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Abstract 

Fresh food products such as meat and fish are highly susceptible to spoilage. Despite 
high efforts and advances in food processing and packaging technologies, inevitable 
microbial activity is the primary reason for their deterioration. Spoilage of muscle foods 
packaged under modified atmospheres typically manifests itself as changes in the prop-
erties of the food product and the surrounding headspace, leading to consumer rejection. 
Food spoilage is thus a major ecological and economic concern that calls for the devel-
opment of innovative packaging solutions. These solutions could extend the product’s 
shelf life by targeting the spoilage microbiota (active packaging) or by providing with real-
time information about the product’s quality status (intelligent packaging). Consequently, 
significant improvement in food quality and decrease of food waste could be foreseen, 
ultimately benefitting the whole food supply chain. 

This doctoral dissertation contributes to the development of active and intelligent pack-
aging technologies for muscle foods by means of interdisciplinary quality characteriza-
tion, involving aspects of packaging material development, food spoilage analysis and 
multivariate statistical analysis. The main purpose of the dissertation was to define the 
key aspects of the food quality characterization process within the aforementioned con-
text, to develop novel methods to enhance this process and to address specific research 
questions about muscle food quality. The theoretical framework and current scientific 
knowledge is thus reviewed with a focus on the properties and spoilage of muscle foods, 
the use of silver and oxygen absorbers as well as intelligent packaging concepts. The 
experimental part of the dissertation describes the materials and methods used for as-
sessing the quality status of meat and seafood packaged under modified atmospheres. 
The doctoral dissertation is based on four original manuscripts P1-P4 where an antimi-
crobial releasing system (P1), antimicrobial absorbing system (P2) or quality monitoring 
principles for an intelligent packaging system (P3-P4) were studied. 

In the first manuscript (P1), preparation and antimicrobial characterization of silver-con-
taining packaging materials is described. Silver-containing films were produced by coex-
trusion and liquid flame spraying. Antimicrobial efficiency of the films was examined with 
bioluminescence imaging as well as with traditional antimicrobial assay. Selected films 
were used in meat packaging and their impact on the meat microbiota was assessed 
with chemical, sensory analyses and microbiological analyses, including 16S rRNA se-
quencing. 

In the second manuscript (P2), statistical analysis was used for characterizing the impact 
of high-O2 (80/20/0), common anoxic (0/20/80) and enhanced anoxic (0/20/80 + O2 ab-
sorber) atmospheres (O2/CO2/N2 %) on physicochemical properties of pork sirloin. 
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Changes in headspace gas composition (O2/CO2 %), surface pH and color (CIELAB) was 
monitored as a function of time. Mixed ANOVA was used for determining the effects of 
storage time, atmosphere and blooming time on the studied variables. 

In the third manuscript (P3), spoilage of Atlantic cod (Gadus morhua) was examined with 
microbiological, chemical and sensory analyses. Selected-ion flow-tube mass spectrom-
etry was used for real-time quantification of volatile organic compounds in the package 
headspace throughout storage time. Cod microbiota was examined with 16S rRNA se-
quencing. 

In the fourth manuscript (P4), multivariate statistical analyses were applied for determin-
ing potential spoilage indicators of Atlantic cod and brown shrimp (Crangon crangon). 
Evolution of volatile organic compounds over storage time was explored with hierarchical 
cluster analysis, principal components analysis and partial least squares regression. 
Consequently, partial least squares regression was used as a selective tool for identify-
ing most potential spoilage indicators. 

Results of the present dissertation provide with new insights into the food quality 
characterization process as well as into the spoilage of packaged muscle food products. 
The requirements of packaging technology development and the characteristics of food 
quality information were identified as the main aspects of the characterization process 
and their impact on the experimental setup and methodology was examined. Efficiency 
of antimicrobial packaging solutions was found to be highly dependent on food product 
properties, antimicrobial activity mechanisms and material preparation techniques. Even 
though nanoscale silver showed high efficiency against typical spoilage bacteria in vitro, 
they were not effective in situ meat. The impact of varying oxygen levels on pork 
properties was demonstrated, suggesting that anoxic packaging could have benefits in 
pork packaging. On the other hand, a systematic procedure was developed for identifying 
and quantifying volatile organic compounds that could be used as food spoilage 
indicators. Several compounds were identified as potential spoilage indicators for both 
Atlantic cod and brown shrimp and their critical concentration levels were defined. 
Overall, the present dissertation highlights the importance of a multidisciplinary approach 
and novel methods in food quality characterization when aiming at improving food 
quality, combining different aspects of microbiology, (bio)chemistry, materials science 
and multivariate statistical analysis.  
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Tiivistelmä 

Tuoreet elintarvikkeet kuten liha ja kala pilaantuvat erittäin herkästi. Elintarviketuotannon 
ja pakkaustekniikoiden huomattavista pyrkimyksistä ja kehityksestä huolimatta näiden 
tuotteiden laadun heikkeneminen johtuu etenkin vääjäämättömästä mikrobitoiminnasta. 
Suojakaasuun pakatun lihan ja kalan pilaantuminen ilmenee tavallisesti muutoksina tuot-
teen ja sitä ympäröivän ilmatilan ominaisuuksissa, mikä johtaa hylkäämiseen kuluttajan 
taholta. Elintarvikkeiden pilaantumisen huomattava ekologinen ja taloudellinen vaikutus 
vaatii siten innovatiivisia pakkausratkaisuja. Näillä ratkaisuilla tuotteen säilyvyyttä voitai-
siin pidentää joko kohdistamalla huomio pilaajamikrobikantaan (aktiivinen pakkaaminen) 
tai tuottamalla reaaliaikaista tietoa tuotteen laadusta (älykäs pakkaaminen). Näin ollen 
elintarvikkeiden laadussa ja jätteen määrän vähentämisessä voitaisiin saavuttaa merkit-
täviä parannuksia, joista hyötyy koko tuotantoketju. 

Tämä väitöstyö tukee aktiivisten ja älykkäiden pakkaustekniikoiden kehitystä lihalle ja 
kalalle monitieteisen laatutarkastelun keinoin, sisällyttäen pakkausmateriaalikehityksen, 
pilaantumisanalyysin ja monimuuttuja-analyysin näkökulmia. Työn päätarkoitus oli mää-
ritellä laatutarkasteluprosessin keskeiset näkökulmat edellä mainitussa viitekehyksessä, 
kehittää uusia menetelmiä tämän prosessin edistämiseksi ja tarkastella erityisiä lihan ja 
kalan laatuun liittyviä tutkimuskysymyksiä. Työn teoreettinen viitekehys ja tämänhetki-
nen tietämys esitellään täten keskittyen lihan ja kalan ominaisuuksiin ja pilaantumiseen, 
hopean ja hapenpoistajien käyttöön sekä erilaisiin älykkäisiin pakkausratkaisuihin. Työn 
kokeellisessa osassa kuvataan suojakaasuun pakatun lihan ja merenelävien laadun tar-
kastelussa käytetyt materiaalit ja menetelmät.  Väitöstyö perustuu neljään alkuperäiseen 
käsikirjoitukseen (P1-P4), joissa tutkittiin aineiden vapautumiseen (P1) tai absorboimi-
seen (P2) perustuvia antimikrobisia systeemejä tai laadun seurannan periaatteita äly-
kästä systeemiä varten (P3-P4). 

Ensimmäisessä käsikirjoituksessa (P1) on kuvattu hopeaa sisältävien pakkausmateriaa-
lien valmistus ja antimikrobinen karakterisointi. Hopeafilmit valmistettiin koekstruusiolla 
ja nesteliekkiruiskutuksella. Filmien antimikrobista tehoa tarkasteltiin bioluminesenssiku-
vauksella ja perinteisellä menetelmällä. Valittuja filmejä käytettiin lihan pakkaamiseen ja 
niiden vaikutusta lihan mikrobikantaan tarkasteltiin kemiallisten, aistinvaraisten ja mikro-
biologisten analyysien avulla, mukaan lukien 16S rRNA -sekvensoinnilla. 

Toisessa käsikirjoituksessa (P2) tarkasteltiin tilastollisella analyysillä korkeahappisen 
(80/20/0), perinteisen hapettoman (0/20/80) ja parannetun hapettoman (0/20/80 + ha-
penpoistaja) suojakaasun vaikutusta sian ulkofileen fysikokemiallisiin ominaisuuksiin. 
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Suojakaasun koostumuksen (O2/CO2 %), pinta-pH:n ja värin (CIELAB) muutoksia tarkas-
teltiin ajan funktiona. Mixed ANOVA -varianssianalyysin avulla määritettiin säilytysajan, 
suojakaasun ja punastumisajan vaikutusta tarkasteltaviin muuttujiin. 

Kolmannessa käsikirjoituksessa (P3) tutkittiin turskan (Gadus morhua) pilaantumista 
mikrobiologisin, kemiallisin ja aistinvaraisin analyysein. Selected-ion flow-tube -massa-
spektrometriaa käytettiin haihtuvien orgaanisten yhdisteiden pitoisuuksien reaaliaikai-
seen määrittämiseen pakkauksen kaasuatmosfääristä koko säilytysaikana. Turskan mik-
robikantaa tutkittiin 16S rRNA -sekvensoinnin avulla. 

Neljännessä käsikirjoituksessa (P4) monimuuttuja-analyysia hyödynnettiin turskan ja 
hietakatkaravun (Crangon crangon) potentiaalisimpien pilaantumisindikaattoreiden mää-
rittämiseksi. Haihtuvien pilaantumisyhdisteiden kehitystä tarkasteltiin hierarkkisen klus-
terianalyysin, pääkomponenttianalyysin ja osittaisen pienimmän neliösumman regres-
sion avulla. Jälkimmäistä vaihtoehtoa käytettiin selektiivisenä menetelmänä potentiaali-
simpien pilaantumisindikaattoreiden tunnistamiseksi. 

Väitöstyössä saavutetut tulokset avaavat uusia näkökulmia elintarvikkeiden laadun tar-
kasteluprosessiin sekä pakattujen liha- ja kalatuotteiden pilaantumiseen. Pakkausteknii-
koiden kehittämisen asettamat vaatimukset ja elintarvikkeen laatua koskevan tiedon tyy-
pilliset piirteet tunnistettiin tarkasteluprosessin päänäkökulmiksi ja niiden vaikutusta koe-
asetelmaan ja metodologiaan tarkasteltiin. Antimikrobisten pakkausratkaisujen tehok-
kuuden todettiin riippuvan merkittävästi elintarvikkeen ominaisuuksista, antimikrobisista 
vaikutusmekanismeista ja materiaalinvalmistusmenetelmistä. Vaikka nano-kokoluokan 
hopean havaittiin olevan huomattavan tehokasta tyypillisiä pilaajabakteereita vastaan in 

vitro, vaikutusta ei havaittu kontaktissa lihaan. Työssä todettiin erilaisten happipitoisuuk-
sien vaikutus sianlihan ominaisuuksiin, ja hapettomilla olosuhteilla havaittiin olevan mah-
dollisia etuja sianlihan pakkaamisessa. Väitöstyössä kehitettiin myös systemaattinen 
menetelmä potentiaalisten pilaantumista indikoivien haihtuvien orgaanisten yhdisteiden 
tunnistamiseksi ja niiden pitoisuuksien määrittämiseksi. Useita yhdisteitä voitiin tunnistaa 
potentiaalisiksi pilaantumisindikaattoreiksi niin turskan kuin hietakatkaravunkin kohdalla 
ja niiden kriittiset pitoisuustasot määritettiin. Kokonaisuudessaan väitöstyö korostaa mo-
nitieteellisen lähestymistavan ja uusien menetelmien merkitystä laatutarkastelussa kun 
tavoitteena on elintarvikkeen laadun parantaminen, yhdistäen mikrobiologian, (bio)ke-
mian, materiaaliopin ja monimuuttuja-analyysin eri näkökulmia.
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Samenvatting 

Verse voedingsproducten zoals vlees en vis zijn zeer gevoelig voor bederf. Ondanks de 
hoge inspanningen en vooruitgang op het gebied van voedselverwerking en verpakking-
stechnologieën, is microbiële activiteit onvermijdelijk en de belangrijkste reden voor 
bederf. Bederf van vlees en vis verpakt onder gemodificeerde atmosfeer manifesteert 
zich meestal als veranderingen in de eigenschappen van het voedingsproduct en de 
omgevende headspace, wat leidt tot afwijzing door de consument. Voedselbederf vormt 
dus een grote ecologische en economische zorg die vraagt om de ontwikkeling van in-
novatieve verpakkingsoplossingen. Deze oplossingen kunnen de houdbaarheid van het 
product verlengen door zich te richten op de bederfmicrobiota (actieve verpakking) of 
door real-time informatie te verstrekken over de kwaliteit van het product (intelligente 
verpakking). Hierdoor kan een aanzienlijke verbetering van de voedselkwaliteit en een 
afname van voedselverspilling worden verwacht, wat uiteindelijk de hele voedselvoor-
zieningsketen ten goede komt. 

Deze doctoraatsthesis draagt bij aan de ontwikkeling van actieve en intelligente verpak-
kingstechnologieën voor vlees en vis door middel van interdisciplinaire kwaliteitskarak-
terisatie, waarbij aspecten van de ontwikkeling van verpakkingsmateriaal, analyse van 
voedselbederf en multivariate statistische analyse aan bod komen. Het hoofddoel van 
de thesis was om de belangrijkste aspecten van het kwaliteitskarakterisatieproces te 
definiëren, om nieuwe methoden te ontwikkelen om dit proces te verbeteren en om spe-
cifieke onderzoeksvragen over de kwaliteit van vlees en vis te beantwoorden. Het theo-
retisch kader en de huidige wetenschappelijke kennis worden zo herzien met een focus 
op de eigenschappen en bederf van vlees en vis, het gebruik van zilver- en zuur-
stofabsorbeerders en intelligente verpakkingsoplossingen. Het experimentele deel van 
de thesis beschrijft de materialen en methoden die worden gebruikt om de kwaliteitssta-
tus van vlees en vis verpakt onder gemodificeerde atmosfeer te beoordelen. De thesis 
is gebaseerd op vier originele manuscripten (P1-P4) waarin antimicrobiële verpakkings-
systemen gebaseerd op de afgifte (P1) of absorptie (P2) van stoffen of principes van 
kwaliteitsmonitoring voor een intelligent verpakkingssysteem (P3-P4) werd onderzocht. 

In het eerste manuscript (P1) wordt de bereiding en antimicrobiële karakterisering van 
zilverhoudende verpakkingsmaterialen beschreven. Zilverbevattende films werden ge-
produceerd door coëxtrusie en liquid flame spray. De antimicrobiële efficiëntie van de 
films werd onderzocht met bioluminescentie beeldvorming evenals met conventionele 
antimicrobiële methodes. De geselecteerde films werden gebruikt in vleesverpakkingen 
en hun impact op de vleesmicrobiota werd beoordeeld met behulp van chemische, sen-
sorische en microbiologische analyses, waaronder 16S rRNA sequenering. 
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In het tweede manuscript (P2), werd statistische analyse gebruikt voor het karakteriseren 
van de invloed van hoge O2 (80/20/0), gemeenschappelijke anoxische (0/20/80) en ver-
sterkte anoxische (0/20/80 + O2 absorbeerder) atmosferen (O2/CO2/N2%) op de fysisch-
chemische eigenschappen van varkenslende. Veranderingen in de samenstelling van 
de headspace (O2/CO2%), oppervlakte-pH en kleur (CIELAB) werden gevolgd als functie 
van de tijd. Mixed ANOVA werd gebruikt voor het bepalen van de effecten van opslagtijd, 
atmosfeer en bloomingtijd op de bestudeerde variabelen. 

In het derde manuscript (P3) werd bederf van Atlantische kabeljauw (Gadus morhua) 
onderzocht met microbiologische, chemische en sensorische analyses. Selected-ion 

flow-tube massaspectrometrie werd gebruikt voor real-time kwantificering van vluchtige 
organische stoffen in de hoofdruimte van de verpakking gedurende de opslagtijd. De 
microbiota van kabeljauw werd onderzocht met 16S rRNA sequenering. 

In het vierde manuscript (P4) werden multivariate statistische analyses toegepast voor 
het bepalen van de meeste potentiële bederfindicatoren van Atlantische kabeljauw en 
grijze garnalen (Crangon crangon). De evolutie van vluchtige organische stoffen gedu-
rende de opslagtijd werd onderzocht met hiërarchische clusteranalyse, principale com-
ponentenanalyse en partiële kleinste kwadratenregressie. De laatste methode werd ge-
bruikt als een selectieve methode om de meest potentiële indicatoren te identificiëren. 

De resultaten van deze thesis bieden nieuwe inzichten in de kwaliteitskarakterisatie en 
het bederfproces van verpakte vlees en vis. De vereisten voor de ontwikkeling van 
verpakkingstechnologieën en de kenmerken van kwaliteitsinformatie werden geïdentifi-
ceerd als de belangrijkste aspecten van het karakterisatieproces en hun impact op het 
onderzoeksopzet en de methodologie werden onderzocht. De efficiëntie van antimicro-
biële verpakkingsoplossingen bleek sterk afhankelijk te zijn van de eigenschappen van 
het voedselproduct, van antimicrobiële activiteitsmechanismen en materiaalbereiding-
stechnieken. Hoewel nanozilver in vitro een hoge efficiëntie vertoonde tegen typische 
bederfbacteriën, werd dit effect in situ in vlees niet waargenomen. De invloed van ver-
schillende zuurstofniveaus op de eigenschappen van het varkensvlees werd aange-
toond, wat suggereert dat anoxische verpakkingen voordelen kunnen hebben in de ver-
pakking van varkensvlees. Anderzijds werd een systematische procedure ontwikkeld 
voor het identificeren en kwantificeren van vluchtige organische stoffen die kan worden 
gebruikt als indicator voor voedselbederf. Verschillende chemische verbindingen werden 
geïdentificeerd als potentiële bederfindicatoren voor zowel Atlantische kabeljauw als 
grijze garnalen en hun kritische concentratieniveaus werden gedefinieerd. Over het ge-
heel genomen benadrukt de huidige thesis het belang van een multidisciplinaire aanpak 
en nieuwe methoden voor de kwaliteitskarakterisatie, gericht op het verbeteren van de 
voedselkwaliteit, waarbij verschillende aspecten van microbiologie, (bio)chemie, materi-
aalwetenschap en multivariate statistische analyse worden gecombineerd. 
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Abbreviations and remarks 

AgNO3 Silver nitrate 
AHL Acylated homoserine lactone 
CAP Controlled atmosphere packaging 
CFU Colony forming unit 
Ch. Chapter 
CIELAB  Commission Internationale de l´Eclairage L*a*b* 
CO Carbon monoxide 
CO2 Carbon dioxide 
CSI Chemical spoilage index 
EFSA European Food Safety Authority 
EPA United States Environmental Protection Agency 
ESSO (Ephemeral) specific spoilage organism 
EU European Union 
FAO Food and Agriculture Organization of the United Nations 
FDA Food and Drug Administration 
FMS Full mass scan 
GC-MS Gas chromatography-mass spectrometry 
GRAS Generally recognized as safe 
HCA Hierarchical cluster analysis 
H2S Hydrogen sulfide 
IAL Iron agar Lyngby 
KMO Kaiser-Meyer-Olkin (test) 
LAB Lactic acid bacteria 
LDPE Low density polyethylene 
LFMFP Laboratory of Food Microbiology and Food Preservation (Ghent University) 
LFS Liquid flame spraying 
LSD Least significant difference 
LOQ Limit of quantification 
MA Marine agar / Modified atmosphere 
MAP Modified atmosphere packaging 
MRS de Man-Rogosa-Sharpe agar 
MIM Multiple Ion Monitoring 
mMRS Modified MRS 
m/z Mass-to-charge ratio 
N2 Nitrogen 
NIPALS Non-linear iterative partial least squares 
NPN Non-protein nitrogen 
O2 Oxygen 
OAV Odor activity value 
OT (Human) olfactory threshold 
OTU Operational taxonomic unit 
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PA  Pseudomonas agar 
PCA Principal components analysis 
PIQES Preliminary Identification, Quantification, Exploration and Selection 
PLA Poly(lactic acid) 
PLS Partial least squares 
PPS Physiological peptone solution 
PTR-MS Proton transfer mass spectrometry 
PVC Polyvinyl chloride 
RFID Radio frequency identification 
ROS Reactive oxygen species 
SIFT-MS Selected-ion flow-tube mass spectrometry 
SSO Specific spoilage organism 
STAA Streptomycin thallium acetate actidione agar 
TEKES Finnish Funding Agency for Technology and Innovation  
TEM Transmission electron microscopy 
TMA Trimethylamine 
TMAO Trimethylamine oxide 
TPC Total plate count 
TSB Tryptic soy broth 
TTI Time-temperature indicator 
TUT Tampere University of Technology 
TVB-N Total volatile basic nitrogen 
TVC Total viable count 
UH University of Helsinki 
UGent Ghent University 
USDA United States Department of Agriculture 
VIP Variable importance in projection 
VLAIO Flanders Innovation & Entrepreneurship 
VOC Volatile organic compound 
WHC Water holding capacity 
 
In this dissertation, the following in-text referencing system is used throughout the text: 

When referring to multiple sentences, the reference is placed after the period of the last 

sentence. A comma is also placed after the reference number. [1.]  

When referring to a single sentence only, the reference is placed before the period of 

that particular sentence [1]. 
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1 Introduction 

Muscle foods are highly valued food products throughout the world. According to the November 2017 
Food Outlook report of the Food and Agriculture Organization of the United Nations (FAO) [1], the 
global production of bovine, poultry, pig and ovine meat was 67.6, 116.9, 116.1 and 14.4 million 
tonnes in 2015 and was foreseen to yield 69.5, 118.2, 117.0 and 14.5 million tonnes by the end of 
the year. In case of fish and fishery products, respective sums were 169.2 million tonnes in 2015 – 
where 76.6 million tonnes originated from aquacultures – and 174.0 million tonnes in 2017. Most of 
the produced quantities are consumed in human nutrition: in 2015, personal consumption of meat 
and fish was 43.3 and 20.2 kg. The high demand and appreciation for muscle foods can also be 
seen in the global trade: in 2017, world trade of meat and fishery products has been estimated to 
reach 31.5 and 60.7 million tonnes. [1.]  

Unfortunately, muscle foods are also highly perishable food products. According to the framework 
defined under the Save Food initiative [2], food loss has been defined as decrease in quantity or 
quality, whereas food waste is a part of food losses and refers to food that 1) has been removed 
from the supply chain even though it would have been suitable for consumption or 2) has become 
spoiled or expired. However, several alternative definitions have also been presented in the literature 
[3]. Food losses occur throughout the production chain, starting from slaughtering or harvesting and 
ending in household storage and consumption. Consequently, approximately one third of worldwide 
food production has been estimated to be lost each year. In industrialized countries, more than 40 % 
of food losses occur at the retail or consumer level while the product may still be fit for consumption. 
For example, more than 20 % of all produced meat and meat products are lost in Europe and the 
US; half of this in the consumption stage. On the other hand, even though primary losses cover 9-
15 % of total fish catches, a high proportion is also lost at the consumption stage. The total global 
losses yield approximately 30 %, while even 50 % has been estimated to be lost in the US. [4.] At 
the retail level, this is primarily due to exceeding the shelf life because of products remaining unsold, 
inadequate quality control or improper handling [5; 6]. On the other hand, the reasons of household 
food waste production have been recognized to be highly complex and affected by several factors, 
such as the attitudes, behavior, values and knowledge of the consumers. At this level, waste pro-
duction can be due to i.e. excessive or unsuccessful cooking, sensory changes or exceeding the 
labelled date. [7; 8.]  

Shelf life of a food product can be defined as the time during which the product retains its desired 
and characteristic properties, nutritional value and safety. The limits of shelf life are thus defined by 
the microbiological safety of the product as well as its microbiological, chemical and sensory quality. 
[9.] Shelf life of muscle foods depends on several intrinsic and extrinsic factors, such as the initial 
quality, packaging materials and storage conditions [10]. Eventually, changes in the sensory prop-
erties of the food product result in unacceptable quality for human consumption and the product can 
thus be considered spoiled. These changes can be due to physical damage, chemical reactions or 
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microbiological activity. [11.] Evaluation of spoilage is thus closely linked to sensory assessment. In 
addition, different microbiological or chemical indices have been developed for the determination of 
food quality and spoilage. [12.] However, it should be noted that spoilage is subjectively evaluated 
by the consumer [13] and that since every food product has its characteristic properties, unaccepta-
bility is typically highly product-specific [11].  

During the past decades, expanding consumption and trading have provoked growing interest in 
food safety and quality, nutrition and waste reduction [14]. However, the food supply chain is con-
stantly confronted by factors and phenomena which challenge its ability to respond to these interests, 
such as the need for minimal processing, convenience, globalization and distribution from central-
ized processing [15]. Health, ethics, sustainability, variety and value for money are becoming in-
creasingly important for consumers. Simultaneously, a constant shift towards modern retail channels 
like supermarkets affects the consumption patterns. [14.] Regulatory requirements and demands 
towards fewer preservatives further increase the complexity of the modern society and its require-
ments for the food industry [16]. Even though the shelf life of muscle foods can be prolonged to 
certain extent by monitoring and optimizing different factors that affect their quality, total control can-
not be achieved. For example, microbial contamination and growth cannot be entirely prevented 
even with high hygienic practices. In addition to reducing shelf life, microbial growth may also pose 
a safety risk for the consumer [17]. These high demands set for the modern food supply chain thus 
call for novel packaging technologies. 

Packaging has a key role in the food supply chain. All stages of the supply chain set different de-
mands that the packaging and its design have to comply with. [18.] Packages need to contain prod-
ucts with different sizes and shapes, protect them against deteriorative environmental effects, pro-
mote consumer convenience and act as a marketing tool in communication with the consumer [16]. 
In order to inhibit or retard microbial growth and deteriorative reactions, modified atmosphere pack-
aging (MAP) is commonly used for perishable food products [19]. Maintaining food safety and quality 
is of primary importance, which is why novel technologies such as active and intelligent packaging 
are constantly becoming more important, also in combination with MAP. Active packaging technolo-
gies are used for developing an interaction between the package and the product [18]: instead of 
merely creating an inert barrier against the environment, this kind of packaging has an active function 
in the preservation of food products [16]. On the other hand, intelligent packaging can be used for 
monitoring the product or its surroundings [18]. These packaging technologies have thus extended 
functions over traditional solutions and aim at improved safety and quality of the food product, pro-
motion of consumer health and safety as well as reduction of food waste and packaging material 
consumption. Ultimately, these technologies aim at packaging solutions that are both efficient and 
economic, thus benefitting the whole supply chain. 

In this dissertation, quality characterization is performed within the context of developing active and 
intelligent packaging technologies for muscle foods and is defined as a process that aims at providing 
information about food quality under relevant packaging and storage conditions in order to define, 
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evaluate or improve the intended packaging concept. The information about quality changes that 
take place in the food package during storage time is vital for developing novel packaging technolo-
gies and thus greatly affects their success. However, information about the features, requirements 
and limitations that affect the quality characterization process within this particular context is still 
limited in the scientific literature. Furthermore, because of the complex nature of food spoilage, qual-
ity characterization requires extensive data collection. This can be achieved with the help of storage 
experiments where regular spoilage analyses are carried out for food samples stored under well-
defined conditions. However, this kind of data production is typically time-consuming, labor-intensive 
and often not directly applicable in packaging technology development. Novel methods are thus 
needed for facilitated, faster and targeted production of food quality information. 

The purpose of this dissertation can be summarized as 1) defining the key aspects of food quality 

characterization within the context of developing active and intelligent packaging technologies for 

muscle foods, 2) developing novel methods and techniques for improving data collection and analy-

sis, and 3) increasing the scientific knowledge regarding specific quality characterization topics. Sim-
ultaneously, this dissertation directly contributes to the development of active and intelligent pack-
aging technologies by means of microbiological, chemical and sensory spoilage analyses, multivar-
iate statistics as well as packaging material development. The dissertation is based on four original 
research papers (P1-P4) with the focus on three major types of active/intelligent packaging systems:  

1) Development of an antimicrobial releasing system (P1)  

2) Development of an antimicrobial absorbing system (P2)  

3) Development of quality monitoring principles for an intelligent packaging system (P3-P4)  

The dissertation consists of five main chapters (Ch.) 2-6 following the introduction (Ch. 1). In Ch. 2, 
a literature review focusing on the scientific background of the study is given. The detailed aims and 
framework of the study are defined in Ch. 3 and an overview of the main materials and methods in 
Ch. 4. Results of the study are presented and discussed in Ch. 5, while Ch. 6 provides a summary 
of the main findings and discusses their impact and perspectives. A more detailed description of the 
research can be found in the manuscripts P1-P4 that are provided in the end of the dissertation.  
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2 Literature review 

Meat and seafood are highly susceptible to spoilage due to their intrinsic properties. Muscle foods 
typically have a high content of nutrients available for microbial consumption, high water activity (aw) 
and neutral or slightly acidic pH; these properties are generally favourable for microbial growth [12]. 
Eventually, spoilage manifests itself as deteriorative changes in microbial growth, production of 
VOCs, odor, flavor, lipid oxidation, moisture content, color, structure and/or composition [20]. Micro-
bial growth and metabolism are the most prominent causes of food spoilage and may cause slime 
formation, visible microbial colonies, discoloration, off-odors and off-flavors [11]. Analysis of these 
changes under specified packaging and storage conditions thus forms the basis of food quality char-
acterization.   

Spoilage of muscle foods is a complex process that results in unacceptable quality. Generally, quality 
can be defined either as functional quality that refers to the desirable properties of the product, or as 
conformance quality that represents the consumers’ expectations [21]. However, even though con-
sumers generally recognize discoloration, slime and off-odors as the main signs of quality deteriora-
tion, the perception of quality is subjective and depends on the assessor’s background, evaluation 
capacity, experience and position in the food supply chain, as well as on the extent of changes in 
the food product [13; 21]. For this reason, food quality characterization frequently needs to address 
subjective questions in an objective manner.  

Different quantitative and qualitative analytical methods can be used for characterizing the changes 
in the properties of packed food products and/or in the surrounding headspace and consequently for 
the determination of the quality status on their basis. However, the utilization and development of 
these methods and the interpretation of the obtained results are greatly complicated by the fact that 
several factors affect the quality of food products. Furthermore, a specific context – such as pack-
aging technology development –  limits the amount of applicable methods. 

2.1 Spoilage of meat and fish 

2.1.1 Intrinsic properties of meat and fish 

2.1.1.1 Composition and structure 

The term meat is primarily used for animal muscle tissue, even though organs such as liver and 
kidneys are also included among edible flesh [22]. According to the European Union (EU) definition 
[23], the term meat relates to mammalian and avian skeletal muscles with naturally included or ad-
herent tissue that are suitable for human consumption. The primary components of carcass meat 
are muscle tissue, fat, connective tissue and bone. Muscle tissue consists of muscle fibres where 
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multinucleate cells are combined to long and thin structures by connective tissue and surrounded by 
sarcolemmas. Connective tissue primarily consists of collagen and surrounds muscle fibres (endo-
mysium), fibre bundles (perimysium) as well as whole muscles (epimysium). Fat can be located 
under the skin (subcutaneous), between muscles (intermuscular) or within individual muscles (intra-
muscular). [21; 22.] 

Several terms can be used for referring to fishery resources. Fish belong to the phylum Chordata 
and can be classified into bony fish (superclass Osteichthyes) and cartilaginous fish (superclass 
Chondrichthyes), whereas crustaceans belong to the phylum Arthropoda and molluscs (i.e. mussels, 
oysters, squids) to the phylum Mollusca [24]. However, the definition of the broader term seafood is 
not consistent in the literature and may have been restricted to marine species [25]. In this disserta-
tion, the term seafood is used in accordance to the Scientific Opinion of the European Food Safety 
Authority (EFSA) on seafood health benefits [25] and thus includes both marine and freshwater an-
imals of either wild or farmed origin and excludes aquatic mammals, reptiles, echinoderms, jellyfish 
and aquatic plants. Composition of fish and mammalian muscles is primarily similar. Lean fish mus-
cle consists of muscle blocks called myotomes that form the characteristic flaky texture of fish and 
are separated by connective tissue and small blood vessels. The fibres that form the myotomes are 
shorter than meat muscle fibres. In fresh fish, the muscle is tightly attached to connective tissue 
along the backbone and the muscle surface is continuously smooth. Fish muscles can be divided 
into white and red muscles: proportions of these two types depend on the fat content of the fish. 
Higher proportion of red muscle occurs along with higher fat content. [22; 26.] 

The main constituents of meat and fish are water, proteins, lipids and carbohydrates (Table 1).  

Table 1. The approximate proportion of water, protein and lipid (%) in meat [27] and seafood [26]. 

Product Water (%) Protein (%) Lipid (%) 
Beef 70-73 20-22 4.8 
Lamb 73 20 5-6 
Pork 68-70 19-20 9-11 
Poultry 73-77 20-23 4.7 
Atlantic cod (Gadus morhua) 78-83 15-19 0.1-0.9 
Haddock (Gadus aeglefinus) 79-84 14.6-20.3 0.1-0.6 
Hake (Merluccius merluccius) 80 17.8-18.6 0.4-1.0 
Herring (Clupea harengus) 60-80 16-19 0.4-22.0 
Mackerel (Scomber scombrus) 60-74 16-20 1.0-23.5 
Grey shrimp (Crangon crangon) 68-70 10.5-23.2 0.9 

Meat primarily consists of water (75 %) and proteins (20 %). Lipids such as fats and oils form the 
majority of the remaining 5 % along with carbohydrates, amino acids, dipeptides and nucleotides. 
The composition of meat is affected by species, breed, age, sex, hormonal levels, feed and housing. 
[21.] In fish, the composition is respectively dependent on factors such as species, age, sex, envi-
ronment, feed, movement and season [26; 28]. In contrast to mammalian muscles, variation in the 
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fish muscle composition is high because of the high number of different fish species. Typically, living 
conditions and production methods of fish are also less controlled since the majority of fish is caught 
by fishing instead of farming. [29.] Water content of fish can be 30 - 90 % and may vary in different 
body parts, though 70 - 80 % is typically observed depending on the fat content. Water content may 
be used for estimating fish condition since it generally increases in living fish towards the spawning 
time. [26.] The total protein content of fresh fish is typically between 15 - 20 % and lipid content up 
to 25 %. Smaller relative amount of connective tissue (ca. 3 %) contributes to the softness of fish 
when compared to mammalian muscles (15 %). [22; 26.] 

Lipid content is the most varying component in fish muscles [28]. In contrast to meat where separate 
fat deposits can be found, fish lipids are mostly located between muscle fibres [22]. The proportion 
of lipid content is dependent on fish size and maturity, water content and seasonal variation. Lipid 
content can be used for classifying fish into fatty (3 - 25 %; mackerel, herring) and lean (ca. 0.5 %; 
cod, haddock). In contrast to mammalian lipids where double bonds are not typical, fish lipids consist 
of highly unsaturated fatty acids. Generally, marine fish contain more polyunsaturated fatty acids 
than freshwater fish. Since polyunsaturated fatty acids oxidize more readily than saturated ones, fish 
is usually more prone to the development of rancid off-odors than meat. [22; 28.]  

Meat and fish proteins typically consist of carbon (C), hydrogen (H), oxygen (O), nitrogen (N) and 
sulfur (S). These proteins can be divided into structural, sarcoplasmic and connective tissue proteins. 
[21; 26.] Structural proteins such as actin and myosin constitute approximately 70 - 80 % of total 
protein content in fish and ca. 40 % in mammals. Connective tissue proteins such as collagen ac-
count for ca. 10 % of fish proteins and 17 % of mammalian proteins. [28.] Degradation of proteins 
could be used for spoilage analysis since it may occur as a result of microbial growth, enzymatic 
activity or processing practices and have deteriorative effects on flavor, nutritional quality and com-
mercial value [20]. In fish, the composition and activity of sarcoplasmic proteins remains undisturbed 
during post-mortem storage, whereas cytoskeletal proteins are degraded by proteolysis [30]. Differ-
ent approaches for analyzing protein changes have been presented in the scientific literature, includ-
ing spectroscopic methods [31; 32] and gel electrophoresis [33; 34]. However, monitoring of protein 
changes during storage has been found challenging because of labor-intensive and technically de-
manding experimental setups [20].  

Even though carbohydrates form a small fraction of muscle tissues, they contribute to microbial 
growth. In warm-blooded animals, glycogen is used as an energy reservoir via glycolysis. After 
slaughter, breakdown of glycogen continues even though O2 is no longer available and leads to the 
accumulation of lactic acid and pH decline. This process continues until all available glycogen is 
consumed or glycolytic enzymes are inactivated by low pH. The final pH depends on muscle type, 
pre-slaughter exercise, stress and temperature. [21; 22.] In contrast to meat, the carbohydrate con-
tent of fish is mostly very low (< 0.5-1 %) due to the absence of glycogen. Consequently, lactic acid 
is only produced in low quantities, which is why the post-mortem pH of fish is relatively high. This 
increases the susceptibility of fish to spoilage since microbial growth is inhibited by low pH. [22; 35; 
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36.] Furthermore, since water-soluble carbohydrates and non-protein nitrogen compounds are con-
sumed before excessive proteolysis, the low carbohydrate content of fish promotes the utilization of 
nitrogenous compounds, thus resulting in earlier generation of off-odors and off-flavors than in case 
of meat [22]. 

Both carbohydrates and proteins have high importance for the water-holding capacity (WHC) of meat 
and fish. After rigor mortis, accumulation of lactic acid and subsequent acidification lead to denatur-
ation of proteins which reduces their WHC. Decrease in WHC leads to water loss referred to as drip. 
[21.] At the isoelectric point, WHC and protein solubility reach their minimum because of their hydro-
philicity. Fish proteins reach this point at approximate pH 4.5 - 5.5 and meat proteins at 5.3 - 5.5. 
[21; 28.] A poor WHC may have a central impact on meat and fish quality since drip loss deteriorates 
the product’s appearance, leads to weight loss and may reduce its juiciness [21]. 

2.1.1.2 Non-protein nitrogen fraction 

Meat and fish contain a non-protein nitrogen (NPN) fraction that consists of nitrogen-containing com-
pounds with low molecular weight and high solubility in water. Compounds belonging to the NPN 
fraction commonly contribute to spoilage since they provide with a readily available source of nutri-
ents for microbial growth [35]. These compounds, such as free amino acids, volatile bases, nucleo-
tides and creatine, are present in meat and fish in varying quantities. In addition to animal species, 
the composition of the NPN fraction is affected by variation between individual animals. In teleosts, 
approximately 9 - 18 % of total nitrogen is included in the NPN fraction. Creatine is the most abundant 
NPN compound in fish, whereas the amino acid content depends on the species. Histidine is typically 
found in dark fish flesh and can be used by microbes in the production of histamine. [37.]  

The total volatile basic nitrogen (TVB-N) content of fish has traditionally been used as an indicator 
of the quality status. The European commission regulation No 2074/2005 [38; 39] has set the maxi-
mum limits for the TVB-N content in ice-stored fish products intended for human consumption: 25 
mg N/100 g in redfish, 30 mg N/100 g in Pleuronectidae excluding halibut and 35 mg N/100 g in 
Atlantic salmon, Merlucciidae and gadoid fish. However, even though these values represent legis-
lational limits, it should be taken into account that different values have been presented in the scien-
tific literature for different species and packaging conditions. For example, TVB-N content of up to 
20 mg N/100g where the contribution of trimethylamine (TMA) is up to 3 mg N/100 g has been 
associated with fresh cod stored under ice [40].  

Trimethylamine oxide (TMAO) is one of the most characteristic NPN fraction compounds in marine 
fish [37]. TMAO contributes to the maintenance of osmotic balance in the fish tissue in correspond-
ence with the environmental conditions [41] and has been identified as a counteracting solute that 
stabilizes the protein structure and protects it against the deteriorative effects of pressure [42], salts 
[43], urea [44] and temperature stress [45]. However, the lipid content of fish has been observed to 
correlate with both depth and TMAO content, suggesting that TMAO could be produced as a by-
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are generally more distinctively separated than in meat [78]. Myoglobin is characteristic to red fish 
flesh and may be present in smaller quantities in white flesh. In crustaceans, myoglobin is absent. 
[77.] This emphasizes the significance of carotenoids for seafood color. Carotenoids are isoprenoids 
that are produced by photosynthetic plants, algae and bacteria and by certain non-photosynthetic 
organisms. These compounds can be classified into carotenes and xanthophylls, where only the 
latter group contains oxygen. [79.] Despite the fact that certain carotenoids are colorless [80], most 
of them absorb light at the 400-500 nm range and thus exhibit red, orange or yellow color [79]. For 
this reason, carotenoids contribute e.g. to the characteristic color of salmonid fish and crustaceans 
[78]. However, the intensification of crustacean color during cooking is due to protein denaturation 
[77]. In contrast to myoglobin which is an inherent part of muscles, carotenoids are obtained from 
the diet or other external sources [81]. 

In addition to visual inspection, color of meat can be instrumentally analyzed. Continuous scales can 
be used for describing color as a combination of pure red, blue and green. Generally, color is defined 
as a point in space using three-stimulus values X, Y and Z. In the Commission Internationale de 
l´Eclairage L*a*b* (CIELAB) color space, three-stimulus values define the coordinates L*, a* and b*. 
Lightness (L*) is described from 0 (black) to 100 (white), redness (a*) from negative (green) to pos-
itive (red) and yellowness (b*) from negative (blue) to positive (yellow). The chromacity coordinates 
a* and b* can also be used for the calculation of hue angle or chroma. [21]. Depending on the food 
product and packaging materials, color measurements can be destructive or non-destructive. Non-
destructive measurements through the packaging materials allow the follow-up of specific packages 
over time, thus resulting in less material consumption. However, possible fat or purge may affect the 
transparency. Direct measurements from the product surface are often preferred, although the loss 
of desired headspace gas composition requires that the samples are immediately assessed after 
opening the package. [60.] In order to prevent light from passing through the sample, sufficient thick-
ness is required. High pH enhances the pink color of meat: the darker and more red the meat is, the 
more intense pink color can be perceived. Decrease in pH towards the isoelectric point of water-
binding proteins can be expected to result in increasing amount of free water and subsequently light 
scattering. On the other hand, low pH supports the dominance of reduced myoglobin. [76.]  

Instrumental parameters have also been observed to affect the measured color values. Brewer et 

al. [76] used Minolta (Minolta Camera Co., Ltd., Osaka, Japan) and HunterLab (MiniScan XE, Hunter 
and Assoc., Reston, VA, USA) colorimeters and illuminants A, C, D65 and F to evaluate the color of 
pork. The observed differences between illuminants and instruments indicate that data comparison 
may not be valid if different experimental approaches were used [76]. Respective inconsistency be-
tween different instruments were observed by Brewer et al. [75]. Tapp et al. [82] found that Minolta 
colorimeters (60.0 %) were preferred over Hunter instruments (31.6 %) among 1068 peer-reviewed 
articles. Illuminant was typically D65 (32.3 %) or not reported (48.9 %). Aperture size and observation 
angle were not reported in the majority of the articles, whereas blooming time of freshly cut muscle 
was not reported in 36.8 %. It was thus concluded that a standardized set of minimum reportable 
parameters should be used. [82.] 
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2.1.2 Microbial contamination and growth  

Spoilage processes of meat and fish can be divided into three main groups: microbial growth, autol-
ysis and lipid oxidation [83; 84]. Even though microbial growth and metabolism is the most prominent 
cause of food spoilage, autolytic and oxidative reactions may contribute to spoilage in certain food 
products. Autolysis refers to degradative enzymatic reactions that are immediately initiated after 
death: these reactions are mostly related to fish spoilage and have been considered less relevant in 
meat [13; 83]. In fish, autolysis dominates the spoilage at 0 °C during the first 4 - 6 days and is 
affected by the initial quality, temperature, O2 levels and pH. Progressing autolysis promotes micro-
bial growth by allowing bacteria to enter the tissues from outer surfaces and by providing with nutri-
ents for microbial growth. However, significant muscle degradation is associated with extremely 
spoiled products. [83.] On the other hand, products having a high fat content readily undergo oxida-
tion and subsequent generation of discoloration and rancidity [37].  

Microbial growth is initiated in meat and fish as a result of contamination. Every food product has its 
characteristic microbiota that changes over time and depends on the raw materials, processing 
methods and storage conditions [11]. Muscles and internal organs of healthy living animals are nor-
mally sterile since microbes are prevented from entering the tissues or their growth is controlled. 
Sources of meat contamination include skin, hide, fleece, feet as well as the alimentary tract and its 
contents. A contact between muscles and these contamination sources may occur directly or via 
cross-contamination on the processing line. Good processing hygiene and washing can be used for 
minimizing these risks. [21; 22.] However, washing water and aerosols pose additional contamina-
tion risks [21]. 

In addition to aforementioned risks, additional sources of contamination can affect the microbiota of 
fish and other seafood. Contamination of fish is affected by the living habitat and its characteristics: 
water temperature, salt content, swimming depth and pollution degree. Contaminating microbes are 
present on the skin, gills and alimentary tract. [35.] Fishing equipment and procedures may damage 
these surfaces, allowing microbes to access fish muscles. Possible gutting on-board before cooling 
eliminates a major source of contamination, though exposes the fish muscle surfaces: a high ratio 
between surface area and volume increases the spoilage rate. Furthermore, packaging and storage 
of fish under ice as well as processing in the docks or markets can cause contamination. In order to 
prevent spoilage of highly perishable species like crustaceans, these are commonly kept alive as 
long as possible. Contamination can also be reduced by cooking or freezing immediately after catch. 
[22.] 

Initial microbial load of meat and fish may be highly variant. Microbiological quality of meat is affected 
by the physiological state of muscles at the time of slaughter, slaughtering and processing practices, 
storage and distribution conditions as well as temperature [13]. Typically, total viable count (TVC) 
on the carcass surface is up to 3-4 log colony forming units per square centimeter (CFU/cm2) under 
high processing hygiene and even over 6 log CFU/cm² under poor hygiene [21].Variation in the initial 
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microbial levels between animal species is affected by slaughtering and processing methods. Since 
pig skin is not removed from the carcass, higher microbial counts are typically observed in pork than 
in beef. In fish, initial microbial counts can be even higher: 2-7 log CFU/cm2 on skin and 3-9 log 
CFU/cm2 in the gills and gut have been reported. The composition of the microbiota living on fish is 
dependent on the water temperature and salt content: marine fish microbiota is required to tolerate 
elevated salt contents. [22.]   

Progress of microbial growth can be divided into four main phases. Bacteria adapt to their environ-
ment during the lag phase and increase exponentially in the log phase. In the stationary phase, 
growth and death rates become equal due to e.g. depletion of nutrients or production of antimicrobial 
substances. In the death phase, death rate exceeds the growth rate. [21.] Several intrinsic and ex-
trinsic factors affect this process. Under certain packaging and storage conditions, microbial popu-
lation meets a selection pressure and microbes that are most adapted towards the particular condi-
tions become dominant. [85.] This depends on the physical and chemical properties of the product, 
such as pH, buffering capacity, availability of nutrients and water activity. Generally, post-mortem 
acidification of meat inhibits microbial growth since neutral pH (ca. 7) is optimal for many microbial 
species. [21] Respectively, high post-mortem pH of fish (> 6.0) enhances microbial growth [35]. High 
water activity also promotes microbial growth, though typically aw over 0.91 is required [21]. However, 
from all possible extrinsic factors, temperature is one of the most influential. Generally, increasing 
growth rate can be observed with increasing temperatures, whereas chilling delays the onset of log 
phase and reduces the bacterial growth rate. Furthermore, bacteria can be divided into four major 
groups on the basis of their optimal growth temperature ranges: psychrophiles generally grow at -8 
to 25 °C and psychrotrophs at -2 to 25 °C, mesophiles are favored at 10 to 40 °C, and thermophiles 
grow at 43 to 66 °C. Even though psychrotrophic bacteria tolerate chilled temperatures, their growth 
is optimal at higher temperatures. [21.]  

The total microbial load is not necessarily a comprehensive indicator of spoilage. For example, sen-
sory rejection of fish has been observed to occur at varying levels between 106-109 CFU/g [86-90]. 
Despite the variation in the initial microbiota, relatively few microbes directly contribute to meat and 
fish quality. Spoilage association has been used to refer to the microbiota present in the food product 
at the time of spoilage, whereas spoilage organisms are responsible for off-odor and flavor produc-
tion [35]. More recently, the concept ephemeral or specific spoilage organisms ((E/S)SOs) has been 
assigned to the part of microbiota that causes spoilage. These microbes typically form a fraction of 
the initial microbiota. [11; 13.] Over time, SSOs become dominant and lead to changes in the sensory 
quality. The spoilage domain of SSOs is determined by factors including temperature, gas atmos-
phere, pH and water activity. [11.] Typically, correlation between SSO growth and freshness is more 
informative than between TVC and freshness [30]. 

Microbial interaction has been considered highly significant for spoilage. In addition to the packaging 
and storage conditions, competition affects the development of spoilage microbiota [85]. Growth of 
SSOs is affected by the symbiosis or antagonism between different microbial species, competition 
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for nutrients or production of antimicrobial agents. For example, lactic acid bacteria (LAB) are able 
to produce lactic acid and thus to inhibit the growth of several other microbial species. Many Gram-
negative species have been observed to produce acylated homoserine lactones (AHLs) that are 
used in quorum sensing. [11.] In addition to SSOs, other microbes that are present in the food or 
packaging may have an impact on spoilage through interactions, even though their growth has no 
direct impact on sensory properties. Interaction of microbiota has also been considered as a likely 
cause of spoilage metabolite production. The concept metabiotic spoilage interaction has been used 
for describing the exchange of nutrients or metabolites between microbial species that contributes 
to spoilage. [91; 92.]  

2.1.3 Volatile organic compounds 

Spoilage of food is commonly characterized by the generation of unacceptable off-odors due to the 
production of volatile organic compounds (VOCs) during microbial metabolism [11]. A certain food 
product has a characteristic VOC profile that not only determines its odor but also changes during 
spoilage [93]. Off-odors are a prominent cause of food spoilage and have thus a high economic 
impact [94]. Especially in fish, odor is considered to be one of the most important quality parameters 
[30]. Abnormal odors in the product pass over other perceived quality attributes [21]. 

Common VOCs produced during food spoilage include acids, alcohols, aldehydes, amines, ethyl 
esters, ketones and sulfides [11; 95]. These VOCs are produced as nutrients (Table 2) are consumed 
during both primary and secondary metabolism [96]. The most common precursors can be charac-
terized as 1) compounds of the glycolytic pathway, 2) metabolic compounds or 3) nitrogenous com-
pounds [13].  

Table 2. Typical precursors that can be utilized by common spoilage microbes under aerobicA and/or 
anaerobicB (limited O2 and/or high CO2) conditions: Pseudomonads (P), Shewanella 
putrefaciens (S), Brochothrix thermosphacta (B), enterobacteria (E) and lactic acid 
bacteria (L) [13].  

Precursor Microbes 
Amino acids PAB, SAB, BA, EAB, LAB 
Ethanol SA 

Gluconate PAB, SA 

Gluconate-6-phosphate PAB, SA 

Glucose PAB,SAB, BAB, EAB, LAB 

Glucose-6-phosphate PAB,SAB, BAB, EAB, LAB 
Lactate PA, SA, EA 
Pyruvate PAB, SA 

For example, glucose is the first substrate to be used by the Table 2 bacteria and has been shown 
to act as a precursor for a high number of different alcohols, acids and ketones [13]. Sulfurous odors 
are produced as microbes degrade L-cysteine and L-methionine, whereas decarboxylation of free 
amino acids that are readily available in protein-rich food products produces volatile biogenic amines 
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[97]. However, it should be noted that the utilization of precursors depends on several factors, such 
as the composition of the microbiota, packaging and storage conditions as well as the type and 
availability of other substrates [13]; relations between precursors, microbiota and VOC production 
have been presented in detail in several reviews [13; 95; 96]. In accordance with these remarks, the 
development of the VOC profile is a complex event that primarily depends on the microbial species 
and strain, growth phase, pH, humidity, available nutrients, temperature and atmosphere. In addition 
to having an indirect effect on the VOC profile via the microbiota, these factors may also directly 
affect the generation of VOCs. [96.]  

Concentrations of VOCs produced as a result of microbial metabolism can be used to indicate mi-
crobial growth [96]. Chemical spoilage index (CSI) refers to the metabolites that cause off-odors and 
subsequently consumer rejection [11]. VOCs have been utilized in different applications, such as air 
analysis [98-100] and infection diagnostics [101-104]. In food science, determination of VOCs can 
be used as a fast and effective technology for determining food quality or spoilage [20; 30; 96]. The 
spoilage potential of an SSO refers to its qualitative ability to produce off-odors, whereas spoilage 
activity is determined by the quantitative ability to produce spoilage metabolites. SSOs can thus be 
identified by comparing the spoilage related changes that occur in food products to those caused by 
microbial isolates. [11.]  

Different methods can be used for the identification and/or quantification of VOCs present in the 
package headspace. Traditionally, chromatographic methods have often been used for concentrat-
ing the VOCs prior analysis by dynamic or static headspace methods, distillation or solvent extraction 
[30]. Gas chromatography-mass spectrometry (GC-MS) has been the most frequently applied ap-
proach for the characterization of meat products [105-108] and fish products [57; 89; 109-115]. How-
ever, due to the need for destructive sample preparation, GC-MS cannot be applied for direct and 
real-time analysis of a food package headspace. In contrast, selected-ion flow-tube mass spectrom-
etry (SIFT-MS) can be used for this purpose. SIFT-MS is a quantitative method based on chemical 
ionization that has gained increasing interest in food science during the recent years. When using 
this technology, precursor ions are first produced at the ion source. These ions should be highly 
reactive with trace gases and remain unaffected by the main components of air: H3O+, NO+ and O2+ 
are typically used. Next, precursor ions with a certain mass-to-charge ratio (m/z) are selected with a 
quadrupole mass filter and injected into helium gas flow. These ions react with trace gases present 
in a gaseous sample that has been injected into the carrier gas with a certain flow rate. Another 
quadrupole mass filter is used for detecting and counting the different product ions and the remaining 
precursor ions. When the count rates of a certain product ion and the corresponding precursor ion 
as well as the reaction time and rate coefficient of their reaction are known, concentration of the 
trace gas in the sample can be determined. [116; 117.] 

SIFT-MS has several advantages in trace gas analysis. This technology allows fast and accurate 
real-time quantification even at parts-per-billion (ppb) level. The ability to use several precursor ions 
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increases the versatility of the method and facilitates the analysis of a complex mixture of com-
pounds, since a certain precursor ion might not react with all present trace gases. SIFT-MS is thus 
more versatile when compared to proton transfer reaction mass spectrometry (PTR-MS) where H3O+ 
is solely used as a precursor ion. Previously, SIFT-MS has been applied in health sciences [118-
122], biological sciences [123-125] and comparison of quantification technologies [126]. In food sci-
ence, SIFT-MS has been used for the characterization of the VOC profile of different products, in-
cluding meat and fish [127-131], vegetables and fruit [132-136] and cheese [137-139]. 

2.2 Modified atmosphere packaging of meat and fish 

2.2.1 Principles of MAP 

Food products that are stored under air are prone to the growth of aerobic microbes, changes in 
moisture content and oxidation. In MAP, the composition of the gas atmosphere inside the packaging 
differs from that of atmospheric air and changes over storage time because of microbial activity and 
chemical reactions. [19.] This is commonly achieved by removing atmospheric air from the package 
headspace and replacing it with another gas mixture. Vacuum packaging is a form of MAP where 
gases are removed from the package before sealing. [64.] In contrast, controlled atmosphere pack-
aging (CAP) maintains the desired gas composition throughout storage [19]. Modified atmospheres 
(MAs) typically consist of O2, carbon dioxide (CO2) and nitrogen (N2) in different ratios, depending 
on the packaged food product. Other gases that can be applied in MAP include CO, sulfur dioxide 
(SO2) and inert gases such as argon (Ar). [19.] In order to retain the advantageous properties of 
MAP, packaging materials with sufficient barrier properties against gases and moisture are needed 
[64]. 

Carbon dioxide is used in MAP because of its antimicrobial properties. CO2 can dissolve into water, 
lipids and some other organic compounds, leading to the generation of carbonic acid (H2CO3), acid-
ification and pH decrease. [19.] The efficiency of MAP depends on the amount of dissolved CO2 in 
the water phase of the product. Initial concentration of CO2 in the gas phase and the gas-product 
ratio have been recognized as the most important factors affecting the dissolving of CO2, along with 
the additional contribution of pH, temperature and fat content. [140.] Dissolving of CO2 increases 
with decreasing temperature, which is why its antimicrobial effects are most pronounced under 
10 °C. However, dissolving can reduce the headspace volume, thus causing package collapse. In 
order to compensate for this phenomenon, N2 is often used. N2 is odourless, tasteless and has a low 
solubility to food products, and while it does not prevent the growth of anaerobic microbes, it does 
not support aerobic growth. [19.] In muscle foods, the use of elevated CO2 concentrations shifts the 
dominating microbiota from Gram-negative to Gram-positive bacteria that are associated with ex-
tended lag phases, reduced growth rates and higher tolerance towards CO2 [10; 141]. 
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The presence of O2 promotes several deteriorative reactions in meat and fish. Under aerobic condi-
tions, lipid oxidation can lead to the generation of rancid off-odors and off-flavors. Furthermore, O2 
promotes pigment oxidation and aerobic microbial growth. [70; 142; 143.] Especially in case of red 
meat products, deteriorative effects of O2 on color may significantly reduce the shelf life (Ch. 2.1.1.3). 
Breakdown of proteins may result from their oxidation and cause reduced juiciness, tenderness and 
nutritional value [144]. However, O2 has advantages in certain food packaging applications and is 
commonly used in order to achieve a desirable red color (Ch. 2.1.1.3), prevent TMAO reduction (Ch. 
2.1.1.2) and inhibit the growth of certain spoilage organisms (Ch. 2.2.2.1 and 2.2.3.1). 

Carbon monoxide has been applied in MAP primarily because of its impact on color (Ch. 2.1.1.3). In 
addition, CO has been found advantageous in inhibiting oxidized off-flavor, bone darkening, micro-
bial growth and loss of tenderness. However, along with concerns about potential safety risks asso-
ciated with high color stability (Ch. 2.1.1.3), the hazardous nature of CO has provoked negative 
consumer attitudes towards its use. [145.] Currently, the use of CO in the meat and seafood industry 
is prohibited in the EU. In the USA, the Food and Drug Administration (FDA) and the United States 
Department of Agriculture (USDA) have approved the use of 0.4 % CO in anaerobic MAP containing 
30 % CO2 [146; 147]. 

MAP has several advantages over storage under air. MAP can be used for extending the shelf life 
of packaged food products and to support the maintenance of desired product properties. MAP also 
provides with solutions for displaying the products in an attractive manner. [64.] However, poor prod-
uct quality cannot be improved with MAP. High initial quality as well as hygienic handling practices 
and temperature control are thus required for successful MAP. [19.] It should also be noted that in 
addition to microbial growth, shelf life is dependent on the sensory properties of the product that 
should be retained at an acceptable level. The selection of headspace gases and their relative pro-
portions should thus aim at optimizing all factors that affect the shelf life of the packaged food prod-
uct.  

2.2.2 Meat  

2.2.2.1 Microbial growth 

Under chill temperatures, meat microbiota principally consists of the genera Acinetobacter, Bro-

chothrix, Clostridium, different Enterobacteriaceae, Flavobacterium, Moraxella, Micrococcus, Pseu-

domonas, Psychrobacter, Staphylococcus and LAB. MAP changes the internal conditions of the 
package and subsequently affects the development of meat microbiota. Headspace gases and their 
concentrations can be used for creating a selective pressure towards certain microbiota and thus 
certain SSOs. [85; 95.] Table 3 presents an overview of typical spoilage microbes of raw meat under 
different packaging and storage conditions. 

Table 3. Typical spoilage microbes of raw meat under different atmospheres at 0-4 °C [13]. 
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Microbes Atmosphere 
Brochothrix thermosphacta Modified atmospheres (< 50 % CO2 + O2; > 50 % CO2 + O2)   
 Vacuum 
Lactic acid bacteria Modified atmospheres (50 % CO2; 100 % CO2; < 50 % CO2 + O2)  
Enterobacteria 50 % CO2 
Pseudomonads Air 
 Vacuum 
Shewanella putrefaciens Vacuum 

When stored under air, the Pseudomonas genus generally dominates the spoilage of raw refriger-
ated meat [148-152]. Pseudomonads are cold-tolerant and may form over 90 % of the total microbi-
ota on chilled carcass surfaces [21]. The species P. fragi, P. fluorescens and P. ludensis have been 
identified as the most important spoilage organisms of meat under aerobic storage [13; 151]. How-
ever, some growth of pseudomonads has also been observed under MAs and vacuum [150; 153-
155]. Among pseudomonads, P. fragi has been most commonly isolated from meat [156] and con-
sidered as the dominant species under both aerobic and MAP conditions [85]. After metabolizing 
readily available glucose and lactate, pseudomonads utilize amino acids and other nitrogenous com-
pounds. Their growth thus typically becomes evident as off-odors and slime after reaching 107-108 
CFU/g. [13.]  

Under different MAP conditions, LAB and B. thermosphacta have been identified as the main spoil-
age organisms of refrigerated meat [157]. Under MAs containing high O2 concentrations, the domi-
nating microbes also include pseudomonads [158] whose growth is inhibited by elevated CO2 con-
centrations [159].  Under anaerobic MAs, growth of aerobic microbiota can be inhibited. In beef 
longissimus dorsi stored under vacuum, growth of pseudomonads, B. thermosphacta and Entero-

bacteriaceae was inhibited and LAB became dominant [154]. Generally, vacuum packaging favors 
the growth of CO2 tolerant microbiota [160]. B. thermosphacta is a psychrotrophic bacterium that is 
able to grow under air, vacuum and MAP [155; 160; 161]. Its growth has also been associated with 
the spoilage of high pH (> 6.5) meat [21]. Russo et al. [162] studied the in vitro growth of meat 
spoilage microbes at 5 °C and found that B. thermosphacta growth was reduced in the presence of 
LAB and dominating in the presence of a mixture of LAB, Enterobacteriaceae and Pseudomonas 

spp. Respectively, LAB have been observed to outcompete B. thermosphacta in other studies [163; 
164]. Growth of B. thermosphacta has been associated with cheesy, sour and fermented off-odors 
[112]. 

LAB are Gram-positive rods and cocci that belong to various genera, including Carnobacterium, 
Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Streptococcus [165]. 
LAB are aerotolerant, CO2-resistant and psychrothrophic, which is why their growth is favored by the 
packaging and storage conditions that are typically applied for red meat: high O2, elevated CO2 and 
chill temperatures. LAB may thus grow regardless of packaging and storage conditions, yet depend-
ing on other microbes. Due to their capability to adapt to various conditions, the natural diversity of 
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LAB is considered to be wide both on species and strain level. [92.] Growth of LAB is characterized 
by the formation of lactic acid, CO2, slime and off-odors as well as decreasing pH [12].  

Among LAB, the genera Carnobacterium, Lactobacillus and Leuconostoc have been closely associ-
ated with meat spoilage [157; 158; 161]. Lactobacilli and/or leuconostocs, especially Lactobacillus 

sakei and Leuconostoc gelidum subs. gasicomitatum, have commonly been found in beef or pork 
packaged under MAs [150; 154; 155; 163; 164; 166; 167]. Leuconostocs have been observed to be 
able to dominate the meat microbiota both under air [167] and MAP [166]. L. gelidum subs. gasicomi-

tatum has been recognized as the dominating spoilage microbe in marinated broiler strips and 
minced meat packaged under MAs [157; 168] and its growth has been associated with the formation 
of gas and slime, sour or buttery off-odors and green surface discoloration [21; 169-172]. Carnobac-
teria, mainly C. divergens and C. maltaromaticum, are characteristic to meat, fish and dairy products 
stored at chill temperatures and packaged under vacuum or MAs [154; 168; 173; 174]. 

In addition to the aforementioned microbes, other species may be able to grow on meat. Gram-
negative bacteria that may also contribute to meat spoilage under different conditions include Aer-

omonas, Enterobacter, Hafnia, Rahnella, Shewanella and Serratia [95]. Under MA conditions and 
vacuum, Enterobacteriaceae such as Serratia liquefaciens and Hafnia spp. can grow at 0-10 °C 
[161]. Growth of microbes belonging to genera Serratia and Rahnella has been observed in beef 
under vacuum [173]. Rahnella spp. have also been observed to grow in beef packaged under air or 
MAP containing 20 % O2 and 40 % CO2 [150]. Spoilage caused by enterobacteria is generally char-
acterized by gas, slime and bitter off-odors and off-flavors [12]. The genus Clostridia has been as-
sociated with excessive gas and exudate formation, putrid off-odors and softening of texture occur-
ring in vacuum packaged meat products, known as blown pack spoilage [175; 176]. The Shewanella 
genus has been associated with the spoilage of vacuum packaged meat [13; 160]. S. putrefaciens 
contributes to spoilage by producing green discoloration and sulfurous off-odors [85]. However, the 
Shewanella genus has been considered to have less importance in meat spoilage than in fish (Ch. 
2.2.3.1) because of its pH sensitivity. The postmortem acidification of meat inhibits the growth of 
Shewanella and favors LAB. [165.] 

Temperature increase causes a shift in the microbiota of MAP meat from that growing under chill 
temperatures. Doulgeraki et al. [167] found that the microbiota of minced beef packaged under 40 % 
CO2 and 30 % O2 was dominated by Leuconostoc spp. at 5 or 10 °C and by L. sakei at 0 or 5 °C. 
Enterobacteria have been observed to grow at different temperatures under respective MAP condi-
tions, which could be due to differences in adaptation at different temperatures and competition be-
tween the microbes [177].  

Several studies have focused on the comparison of different headspace gas compositions for raw 
red meat. Sørheim et al. [178] studied the effect of (% CO2/O2/N2) 100/0/0, 50/0/50, 25/0/75, 25/10/65 
and vacuum on microbial growth, color, off-odors and pH of pork loin. The samples were stored for 
up to 22 days at 1 °C in dark, followed by storage in O2 permeable materials at 3 °C and illumination. 
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Highest off-odor generation was associated with loins stored under 25/10/65 or vacuum, whereas 
highest drip loss was observed under 100 % O2 and lowest under vacuum. Loins stored under 
25/10/65 had most severe discoloration, off-odor generation and highest psychrotrophic counts. 
Packaging under anaerobic conditions was thus identified as the most favorable approach for pork 
loin. [178.] However, Zhang and Sundar [63] reported several advantages when pork loin was stored 
at 4 °C under increasing O2 concentrations (5-55 %) combined with 20 % CO2. O2 content of 45 % 
was observed to result in highest quality. High O2 content had an inhibitive effect of total microbial 
growth and improved the acceptability of the samples. During eight days of storage, TVB-N de-
creased as a function of increasing O2 content, which was associated with the inhibitive effect of O2 
on pseudomonads. [63.] 

2.2.2.2 Volatile organic compounds 

Evolution of the VOC profile of meat and seafood is dependent on the product properties as well as 
packaging and storage conditions. Since the same microbial genera or species commonly contribute 
to spoilage in both meat and seafood (Ch. 2.2.2.1 and 2.2.3.1), their spoilage is often characterized 
by the same VOCs. A major part of studies regarding the VOC generation in muscle foods has 
focused on seafood where off-odors have high impact on the shelf life. A detailed review of the origin 
and odor of common spoilage metabolites is thus given in Ch. 2.3.2.2.  

The aroma of fresh raw meat has been attributed to several VOC groups. Fatty, cheesy, dairy or 
gamy odors have been associated with volatile fatty acids and ketones. Fatty and grassy odors can 
also be due to aldehydes that change from acceptable to unpleasant as their concentrations in-
crease. Sweet and fruity odors can be caused by alcohols and esters, whereas aromatic compounds, 
sulfuric compounds and terpenes have their characteristic odors. During storage, the odor profile 
changes along with microbial growth. [95.] Characteristic VOCs produced during meat spoilage have 
been reviewed by Casaburi et al. [95]. 

VOCs associated with beef spoilage have been characterized in previous studies. Martin et al. [179] 
stored beef patties under high O2 (80 % O2, 20 % CO2) or low CO atmospheres (0.4 % CO, 30 % 
CO2, 69.6 % N2) at 22 °C. Temperature abuse lead to the rapid development of 20 VOCs. Even 
though the same VOCs were detected under both packaging conditions, differences were found in 
their production rate and concentrations. [179.] Respectively, Jääskeläinen et al. [105] studied the 
spoilage of beef packaged under high O2 (80 % O2, 20 % CO2) or vacuum at 6 °C and found that 
although many compounds were produced under both packaging conditions, the diversity and con-
centration levels of VOCs were higher under high O2, which highlighted the undesirable effects of O2 
in meat packaging. Acetic acid, acetoin, diacetyl and ethanol were detected under both conditions. 
Acetoin, diacetyl, hexanoic acid, nonanal, oct-1-en-3-ol and oct-2-en-1-ol showed statistically signif-
icant (p < 0.01) correlation with packaging conditions. Under high O2, buttery off-odor was associated 
with the growth of leuconostocs and subsequent production of acetoin and diacetyl, whereas oct-1-
en-3-ol, hexanal and nonanal were attributed to chemical reactions. [105.] 
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A limited number of studies have been published about VOC production in pork. Acetoin and diacetyl 
have commonly been identified as important pork spoilage metabolites [180]. Nieminen et al. [180] 
studied the VOCs of pork loin and collar packaged under high O2 (60 % O2, 22-25 % CO2, rest N2) 
at 4 ± 1 °C. They unexpectedly detected high numbers of Photobacterium phosphoreum which likely 
contributed to the VOC profile. From a total of 48 detected compounds, 10 compounds were found 
to increase during storage. However, concentrations of 1-hexanol, 1-pentanol, 1-octen-3-ol, 2-pen-
tanone, hexanal and styrene also increased in sterilized pork, indicating that they were not com-
pletely of microbial origin. Increase in their concentrations was associated with lipid oxidation. On 
the contrary, concentrations of 3-methyl-1-butanol, acetoin and diacetyl could be associated with 
microbial growth and sensory defects. Under the tested conditions, diacetyl was also identified as 
the most potential growth indicator of aerobic bacteria, LAB and B. thermosphacta in pork. [180.] 

2.2.2.3 Color 

Studies focusing on the effects of headspace gas composition on meat color have highlighted the 
role of O2; however, the focus of these studies has frequently been limited to beef. Jakobsen and 
Bertelsen [181] evaluated the effect of 20-80 % O2 along with CO2 on the color of beef Longissimus 

dorsi and suggested that ca. 55 % is needed to avoid discoloration. Martínez et al. [182] packaged 
pork sausages under vacuum, O2-permeable overwrap or MAs (% O2/CO2/N2) 0/20/80, 0/20/80 + O2 
absorber, 20/20/60, 40/20/40, 60/20/20 and 80/20/0 and stored the samples at (2 ± 1) °C for 20 days. 
Discoloration was observed under all conditions containing O2, even though highest redness (a*) 
was detected until day 8 of storage with the highest O2 concentration. Moderate red and stable color 
was obtained with 0.3 - 0.7 % residual O2 and especially in its absence (0 - 0.1 %). [182.] Esmer et 

al. [183] studied the effect of various O2 and CO2 concentrations on the color of minced beef at 4 °C 
for up to 14 days and found that even though increasing CO2 had no effect on lightness, both a* and 
b* decreased. When combined with 30 % CO2, no difference in redness was observed at 50 and 
70 % O2, whereas discoloration occurred at 30 % O2 [183].  

Evaluation of the impact of different MAs on meat lightness has shown some contradictory results. 
Under 100 % CO2, lightness of pork has been observed to increase [184], decrease [185] or remain 
constant [71; 186] during refrigerated storage. Differences in residual O2 levels have been suggested 
to contribute to the inconsistence in these results [185]. Differences in the evolution of lightness have 
also been observed between different muscle types [187]. 

Under high O2 concentrations, meat is generally redder than under anoxic conditions [71; 187], 
though decrease in redness has commonly been observed over time under high O2 [71; 72; 185]. In 
order to improve color stability and to avoid deteriorative effects, low concentrations of O2 have been 
used in MAP. However, residual O2 concentrations can have negative effects on meat color and 
blooming ability [60; 184; 188; 189]. Sørheim et al. [184] found that under CO2- atmospheres con-
taining residual O2 (0.5 or 1 %), lower redness and higher yellowness was obtained in pork when 
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compared to completely anaerobic conditions. According to Mancini and Hunt [60], residual O2 con-
centrations should be less than 0.05 % for beef and less than 1 % for pork. When ultra-low O2 
concentrations are used, the low levels should be maintained throughout storage in order to preserve 
the blooming ability [60]. With O2 absorbers (Ch. 2.3.1.3), improved color has been achieved [184; 
186]. 

Blooming has been studied under different packaging and storage conditions. Several studies have 
stated that blooming has no effect on lightness (L*) [75; 76; 190] or meat packaged under high O2 
[187]. Generally, the presence of O2 promotes blooming and increases redness [76]; however, a low 
O2 content has been found to prevent blooming [188; 189]. Brewer et al. [76] evaluated the effect of 
pH, muscle and blooming time on instrumentally and visually determined color of pork and observed 
variation between different muscles, which was attributed to differences in pigment concentration, 
muscle fibres and pH. No statistically significant (p < 0.05) difference was observed between the 
blooming rates of different muscles [76]. 

Consumer acceptance of meat is highly dependent on meat color. Buys [59] studied the acceptance 
of bulk packaged pork stored under MAs (% O2/CO2/N2) 80/20/0, 25/50/25 and 0/100/0 + O2 absorber 
at 0 °C and displayed in polyvinyl chloride (PVC) overwrap for up to 4 days. Pork chops packaged 
under 100 % CO2 were acceptable throughout storage and display, respectively as chops packaged 
under O2 enriched atmospheres [59]. Aaslyng et al. [191] compared the preferences of Swedish, 
Norwegian and Danish consumers for beef steaks packaged (% CO2/O2/N2) either under high O2 
(20/80/0) or anaerobic MAP (30/0/69.6 + 0.4 % CO or 30/0/70). Steaks stored under anaerobic con-
ditions were preferred in all three countries [191]. 

2.2.3 Fish  

2.2.3.1 Microbial growth 

The principal composition of the initial microbiota is closely alike in fish and meat (Ch. 2.2.2.1). The 
dominating microbiota of fish consists of microbes typically found in the aquatic environment [97]. 
Differences may be observed between marine and freshwater fish as well as between temperate 
and tropical water fish [35]. Generally, total microbial load of 107 CFU/g has been considered as an 
acceptance limit for raw fish [192]. Microbiota of temperate water fish typically consists of bacteria 
belonging to genera Acinetobacter, Aeromonadaceae, Flavobacterium, Moraxella, Pseudomonas, 
Shewanella and Vibrionaceae. These psychrothrophic Gram-negative bacteria can grow at low tem-
peratures (0 °C), though their optimal growth temperature is around 25 °C. In addition to these gen-
era, certain Gram-positive organisms such as Bacillus, Corynebacterium, Clostridium, Lactobacillus 
and Micrococcus can grow in fish. [35.] Dominance of Gram-positive bacteria has also been ob-
served in some tropical fish [97].  

The typical fish spoilage microbiota (Table 3) resembles that of meat (Table 4; Ch. 2.2.2.1); however, 
its composition and development depends on the habitat of the fish. 
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Table 4. Typical spoilage microbes of raw fish stored under different atmospheres at 0-4 °C [11; 35]. 

Microbes Atmosphere 
Lactic acid bacteria Vacuum 
 Modified atmospheres with CO2 
Photobacterium phosphoreum Modified atmospheres with CO2  
Pseudomonads Air 
Shewanella spp. Air 

Aerobically stored unpreserved fish is spoiled by Gram-negative fermentative rod-shaped bacteria. 
such as Vibrionaceae. At chill temperatures, the dominating microbiota primarily consists of Pseu-

domonas spp. and Shewanella spp.. [11; 35.] Their growth is favored over LAB by the high postmor-
tem pH and low carbohydrate content of fish [165]. Shewanella spp. have been identified as SSOs 
of both temperate and tropical marine fish stored aerobically under ice [35; 70]. These facultative 
anaerobic bacteria are more characteristic to fish than meat (Ch. 2.2.2.1). However, even though S. 

putrefaciens produces intensive off-odors and has thus a high spoilage potential (Ch. 2.2.3.2), high 
levels (108 CFU/g) are needed before off-odors can be detected [193]. On the other hand, Pseudo-

monas spp. have been identified as SSOs of fish stored aerobically under ice, regardless of its living 
conditions [35].  

Under MAs, fish microbiota differs from that growing under air. High CO2 concentrations can be used 
for inhibiting the growth of both Shewanella and Pseudomonas, limiting their levels to 105-106 CFU/g 
[35]. For inhibiting the growth of Shewanella spp., a combination of 60-70 % CO2 with 30-40 % O2 
has been recommended [194]. Respectively, S. putrefaciens has been identified to dominate in cod 
fillets packaged under vacuum [195] and to have no relevance in cod packaged under MAs [10; 193]. 
Synergy between the effects of CO2 and O2 on S. putrefaciens was observed by Boskou and 
Debevere [194] at 50 % CO2 combined with 10 % O2 and by López-Caballero et al. [196] especially 
at 40 % CO2 and 60 % O2.  

The effect of CO2 on fish shelf life is limited due to the growth of CO2-tolerant P. phosphoreum that 
has been frequently identified as an SSO of marine fish under MAs [10; 11; 35; 40; 86; 193; 197]. Its 
spoilage domain has been defined to range from 0 % to 50 - 100 % CO2 [10]. Even though O2 has 
inhibitory effect on the growth of P. phosphoreum, this bacterium has also been found able to dom-
inate under air [198] or O2-containing MAs [37; 86]. Dalgaard et al. [86] observed that P. phospho-

reum often dominated in Icelandic and Danish marine fish, had a slower growth rate in Greek marine 
fish and did not grow in freshwater fish species. This was suggested to be due to its heat lability and 
NaCl dependency.  Furthermore, even though P. phosphoreum reached even over 107 CFU/g under 
air, it was not able to dominate the microbiota under these conditions due to the rapid growth of other 
microbes. [86.]   

The role of LAB in seafood spoilage has been highlighted by Leroi [165], suggesting that LAB have 
been disregarded because of fish properties that favor the growth of other microbiota: high pH, low 
temperature, high content of nitrogenous compounds and low content of carbohydrates. Under air 
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and vacuum, Pseudomonas and Shewanella are able to outcompete LAB at chill temperatures. 
However, CO2-containing MAs inhibit the growth of these bacteria and favor LAB along with P. phos-

phoreum. Consequently, LAB have been recognized as SSOs in both marine and freshwater fish 
packaged under CO2 or vacuum. [165.] Furthermore, mild processing technologies and use of ingre-
dients in fish products enhance the growth of LAB while inhibiting other microbes.  

The spoilage processes of fish and crustaceans are highly similar; however, shrimp and other crus-
taceans are especially vulnerable and rapidly spoiling seafood species. Shrimp contain high amounts 
of free amino acids and other non-nitrogenous compounds that promote microbial growth [199]. Un-
der chill temperatures and air storage, the spoilage microbiota has been found to contain species 
such as Aeromonas spp., Acinetobacter spp., B. thermosphacta, Carnobacterium spp., Enterobac-

teriaceae, Flavobacterium spp., Neisseria spp., Pseudomonas spp., Serratia spp., Shewanella spp., 
Vagococcus spp. and/or Vibrio spp. [200-202]. Under MAP, different LAB have commonly been 
found [203-205], also together with B. thermosphacta [206]. The dominant microbiota of preserva-
tive-free cooked and peeled brown shrimp (Crangon crangon) has been characterized in multiple 
studies. Noseda et al. [131] evaluated the impact of several aerobic and anaerobic MAP conditions 
and suggested that P. phosphoreum likely contributed to spoilage. Broekaert et al. [205] found that 
the genera Pseudoalteromonas and Psychrobacter dominated the microbiota under air storage in 
ice or at 7.5 °C. Calliauw et al. [203] identified Aliivibrio spp., Arthrobacter bergerei, B. thermo-

sphacta, Carnobacterium spp., Psychrobacter spp., S. putrefaciens and Vagococcus salmoninarum 
to be dominating at 4 °C under 40 % CO2 and 60 % N2.  

The effect of different packaging and storage conditions of marine fish has been examined in several 
studies, many of them focusing on Atlantic cod. Debevere and Boskou [40] stored cod fillets under 
MAs (% CO2/O2/N2) 60/10/30, 60/20/20, 60/30/10 and 60/40/0 at 6 °C and observed some inhibition 
of TMA production under increased O2 concentrations. Sivertsvik [207] stored pre-rigor filleted 
farmed Atlantic cod under various MAs at 0 °C and found that the optimal gas composition in terms 
of TVB, TMA, odors, exudates and microbial growth was 63 % O2 and 37 % CO2. 

2.2.3.2 Volatile organic compounds 

Fish VOCs can be divided into three categories based on their association with freshness, microbi-
ological spoilage or oxidation. Different C6 - C9 alcohols and carbonyl compounds have been ob-
served to contribute to the planty, mushroom or cucumber-like odor of fresh fish. [30.] Lipid oxidation 
may result in the production of aldehydes especially in fatty fish. Compounds such as hexanal, hepta-
2,4-dienal and deca-2,4,7-trienal are associated with oxidized and rancid odors. [30; 208.] 

Several VOCs have been identified as potential indicators of microbial growth in fish. An overview of 
fish volatiles produced during storage in previous studies is given in Table A1 (Appendix 1). How-
ever, it should be noted that in a majority of studies, samples have been stored under air and/or 
analyzed with destructive techniques. VOCs that have been most frequently detected under MAP 
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conditions include 2- or 3-methylbutanal, 2,3-butanediol, 3-methyl-1-butanol, acetic acid, acetoin, 
ethanol, ethyl acetate, different sulfides and TMA. 

Alcohols and aldehydes have commonly been detected during seafood spoilage (Table A1, Appen-
dix 1). Consumption of valine and leucine has been associated with the production of different alco-
hols and aldehydes, and ethanol is produced from carbohydrate resources. Ethanol, 2,3-butanediol 
and 3-methyl-1-butanol have frequently been simultaneously detected and often accompanied by 2- 
or 3-methylbutanal. Duflos et al. [55] found that these three alcohols and TMA were produced in 
highest quantities in whiting, mackerel and cod stored under ice and air. Ólafsdóttir et al. [198] sug-
gested that alcohols could be used for detecting early spoilage in Atlantic cod fillets packaged under 
ice. Mikš-Krajnik et al. [89] associated the formation of 3-methyl-1-butanol, 2-methylbutanal and 3-
methylbutanal with Pseudomonas spp. in raw salmon stored under air at 4, 10 or 21 °C. Respec-
tively, Miller et al. [209] found pseudomonads to be able to produce alcohols and aldehydes. Pro-
duction of 2,3-butanediol has also been observed in salmon inoculated with Aeromonas spp., Enter-

obacteriaceae or S. putrefaciens and stored under vacuum at 6 °C [210]. The odor of 2,3-butanediol 
is fruity or buttery, whereas 3-methyl-1-butanol is described as fruity, pungent and ethereal [211]. 
Aldehydes have been associated with mild and sweet odors [198]. 

Certain bacteria such as P. phosphoreum and LAB may produce a wide array of VOCs. Acetoin, 
which is formed by the reduction of 2,3-butanedione and can be further reduced to 2,3-butanediol 
[212], has been associated with anaerobic bacteria such as P. phosphoreum, LAB and B. thermo-

sphacta [198; 213]. Production of acetic acid has been observed in the presence of B. thermo-

sphacta, LAB, P. phosphoreum and S. putrefaciens [210; 214]. On the other hand, formation of 
esters resulting in sweet and fruity off-odors has been associated with pseudomonads [198; 209]. 
Spoilage bacteria that can produce ethyl acetate include Lactobacillus spp. [210] and P. fragi [209]. 
Acetic acid can be described as pungent, acidic and cheesy, acetoin as sweet and buttery, and ethyl 
acetate as fruity and ethereal [211].  

Production of sulfuric compounds has been associated with many bacteria characteristic to fish spoil-
age such as S. putrefaciens, pseudomonads, certain LAB and different Vibrionaceae [35; 209; 210]. 
Shewanella spp. has been observed to produce hydrogen sulfide (H2S), dimethyl sulfide and methyl 
mercaptan [70; 196]. On the other hand, P. phosphoreum and pseudomonads do not produce H2S 
in significant quantities [35]. Analogously, only low concentrations of H2S and methyl mercaptan 
were detected in Atlantic cod packaged under MAs [215]. No increase in dimethyl sulfide concentra-
tion was found by Duflos et al. [55] in aerobically stored cod, mackerel or whiting. 

TMA, one of the most typical VOCs associated with marine fish spoilage, has a “fishy” or “ammonia-
like” odor and is especially characteristic to gadoid fish such as cod and whiting [11; 198]. Several 
bacterial species have been identified as TMA producers, including Aeromonas spp., psychrotoler-
ant Enteriobacteriaceae, P. phosphoreum, Shewanella spp. and Vibrio spp. [11; 97; 210]. Due to the 
low TMAO content and absence of P. phosphoreum and Shewanella spp. (Ch. 2.1.1.2. and 2.2.3.1), 
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TMA is generally not produced in freshwater fish [35]. Production of TMA is associated with She-

wanella spp. under aerobic storage and with P. phosphoreum under MAs [97; 193; 215]. A single P. 

phosphoreum cell can reduce 10-100 times more TMAO than S. putrefaciens [207]. MAP inhibits the 
TMA production of Shewanella spp. since the reductase enzyme is directly inhibited by O2 and indi-
rectly via pH decrease by CO2 [216]. Inhibitory concentrations of 10 % O2 and 30 - 50 % CO2 have 
been reported for S. putrefaciens and 30 - 40 % O2 and 60 - 70 % CO2 for another Shewanella 
species at 7 °C [194; 217]. High TMA levels have been detected in Atlantic cod under MAs [10].  

In addition to the aforementioned VOCs, production of several other compounds has been related 
to certain microbes when isolates or inoculated fish samples have been tested [112; 210; 218-220]. 
Even though these experiments give a direct indication of the VOC production capability of different 
microbial species, the effect of competition and microbial interaction on the VOC profile cannot be 
assessed. In naturally contaminated samples, interactions between microbes and/or VOCs contrib-
ute to the overall perceived odor. The impact of MAs on microbial metabolism may also alter the 
VOC profile. Pin et al. [221] studied the metabolism of B. thermosphacta under different MA condi-
tions by analysing the consumption of glucose and production of several VOCs at 5 °C. A shift from 
anaerobic to aerobic metabolism was observed when O2 levels were set higher than 10.17 + 
0.6717*CO2. Under anaerobic conditions, lactic acid and ethanol were produced from glucose. Un-
der aerobic conditions, compounds such as acetoin, acetic acid and 3-methyl1-butanol were pro-
duced. Both acetic acid and ethanol were also likely used as precursors for other compounds and 
did thus not accumulate during the stationary growth phase. [221.] 

2.3 Active and intelligent packaging 

2.3.1 Active packaging 

2.3.1.1 Principles and design 

During the European FAIR-project CT 98-4710 Actipack (1999-2001), active packaging was defined 
to change the condition of the packaged product in order to extend its shelf life or to improve its 
safety or sensory properties, simultaneously maintaining its quality. This requires interaction be-
tween the packaging and the food product or headspace [222]. Active packaging can be divided into 
three main categories on the basis of their operation: absorbers or scavengers, releasing systems 
and other systems [18].  

Antimicrobial packaging is a form of active packaging that acts against microbes present in the food 
product or packaging materials in order to inhibit, limit or retard their growth. This may involve inac-
tivation of microbes, reduction of their growth rate or maximum population, or extension of their lag 
phase. [17.] Five main categories of antimicrobial packaging can be defined: sachets or pads with 
absorption or emission capacity, incorporation of antimicrobial compounds into or onto polymers, 
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antimicrobial coatings, immobilization of antimicrobial compounds to polymers and inherently anti-
microbial polymers [15]. 

Design of an antimicrobial packaging system depends on the packaging, product and possible head-
space (Fig. 1). 

 

Fig. 1. Mechanisms of antimicrobial activity in food packaging (according to [223]). 

When antimicrobial agents are directly introduced to food products, neutralization or diffusion limits 
their efficiency. Prolonged exposure and sufficient concentrations thus call for advanced packaging 
technologies. Depending on the intended mechanism (Fig. 1), antimicrobial agents need to be or be 
able to come into direct contact with microbes present on the food product surfaces since agents 
that are trapped in polymeric matrices are generally not readily available, which limits their costs-
efficiency. Improved efficiency can be achieved by using antimicrobial agents as additives in extru-
sion processes and by incorporating them in the food contact layer. In multilayer films, layer structure 
or thickness can be used for controlling the release rate. However, high processing temperatures 
may limit the range of potential agents. The remaining antimicrobial capacity after packaging material 
preparation is referred to as residual antimicrobial activity. It should also be noted that incorporation 
of antimicrobial agents may affect the properties of packaging materials and that material perfor-
mance should not be allowed to decrease as a consequence. [17; 223.]  

Antimicrobial activity depends on mass transfer between package, food product and possible head-
space. Migration mechanisms depend on the type of packaging and their rate is generally reduced 
as a function of decreasing temperature. In headspace-free systems, incorporation of antimicrobial 
agents in packaging materials allows the diffusion between the materials and food and partition at 
the interface. In the presence of a headspace, evaporation of volatile antimicrobial agents is possible. 
Antimicrobial agents may also be immobilized onto packaging material surfaces, allowing activity 
without diffusion or sorption. Furthermore, antimicrobial activity depends on the properties of the 
packaged food product, such as the initial microbiota, pH and water activity. [17; 223.]  

Extrusion coating and coextrusion are commonly used in incorporating antimicrobial agents as ad-
ditives in polymers. During extrusion coating, a moving substrate such as paper, board, foil or film is 
covered with a continuously flowing polymer melt. An extruder typically consists of three zones: feed, 
compression and meter zones. Polymers that are usually introduced as pellets in the extruder are 
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conveyed in the feed zone and compressed and plasticated in the compression zone. Temperature 
and homogenization of the polymer melt are adjusted in the meter zone. The melt is forced with a 
constant rate through a die which determines its shape and cross-section. [224-226.] In coextrusion, 
two or multiple polymer layers are combined into one layer or film. The layer structure can be pro-
duced by using two or three extruders in different combinations. Layer thickness can be adjusted 
with extruder screw speed and total thickness with the die. [227.] 

The use of active packaging is subject to international and national legislation. In the EU, all food 
contact materials except edible packaging materials and antiques currently fall under Regulation 
(EC) No 1935/2004 [228]. In this Regulation, active food contact materials are defined to release 
components into or absorb substances from foodstuffs. Materials that release active agents may 
change the composition or properties of food according to relevant legislation. [228.] Substances 
that can be used in plastic food contact materials are defined in the Commission Regulation (EU) 
No 10/2011 [229] and in the provisional list [230]. Additional legislation concerning active and intel-
ligent food contact materials is defined in the Commission Regulation (EC) No 450/2009 [231]. Ac-
cording to this Regulation, an active substance that is intended to migrate into food must be in com-
pliance with regulations concerning food additives. The substance is considered to be a food additive 
even if it is brought into the packaging by immobilisation and is thus not intended to migrate. [231.] 

2.3.1.2 Silver 

Silver has been used as an antimicrobial agent for thousands of years in different applications and 
has the highest antimicrobial activity among all heavy metal ions [232]. It has long-term activity, low 
volatility and low toxicity towards eukaryotic cells [233]. Silver can be introduced in the packaging 
system as ionic or metallic silver, clusters, complexes or salts. The antimicrobial activity is dependent 
on the form and biological availability and is typically attributed to silver ions (Ag+) [232; 234]. Several 
activity mechanisms have been proposed, including binding and precipitation to cell walls and mem-
branes, accumulation inside microbial cells, binding to cellular proteins, catalyzation of oxidative de-
struction, inhibition of metabolism, and binding to DNA [232]. The activity of silver ions is dependent 
on the compounds in the environment and simultaneously occurring redox processes. Different ani-
ons, proteins and other compounds can be used for controlling the quantity of available ionic silver, 
whereas generation of reactive oxygen species (ROS) may lead to reactions with silver and possible 
synergic effects. These processes are affected by light, temperature and O2. [234.]  

Effects of silver ions on bacterial cells have been evaluated in several studies. Generally, suscepti-
bility of microbes is dependent on the cell wall structure. Gram-positive microbes have higher pepti-
doglycan content and thus thicker cell walls than Gram-negative ones; the thicker cell wall has been 
observed to give enhanced protection against the penetration of silver ions into the cytoplasm [235]. 
Feng et al. [235] observed that in the presence of silver ions, the cytoplasm membranes of Esche-

richia coli and Staphylococcus aureus cells were damaged and the DNA was condensed, preventing 
its replication and thus cell multiplication. They also suggested that silver inhibits bacterial activity by 
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binding to the thiol groups of proteins and preventing their enzymatic activity [235]. The stable S-Ag 
bond has been reported to inhibit the hydrogen transfer system. Furthermore, in the presence of 
aqueous media, O2 that has been adsorbed onto silver may react with the thiol hydrogen, leading to 
the formation of R-S-S-R bonds and thus disruption of electron transfer and respiration. [236.] Liau 
et al. [237] demonstrated that the activity of silver against sensitive P. aeruginosa was neutralized in 
the presence of amino acids containing thiol groups, whereas no effects were observed with most of 
the tested amino acids containing disulfide bonds or sulfur-free amino acids. Holt and Bard [238] 
found that up to 10 µM silver nitrate (AgNO3) inhibited respiratory chain enzymes of E. coli, especially 
in the presence of high potassium concentrations. Glucose was found to reduce the effects of silver 
ions, which was associated with the formation of silver-glucose complexes or the capacity of E. coli 
to efflux silver [238].  

In order to allow controlled and continuous release of silver, different carrier systems and matrices 
have been developed. Silver has been incorporated in clinoptilolite [239], glass [240], nano-SiO2 

[241] and zeolites [242-244]. These systems are usually based on cation exchange. For example, 
silver-substituted zeolites are hydrated crystalline aluminosilicate minerals with a negatively charged 
three-dimensional structure. Cations Na+, K+ and Ca2+ balance the structure and are exchangeable 
with other cations in the environment. [242.] Among antimicrobials incorporated in food contact pol-
ymers in Japan, silver zeolites have been the most common [233]. Pehlivan et al. [245] studied the 
effect of different silver zeolite concentrations on the properties of polypropylene films. Optimal zeo-
lite concentration was found to be 2 - 4 % with 4.36 mg Ag+/g zeolite. Higher zeolite concentration 
lead to brittleness and higher silver concentration to discoloration. Susceptibility to thermal degrada-
tion was also found to increase in the presence of zeolite. [245.] Dogan et al. [246] found that alumi-
num foil coated with a vinyl acetate lacquer solution containing 1 - 3 % zeolite carrying 0.9 % silver 
had antimicrobial effect on E. coli. Fernandez et al. [233] found that silver zeolite-poly(lactic acid) 
(PLA) films prepared by solvent casting had higher silver migration and antimicrobial effect against 
E. coli and S. aureus than films prepared by melt mixing. The rough surface and less dense structure 
of cast films allowed improved silver release [233]. Boschetto et al. [247] found that low-density 
polyethylene (LDPE) films with 5 % silver-exchanged zeolite Y containing 5 % silver had antimicro-
bial effect against E. coli. Films prepared by wet casting had higher performance compared to hot 
casting, which was suggested to be due to high processing temperatures or non-uniform silver dis-
tribution associated with hot casting [247].  

Silver nanoparticles have been found highly effective against a broad range of micro-organisms. 
Their activity is affected by their size, surface area, surface charge and geometry [234]. Lok et al. 
[248] found that nanoscale silver caused accumulation of envelope proteins into the cytoplasm of E. 

coli, which was suggested to be due to the destabilization of outer membrane, collapse of proton 
motive force and reduction of adenosine triphosphate (ATP) levels. Even though both nanoscale 
silver and silver ions acted against the membranes, respective effects were observed at nanomolar 
level of nanoscale silver and micromolar level of silver ions [248]. On the other hand, Lalueza et al. 
[234] compared the effects of various silver-containing materials on S. aureus. Antimicrobial activity 
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was observed to increase as the amount of available silver ions increased. Silver nitrate exhibited 
greatest activity at a specific total silver content, whereas silver-exchanged zeolite had moderate 
effect and 100 nm no effect on S. aureus. These results indicated that the availability of silver was 
lower when zeolites or nanoparticles were used. The ability to produce silver ions was suggested to 
be of higher importance for antimicrobial activity than the concentration of silver that is in contact 
with microbes. [234.] 

In addition to in vitro assays, silver has been applied in food packaging systems; however, relatively 
few studies including a food component are still available in the scientific literature. Enhanced re-
lease of silver ions has been observed in bacterial broth compared with water [244]. The higher 
concentration of cations in broth allows improved cation exchange and leads to increasing concen-
trations of free silver ions. Activity of silver is also generally higher in broth than in real foods. [249.] 
Lee et al. [249] studied the effect of wrapping papers containing silver zeolite (2 or 4 %) on raw beef, 
pork and turkey inoculated with Pseudomonas putida and stored for 4 days at 4 or 10 °C. Papers 
with 2 % silver zeolite had no significant effect, whereas 4 % silver zeolite inhibited P. putida growth 
at 10 °C (days 3 and 4). Lower protein content of beef was suggested to lead to higher population 
reduction when compared to the other tested meat types. [249.] 

The toxicity of silver in the human body and in the environment has been arousing concern since 
migration has been considered essential for its antimicrobial activity [250]. Even though different 
symptoms arising from exposure to silver have been documented, discoloration of skin (argyria) has 
been considered as the major concern [251]. In order to examine and evaluate the health and safety 
impacts of silver, toxicity [252-255] and migration [256-258] tests should be carried out. Generally, 
the dissolution rate determines the concentration of available silver and is affected by particle size 
and crystallinity, surface structure, temperature and molecules present in the environment [250]. 
Kittler et al. [250] studied the toxicity of silver nanoparticles against human mesenchymal stem cells 
and observed that the release of silver ions increased as a function of time, leading to increasing 
toxicity. Up to 90 % of nanoparticle weight was able to dissolve into an aqueous solution [250].  

The use of nanoparticles in food packaging requires a thorough risk assessment. According to the 
EFSA guidance regarding nanoscience and nanotechnologies in the food and feed chain [259], the 
use of engineered nanomaterials requires both physico-chemical and hazard characterization. The 
physico-chemical properties should be characterized in order to determine whether the nanomateri-
als are representative and relevant in terms of the intended exposure and in order to allow the com-
parison between different products, manufacturers or tests. Identification and characterization of po-
tential hazards arising from the properties of the materials should include the in vitro evaluation of 
absorption, distribution, genotoxicity, excretion and metabolism, as well as a repeated-dose 90-day 
oral toxicity tests for rodents. The aforementioned tests should also be accompanied with an uncer-
tainty analysis. 
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food supply chain, these technologies are not targeted to affect the properties of the packaged prod-
uct or its environment, unlike active packaging. According to Vanderroost et al. [281], smart packag-
ing solutions combine active and intelligent packaging in a synergistic manner in order to both mon-
itor the changes and act on their basis, meaning that intelligent and smart packaging cannot be 
considered as synonyms although this has often been done in the literature. 

The three main types of intelligent packaging systems are indicators, sensors and radio frequency 
identification (RFID) tags. Indicators are used for detecting the presence or absence of a substance 
or reactions between substances, based on a change in indicator properties. Sensors are capable 
of producing a continuous signal; typically, a receptor transforms physical or chemical information 
into energy that is further converted to an informative signal by a transducer. On the other hand, 
RFID tags carry electronic information associated with the asset that they are attached to and can 
be accessed by a reader. [264.]   

Information obtained with indicators is commonly qualitative or semi-quantitative and can be as-
sessed as changes in color or in comparison with a standard. Indicators can be used for assessing 
package integrity, product freshness or temperature history. Integrity indicators are commonly based 
on the detection of excess O2 under low-O2 MAP. [264.] Time-temperature indicators (TTIs) express 
an irreversible, temperature-dependent change in mechanical, chemical, electrochemical, microbio-
logical or enzymatic properties of the product as a visible response [283]. TTIs thus inform about the 
temperature history of the package either during the whole storage time or after exceeding a defined 
threshold. On the other hand, freshness indicators respond to microbiological or chemical changes 
in the product, for example by reacting with spoilage metabolites. Since the generation of metabolites 
depends on the food product, packaging and storage conditions as well as spoilage microbiota, in-
dicators can be targeted against defined marker metabolites. These may be organic acids, amines, 
ethanol, sulfuric compounds or CO2. [264.] 

In food technology, sensor applications allow non-destructive, fast and efficient quality analysis. Sen-
sors can be used to detect changes in temperature, pH, humidity, light exposure or chemical reac-
tions. Chemical sensors respond to the presence, composition, concentration or activity of their tar-
get analytes. In particular, monitoring of VOCs or gas molecules related to spoilage has been con-
sidered interesting under MAP conditions. However, various challenges are associates with sensor 
development. Small size and sufficient sensitivity, robustness and costs-efficiency are essential for 
facilitated and efficient use of these technologies. The sensor applications must also comply with the 
current legislation and food safety. [281.] 

2.3.2.2 Applications for meat and fish 

TTIs have been used for monitoring the temperature history of meat and fish. These have commonly 
been based on irreversible color changes that are due to photochromic reactions [284], polymeriza-
tion reactions [90] or pH decrease caused by enzymatic reactions [285; 286]. Microbial growth and 



33 

 

subsequent pH decrease have also been used as an initiator of color changes [287-290]. Further-
more, different TTI types have been compared [291-293]. 

Non-destructive monitoring of fish quality has commonly focused on the production of spoilage me-
tabolites, especially those belonging to the NPN fraction. Heising et al. [294] monitored the freshness 
of Atlantic cod by measuring ammonia in the aqueous phase of the package with an ammonium ion 
selective electrode. Subsequently, Heising et al. [295] developed a mathematical model to predict 
the freshness of Atlantic cod on the basis of TMA content in the aqueous phase. The model param-
eters were either based on physical and chemical principles or experimentally estimated on the basis 
of non-destructive sensor measurements and destructive TMA analyses [295]. 

Electronic noses commonly utilize sensors in order to imitate olfactometry testing [296] and have 
been applied for different meat and fish products [297-301]. Ólafsdóttir et al. [302] used an electronic 
nose containing electrochemical gas sensors to monitor the VOC evolution of capelin and found that 
the results were in accordance with traditional TVB-N measurements. Di Natale et al. [303] compared 
the performance of two electronic noses in evaluating the freshness of Atlantic cod: most accurate 
results were obtained by combining the two technologies.  

Even though the number of commercially available freshness indicators is currently limited, different 
applications have been presented in the literature [280]. Studies regarding meat and fish quality 
monitoring have generally focused on the produced VOCs. Spoilage has been monitored by colori-
metric detection of pH changes that occur as a response to increasing volatile amine concentrations 
[304-307]. Boscher et al. [308] developed a metalloporphyrin-based coating for the colorimetric de-
tection of volatile amines produced in fish. Respectively, biosensors aiming at the detection of spoil-
age metabolites have been developed for amines [309], glucose [310] and xanthine [311; 312]. 
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dissertation research was to examine the spoilage of seafood packaged under MAs and to both 
identify and quantify VOCs that could be used as spoilage indicators, thus allowing quality monitoring 
during storage time.  

The dissertation addresses the following main research question (M1) and the associated subques-
tions (S1-S3): 

M1  What are the key aspects of quality characterization within the context of developing 

active and intelligent packaging technologies for muscle foods? 

S1  What is the impact of silver-containing packaging films prepared by coextrusion or liq-

uid flame spray (LFS) on the quality and spoilage of vacuum packaged pork? What are 

the critical factors determining their antimicrobial efficacy? 

S2  How do different O2 levels (high-residual-absent) affect the physicochemical properties 

(headspace gas composition, surface pH and color) of pork packaged under MAs? 

S3  Which VOCs (identity and quantity) are potential spoilage indicators of Atlantic cod 

(Gadus morhua) and brown shrimp (Crangon crangon) stored under MAs? Which cri-

teria can be used for their identification?  

The questions were addressed in the dissertation and the four research papers P1-P4 as described 
below. 

The first research paper (P1) describes the preparation and antimicrobial characterization of silver-
containing packaging films. Polymeric silver-containing films were prepared by coextrusion and LFS. 
Antimicrobial properties of the films were assessed both in vitro against different bacteria and in 
contact with raw pork.  

In the second research paper (P2), statistical analysis was applied for examining the impact of dif-
ferent MAs on physicochemical properties of raw pork. The effects of high-O2 MAP, common anoxic 
MAP and anoxic MAP enhanced with an O2 absorber on headspace gases, surface pH and color 
were evaluated by mixed analysis of variance (ANOVA). 

In the third research paper (P3), spoilage of raw Atlantic cod stored under different MAs and air was 
characterized by microbiological, chemical and sensory analyses in order to identify and quantify 
VOCs related to spoilage. This was carried out by studying the relations between microbial growth, 
sensory quality and VOC production. 

The fourth research paper (P4) aimed at enhancing the detection of potential spoilage indicators 
among the VOCs produced in Atlantic cod or brown shrimp stored under MAs. Multivariate statistical 
analyses were used for characterizing the VOC profile during storage both as exploratory and se-
lective techniques.  
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On the whole, the present dissertation aimed at defining the central aspects that should be consid-
ered when producing information about food quality for the development of active and intelligent 
packaging technologies for muscle foods. Different aspects arising from the main requirements and 
characteristics of the food quality and packaging technology development were identified. Through-
out the dissertation work, experimental and statistical methods were combined to produce data that 
responded to the needs of packaging technology development.   
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4 Materials and methods 

In this chapter, a summary of the materials and methods applied in the study is presented. Detailed 
information about materials and methods can be found in the original research papers P1-P4. 

4.1 Preparation of antimicrobial packaging materials 

4.1.1 Coextrusion 

Coextrusion was used for producing silver-containing packaging films (P1). The films were produced 
in a continuous roll-to-roll process on the Paper Converting and Packaging Technology pilot line at 
TUT. Silver-containing masterbatches were dry blended at 1 % (Ag-TiO2) or at 2-3 % (Irgaguard 
B5120, BASF, Ludwigshafen, Germany) concentration with LDPE (CA7230, Borealis, Wien, Austria) 
and introduced as a thin top layer on pure LDPE. The Ag-TiO2 masterbatch was prepared by melt 
mixing LDPE and silver substituted titanium dioxide (SG TP8, Silvergreen Oy Ltd., Helsinki, Finland) 
in Brabender DSE25 twin screw extruder (Duisburg, Germany). Very low adhesion between the films 
and the substrate (food-grade paperboard, Stora Enso Oyj, Imatra, Finland) allowed removing the 
substrate without film damage. Screw or line speed was adjusted to produce total coating weight of 
approximately 20 g/m2. Control films (LDPE) were analogously produced. The coextrusion films were 
denoted as Irgaguard 2 % or 3 %. 

4.1.2 Liquid flame spraying 

LFS was used for coating LDPE films (Ch. 4.1.1) with metallic silver particles (P1). LDPE sheets 
(27.5 x 19.5 cm) were coated on a laboratory scale conveyor line [313]. Silver nitrate (Sigma-Aldrich, 
Germany) in ion exchanged water was used as a precursor at 500 mg/ml (big particle size) or 125 
mg/ml (small particle size) concentration. Each substrate sheet was coated 1, 2 or 4 times with 
precursor feed rate 2 ml/min, burner distance 20 cm, line speed 50 m/min and gas flow rate 40/20 
lpm (H2/O2). The LFS films were denoted as B1, B2, B4, S1, S2 and S4, where the letter indicates 
the particle size (B: big, S: small) and the number the amount of coating times. 

4.1.3 Transmission electron microscopy 

During LFS (P1), a transmission electron microscopy (TEM) grid (S160-3, Agar Scientific) centered 
to a sample holder and alumina stick was wiped perpendicularly through the flame to collect the 
nanoparticle deposit. JEOL JEM-2010 instrument was used at 200 kV acceleration voltage for TEM 
imaging. 
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4.3 Packaging and storage 

4.3.1 Pork under vacuum 

Pork sirloin, slaughtered up to 24 h prior analyses, was used in the study (P1). Meat was cut to ca. 
20 g pieces, wrapped in active film (Ch. 4.1.1 - 4.1.2) and packaged at UH under vacuum (Multivac 
A 300/168, Sepp. 160 Haggenmuller KG, Wolfertschwenden, Germany) in a high barrier film (90 µm 
thickness; O2 transmission rate 1 cm3 m- 2 24 h-1 atm- 1 at 23 °C and 75 % relative humidity; Finnva-
cum, Östersundom, Finland). The samples were stored at + 6 °C in dark for up to 28 days. Three 
replicate packages were analyzed per sampling session on a regular basis. 

4.3.2 Pork under MAP  

Meat obtained from a packing plant was used in the study (P2). Mixed breed pigs were slaughtered 
at up to 7 months age and 80 - 90 kg carcass weight. Boneless pork loin (310 ± 10 g) was packaged 
as four stacked cutlets (thickness 1.5-2 cm) at 1:2 product-headspace ratio using trays (O2 transmis-
sion rate 90 cc/m2/24h, 23 °C, 50 % R.H., measured by MOCON Ox-Tran 2/21 MH, Mocon, Inc., 
Minneapolis, MN, USA) and top film (O2 transmission rate 30 cc/m2/24h, respectively). Two inde-
pendent experiments A/B and C/D with different MAs (O2/CO2/N2 %) were carried out to compare 
high-O2 MAP (80/20/0; A) and common anoxic MAP (0/20/80; B) as well as common anoxic MAP 
(0/20/80; C) and enhanced anoxic MAP (0/20/80 with an ATCOTM FT-210 O2 absorber; D). All pack-
ages were prepared on day 0, transported to TUT on day 1 at max. 4 °C and stored at 4 ± 0.5 °C in 
dark prior analyses. Four randomly selected packages per condition were analyzed on a regular 
basis until day 17. 

4.3.3 Atlantic cod 

Atlantic cod (min. body weight ca. 4.5 kg) used in the study (P3-P4) was caught in the north Atlantic 
sea, gutted, filleted and stored under ice without preservatives. The fish was delivered to LFMFP in 
polystyrene boxes under ice. Fillet portions (217 ± 5 g) were packed under gas-product ratio 2:1 
using multilayer packaging trays (PP/EVOH/PP, O2 transmission rate 0.03 cm3/tray*24h at 23 °C 
and 50 % R.H.) and top film (PA/EVOH/PA/PP, O2 transmission rate 6.57 cm3/m2*24h*bar at 23 °C, 
50 % R.H. and 1 atm). Independent fish batches were used for each of the five storage experiments 
(Table 5). Sample-free packages with corresponding gas atmospheres (blanks) were respectively 
prepared. The samples were stored at (4.0 ± 0.7) or (8.0 ± 0.4) °C and three randomly selected 
packages were analyzed on each sampling day. 
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Table 5. Packaging and storage conditions used for Atlantic cod (modified from P3). 

 H4 H8 L4 L8 Air 
CO2/O2/N2 (%) 60/40/0 60/40/0 60/5/35 60/5/35 air 
Temperature (°C) 4 8 4 8 4 
Days of analysis 0,4,5,6,7,8,11,13 0,3,4,5,6,7 0,4,5,6,7,11,13 0,3,4,5,6,7 0,1,2,3 

After sampling, remaining sample material was packaged under vacuum in high barrier film bags (O2 
transmission rate < 2.7 cm3/m2*24h*bar at 23 °C and 0 % R.H.) and stored at -32 °C for less than 
120 days (sensory evaluation, Ch. 4.7) or one year (sequencing, Ch. 4.8). 

4.3.4 Brown shrimp 

Brown shrimp used in the study (P4) was caught in the north Atlantic Sea, sorted according to size 
and washed before cooking according to normal Belgian fishing practices. No additives or preserv-
atives were added during processing. The cooked shrimp was cooled, stored overnight in plastic 
bags under ice, brought onshore the following morning, transported to LFMFP and hand peeled while 
being kept on ice. Portions of 150 ± 2 g were packaged at 2:1 headspace-product ratio in multilayer 
packaging materials (Ch. 4.3.3). Two independent shrimp batches were packaged under MAs 
(CO2/O2/N2 %) 50/0/50 or 30/0/70 and stored at (4.0 ± 0.7) °C for up to 12 days. Three randomly 
selected packages were analyzed on each sampling day. After sampling, the remaining shrimp was 
packaged under vacuum using high barrier film bags (Ch. 4.3.3) and stored at -32 °C for no longer 
than 70 days. 

4.4 Microbiological analysis 

Growth media used for the microbial enumerations are presented in Table 6. 

Table 6. Growth media used for the enumeration of pork (P1), cod (P3) or shrimp (P4) microbiota. 

Growth medium Distributor 
Plate count agar (PCA) Oxoid (Basingstoke, UK) 
Marine agar (MA) Difco (Le Point de Claix, France) 
de Man-Rogosa-Sharpe agar (MRS) Oxoid 
Modified MRS Prepared at LFMFP 
Iron Agar Lyngby (IAL) Oxoid 
Pseudomonas agar (PA1) Merck (Darmstadt, Germany) 
Pseudomonas agar (PA2) Oxoid 
Streptomycin sulfate thallium acetate actidione agar (STAA) Oxoid 
Violet red bile glucose agar (VRBGA) LabM (Bury, UK) 
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From each individual piece of pork (P1), 10 g was aseptically weighed, homogenized (1:10) with 
0.1 % peptone saline in a stomacher blender (Seward, Worthing, UK) and appropriate decimal dilu-
tions were prepared. Aerobic bacteria were incubated on PCA, LAB on MRS in anaerobic jars, pseu-
domonads on PA1, B. thermosphacta on STAA and Enterobacteria on VRBGA. Plates were incu-
bated at 25 °C for 2 (STAA, VRBGA) or 5 days (PCA, MRS) or at 37 °C for 2 days (PA1). 

From each individual seafood portion (P3-P4), 30 ± 0.1 g was aseptically weighed, homogenized 
(1:10) with 0.1 % peptone saline in a stomacher blender (LED Techno, Heusden-Zolder, Belgium) 
and appropriate decimal dilutions were prepared. Total plate counts (TPC) were determined on MA, 
LAB on MRS or mMRS, H2S producers on IAL, pseudomonads on PA2 and B. thermosphacta on 
STAA. Plates were incubated at 22 °C for 2 (PA and STAA), 3 (MRS and IAL) or 5 days (MA). 

4.5 Physicochemical properties 

4.5.1 Headspace gases 

Headspace gas composition (% O2/CO2) was determined with CheckPoint O2/CO2 gas analyzer 
(PBI Dansensor A/S, Ringsted, Denmark; P2) or CheckMate 9000 (Dansensor; P3) from the pack-
age headspace. One (seafood; P3) or three (pork; P2) consecutive gas samples were analyzed from 
each package. 

4.5.2 pH 

pH of pork packaged under vacuum (P1) was determined with pH meter (Inolab 720, WTW, 
Weilheim, Germany) from the first dilution of the homogenate in peptone saline. Surface pH of pork 
packaged under MAP (P2) was determined with HI1413B surface pH electrode and HI7662 temper-
ature electrode connected with HI2210 pH meter (Hanna Instruments, Woonsocket, RI, USA) from 
six spots of the topmost stacked cutlet immediately after opening the package. pH of cod (P3) was 
determined from the fillet portions by a pH electrode (Lab® 427, Mettler Toledo GmbH, Schwerzen-
bach, Switzerland) connected with a pH meter (SevenEasy, Mettler Toledo GmbH) within 30 minutes 
after opening. 

4.5.3 Color 

Color of pork (P2) was determined three consecutive times from the topmost cutlet before and after 
20 min blooming time under room temperature and illumination using a portable chromameter (CR-
210, Konica Minolta, Osaka, Japan), the CIELAB system, illuminant C and observation angle 2°. 
Color of cod (P3) was determined through a small Petri dish (diameter 230 mm) with a Spectropho-
tometer CM 2500d (Konica Minolta Sensing Inc., New Jersey, USA) and SpectraMagicTM NX soft-
ware using the CIELAB system, illuminant D65 and observation angle 10°. 
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4.6 Volatile organic compounds 

Literature survey and preliminary experiments were used for selecting seafood VOCs to be quanti-
fied with a selected-ion flow-tube mass spectrometer (Voice 200, Syft TechnologiesTM, Christchurch, 
New Zealand) using Multiple Ion Monitoring (MIM) mode (P3-P4; Table 7). The package headspace 
was sampled twice with a constant flow rate during 60 seconds. Package collapse was avoided by 
using a needle inlet connecting the headspace to atmospheric air. Blanks (n=9-14) were randomly 
analyzed throughout storage time for each atmosphere, respectively.   

Table 7. VOCs quantified during storage of Atlantic cod (C) or brown shrimp (S), mass to charge ratios 
(m/z), branching ratios (b) and reaction rate coefficients (k) (modified from P3-P4). 

VOC Precursor  m/z b (%) k Product ion Seafood 
Acids       
Acetic acid H3O+ 61 100 2.6 E -09 CH3COOH2+ C 
 NO+ 90 100 9.0 E -10 NO+.CH3COOH C, S 
 NO+ 108  9.0 E -10 NO+.CH3COOH.H2O S 
 O2+ 60 50 2.3 E -09 CH3COOH+ C 
Alcohols       
2,3-butanediol H3O+ 91 100 3.0 E -09 C4H10O2+.H+ S 
 NO+ 89 100 2.3 E -09 C4H9O2+ C, S 
Ethanol H3O+ 47 100 2.7 E -09 C2H7O+ C, S 
 H3O+ 65   C2H7O+.H2O C,S 
 H3O+ 83   C2H7O+.(H2O)2 C,S 
3-methyl-1-butanol H3O+ 71 100 2.8 E -09 C5H11+ C,S 
 NO+ 87 85 2.3 E -09 C5H11O+ C,S 
Isobutyl alcohol H3O+ 57 100 2.7 E -09 C4H9+  
 NO+ 73 95 2.4 E -09 C4H9O+ C,S 
 O2+ 33 50 2.5 E -09 CH5O+ C,S 
2-propanol H3O+ 43 80 2.7 E -09 C3H7+ S 
       
Aldehydes       
2-methylpropanal O2+ 72 70 3.0 E -09 C4H8O+ C 
3-methylbutanal NO+ 85 100 2.4 E -09 C5H9O+ C 
Ketones       
Acetone H3O+ 59 100 3.9 E -09 C3H7O+ C, S 
 NO+ 88 100 1.2 E -09 NO+.C3H6O C, S 
Acetoin O2+ 88 20 2.5 E -09 C4H8O2+ C, S 
Butanone NO+ 102 100 2.8 E -09 NO+.C4H8O S 
2-pentanone H3O+ 87 100 3.9 E -09 C5H11O+ S 
 H3O+ 105  3.9 E -09 C5H11O+.H2O S 
 NO+ 116 100 3.1 E -09 NO+.C5H10O+ C, S 
Sulfur compounds       
Carbon disulfide O2+ 76 100 7.0 E -10 CS2+ S 
Dimethyl sulfide H3O+ 63 100 2.5 E -09 (CH3)2S.H+ C 
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 NO+ 62 100 2.2 E -09 (CH3)2S+ C, S 
Dimethyl disulfide H3O+ 95 100 2.6 E -09 (CH3)2S2.H+ C, S 
 NO+ 94 100 2.4 E -09 (CH3)2S2+ C, S 
 O2+ 94 80 2.3 E -09 (CH3)2S2+ C 
Dimethyl trisulfide H3O+ 127 100 2.8 E -09 C2H6S3H+ C 
 NO+ 126 100 1.9 E -09 C2H6S3+ C 
Hydrogen sulfide H3O+ 35 100 1.6 E -09 H3S+ C, S 
 H3O+ 53  1.6 E -09 H3S+.H2O S 
 O2+ 34 100 1.4 E -09 H2S+ C, S 
Methyl mercaptan H3O+ 49 100 1.8 E -09 CH4S.H+ C, S 
 H3O+ 67  1.8 E -09 CH4S.H+.H2O S 
Esters       
Ethyl acetate NO+ 118 90 2.1 E -09 NO+.CH3COOC2H5 C, S 
 O2+ 31 20 2.4 E -09 CH3O+ S 
Ethyl propanoate H3O+ 103 95 2.9 E -09 C2H5COOC2H5.H+ C 
 NO+ 132 60 2.5 E -09 NO+.C2H5COOC2H5 C 
Amines       
Ammonia H3O+ 18 100 2.6 E -09 NH4+ C, S 
 H3O+ 36  2.6 E -09 NH4+.H2O S 
 O2+ 17 100 2.4 E -09 NH3+ C, S 
Dimethylamine H3O+ 46 100 2.1 E -09 (CH3)2N.H+ C, S 
Trimethylamine H3O+ 58 10 2.0 E -09 C3H8N+ S 
 H3O+ 60 90 2.0 E -09 (CH3)3N.H+ C, S 
 NO+ 59 100 1.6 E -09 (CH3)3N+ C 
Other       
Ethylene oxide NO+ 74 100 1.0 E -10 C2H4O.NO+ S 

Concentrations were averaged over data points per scan and relative standard deviations (SD%) of 
each VOC during the scan were calculated: 

SD% = SDm/xm* 100 %      (15) 

where xm is the average and SDm the standard deviation of a single SIFT-MS measurement. VOCs 
with over 25 % average SD% during storage within a certain packaging condition were excluded from 
further analyses.  

In P4, VOC concentrations that were applied for statistical analyses (Ch. 4.9) were the mean values 
of the measured concentrations. In P3, a limit of quantification (LOQ) was calculated for each VOC: 

LOQ = xbl + 6*SDbl      (16) 

where xbl is the average and SDbl the standard deviation of the blanks [317]. From each measured 
concentration exceeding the LOQ, background (average of the blanks) was reduced.  
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4.7 Sensory evaluation 

4.7.1 Test preparations 

Pork (P1) was evaluated by a trained panel of 5 persons at UH. The panelists had received a training 
for the evaluation of raw meat, including a practical training for defect detection using standard so-
lutions. Samples were equilibrated to room temperature and fresh pork from the same batch was 
used as a reference. 

Seafood (P3-P4) was evaluated by a panel consisting of up to 14 laboratory staff members (8-12 on 
a given evaluation session) at UGent who had experience in seafood sensory evaluation and did not 
have defects in olfactory capacity. Due to the subjective nature of the tests, the seafood panelists 
were not trained like the pork panelists. Frozen seafood samples were cut to 5.0 ± 0.1 g portions 
and thawed at 2 °C overnight prior analyses in odorless, transparent plastic cups (diameter 67 mm; 
AVA, Temse, Belgium) closed with lids (AVA). One out of three daily replicates (A-C) was randomly 
selected for an evaluation session. The samples were presented to the panel at 4 °C labelled with 
three-digit random codes and fresh seafood from the same batch was used as a reference. 

4.7.2 Ranking tests 

Four seafood samples (P3-P4) were simultaneously presented to the panel and ranked from least 
fresh (1) to most fresh (4). A second test was performed for the critical days identified by the first test 
if applicable. The collected data was subjected to Friedman and least significant difference (LSD) 
tests (Excel 2013 for Windows). 

4.7.3 Acceptance tests 

Acceptance of pork (P1) and seafood (P3-P4) was evaluated on a five-point scale; different termi-
nology was used when aiming at defect analysis (pork) or quality stage characterization (seafood). 
Acceptance of pork (odor and appearance) was evaluated on a numerical scale (1-5, where 1 = 
severe defect, spoiled, 2 = clear defect, spoiled, 3 = mild defect, satisfactory, 4 = good, 5 = excellent). 
Median of 2 or below was used for indicating spoilage. Acceptance of seafood was evaluated on a 
verbal scale (very good, good, satisfactory, marginal, spoiled); numbers were excluded in order to 
avoid assuming equal distances between two consecutive terms. Marginal or spoiled were consid-
ered as rejection. 



45 

 

4.8 16S rRNA sequencing 

4.8.1 Pork 

16S amplicon sequencing was performed for triplicate pork samples stored for 10, 17 or 28 days 
(P1). DNA was extracted from the meat samples using a FastPrep procedure. After extraction, the 
V1-V3 area was PCR-amplified with primers 8f and 518r [318] using a PCR program with denatura-
tion at 98 ºC for 30 s, 20 cycles at 98 ºC for 10 s, 65 ºC for 30 s, 72 ºC for 10 s, followed by 72 ºC 
for 5 min and cooling down to 4 ºC. The products were purified and a second PCR was carried out 
where sample specific barcodes (8 bp) and sequencing adapters were added to the amplified frag-
ments. Prior to purification of a specific sample, three replicate reactions were done and the products 
were pooled. Purification and sequencing was carried out with Roche 454 Titanium FLX protocol. 

QIIME v. 1.7 [319] was used for sequence analysis. Sequence reads were filtered for quality and 
assigned to samples based on the sample specific barcode. Reads with length less than 200 bp, 
ambiqous bases, quality score below q30 or mismatches in the primer sequence were omitted from 
further analysis. Operational taxonomic units (OTUs) were picked with the uclust [320] algorithm with 
97 % similarity. Representative sequence read from each OTU were assigned to taxonomy with 
BLAST [321] against the Greengenes database (Version 13.8.2014) [322].  

4.8.2 Atlantic cod 

Fish samples were selected for 16S amplicon sequencing so that early, intermediate and late stages 
of each storage experiment were represented (P3). One out of three daily replicates was selected 
for the analysis. DNA was extracted from the fish samples using a FastPrep procedure. Library prep-
aration and sequencing was carried out according to De Vrieze et al. [323]. 

The sequencing data was processed according to the guidelines developed by P. Schloss [324; 325] 
using the mothur software package v. 1.38.0 [326]. Contigs with lengths outside of the 2.5 - 97.5 % 
quantiles or sequences with ambiguous base calls were removed and the remaining unique se-
quences were aligned to the mother-reconstructed SILVA Seed alignment v. 123 [327]. Unique se-
quences were pre-clustered within a distance of 1/100 nucleotides. Chimeras were screened with 
UCHIME [328] and sequences were classified using RDP v. 14 [329] and Wang’s algorithm.  

After removing non-bacterial sequences, OTUs were clustered using average linkage and 97 % se-
quence identity. Single-read OTUs were discarded from further analyses. Rarefaction curves and 
different richness, density and evenness estimators were produced for alpha diversity analysis. 
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4.9 Statistical analysis 

4.9.1 Analysis of variance 

ANOVA was used for characterizing the development of meat microbiota in contact with silver-con-
taining packaging materials (P1). One-way ANOVA and Tukey post hoc test (SPSS Statistics v. 22 
for Windows) were used for analyzing significant differences (p > 0.05) in the composition of micro-
biota between meat samples from different packages at a given time point (day 10, 17 or 28). 

Mixed ANOVA was used for analyzing the evolution of the studied physicochemical variables in pork 
sirloin packages (P2). All analyses were carried out separately for the two storage experiments (A/B 
and C/D) with R 3.3.1 [330], using individual packages as samples. Prior ANOVA, homogeneity of 
variances and normality of residuals was examined. Two-way mixed ANOVA and Tukey post hoc 
test were used for analyzing significant differences (p < 0.05) in headspace gas concentrations and 
pH between means (n=4 per time point and atmosphere): 

O2, CO2 or pH ~ Atmosphere*Storage time, random=~1|SampleID   (17) 

where atmosphere and storage time were treated as between samples factors and sample ID as a 
within samples factor. The main effects and interaction of atmosphere and storage time was exam-
ined. Respectively, three-way mixed ANOVA and Tukey post-hoc test were used for analyzing sig-
nificant differences (p < 0.05) in color:  

 L*, a* or b* ~ Atmosphere*Storage time*Blooming time, random=~1|SampleID  (18) 

where blooming time (0 or 20 min) was treated as a within samples factor and other factors as in Eq. 
(17). In case of a non-significant interaction, post hoc tests were carried out for significant lower-
order interactions or main effects. 

4.9.2 Hierarchical cluster analysis 

Agglomerative hierarchical cluster analysis (HCA) was used in the exploratory analysis of the VOC 
profile during storage of brown shrimp (P4). Daily replicates A-C were treated as samples and VOCs 
as variables. Prior analyses, VOC data was converted to logarithmic values and standardized to z-
scores. Euclidean distance and average linkage were used for constructing heat maps and dendro-
grams with R 3.3.1.  

4.9.3 Principal components analysis 

Principal components analysis (PCA) was used in the exploratory analysis of VOC evolution during 
storage of brown shrimp (P4). Logarithmic and standardized VOCs were used for producing PCA 
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biplots. Suitability for data reduction was tested with Bartlett’s sphericity test and sampling adequacy 
with Kaiser-Meyer-Olkin (KMO) test [331] using R 3.3.1. 

4.9.4 Partial least squares regression 

Partial least squares regression (PLS) was used in the exploratory analysis of VOCs produced during 
storage of brown shrimp as well as for the selection of most potential spoilage indicators of Atlantic 
cod and brown shrimp (P4). JMP v. 12, the non-linear iterative partial least squares (NIPALS) algo-
rithm and leave-one-out cross validation was used for producing PLS biplots where logarithmic and 
standardized VOCs were used as predictor variables and time, TPC or sensory rejection % as the 
response variable. For each variable, variable importance in projection (VIP) values and regression 
coefficients were determined. VOCs with positive correlation with the response variable, VIP > 1 and 
a positive regression coefficient were considered to be potential spoilage indicators.  
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5 Results and discussion 

In this chapter, main results of the dissertation are presented and discussed. Detailed description of 
the results and discussion is presented in the original research papers P1-P4. 

5.1 Spoilage of pork 

5.1.1 Effect of silver  

Antimicrobial activity of silver is dependent on its concentration and availability (P1).  BLI results (Fig. 
2) showed that increasing concentration of nano-scale silver lead to improved antimicrobial efficiency 
against bioluminescent E. coli.  

 

Fig. 2. Bioluminescence of E. coli K12 carrying a plasmid pCGSL-1 in the presence of silver-containing 
packaging films prepared by LFS. Plate top row: control, B4, S4; bottom row : B2, S2, B1; 
the letter indicates the particle size (B: big, S: small) and the number the amount of coating 
times. Each image (0-16 h) has individual color scale expressed as minimum and maxi-
mum counts. (P1) 
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Blue inhibition zones appeared on and around the packaging films samples containing nanosilver 
coating, suggesting that the coating was highly inhibitive against E. coli and that inhibition was en-
hanced by increasing LFS coating times. Inhibition occurred within the first five hours after exposure 
to nano-scale silver, whereas packaging films prepared by coextrusion had no impact on microbial 
growth throughout the study. These results highlight the importance of the availability of active silver. 
Silver was most likely captured within the polymer matrix during coextrusion, preventing its migration 
and thus limiting its availability in comparison with LFS films where silver was applied as a loose 
coating and was thus able to diffuse to the growth medium surroundings. Furthermore, concentration 
of silver was greatly lower in coextruded films since it was introduced in carrier systems containing 
low levels of silver. As a conclusion, the superior antimicrobial efficiency of LFS films over coextruded 
films could be associated with higher silver concentration, improved surface contact with microbes 
and higher diffusion capacity. Despite the use of two different silver concentrations during LFS (Ch. 
4.1.2), no clear differences between the antimicrobial efficacy of materials denoted with B (big) and 
S (small) particle size were observed. This could be due to the overlap in particle diameter distribu-
tion; even though diameters exceeding 10 nm were typically found in B and rarely in S, diameters 
between 3-15 nm were observed in both material types (P1). Given that a small size and high sur-
face-to-volume ratio have been suggested to increase the antimicrobial activity of silver nanoparti-
cles [332; 333], further studies about their impact on packaging material performance could be ben-
eficial.     

Nano-scale silver was effective against several meat spoilage bacteria in vitro (P1). In comparison 
with silver-free control film, nanosilver was highly effective against B. thermosphacta, H. alvei and L. 

piscium. Especially Gram-negative microbes were found to be susceptible to silver, in accordance 
with previous studies [244; 334]. Furthermore, some reduction of L. sakei levels and growth inhibition 
of C. divergens was observed. However, none of the tested films affected microbial growth in meat 
packaging (Fig. 3) and sensory acceptability remained throughout storage under all packaging con-
ditions. Sequencing results indicated that the composition of meat microbiota was highly similar un-
der all packaging conditions and was dominated by lactobacilli, lactococci and leuconostocs. The 
results thus indicate that respective bacteria that were susceptible to nano-scale silver in vitro were 
not affected in situ meat.  
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Fig. 3. Total plate counts (A) and lactic acid bacteria (B) in pork samples in contact with silver-
containing films prepared by coextrusion (Irgaguard 3 %) or LFS (B4 and S4) (modified from P1). In 
LFS films, the letter indicates the particle size (B: big, S: small) and the number the coating times. 

Antimicrobial efficiency of silver was thus likely lost because of meat properties. (P1) Previously, this 
phenomenon has commonly been observed during storage of different food products [15; 249; 335-
337] and has been associated with the inactivation of silver in the presence of food compounds, 
reduction of silver ions to elemental silver or insufficient surface contact between silver and bacteria 
[335; 337]. In meat, reactions between thiol groups and silver have been highlighted [335]. Further-
more, it is possible that in the present study (P1), the in vitro efficiency of LFS materials was due to 
an initial burst effect, given that silver was applied as a loose coating on polymer surfaces. Since 
prolonged exposure to antimicrobial agents can be considered a more potential approach 
(Ch.2.3.1.1), extended silver releasing capacity should be emphasized in future studies. However, 
migration tests should be included to confirm the suggested reasons of activity/inactivity. 

Bhakta et al. [338] reported that certain LAB may tolerate high levels of heavy metals. This was 
demonstrated in the present dissertation (P1) as L. gelidum subs. gasicomitatum was not affected 
by any of the tested films in vitro or in contact with meat. This suggests that silver-based packaging 
materials could support its growth by inhibiting the growth of more susceptible bacteria (P1). Since 
L. gelidum subs. gasicomitatum is a major spoilage bacterium of meat stored under MAs [157; 169; 
339], silver resistance could further promote its impact on meat spoilage (P1). 

5.1.2 Effect of different oxygen concentrations 

The main and interactive effects of atmosphere, storage time and blooming time on several physi-
cochemical variables of pork sirloin packaged under different O2 concentrations were determined 
(P2). Three or two-way interactions of atmosphere, storage time and blooming time were commonly 
found significant (Table 8).  

A B 
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Table 8. Statistical significance (p-values) of modified atmosphere (MA) time (T), blooming (B) and their 
interactions on the studied variables (P2). Independent statistical analysis was car-
ried out for the two independent storage experiments A/B and C/D, where the letters 
denote the atmospheres (O2/CO2/N2 %) 80/20/0 (A), 0/20/80 (B or C) and 0/20/80 + 
O2 absorber (D). 

 
O2 

 
CO2 

 
pH L*  a*  b*  

 
A/B C/D A/B C/D A/B C/D A/B C/D A/B C/D A/B C/D 

MA <0.0001 <0.0001 <0.0001 <0.0001 0.0259 0.9518 0.4274 0.0496 <0.0001 0.0001 <0.0001 <0.0001

T 0.0032 0.0032 <0.0001 0.0002 <0.0001 <0.0001 0.2709 0.2689 <0.0001 0.1398 0.0199 0.0147 

B - - - - - - 0.6088 0.0514 <0.0001 <0.0001 <0.0001 <0.0001

MA x T 0.0050 0.0123 0.0027 0.0055 0.3225 0.2483 0.5211 0.3505 0.0017 0.1491 0.0003 0.2412 

MA x B - - - - - - 0.3807 0.0970 <0.0001 0.1210 <0.0001 <0.0001

T x B - - - - - - 0.0018 0.5434 <0.0001 0.7261 0.0012 0.1040 

MA x T x B - - - - - - 0.6017 0.6359 <0.0001 0.4490 0.0070 0.1600 

However, significant effect could have been due to only a single pairwise difference among a large 
number of means, which may have been coincidental. Tukey post hoc tests were thus used for 
determining significant differences between pairs of means. (P2) 

During the expected shelf life (ca. 9 days) and even beyond it, most of the studied physicochemical 
variables remained relatively stable under all studied atmospheres. By the tenth day of storage, 
significant increase was only observed in yellowness under common anoxic conditions (B) and de-
crease in CO2 concentration under enhanced anoxic conditions (D). This limits the potential of the 
studied variables in meat quality analysis during shelf life. (P2) Quality indicators should be able to 
give information about the status of meat throughout storage and allow the recognition of expired 
meat. In the present dissertation (P2), storage time was extended over the expected shelf life in 
order to examine changes occurring during the shelf life in contrast to progressing spoilage. This 
allowed the separation of samples from the early and late days of the entire storage time on the 
basis of gas concentrations. Eventually, slight increase in CO2 concentration was observed under 
most of the tested MAs, accompanied with a decrease in O2 concentration under the high-O2 atmos-
phere (A). This was likely affected by an increase in microbial levels and consequent CO2 production 
[340]. However, on a given day of storage, differences in gas composition between samples stored 
under different MAs could often be associated with the selected packaging conditions instead of 
spoilage-related phenomena. Slight decrease in surface pH was only observed over time when av-
eraged over the levels of atmosphere. (P2) In previous studies, respectively, pH has been stable 
[185] or decreased along with increasing microbial growth [341; 342]. Especially LAB can grow under 
modified atmospheres and produce CO2 and lactic acid during their metabolism [343], thus leading 
to pH decrease. 

Lightness (L*) had no significance in meat quality analysis under the tested storage conditions since 
it remained relatively constant over the entire storage time and was not affected by blooming under 
any of the tested atmospheres. Furthermore, significant differences were not observed between 
samples stored under different atmospheres on a given day of storage. (P2) Analogously, few 
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changes have been observed over storage time in previous studies. The observed changes have 
been associated with muscle type [187], decreasing pH [76] or residual O2 [185]. In this dissertation 
(P2), no indication of such effects were observed. 

Color of meat is dependent on the O2 concentration in the package headspace. Redness of meat is 
determined by the levels of oxymyoglobin which is the dominating form of myoglobin in the presence 
of high O2 concentrations. [70; 142; 143.] In the present dissertation (P2), decrease in redness under 
high-O2 conditions (A) over storage time was thus probably due to decreasing O2 concentration in 
accordance with previous studies [71; 72; 185], whereas the low availability of O2 likely prevented 
any changes under anoxic conditions (B-D) (Tables 9-10). On the contrary, yellowness remained 
stable under atmosphere A and expressed some increase under atmospheres B-D (Tables 9-10; 
P2). Respective results have been previously obtained under anaerobic storage [186; 187], even 
though in the presence of residual O2, decrease in redness over storage time has also been reported 
[184]. 

Commonly, meat stored under aerobic atmospheres has been observed to be more red and yellow 
than under anoxic atmospheres [69; 71]. In the present dissertation (P2), this was examined by 
comparing the pre-blooming color of samples stored under different O2 concentrations. Even though 
meat packaged under high-O2 conditions (A) was more yellow than under common anoxic conditions 
(B), differences in redness were negligible (P2). 

Table 9. Redness (a*) and yellowness (b*) under atmospheres (%O2/CO2/N2) A (80/20/0) and B 
(80/20/0) before and after blooming (20 min). Significant difference (p < 0.05) be-
tween time points is indicated by different superscripts a-g within a column. At a 
given time point and stage of blooming, significant difference between atmospheres 
is indicated by *. At a certain time point and atmosphere, significant difference be-
tween stages of blooming is indicated by S. (P2) 

Day a*    b*    
A  B  A  B  

 Before After Before After Before After Before After 

1 18.58 ± 1.13a 18.56 ± 1.05a 14.04 ± 0.80S 15.26 ± 0.93S 10.80 ± 0.32* 10.80 ± 0.23* 4.18 ± 0.44a*S 7.23 ± 0.36a*S

3 17.19 ± 2.31ab 17.30 ± 2.28ab 13.96 ± 2.40S 15.14 ± 2.45S 10.87 ± 0.49* 10.98 ± 0.49* 5.45 ± 1.41ab*S 8.07 ± 0.84ab*S

6 16.87 ± 0.51ab* 16.86 ± 0.58ab 12.09 ± 0.92*S 12.93 ± 1.14S 10.58 ± 0.51* 10.53 ± 0.52 7.10 ± 0.83bc*S 8.50 ± 0.57abS

8 15.55 ± 1.18abc 15.51 ± 1.16abc 11.50 ± 1.00S 12.37 ± 1.15S 10.32 ± 0.57* 10.27 ± 0.60 7.71 ± 0.90bc* 8.75 ± 0.36ab

10 14.57 ± 1.40abc 14.70 ± 1.53abc 10.62 ± 0.74S 11.22 ± 1.09S 10.35 ± 0.42 10.43 ± 0.59 9.05 ± 0.84c 9.81 ± 0.62b

13 13.11 ± 1.30bc 13.24 ± 1.46bc 12.66 ± 2.99S 13.31 ± 3.20S 10.48 ± 0.24* 10.78 ± 0.19 6.36 ± 2.54ab*S 8.57 ± 1.17abS

15 11.71 ± 1.30c 11.84 ± 1.38c 12.12 ± 1.79 12.62 ± 2.22 10.13 ± 0.68 10.26 ± 0.53 7.65 ± 2.07bcS 9.06 ± 1.12abS

17 12.00 ± 0.53c 12.02 ± 0.53c 13.65 ± 2.19 13.29 ± 2.02 9.97 ± 0.40 10.05 ± 0.40 7.46 ± 1.47bcS 9.44 ± 0.80abS
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Table 10. Redness (a*) and yellowness (b*) under atmospheres (%O2/CO2/N2) C (0/20/80) and D 
(0/20/80 + O2 absorber) before and after blooming (20 min). Atmosphere x storage 
time x blooming time interaction was non-significant (p > 0.05). (P2) 

Day a*    b*    
 

C  D  C  D  

 Before After Before After Before After Before After 

1 13.23 ± 0.50 14.69 ± 0.48 16.14 ± 0.91 17.16 ± 0.88 5.16 ± 1.04 7.56 ± 0.58 3.20 ± 0.31 6.75 ± 0.39

3 14.51 ± 1.08 15.24 ± 1.69 14.94 ± 0.66 16.06 ± 0.55 5.11 ± 0.85 7.38 ± 0.68 3.57 ± 0.43 7.42 ± 0.59

6 13.54 ± 2.29 13.87 ± 2.97 15.46 ± 1.14 16.02 ± 0.76 5.87 ± 2.57 7.78 ± 0.97 3.86 ± 0.56 7.15 ± 0.35

8 12.02 ± 1.00 12.02 ± 0.98 14.03 ± 0.62 13.94 ± 2.26 7.66 ± 1.85 8.55 ± 1.24 3.18 ± 0.66 6.25 ± 0.61

10 11.27 ± 2.40 11.81 ± 3.36 15.03 ± 0.24 15.68 ± 0.47 7.92 ± 1.12 8.62 ± 0.35 3.83 ± 1.12 6.88 ± 0.68

13 13.80 ± 1.58 13.39 ± 2.35 13.63 ± 1.77 15.33 ± 1.88 6.39 ± 1.85 8.09 ± 0.79 4.79 ± 3.01 7.76 ± 1.77

15 12.37 ± 2.92 12.72 ± 2.97 14.97 ± 0.73 15.55 ± 0.75 6.98 ± 2.03 8.36 ± 1.42 4.92 ± 1.58 8.10 ± 1.16

17 15.22 ± 1.71 15.22 ± 2.44 14.26 ± 0.45 14.63 ± 0.12 6.99 ± 1.23 9.00 ± 0.39 5.22 ± 2.06 8.25 ± 1.48

Blooming occurs when meat that has been stored under low O2 concentrations is exposed to air. In 
the present dissertation (P2), blooming time had significant impact only under anoxic conditions (B-
D) and lead to increase in both redness and yellowness under atmosphere B until late days of stor-
age. Under atmospheres C-D, respective color changes could be observed after averaging over the 
levels of time and/or atmosphere. Since color differences between samples from different atmos-
pheres were negligible especially after blooming, this suggests that the common drawback of anoxic 
meat packaging – discoloration – could have less relevance in light-colored pork. (P2) Since meat 
color is highly influential to consumer appeal and purchase decision [59; 61-63], this could support 
the application of anoxic packaging for pork and thus reduce the deterioration caused by O2 (P2).  

Oxygen absorbers can be used for the removal of low O2 levels from the package headspace. Inter-
ference of residual O2 on meat color and/or blooming has often been observed [60; 184; 188; 189]. 
In contrast, the use of O2 absorbers in anoxic packaging has been associated with increase in red-
ness and decrease in yellowness when compared to absorber-free packaging systems [184]. This 
is in correspondence with the results obtained in the present dissertation (P2) when averaged over 
the levels of storage time and blooming time (redness) or storage time (yellowness), even though 
no significant color difference between samples packaged under the two anoxic conditions (C-D) 
was observed on a given day of storage. These results thus suggest that the blooming ability could 
be disturbed by residual O2 and that the use of O2 absorbers could be beneficial for consumer per-
ception of meat quality. In the present dissertation, O2 absorption was based on iron powder oxida-
tion and lead to the elimination of residual O2 (< 1.2 %) during the entire storage time. (P2) Some 
additional decrease in CO2 concentration was likely due to reactions between CO2 and iron [344]. 
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The impact of natural variation between samples was likely to interfere with the analysis of significant 
differences between means. In the present dissertation, new replicate packages were analyzed daily 
because of the applied destructive analyses. In order to reduce the impact of variation between 
replicates, the experimental setup would benefit from repeated analysis of the same samples during 
storage where applicable. (P2) 

5.2 Spoilage of seafood 

5.2.1 Composition and growth of Atlantic cod microbiota 

The applied atmosphere and temperature affected the microbial growth in Atlantic cod stored at 4 or 
8 °C (Fig. 4). The impact of temperature could be observed as accelerated growth at 8 °C when 
compared to 4 °C. LAB (Fig. 4c) were able to grow under all tested conditions and were not affected 
by different O2 concentrations before complete depletion from the package headspace under low-O2 
conditions (L4 and L8). LAB grew to high numbers especially at 8 °C. (P3) Even though MRS has 
been reported to suppress the growth of certain LAB [165], highly similar results were enumerated 
on MRS and acetate-free mMRS (P3). Higher levels of H2S producers were observed under air when 
compared to MAP (Fig. 4d), in accordance with the TPC results (Fig. 4a). Furthermore, the growth 
of H2S producers was favored by low-O2 over high-O2 MAP; these results are in line with López-
Caballero et al. [196], suggesting that O2 and CO2 had synergistic inhibitive effect on the H2S pro-
ducing microbiota. Growth of pseudomonads was inhibited under MAs, which was most likely due to 
the inhibitive effect of elevated CO2 concentrations (Fig. 4e). Pseudomonads have been identified 
as an SSO of aerobically stored fish [35]; respectively, highest enumerations under air were ob-
served on PA in the present dissertation. Finally, the growth of B. thermosphacta was not affected 
by O2 concentration and yielded up to 7 log CFU/g (Fig. 4f). B. thermosphacta was thus not the most 
abundant microbe under any of the tested conditions. (P3) 

Initial TPC of 5.35 ± 0.18, 5.88 ± 0.19, 5.88 ± 0.11, 6.61 ± 0.13 and 5.94 ± 0.27 log CFU/g was 
enumerated on MA under conditions H4, H8, L4, L8 and Air, respectively (Fig. 4a). Under both MAP 
conditions, TPC exceeded 7 log CFU/g on day 4 at 4 °C and on day 2 at 8 °C. Under air (4 °C), this 
occurred on day 2 of storage. After day 0, TPC was constantly 0.5-1 log higher on MA (Fig. 4a) when 
compared to IAL (Fig. 4b). This suggests that the composition and/or incubation conditions of MA 
was more favorable for the growth of cod microbiota. (P3) Broekaert et al. [345] studied the growth 
of typical spoilage microbes isolated from marine fish and found that most microbes were able to 
grow on MA, including P. phosphoreum that is generally recognized as an SSO of marine fish [11; 
86; 165; 346]. According to the oligotyping results (Fig. 5), the Photobacterium genus was typically 
a small contributor in the initial microbiota and had the highest relative abundance at later stages of 
storage under all tested conditions. 
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Fig. 4. Microbial growth in Atlantic cod fillet portions stored under atmospheres H4 (60 % CO2 /40 & 
O2/0 % N2 at 4 °C), H8 (60/40/0 8 °C), L4 (60/5/35 4 °C), L8 (60/5/35 8 °C) and air 
(4 °C): total viable psychrotrophic bacteria enumerated on Marine Agar (A) or Iron 
Agar Lyngby (B), lactic acid bacteria (C), H2S producers (D), pseudomonads (E) and 
Brochothrix thermosphacta (F). (modified from P3) 

 

A 

D

F 

B
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Fig. 5. Composition of Atlantic cod microbiota stored under conditions H4 (60 % CO2 /40 & O2/0 % N2 at 
4 °C), H8 (60/40/0 8 °C), L4 (60/5/35 4 °C), L8 (60/5/35 8 °C) and air (4 °C). The 
sample code denotes the condition and day of storage. (P3) 

The difference in TPC enumerated on MA and IAL could thus be due to the heat sensitivity of P. 

phosphoreum and high temperatures (ca. 50 °C) associated with the preparation of IAL pour plates 
(P3). 

The composition of cod microbiota was highly diverse in the beginning of storage (Fig. 5). In total, 
503 OTUs were retained at the 97 % sequence identity threshold after data processing and the 
number of reads was between 215-96819 per sample. The community diversity was highest on day 
0 under all tested conditions. The most abundant genera were Acinetobacter, Flavobacterium, 
Photobacterium, Pseudomonas and Psychrobacter. Over time, Photobacterium became the most 
abundant genus under all tested conditions. At 4 °C, Photobacterium was dominant until the end of 
storage, whereas some decrease in the relative abundance of Photobacterium was observed 
between days 4 and 7 at 8 °C. (P3) However, in order to confirm P. phosphoreum as an SSO of 
Atlantic cod under the studied conditions, the VOC production capacity of microbial isolates should 
be tested. 

5.2.2 VOCs as spoilage indicators 

Identification of spoilage indicators is crucial for efficient quality monitoring of muscle foods. VOCs 
that could be considered as potential spoilage indicators should be produced by the SSOs, increase 
during storage time and correlate with microbial growth and changes in sensory properties [347]. 
Development of the VOC profile is a complex event involving a high amount of variables and a wide 
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variety of intrinsic and extrinsic factors. In the present dissertation, VOCs were quantified with SIFT-
MS throughout storage time under different atmosphere/temperature conditions (P3-P4) and sub-
jected to multivariate statistical analyses (P4).  

Clustering of VOCs could be visualized as heat maps (P4) that characterized the evolution of VOCs 
during storage time and similarities in the VOC profiles of different samples, depending on the ap-
plied data transformations. Non-transformed data could be used for classifying the VOCs according 
to their concentration ranges since many VOCs were produced in highly different quantities. On the 
other hand, logarithmic conversion and standardization (z-scores) of VOCs allowed the characteri-
zation of VOC evolution irrespectively of the differences in concentration magnitudes. Clustering of 
samples was visualized as dendrograms (P4) on the basis of the concentration ranges or evolution 
of their VOC profiles. Three main patterns of VOCs could be identified in good correspondence with 
Küntzel et al. [348]: those that were increasing throughout storage time (e.g. ethanol, 2,3-butanediol), 
those that reached a peak during intermediate storage and decreased thereafter (ethyl acetate, eth-
ylene oxide, trimethylamine) and those that showed no clear trend (butanone). Most of the VOCs 
could be classified into the first group, suggesting that they could be potential spoilage indicators 
(P4). According to Küntzel et al. [348], however, VOCs belonging to the second group could reflect 
a change in microbial metabolism and should thus also be further considered. In the present disser-
tation (P4), HCA was found to be a versatile method for characterizing the VOC profile in terms of 
concentrations as well as evolution, both having relevance in food spoilage analysis. On the other 
hand, results of the exploratory PCA (P4) were in correspondence with HCA: the same main VOC 
and sample groups could be distinguished. Most of the VOCs were characteristic to samples from 
late days of storage and were thus considered as potential spoilage indicators. (P4) 

PLS was applied as an exploratory method for the characterization of brown shrimp data. VOCs that 
had a positive correlation with the response variable, VIP > 1 and a positive regression coefficient 
were considered as most potential predictors (Fig. 6).
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The three selection criteria were used in combination in order to optimize the selection of most po-
tential VOCs. (P4) Even though VIP > 1 has generally been used as a cut-off limit for highly influential 
predictor variables [301; 349], it points out those predictors that are most influential to the model, 
irrespectively of their correlation with the response. This could lead to the selection of VOCs that 
decrease over time and have thus little relevance in spoilage analysis, such as butanone (Fig. 6). 
On the other hand, correlating predictor and response variables do not necessarily have a direct 
relation. Since several VOCs are likely produced during microbial metabolism, VOCs produced dur-
ing storage often show multicollinearity and may also be dependent on one another via consumption 
or degradation. Correlation does not take into account the possible dependencies between VOCs, 
whereas regression coefficient can be used for analyzing the independent effect of a predictor on its 
response. From a total of 20 VOCs, six, four and seven VOCs out of 20 quantified compounds ful-
filled the three selection criteria when time, TPC and sensory rejection were used as response vari-
ables. Since microbial growth reached the stationary and death phase during storage, relatively few 
VOCs had strong correlations with it. Analysis of VOCs should thus be limited to the log phase of 
microbial growth. (P4) 

On the basis of exploratory analyses, PLS was found advantageous in the selection of potential 
spoilage indicators and was thus applied for data collected during storage of Atlantic cod and brown 
shrimp (P3-P4). Many VOCs that fulfilled the three selection criteria were common to different stor-
age conditions and seafood products (Table 11). 
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Table 11. Potential spoilage indicators of Atlantic cod (C) and brown shrimp (S) stored under different 
atmospheres (% CO2/O2/N2); TPC or rejection % as response variables (modified 
from P4). 

 TPC Rejection %

 C 4 °C 
60/40/0 

C 8 °C 
60/40/0 

C 4 °C 
60/5/35 

C 8 °C 
60/5/35 

C 4 °C 
Air 

S 4 °C 
50/0/50 

S 4 °C 
30/0/70 

C S 

Acetic acid x  x  0 x 0 0 0 
Ethanol  x       x 

2,3-butanediol x x x x x x 0 x 0 

2-propanol - - - - -   -  

3-methyl-1-butanol x x x x x 0 0 x 0 

Isobutyl alcohol x x  x   0 x 0 

2-methylpropanal      - -  - 

3-methylbutanal      - -  - 

Acetone x    x     

Acetoin 0 0 0 0 0 0 0 0 0 

Butanone - - - - -   -  

2-pentanone 0  0 0 0 0 0 0 0 

Hydrogen sulfide 0 0 0 0 0 0 0 0 0 

Methyl mercaptan 0 0 0  0 x  0  

Carbon disulfide - - - - - x  -  

Dimethyl sulfide   x x x x x  x 

Dimethyl disulfide 0 0 0 0 0 0 0 0 0 

Dimethyl trisulfide      - -  - 

Ethyl acetate x x x x x x x x x 

Ethyl propanoate 0 0 0 0 0 - - 0 - 

Ammonia      x    

Dimethyl amine 0 0 0 0 0 0 0 0 0 

Trimethyl amine x x x x x x x x x 

Ethylene oxide - - - - -   -  

x: fulfilled the selection criteria (VIP < 1, regression coefficient > 0, positive correlation with response)  
-: not included in the SIFT-MS analysis 
0: relative standard deviation > 25 % 

VOCs that were most frequently identified as potential spoilage indicators were 2,3-butanediol, di-
methyl sulfide, ethyl acetate, 3-methyl-1-butanol, isobutyl alcohol and TMA (P4). These VOCs have 
been recognized to be produced during microbial metabolism [30; 95] and have frequently been 
detected during storage of various seafood products (Appendix 1).  
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Evolution of the aforementioned potential spoilage indicators in Atlantic cod is presented in Figs. 7-
8.  

 

Fig. 7. Production of selected VOCs as a function of total psychrotrophic counts (TPC enumerated on 
MA) in Atlantic cod packaged under different atmospheres (%CO2/O2/N2) (modified 
from P3). Concentrations below LOQ were marked as 0 without error bars. 
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Fig. 8. Production of selected VOCs as a function of sensory rejection (%) in Atlantic cod packaged un-
der different atmospheres (%CO2/O2/N2) (modified from P3).  

These VOCs exceeded the LOQ at least under certain storage conditions and increased as a func-
tion of microbial growth and sensory rejection. Both 2,3-butanediol and 3-methyl-1-butanol increased 
up to ca. 500 µg/m3 under MA conditions, whereas isobutyl alcohol remained below 150 µg/m3 

throughout storage and was characteristic to low O2 conditions. Ethyl acetate was similarly produced 
under all tested conditions, whereas higher concentrations of dimethyl sulfide and TMA were typically 
observed at a certain TPC under low O2 conditions when compared to atmospheres containing 40 % 
O2. Increase in ethanol concentrations was also typically observed. Under MA conditions, ethanol 
reached the highest concentrations when compared to the other quantified VOCs and exceeded 104 
µg/m3 by the end of storage. Because of increasing concentrations detected in the blanks during 
storage, ethanol rarely exceeded LOQ. Ethanol could thus be considered as an additional candidate 
among possible spoilage indicators of Atlantic cod. (P3) 
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Production of VOCs has previously been associated with relatively high microbial levels [198]. In the 
present dissertation (P3), respectively, the onset of exponential VOC increase could be observed as 
TPC (MA) had reached 7.0 log CFU/g (Fig. 7). At this moment, ca. 25 % rejection was typically 
obtained. At 50 % rejection, TPC was typically ca. 7.5 log CFU/g. These results suggest that increas-
ing production of VOCs and subsequent sensory rejection occur at relatively high microbial levels. 
The high abundance of the Photobacterium genus detected in Atlantic cod samples (Fig. 5) suggests 
that bacteria belonging to this genus contribute to the production of VOCs. (P3) Previously, produc-
tion of several VOCs also observed in the present dissertation has been associated with the growth 
of P. phosphoreum (Ch. 2.2.3.2). 

The impact of a VOC on the overall perceived odor and acceptability of fish depends on its concen-
tration as well as its human olfactory threshold (OT) which is the lowest concentration perceivable 
by the human olfactory system. OTs can be used for defining odor activity values (OAVs) which 
represent the concentration of a VOC divided by its OT: VOCs that have OAV below one could be 
considered to have a low impact on the overall odor of the food product [350]. Different VOCs may 
have highly different OTs (Table 12). 

Table 12. Human olfactory thresholds (OTs) for selected VOCs [351]. 

VOC OT µg m-3  
Acetic acid  363 
Acetone  34673 
Ammonia  4073 
Dimethyl disulfide  48 
Dimethyl sulfide  6 
Ethanol  54954 
Ethyl acetate  9772 
Hydrogen sulfide  27 
Methyl mercaptan  2 
TMA 6 

VOCs having high OTs such as alcohols are only perceivable at high quantities; on the other hand, 
amine and sulfuric compounds may be detected at very low concentrations. VOCs that have low 
OTs may thus have high impact on the perceived odor even if they were present in low quantities. 
However, even though the values determined by Devos et al. [351] have frequently been cited in 
food-related studies, it should be taken into account that different values may have been reported in 
other studies (e.g. [352]). Several factors that may affect the determination have been identified, 
including the experimental setup and panel composition [353] as well as the degree of satiety [354]. 
Generally, it should be emphasized that the reported OTs have been defined for single compounds 
in the absence of other VOCs and that the values do not indicate the acceptability of the respective 
VOCs. Instead, the OTs and acceptability of VOCs likely depend on the VOC profile as a whole (P3); 
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however, few studies have considered OTs in food-related mixtures [355; 356]. For these reasons, 
the practical value of the currently available OT/OAV values should be considered with caution. 
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Table 13. The three main types of quality analyses for packed food products and their feasibility for per-
forming repeated measurements. 

Type Description Example  Repeated 
analyses? 

Non-invasive  Package remains intact Visual inspection 
Color analysis through the packaging  
Sensor readout 

Yes 

Invasive  Sampling of food product or 
headspace; package remains 
closed after measurements 

Headspace gas composition analysis 
SIFT-MS 
Characterization of dissolved gases 

Possibly 

Destructive Package is opened; end of  
storage 

Microbiological analysis 
pH analysis 
Color analysis 
Chemical composition analysis 

No 

It should be noted that certain methods may partially fall under several categories. For example, 
characterization of CO2 solubility in packed food products by a volumetric method involves the de-
termination of the total volume and CO2 concentration in the package headspace [357; 358]; the 
former analysis does not directly affect the food product as long as the package is not damaged by 
immersion under water, whereas the latter analysis is invasive. Overall, invasive and destructive 
analyses alter the package headspace and/or food product, which is why repetitive analysis will be 
interfered (e.g. headspace gas composition) or is not possible (e.g. meat blooming). In order to en-
sure that repeated measurements will be representative, focus should be on the development of 
non-invasive techniques or restoration of the pre-analysis conditions after invasive measurements. 
For example, repeated VOC quantification from the same package requires that the headspace 
composition remains as similar as possible after measurements. This could be achieved by increas-
ing the headspace-to volume ratio and/or replacing the sampled volume with a respective gas com-
position.  

Since food spoilage is not only highly product-specific but also subjectively evaluated (Ch. 2), it is of 
primary importance to highlight the role of sensory evaluation in food quality characterization. In this 
dissertation, sensory evaluation was used for establishing the link between the perceived quality and 
other studied variables (Ch. 5.1.1; Ch. 5.2.2; P1; P3-P4). In particular, this approach was considered 
beneficial in the identification of seafood spoilage indicators (Ch. 5.2.2; Ch. 6.3.2; P3-P4). However, 
it should be noted that the evaluation setup and panel composition have a key role in the applicability 
of the results. For this reason, the impact of subjective preferences and expectations in quality as-
sessment and the suitability of the panel for the particular evaluation task should be considered. In 
the present dissertation, this was controlled by using trained panelists (P1) or experienced panelists 
who consumed seafood on a regular basis (P3-P4).  

Data analysis plays a central role in food quality research. As previously stated, data collection typ-
ically requires time and effort, in particular since each food product-packaging combination needs to 
be separately analyzed. As a consequence, food quality research typically produces relatively small 
multivariate datasets where complex impacts and interactions can be expected. However, applying 
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the outcomes of data collection for the development of active and intelligent packaging technologies 
requires a comprehensive understanding of the meaning and relevance of the obtained results. Ef-
ficient data analysis thus calls for appropriate statistical methods. In this dissertation, extensive sta-
tistics was applied for characterizing the impact of different storage conditions on the physicochem-
ical properties of pork and for the identification of most potential seafood spoilage indicators (Ch. 
4.9, P4). With the help of these approaches, interpretation of the produced datasets was considera-
bly facilitated and a deeper understanding of spoilage processes was obtained. In future studies, 
further development of analytical methods that enhance the characterization and use of small multi-
variate datasets would be highly beneficial. Optimally, these methods could also help reducing the 
workload needed for data collection, for example by means of predictive modelling. 

6.2 Development of antimicrobial packaging technologies 

Interest in antimicrobial food packaging is constantly increasing and several potential approaches 
have been previously developed. These packaging solutions could provide with means to extend the 
shelf life of perishable food products, thus significantly reducing food waste and packaging material 
consumption. However, the success of antimicrobial films depends on the availability and/or release 
rate of active substances that come into contact with the food microbiota. As shown in Ch. 2.3.1.1, 
lack of controlled release has been identified as a major challenge when developing this kind of 
packaging solutions. In this dissertation research, respectively, activity of silver-containing packaging 
films was found to be dependent on the availability of active silver on the packaging material surface 
(Ch. 5.1.1, P1). Films prepared by LFS were found to express rapid and high antimicrobial activity 
against a wide variety of microbes in vitro, including typical meat spoilage bacteria. However, films 
prepared by coextrusion showed no antimicrobial effect, which was most likely due to the film struc-
ture that prevented silver migration. In this case, applicability of coextrusion was thus limited both in 
terms of antimicrobial activity and cost-efficiency. This indicates that incorporating antimicrobial 
agents inside polymeric structures may disable their functionality, which leads to unnecessary ma-
terial costs that could be avoided by enhancing packaging material design. In further applications, 
availability of active agents on the packaging film surface should thus be ensured. Possible solutions 
could arise from reduced layer thickness and tailored surfaces and/or coatings. 

Concentrations of active agents that are introduced in packaging materials need to be optimized for 
each packaging application. For example, even though elevating the concentration of available an-
timicrobial agent incorporated in packaging films may improve its efficiency, the levels have to be in 
correspondence with the current legislation and to be safe for consumers, while they should also not 
allow a decrease in the performance of the packaging materials or unfavorable changes in the prop-
erties of the food product (Ch. 2.3.1.1). Furthermore, costs-efficiency of food packaging technologies 
should be in line with the benefits of the approach [359]. Since the production and recycling costs of 
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antimicrobial packaging are likely to surpass the costs of respective traditional approaches, devel-
opment of antimicrobial solutions could be of particular importance for highly valuable and yet highly 
perishable food products, such as delicacy meat and fish. 

In addition to the aforementioned packaging material properties, success of antimicrobial packaging 
films also depends on the unique properties of each food product and its microbiota. In the present 
dissertation, none of the tested silver-containing films affected meat microbiota even though respec-
tive bacterial species were inhibited in vitro (Ch. 5.1.1; P1). This was likely due to the properties of 
meat since close contact between active agents and meat was ensured by vacuum packaging. How-
ever, since silver was initially present in high quantities as a coating on LFS films, the observed 
inefficiency in meat packaging could also be due to a lack of controlled release throughout storage. 
In future approaches, migration capacity of active agents and their possible reactions with food con-
stituents should thus be monitored. It should be further noted that L. gelidum subs. gasicomitatum, 
a characteristic SSO of meat packaged under MAs, was not affected by any of the tested packaging 
films. Spoilage phenomena associated with this microbial species could thus be promoted in the 
presence of silver-containing packaging films.  

In this dissertation research, development of antimicrobial packaging films focused on the use of 
silver in different forms. As shown in Ch. 2.3.1.2 and P1, silver has several advantages in food pack-
aging applications and could be considered as a promising candidate for demonstrating antimicrobial 
activity against meat spoilage microbiota in real packaging applications. However, due to the current 
legislative status of silver-based packaging materials (Ch. 2.3.1.2), silver-based packaging solutions 
are still scarcely commercially available in the EU. Furthermore, high material costs, need for efficient 
recycling and safety concerns limit the potential of silver-based antimicrobial packaging. In accord-
ance with the needs of both consumers and the industry (Ch. 1), interest in natural antimicrobials is 
constantly growing. In future applications, use of antimicrobials that are of biological origin and gen-
erally recognized as safe (GRAS) could be emphasized, provided that sufficiently high antimicrobial 
effect can also be demonstrated in real food applications. For example, plant extracts [360-362] and 
nisin [173; 363; 364] have been considered as potential candidates for active packaging solutions. 
However, some properties may limit the applicability of this kind of compounds as packaging material 
constituents; for example, common challenges of plant essential oils include volatility and thermal 
sensitivity [365] as well as an undesirable smell [366].   

In the present dissertation, antimicrobial activity was also introduced to meat packages containing 
modified gaseous atmospheres. The antimicrobial impact of O2 absorbers is based on the elimination 
of O2 that supports the growth of aerobic microbiota (Ch. 2.3.1.3). In this dissertation (Ch. 5.1.2, P2), 
color of pork was found to be affected by high, residual or absent O2. During the expected shelf life, 
differences in color under these conditions were few, especially after blooming. Traditionally, ad-
vantages of anoxic packaging have been overshadowed by its negative impacts on meat color (Ch. 
2.2.2.3). The results of the present dissertation thus suggest that anoxic packaging could be benefi-
cial for pork. Some additional advantage could be achieved by the removal of residual O2. However, 
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in further studies, the impact of anoxic conditions and/or residual O2 on the microbiological quality of 
meat should be examined. In order to evaluate the impact of commercial storage conditions, further 
testing under illumination would also be beneficial. 

Even though application of O2 absorbers as separate sachets inside food packages is a convenient 
and cost-effective solution, this approach has some technical limitations. In order to effectively ab-
sorb O2, absorbers need to be in proper contact with the atmosphere. In the present dissertation 
(P2), some samples were omitted from the statistical analyses because of the sachet position in the 
package; generally, sachets that are misplaced on the production line, for example below the meat 
product, have limited absorbing capacity. Furthermore, the use of separate sachets may lead to 
concerns about consumers becoming exposed to the active agents through leakage or unintentional 
and/or accidental consumption of the sachet contents [367]. Incorporation of O2 absorbing agents 
as an inherent part of packaging materials could provide with enhanced and more secure solutions. 

6.3 VOCs in food quality monitoring 

As discussed throughout the present dissertation, spoilage of muscle foods is a complex event and 
typically characterized by the development of off-odors. Monitoring of VOCs has several advantages 
over other quality and spoilage analyses. Traditional methods used for the evaluation of freshness 
are commonly time and resource consuming, invasive and destructive. These methods lack the ad-
vantage of analyzing the same samples repeatedly and require more samples, which causes addi-
tional variation between data points (Ch. 6.1).  

6.3.1 SIFT-MS: technical considerations  

As discussed in Ch. 2.1.3, SIFT-MS has several advantages in food quality monitoring. Also in this 
dissertation research (Ch. 4.6, P3-P4), SIFT-MS allowed rapid, convenient, non-destructive and ef-
ficient real-time measurements from the actual food package headspace. After preliminary experi-
ments, SIFT-MS could be used for estimating food quality immediately on the day of analysis, which 
facilitated subsequent microbiological analysis.  

Limitations related to SIFT-MS should be considered at each stage of data collection: 

1. Before the measurements 

Firstly, when constructing the scan method (see example in Ch. 4.6, Table 7), the total number of 
VOCs and the duration of the scan should be optimized in accordance with the sample properties 
and the aims of the analysis. Even though all relevant VOCs that are present in significant quantities 
and increase in the package headspace as a function of time should be included, the total amount 
of VOCs should be limited since each additional VOC increases the length of a single scan cycle 
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and thus reduces the amount of obtained data points. On the other hand, increasing the amount of 
data points by extending the scan length involves a risk of sample dilution and/or depletion.  

Secondly, when analyzing several closely related compounds, mass overlaps (conflicts) should be 
considered. These conflicts arise from the fact that as a result of reactions with a certain precursor 
ion, several VOCs may produce product ions with the same m/z ratio [116]. Separation of these 
VOCs is thus not possible via the particular m/z; instead, their separation might require the use of 
product ions with low branching ratios, or in certain cases may not be possible with SIFT-MS. Fur-
thermore, it should be noted that the presence of a compound that is not included in the scan method 
may lead to hidden conflicts between a quantified VOC. Selection of VOCs to be quantified should 
thus be based on preliminary experiments, comparison with other techniques (e.g. GC-MS) and/or 
literature study. However, the possibility to use different precursor ions in SIFT-MS enhances the 
quantification of individual VOCs. 

Thirdly, it should be noted that the high water content of fresh food products is highly influential to 
their properties and spoilage processes (Ch. 2.1.1.1; Ch. 2.1.2). Consequently, relative humidity 
inside the package is typically high. When designing the experimental setup for SIFT-MS analysis, 
possible formation of secondary product ions due to the reactions between moisture and primary 
product ions should be taken into account. Furthermore, the impact of humidity on the functionality 
of instruments and devices used for VOC detection should be carefully considered. 

2. During the measurements 

The impact of VOCs on the precursor ion levels should considered during the scan. In this disserta-
tion, lowest measured concentrations were between 1-50 µg m-3 and typically did not exceed 104 µg 
m-3 throughout storage (Ch. 5.2.2, P3). However, certain VOCs such as ethanol could exceed these 
ranges in late stages of storage. Generally, monitoring of precursor ion levels can be recommended 
since a reduction in these levels may have a significant impact on the measured VOC concentra-
tions. This may occur especially if VOCs are present in high levels in the food package headspace. 
In future studies, sample dilution or flow rate restriction could be beneficial if extremely high VOC 
production is observed.  

It should also be noted that the quantification of certain VOCs may also be affected by their chemical 
properties. For example, in the present study (P3), gradual increase in TMA concentrations could be 
often observed during the scan duration. This was probably due to the accumulation of TMA in the 
instrument and led to increase in relative standard deviations and LOQs. In order to reduce the risk 
of accumulation, samples with lowest expected concentrations should be measured first. In case of 
high concentrations, flushing with N2 between samples could be beneficial. Furthermore, in order to 
collect representative data and to avoid interfering the headspace, refrigerated food samples should 
be maintained at the desired storage temperature throughout measurements. 

3. After the measurements 
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Prior advanced statistical analysis, the quality of the collected data and the impact of measurement 
inaccuracy should be carefully considered. In the present dissertation (Ch. 5.2.2; P3-P4), SIFT-MS 
data was characterized by determining the SD% (P3-P4) and LOQ (P3) values for each individual 
VOC. Given that sufficiently accurate quantification of VOCs is needed for determining the critical 
concentration thresholds for food quality monitoring, this approach was considered beneficial in pre-
liminary screening of most potential spoilage indicators.   

4. Complementary and alternative methods  

Finally, it should be considered that the quantification of certain VOCs by SIFT-MS may be challeng-
ing or impossible. For example, quantification of compounds that are present in the headspace below 
ppb range will most likely be unsuccessful because of relatively high LOQs. However, the relevance 
of these compounds in food quality monitoring is respectively limited. In general, the use of comple-
mentary or alternative mass spectrometry techniques (GC-MS, PTR-MS) can be considered advan-
tageous when these challenges occur. 

When operating in the MIM mode, the identity and amount of VOCs needs to be defined in advance. 
Quantification of the full VOC profile is possible in the FMS mode; however, this approach does not 
directly allow the determination of VOC concentrations. Development of methods for improving the 
interpretation of the FMS data could thus be beneficial when aiming at accelerated and facilitated 
preliminary screening of the full VOC profile.  

6.3.2 Identification and quantification of potential spoilage indicators 

The composition and evolution of the VOC profile are dependent on the applied packaging and stor-
age conditions. As shown in Ch. 5.2.2, three main VOC types could be identified in the headspace 
of Atlantic cod and brown shrimp over storage time. Multivariate statistical analysis was found es-
sential for analyzing the produced datasets and allowed the identification of several potential spoil-
age indicators. However, the use of VOCs as quality indices poses several challenges that require 
careful consideration.  

Determination of potential food spoilage indicators requires a well-defined and systematic approach 
that combines advanced experimental techniques and data analysis. In the present dissertation, the 
following three-stage identification procedure (PIQES) was utilized and developed: 

1) Preliminary Identification: screening and selection of possible spoilage indicators 
2) Quantification: monitoring of selected VOCs 
3) Exploration and Selection: determination of most potential spoilage indicators by multivariate 

statistical analysis  

In the first stage, a group of possible spoilage indicators was selected on the basis of literature review 
and preliminary experiments, consequently followed by the construction of a SIFT-MS method. Due 
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to the high amount of possible indicators and challenges related to their quantification by SIFT-MS 
(Ch. 6.3.1), this stage was found to be the most time-consuming and labor-intensive when compared 
to the latter two. In future studies, further development of the PIQES procedure should thus give 
emphasis on initial screening. For example, the use of SIFT-MS in full mass scan (FMS) mode could 
provide with a fast and convenient method for preliminary characterization of the full VOC profile. 
However, this approach requires automated data processing and a thorough understanding of the 
reactions leading to the generation of product ions. Furthermore, due to the high amount of quantifi-
able product ions, relatively long sampling duration and thus high sample volumes are needed.  

Identification of potential food spoilage indicators is not possible only by means of SIFT-MS or other 
quantitative methods. As discussed in Ch. 5.2.2, even though a VOC may be produced during re-
frigerated storage and correlate with microbial growth and/or sensory rejection, it may have a modest 
impact on the perceived quality. Examining the relations between microbial growth, VOC concentra-
tions and sensory quality was thus considered highly beneficial for the identification of most potential 
spoilage indicators. However, it should be noted that in case the concentrations of given VOCs in-
crease before the panel observes quality changes, the identification of these VOCs as early spoilage 
indicators could be interfered. However, such VOCs were not identified in the present dissertation 
(Ch. 5.2.2; P4), despite the fact that their identification would have been possible by PLS on the 
basis of following considerations: 

o Multiple response variables. Selective PLS was carried out using TPC or sensory evaluation 
as the response variable; the results of both models were generally in good correspondence. 

o Collinearity. As stated in Ch. 5.2.2, the VOCs could be classified into three main groups on 
the basis of similarity in patterns due to multicollinearity. 

Furthermore, it should be noted that a negligible sensory impact does not necessarily prevent using 
a particular VOC in spoilage analysis and/or quality monitoring: for example, even though alcohols 
having high OT values cannot often be detected by the human nose, their production may correlate 
well with microbiological quality and other VOCs. However, a deeper understanding of spoilage pro-
cesses and the impact of VOCs on sensory quality calls for enhanced methods for data analysis, 
preferably including the impact of detectability (OTs) and acceptability of VOCs in real food samples. 

As suggested in Ch. 5.2.2, the decrease of concentration as a function of time indicates that a VOC 
cannot be used as a spoilage indicator. This kind of VOCs could be potential freshness indicators; 
however, identification of such compounds would require a negative correlation between the VOC 
and an applicable response variable, such as sensory quality. Given that in case of both Atlantic cod 
and brown shrimp, VOC concentrations were found to be very low and frequently even below the 
LOQ in the beginning of storage (Ch. 5.2.2, P3-P4), sufficiently accurate quantification of concentra-
tion decrease could be expected to be challenging. Furthermore, in case of VOCs becoming de-
pleted from the package headspace, identification of potential freshness indicators on the basis of 
correlation might not be possible.  
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The compounds 2,3-butanediol, 3-methyl-1-butanol, dimethyl sulfide, ethanol, ethyl acetate, isobutyl 
alcohol and TMA were most frequently identified as potential spoilage indicators of both Atlantic cod 
and brown shrimp packaged under MAs (Ch. 5.2.2, P3-P4). It should be noted that their concentra-
tion levels depend on the applied storage conditions. A given single compound is thus likely to have 
limited capacity as a spoilage indicator. Simultaneous monitoring of multiple compounds should be 
promoted in further studies (Ch. 6.4).  

6.4 Development of intelligent packaging technologies 

Interest in food quality monitoring by means of intelligent packaging technologies is constantly in-
creasing and has been considered as a potential solution for addressing challenges arising from 
shelf life labelling. Traditional shelf life labelling in form of expiry dates is based on generalized in-
formation about the progress of spoilage processes when the food product has been stored under 
defined conditions. [368.] This means that possible failures in the supply chain that can significantly 
reduce the shelf life – such as contamination, leakage or cold chain breakdown – cannot be taken 
into account. Intelligent packaging technologies could overcome these drawbacks and limitations by 
providing with a convenient, simple and real-time access to accurate and reliable information about 
the quality status of any individual food product. This approach could significantly reduce food waste 
(and consequently packaging material consumption) by allowing a shift from worst-case scenarios 
and assumptions to package-specific information.  

Development of intelligent packaging technologies calls for extensive data collection regarding food 
quality status. Data collection should be aimed at the selection of VOCs that can be used as a target 
group in quality monitoring applications. Research should thus focus on determining following prop-
erties of the target VOCs: 

1) Identity 
2) Total number  
3) Critical concentration levels  

Advantages and challenges related to the identification of potential spoilage indicators have been 
discussed in Ch. 6.2.2.  

The total number of VOCs that should be targeted when developing intelligent packaging technolo-
gies depends on the packaged product. As observed in the present study (Ch. 5.2.2, P3-P4), evolu-
tion of the VOC profile depends on the food product and its storage conditions. Even though several 
VOCs could be considered more universal spoilage indicators than others, extending the develop-
ment of intelligent packaging solutions to other food products and/or storage conditions calls for more 
extensive research. Since the perceived odor of a food sample arises from multiple VOCs, a certain 
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concentration of a particular VOC does not exclusively indicate a certain quality status. For the de-
velopment of food monitoring applications, the relation between sensory acceptability and a single 
VOC should thus be defined under all relevant packaging and storage conditions. Thus, monitoring 
of multiple compounds can be generally recommended not only for spoilage analysis (Ch. 6.3.2), but 
also for packaging technology development. 

Determination of critical concentration levels depends on the desired sensitivity of the intelligent 
packaging solution. Data analysis should thus aim at establishing three concentration domains: 

1) Acceptable concentrations 
2) Intermediate concentrations 
3) Unacceptable concentrations 

In this dissertation (Ch. 5.2.2, P3), increasing VOC production and sensory rejection was typically 
observed only after reaching high microbial levels (TPC > 7.0 log CFU g-1). Sensory rejection (50 % 
of panellists) occurred even later, typically at approximately 7.5 log CFU g-1. This indicates that mi-
crobiological limits that have traditionally been assigned for different food products are not sufficient 
as sole quality indices. Instead, relation between microbial growth, VOC levels and sensory quality 
is essential for effective quality monitoring. In case of seafood, the three concentration domains 
could thus be suggested as follows: 

1) Concentrations corresponding to TPC < 7.0 log CFU g-1 and rejection < 50 % 
2) Concentrations corresponding to TPC > 7.0 log CFU g-1 and rejection < 50 % 
3) Concentrations corresponding to rejection > 50 % 

The minimum requirement for spoilage detection is that concentrations belonging to the 3rd domain 
will be successfully recognized. However, efficient quality monitoring requires that quality changes 
are detected before consumer rejection occurs. Intelligent packaging solutions should thus be sen-
sitive enough to detect target VOCs in the 2nd domain. As observed in the present study (Ch. 5.2.2), 
concentration of any VOC rarely exceeded 104 µg/m3 even in the end of storage time. It can thus be 
concluded that high sensitivity to low concentrations is of primary importance for the detection of 
early spoilage. Table 14 presents the concentration domains of most potential spoilage indicators 
(Ch. 6.3.2) for Atlantic cod stored under different gaseous atmospheres (based on P3). 
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Table 14. The concentration domains 1 (acceptable; green) and 3 (unacceptable; red) in Atlantic cod 
stored under conditions H4 (60 % CO2 /40 & O2/0 % N2 at 4 °C), H8 (60/40/0 8 °C), 
L4 (60/5/35 4 °C), L8 (60/5/35 8 °C) and Air (air 4 °C) (based on P3). Possible inter-
mediate days of storage were excluded from the table if sensory evaluation was not 
performed. 

Condi-
tion 

Day  TPC 
(log 
CFU/g)  

Rejec-
tion 
(%) 

2,3-bu-
tane-
diol 

3-me-
thyl-1-
butanol 

Dimethyl 
sulfide 

Etha-
nol 

Ethyl 
acetate 

Isobutyl 
alcohol 

TMA

H4 0 5.48 0 10 13 218 4914 23 44 19 

4 6.79 20 12 10 360 907 126 32 40 

8 7.58 60 220 232 288 6946 3686 59 142 

13 8.65 90 457 489 348 23584 7097 108 478 

H8 0 5.75 0 20 23 315 899 32 40 43 

3 7.53 58 155 305 462 1885 4705 64 149 

5 8.41 75 424 658 458 6647 7729 104 921 

7 8.07 67 298 424 1219 8623 5482 107 1168 

L4 0 6.75 10 11 11 561 3231 9 40 12 

3 8.08 50 153 238 1313 2350 3659 70 405 

5 8.25 70 559 381 3676 14456 4760 109 1556 

7 8.14 60 329 273 4974 24947 3184 138 1859 

L8 0 5.75 13 11 4 110 2810 13 61 18 

4 7 50 14 24 680 786 293 30 56 

8 7.73 38 144 133 767 11913 2145 89 615 

13 7.15 75 207 74 3282 35782 638 172 2143 

Air 0 5.65 10 14 17 737 1044 27 25 28 

1 6.16 10 14 22 1659 707 18 28 35 

2 6.99 30 16 22 1277 522 55 27 28 

3 7.71 60 42 72 1627 1139 865 36 813 

The absence of domain 2 concentrations in Table 14 suggests that this domain is limited to a rela-
tively narrow concentration range between domains 1 and 3; however, it should be noted that the 
evaluation of samples from the intermediate days of storage could have improved the domain anal-
ysis. It should also be noted that certain concentration levels of a given VOC may be acceptable 
under condition A and unacceptable under condition B. This is most likely due to the fact that the 
perceived quality arises from the mixture of all present VOCs. In future studies, determination of the 
three concentration domains could thus benefit from performing additional sensory evaluation tests 
in order to narrow the domain interfaces, as well as from enhanced preliminary identification of target 
VOCs (Ch. 6.3.2).  
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meaning of the obtained results for packaging technology development should be clear. This can be 
achieved by collecting data under well-defined conditions and by subsequent systematic data anal-
ysis. On the other hand, optimizing the performance of the process requires extensive data collection 
and analysis and thus calls for the development of facilitating methods, selection criteria and thresh-
olds. Furthermore, data analysis from the viewpoint of technical, legal, ecological and economic 
aspects enhances the feasibility of applying the data in practice. 

Since each food product-packaging combination has its characteristic properties, the studied varia-
bles and analytical methods need to be selected in accordance with the spoilage mechanisms of the 
particular product; generally, preliminary screening of representative variables can be recommended 
in order to optimize the storage experiment methodology. In many cases, the development of non-
invasive methods and/or repeated measurements could increase the applicability of the collected 
data in packaging technology development. Finally, typical food quality dataset characteristics can 
be described with the terms small, time-dependent, experimental and multivariate: in order to re-
spond to the challenges arising from these features, optimized methods are needed for data analy-
sis.  

6.5.2 Originality and contribution  

Development of active and intelligent packaging technologies calls for a multidisciplinary approach, 
combining expertise in microbiology, (bio)chemistry, sensory studies, materials science and multi-
variate statistics. This dissertation not only enhanced the communication between different research 
fields involved in packaging technology development, but also lead to the generation of extensive 
interdisciplinary datasets. The obtained results directly contribute to the development of active and 
intelligent packaging materials for muscle foods, not only within the framework of the Comeat and 
CheckPack projects, but also as a comprehensive background for further research.  

The scientific contribution and relevance of the present dissertation can be summarized as follows: 

1) Contribution to the principles of food quality characterization  

In this dissertation, food quality characterization was examined as a systematic process within a 
specific context (development of active and intelligent packaging technologies) and its main aspects 
were defined: both internal (characteristics of food quality information) and external (requirements of 
packaging technology development) aspects could be identified. The general principles and work-
flow of quality characterization applied in the dissertation can be expected to advance the planning 
and realization of experimental setups in future studies.   

2) Contribution to methods, techniques and processes 
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Appendix 1. 

Table A1. Volatile organic compounds (VOCs) associated with fish spoilage under different atmos-
pheres. Raw products were examined if not otherwise indicated. 

VOC Product Atmosphere 
(% CO2/O2/N2) 

Temperature 
 (°C) 

Reference 

Acids     

3-methylbutanoic acid King salmon air ice [369] 

Acetic acid Atlantic cod air 0.5 [198] 

 Atlantic salmon air 4/10/21 [89] 

 Brown shrimp, cooked 
and peeled 

anaerobic or aerobic MAP 4 [131] 

 King salmon air ice [369] 

 Pangasius hypophthalmus air, vacuum, 50/0/50 or 
50/50/0 

4 [129] 

 Sea bream air or 60/10/30 0/5 [87] 

 Sea bream air ice [370] 

Aldehydes     

(E)-2-pentenal Whiting air ice [114] 

2-methylbutanal Atlantic cod air 4 [55] 

 Mackerel air 4 [55] 

 Sea bass 60/10/30 2 [371] 

 Whiting air 4 [55] 

2-methylpropanal Atlantic cod air 4 [55] 

 Mackerel air 4 [55] 

 Whiting air 4 [55] 

3-methylbutanal Atlantic cod air 4 [55] 

 Mackerel air 4 [55] 

 Sea bass air or 60/10/30 2 [371] 

 Sea bream air or 60/10/30 5/15 [87] 

 Whiting air 4 [55] 

Benzene acetaldehyde Turbot air 4 [372] 

Butanal Whiting air ice [114] 

Heptanal Whiting air ice [114] 

Hexanal Whiting air ice [114] 

Octanal Whiting air ice [114] 

Pentanal Whiting air ice [114] 

Propanal Whiting air ice [114] 

Alcohols     

1-hexanol Atlantic cod air 4 [55] 



 

 

 Mackerel air 4 [55] 

 Whiting air ice [114] 

 Whiting air 4 [55] 

1-hexen-3-ol GreenshellTM mussels air 6.5 [373] 

1-octen-3-ol GreenshellTM mussels air 6.5 [373] 

1-pentanol Whiting air ice [114] 

1-penten-3-ol GreenshellTM mussels air 6.5 [373] 

 Sea bream air ice [370] 

 Whiting air ice [114] 

2,3-butanediol Atlantic cod air 4 [55] 

 Atlantic cod air 0.5 [198] 

 Mackerel air 4 [55] 

 Pangasius hypophthalmus vacuum 4 [129] 

 Whiting air 4 [55] 

2-ethyl-1-hexanol Atlantic cod air 4 [55] 

 Mackerel air 4 [55] 

 Sea bass air  2 [371] 

 Whiting air 4 [55] 

2-methyl-1-butanol Sea bass air  2 [371] 

2-methyl-1-propanol Atlantic cod air 4 [55] 

 Atlantic cod air 0.5 [198] 

 Mackerel air 4 [55] 

 Whiting air 4 [55] 

2-penten-1-ol Atlantic cod air 4 [55] 

 Mackerel air 4 [55] 

 Whiting air ice [114] 

 Whiting air 4 [55] 

3-methyl-1-butanol Atlantic cod air 4 [55] 

 Atlantic cod air 0.5 [198] 

 Atlantic salmon air 4/10/21 [89] 

 Mackerel air 4 [55] 

 Sea bass air or 60/10/30 2 [371] 

 Sea bream air ice [370] 

 Turbot air 4 [372] 

 Whiting air 4 [55] 

 Yellowfin tuna air ice/30 [111] 

4,4-dimethyl-1,3-dioxane Whiting air ice [114] 



 

 

Ethanol Atlantic cod air 4 [55] 

 Atlantic salmon air 4/10/21 [89] 

 Brown shrimp, cooked 
and peeled 

anaerobic MAP 4 [131] 

 Mackerel air 4 [55] 

 Pangasius hypophthalmus air, vacuum, 50/0/50 or 
50/50/0 

4 [129] 

 Sea bass air or 60/10/30 2 [371] 

 Sea bream air or 60/10/30 0/5/15 [87] 

 Whiting air 4 [55] 

Amine compounds     

Ammonia Brown shrimp, cooked 
and peeled 

anaerobic or aerobic MAP 4 [131] 

Dimethyl amine Brown shrimp, cooked 
and peeled 

anaerobic or aerobic MAP 4 [131] 

Piperidine Sea bream air ice [370] 

Trimethylamine Atlantic cod air 4 [55] 

 Atlantic cod air 0.5 [198] 

 Atlantic salmon air 4/10/21 [89] 

 Brown shrimp, cooked 
and peeled 

anaerobic or aerobic MAP 4 [131] 

 Mackerel air 4 [55] 

 Sea bream air ice [370] 

 Turbot air 4 [372] 

 Whiting air 4 [55] 

Ketones     

1-penten-3-one Whiting air ice [114] 

2,3-butanedione Pangasius hypophthalmus vacuum or 50/50/0 4 [129] 

2,3-octanedione Whiting air ice [114] 

2,3-pentanedione Whiting air ice [114] 

2-heptanone Atlantic cod air 4 [55] 

 Mackerel air 4 [55] 

 Whiting air 4 [55] 

2-nonanone Atlantic cod air 4 [55] 

 Mackerel air 4 [55] 

 Turbot air 4 [372] 

 Whiting air 4 [55] 

2-pentanone Atlantic cod air 4 [55] 

 Mackerel air 4 [55] 

 Whiting air 4 [55] 

2-undecanone Atlantic cod air 4 [55] 



 

 

 Mackerel air 4 [55] 

 Whiting air 4 [55] 

3-pentanone Atlantic cod air 4 [55] 

 Mackerel air 4 [55] 

 Whiting air 4 [55] 

6-methyl-5-hepten-2-one Turbot air 4 [372] 

Acetoin Atlantic cod air 4 [55] 

 Atlantic cod air 0.5 [198] 

 Atlantic salmon air 4/10/21 [89] 

 King salmon air ice [369] 

 Mackerel air 4 [55] 

 Pangasius hypophthalmus vacuum 4 [129] 

 Sea bream air ice [370] 

 Whiting air 4 [55] 

Acetone Brown shrimp, cooked 
and peeled 

aerobic MAP 4 [131] 

Esters     

Acetic acid butyl ester Turbot air 4 [372] 

Ethyl acetate Atlantic cod air 4 [55] 

 Atlantic cod air 0.5 [198] 

 Brown shrimp, cooked 
and peeled 

anaerobic or aerobic MAP 4 [131] 

 Mackerel air 4 [55] 

 Pangasius hypophthalmus air, vacuum, 50/0/50 or 
50/50/0 

4 [129] 

 Sea bass air  2 [371] 

 Whiting air 4 [55] 

Ethyl isobutyrate Sea bass air  2 [371] 

Ethyl propionate Sea bass air  2 [371] 

Ethyl-3-methylbutanonate Whiting air 4 [55] 

Other     

3,5,5-trimethyl-2-hexene Whiting air ice [114] 

Ethyl benzene King salmon air ice [369] 

Octane Pangasius hypophthalmus 50/0/50 4 [129] 

Pentadecane Yellowfin tuna air ice/30 [111] 

Propyl benzene King salmon air ice [369] 

Styrene King salmon air ice [369] 

Sulfuric compounds     

Carbon disulfide Brown shrimp, cooked 
and peeled 

CO2-free MAP 4 [131] 



 

 

 

 

 

 

 

 

 

 Pangasius hypophthalmus air, vacuum, 50/0/50 or 
50/50/0 

4 [129] 

Dimethyl disulfide Pangasius hypophthalmus vacuum or 50/0/50 4 [129] 

 Sea bream air ice [370] 

Dimethyl sulfide Brown shrimp, cooked 
and peeled 

anaerobic MAP 4 [131] 

 GreenshellTM mussels air 6.5 [373] 

Dimethyl trisulfide Sea bream air ice [370] 

Hydrogen sulfide Brown shrimp, cooked 
and peeled 

CO2-free MAP 4 [131] 

 Pangasius hypophthalmus air, vacuum, 50/0/50 or 
50/50/0 

4 [129] 

Methyl mercaptan Sea bream air ice [370] 

 Brown shrimp, cooked 
and peeled 

CO2-free MAP 4 [131] 

 Pangasius  
hypophthalmus 

air, vacuum, 50/0/50 or 
50/50/0 

4 [129] 
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A B S T R A C T

In  food  technology,  antimicrobial  packaging  materials  could  inhibit  or  limit  the  growth  of  spoilage
bacteria  and thus  improve  the  shelf  life  of  packaged products.  The present  study  provides  new  insights
into  the  preparation  and antimicrobial  characterization  of  silver-containing  packaging  materials  and
their  ef� cacy against  typical  meat  spoilage bacteria.  Antimicrobial  ef� cacy of  packaging  � lms  produced
by coextrusion  or  liquid  � ame spray  process was determined  by bioluminescence  imaging  and
conventional  antimicrobial  assay. Fresh pork  sirloin  was packaged in  selected � lms  and composition  of
meat  microbiota  was analyzed  by 16S rRNA amplicon  sequencing. Shelf life  of  meat  was not  affected  by
any of  the  silver-containing  packaging  � lms,  even though  meat  microbiota  mostly  consisted  of  bacteria
that  were  inhibited  or  retarded  in  vitro  by  nanoscale silver  coating.  This may  be due to  different  release
dynamics  of  silver  ions  on meat  surfaces compared  to  the  circumstances  in  the  antimicrobial  assay or
interactions  between  silver  and amino  acids.

ã  2015  Elsevier Ltd. All  rights  reserved.

1. Introduction

Raw red  meat  has a high  water  activity  and plenty  of  nutrients
that  enable bacterial  growth.  Thus, meat  rapidly  loses its  quality
even at  chill  temperatures  because of  microbial  activity  and
subsequent  sensory changes (Sun & Holley,  2012). Carbon dioxide
tolerant  psychrotropic  lactic  acid bacteria  (LAB) are typically
associated with  spoilage of  vacuum  or  modi � ed atmosphere  (MA)
packaged meat.  Carnobacterium,Lactobacillus and Leuconostoc spp.
are most  commonly  detected  in  spoiled,  cold  stored  meat  products
packaged under  MA  (Borch, Kant-Muermans,  & Blixt,  1996 ;
Susiluoto,  Korkeala, & Björkroth,  2003). Since these bacteria
cannot  be completely  eradicated  from  raw  meat  even if  high
processing  hygiene  is maintained,  new  packaging  technologies  are
needed for  improving  shelf  life  and quality  of  the  packaged
product.

Meat  spoilage occurs primarily  on the  surface of  meat.  To limit
the  growth  of  spoilage microbes,  antimicrobial  substances have
been tested  in  direct  contact  with  food  products  by  dipping  or

spraying,  even though  this  kind  of  approach  has relatively  short-
time  effects  on microbial  growth  due to  neutralization,  diffusion  or
inactivation  of  active  ingredients  (Appendini  & Hotchkiss,  2002;
Quintavalla  & Vicini,  2002). A more  durable  solution  could  be the
incorporation  of  antimicrobial  agents as a part  of  the  packaging
material.  Controlled  and extended  release of  antimicrobial  agents
could  inhibit  or  retard  bacterial  growth  throughout  storage, thus
leading  into  bene� ts in  the  whole  supply  chain  (Appendini  &
Hotchkiss,  2002;  Han, 2000;  Quintavalla  & Vicini,  2002).

Silver  has been known  since historical  times  for  its  antimicro-
bial  activity  and several mechanisms  of  activity  against  bacteria
have been proposed  (Lalueza, Monzón,  Arruebo,  & Santamaría,
2011;  Silvestry-Rodriguez,  Sicairos-Ruelas, Gerba, & Bright,  2007).
These include  extracellular  binding  or  precipitation  of  silver  to  cell
walls,  active  transport  of  silver  into  cells via transport  systems of
essential  metals,  and binding  of  silver  to  DNA or  electron  donor
groups.  Silver  can also bind  to  sulfhydryl  groups  (�� SH) of  proteins,
which  causes protein  inactivation  and inhibition  of  metabolic
processes (Silvestry-Rodriguez  et  al., 2007). Interaction  of  silver
with  ribosomes  inhibits  enzyme  expression  (Llorens, Lloret,
Picouet, Trbojevich,  & Fernandez, 2012). Silver  can be introduced
in  different  forms  such as ions, complexes,  salts and in  metallic
form.  Activity  of  silver  ions  is dependent  on the  anions  and* Corresponding  author.
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