effects of the radio frequency front-end of a typical GNSS receiver on the 

signal received from the sky. This includes filtering, amplification, local oscillator phase 

noise and ADC quantization effects. The following sections describe the implementation 

of a simple software-based simulator using the SIMULINK tool. 

3.2 Signal Generation Module 

The signal generation module is composed of a number of channels, as shown in Fig. 3.2. 

Each channel simulates one signal, either a legitimate positioning signal or an interference 

signal, and the various timing errors affecting this signal. The sampled time generator 

creates time samples from a continuous time source by sampling at a user desired 

sampling frequency. In the error signal generation block the sampled time is contaminated 

with various clock errors and atmospheric timing errors. The most common timing errors 

and their typical values [14], [33] are given in Table 3.1. These typical values are 

generalizations of the average value of these errors over a long time and wide areas, and 

may be considered accurate enough only for simple simulators for academic purposes. For 

higher accuracy, complex mathematical error models are used, which attempt to replicate 

real-world situations faithfully.  

The digital and analog components of the GNSS signal are affected equally but in 

opposite manner by the ionosphere. It advances the carrier component while delays the 

code [32]. Hence, there is a need for two time sample streams, called tcarrier and tcode. 

These streams are then used in the creation of the digital pseudorandom noise (PRN) code 

and navigation data, and the radio frequency carrier. To create the digital components, the 

easiest approach is to create them as memory codes in look-up tables as shown in Fig. 3.3. 

The tcarrier component is used to create the in-phase and quadrature (I/Q) components of 

the analog high frequency carrier signal, using (2) and (3). Using software tools, it is not 

possible to handle signals with large sample rates. Hence, it is more convenient to  
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Fig. 3.1 Block diagram of a software-based GNSS signal simulator 
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Fig. 3.2 Internal block diagram of one channel of the simulator 
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Table 3.1 Typical values of GNSS signal errors 

Parameter Typical Value 

Receiver clock error 15 ns 

Satellite clock error 7 ns 

Ionosphere error 17 ns 

Troposphere error 2 ns 

Timing signal offset error few ns 

Doppler frequency offset ±12 kHz 

 

simulate GNSS signal-in-space at a lower intermediate frequency, e.g., in the range 2 

MHz to 5 MHz, rather than the actual 1.5 GHz.  

                             (2) 

        (3) 

3.3 Error Generation Module 

The error generation module consists of a number of sources of timing and power 

variation errors that affect the GNSS signal during its travel from the satellite to the 

terrestrial receiver, and also within the receiver signal processing chain. Here, we explain 

the most common error sources, e.g., receiver and satellite clock errors, atmospheric delay 

errors, transmission channel effects and radio front-end effects. The accuracy of the signal 

simulator is directly dependent on the number and sophistication of the error sources that 

it can model. 

3.3.1 Receiver Clock Error  

The time offset between the receiver’s clock and the standard GPS (or Galileo) time is 

called the receiver clock error. Receiver clocks are usually constructed using crystal 

oscillators, which suffer from higher rates of drift yet are more affordable than the ultra- 
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Fig. 3.3 Simulink model for generating Galileo E1B primary PRN code 

stable atomic clocks used in the GNSS satellites. The receiver clock error is a combination 

of systematic and random errors [2]. Examples of systematic errors are the constant time 

and frequency offsets, defined in units of parts per million (ppm). The Allan Variance 

(AV) [3] commonly characterizes the remaining frequency errors. The AV gives the 

measure of frequency instability of the clock over consecutive samples. Using M samples, 

AV can be modeled by (4) [4]: 

        (4) 

where  is the time period over which AV is calculated and y( i is the ith sample value. 

3.3.2 Satellite Clock Error 

The time offset between the satellite’s clock and standard GPS time is called the satellite 

clock error. Satellites have highly accurate and precise atomic clocks, with small 

frequency drift. The ground control segment monitors this drift at regular intervals and a 

correction parameter is transmitted by the satellites through the navigation message. 

Navigation messages transmitted by the satellites are available on the internet [5] in 

various file formats such as YUMA, SP3, and RINEX. Historical values of the satellite 

clock correction parameter can be studied using these files, and with reverse-engineering, 

the satellite clock error can be modeled. As an alternate, URA/SISA parameters [6], [7] 



3. Software-based GNSS Signal Simulators 
 

24 
 

can be used to model the satellite clock errors in a similar way. The equation for the 

satellite clock error is given by (5) [8]. 

         (5) 

where toc is the reference epoch in seconds, a0 is the satellite clock time offset in seconds, 

a1 is the fractional satellite clock frequency offset and a2 is the fractional satellite clock 

frequency drift. 

3.3.3 Ionospheric Delay Error 

The ionosphere is the outermost layer of the atmosphere, lying between 50 km to more 

than 1000 km from the Earth’s surface. This layer consists of free ions which collide with 

the electromagnetic waves of the GNSS signals passing through it, causing the waves to 

refract or bend. This introduces a time error in the carrier and the code components of the 

signal. This error is highly dependent on the signal frequency and on the number of free 

ions in the ionosphere. A parameter that gives information on the current condition of the 

ionosphere is the Total Electron Content (TEC). The value of TEC is dependent on the 

geographic location of the receiver and the time of day. TEC values over a particular area 

and at a particular time of day are available from the internet [9]. These TEC values can 

be used to model the ionospheric errors.  

Usually for GPS, the Klobuchar model is used using the ‘ION ALPHA’ and ‘ION BETA’ 

parameters from GPS RINEX files available on the internet [10]. For Galileo signals, the 

NeQuick model is preferred, which builds on the formulation for the electron density 

function in the Epstein layer of the ionosphere given by (6) [11]: 

        (6) 

where n(h) is the electron density at height h, nmax is the peak electron density, hmax is the 

height of peak electron density, and B is the thickness of the layer. Once the electron 
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density in the ionosphere above the receiver is computed, it can be used to calculate the 

delay and phase errors affecting the various satellite signals passing through it.  

3.3.4 Tropospheric Delay Error 

The troposphere is the layer of atmosphere up to 20 km from the Earth’s surface. This 

layer also introduces delays in the GNSS signal propagation but unlike the ionosphere, 

this delay is independent of signal frequency. There are many models to simulate the 

troposphere. However, the most popular is the Modified Hopfield model, which is based 

on a model for the wet and the dry zenith tropospheric delays and a slant delay 

transformation. The equation for tropospheric error (in meters) using this model is given 

by (7) [12]: 

      (7) 

where dTropoGG is the slant tropospheric delay (in seconds) generated using the Goad and 

Goodman tropospheric model, P(t) is time variant pressure parameter, T(t) is time variant 

temperature parameter, H(t) is time variant humidity parameter, El(t) is elevation angle, 

and w is Gaussian white noise. An alternate equation for tropospheric error (in meters) is 

given by (8) [8]: 

          (8) 

where N = (n-1)*106 is the refractive index along the signal path and a and b define the 

limits of tropospheric boundary in meters. Increased accuracy of modeling the 

atmospheric errors is possible if the obliquity factor is included. However, in that case the 

signal generation module needs to take into account the satellite geometry and user 

position information into the error generation [13]. 

3.3.5 Doppler Frequency Offset 

Doppler phenomenon is the change in frequency of a signal incident upon a target from a 

source, one or both of which are in motion. The signal frequency changes at a rate which 
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is dependent on the speed and direction of relative motion between them. The usual range 

of Doppler offset in GNSS signals is about ±12.5 kHz. This includes the satellite relative 

velocity, the receiver clock frequency offset, and the receiver velocity [14]. The PRN code 

frequency is also affected by the Doppler offset, but since this frequency is much lower 

than the RF carrier frequency, the offset will be much smaller - typically in the order of a 

few Hz. If the receiver is able to accurately identify the amount of this Doppler offset, the 

relative velocity, acceleration and jerk between the receiver and satellite can be 

determined.  

From a simulator point of view, altering the carrier and code frequency of every channel 

within their respective ranges stated above and based on the satellite positions and 

trajectories, a Doppler offset can be introduced into the simulator output. An additional 

Doppler offset would help to simulate receiver motion. Therefore, by a right combination 

of Doppler frequencies over different intervals of time, a dynamic (receiver-in-motion) 

scenario can be simulated.  

3.4 Transmission Channel Module 

The internal block diagram of the transmission channel module is shown in Fig. 3.4. Three 

errors that are typically introduced in this module are interference and multipath signals, 

and additive white Gaussian noise (AWGN). More than one channel can be dedicated to 

simulating the interference and multipath signals, usually from the left-over channels from 

the Signal Generation module. Interference signals are characterized by the modulation 

type (e.g. FM, AM, DVB etc.), frequency offset from the GNSS signal-of-interest, and the 

signal power. Important parameters in the case of Multipath error are the number of 

multipath components, and the magnitude and the delay (in samples) of each component 

with respect to the fundamental component. AWGN can be generated as random noise 

with zero mean, and variance equivalent to the maximum noise power required to 

maintain the carrier to noise ratio (CNR) defined for each channel. The basic function of 

the transmission channel for the Galileo E1 signal in terms of the sub-carrier can be 

modeled as shown in (9). 
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        (9) 

where rE1(t) is the Galileo E1 received signal after the transmission channel, αi and τi are 

the complex path coefficient and path delay for the ith path respectively, and n is the 

AWGN. 

3.5 Radio Frequency Front-End Module 

Some state-of-art software simulators have the capability to model different antenna 

patterns and signal power profiles [15]. Typically though, only RF filtering effects, 

amplification, and analog to digital (ADC) conversion losses are considered. The RF filter 

is similar to the band-limited filter used in each channel of the signal generation module, 

as shown in Fig. 3.2. The filter bandwidth depends upon the signals being received. The 

various filtering effects that can be simulated include band-limiting, insertion loss, 

passband ripple and group delay. The low noise amplifier includes gain and noise figure 

effects. Simulating noise figure is equivalent to introducing additional AWGN before the 

output of the amplifier. ADC quantization causes degradation in signal to noise ratio 

(SNR) of the received signal [16]. Additionally, an important contribution of this thesis 

work is to demonstrate how to include the effects of phase noise from the radio front-

end’s local frequency generator within the received signal [P4], [P5], [P6]. 

3.6 Satellite Geometry Module 

The satellite geometry module is responsible for controlling the individual channels 

according to the currently visible satellite positions and trajectories. The signal strength 

and pseudorange are controlled depending on the elevation angle of the satellite, while the 

Doppler frequency offset is decided based on the rate of change of pseudorange, which is 

based on direction of satellite motion with respect to the simulated receiver position. 

Publication [P1] describes the solutions and techniques used by state-of-art software-based 

GNSS simulators in simulating the satellite geometry. They answer important questions 

such as, from where does this module get the current (real-time) picture of the satellite 

positions and trajectories in the sky? What are its inputs and which data-formats are 

supported?  
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Fig. 3.4 Internal block diagram of transmission channel module 
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4. BANDPASS-SAMPLING BASED 

GNSS RECEIVER RF FRONT-ENDS 

4.1 Introduction and background 

One of the solutions proposed towards investigating novel sources of test signals for 

GNSS receivers was a bandpass-sampling based radio front-end capable of processing all 

planned GNSS signals, called here the Sampled Data Generator (SDG). As defined in 

Section 2.3, the composite bandwidth of the GNSS signals extends from 1164 MHz to 

1300 MHz, and from 1559 MHz to 1615.5 MHz, and is shown in Fig. 4.1 [115]. The 

bandpass-sampling architecture is built around the concept of direct digital conversion of a 

band of RF frequencies using a wideband ADC, followed by channel selection in the 

digital domain using digital filters. The ADC is a critical element and some of its desirable 

properties for this particular application are high speed, low jitter, low power consumption 

and low resolution. Publications [P2] and [P3] describe in detail the background literature 

study about general theory of wide-bandwidth sampling, and previous cases of its 

implementation in the GNSS domain. Here we briefly present some of the essential 

components of such radio front-ends (please refer to Fig. 2.10), which include the antenna, 

low noise amplifier, and RF Filter and ADC for the actual bandpass-sampling. 

4.2 Antenna 

The antenna to be used for this architecture would need to be wideband, capable of 

receiving signals from 1164 MHz up to 1615.5 MHz. We propose here, few good 

commercial antenna options, e.g., the Zephyr 2 and Zephyr Geodetic 2 antennas from 
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Trimble [52], Satellite Navigation Antenna from Roke Manor Research [53] and 

Universal GNSS Antenna designed at the Wang Electro-Opto Corporation (WEO) [54]. 

4.3 Low Noise Amplifier (LNA) 

The antenna is connected to a low noise amplifier using a 50 Ohm interface. A low noise 

amplifier is a device that amplifies incoming signals while introducing little noise of its 

own. Because of this property (high amplification but low noise injection), it is usually 

placed as the first component in a receiver chain. According to Friis’ formula for overall 

noise factor of a receiver chain, the first component’s noise and gain heavily influence the 

overall noise factor of the receiver chain [55], [56], [57]. Publication [P2] describes the 

design and implementation of an LNA within the Sampled Data Generator, capable of 

operating on the entire GNSS frequency band of interest. It also describes the design and 

software simulations of RF filters and the bandpass-sampling ADC, used subsequent to 

the LNA stage. 

 

Fig. 4.1 Frequency spectrum of the proposed SDG 
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4.4 RF Filter 

To isolate the two GNSS bands as stated in Section 3.1, it requires one RF bandpass filter 

(1164 MHz to 1615.5 MHz) followed by an RF bandstop filter (1300 MHz to 1559 MHz). 

These filters were designed as seventh-order LC Chebyshev filters in order to trade-off 

sharpness of filter cut-off with complexity and cost of final design. The design 

methodology adopted was as follows: first, the seventh-order low pass Chebyshev filter 

was designed, followed by the transformation from low pass to bandpass or bandstop filter 

using the principle of component transformations. Publication [P3] describes the design 

and simulation results of these two filters in detail. 

4.5 Direct RF bandpass-sampling 

The primary concept of direct bandpass-sampling based GNSS receiver front-end is to 

achieve digitization of the complete RF band of interest into digital intermediate 

frequency, thus eliminating the need for an analog mixer. The following describe the 

numerical analysis of this method, its benefits and drawbacks. The following research 

papers [58] - [71] are cited as references in support of this discussion, and are listed in the 

reference section of this thesis work. More details are provided in the Publication [P3]. 

4.5.1 Concept and numerical analysis 

Upon sampling of a band of frequencies, the resulting spectrum consists of the original 

band replicated at integer multiples of the sampling frequency as shown in Fig. 4.2. 

Furthermore, to avoid any destructive aliasing (Fig. 4.3) it is necessary to sample at a 

frequency greater than twice the bandwidth (Fig. 4.4). This relaxes the sampling 

frequency requirement and also does not compromise on the data content in the sampled 

output. 
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Fig. 4.2 Frequency spectrum of a complex signal before and after sampling  

 

Fig. 4.3 Frequency spectrum showing harmful aliasing between different IF bands 

 

Fig. 4.4 Frequency spectrum showing different IF bands without aliasing 

For a set of two real distinct bands (as in the case of the proposed SDG), appropriate 

sampling frequency can be computed based on the simultaneous fulfillment of certain 

conditions as given by (10) to (17).  

Bandwidth of interest = (1300 MHz – 1164 MHz) + (1615.5 MHz – 1559 MHz)  

        = 192.5 MHz                      (10) 
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Center frequency of band 1 (fc1) = 1232 MHz                    (11) 

Center frequency of band 2 (fc2) = 1587.25 MHz                                (12) 

Minimum sampling frequency (fsmin) = 2*(Bandwidth of interest)                  (13) 

Intermediate frequency (fIFi)  = Rem ( )  if Int[ ] = even 

     = fs – Rem ( ) If Int[ ] = odd              (14) 

fIFi >                                                  (15) 

fIFi <                                                  (16) 

| fIF1 – fIF2| ≥                                                 (17) 

where Int[x] is largest integer smaller than or equal to x, and i = The frequency band 

number (Band 1 = 1164 MHz to 1300 MHz and Band 2 = 1559 MHz to 1615.5 MHz). 

Further computation of possible sampling frequencies is described in Publication [P3]. If 

the GNSS signals are converted into complex/analytic by using Hilbert transformer and 

then sampled, the sampling frequency requirement is further relaxed. Fig. 4.5 shows the 

frequency spectrum of two complex signals with all important frequency points marked on 

the diagram. 

 

Fig. 4.5 Frequency spectrum of two complex RF signal bands 
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Equations (18) to (21) give the criteria that must be simultaneously satisfied by the 

sampling frequency in case of complex GNSS signals. 

n1 ≤ Int[ ]          (18) 

Int[ ] ≤ n2 ≤ Int[n1* ]        (19) 

  ≤ fs ≤           (20) 

 ≤ fs ≤           (21) 

Equation (20) should be used if the position of the resulting sampled bands should be as 

shown in Fig. 4.6. While if their positions should be as in Fig. 4.7, then (21) should be 

used. The solid trapezoid denotes spectra of original signal and the dashed trapezoid 

denotes a replica after sampling the original band. 

 

Fig. 4.6 First possibility of arranging the sampled and original bands 

 

Fig. 4.7 Second possibility of arranging the sampled and original bands 
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Thus the procedure for obtaining a range of valid sampling frequency for two complex RF 

signals is: first, choose an appropriate n1 using (18); next, choose an appropriate n2 using 

(19), and last, using (20) or (21) compute the range of sampling frequencies. Equation 

(22) gives the new position of the sampled IF band when complex GNSS signals are 

considered.  

fc
m = m*fs + rem(fc, fs)   for (m = 0, ±1, ±2, ±3…….)                 (22) 

where fc
m

 is the center frequency of the mth replica of the sampled band, and rem(fc, fs) is 

the remainder from the ratio of fc and fs. A drawback in the case of complex signal 

processing is the need to replicate the ADC in both the signal branches (I/Q), as shown in 

Fig. 4.8.  

Fig. 4.8 Block diagram of complex bandpass-sampling 

4.5.2 Benefits 

Using the bandpass-sampling technique, a band of frequencies may be sampled at a rate 

that is twice the bandwidth, rather than twice the highest frequency component. This 

offers considerable relaxation in the sampling frequency requirement through the process 

of non-destructive aliasing. This also eliminates the need for a separate analog mixer. The 

intermediate frequencies are in digital domain and hence can be separated by digital filters 

instead of expensive and bulky analog channel select filters. This in turn helps in placing 

the ADC as close as possible to the antenna, a primary requirement of true software 

defined radio architecture. 

Real 
Signal ADC 

ADC Hilbert 
Transformer 

Single 
Sideband 
Complex 

Signal 

I

Q 



4. Bandpass-sampling Based GNSS Receiver RF Front-ends 
 

36 
 

4.5.3 Challenges 

There are a number of challenges that must be analyzed and overcome to design a 

bandpass-sampling receiver front-end architecture.  

ADC dynamic range and spurious free dynamic range - due to the wide bandwidth 

requirement, it is possible that there is considerable difference in the strengths of the 

signals received at different frequencies within this band. This complicates the decision 

about the ADC resolution and consequently, also complicates the estimations of the 

quantization noise. If a low resolution ADC is used, any high power frequency 

components will be ‘clipped’. Such clipping in turn, produces spurious frequency 

components in the spectrum of the sampled signal.  

SNR degradation due to noise aliasing - during bandpass-sampling, out of band noise 

from around integer multiples of sampling frequency is also aliased onto the desired 

frequency band after digitization [67]. This causes the degradation in SNR, and this 

degradation is proportional to the sub-sampling factor as given by (23). A solution to this 

degradation in SNR due to noise aliasing is to have sufficient amplification in the initial 

stages of the RF front-end. 

Sub-sampling factor =          (23) 

SNR degradation due to clock jitter – The quality of the sampling clock is a major 

concern as the bandwidth to be digitized increases. In [117] and related works for 

example, the authors have performed a theoretical analysis of the power of the jitter noise, 

and the consequent degradation in the signal to noise ratio. Based on this study, a relation 

for jitter threshold in terms of the useful signal frequency, oversampling factor and power 

of any possible interferers was proposed. A set of acceptable sampling rates sufficient for 

Galileo reception were then computed based on this jitter threshold.   
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Analog to digital conversion is a computationally heavy process - Therefore, the ADC 

is a bottle-neck in the entire receiver front-end chain, especially for the bandpass-sampling 

architecture. It consumes most of the time and power allocated to the front-end and in the 

process generates a lot of heat that can be self-destructing if not dissipated effectively. For 

this reason, the ADC should have high speed of operation, low power consumption, and 

yet be affordable. Additionally, it needs to be carefully cooled to keep its temperature 

during operation within the safe operational limits [69]. The flash ADC architecture offers 

the fastest conversion speeds. Their only limitations are lower resolution and higher costs. 

For GNSS applications, lower resolution is not a primary concern and therefore, the flash 

architecture is worth further investigation in spite of the higher costs involved [68]. 
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5. EFFECTS OF PHASE NOISE ON 

GNSS TRACKING PERFORMANCE 

5.1 Introduction and Background 

One of the objectives of this thesis work was to propose novel methods to improve the 

diversity of receiver characterization. This study proposes a new perspective for GNSS 

designers, which quantifies the performance loss in the baseband signal’s correlation 

product due to phase noise from the radio front-end frequency source. These performance 

bounds may then be used as the basis for local oscillator design. Extensive simulations are 

used to validate results, while drawing conclusions regarding the relationship between 

phase noise, correlation time, and loss in the carrier-to-noise ratio. The experimental setup 

is shown in Fig. 5.1. 

This Chapter is an introduction to the results provided in Publications [P4], [P5] and [P6], 

which describe this relationship, first for a free running oscillator case, and then for the 

more realistic PLL scenario. The actual phase noise models of the free running oscillator 

and PLL are described in the publications. Here we only provide a brief overview of the 

study and present some of the intermediate results using a recreation of the simulation 

scenarios described in the publications.  

5.2 Basics of Phase Noise 

In typical GNSS receivers, the signal received from a satellite is compared with an 

internally generated replica of its corresponding code at different code phases until the 

correlation product is maximized. This provides an indirect measurement of the pseudo- 
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range between the receiver and the satellite. One of the performance limiting factors of 

GNSS receivers is the imperfection of the radio frequency (RF) oscillator, often referred 

to as phase noise. Phase noise is the random, rapid short-term phase fluctuations of the 

radio front-end’s local frequency generator [27]. As shown in Fig. 5.2 [83], the phase 

noise is measured in a bandwidth of 1 Hz at a defined frequency offset from the center 

frequency. The unit for measuring the phase noise is dBc/Hz. The normalized single side-

band phase noise spectral density is given by (24) [28]. 

                                            (24) 

where Nphase is the phase noise within the bandwidth of 1Hz at a frequency offset of Δω, K 

is the Boltzmann constant of 1.38 x 10-23 J/K, T is the Temperature in Kelvin, Psignal is 

the power of the signal under consideration (in absolute values), ω0 is the center frequency 

of the signal under consideration in radians/sec, and Q is quality factor of the resonator in 

the local oscillator. 

The receiver oscillator phase noise adversely affects the frequency down conversion and 

analog to digital conversion processes, thus diminishing the achievable carrier-to-noise 

ratio (C/No). Consequently, the correlation outputs in the code-tracking loop and the 

carrier phase tracking jitter are also adversely affected. Furthermore, longer integration 

intervals can make integration (correlation) comparatively less effective in the presence of 

this phase noise. In this study, we attempt to investigate the answers to the following 

questions: What is the maximum acceptable phase noise level as required by an RF 

designer in order to achieve a minimum pre-defined C/No? How do correlation losses 

relate to phase noise levels? Answers to these questions will ultimately help in justifying 

the addition of this phenomenon in the overall characterization of GNSS receiver 

performance. 

5.3 Simulation Scenarios 

In the first part of this study [P4] and [P5], we proposed an analytical approach using a 

mathematical phase noise model for a simple free running oscillator. Our results provided 
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a first estimate of the noise floor requirements for a receiver given a particular baseband 

implementation. However, the FRO model is not well suited to represent practical receiver 

frequency synthesizers and hence, its direct use for specification of receiver designs is not 

appropriate. Therefore, the second part of this study [P6], presented the subsequent 

observations of receiver performance by utilizing the PLL as a practical frequency 

synthesizer. The results reveal that, there are both quantitative and qualitative differences 

in performance when compared to the FRO scenario. Here we present a summary of the 

study in [P6] and show some intermediate results which are then refined and extended in 

the publication.  

The PLL model shown in Fig. 5.3 was used to create sampled phase noise signal vectors 

(called ‘realizations’) of duration 200 ms each. These signal vectors were created for 

different combinations of a range of typical GNSS front-end PLL parameters, as described 

in Table 5.1. This allowed studying the effect of each PLL parameter upon the GNSS 

baseband correlation performance. One hundred such realizations were generated for 

every combination so that the results could be averaged over a considerable size of data 

samples. The overall PLL phase noise is dependent on the sum of phase noise 

contributions of its constituent blocks. The contribution of each block is in turn dependent 

upon various parameters, as shown in Table 5.1. In each realization, only one parameter 

was varied while keeping all others constant, so that the effect on code correlation due to 

that parameter (and hence due to that constituent block) could be studied. The method for 

adding the PN into the signal stream is shown in Fig. 5.4. 

5.4 Simulation Results 

Fig. 5.5 shows how the SNR of correlation peak degrades with increasing thermal PN of 

the PLL VCO for different loop filter bandwidths, frequency division ratios (FDR, 

denoted by N) and PIT values while Fig. 5.6 shows the relation between phase component 

of correlation peak and the PLL PN. As mentioned earlier, these results are refined and 

extended in publication [P6]. 
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Fig. 5.3 Phase Locked Loop Block Diagram 

 

Table 5.1 Constituent blocks of a PLL and typical values of their significant design 

parameters 

 

 

 

 

Constituent Block Important Parameter Typical Value(s)/Range 

Crystal RO PN (at 10 kHz offset) -150 dBc/Hz  

PFD PN (at 1 MHz offset) -265 dBc/Hz  

Loop Filter 
Order 2nd order 

Bandwidth 1 kHz  100 kHz 

VCO PN (at 1 MHz offset) -130 dBc/Hz  -100 dBc/Hz 

FD Division Ratio (N) 64, 200 

Reference 
Oscillator 

Loop 
Filter VCO 

Frequency 
Divider 

Carrier 
Frequency 

Feedback 

PFD 
DC Error 



5. Effect of Phase Noise on GNSS Tracking Performance 
 

44 
 

 

Fig. 5.4 Block schematic showing the mechanism to add phase noise in the signal stream 

5.4.1 SNR of correlation peak versus VCO PN  

Fig. 5.5 shows that the SNR of correlation peak degrades with increasing thermal PN of 

the PLL VCO. This degradation is more rapid at higher PLL bandwidths and is 

approximately 10 dB per every 5 dBc/Hz increase in PN. It should be noted that, the SNR 

values obtained here are greater than those observed in typical GNSS receivers because 

the simulation environment does not assume any receiver thermal noise floor. 

Consequently, this makes the noise-free post-correlation SNR to be infinite.  

The dynamic range of the SNR extends from 0 dB to 110 dB for the chosen range of PLL 

BW and VCO phase noise values; however, its absolute value for a given PN is inversely 

proportional to the loop filter bandwidth. Therefore, loss in SNR due to PN can be at least 

partially compensated by increasing the filter BW. This observation is expected, as the 

VCO PN contribution to the overall PLL PSD is diminished for higher bandwidths. 

However, there is a limit to which the increase in bandwidth translates to an improvement 

in SNR. Very large PLL bandwidths would also result in more noise and spurious signals 

flowing into the signal stream, thus adversely affecting the baseband correlation SNR.  

Additionally, increasing the PLL bandwidth propagates the reference oscillator (RO) PN 

to the output PLL PN, thus making it the bottleneck for improving the SNR. This 

phenomenon can be observed in the case where both, bandwidth and PIT are large. 

Comparison between the two frequency division ratios shows that the slope of degradation 
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remains similar, but there is a noticeable degradation in SNR for a given PN if the FDR is 

increased to 200. The SNR may even drop to zero in case of small filter BW and high PIT. 

5.4.2 Phase component of correlation peak versus VCO PN  

The objective is to maintain the standard deviation of phase angle of the correlation result 

over consecutive epochs below 10 degrees so that the tracking loop PLL can keep track of 

the correlation product. Fig. 5.6 shows that, although increasing VCO PN degrades the 

phase angle stability, this degradation is not significant for bandwidths greater than 5 kHz. 

GNSS radio front-end PLLs usually have filter bandwidths in excess of 5 kHz and 

therefore, PLL phase noise should not be a major problem in maintaining correlation 

product’s phase angle stability. 

The degradation in angular stability for lower bandwidths is quite significant. A PLL with 

zero bandwidth acts as a free-running oscillator. This is where the RO is rejected entirely 

from the loop while at the same time passing the VCO only to the output as a free-running 

oscillator. Hence its behavior resembles the results obtained in [P4], which used a FRO for 

all its simulations. Otherwise, the standard deviation is inversely proportional to the loop 

bandwidth, which means that the deviations in phase angle over consecutive epochs can 

be reduced if the PLL loop bandwidth is increased. Increasing the frequency division ratio 

of the PLL worsens the overall phase angle stability for given values of VCO PN and PLL 

bandwidth. Nevertheless, it is still possible to easily maintain maximum phase deviations 

under 10 degrees for almost all the loop bandwidths typically used in commercial GNSS 

radio front-end PLLs. 

5.5 Results Analysis  

Table 5.2 and Table 5.3 describe the maximum PLL phase noise allowed at different 

combinations of loop bandwidth, frequency division ratio and integration time to maintain 

SNR above 50 dB and 30 dB respectively. To better interpret the values in Table 5.2, 

consider the case of bandwidth 30 kHz (shaded). For frequency division ratio N = 64, as 

the PIT is increased, the maximum phase noise allowed to maintain SNR above 50 dB 

also increases, or in other words, more phase noise is acceptable. If the frequency division 
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ratio is increased to 200, for the same PIT (e.g., 4 ms), to maintain SNR above 50 dB the 

phase noise requirement becomes more stringent (-112.5 dBc/Hz as compared to -105 

dBc/Hz for FDR of N = 64). It can be observed that as we reduce the PLL loop bandwidth 

to 1 kHz, it starts to behave increasingly like a free running oscillator, and shows 

characteristics opposite to the higher BW cases. As an example, the SNR at a given PN 

reduces as the PIT is increased from 4 ms to 100 ms for bandwidth equal to 1 kHz. This 

conforms very well with the results obtained in [P4] and [P5], both of which used a FRO 

model as the frequency source.   

5.6 Endnote about Phase Noise and Allan Variance 

Oscillator manufacturers usually represent the performance of their products in terms of 

phase noise as a function of frequency difference from the center frequency, with units of 

dBc/Hz. Phase noise is a simple way to evaluate the performance of an oscillator as it is 

very easy to visualize on paper. However, it is debatable if this is indeed an informative 

metric for a GNSS receiver designer who may rather require a metric that will evaluate the 

oscillator performance in the time domain. Usually, the Allan Variance (AV) [112], [113], 

[114] is considered as a metric to provide such information, which is a derivative of the 

phase noise measurements over consecutive sample points. Would it be of interest to 

investigate the carrier and code tracking jitter as a function of oscillator AV as well, 

particularly: 

- Is it possible to recreate this study using Allan Variance instead of Phase Noise? 

- Is it possible to simulate overall Allan Variance of the PLL taking into account 

Allan Variance of each sub-block within the PLL? 

In our opinion, AV and jitter measurements are computed using the phase noise power 

spectral density (PSD). It is possible that different PSDs can result in the same AV. 

Furthermore, the same AV (even though from different PSDs) may result in different bit 

error rate (BER). Hence, the PN PSD is more explicit measure that is nevertheless easily 

convertible to AV.  
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      (d) 

 
     (e) 

 
 (f) 

Fig. 5.5 Correlation SNR vs VCO PN with N = 64 and PIT = a) 4ms b) 20ms c) 100ms. 
N = 200 and PIT = d) 4ms e) 20ms f) 100ms 
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     (d) 

 
      (e) 

 
                   (f) 

Fig. 5.6 Correlation Phase vs VCO PN with Freq Div = 64 and PIT = (a) 4ms (b) 20ms 
(c) 100ms. Freq Div = 200 and PIT = (d) 4ms (e) 20ms (f) 100ms 
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Table 5.2 Maximum phase noise (dBc/Hz) in order to maintain minimum correlation 

SNR of 50 dB for different values of loop BW, PIT and frequency division ratio (N) 

BW 
(kHz) 

N = 64 N = 200 

PIT = 
4msec 

PIT = 
20msec 

PIT = 
100msec 

PIT = 
4msec 

PIT = 
20msec 

PIT = 
100msec 

5 -125 -125 -113 - - - 

10 -115 -110 -107 - - -119 

30 -105 -102.5 -100 -112.5 -110 -107 

50 -102.5 -100 > -100 -110 -107 -104 

80 -100 > -100 > -100 -105 -105 -101 

100 > -100 > -100 > -100 -105 -103 -100 

Table 5.3 Maximum phase noise (dBc/Hz) in order to maintain minimum correlation 

SNR of 30 dB for different values of loop BW, PIT and frequency division ratio 

BW 
(kHz) 

FDR = 64 FDR = 200 

PIT = 
4msec 

PIT = 
20msec 

PIT = 
100msec 

PIT = 
4msec 

PIT = 
20msec 

PIT = 
100msec 

1 - - - - - - 

2 -110 - - - - - 

3 -107.5 -111 -106 -112 - - 

4 -107 -107 -103 -111 - - 

5 -106 -104 -102 -111 - -115 

10 -102 -100 > -100 -107 -107.5 -104.5 

30 > -100 > -100 > -100 -102 -101 > -100 

50 > -100 > -100 > -100 -100 > -100 > -100 

80 > -100 > -100 > -100 > -100 > -100 > -100 

100 > -100 > -100 > -100 > -100 > -100 > -100 
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6. TEST SCENARIOS FOR ADVANCED 

GNSS RECEIVERS 

6.1 Introduction and Background 

The objective of this section is to serve as a guideline for the testing and performance 

validation of GNSS receivers. We follow the typical testing procedure for GNSS receivers 

as shown in Fig. 6.1 and the test scenarios described in [17]-[26]. However, the aim is to 

adapt these scenarios, (which are targeted primarily towards simple receivers) to the more 

advanced multi-frequency, multi-constellation GPS L1/L5, Galileo E1/E5a TUTGNSS 

prototype receiver. Publication [P7] extends this discussion further by demonstrating how 

these test cases can be incorporated into an automated test-bench. Together, this 

information describes our work in investigating novel solutions for Block 3 from Fig. 1.1.  

6.2 Receiver Settings 

Two configuration settings in the receiver control the mode of operation and the manner in 

which it has to be turned ON via a 32-bit control word. Table 6.1 describes the various 

options and the digital control word corresponding to each option. There are eight possible 

modes of operations which would require 3 bits to be uniquely represented. However, it is 

recommended to use 5 bits in order to accommodate any future increase in operating 

modes. Similarly, there are three ways to turn ON a receiver, which can be uniquely 

represented by 2 bits. Therefore, out of the 32 available bits, only 7 bits are currently 

utilized, leaving the rest in reserve for future use. The mode selection bits are in the least 

significant bit (LSB) position of the control word. As an example, if the receiver should 
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perform position fix after a warm start using GPS L1 and Galileo E1 signals, the 32-bit 

control word would be “00000000_0000000_00000000_00100010”. Using such a control 

word at the beginning of every test, it is possible to use the following scenarios to test a 

basic single constellation or more advanced multi-constellation receiver. 

6.3 Time to First Fix (TTFF) Tests 

The amount of time it takes the receiver after switching ON to compute the first valid 

position fix is called time-to-first-fix or TTFF. Depending upon the initial conditions, 

there are four start modes for a typical GNSS receiver: cold start, warm start and hot start 

[14]. In cold start, the receiver has no a-priori information about the on the approximate 

time, ephemeris, almanac or last computed position, and TTFF may take around 60 

seconds under nominal signal power. In warm start conditions, the receiver has a-priori 

information about the approximate time, last computed position, oscillator offset and a 

valid copy of the almanac is stored in memory. The ephemeris is yet to be decoded and 

hence the time-of-week information is missing, resulting in a TTFF close to 30 seconds. In 

hot start conditions, the receiver has a-priori information about all data required for a 

position fix. Valid ephemeris and almanac are available for all visible satellites, along 

with approximate time, oscillator offset, and last position fix, resulting in a TTFF of about 

1 second.  

6.3.1 Nominal Cold Start, Warm Start and Hot Start TTFF 

The aim of this test is to verify receiver’s cold start, warm start and hot start TTFF 

performances under nominal signal conditions, typically assumed as satellite signal power 

equal to or greater than -130dBm. 

6.3.2 Low Power Cold Start TTFF 

The aim of this test is to verify the receiver’s cold start TTFF performance under low 

power input signal conditions, typically assumed as maximum satellite signal power equal 

to or less than -142 dBm.  
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Fig. 6.1 Typical testing procedure for GNSS receivers 
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Table 6.1 Advanced GNSS receiver operating modes 

 Example Options 
Binary 

Representation 

Example 

modes of 

operation 

GPS L1 only 00000 

Galileo E1 only 00001 

GPS L1 + Galileo E1 00010 

GPS L1 + GPS L5 00011 

Galileo E1 + Galileo E5a 00100 

GPS L1 + GPS L5 + Galileo E1 + Galileo E5a 00101 

GPS L1 + GPS L5 + Galileo E1 00110 

GPS L1 + Galileo E1 + Galileo E5a 00111 

Turn ON 

modes 

Cold Start 00 

Warm Start 01 

Hot Start 10 

6.4 Acquisition Sensitivity in Cold Start 

The aim of this test is to verify the receiver’s acquisition sensitivity. Acquisition 

sensitivity refers to the minimum satellite signal power level at which the receiver can still 

perform successful acquisition.  To perform this test, one satellite in the simulator is 

maintained at a defined power level and required numbers of acquisition iterations are 

performed. In each iteration, acquisition is deemed successful only if the code delay and 

the Doppler offset estimated by the receiver acquisition is within ±1 chip (300m) and 

±150Hz respectively from the correct (simulator) values. If the percentage of successful 

acquisitions is greater than a pre-determined threshold, the receiver is thought to acquire 

satellites successfully at this power level. The satellite signal power is then reduced and 

the test repeated.  



6. Test Scenarios for Advanced GNSS Receivers 
 

57 
 

6.5 Accuracy 

Position accuracy is defined as the magnitude of the distance between the computed 

position of the receiver and the true position as defined in the simulator. 2-dimensional 

position accuracy is usually represented in terms of Circular Error Probability (CEP), 

while 3-dimension position accuracy is expressed in terms of Spherical Error Probability 

(SEP). CEP is the radius of a circle which encompasses half of the position fixes. Better 

the accuracy of the receiver, closer to the true position will be its repetitive position fixes, 

thus smaller will be the radius of the circle encompassing half of these points.  

6.6 Tracking Sensitivity 

Tracking sensitivity of a receiver is defined as the minimum satellite signal power at 

which the receiver can still continue tracking the satellite. To perform this test, the signal 

power of a visible satellite is switched between nominal and a low power level at regular 

intervals and over a number of iterations. The tracking performance, in terms of CNR of 

the satellite as measured by the receiver is continuously monitored over the power 

variations to ensure that it is indeed successfully tracking the satellite. In the next iteration, 

the low power level is reduced by 1 dB and the process is repeated. It is interesting to 

identify what benefits in tracking advanced receivers offer over single-frequency single-

constellation receivers. Furthermore, when using GPS L5/Galileo E5a signals, it is 

necessary to specify whether this refers to only pilot signal tracking or to combined data 

and pilot signal tracking. 

6.7 Availability 

Availability refers to the percentage of time services of the GNSS receiver are useable. 

Differently put, it refers to the percentage of time valid position fix is computed by the 

receiver under diverse conditions of signal strength. Under this scenario, the receiver is 

subjected to diverse signal power, interference and multipath conditions, which attempt to 

recreate outdoor, urban canyon and indoor environments. Receiver motion is simulated by 

changing the simulator signal characteristics at regular intervals. Throughout the scenario, 

the receiver performance is monitored to ensure that it continues to provide a valid 
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position solution. The percentage of time that the receiver experiences an ‘outage’ is then 

used to compute the availability of the receiver. 

6.8 Receiver Dynamics 

This scenario is used to test the performance of the GNSS receiver when in motion. The 

important parameters of motion are speed, direction, acceleration, jerk and instantaneous 

position. Typically, receiver dynamics are tested for speeds up to 120 km/h. [18] proposes 

a circular trajectory, while [17] proposes a racetrack trajectory (also called a rectangular 

trajectory with rounded corners), as shown in Fig. 6.2. This figure also shows some 

example values for the top/bottom path distance = 1440m, left/right path distance = 940m, 

corner radius = 20m, position of starting point = left hand top corner, direction of rotation 

= clockwise, acceleration distance = 500m, minimum speed = 30 km/h on turn, and 

maximum speed = 120 km/h on straight path. Moving over the selected route three times 

allows a more general idea of receiver performance under dynamic stress. If the receiver is 

capable of mapping the route as it is in motion, this is convenient for post-processing of 

the positioning accuracy and availability during the dynamic scenario.  

6.9 Reacquisition Time 

Reacquisition time is defined as the time necessary for a receiver to reacquire all visible 

satellites and make a position fix after a sudden drop in signal power causes all previously 

tracked satellite signals to be lost. Quick reacquisition time is important, e.g., in vehicle 

navigation systems. To perform this scenario, the receiver is first allowed to make a stable 

position fix under nominal satellite signal power conditions. Next, all the visible satellite 

signals from the simulator are turned OFF until the receiver no longer is tracking any of 

them. Finally, all the signals are turned ON simultaneously at nominal power level. The 

amount of time it takes for the receiver to re-obtain stable position fix is measured as the 

reacquisition time. 
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Fig. 6.2 Rectangular (racetrack) trajectory for dynamics testing 

6.10 Multipath Mitigation 

The objective of this test is to determine the ability of the receiver in mitigating the effect 

of multipath errors, including Non Line-Of-Sight (NLOS) multipath components. Signal 

simulators have inbuilt support for a number of realistic multipath scenarios and models, 

which can be used for performing this test. Multipath errors are a significant source of 

receiver performance degradation, considering that the number of satellite navigation 

receivers in smartphones/Personal Navigation Devices (PNDs) is continuously rising, and 

majority of such receivers are typically used in urban high-multipath conditions. 

6.11 Radio Frequency Interference (RFI) 

The objective of this test is to determine the ability of the receiver to operate in the 

presence of interfering signals, including non-intentional and intentional (jamming) 

interferers. The most convenient option is to check whether in presence of radio frequency 

interference of up to -60 dBm, the receiver continues to maintain stable position fix. 

Testing can be performed for interference mitigation on a single GNSS frequency band or 

on all frequency bands processed by the receiver.  

6.12 Ionosphere errors 

The objective of this test is to investigate the performance of the dual-frequency receiver 

approach in compensating for the ionosphere error and improving the accuracy of position 
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fix. This scenario can be performed by computing the receiver accuracy in single-

frequency mode of operation, followed by the dual-frequency mode. The benefit of using 

dual-frequency can be quantified in terms of meters of improved accuracy. Signal 

simulators are capable of generating ionosphere errors based on one or more mathematical 

models, which can be used for performing this test. However, it should be noted that, 

using the same mathematical model to generate ionosphere errors in the simulator as that 

used for ionospheric error compensation within the receiver can result in an unrealistically 

improved performance of the receiver.     
 
 



    

 

 
 

7. OVERVIEW OF PUBLICATIONS 

7.1 Research Problems and Proposed Solutions 

During the course of this thesis work, the research group was presented with a number of 

challenges emanating from the performance testing of the TUTGNSS receiver in the final 

stages of the GRAMMAR project. This necessitated the design of an overall test-plan and 

development of the individual test-cases for the important performance parameters. The 

solutions to these challenges were compiled and gradually evolved into the composition of 

this manuscript.  

During the test-plan, it was noticed that the research group at TUT did not possess a 

GNSS signal source capable of producing the multiple frequencies and multiple 

constellations necessary for full performance evaluation of the advanced TUTGNSS 

receiver. Consequently, it was planned to investigate the possibility of developing a 

software-based signal simulator capable of generating the required signals. The first step 

towards this was a background study of important performance parameters of GNSS 

receivers and their typical test-scenarios. Also included in this study was a literature study 

of state-of-art in software-based GNSS simulators within the academic and industrial 

domains. Simultaneously, it was decided to investigate another novel solution for a GNSS 

signal source, which was to implement a radio front-end capable of receiving all possible 

GNSS signals from the sky using the concept of wideband sampling.   

During the actual testing of the TUTGNSS receiver, it was observed that manual 

intervention was unsuitable for repetitive testing as it was inefficient and introduced errors 

into the test results. Moreover, without an internal view of the signal processing chain at 

every stage of the receiver, it was difficult to locate the cause of receiver performance 
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anomalies. Therefore, the next challenge was to design an automated test-bench that 

would remove the need for human control, and a data capture tool for accessing 

intermediate results from within the receiver processing chain. 

The third and final challenge addressed by this thesis was to study the degrading effect of 

phase noise from the radio front-end’s local frequency generator on the baseband tracking 

performance of the GNSS receiver. The objective of this study was to demonstrate that 

there exists possibility to design innovative test scenarios for GNSS receivers through the 

study of new performance metrics. The solution to this problem included designing 

mathematical models for simple free running oscillators and consequently, a more realistic 

PLL, in terms of their phase noise contributions, which were then used to study the 

performance of typical carrier and code tracking loops under diverse operating 

environments. 

7.2 Relating Publications to the Research Work 

The publications included in this manuscript are referred to as [P1] – [P7] in the following 

paragraphs. Fig. 1.1 and Table 1.1 describe how the individual Publications contribute to 

the overall research theme. Publications [P1], [P2] and [P3] describe the work done 

towards implementing novel sources of test signals for GNSS receivers. Two solutions are 

proposed for this problem: a software-based signal simulator with multi-frequency, multi-

constellation capability, and a bandpass-sampling based sampled data generator. These 

publications build upon the introduction about general theory of software-based simulators 

and wide-band sampling provided in Chapters 3 and 4 respectively. 

Chapter 5 presents a brief introduction and background to the concept of phase noise, and 

our proposed study on its effects on GNSS tracking performance. Further details of this 

study are presented in publications [P4], [P5] and [P6]. In [P4] and [P5], a simple free-

running oscillator phase noise model is used as the noise source, and its effects on a GPS 

and Galileo code and carrier tracking channel are investigated in terms of the signal to 

noise ratio and phase component of the correlation product. In [P6], the study is extended 

to include the effect of a more realistic PLL PN model on a GPS code tracking channel. 
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As described earlier, these publications deal with investigating novel applications for the 

test-bench and identifying novel parameters to characterize receiver performance. 

Chapter 6 describes the typical test cases and test scenarios for the performance evaluation 

of GNSS receivers. An attempt has been made to adapt these scenarios so that they can be 

applied to more advanced multi-frequency, multi-constellation receivers. Publication [P7] 

describes the tool that assists in the automated performance evaluation of the receiver 

based on scenarios introduced in Chapter 6. It also describes a data capture tool to capture 

the internal process parameters from within the TUTGNSS receiver hardware.  

Together, these publications describe the novel solutions that we propose for improving 

the efficiency, accuracy and diversity of GNSS receiver performance evaluation, which is 

the main theme of this thesis work. 

7.3 Author’s Contribution to the Publications 

The author has been the lead contributor to a majority of the publications included in this 

manuscript. However, as in any research activity, collaboration between internal and 

external research partners has been a significant driver for these publications. Here we 

attempt to specify the actual contribution of this author to each one of the listed 

publications [P1] – [P7].  

In [P1], this author formulated the research problem based on the prevailing situation in 

the research group with regards to the testing of the TUTGNSS prototype receiver. This 

was followed with an in-depth literature review of the state-of-art software-based 

simulators, including categorizing them in three generations based on their year of 

creation, listing their constituent components, strengths and weaknesses, and identifying a 

pattern in the evolution of such simulators over the past 20 years. By extrapolating this 

pattern, a set of criteria for an advanced software-based simulator were proposed. A 

Simulink-based model was developed which attempted to incorporate some of the 

components of such advanced simulators.  The co-authors assisted in the formulation of 

the research problem, suggested additional parameters on which the simulators could be 

compared and helped to review the publication manuscript. 
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In [P2] and [P3], this author prepared the design for the Sampled Data Generator in 

collaboration with research supervisors (who were also the co-authors) after a detailed 

literature review of multi-frequency GNSS receivers and the general theory of bandpass-

sampling. The low noise amplifier design, simulations, and PCB-based implementation 

were accomplished by this researcher. Testing of the LNA was performed in collaboration 

with a supervisor from the RF Department. This was followed by Matlab-based 

simulations of the bandpass-sampling theorem to identify the most suitable sampling 

frequency for the proposed SDG. The composition of these publication manuscripts was 

accomplished by this author with peer-reviews provided by the co-authors. 

In [P4], the original idea for the research direction was suggested by two of the co-

authors, who also contributed to the theoretical formulation of the research problem. They 

performed the time-domain and frequency-domain analysis of the effect of free running 

oscillator phase noise on a typical GNSS code tracking loop. This author designed the 

Matlab-based simulations, performed experiments to verify that the effect of phase noise 

on code tracking was in conformance to the theoretical stipulations, recorded the results, 

and made conclusions from the analysis about the nature of the relationship between 

tracking performance and radio front-end phase noise. In [P5] the idea to extend the 

analysis from [P4] to carrier tracking loops was proposed by a co-author. This author 

extended the mathematical models for the code tracking loops to incorporate also carrier 

tracking (phase angle information of the correlation product) in a similar analysis using 

Matlab-based simulations.   

In [P6], the publication was a result of equal collaboration between this author and the 

next significant co-author. The RF research group was involved in implementing a 

detailed mathematical model of a charge-pump PLL, including the phase noise 

contribution of its constituent blocks. This author was responsible for implementing the 

GNSS tracking and correlation model in Matlab and simulating the effect of the phase 

noise on the tracking loop performance, which resulted in detailed guidelines about radio 

front-end PLL circuit design for GNSS receivers. This study was more comprehensive 

than the previous studies using free running oscillator PN models. The analysis of the 

results provided for more practically useful metrics and thresholds for receiver designers. 
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In [P7], two major themes are addressed: automation of the overall receiver testing using a 

custom software tool called the AutoPET, and introducing the capability to characterize 

the signal processing chain using the data capture tool called dCAP. The AutoPET is a 

software program in the Qt platform and C++ language that communicates between the 

GNSS receiver, the test signal source and a control computer to achieve human-

independent testing of the receiver. The entire assembly, including the communication 

between the entities was designed and implemented by this researcher. The data capture 

tool called dCAP, was implemented in hardware by the next significant co-author. The 

integration of these tools into the overall test-bench, and composing the publication was 

accomplished by this author. 

7.4 Impact of Publications 

There has been a conscious attempt by the author to propose the results of the thesis work 

for publication at high quality, high impact conferences and journals in accordance with 

the Finnish Publication Forum (Julkaisufoorumi – Jufo, for short) [111]. In case of 

publications in venues not listed in the forum, the author has chosen recommended 

conferences from the field of navigation and positioning. Additionally, Chapter 3 of this 

manuscript has been adapted as a book chapter in [116]. Below is a list of publications and 

their respective venues, supporting the earlier remarks: 

[P6]   - Jufo Level 2 Journal 

[P5] & [P3]  - Jufo Level 1 Conferences 

[P1]  - European Navigation Conference (ENC-GNSS) 

[P7]  - Institute of Navigation’s GNSS+ Conference (ION GNSS+) 

[P4]  - InsideGNSS 

[P2]  - IEEE, ESA, and DLR Co-sponsored Conference 
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8. CONCLUSIONS 

8.1 Main Contributions of the Research 

The principle contributions of this research work are towards GNSS receiver performance 

evaluation through innovations in implementation of a test-bench, its automation 

techniques and application procedures. After an in-depth study of the state-of-art in GNSS 

software-based signal simulators, showing that such simulators have evolved through 

three distinct generations, a further study was conducted on multi-frequency, multi-system 

GNSS receiver performance testing and its necessary simulator architectures. Based on 

this study, a GNSS signal simulator in software capable of producing GPS L1 and Galileo 

E1 B/C signals was implemented. 

Another contribution of this thesis is a bandpass-sampling based sampled data generator 

capable of processing multiple GNSS frequencies. Implementation of the constituent LNA 

is covered in detail. The design, simulation, implementation and test results prove that the 

LNA successfully satisfied requirements of wide bandwidth, high gain, high linearity, 

frequency stability and low noise figure and compares very well with the state-of-art in 

such amplifiers. The process for calculating the optimum sampling frequency and 

resultant intermediate frequencies for the bandpass-sampling ADC was automated for all 

possible input signal conditions. Both, real and complex sampling was addressed.  

A third contribution of this research work is the automation in receiver testing through the 

implementation of the AutoPET and dCAP. These tools are portable (software platform-

independent), easy to install and execute on any computer with the basic scientific 

software and enable highly efficient and accurate testing of GNSS receivers. From an 

academic point of view, the dCAP is useful for teaching the spectral characteristics of 
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GNSS signals at every stage from deep inside the receiver to researchers or university 

students in laboratory exercises. In other words, the proposed research has a practical as 

well as academic appeal.  

As an application of the test bench, the effects of an FRO and a PLL phase noise on the 

tracking performance of a GNSS receiver were analyzed. A mathematical model for the 

PLL PN incorporating the PN contributions from its constituent sub-blocks was 

implemented and validated using Matlab and Simulink based GPS and Galileo correlators. 

The relation between integration time, PLL parameters and phase noise has been shown, 

and a criterion for radio front-end frequency generator design has been presented.  

8.2 Future Work 

In the duration of this research work, some ideas, concepts and implementation paths were 

left to be resolved in the future due to time and task prioritization. It is hoped that the 

receiver testing and the GNSS research community in general would be interested in 

following-up on the leads that this thesis has provided.  

A number of challenges in the implementation of the sampled data generator have yet to 

be fully addressed. As an example, SNR degradation due to jitter, noise aliasing, 

quantization and high power consumption leading to ADC thermal issues have yet to be 

quantified and can be a subject of further research along with possible solutions to 

mitigate their effects. The PLL phase noise model in Matlab can be integrated with the 

software-based GNSS signal simulator as an additional source of receiver error. It can also 

be converted into a physical device using programmable hardware logic and VHDL 

coding. This physical PLL (P-PLL) can then be integrated with a VHDL-based GNSS 

signal simulator and their combined signals can be studied using the TUTGNSS 

prototype. With regards to the automated test-bench, there is a need for further study on 

the testing procedures employed for receivers used in more diverse applications of 

satellite-based positioning receivers, e.g., military, indoor navigation and high-accuracy 

positioning. These test cases can be added to the library of the AutoPET and dCAP tools, 

thus expanding their application areas.  
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Abstract— Software-based Global Navigation Satellite
System (GNSS) signal simulators are essential in
supporting education, research, and also development of
advanced receivers. This paper presents a detailed
literature study of state-of-the-art in such simulators.
Thirty-six references (both commercial and academic)
have been compared based on features including, but not
limited to, the number of GNSS satellite constellations and
signals modeled, the strategy of error modeling, the
programming language used, the input and output data
formats, and the modeling of the radio frequency front-end
(RF FE) effects. Overall, it is observed that software-based
generation of GNSS signals still has considerable
potential for innovation especially through the use of C
Sharp (C#) programming language and in the generation
of Russian GLONASS signals. The next part of the paper
describes the first results from the development of GNSS
Signal Simulator in Software (TUTGSSS) at our university.
This simulator is a Matlab, Simulink and C++ based Global
Positioning System (GPS) L1 and Galileo E1 B/C signal
simulator. Already incorporated into the TUTGSSS are the
scenarios of step-wise increase and decrease of output
power and Carrier to Noise Ratio (CNR), that were lacking
in the state-of-the-art.

Keywords-GNSS, software-based, simulator, receiver,
literature study, test cases, pedestrian navigation

I. INTRODUCTION

Future GNSS signals are usually announced to
the public before satellites begin transmitting them
from the sky. This enables the users to be already
equipped with compatible receivers by the time the
signals are actually ‘turned on live’ from satellites.
However, the major concern for manufacturers of
such innovative-GNSS-signal-compatible receivers
is their testing. How do you test whether a receiver
is compatible to presently non-existent signals? One
possible solution is to create replicas of those
signals artificially in laboratories and to test the
receivers with them. Devices that locally create
such signals are called Simulators or Generators. If
the receiver works fine under such ‘simulated
conditions’ (which includes simulated signals and
simulated environment) then it is safe to assume
that they will work equally satisfactorily under real-

life situations. The trick here is to make the
simulated conditions as close to reality as possible.
For example, if a receiver is intended to be
stationed in a dense multipath environment in real-
life, while testing in laboratory, the simulated signals
should also contain high number of powerful
multipath components. If not, the performance of
the receiver will be unreliable when used in real-life.
In addition to their application as a testing tool,
simulators can be useful for education and research
by gaining knowledge of the signal characteristics.
This may also help in locating vulnerabilities in the
signals and in designing suitable encryption or
snooping technologies.

Such simulators for GNSS signals are already in
existence and are of two types: hardware-based
simulators and software-based simulators.
Hardware-based simulators are physical devices
containing an actual radio frequency transmitter
chain generating physical signals at the output.
Such simulators are often bulky and costly.
Software-based simulators are built using software
programming languages such as Matlab, Simulink,
C, C++, etc. They output virtual signals in order to
test receivers also designed using similar software.
This study deals solely with software-based GNSS
simulators and hence hardware-based simulators
are not considered henceforth.

A brief outline of the paper is as follows: Section
II deals with the study of already existent software-
based simulators for GNSS signals. Thirty-six
reference sources have been compared based on
their features and functionality. These sources have
been grouped into three categories or generations
based on their year of publication: Generation 1
(2000 to 2003), Generation 2 (2004 to 2005) and
Generation 3 (2006 onwards). The results show
distinct patterns of evolution from one generation to
the next and special features or trends in every
generation are discussed.



Section III describes the first results from the
development of GNSS Signal Simulator in Software
(TUTGSSS) at our university. This simulator is a
Matlab, Simulink and C++ based GPS L1 and
Galileo E1 B/C signal simulator. The simulated
signals have been verified using software receivers
for GPS L1 and Galileo E1 generated in our
university. Results are also described for the test
scenarios related to sensitivity testing under
conditions of increasing and decreasing signal
power from satellite and noise interference.

II. LITERATURE REVIEW OF SOFTWARE-BASED
GNSS SIGNAL SIMULATORS

Software-based signal simulators for GNSS are a
relatively recent invention: pioneered in 1999-2000.
After a considerable online survey, we have located
thirty-six reference sources (both academic and
commercial) from the last 10 years of their
existence. However, it is possible that this may not
be a completely exhaustive list and since such
simulators are being designed and built with
increasing frequency in the recent years, some new
results may still enter the public domain by the time
this paper is published. To place such a
considerable number of similar devices in
perspective, we have categorized these sources
into three groups or generations, based on their
year of publication. Generation I (2000 to 2003)
sources are [1] to [7], Generation II (2004 to 2005)
sources are [8] to [17] while Generation III (2006 to
2010) sources are [18] to [36]. Due to the
considerable number of sources, comparison
between them was done based on five factors only:
GNSS signals simulated, used software platform,
error sources modeling, space segment modeling
and others. ‘Others’, includes any special or unique
feature present in a particular reference, which
would be worth mentioning. The comparison is
presented in textual format (instead of tabular)
because documents for the sources did not always
contain all the required information. As a rule,
almost all simulators (even the latest ones)
upconvert the baseband GNSS signals to an
Intermediate Frequency (IF) and not to the actual
carrier frequencies since GHz range sampled signal
generation is not yet possible with the current
software platforms.

A. GNSS signals simulated
GPS was the first fully operational GNSS and

hence the first generation simulators could simulate
only GPS signals and that too only GPS L1. C/A
codes for all satellite vehicles could be generated
easily; however, P code could be generated only by
[3], [4] and [5]. [4] could even generate M code at
GPS L1. [5] also generated GPS L2 signals.
Because they did not have the capability to

generate actual navigation data, nor to read
downloaded navigation files in Receiver
Independent Exchange (RINEX) format, all
simulators in Generation I used random bits to
denote navigation data.

By the time of Generation II, details had been
emerging about Galileo signal characteristics and
also of the newer GPS signals. Hence, it is
observed that in Generation II, the signals simulated
had become more diverse, for example, GPS L1,
L2, and L5, Galileo E1, and E5 were available.
Notable exceptions are: [8] which could simulate
also Galileo E6, while [16] has information about
SBAS signal generation.

In Generation III, the signals became ever more
diverse. All GPS (L1, L2, L5) and Galileo (E1, E5,
E6) signals could be generated. In comparison to
Generation II, many could simulate EGNOS signals
as well. [22] could generate inertial measurement
(IM) data while [30] and [31] could generate
GLONASS (L1) data as well. [31] could generate
also WAAS and pseudolite signals. The ability of
these simulators to read navigation data from
RINEX files is covered under the ‘Others’ topic, later
in the paper.

B. Software Platform
The underlying software in which the simulators

have been coded has also undergone an evolution
from one generation to the next. During the time of
Generation 1, Matlab was popular for engineering
simulations and due to its ease of usage, most
simulators from this generation are coded in Matlab,
although [6] and [7] also had a few modules of
Simulink and C respectively. In Generation II, C was
more widely used, but always in addition with
Matlab. Some of the simulators were later upgraded
and were completely coded in C++. As an
exception, [14] used Network Simulator 2 (NS2)
coding while in [15] the simulator was encoded in
FPGA in the final stage. In Generation III, most of
the simulators were encoded using C++, owing to
its greater object oriented programming capability.
This probably enabled more resource efficient
coding, faster generation and processing of data
samples and greater modularity for increased
flexibility. [10] and [14] used a graphical user
interface (GUI) coded using Microsoft foundation
class libraries (MFC). [33] used the Juzzle software
platform for coding the simulator. Juzzle is a
combination of Java and Puzzle platform and also
contains traces of C, Matlab, FORTRAN, Ada,
SystemC and Ptolemy. It has been observed that
although C# has better memory management and
more object oriented programming capability along
with Microsoft (MS) .Net support for GUI [37], it has
not yet been used for simulator design. Only [20] is



coded in MS .Net with some modules of C++ and
C# and is compatible with Windows 2000 and
Windows XP.

C. Modelling of Error sources
As mentioned in Section I, simulating the

environment is just as essential as simulating the
actual signals. In reality, the actual signals are
always affected by various error sources during
their travel from the satellite to the receiver and also
inside both of them. Therefore, the more error
sources simulated, the closer the output signal is to
reality. In Generation I, many of the sources did not
have error modeling, or used typical values or
constants for describing the various error sources,
for example, [1] used the values given in Spilker’s
clock error model. However, [3] and [4] could
simulate jamming signal environment by creating
Frequency Modulated (FM), Amplitude Modulated
(AM), Phase Modulated (PM) and frequency swept
jamming signals at L1 frequency. [7] had a fairly
advanced error modeling scheme with satellite
clock, ionosphere, troposphere and Doppler errors
modeled. Ionosphere delay error was modeled by
Spherical Harmonics (SH) and Grid model using
Global Ionospheric Maps (GIM) of Total Electron
Content (TEC). Troposheric error was simulated
using the Hopfield model extended by the Black and
Eisner model. It also generated additive white
gaussian noise (AWGN) bandlimited to 2MHz.

Starting from Generation II, Multipath was
considered the dominant error source and hence
almost every simulator modeled it. [8] can simulate
7 multipath channels, each with a different
amplitude, delay and phase using Rayleigh or Rice
multipath fading models. [9] divides multipath error
into Near and Far echoes. Near echoes are
simulated using Brenner and Jahn models
considering 500 small reflectors randomly located in
a 100m radius circle around the receiver antenna.
Far echo is modeled considering specular
reflections. It assumes a smooth ground and uses
Snell’s laws of reflection. Effects of reflections,
fading and blocking are calculated using an
algorithm designed by their own researchers. On
the other hand, [11] used an empirical model
created by observation of multipath errors at a given
location over time and then finding a definite
pattern. It is able to model a low, medium and
strong multipath environment.

Calculation of Ionosphere and Troposphere
errors also becomes more complex (and hence
more realistic) in Generation II. In [10], ionosphere
error is ‘constructed’ from correction parameters
extracted from RINEX files downloaded from the
Crustal Dynamics Data Information Systems
(CDDIS) website. In [11] and [14] ionospheric error

is calculated from TEC obtained from the global
NeQuick model or using vTEC from the more local
Ionospheric Exchange (IONEX) files available from
the internet and using the Appleton and Hartree
model. While in [16], the Klobuchar model is used
for Ionosphere delay modeling. For the troposphere
delay modeling, [10], [11], [14] and [16] use the
Hopfield model, usually aided by the Black and
Eisner model. [14] also suggests other possible
models for calculating the tropospheric error.
Usually, these models are also aided by climate
data accessible in RINEX format from the internet.

Clock errors (satellite and receiver) were also
modeled, for example, [9] used the Winkle model
along with Allan Variance for satellite oscillator
errors. The receiver clock error was modeled the
same way, but considering lower quality oscillators,
such as quartz or temperature controlled crystal
oscillators (TCXO). In [10] satellite clock error was
constructed from correction parameter given in the
RINEX file downloaded from the CDDIS website.
Other error modeled were Doppler, thermal noise,
interference, front-end effects and power loss. In
[11], all these other errors were combined into a
single parameter – User Equivalent Range Error.
This is especially useful when the simulation is
conducted over longer intervals or larger
geographical areas.

In Generation III, some new error sources were
modeled in addition to those inherited from the
previous generations. New sources included for
example, interference signal generation: continuous
wave, pulsed, wideband, narrowband, air traffic
control signals, tactical air navigation (TACAN)
signals and distance measuring equipment signals
(DME) were simulated. Different models for receiver
clock errors are mentioned in [24]. This paper also
proposes that the best model to calculate
ionospheric error affecting GPS signals is the
Klobuchar model while the NeQuick model is best
suited for Galileo signals. It uses the Saastamoinen
model for calculating tropospheric error. In [34], the
ionosphere error is modeled using the International
Reference Ionosphere Model (IRI) and then it is
converted into scintillation and finally timing delay
using the Wide Band model (WBMOD). For
multipath, in Generation III, the models of the
environment improved drastically, with even minute
details being added and in some cases 3-
dimensional (3D) models being created. In [25] the
authors created an extensive urban multipath model
using empirical means while in [33] Rice and
Rayleigh distribution models were used. In [34] Ray
Shooting algorithm was used to replicate the local
multipath environment very close to reality. This
algorithm is based on studying and recreating the
local environment around the receiver and then



estimating the different multipath sources in this
environment. It then generates the reflected signal
vectors for every source of multipath. This algorithm
is also used to create a Doppler profile for this
simulator. A similar approach was adopted in [35]
where 3D models of urban area and surrounding
terrain were created for future receiver sites and
then possible multipath sources were identified from
these models.

D. Space Segment Modelling
This part deals with how satellite constellations

have been developed for the simulators. This also
includes information on satellite trajectory modeling
and also receiver dynamics modeling. In Generation
I, many simulators performed approximate modeling
of satellite trajectories using spline smooth fitting or
using user input of raw geometric parameters to
create satellite dynamics data, for example in [1], [2]
and [4]. [4] could also read GPS almanac and
ephemeris files to recreate satellite position and
dynamics as a function of time, same as in [3] and
[5]. For user trajectory generation, [4] accepts set of
user inputs of co-ordinates (latitude, longitude,
altitude and time) and reconstructs user route.

In Generation II, simulators had the capability to
read ephemeris files (usually in RINEX format) to
construct entire constellation of satellites, for
example in [9], [10], [13], [16], and [17]. The
simulator in [13] can even read the research
institute’s own geometry file. It can even read the
YUMA almanac files in case of GPS and use the
Walker constellation parameters to simulate the
Galileo space segment. The simulator in [11] can
also read YUMA files and ephemeris files in SP3
format. It can also use Keplerian orbital parameters
to calculate satellite co-ordinates as a function of
time. The simulators in [12] and [15] can simulate
Low Earth Orbit (LEO) satellite constellations and a
comparison is made on signal quality using GPS
only, GPS-Galileo and GPS Modernized-Galileo
constellations. The simulator in [16] is also unique
because it is the only simulator which proposes to
simulate GLONASS constellation. It uses
information from Right Ascension of Ascending
Node (RAAN) and mean anomaly for this purpose.
User trajectories include static and dynamic
scenarios using user input of set of co-ordinates.
Typical shapes of user trajectories are along
straight line or circle with constant linear or angular
velocity. Examples are [9], [10], [11], and [13].
Notable exceptions are [15], where complete 3D
dynamics of user vehicle are simulated using user
input of acceleration, direction and altitude
information, and [16] which can simulate user
trajectory from user inputs, Microsoft Flight
Simulator software or X-Plane software.

In Generation III, major advancement was in the
ability to read data in any of the co-ordinate systems
(for example, WGS-84, ECEF etc) and to convert
from one system to another. Also, a greater
percentage of simulators (as compared to
Generation I and II) has the capability to simulate
complete satellite constellations and dynamics of
multiple navigation systems. Methods employed are
reading ephemeris files in RINEX or SP3 format,
almanac files in YUMA format or using Keplerian
elements. Satellite positions, their tracks, azimuth
and elevation and velocity are computed as a
function of time. At any given time, a complete list of
visible satellites can be easily produced. In [35],
weather data is combined with satellite orbit data to
compute signal strengths from visible satellites.

E. Other factors
As mentioned before, this part will describe any

features that are unique to any of the simulators or
their generations. As a rule, almost all simulators
have been validated using software GNSS
receivers, usually developed at the same affiliation.
In Generation I, [1], [2] and [3] use flight trajectory
data to define receiver position. It is assumed that
because data processing techniques were not as
advanced, simulators were designed to store large
amounts of data over longer simulation periods for
example, in [3], [4] and [5]. In [5], another option is
to generate 12 channel Early, Prompt and Late I/Q
signal data using mathematical modeling of GPS.
This allows more data to be generated over smaller
simulation periods.

In Generation II, [8], [9], [10], [16] and [17]
simulated radio frequency (RF) front-end effects,
especially, analog  to digital conversion (ADC) and
quantization, filter, antenna gain etc. [8], [9], [10]
and [13] allowed users to set the frequency plan
(sampling frequency, intermediate frequency etc),
simulation time, filter and ADC parameters etc. [11]
also defined certain performance related figures of
merit used in GNSS receivers. [8], [13], [15] and
[16] had some form of graphical user interface (GUI)
to interact with user. [13] is unique because it has
the capability to convert virtual digital IF GNSS
signals at its output into physical analog signals
using a digital to analog converter. Similarly, [15]
and [17] have capability to record simulated signals
and replay them as scenarios later. One general
limitation of this generation is the inability to handle
data from different co-ordinate systems (for
example, WGS-84, ECEF etc).

In Generation III, additional features offered by
the simulators become so extensive and diverse
that it is not possible to arrange them according to
resources. It is best to list out the different features
that include: steering software, indoor positioning



capability, use of software defined radio (SDR)
design principles, support for different RF FE
architectures, flexible/user modifiable software
platforms, support for 3D and contour maps,
networking/multi-user capabilities (LAN, WAN)
among others. Supported input data formats even
include (Tropospheric Exchange) TROPEX files in
addition to the usual IONEX and RINEX files. Data
output can now be exported to files in different
formats, for example log, binary and text formats.
Real time processing capabilities are introduced
with support for FPGA, VHDL, Windows, Linux etc.
Correction terms are calculated for anomalies such

as, orbit eccentricities in satellite trajectory or the
Sagnac effect. GUI have become more advanced
with not only a greater degree of freedom for the
user to modify and redesign the software
architecture of the simulators, but also access to
inter-modular interfaces for easy testing and
troubleshooting.

III. GNSS SIGNAL SIMULATOR IN SOFTWARE
(TUTGSSS)

Using the information gathered during the
literature review in Section I, we have begun
building a Matlab-Simulink-C++ based dual-band
(GPS L1, Galileo E1) GNSS simulator in software,
called TUTGSSS. This section provides a brief
explanation of the various blocks, features and
certain assumptions for simplicity that make up the
entire simulator. Preliminary results are also
provided.

Figure 1 shows the overall block diagram of the
TUTGSSS. Clock generator block generates the

Figure 1. Block Diagram of the TUTGSSS

Figure 2. GPS L1 simulator module

Table 1. Typical values of GNSS signal errors

Parameter Typical Value
Receiver clock error 15nsec
Satellite clock error 10nsec

Ionosphere error 3m
Troposphere error 1.7m

Timing signal offset error few nsec
Doppler frequency error 1000Hz



time pulses at sampling frequency of 13 MHz.
These time pulses are provided to the GPS L1 and
Galileo E1 simulators. Currently for simplicity, only
two channels each can be simulated for L1 and E1,
which will be increased to 8 or 12 in future versions.

Each channel consists of a timing error block,
where different error sources are simulated as
disturbances in the timing pulses input to the actual
signal simulator. The various error sources that can
be simulated are: satellite vehicle clock error,
doppler frequency error, tropospheric delay error,
ionospheric delay error, other timing offset for the
carrier and code time pulses and receiver clock
error. All error sources can be independently
programmed. If a single dual-band GPS L1 and
Galileo E1 receiver is to be tested, the receiver
clock error may be kept equal for all channels. For
simplicity, all of these timing errors have been
assigned their typical values as constants. They are
mentioned in Table 1. The output of this block are
two timing signals: ‘t_carrier’ and ‘t_code’ for the
carrier and code respectively. Since this is the first
version of TUTGSSS, we have yet to include any
satellite orbital information or receiver trajectory
and front-end effects. These features are planned
under the upgrade to version 2 of TUTGSSS.

Figure 3. Galileo E1 B/C simulator Module

Figure 4. GPS Only - Before Filter

Figure 5. Galileo only - Before Filter Figure 6. GPS + Galileo after filter



Figure 2 shows the GPS L1 simulator. It consists
of three branches, the carrier frequency generator,
C/A code generator and navigation data generator.

P-code generator branch will be included in the
future version. For simplicity, navigation data bits
are a random vector of ±1 of 30 second duration
and frequency of 50Hz. This navigation data is
spread over 2MHz by multiplying with C/A code,
which can be generated for every satellite vehicle.
This combination of data and spreading code is
then upconverted to an IF carrier at 3.42MHz, since
it would be impossible to work with 1.57542GHz
samples using Matlab-Simulink. The output of this
block is the GPS L1 signal in Inphase (I) and
Quadrature (Q) components. Similarly, Figure 3
shows the block diagram of the Galileo E1
generator. It contains a carrier generator, an E1B
primary code generator, navigation data generator
(random vector of ±1 with symbol rate of 125sps
and page refresh rate of 2Hz), E1C primary code
generator, CS25 secondary code generator and
BOC11 and BOC61 generators. Here too, the
carrier frequency is 3.42MHz and the output is in
the IQ format. Figures 4 and 5 show the spectrum
of the GPS L1 and Galileo E1 signals respectively
as generated by TUTGSSS.

The next three blocks are a switch, spectrum
limit filters and RF channel. The switch block is
used to select which signals should propogate to
the channel. Options are GPS only, Galileo Only or
GPS and Galileo both. The spectrum limit filters are
designed as equi-ripple, FIR bandpass filters with
pass band ripple of 1dB and stop band attenuation
of 60 dB. They help to limit the output spectrum to a
bandwidth of 2MHz around the carrier frequency.
Figure 6 shows the baseband spectrum of the
combined GPS and Galileo signal at the output of
the spectrum limit filter. The channel block
simulates a multipath and AWGN channel. Five

Figure 7. Multipath and AWGN channel model

Figure 8. CNR = 50dB-Hz (GPS + Galileo)

Figure 9. CNR = 30dB-Hz (GPS + Galileo)



multipath components are simulated. It is possible
to independently set the gain and delay for each
path. The AWGN added to the signal depends on
the CNR, also selected by the user. Figure 7 shows
the block diagram of the channel block. The IQ data
is stored in two variables in the Matlab workspace
from where they are copied into a bianry (.bin) file

by the background matlab program once the entire
simulation is complete.

We have begun to incorporate some of the
standard GPS test cases as scenarios within the
TUTGSSS for effective and automated testing of

Figure 10. CNR = 20dB-Hz (GPS + Galileo)

Figure 11. Power of signal (GPS + Galileo) = 40dBm

Figure 12. Power of Signal (GPS + Galileo) = 20dBm

Figure 13. Power of signal (GPS + Galileo) = 10dBm

Figure 14. Acquisition profile of GPS Software Receiver.
Satellite number 4 and 23 show peak values greater than

detection threshold

Figure 15. Galileo signal acquisition using software receiver
and time bin step of 0.17 chips



GNSS receivers. Further information regarding
various performance parameters and testing
procedures realted to GPS receivers can be found
from [38], [39], [40], [41], [42], [43], [44]. Currently,
scenarios for testing Time to First Fix (TTFF) and
receiver sensitivity can be simulated by a ramped
variation of power of satellite signal and noise
comtamination in the channel. Figures 8, 9 and 10
show the output under increasing noise conditions,
evident from the increasing power of the noise
floor, which eventually overwhelms the fixed signal
power (Figure 10). While Figures 11, 12, 13 show
the output under decreasing signal power
conditions, which eventually falls below the fixed
noise floor (Figure 13).

In order to test whether the TUTGSSS is really
providing authentic and correct GNSS signals, we
fed the data from the IQ binary files as input to GPS
L1 and Galileo E1 software receivers, also
developed in our University. As an example, GPS
L1 signals were generated from satellite vehicles 4
and 23. Figure 14 shows the output of the
acquisition code of the GPS software receiver. It
clearly shows that the detection factor for satellite
vehicles 4 and 23 are greater than the detection
threshold set for the receiver. This proves that GPS

signals are correctly generated by TUTGSSS. In
case of Galileo signals, the acquisiton results from
the receiver is shown in figure 15. The Galileo
signals were generated with a doppler frequency of
0Hz. The receiver is capable of acquiring signals
even with 1000 Hz of doppler on either side of the
center frequency. This 2000 Hz frequency range is
divided into 11 doppler ‘bins’, each 200Hz wide.
Since the Galileo signal generated by the simulator
has 0Hz doppler, it will reside in the 6th doppler bin.
Figure 15 clearly shows the acquisition peak at
doppler bin 6. Thus, the signals generated by the
simulators have been verified using software
receivers. We are in the process of incorporating
actual navigation data into TUTGSSS, and then it
will be possible to verify the signals indisputably
using even the tracking stages of the software
receivers. The features of TUTGSSS in comparison
to other state-of-art simulators is given in Table 2.

CONCLUSION

This paper presents the state-of-art in GNSS
software-based signal simulators. From the various
sources that were studied and compared, it is clear
that such simulators have evolved through three
distinct generations, with newer and more complex

Table 2. TUTGSSS features in comparison to state-of-art simulators

Criteria Present Capability Possible Extensions
1. Signals

simulated
GPS L1 (C/A), Galileo E1 (B/C) GPS L1(P(Y), M), Galileo E5, E6,

Glonass L1, L2, SBAS, IMU
2. Software

platform
1. Matlab, Simulink, C++
2.Open source simulator application

Some modules in C#

3. Error sources
modeled

1.Satellite clock, receiver clock,
troposphere delay, ionosphere
delay, Doppler, code and carrier
timing offset, AWGN, multipath,
transmitter filter attenuation

2. Typical values as constants

1. Receiver RF FE effects (AWGN,
phase noise, group delay,
automatic gain control (AGC)
effects, quantization errors, filter
attenuation), jamming,
interference

2. Accurate mathematical or
empirical models instead of
typical values as constants

4. Space
segment
modeling

Not yet implemented 1. Satellite constellation modeling
(geometry and trajectory) for
GPS and Galileo

2. Read data and files in different
co-ordinate systems and formats

5. Other features 1. Two channels modeled
2. Signal validation using GPS and

Galileo software receivers
3. Scenarios to test sensitivity and

TTFF under ramp-wise
increasing and decreasing power
of satellite signal and noise
contamination (in other words,
carrier-to-noise ratio)

1. Receiver trajectory modeling
2. 12 channels modeling
3. GUI to accept user input and

display output



features being added in each generation. This has
enabled the signal generated by such simulators to
closely resemble actual GNSS signals as
transmitted by satellites or as per their intended
design.

The authors have designed and built a GNSS
signal simulator in software called TUTGSSS and
its first results are presented in this paper. GPS L1
and Galileo E1 B/C signals were generated and
their output spectrum was plotted. Two of the
scenarios for testing pedestrian navigation
capabilities namely, sensitivity under low received
signal power from satellite and high noise
environments have been incorporated in the
simulator and their results have been presented.
Considering these factors, we believe that this
paper could prove to be a single point source of
information and education for research teams
wanting to build a GNSS signal simulator for testing
receivers of current and future GNSS signals.

MORE INFORMATION

More information on this research work and its
parent affiliations can be found at [46], [47], and
[48].
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Abstract— This paper demonstrates the effect of radio
frequency (RF) front-end (FE) free-running local oscillator
(FRO) phase noise (PN) on the phase component of the
Global Navigation Satellite System (GNSS) code
correlation product. It is observed that as FE PN increases,
it adversely affects the stability of the phase component of
the code correlation. The tracking loops in baseband
processing of a GNSS receiver attempt to lock on to the
frequency, delay and phase of the correlation product.
Until these parameters are varying within acceptable
bounds, set by the dynamics handling capability of the
tracking loops, the tracking loops are able to successfully
track the satellite signal. However, PN increases the
variation in phase of the correlation product calculated
over consecutive epochs and may also cause loss of tracking
lock if these variations go beyond phase locked loop (PLL)
pull-in range thresholds. This paper studies the relation
between FRO PN and phase component of correlation
through numerical analysis, and software simulations by
artificially contaminating GNSS signal stream with PN of
increasing variance and checking the result on the
standard deviation (SD) of the phase component of
correlation product. Based on these results, this paper
recommends certain maximum limits on the FE PN in
order to keep the SD of phase component below the one-
sigma phase error limits of the PLL used in typical GNSS
tracking loops.

Keywords-Phase noise, phase, correlation, navigation,  local
oscillator, Phase locked loop

I. INTRODUCTION

In [1], a relation between the FRO PN and code correlation
properties was presented. Specifically, the effects on
correlation magnitude losses, signal to noise ratio (SNR) and
variance were considered. These effects were studied under
different pre-detection integrations times (PIT). However, the
effect of PN on phase component of correlation product was
not discussed. It is now clear that along with magnitude, the
phase information of the correlation product is also significant
to estimate probability of tracking loop loss of lock. [2] gives a
detailed explanation on the different tracking loop
measurement errors and specifically 1-sigma tracking errors in

the PLL tracking loops. It also provides rule-of-thumb tracking
thresholds for these errors. However, it does not give any
performance estimates of the phase component of correlation
at different levels of input phase noise. Overall it has been
observed that there is not much literature available on exact
quantification of the harmful effects of FE phase noise on the
phase information of GNSS correlation product. This paper
aims to fill exactly this void. Fig. 1 shows the block diagram of
a typical GNSS receiver considered for this study.

The layout of the paper is as follows: in Section II the
phase noise model used for this study has been briefly
described. Then a theoretical/numerical relation is made for the
phase angle of correlation product in terms of the phase noise
variance of a FRO. In Section III, the Matlab model that
performs the correlation between phase contaminated and pure
pseudorandom (PRN) codes is explained. In Section IV, the
negative effects of FE PN on phase component of correlation
product are described in more detail. Also, a short description
of the tracking loop measurement errors in the PLL and their
relation  with  FE  phase  jitter  is  included.  In  Section  V,  the
results of the numerical and Matlab-based simulations are
presented. This section also presents certain recommendations
on the maximum limit of allowable front-end PN in order to
maintain phase error in code correlation within acceptable
threshold of the PLL. Finally, in the conclusion section, the
results and key findings are summarized.

II. PHASE NOISE MODEL AND THEORETICAL ANALYSIS

This study uses the same free running oscillator phase noise
model as that used in [1]. The oscillator can be represented as
in (1).

( ) ( )cos (2 ( )) (1)

Where phase is ( ), amplitude is (A) and frequency is (f0).
In a general case there is phase and amplitude noise, as well as
distortion, which makes both A and  functions of time. For a
FRO, the overall phase noise in dBc/Hz at a certain frequency
offset fm in terms of the phase noise variance per unit time
( 2 ) is given by (2) [1].
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)

                                   (2)

Where the units of  are radian2 per second (Rad2/sec).

[1] also gives a relation for the maximum value of
correlation peak in the frequency domain, which is obtained at
zero time lag, as show in (3).

( = 0) ( )                                                (3)

Where R( ) is the correlation of the baseband version of the
incoming signal with the locally-generated PRN code signal
when the local oscillator is affected by phase noise. The value

= 0 corresponds to a perfect time-match between the codes of
the incoming signal and the locally-generated version. T is the
PIT and phase noise is represented as a complex exponential of

(t). As mentioned in [1], the model for phase noise of a free-
running oscillator is a cumulative sum of uncorrelated Gaussian
random variables over the whole past history (in other words,
integral of white Gaussian noise). Such cumulative sum or
integral gives a process with linearly-increasing variance over
time, and is thus non-stationary. However, the complex
exponential of phase noise (e (t)), in turn is a stationary random
variable and hence can be used instead of just phase noise ( (t))
[3], [4], [5]. Equation (3) can be represented diagrammatically
as in Fig. 2 meaning that code correlation peak in the presence
of phase noise can be modeled as a filtered random variable
(e (t)), passed through an integrator filter.

The goal is to find a relation for the phase angle of the
correlation product. Since R(0) in (3) already represents a
complex quantity, it should be enough to represent its angular
component as an arctangent of the ratio of its imaginary and
real components. Therefore, solving (3) is necessary.

Equation (3) can be simplified by using Euler’s theorem for
complex numbers.

(0) (cos ( )) sin( )) (4)

(cos ( ) (sin ( ) (5)

Now that R(0) is represented as a complex number in the
form (I + jQ), the angular component can be represented as the
arctangent of the ratio of imaginary component over real
component.

[ (0)] [
( )

( )
]                           (6)

Cancelling the common multiplier (1/T) and substituting
sine and cosine terms by their Taylor series expansions (in
terms of (t) upto seven co-efficients) gives (7):
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                                                                                             (7)

(t) being a Gaussian random variable (grv) (since phase
noise of a free-running oscillator is a grv), it is not trivial to
solve (7) further to obtain a closed-form theoretical solution.
Another possibility is to plot the results for angle[R(0)] using
numerical analysis of (7). For this, the time domain has to be
discretized so that the continuous integral will transform into a
summation over the integration interval (T) as shown in (8).
The numerical analysis of (8) is further described in Section III.
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(8)
It is possible to represent the relation using numerical and
software simulations since the accuracy of (3) has already been
proven theoretically in [1] while studying the effect of PN on
magnitude of the correlation peak.

Fig. 1 Block-diagram of a GNSS direct-conversion receiver

Fig. 2 Equivalent model of phase noise effect



III. SIMULATION STAGE

A Matlab based program was generated which performed
correlation between two versions of the same GPS PRN code.
The first version was contaminated with different amounts of
FRO phase noise in order to replicate a real world PRN code
received from the RF front-end and after the carrier strip-off
process. The other version of the PRN code was kept ‘pure’ to
mimic the local replica code as generated in every GNSS
receiver. The Matlab model is diagrammatically represented in
Fig. 3.

The user may select the satellite vehicle number whose PRN
code is to be generated. The free running oscillator phase noise
was defined in terms of unit time variance ( ). Therefore, the
total phase noise variance per chip of the PRN code over the
coherent integration period (T) is given by (9):

                                                      (9)

Where, LPRN equals to the length of the PRN code. The
multiplication of the phase noise with incoming PRN code can
be simulated in Matlab as a multiplication of phase noise vector
and PRN code vector. A random number ‘noise’ vector ( (t))
with zero mean, unity standard deviation and length of 1023
bits was created and its variance was changed to the required
phase noise variance using calculated in (9). The
overall  phase  ( k+1) can be generated as k +  wk, where
k=0,1,2,..., and wk is a white Gaussian zero-mean sequence
with variance 2, which is given by 2.Tc, where Tc is one chip
duration.

Now that we have the phase noise vector of the desired
length and noise variance, it can be multiplied with a PRN
code vector in order to produce a noisy PRN code similar to
the one obtained from the RF front-end in a real world GNSS
receiver. Correlation of this noisy code is performed with a
‘pure’ PRN code over multiple iterations and the angular
component of correlation result is stored. Once all iterations
for one value of phase noise variance are complete, it is
possible to calculate the SD of the angular component for the
present value of . This SD represents the 1-sigma error due
to phase jitter in the GNSS baseband tracking loops. is
varied from 0 Rad2/s to 104 Rad2/s on a logarithmic scale and
the (SD) of angle of correlation peak is plotted over this range.

Numerical analysis using (8) is performed by using the
same phase noise vector (t) as that used in the simulation set-

up described above. Using this vector the Taylor series
components are created as in (8) and the numerator and
denominator summation terms are generated. Since the length
of (t) vector is already scaled by integration time T,
summation over T is equivalent to performing a cumulative
sum of all elements of the resultant vectors inside the
numerator and denominator summations. Next, the arctangent
of the ratio of these summation terms gives the angular
component of the correlation peak for that epoch. After
calculating the angular component over multiple epochs, the
standard deviation is calculated and plotted for every value of
input phase noise.

IV. PHASE NOISE EFFECTS ON PHASE OF CORRELATION

Figs. 4, 5, and 6 help demonstrate the negative effect of FE
PN on phase of correlation peak. In Fig. 4 the instantaneous
phase value of correlation peak is plotted over 200 consecutive
epochs of code correlation for small and large phase noise
variance per unit time values of 10 rad2/sec and 10000 rad2/sec,
respectively. The phase variations between consecutive epochs
are much lower when PN from front-end is low. The limited
variation in phase can be better observed in the polar I/Q plot
of Fig. 5. Therefore, if such a correlation product is fed to the
tracking loop PLL, it will be able to maintain lock as the phase
variations between consecutive epochs may be within its pull-
in range. When the FE phase noise is increased, the correlation
peak phase variations are distinctly higher as shown in Fig. 6.
In case such a signal is fed to the tracking loop PLL, it would
not be able to track such random and huge changes in phase
over consecutive epochs. Comparing polar plots of Figs. 5 and
6, it is noticed that the amplitude of the correlation results is
degraded when the phase noise is higher. It proves that the
front-end phase noise has an adverse effect to the correlation
peak magnitude [1].

The real parameter of interest is the 1-sigma tracking loop
measurement error, in degrees, for the PLL. Equations (10) and
(11) give the rule-of-thumb threshold for this error for a PLL
considering navigation data-less & with-data signals
respectively [2].

) 30°      (10)

) 15°     (11)

Fig. 3 Matlab model for PRN code correlation



Where,  is the 1-sigma PLL thermal noise in degrees,
 is the 1-sigma vibration induced oscillator jitter in degrees,
= Allan variance induced oscillator jitter and is dynamic

stress error. For simplicity if we assume typical values for
= 1.4 degrees and  = 1.4 degrees and  = 15 degrees, we
can derive rule-of-thumb thresholds for 1-sigma PLL thermal
noise in degrees so that overall PLL noise remains below 30

degrees (data-less) as in (12) and below 15 degrees (with-data)
as in (13).

)  10º                                                      (12)

)  25º                                                     (13)

Therefore, now that we know the maximum allowed phase
error for a PLL to be able to keep track, we can easily locate
the front-end PN at which the SD of phase component of
correlation (which is equivalent to the 1-sigma PLL thermal
noise phase error ) increases beyond 10 degrees.

V. RESULTS AND MATHEMATICAL ANALYSIS

This section gives details of the results obtained from
software simulation of code correlation by correlating two
versions of the same PRN code: one contaminated with phase
noise and the other in its original uncontaminated state. The
phase angle of correlation product is of focus and more
specifically, the SD of this angular component over multiple
consecutive code epochs. Fig. 7 shows the SD of phase
component versus phase noise variance per unit time for three

Fig. 4 Phase angle of correlation peak over 200 consecutive epochs for small
and large FE PN

Fig. 5 Polar I/Q plot of the correlation peak over 200 consecutive epochs for
small FE PN

Fig. 6 Polar I/Q plot of the correlation peak over 200 consecutive epochs for
high FE PN

Fig. 7 Linear plot of standard deviation of phase component of correlation
peak versus PN variance per unit time for different PIT values

Fig. 8 Logarithmic plot of standard deviation of phase component of
correlation peak versus PN variance per unit time



different PIT values: 4 msec, 20 msec and 100 msec. Fig. 8
shows the same curves but now the noise variances (x-axis) is
plotted on a logarithmic scale to enlarge the effects at lower
values of phase noise. This is because the phase angle
deviations already increase well beyond 10 degrees at quite
low values of phase noise. The figures show that the phase SD
increases with increasing phase noise, until it saturates at
around 100 degrees. Further increase in phase noise has no
effect on the phase variations. The figures also show the effect
of increasing PIT on the phase errors. Greater the value of PIT,
greater is the SD of phase for the same amount of FE PN.

Tables 1 and 2, show the maximum front-end phase noise
(in dBc/Hz at frequency offsets of 10 KHz and 1 MHz), in
order to maintain SD of phase angle below 10 degrees and 25
degrees respectively. The results show that, for 4 msec PIT, to
maintain the phase angle SD of 10 degrees (navigation data
present), maximum FE PN allowed (at 1 MHz offset) is -123
dBc/Hz. But if the PIT is increased to 20 msec, maximum PN
requirements become more stringent by around 6 dB. If the
phase noise were measured at 10 KHz offset, maximum PN
requirements are scaled by around 40 dBs. If the maximum
allowed PLL phase error is 25 degrees (navigation data
absent), the phase noise requirements can be relaxed by 7-9 dB
for each of the PIT values respectively. One can also see that
the results for maximum FE PN obtained in this study are
comparable to the values obtained in the initial study
performed in [1], where effect of PN on magnitude, SNR and
variance of correlation product were studied.

The results obtained from the numerical analysis match
very closely to the simulated curves for most values of phase
noise. At higher noise levels however, the numerical results

continue to degrade, thus diverging from the simulated results
as they saturate around 100 degrees (after all, the Taylor series
expansion is an approximation of sine and cosine terms). This
also proves that the results obtained are theoretically,
numerically, and technically sound.

One point to remember is that the PN source used for this
study is a free-running local oscillator. Noise performance of
such a device is quite poor. In practical receiver front-ends
there may be a free-running local oscillator to heterodyne the
receiver signal from RF to baseband and the resulting complex
signal will be tracked by a phase-locked loop which tries to
follow the phase noise. This tracking is successful at least for
the noise components inside the PLL bandwidth. But the noise
components with higher frequencies cannot be tracked
conveniently and may lead to loss of phase lock. Nevertheless,
the overall noise performance of such a device is far superior
and hence the threshold for maximum FE PN to maintain
thermal noise PLL error below 10 degrees or 25 degrees would
be much higher. Further studies on comparing the effects of
free-running oscillator and realistic frequency sources on
correlation parameters are currently being performed in our
Department.

CONCLUSION

The standard deviation of phase angle component of
correlation is the same as the 1-sigma thermal phase error of the
PLL in the GNSS baseband tracking loops. The current paper
presented an initial approximation of the effects of FE PN on
this phase error of the PLL. Simulated correlation results are
supported by theory and numerical methods. The results of this
study can be used by designers of RF front-end local oscillators
as it establishes a conservative upper bound on the phase noise
originating from these devices in order to maintain the phase
error in the baseband tracking loops below a certain threshold
under specific conditions of coherent integration periods. The
results obtained are comparable to those obtained in an earlier
study on the effects of FE PN on magnitude losses and SNR of
correlation peak, and hence can be considered an alternative
method of determining the maximum front-end phase noise in a
GNSS receiver. Future work could include the study of PN
originating from more realistic frequency sources, for example,
PLL in the RF FE.
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Abstract

This article presents a study of Global Navigation Satellite System (GNSS) receiver correlation

performance in the presence of phase noise (PN) originating from the radio front-end’s phase-

locked loop (PLL). Various constituent PLL sub-blocks, such as the reference oscillator (RO),

phase & frequency detector (PFD), voltage controlled oscillator (VCO), loop filter and

frequency dividers contribute to the overall PN of the PLL. The PLL phase noise modeling is

covered in detail. Correlation performance of GNSS baseband tracking loops is then calculated

as a function of several PLL design parameters such as, the VCO thermal PN, loop filter

bandwidth (BW), frequency division ratio (FDR) and the receiver correlator’s pre-detection

integration times (PIT). The effects of these parameters on the signal to noise ratio (SNR) of the

correlation product are described and simulated. Based on the results of these simulations, we

present guidelines for radio front-end PLL circuit design in order to maintain a minimum

baseband correlation performance within the GNSS receiver.

Introduction

The phase variations due to phase noise originating from the local frequency synthesizer and

imposed on the PRN codes will adversely affect the code correlation product [1]. However, the

magnitude of this correlation loss has not yet been quantified in existing literature. It should be

noted that phase noise from diverse sources such as, the radio frequency front-end (RF FE) PLL,

the baseband tracking PLL [2], assumed neighboring channel signal powers and distant blocker

powers (through reciprocal mixing [14]) may cause problems to GNSS correlation. However, in

this article, only the RF FE PLL case is addressed. In two prior works [3][4], the phase noise of a

free-running oscillator (FRO) from the RF FE has been analyzed and shown to deteriorate GNSS
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receiver performance in terms of code and carrier correlation. In both its analytical and empirical

forms, these studies concentrate on the scenario of using a simple FRO as the frequency

synthesizer. The articles showed that the derived results are valid for FROs and stipulated to their

validity for low-bandwidth PLL where the phase noise of the PLL-enclosed VCO is dominant.

Unfortunately, the FRO model is not well suited to represent practical receiver frequency

synthesizers [5], [6], [12] and hence, its direct use for specification of receiver designs is not

appropriate.

Therefore, this paper presents the subsequent observations of receiver performance by utilizing

the PLL as a practical frequency synthesizer. The results reveal that, there are both quantitative

and qualitative differences in performance when compared to the FRO scenario. More

specifically, this article will re-iterate [8] that the variance of PLL excess phase does not

necessarily increase linearly with time, as in the case of FRO [3], but rather saturates with

increasing pre-detection integration times. This phenomenon allows for a relaxed design of the

frequency synthesizer as compared to FRO-only based synthesizer. It is shown that a decreased

design effort and manufacturing cost can be achieved through careful PLL parameter selection.

Thus, the goal of this article is to provide, in both theoretical and empirical terms, guidelines and

specifications for practical design of frequency synthesizers for GNSS receiver RF FE in terms

of allowable phase noise power spectral density (PSD) masks. The differences in results obtained

compared to the basic case of FRO are discussed throughout the length of the article. The results

aim to benefit both academic and industrial research. Primarily, the approach is useful for the

optimization of vendor-specific GNSS receiver designs. Specifications for the phase noise PSD

of the PLL are derived for a large set of PLL parameters. The results are thus more exhaustive

and useful than the boundary case of FRO, equivalent to a zero-bandwidth PLL. To adequately
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represent practical frequency synthesizer performance, we have utilized a model for an integer

charge-pump PLL (CHPLL) [6], [7], [12].

The structure of the article is as follows. Firstly, the CHPLL modeling and excess phase variance

calculations are presented. The next section describes the theoretical stipulation on the relation

between CHPLL PN and performance of the baseband code correlation. Further, numerical

evaluations and simulations are performed to determine the effect of CHPLL PN on code

correlation to prove the accuracy and efficiency of the theoretical stipulations. Based on

numerical evaluations from the results obtained, performance bounds are set and

recommendations are made for FE designs in terms of allowable PN PSD masks that their PLL

can have in order to maintain a minimum code correlation performance in the GNSS baseband

signal processing. This is the defining contribution of the article.

PLL Modeling

This section addresses two major points of the study. Firstly, the CHPLL phase noise model

developed [11] is reviewed shortly and used here for analytical and empirical study of the GNSS

receiver-end correlation. Secondly, the CHPLL excess phase variance calculations are presented

to give preliminary stipulations for the design guidelines of CHPLL with respect to several

GNSS pertinent parameters.

PLL Basics and Existing Phase Noise Models

A PLL encloses a FR VCO in a feedback loop where the VCO phase difference to a more stable

RO phase is minimized [6]. In Fig. 1, a third-order CHPLL circuit diagram together with a linear

time-invariant (LTI) phase-domain model [6] is presented. In Fig. 1 the PFD, charge-pump

(CHP), loop filter (LF), VCO, and RO are represented through their transfer functions and
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inherent noise sources. Publicized PLL phase noise models [6], [7], [11] often rely on LTI phase-

domain representation or stochastic differential equation approach [9].  In this work, the LTI

phase-domain approach is selected for its simplicity and interpretability of individual noise

contributors.

Fig. 1 Charge-pump PLL: a) block diagram, b) phase-domain LTI model.

Proposed Implementation of the LTI Phase-Domain Model of a CHPLL

We next summarize the proposed implementation [11] of the LTI phase-domain modeling of the

CHPLL for use in the system-level simulations. The block diagram of a 3rd-order CHPLL is

presented in Fig. 1a, while in Fig. 1b we present the LTI phase-domain model [6]. Each

component is represented by its transfer function and associated noise source. To represent the

major contributions to CHPLL phase noise, we include the VCO, RO, and PFD as the three

major noise contributors. We note that in cases of severe adjacent channel interference [7], [12],

also the PLL output buffering should be taken into account. Using the notations in Fig. 1, the

contributions of these three noise sources to the CHPLL output OUTPUT are described by the

loop transfer functions:

,
( ) 2 ,

( ) 2
OUTPUT

VCO PLL
VCO p VCO LF

f j fNH f
f j fN I K H f

                                                    (1)
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,
( ) ,

( ) 2
p VCO LFOUTPUT

RO PLL
RO p VCO LF

NI K H ff
H f

f M j fN I K H f
                                                    (2)

,

2( ) .
( ) 2

VCO LFOUTPUT
PFD PLL

PFD p VCO LF

NK H ffH f
f j fN I K H f

                                                    (3)

In (1)-(3), we have denoted the loop filter response as:

1

1 2 1 2

1 2 ,
2 2LF

j fRCH f
j f C C j fRC C

         (4)

where M, N, Ip, KVCO, R, C1, and C2 represent the RO frequency division factor, the VCO

frequency division factor, the charge-pump current, VCO tuning gain, and the loop filter passive

components, respectively. The intrinsic noise contributions from the PFD before inclusion in the

loop are assumed to be thermal noise, whereas the noise FR-RO and FR-VCO PSDs (due to

thermal noise perturbations only) are the result of integrated thermal noise [3],[8].

The excess phase PLL(t) of the CHPLL is generated as discrete time series in the Matlab

environment as follows [11]. Firstly, bilinear transform from s-domain to z-domain of the

transfer functions (1)-(3) provides a bank of filters whose inputs are independent Gaussian

random processes, as shown in Fig. 2. The branches implementing the VCO and RO excess

phases consist of two cascaded filters, the first of which acts as an ideal integrator for the

Gaussian random processes [4][10][11], scaled to properly represent the VCO and RO,

respectively. As the intrinsic noise of the PFD/CP is represented here by thermal noise, its

branch consists of a single filter. Secondly, the RO, VCO, and PFD individual contributions are

summed together to form the total CHPLL output excess phase PLL[n].
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Fig. 2 Filter bank model for generating CHPLL output, taking into account the excess phase characteristics of
reference oscillator, voltage controlled oscillator and phase-frequency discriminator.

The resulting CHPLL phase PSD, denominated by P (f) is then calculated as:

, , , ,VCO in PLL RO in PLL PFD in PLLP f P f P f P f (5)

where:

22 2 2
, , , ,4 ,VCO in PLL VCO ii sr c VCO w VCOP f H f H f f c (6)

22 2 2
, , , ,4 ,RO in PLL RO ii sr c RO w ROP f H f H f f c (7)

2
, , ,PFD in PLL PFD w PFDP f H f c (8)

In (6)-(7) fc,VCO and fc,RO specify the oscillation frequencies of the VCO and RO, while the

thermal noise scaling coefficients [10] are:

2
10

, 2
,

10 ,
VCO wL f

w
w VCO

c VCO

fc
f

         (9)

2
10

, 2
,

10 ,
RO wL f

w
w RO

c RO

fc
f

       (10)
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10
, 10 .

PFDL

w PFDc        (11)

where LVCO(fw), LRO(fw), and LPFD represent the spot phase noise measurements [7][11] defining

the PSDs of the free-running VCO, RO, and PFD, respectively.

Examples of the loop responses generated with the proposed model are shown in Fig. 3(left) for

typical component values of R = 1580 , C1 = 200 pF, C2 = 1 pF, KVCO = 10 MHz/V, N = 42, M

= 1, Ip = 200 µA and fc,RO = 16 MHz. The component values are chosen so as to represent

average performance in state-of-the-art integrated CMOS PLL structures, e.g. in [5], [12], [13].

In Fig. 3(right) we have also generated examples of the VCO, RO, and PFD noise PSDs as stand-

alone and PLL-enclosed components. The PSD spot measurement for the thermally perturbed

RO is LRO(1MHz) = -140 dBc/Hz, whereas the VCO is perturbed by thermal noise with

LVCO(1MHz) = -120 dBc/Hz. The PFD spectral density is flat at LPFD = -235 dBc/Hz. We note

that the VCO PSD components above the loop bandwidth are mostly preserved, while its lower-

offset components are attenuated. The other noise sources from the loop illustrated in Fig. 1,

other than the VCO, are visible at frequency offsets lower than the loop bandwidth and are

moreover amplified, as seen in Fig. 3 (right).

PLL Excess Phase Calculation

The variance of the CHPLL excess phase [n], denoted by n
2, as attributed to the VCO, RO, and

PFD separately is given by [8], where T is the PIT:

2 2 2 2
, ,2

, 2

sin 4
,VCO c VCO w VCO

VCO

H f fT f c
T df

f
                  (12)
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Fig. 3 Charge-pump PLL: left – example VCO and RO excess phase transfer functions, right – output PSD and
individual contributors.

2 2 2 2
, ,2

, 2

sin 4
,RO c RO w RO

RO

H f fT f c
T df

f
       (13)

22
, , ,PFD PFD w PFDT H f c df        (14)

2 2 2 2
, , , ,VCO RO PFDT T T T                       (15)

Analytical solution of (12) and (13) within a 3rd-order CHPLL is not possible; however

numerical integration can still be used [8]. In the next Section of this article, we discuss the

effects of the CHPLL model on the GNSS correlation properties and provide a qualitative

expectation for the simulation results.
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Theory on the Relation between CHPLL PN and GNSS Code Correlation

In the GNSS radio interface, which relies on direct sequence spread spectrum (DSSS) to achieve

high receiver sensitivity, the received signal is compared with a replica of its corresponding code

until the correlation is maximized for a given delay which in turn provides an indirect

measurement of the range of the satellite. One of the performance limiting factors of GNSS

receivers is the imperfection of the RF-FE PLL. This imperfection is translated into random

deviations in its instantaneous phase or frequency and is typically modeled as a phase

imperfection, and therefore referred to as a phase noise [3]. This phase noise from the receiver

front-end PLL affects both, the carrier and code tracking loops in the baseband processing. It

affects the phase stability of the correlation product, making it increasingly challenging for the

baseband tracking loop PLL to maintain carrier lock, and it also adversely affects the signal to

noise ratio of the code correlation product, which in turn degrades the receiver sensitivity.

Furthermore, longer integration intervals ideally mean higher sensitivity. Phase noise however is

translated into rotations in the complex I/Q plane that are expected to make integration

(correlation) comparatively less effective as this interval increases.

Firstly, we look into the variance of the excess phase of the CHPLL. For the purposes of this

work, the expressions in (12)-(15) are of fundamental importance. Comparison with the FRO

variance, as given in [3], shows a significant difference in behavior – whereas the variance of the

free-running oscillator phase increases linearly with time [10]:

2
, ,FRVCO VCOT c T        (16)

The output phase variance of the oscillator-within-the-CHPLL may not necessarily behave this

way. In Fig. 4, we give an example with the VCO excess variance as a function of time once
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inserted in the PLL. With the FRVCO case, i.e. equivalent to zero-bandwidth PLL [3], the

variance follows the straight line as given in (16). However, when enclosed in the CHPLL loop,

the excess phase variance component of the VCO saturates within one loop time-constant [8].

The effect of PLL bandwidth on the variance contributions of the PLL blocks is qualitatively

demonstrated in Fig. 5, where we give two examples of CHPLL output variances with

corresponding variance contributions from the VCO, RO and PFD. As can be observed, the

variance of the excess phase at the output of the CHPLL saturates after the one PLL loop time

constant, unlike the free-running oscillator phase variance. Moreover, when the bandwidth

increases, the RO becomes more dominant and it appears as the free-running version of itself,

while when the PLL bandwidth decreases, the VCO contribution becomes more dominant. The

results in Fig. 4 and Fig. 5 stem from numerical evaluation using the analysis performed in the

previous section.

Fig. 4 VCO excess variance as a function of time with different PLL bandwidths.
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Fig. 5 Components of CHPLL excess phase variance: left – small bandwidth, right – large bandwidth.

In the presented study, the effects of the VCO, RO, and PFD are being investigated. As

summarized in Fig. 4, after one loop constant, the PLL VCO contribution to the phase variance is

constant. This is a major difference from the variance of a FRO, which is a linear function (16)

of accumulation time [3][8]. Due to this phenomenon, the PLL VCO contribution alone would

not deteriorate the correlation with increasing integration time. In general, this gives the freedom

to utilize large integration times without the penalty from PLL VCO phase noise. On the other

hand, the PLL RO retains the same phase variance behavior as the free-running VCO and will be

a source of degradation with increasing integration times for example, up to 100 ms. As the PLL

RO seems to be the dominant source of degradation with large integration times, a good design

approach would entail minimizing HRO,PLL(f) in (2) and consequently minimizing the PLL RO

variance from (13). As is clear from (2), smaller division ratios N are one possibility given that

the input frequency to the PFD, equal to each of the terms fc,RO/M and fc,VCO/N,  permits a reliable

PFD circuit design.
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The parameters of the GNSS code correlation that are studied in this article are the SNR and the

variations or instability in the phase angle component of the correlation product. The complex

PRN code correlation output Y(

the incoming down- In

general, phase noise has two effects on the signal. First, there is an energy loss, as the expected

value of |Y| decreases with noise. Second, the variance of |Y| - which is ideally 0 if no other error

effects are considered - increases [3]:

2 2E E 1YY I Q        (17)

22 2var E 0YY Y Y        (18)

where  denotes the mean or expected value of |Y| and  denotes the variance of |Y|.

Therefore, the post-correlation SNRC due to phase noise is defined by (19) [15], [16].

1020log Y
C

Y

SNR        (19)

Additionally, the instability (IPAC in radians) in the phase angle component of the correlation

C) is given by its standard deviation:

std.C CIPA                      (20)

Next, we look into the mean of the correlation peak as defined in [3]. If we take into account the

phase noise of the local oscillator, the correlation output can be written as:

*

0

1 *
T j tY c t e c t dt

PIT
       (21)
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where  equals time dependant phase noise effect,

 equals non-stationary random variable modeling the phase noise effect, PIT = T = pre-

detection integration time over which code correlation is performed. The correlation peak has

maximum value at  = 0 when the time delay between the incoming signal and the local replica is

zero, in other words, when the two signals are perfectly aligned in time domain.

*

0

2

0

0

10 0 *

1

1

T j t

T j t

T j t

Y R c t e c t dt
PIT

c t e dt
PIT

e dt
PIT

       (22)

where PRN code c(t) is essentially a sequence of +1 and -1. Equation (22) shows that the

correlation peak fluctuates randomly, according to  and also that the effect of correlation

peak in the presence of noise can be modeled as a filtered random variable equals to

passed through an integrator filter whose impulse response is a rectangular pulse of width T, and

therefore, its frequency response is given by the well-known sinc function:

sin fT
H f

fT
       (23)

The PSD of the output random process Y(0) is denoted by  and given by (24):

2
Y XP f P f H f        (24)

where PX(f) is the PSD of the frequency synthesizer output. The average power of the correlation

peak is E(Y2(0)) is given by integrating the  over all frequencies (please refer to Fig. 6):

22 0 XE Y P f H f df        (25)
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Results and Analyses

Numerical Evaluation Scenarios

The CHPLL model described earlier is used to create sampled phase noise signal vectors (called

‘realizations’), each of length 200 ms. These signal vectors are created for different combinations

of a range of typical GNSS front-end PLL parameters, as described in Table 1. This allows us to

study the effect of each PLL parameter upon the baseband GNSS correlation performance. One

hundred such realizations are generated for every combination so that the results can be averaged

over a considerable size of data samples. The nature of PLL phase noise data used for these

simulations is as follows:

Table 1. Constituent blocks of a PLL and typical values of their significant design parameters

Constituent Block Important Parameter Typical Value(s)/Range

Crystal RO PN (at 10 kHz offset) -150 dBc/Hz

PFD PN (at 1 MHz offset) -265 dBc/Hz

Loop Filter
Order 2nd order

Bandwidth 1 kHz  100 kHz

VCO PN (at 1 MHz offset) -130 dBc/Hz  -100 dBc/Hz

FD Division Ratio (N) 64, 200

The overall PLL phase noise is dependent on the sum of phase noise contributions of its

constituent blocks. The contribution of each block is in turn dependent upon various parameters,

as shown in Table 1. In each realization, only one parameter is varied while keeping all others
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constant, so that the effect on code correlation due to that parameter (and hence due to that

constituent block) can be studied. The method of adding the PN into the signal stream and

simulation of code correlation is the same as in [3].

Result Analyses – Mean and SNR of correlation peak versus VCO PN

Figs. 6 and 7 show the effect of PLL phase noise on the mean and SNR of baseband correlation

for PLL frequency division ratios of (a) 64 and (b) 200 respectively. Each band represents a

given CHPLL bandwidth that is commonly found in practical implementations. The PIT is varied

from 4 ms (weak boundary) to 100 ms (bold boundary). It can be observed that, increasing the

PLL loop bandwidth generally improves the mean correlation and its SNR for a given quality of

VCO. Increasing the PIT degrades the mean value of correlation peak for a given PLL loop

bandwidth, however this effect is generally reversed if the SNR is considered. This is because,

with increasing PIT (which effectively means more averaging), the variance of the correlation

peak reduces which results in the higher SNR. Interestingly, as evidenced in Fig. 7, with large

PLL bandwidths and very good VCO, increasing PIT may not provide any SNR benefit as

opposed to a poor VCO case. This is due to the PLL phase noise being dominated by the phase

noise of the RO, which is almost unmitigated, i.e. appears as a free-running due to the large PLL

bandwidth. As discussed in [3], increasing PIT with a free-running oscillator results in a

lowering of the SNR. Such an example in Fig. 7 is the case of the 100 kHz band (and also

observable in the 30 – 100 kHz bandwidth range) where there exists a point at which the

boundaries intersect and exchange places. To the left of this ‘knot’ we have a situation in which

increasing PIT actually decreases the correlation SNR.
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Fig. 6 Mean of Correlation Peak vs VCO PN with (a) N = 64 and (b) N = 200. PIT is varied from 4 ms (weak
boundary) to 100 ms (bold boundary). Mean values computed using equation (25).

(a)                                                                   (b)

Fig. 7 Correlation SNR vs VCO PN with (a) N = 64 and (b) N = 200. PIT is varied from 4 ms (weak boundary) to
100 ms (bold boundary).
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This scenario is strongly related to the scenario in [3], where the PN PSD is mainly due to the

FRO PSD and where increasing PIT was found to deteriorate the correlation SNR. Hence, PIT

increase is useful only when the PLL PSD is not dictated mainly by the FR RO PSD. The

intersection occurs for larger bandwidths of the PLL where VCO PN is mitigated, while RO PN

is unmitigated at the output of the PLL. In this situation, the overall PLL phase noise is mainly

the RO phase noise, which appears as free-running. Therefore, the conclusions of [3] for a free-

running oscillator apply and we expect the larger PIT to result in smaller SNR.

The intersection point of the 4 and 100 ms PITs is therefore, important to the specification of the

receiver – if a large PLL BW and a clean VCO are used on the circuit-side, increasing PIT on the

system side may not necessarily be beneficial. Finally, comparing Figs. 6a and 6b it can be

observed that the mean and SNR performance of every band degrades and the PLL phase noise

requirement becomes more stringent if the FDR is increased from 64 to 200. Hence, we conclude

that Fig. 7 provides distinct radio front-end CHPLL design options for the desired baseband

correlation SNR value, i.e. the bandwidth, VCO PSD, and PIT can be adjusted to values

commanding the best receiver design, production, and performance cost.

CHPLL Circuit-Design Guidelines

In absence of front-end phase noise, the correlation would exhibit a linearly increasing SNR as

the integration period is increased [3]. However, phase noise from the front-end sets a practical

upper-bound to the integration period, after which effective correlation SNR degrades. This

phenomenon is clearly visible in Fig. 8, which shows the relation between correlation SNR and

integration period by varying the PLL’s (a) frequency division ratio, keeping filter BW = 30 kHz



19

and VCO PN = -115 dBc/Hz (b) Filter BW, keeping VCO PN = -115 dBc/Hz and N = 64 (c)

VCO PN, keeping N = 64 and Filter BW = 30 kHz.

The significant contribution of this article is that, the well-established relation between

correlation SNR and integration period is presented in terms of front-end PLL design parameters.

This makes the results applicable not only for designers of baseband tracking algorithms but also

for designers of front-end frequency synthesizers. For example, if it is desired to have a

minimum correlation SNR of 75 dB using 100 ms integration time, looking at Figs. 8 (a), (b) and

(c), an engineer can estimate that the front-end PLL parameters should be approximately, an N =

64, filter BW of 30 kHz and VCO PN of not more than -115 dBc/Hz at 1MHz offset.

Furthermore, as each plot within Fig. 8 displays a maxima point, it is possible to allow for

tolerances in the front-end frequency synthesizer design parameters by specifying a minimum

threshold for SNR for the baseband correlation SNR.

Alternatively, to obtain direct circuit-design specifications for CHPLL parameters we use the

curves in Fig. 7 to obtain the dependence between the VCO phase noise at 1 MHz offset and the

required PLL bandwidth in order to maintain a given SNR of the correlation peak. As an

example, selecting correlation peak SNR = 60 dB yields the dependence given in Fig. 9.
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  (a)

   (b)

    (c)
Fig. 8 Correlation SNR VS PIT by varying the PLL’s (a) FDR N (BW = 30 kHz and VCO PN = -115 dBc/Hz) (b)

Filter BW (VCO PN = -115 dBc/Hz and N = 64) (c) VCO PN (offset 1 MHz, N = 64 and Filter BW = 30 kHz).
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Fig. 9 Circuit design requirements for PLL filter BW and VCO PN assuming minimum SNR requirement of 60 dB.

Conclusion

This article is a substantial extension, with practical emphasis, to [3] and [4] where the effect of

free running local oscillator thermal phase noise on GNSS code tracking performance was

considered. However, since a FRO is not well suited to mimic practical receiver frequency

synthesizers, it is necessary to perform the same study using a more real-world frequency source,

the phase locked loop, and this has been the main contribution of this article. First, a PLL phase

noise model was constructed which included PN contributions from each of its constituent

building blocks. This PLL model is designed to accommodate direct circuit specifications of

frequency synthesizers used in state-of-the-art GNSS receivers. Next, an analytical relationship

was derived between this phase noise and code correlation properties. Numerical evaluations

were performed to verify the findings of the analytical study. The effect of PLL loop bandwidth,

thermal phase noise, frequency division ratio, and correlator integration time were observed on

SNR of the code correlation product. Through mathematical interpretations of the results,

performance bounds to designers of radio front-ends were provided as they attempt to meet
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baseband performance requirements during the design of frequency synthesizers. The results can

be refined for any given PLL design by varying the constants of RO, PFD noise contributions,

and additionally providing PLL buffering noise contribution.

We hope to continue this study in the future. The next step is to convert the PLL phase noise

model, presently in Matlab, into a physical device using programmable hardware logic and

VHDL coding. This physical PLL (P-PLL) would then be integrated with a VHDL-based GNSS

signal simulator and their combined signals will be studied using the TUTGNSS receiver already

developed in our University. It would be interesting to compare the results of this study with the

results obtained in the present article using the Matlab-based PLL model. Also interesting would

be to perform a similar study in presence of for example, white noise due to the other front-end

components and further refining the PLL PN model by introducing reference oscillator phase

noise as an additional variable.
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Abstract

Testing of Global Navigation Satellite System (GNSS)
receivers requires active participation of humans to initiate,
control, record results of, and terminate the test cases.
These manual operations are often inefficient and
inaccurate, rendering the test results unreliable.
Furthermore, accessing the internal signals of the receiver
at different stages of processing is necessary to pinpoint the
exact location of anomalies. Using traditional black-box
testing techniques, it is only possible to test the final
outputs of the receiver. This paper describes the automated
test-bench developed at our University for analyzing the
overall performance of multi-frequency multi-constellation
GNSS receivers. The proposed test-bench includes a data
capture tool (dCAP) to extract internal process information,
and the overall controlling software, called automated
performance evaluation tool (AutoPET), that is able to
communicate between all modules for hands-free, one-
button-click testing of GNSS receivers.  The paper also
describes the application of these tools through single
frequency GPS L1 performance testing of the TUTGNSS
receiver.

Introduction

The prototype Global Navigation Satellite System receiver
(TUTGNSS) [1], developed at the Department of
Electronics and Communications Engineering of Tampere
University of Technology (TUT), is now in the
performance testing phase. TUTGNSS is a GPS L1/L5 +
Galileo E1/E5a dual-frequency dual-constellation receiver
jointly developed by TUT and its international partners
under 2 European Union Framework Programme research
grants.

During the manual testing of the receiver, it was noticed
that the results were often contaminated with errors due to
imprecise time-keeping and inconsistent test environments.
It was also strenuous and time consuming to perform
repetitive tests over multiple iterations, with decreasing
personnel efficiency as the number of iterations increased.
The aforementioned problems led to the results being
deemed unreliable and unrepeatable. There was thus a need
to innovate and automate the testing process and
environment. In addition, there was also the need to study
the signals as they flowed through the internal signal
processing chain, so that the exact location of anomalies
could be detected.

Currently, there are very few solutions available in the
commercial and academic domain which can perform end-
to-end fully automated, yet customizable testing of GNSS

receivers [2], [3]. A couple of commercial testing tools [4],
[5] were recently unveiled, which claim to perform similar
automated testing of GNSS receivers. However, these are
not fully customizable by the end-user, having the
limitation that they can be used only with their parent
company’s own proprietary signal simulators. Other
commercial automated testing tools [6], [7], [8] are
available nowadays. However, they are targeted towards
electronic systems other than GNSS receivers. It was due
to these reasons that we decided to implement an in-house
solution. Consequently, an automated performance
evaluation tool, called AutoPET was devised, along with a
data capture tool, called dCAP.

The AutoPET is implemented completely in software (Qt,
C++) and communicates with the Receiver Under Test
(RUT) via RS-232 and NMEA protocol and with a
commercial GNSS signal simulator via an RS-232 link. It
holds the GNSS test-cases with user-defined iterations and
other system settings. The AutoPET has already been used
for making test runs on the TUTGNSS receiver with
positive results. It is possible to initiate the overall testing
of the receiver with a single button-click and the results are
stored in the computer without any human intervention.
Test scenarios currently included in the ‘library’ of the tool
are: time-to-first-fix (TTFF), position accuracy, acquisition
sensitivity, tracking sensitivity, and reacquisition time. By
changing the scenarios in this library, the tool can be used
with different simulator models. Another innovative aspect
of the AutoPET is that it uses multi-threading to perform
the receiver testing. Multiple software processing threads
are necessary to keep track of the receiver operations and
simulator feeds simultaneously, so that an appropriate
interrupt can be generated when the receiver has performed
the desired operation. This feature is explained in further
detail in Section 1.

The dCAP is a hybrid (software controlled hardware)
entity capable of extracting the user-defined internal
process data from the different modules (acquisition,
tracking, bit decoding, etc.) of the GNSS RUT and stores it
in a computer via a 100 Mbps Ethernet link. The dCAP
hardware is independent of the receiver module (although
implemented on the same softcore) and operates through
minimal interference with the receiver operation. This data
can then be post-processed to monitor and record the
behavior of the receiver and to investigate for any
anomalies in its intermediate stages. An experimental
version of the dCAP has already been used to monitor the
carrier to noise ratio (C/No), carrier Doppler, and code
delay from the internal tracking channels, and the raw
GNSS signals in I/Q format entering the baseband
processing unit (BPU) of the TUTGNSS receiver from its
radio front-end.

Benefits of the AutoPET over the state-of-art are that it is
portable (software platform independent), easy to use,



suitable for testing most receivers using variety of
simulators (provided each of them can communicate with
the outside world using some form of communication
protocol), and its operational parameters are easy to
modify through an external configuration file. The dCAP is
currently designed specifically for the TUTGNSS receiver;
however it can be easily replicated for most experimental
embedded system receivers. Once implemented, the dCAP
offers a clear view of the internal operation of the receiver
by accessing intermediate signals between the input and
output terminals. The speed and size of data capture are
limited only by the type of Ethernet connection and the
size of the internal and external memories. Additional
details of the AutoPET and dCAP are provided in Sections
1 and 2 of the paper, while Section 3 describes the
application of these tools in testing the GPS L1 operation
of the TUTGNSS receiver.

1. Automated Performance Evaluation Tool
(AutoPET)

The automated performance evaluation tool (AutoPET) is a
software program in the Qt platform and C++ language
that communicates between the GNSS receiver, signal
simulator and its associated computer through a remote PC
that houses the AutoPET. The set-up is shown in Fig. 1.
This figure also denotes the different communication
protocols used between the different modules.

At the center is the GNSS receiver, which accepts RF
signals from the GNSS signal simulator. These signals
represent signals from the sky in accordance with the
scenario currently loaded in the simulator and therefore,
represent uni-directional communication. On the other
hand, the receiver communicates with the remote PC
housing the AutoPET using NMEA-183 protocols [9]. This
is a bi-directional communication, as the receiver
continuously updates its status via NMEA messages to the
AutoPET, and in turn the AutoPET sends a
response/control command to the receiver. The receiver
sends the $GPGGA NMEA message every 1 second
(format shown in Fig. 2 (a)), and through reading this
message, the AutoPET can determine the current status
(acquisition, tracking, position fix etc.) of the receiver.

The TUTGNSS receiver has the capability to perform a
cold-start to initiate the next test iteration when
commanded by the AutoPET. For this purpose, we have
designed a very simple custom message string which can
be identified by the TUTGNSS receiver as a cold start
command. In response, the receiver sends a custom NMEA
message, $GPTXT (format shown in Fig. 2 (b)) which
identifies that it has successfully performed a cold-start.
Performing a cold-start involves erasing all a-priori
navigation related information from the receiver memory.
This includes erasing the ephemeris, almanac and timing
information, and ensuring that all satellite tracking is lost.

AutoPET communicates with the GNSS signal simulator
through its controlling computer, called the Sim-PC (which
runs the control software for the simulator). This
communication is bi-directional using a 100 Mbps Ethernet
link. The AutoPET library holds the scenario files, through
which it remotely controls the simulator. In turn, the Sim-
PC returns responses or error messages in the form of
XML strings to the AutoPET. The communication between
the Sim-PC and the simulator is through its proprietary
protocols.

Fig. 3 shows the overall operation of the AutoPET in the
form of a flowchart. AutoPET makes extensive use of
multi-threading. The receiver, AutoPET and the simulator
function autonomously of each other and hence are
independently controlled using their own processing
threads running in parallel. Examples of some processing
threads are; Thread 1 monitors the receiver operation
through the received NMEA messages. This thread is
responsible to identify for example, if the receiver achieves
a position fix or if it performs a successful cold start.
Thread 2 monitors the simulator through the received
XML error messages and response messages from the Sim-
PC. It is responsible to identify for example, if the
simulator scenario is successfully set-up or if the satellite
signals are turned ON and OFF when demanded by the
test-case. Thread 3 monitors the internal operation of the
AutoPET itself for example, if a timer has expired or if the
user performs any operation on the GUI during the
progress of a test. Each thread generates an internal
software ‘interrupt’ within the AutoPET, based on which
the future course of action has to be dynamically
determined.

Later in the paper, the application of the AutoPET for
single frequency, single constellation operation and testing
of the TUTGNSS receiver is described. However, it can
just as easily be applied for more complex, multi-
frequency, multi-constellation testing. The scenarios are
stored in the “library” of the AutoPET, and they can be
easily updated without requiring any changes in the tool
itself. On the other hand, the receiver operation needs to be
updated to perform position fix with multiple signals and
constellations. If the receiver allows updating its operation
mode using software commands, as is the case in
TUTGNSS, these commands can also be included within
the AutoPET.

In the case of TUTGNSS, two configuration settings
control the mode of operation and the manner in which it
has to be turned ON (cold, warm, or hot start) via a 32 bit
control word. Table 1 describes the various options and the
digital control word corresponding to each option. There
are 8 possible modes of operations which would require 3
bits to be uniquely represented. However, we have
assigned 5 bits in order to accommodate any planned
future increase in operating modes. Similarly, there are



three ways to turn ON the TUTGNSS receiver, and they
can be uniquely represented by 2 bits. Therefore, out of the
32 available bits, only 7 bits are currently utilized. The rest
of the bits are in reserve for future use. The mode selection
bits are in least significant bit (LSB) position of the control
word. For example, if the receiver should perform position
fix after a warm start using GPS L1 and Galileo E1 signals,
the 32 bit control word would be
“00000000_0000000_00000000_00100010”. Using this

control word at the beginning of every test, the AutoPET
can be used for a simple single constellation or more
advanced multi-constellation testing of the receiver.

2. Data Capture Tool (dCAP)

The overall set-up of the dCAP is shown in Fig. 4. The
TUTGNSS receiver consists of the radio front-end and the
Baseband processing Unit (BPU) implemented on an





Altera Stratix-II development board. This board consists of
the NIOS-II softcore controlled by the MicroC operating
system. The hardware is programmed using VHDL and
consists of the System entity and a few peripheral entities,
such as phase-locked loop (PLL) which are not shown in
the figure for sake of simplicity. The System entity
consists of (among others) two software-controlled
hardware entities, one for the TUTGNSS receiver BPU and
the other for the dCAP server, called CPU-0 and CPU-1
respectively. The Control-PC is responsible for the overall
programming of the FPGA board through a USB link. It
also holds a Qt-based user interface acting as the dCAP
client implementation.

The dCAP client (in the Control-PC) establishes an
Ethernet connection with the dCAP server (on the FPGA)
and requests for a user-specified internal data sample. As
an example, let us assume the user requests for raw I/Q
samples input to the TUTGNSS BPU from the radio front-
end. The dCAP server software communicates with the
TUTGNSS software, which in turn allows the dCAP server
hardware access to the requested data from the appropriate
region of the TUTGNSS hardware, quite similar to how a
signal across a resistor on a dense printed circuit board
(PCB) is viewed by placing the oscilloscope probes across
it. The only limitation with dCAP is that the user has to
predict in advance which internal data parameters are of
interest and create access points within the correct
hardware entities. The dCAP server hardware will connect
to the respective access point when demanded by the
client.

This data snapshot is first buffered in the local shared
memory entity on the FPGA board due to the requirements
of speed, size and time synchronization. The dCAP server
software is responsible for transferring this data from the
internal memory to the Control-PC through the Ethernet
link. The data is stored on the Control-PC hard-drive in the

form of a *.bin file.  Therefore, the size of each data-
packet that can be accessed at a time is limited by the size
of the FPGA memory entity, while the total data size is
limited only by the size of the hard-drive of the Control-
PC. The speed of data capture is restricted by the
maximum speed of Ethernet link between the dCAP client
and server.

In Fig. 5, the internal operation of the dCAP server is
demonstrated, assuming that we would like to access the
raw samples from the radio front-end. The first block that
the samples enter inside the TUTGNSS BPU is the
Baseband Converter Unit (BCU). This is where the dCAP
hardware “probes listen in” on the signal samples. Through
these “probes”, the signals are diverted to the first-in-first-
out (FIFO) data collector on the dCAP server (CPU-1) in
addition to their usual route through the further baseband
processing blocks of the receiver. After the FIFO, the data
undergoes clock arbitration, time synchronization, and
master-slave synchronization, before being buffered into
the on-chip SDRAM memory, where it waits until the
dCAP server transfers it through the Ethernet-based local
network to the requesting dCAP client within the Control-
PC. In the case where a different internal data has to be
monitored, the “probes” simply reorienteer to the correct
access point within the correct hardware entity (for
example, to monitor the signal C/No, the probes access the
tracking loops).

3. Application of the AutoPET and dCAP in
Performance Testing of the TUTGNSS Receiver

During the GPS L1 performance testing of the TUTGNSS
receiver, the reference position in the simulator was set
(randomly) to 10° 27’ N, 10° 51’E, 0.0 m Height, which is
equivalent to x = 6160896.38 m, y = 1180826.81 m, z =
1149232.10 m. Ionosphere and troposphere errors were
turned OFF in the simulator. On average, 100 iterations





were performed for each test, and the total duration to
complete all tests was two weeks.  The dCAP was used in
monitoring the tracking channels and extracting
information such as the C/No, carrier Doppler and code
delay estimates for the satellites being tracked. Access to
these parameters enabled testing the acquisition and
tracking sensitivity of the TUTGNSS receiver, thus
confirming the results of the tests performed using the
AutoPET.

3.1 Acquisition Sensitivity

Acquisition sensitivity for the TUTGNSS receiver was
measured to be -141.5 dBm via the AutoPET and -141dBm
via the dCAP. Each coherent integration interval was of 4
ms and 256 such intervals were integrated non-coherently.
Using the AutoPET, 100 acquisition iterations were
performed at every power level and the average number of
satellites acquired was recorded, as shown in Fig. 6. It can
be observed that, no satellites were acquired at -142dBm.
Acquisition sensitivity test using the dCAP involved
extracting the carrier Doppler and code delay estimates. A
successful acquisition was assumed only if the code delay
estimate error was less than ±1 chip (300 m) and the carrier
Doppler estimate error was less than ±150 Hz. Based on
these criteria, 96.72% of acquisitions were found to be
successful when the satellite power was maintained at -141
dBm in the simulator as shown in the histograms in Fig. 7
and Fig. 8.

3.2 Tracking Sensitivity

Tracking sensitivity for the TUTGNSS receiver was
measured to be -151 dBm via both the tools, assuming a
coherent integration interval of 20 ms. Using the AutoPET,

100 tracking iterations were performed at every power
level and the average number of satellites tracked was
recorded as shown in Fig. 9. Using the dCAP, this test was
performed by selecting one satellite and observing how the
receiver C/No tracked this satellite during high and low
signal power conditions. 20 tracking iterations of 90
seconds each were performed for a particular satellite. In
each iteration, the satellite power in the simulator was
maintained at the nominal condition of -130 dBm
(equivalent to 38 dB C/No in the receiver) for the first 30
seconds. Subsequently, the power of the satellite was
dropped to -151 dBm (equivalent to 17 dB C/No in the
receiver).

As visible from Fig. 10, the receiver was able to continue
tracking the satellite at -151 dBm in 19 out of the 20
iterations. In the case where tracking was lost, the C/No



can be seen to diverge rapidly to 0. To make sure that in
the rest of the 19 cases the receiver was really tracking the
satellite at low power, the power of the satellite was
increased again after an additional 30 seconds. In each of
the 19 cases, the receiver successfully continued to track
the satellite.

3.3 3D Position Accuracy & Time to First Fix

Computation of the position fix was performed using Least
Squares algorithm without any filtering. Using only the
AutoPET, 100 position fix iterations were performed and
the average 3D error in meters was computed. Within the
same test-case, the time for achieving position fix was also
recorded. As shown in Fig. 11, the initial (0 – 30 sec)
position fix estimates are not very accurate. This is because

only the first 4 acquired satellites are used for the position
computation. As more satellites are acquired and tracked,
their inclusion into the computation gradually improves the
position accuracy to within 1 meter. Fig. 12 shows the
distribution of TTFF on a time-scale divided into decades
of seconds. The average TTFF was computed to 60.59 sec.

3.4 Validity of C/No Estimator

Fig. 13 and Fig. 14 present a comparison of C/No
measurements between the TUTGNSS receiver (extracted
using the dCAP) and a commercial receiver [10]. For Fig.
13, the input power from the simulator was varied between
-130 dBm and -151 dBm with steps of around 2 dB for 10
seconds each. The C/No readings from the two receivers
were measured at each power level and plotted on the same



scale. The reference power level represents the C/No
readings of a hypothetical (ideal) receiver with zero radio
FE losses. As the figure shows, on average there is close
conformance between the estimated values of C/No in the
two receivers. The difference between the two receivers
and the reference is approximately 5 dB, which includes

Radio FE noise and other losses. Fig. 14 shows the
instantaneous difference in C/No between the reference
and each of the two receivers taken at every power level.
The figure shows that the TUTGNSS receiver displays
lower C/No estimation peak-to-peak inconsistency than the
commercial receiver.



3.5 Other uses of dCAP

During initial prototype validation, it was noticed that the
satellite tracking was inconsistent even under high SNR
conditions. The dCAP was used to extract detailed
baseband tracking information that helped to identify the
source of the problem - signal anomalies due to insufficient
clock buffering on experimental RF FE, as shown in Fig.
15. Such anomalies would have been impossible to detect
with traditional black-box testing practices. Once the
problem was rectified, the dCAP was used once again to
monitor the RF FE signals and performance of the
baseband tracking loops, where Figs. 16-20 show a marked
improvement in the receiver signal processing and satellite
tracking performance.



Conclusions

In this paper we have demonstrated the results of the
TUTGNSS prototype receiver testing using the AutoPET
and dCAP. Results were presented, analyzed and
conclusions drawn for the GPS L1 performance of the
receiver. Furthermore, the procedures can be easily
replicated through software modifications for testing more
advanced multi-frequency, multi-constellation modes of
the receiver.

Added to the benefits of automation in terms of improved
accuracy and personnel efficiency, the proposed AutoPET
is a cost-effective solution to anyone working on GNSS
receiver technology to understand its most important
performance parameters. This tool is portable (software
platform-independent), easy to install and execute on any
computer with the basic scientific software. From an
academic point of view, the dCAP is useful for teaching
the spectral characteristics of GNSS signals at every stage
from deep inside the receiver to researchers or university
students in laboratory exercises. Together, these tools have
assisted in the complete characterization of the TUTGNSS
receiver at our University, and can be easily adapted,
enhanced and applied to other research-based receivers as
well. In other words, the proposed research has an
academic as well as practical appeal.
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