
Petri Rantanen
Architecture for Interfacing Content Analysis Back Ends

Julkaisu 1460 • Publication 1460

Tampere 2017
ISBN 978-952-15-3912-1
ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

TTY Julkaisu 1460 • TU
T P

ublication 1460 P
etri R

antanen

Tampereen teknillinen yliopisto. Julkaisu 1460
Tampere University of Technology. Publication 1460

Petri Rantanen

Architecture for Interfacing Content Analysis Back Ends

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Auditorium 125, at Tampere University
of Technology – Pori, on the 24 of March 2017, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2017

ISBN 978-952-15-3912-1 (printed)
ISBN 978-952-15-3924-4 (PDF)
ISSN 1459-2045

Abstract

This thesis will discuss the challenges of designing and implementing a complex system
for the content analysis ecosystem. The system would consist of any number of client
devices – both desktop and mobile clients – and of a single front-end service, which
would utilize any number of external service providers and back ends designed for various
content analysis tasks. These tasks could include, among others, text summarization,
photo analysis or content-based search. The background research suggests that despite
the extensive studies on content analysis in general, there is a lack of research on how to
implement a usable system consisting of all of the required parts. In existing studies the
priority is almost entirely placed on algorithm and analysis method design.

The purpose of the research presented in this thesis is to study how to define a generic,
extendable, and maintainable system within the content analysis domain. This thesis
describes the methods, technologies, and principles required in architectural design.
Furthermore, the work is validated through several architectural iterations and proof-of-
concept implementations, which are also presented in this thesis.

Based on the results of the studies performed, this thesis will describe how to realize a
feasible and practical generic architecture by following layered Application Programming
Interface (API) and data models (presented in this thesis) in combination with commonly
used architectural and technical solutions (Representational State Transfer (REST) and
hybrid REST/Remote Procedure Calls (RPC)) and industry de facto representation
formats (such as JavaScript Object Notation (JSON) and Extensible Markup Language
(XML)).

i

Preface

The background of the research presented in this thesis, and my contribution to it, as well
as the many projects I have participated in are covered in detail in the following chapters
of this thesis. Thus, I would like to use this space to thank those who have helped me to
realize this thesis.

I started as a researcher in the Pori Department of Tampere University of Technology in
2008 with the goal of finishing my Master’s thesis. This also laid the foundations of the
research presented in this doctoral thesis. The original topic of my research, as presented
in my Master’s thesis – that is, emergency messaging – did not carry through the years,
but in essence the research was about software architecture and interface design. In
addition to the research presented in this thesis, I have worked in several other projects
– with topics such as the development of systems for eldercare, the measurement of
environmental conditions in a hospital, the improvement of data collection in a swimming
hall, and the design of a system for tracking logistics. All these topics, in one way or
another, were closely related to architectural design – to making interfaces, which allowed
systems to communicate with other systems. Ultimately, the context changed to content
analysis, as presented in this thesis.

Thus, taking into account several years of research with many colleagues and co-authors,
I would like to thank everyone who has worked with me, both at the university and in the
companies participating in the research projects, for providing directions for my research,
feedback and comments on my publications, and for making it possible to realize the
required proof-of-concept implementations, prototypes and system specifications.

I would also like to thank Dr. Jari Soini and Prof. Hannu Jaakkola for providing guidance
on the process of writing my thesis. Similarly, I would like to extend my gratitude to my
thesis pre-examiners, professors Jaak Henno and Marjan Heričko, for providing valuable
insight, feedback, and improvement ideas.

I would also like to express additional thanks to Tampere University of Technology, the
Finnish Cultural Foundation Satakunta Regional Fund and Kaarina Vaalannon Rahasto
for their financial support in making it possible for me to complete this thesis.

iii

List of Figures

1.1 The simplified use case. 4
1.2 High level architecture diagram for content analysis environment with unknown

interfaces described. 5

2.1 The architecture structure and its primary components. 9

3.1 Timeline of the research with important milestones and publications. 18

4.1 High level presentation of the architecture from Publication I. 28
4.2 High level presentation of the architecture from Publication II. 29
4.3 High level presentation of the architecture from Publication III. 30
4.4 High level presentation of the generic architecture from Publication IV and

Publication VII. 31
4.5 Realization of interoperability, extensibility and flexibility through task-based

content delivery and analysis. 34
4.6 Scalability with a single front end and multiple back ends. 37
4.7 Scalability with a front-end service and multiple back-end services with multiple

nodes. 38
4.8 Scalability with multiple front ends and multiple back ends. 39
4.9 The flow of data throughout the system. 42
4.10 API model of the generic architecture. 43
4.11 Interface layer model as compared to other models. 46
4.12 Visualization of the development process of the proof-of-concept implementations. 50

5.1 High level architecture diagram for content analysis environment with interfaces
described. 56

iv

List of Tables

3.1 Design science research guidelines [Hevner et al., 2004] in relation to the
research questions. 21

4.1 Data layers and characteristics. 48

5.1 Contributions to the architecture structure and its primary components. . . . 59

v

List of Abbreviations and Definitions

ADL Architecture Description Language

API Application Programming Interface

ATAM Architecture Tradeoff Analysis Method

CAP Common Alerting Protocol

CBIR Content-Based Image Retrieval

CDN Content Delivery Network

CRUD Create, Read, Update and Delete

DMZ Demilitarized zone

Exif Exchangeable image file format

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

ISCRAM Information Systems for Crisis Response and Management

JSON JavaScript Object Notation

MMM Mathematical Model of Meaning

NICT National Institute of Information and Communications Technology

OS Operating System

OSI Open Systems Interconnection

PDF Portable Document Format

REST Representational State Transfer

RPC Remote Procedure Calls

RSS Rich Site Summary

SSL/TLS Secure Sockets Layer / Transport Layer Security

SOA Service-Oriented Architecture

vii

viii List of Abbreviations and Definitions

SoC Separation of Concerns

TCP/IP Transmission Control Protocol / Internet Protocol

UI User Interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VPN Virtual Private Network

W3C World Wide Web Consortium

WSDL Web Services Description Language

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

List of Publications

I Sillberg, P., Rantanen P., Saari, M., Leppäniemi, J., Soini, J. and Jaakkola, H.,
“Towards an IP-Based Alert Message Delivery System”, in Proceedings of the 6th
International ISCRAM Conference, ISBN 978-91-633-4715-3, Gothenburg, Sweden,
May 10-13, 2009.

II Rantanen P., Sillberg, P., Jaakkola, H. and Nakanishi, T., “An Asynchronous
Message-based Knowledge Communication in a Ubiquitous Environment”, Database
Systems for Advanced Applications, Springer, ISBN 978-3-642-14588-9, DOI
10.1007/978-3-642-14589-6_44, pp. 434-444, 2010.

III Sillberg, P., Kurabayashi, S., Rantanen P. and Yoshida, N., “A model of evaluation:
computational performance and usability benchmarks on video stream context
analysis”, Information Modelling and Knowledge Bases XXIV, IOS Press (Frontiers
in Artificial Intelligence and Applications; Volume 251), ISBN 978-1-61499-176-2,
DOI 10.3233/978-1-61499-177-9-188, pp. 188-200, 2013.

IV Rantanen P., Sillberg, P. and Soini, J., “Content Analysis System for Images”, in
Proceedings of the 16th International Multiconference Information Society, IS 2013,
Volume A, 7-11, Ljubljana, Slovenia. Josef Stefan Institute, pp. 241-244, October
7-11, 2013.

V Rantanen P. and Sillberg, P., “Event Calendar for Internet Data Sources”,
in Proceedings of the 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,
Croatia, Croatian Society for Information and Communication Technology, DOI:
10.1109/MIPRO.2014.6859721, pp. 1035-1040, May 26-30, 2014.

VI Rantanen P., “REST API Example Generation Using Javadoc”, Computer Science
and Information Systems, ComSIS Consortium, ISSN 1820-0214, 2017. Accepted
for publication.

VII Ahmad, I., Rantanen P., Sillberg, P., Laaksonen, J., Liu, S., Forss, T., Malik,
A., Nieminen, M., Shetty, R., Ishikawa, S., Kallio, J., Saarinen, J. P., Gabbouj, M.
and Soini, J., “VisualLabel: An Integrated Multimedia Content Management and
Access Framework for Personal Users”, in Proceedings of the 27th International
Conference on Information Modelling and Knowledge Bases (EJC 2017), Krabi,
Thailand, June 5-9, 2017. Submitted.

ix

Author Contribution

The contribution of the author of this thesis for the included publications is listed here
for the reader’s convenience. The contribution of the publications in relation to the topic
of this thesis is further explored in the chapter 3, and the chapter also includes brief
summaries of the main content of the publications.

Towards an IP-Based Alert Message Delivery System

The studies presented in the article, Publication I, are an extension of the work first
presented in the author’s Master’s thesis [Rantanen and Sillberg, 2009]. The primary task
of the author included the design and implementation of the client– server communication,
including programming the client application used for testing the system implementation.
The author also studied the literature related to the alert messaging use case presented
in the publication with the goal of finding the optimum communication protocols and
data formats. The author of this thesis presented the work at the sixth International
Information Systems for Crisis Response and Management (ISCRAM) conference in May
2009.

An Asynchronous Message-based Knowledge Communication in a
Ubiquitous Environment

In Publication II an extension to the alert message delivery system [Publication I][Rantanen
and Sillberg, 2009] is presented. The work was carried out as a co-operation project
between Tampere University of Technology, Keio University Shonan-Fujisawa Campus
(SFC) and National Institute of Information and Communications Technology (NICT).
The extension was designed during the author’s visit to Japan over a three-month- long
research exchange period. The author participated in designing the communication
protocols utilized in the proof-of-concept implementation and wrote the code for the
test client application used to validate the system functionalities. The author was also
involved in the design and implementation of the server-side end-points for client– server
and server–back end communications.

A model of evaluation: computational performance and usability
benchmarks on video stream context analysis

The author’s contribution to Publication III includes the description of the overall
architecture used to implement the video analysis service, and the design of the interfaces
and request/response formats used in the communication between the web service and
clients and between the web service and the video analysis back end. The author also
participated in the design of the test scenarios and in the execution of the performance

xi

xii Author Contribution

benchmarks. The design and implementation work for the system was done during the
author’s visit to Japan over the three-month period. The video analysis algorithms and
the back end implementation were provided by the Japanese co-authors of the paper.
The work was presented by the co-author Pekka Sillberg at the 22nd European Japanese
Conference on Information Modelling and Knowledge Bases (EJC 2012) in Prague, Czech
Republic in June 2012, and published in the book Information Modelling and Knowledge
Bases XXIV in 2013.

Content Analysis System for Images

Publication IV presents a concept architecture developed for managing digital data using
content-based analysis targeting photographic content as an example use case. The
primary contribution of the author to the publication is in the design of the task-based
approach utilized for delivering analysis tasks (a method further discussed in this thesis).
The author also co-designed the data formats specifically for the photo analysis use
case and helped to form the integration specifications for interfacing with the external
back ends utilized in the analysis system. The author was the principal author of the
publication and presented the work at the 16th International Multiconference Information
Society (IS 2013) in Ljubljana, Slovenia, in October 2013.

Event Calendar for Internet Data Sources

Publication V presents an event calendar service that can be used to combine data from
multiple sources. The core platform is based (sharing the same codebase, and thus, is
implemented on the same design principles) on the framework presented in Publication IV.
The author designed the server-side interfaces for the presented service and formulated the
overall architecture. The author was the principal author of the publication and presented
the work at the 37th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO) in Opatija, Croatia, in May 2014.

REST API Example Generation Using Javadoc

Publication VI describes how source code based service declarations in combination with
tools commonly used with the Java programming language can be used to automatically
generate documentation and use case examples. The author was the sole author of the
publication and formulated the concept of utilizing existing method responses for use
case example generation, as presented in the paper. The architecture used to generate
the examples is the same as previously described in Publication IV and Publication V.
The partial API model presented in the paper (and further expanded in this thesis) is
based on work done by the author.

VisualLabel: An Integrated Multimedia Content Management and Access
Framework for Personal Users

Publication VII presents an integrated framework – called VisualLabel – for managing
multimedia content by utilizing a front-end service in combination with multiple analysis
back ends. The article presents a simplified version of the API model that is further
explored in this thesis. Furthermore, the core VisualLabel framework introduced in the
publication is based on the design principles presented in this thesis.
The article summarizes several years of co-operation between the industrial and educational
partners on the Data to Intelligence (D2I) project. The main outcome of this work was

xiii

the creation of the VisualLabel framework. The core functionality of the front-end service
(such as task scheduling, client interfaces, and external service connectivity) and the
integration specification was designed and implemented – with active feedback from the
other partners – at Tampere University of Technology, Pori Department. The author
of this thesis worked for the entire duration of the project on the development of the
VisualLabel framework, with the primary task of designing the integration specification
to enable the realization of the framework. The crucial parts of the specification (service
interfaces, task scheduling, and automatic documentation) are further discussed in this
thesis. The author of this thesis was also the corresponding author for the publication.

Table of Contents

Abstract i

Preface iii

List of Figures iv

List of Tables v

List of Abbreviations and Definitions vii

List of Publications ix

Author Contribution xi

Table of Contents xv

1 Introduction 1
1.1 Research Area . 2
1.2 Research Questions . 6
1.3 Thesis Structure . 7

2 Background Research 9
2.1 Research Framework . 9
2.2 Architectures . 10
2.3 APIs . 12
2.4 Communication Methods . 12
2.5 Data Representation . 13
2.6 Documentation . 14

3 Research Contribution 17
3.1 Timeline of the Studies . 17
3.2 Research Method . 19
3.3 Publication I . 22
3.4 Publication II . 23
3.5 Publication III . 23
3.6 Publication IV . 23
3.7 Publication V . 24
3.8 Publication VI . 24
3.9 Publication VII . 25

xv

xvi Table of Contents

4 The Generic Architecture 27
4.1 Evolution of the Architecture . 27

4.1.1 The First Iteration . 28
4.1.2 The Second Iteration . 29
4.1.3 The Third Iteration . 30
4.1.4 The Final Iteration . 31
4.1.5 Documentation . 32

4.2 Quality Attributes . 33
4.2.1 Interoperability, Extensibility, and Flexibility 34
4.2.2 Scalability and Availability . 36
4.2.3 Testability, Usability, and Maintainability 40
4.2.4 Portability, Adaptability, and Reliability 41
4.2.5 Security . 41

4.3 API Model . 43
4.4 Interface Layer Model . 46
4.5 Data Layer Model . 47
4.6 Proof-of-Concept Implementations . 50

4.6.1 IP-based Alert Message Delivery System 51
4.6.2 Kansei-based Video Analysis System 52
4.6.3 VisualLabel . 52
4.6.4 Event Calendar for Internet Data Sources 53

5 Conclusions 55
5.1 Research Answers . 55
5.2 Validation . 57
5.3 Thesis Contribution . 58
5.4 Future Work . 59
5.5 Summary . 60

References 63

Publications 77

1 Introduction

The growth of the Internet and the availability of information and various multi-format
data have created challenges for information processing and retrieval. This has made
it more difficult to find the desired information. This is not a new phenomenon, but
something that has been going on for at least the past decade – fueled by the increase in
public awareness of the Internet. Modern, easy-to-use mobile devices and online services
have increased user expectations. Simple keyword-based search services are being replaced
by semantically associative search engines that depend heavily on metadata.
This raises the question of how to gather or generate this metadata? There are three
commonly used methods for producing the required metadata:

1. Metadata is directly provided by the user in the form of manually inserted tags
and annotations, for example, tag clouds on various image-hosting services such as
Flickr or Picasa, or more recently on social media websites such as Facebook or
Twitter.

2. Metadata is inserted automatically into the user’s content during content creation
or modification. An example of this is the inclusion of Exchangeable image file
format (Exif) [Camera & Imaging Products Association, 2015] metadata into image
files by image capturing software when the user takes pictures with his/her camera.

3. Automatic generation of metadata directly from the user’s content (or files). The
process can take advantage of the metadata created by one or both of the methods
described above – for context recognition, for example.

The metadata provided by the user (method 1 in the list above) has two basic problems.
Firstly, even though the data is inserted by the user and may as such be considered to be
“correct,” it is not necessarily refined enough to be used in complicated search operations.
Secondly, and in this case, more importantly, manually annotating a huge amount of
content can be a cumbersome, time-consuming, and tedious process from the user’s point
of view. Method 2 overcomes some of these problems by offering a more standardized
format and lessens the user’s burden in the generation process. Unfortunately, the
metadata generated this way is often very limited, and may well answer the questions
where, when and how the content was created, but provides very few answers regarding
what the content actually is. Method 3 can be used to answer the last question, i.e., what
the content is and what it contains, and in some cases it can also be used to provide
answers for where, when, and how. In the scope of this thesis, method 3 is perhaps the
most important, although a fully functioning content analysis system targeted for end
users might need functionality for implementing all three methods.

In essence, these three questions and the world of metadata generation as a whole provide

1

2 Chapter 1. Introduction

the higher context for this thesis, but is in its entirety a far too complex and wide research
field. Thus, the following sections will attempt to slice this world into smaller and more
manageable entities and will explain the scope of this thesis and go more deeply into the
research problem described – and solved – in this thesis.

1.1 Research Area

Content analysis [Krippendorff, 2012], according to Tipaldo [2014] (and translated by
Wikipedia [2016]) consists of ”a wide and heterogeneous set of manual or computer-assisted
techniques for contextualized interpretations of documents produced by communication
processes (any kind of text, written, iconic, multimedia, etc.) or signification processes
(traces and artifacts), having as ultimate goal the production of valid and trustworthy
inferences”. In the context of this thesis, the scope of content analysis is more limited,
and the thesis focuses more on the technologies and existing systems that produce content
analysis services or functionalities. The technologies are explored through the study of
programming and communication interfaces, data formats, and other methods that enable
better interoperability of services, systems, and platforms.
There are many – both competing and complementing – algorithms, frameworks, and
platforms for automatic metadata generation. These solutions can be specialized to
handle one or more data formats or media types (text, audio, image, video) and the
metadata provided by the solutions may or may not be interchangeable or compatible
with each other, or the data may not even be usable outside the context of the analysis
engine in question.
The interoperability issues between content analysis engines can be considered a more
specialized – though equally challenging – case of a syntactic and semantic interoperability
problem as found when interfacing traditional software components and systems. In the
context of this thesis, the analysis engines (or back ends) are independent and possibly
complex systems, which can be used to generate metadata on the provided content. The
back ends provide their services by means of interfaces reachable over the Internet (for
example, by using the client– server approach) or inside a more limited network structure
(for example, in a demilitarized zone or in a cloud).
Despite excessive research on the topic of content analysis, and on technology in particular,
there is still a limited number of practical implementations. One of the problems is that
most of the existing research focuses more on the design of the Content-Based Image
Retrieval (CBIR) systems themselves [Antonelli et al., 2006; Lee and Guan, 2004; Rahman
et al., 2007; Trojacanec et al., 2009][Publication VII], on distributing the CBIR system
[Lee and Guan, 2004; Müller et al., 2003; Robles et al., 2005], or on the metrics or general
principles of the analysis benchmarking [Datta et al., 2008; Kosch and Maier, 2010; Vogel
and Schiele, 2006] – all of which are important topics themselves – without factoring
in the larger architecture required to implement a usable system. Additionally, in many
cases the various CBIR implementations can be considered to be competing with each
other, even though a more practical approach would be to combine the systems under a
single extendable generic architecture.
Similar observations can be made for text [Gupta and Lehal, 2009; Liang et al., 2005;
Maramba et al., 2015; Ntoulas et al., 2006; Salton, 1968; Tsytsarau and Palpanas, 2011;
Yoshitaka and Ichikawa, 1999], audio [Fu et al., 2011; Lu, 2001; Schedl et al., 2014; Typke
et al., 2005; Yoshitaka and Ichikawa, 1999] and video analysis [Hu et al., 2011; Junga
et al., 2004; Money and Agius, 2008; Swanberg et al., 1992; Yoshitaka and Ichikawa, 1999],

1.1. Research Area 3

or on combining multiple features of a single media source [Atrey et al., 2010] (such as
analysis of the video file’s audio and image track): the research spans many fields and
various topics, but the studies on the supporting – or enabling – architecture seem to be
lacking. Of the four multimedia types (audio, image, video, and text), perhaps text – in
the form of various Internet search engines – and audio have seen the most progress in
commercial end-user products. Also, a certain level of video processing takes place on
popular video sites (such as YouTube, Vimeo) and in online stores (iTunes, etc.). There
has also been research on multi-modal fusion – the combination of different types of
features from a single media source, such as combining the analysis of a video’s audio
and video track.

At this point it is important to place another limit on the scope of this thesis. The
research presented in the thesis does not go very deeply into the inner workings of the
content analysis systems. This is partly because of the existing extensive research already
performed by others, and partly because the aim of the study is not to limit the content
analysis systems to any particular type of analysis, such as text or video analysis, but to
consider how these different types of analysis systems (or platforms) could be unified and
utilized in a more general fashion. This is also reflected in the choice of various types of
back ends used to validate the generic architecture presented in this work.

Like content analysis, the other important topic of this thesis, service API design, has
been an active research topic, and there are numerous publications on REST architecture
[Belwasmi et al., 2011; Fielding, 2000; Fielding and Taylor, 2002; Pautasso et al., 2008;
Richardson and Ruby, 2007] and RPC [Birrell and Nelson, 1984; IETF, 1976; JSON-RPC
Working Group, 2015; W3C, 2007a]. Additionally, if one considers the World Wide
Web Consortium (W3C)’s definition of “Web Service” [W3C, 2004b], the languages and
solutions used to describe the service interfaces – such as Web Services Description
Language (WSDL) [W3C, 2007b] – should also be included. Similarly, there have been
a lot of studies of content-based analysis [Datta et al., 2008; Hanbury, 2008; Lew et al.,
2006; Zhang et al., 2012], metadata generation [Cardinaels et al., 2005], and metadata
interoperability [Haslhofer and Klas, 2010].

Evidently, there have been a lot of studies on software architecture on a more general
level, and even though the researched architectures share similarities with content analysis
systems, there does not seem to be a comprehensive study on how the architectures
should be used within the content analysis domain. The existing content analysis research
prioritizes the algorithm and analysis methods with less weight given to the actual
software solutions required to implement a viable system (or analysis environment),
despite both being equally important research topics. Finally, there are undoubtedly
real-life implementations, which adhere to similar principles as those presented in this
thesis, but these implementations are often closely guarded by companies and not available
to the public. Furthermore, it is difficult to deduce how generic the implementations are
without access to the specifications.

In any case, the problem can be simplified to a case in which there is content (text, video,
audio, etc.), which has been produced either by the clients (users) or by utilizing some
kind of automatic process. Depending on the content type, different methods (algorithms)
to produce the desired outcomes must be chosen, and because of the multitude of content
types it is unlikely that a single solution or system can handle everything. For this reason,
multiple analysis engines (back ends) and a method of delivering the content to these
engines are required. In the context of this thesis, the deliveries that contain the necessary
information and possible analysis instructions are called tasks. The task in combination

4 Chapter 1. Introduction

with a simplified use case including the essential participants of the content analysis
environment is presented in Figure 1.1.

Figure 1.1: The simplified use case.

The clients are not strictly defined and may be anything from online photo browsers to
native navigation applications – all depending on the type of metadata generated by
the back end. A back end that crawls the Internet for event information could enable a
calendar application [Publication V], which lists the data in chronological order. Another
back end could analyze photos and extract metadata describing the contents of the photo,
thus enabling an online photo browser [Sillberg et al., 2013] – or a combination of multiple
back ends could enable the use of photo metadata and social profile information for the
purpose of providing tag suggestions [Rantanen et al., 2017]. Even though the back ends
can provide many different kinds of data and offer a wide variety of capabilities, from
the architectural point of view these features should be – if not irrelevant – at least
not the defining factor. The architecture should be capable of abstracting a feasible core
communication layer for transferring various types of content. Still, the generality of the
architecture can only be validated by testing the approach on as many different kinds of
back ends as possible. The provided solution could work on other systems that require
task delivery to back-end servers, but as the scope of this thesis lies in the content analysis
domain, validation and testing is only performed with back ends especially designed for
the purposes of content analysis.
As Figure 1.1 illustrates, in a very high-level use case, all the communication can be
simplified to consist of tasks created or indirectly requested by the client, and to the
results provided by the back end. In a simple, traditional client– server case consisting of
either one or more clients and a single back-end server, there is no need for a separate
front end server, but if multiple back ends are used some kind of control entity is required.
The front end can either work as a load-balancer or perform more advanced functions
such as relaying tasks to different back ends based on the capabilities of the back ends
or the front end can function as a metadata index or cache for search results. The front
end and back ends can be located on the same physical server, be divided over multiple
servers, or consist of a more complicated cloud-based solution, but regardless of their
internal organization these components can be thought to form a single service entity, as
shown in Figure 1.1.
Figure 1.2 illustrates a high-level architecture with the common participants required for
a functional system in the content analysis domain. As mentioned above, in this case
clients can be anything from mobile phones to desktop computers. The operating systems
and even client software implementations – whether native applications or web browsers
– are irrelevant in this case. This “irrelevancy”, depending on the point of view, either
allows the easy development of client software in combination with cross-platform and
interoperability functionalities, or can be seen as one of the requirements for the system

1.1. Research Area 5

Figure 1.2: High level architecture diagram for content analysis environment with unknown
interfaces described.

design. Generally, in the client– front-end (or client– server) communication, the methods
of communication can be dictated by the front-end design, though they must be sensible
enough to be usable in practice. In fact, the guidelines (best practices, protocols, data
formats) for the client– front-end communication design are one of the more important
issues in architectural design.

The back-end implementations (on the right, in Figure 1.2) partly dictate the requirements
for the interaction between the front end and back ends, although regardless of the
capabilities of the back ends a functional and syntactically appropriate, yet sufficiently
generic communication protocol and data format should exist. If no common protocol
between the front end and back end can be designed, the other option is to design a
separate protocol for each back end, which can be a troublesome and time-consuming
process both in the design and implementation phase, and in the future because of the
increased maintenance complexity. In addition to the client– front-end communication,
the front-end–back-end communication (best practices, protocols, data formats) is one of
the cornerstones of the architecture.

Comparing Figure 1.2 with Figure 1.1, we can see that a new entity, the Content Providers,
has been included. Content providers is a term, which is used to describe all third party
services used in the design. For example, these can be image content services, which
host the user’s photos, or perhaps there is a social media website the user commonly
uses to post his/her daily activities, or a third party service that could be utilized to
authenticate the user. From a design point of view there is very little freedom in the
design and implementation of the front-end interfaces that communicate with content
providers – the providers must be accessed using the interfaces defined by the providers.
Nevertheless, the providers play a crucial role in the overall design as the hosts of the
user’s content [Sillberg et al., 2013][Publication IV]. Due to the limited possibilities on how
the communication with the Content Providers can be affected, the primary focus of this
thesis is on the interaction of the front end with the clients and with the back ends when
defining the protocols and communication methods. The interfaces and communication
channels of interest are marked with question marks in Figure 1.2.

6 Chapter 1. Introduction

1.2 Research Questions

This thesis claims that it is possible to design a generic architecture and to define
best-practice guidelines for the implementation of complex content analysis and metadata
processing architecture. The guidelines are not strictly limited to content analysis and can
be applied to any system design concerned with the problem of connecting incompatible
back ends with external service providers in a client– server or cloud architecture. However,
in the context of this thesis the validation of the architecture is performed in the content
analysis domain utilizing the back-end implementations (PicSOM [Aalto University,
Department of Computer Science, 2015], Kansei [Kiyoki and Chen, 2009; Kiyoki et al.,
1994], MUVIS [MUVIS, 2015] and Social Media Summarizer [Forss et al., 2014]) developed
and refined in the projects that the author of the thesis participated in. Based on these
claims, and the scenario described in the previous section 1.1, the following research
question – or problem – can be constructed:

Is it possible to define a generic architecture, which describes how clients,
back ends, and content providers can be connected in a meaningful way?

Moreover, this doctoral thesis will present a generic architecture and show its feasibility
through proof-of-concept implementations. This work will not only answer whether it is
possible to implement a generic architecture, but will also specify how the architecture
should be created and what components should be included in a practical design. Thus,
the problem can be further refined into three research questions, which in this context
can also be thought to be the primary requirements for the architecture. These questions
are listed below:

1. What is the optimal method of communication for syntactically
incompatible back ends?

2. What are the crucial interfaces and data formats required for
cross-platform communication?

3. What kinds of aspects are required to guarantee system maintainability?

In the scope of this thesis, and in relation to question 1 above, the solution will be
considered optimal when it works as intended in the content analysis domain and the
solution can be utilized to create a feasible and practical system. Content analysis engines
may have been designed for various syntactically and contextually incompatible tasks, and
it might be difficult to foresee how the data generated by the engines could be represented
or used in an interoperable and generic way. For example, a back end designed for
processing the user’s daily action in a social media service can produce quite different
data than another back end designed for audio analysis. To make the different use cases
compatible, a common interface definition is required, which may even require changes to
the original designs of the analysis engines.

In addition to the specific requirements imposed by the content analysis domain, the
proposed architecture must comply with commonly accepted software quality requirements
[ISO/IEC, 2011a] in order to be a valid software design paradigm. Characteristics such as
usability, security, maintainability, scalability, adaptability, and portability are important
considerations in the overall architectural design.

1.3. Thesis Structure 7

1.3 Thesis Structure

Throughout this thesis, two separate conventions are used for referencing source material.
This has been done to help the reader more easily separate the two different ”origins”
of the source material. The publications included directly in this compilation thesis are
referred to by the term Publication followed by a Roman numeral (e.g., [Publication I])
referring to a publication listed in chapter 3, whereas the material listed in the References
section at the end of this thesis is referred to using a different style (e.g., [Rantanen
and Sillberg, 2009]), and in general consists of material published by other authors or of
supplementary material published by the author of this thesis.

Chapter 1 presents the content analysis ecosystem and its main participants and describes
the starting points for the architectural design. The chapter also presents the research
questions and the primary goals of the studies and concludes with section 1.3, which
explains the structure of this thesis.

Chapter 2 explores the related technologies, existing solutions, and crucial points of
interest in designing a generic architecture for the content analysis domain. The chapter
also outlines certain limitations on the topics and technologies discussed, and thus narrows
the scope of this thesis.

As this thesis is a compilation thesis, the included publications and their relation to the
topic at hand have to be clearly presented. Chapter 3 explains the research method
utilized to achieve validity for the claims of this thesis and presents the publications
(scientific peer-reviewed papers) directly included in this thesis and also explores the other
related material – published both by the author of this thesis and by other authors –
that support the claims.

Chapter 4 presents the primary findings of the studies. It also expands the existing
findings by providing a more in-depth look at the reasons for choosing the presented
methods and proves the validity of the methods through quality attribute evaluation.
The chapter also presents the API and data models formed based on the studies.

Finally, chapter 5 offers a look at possible future topics and directions for research, and
concludes this thesis with a short summary of the main results.

2 Background Research

This chapter will present a look into existing research on the topic of architectural design
and highlight the solutions and methods available for the realization of a practical content
analysis architecture. The four important pillars (APIs, communication methods, data
representations, and documentation) for implementing software architecture are described
in the following subsections in the form of the research framework (presentation of the
crucial components of a generic architecture).

2.1 Research Framework

There is no single, clear definition of what software architecture is. Architecture can be
considered to be a set of structures, defining the software elements and the relations
between them, and describing the properties of the elements and their relations [Bass et al.,
2012; ISO/IEC, 2011b; Navon and Fernandez, 2011; Perry and Wolf, 1992]. Architecture
can also be seen as a set of design choices [Bosch, 2004; Hofmeister et al., 2005]. The design
of a good software architecture can yield substantial benefits in software management,
reuse, construction, and analysis [Valipour et al., 2009], though the design also requires
careful study, good tools, disciplined use, and proper documentation [Bosch and Molin,
1999; Perry and Wolf, 1992; Taylor et al., 2009].
There have been many studies on software architecture [Kruchten et al., 2006] in general,
but in the context of this thesis the discussion on software architecture is limited to
systems (or services) that operate in networked environments. Architecture is defined by
a collection of well-defined APIs - contracts that specify the input and output parameters
and methods required for communication as well as the structures and types utilized to
represent the data.

Figure 2.1: The architecture structure and its primary components.

Figure 2.1 illustrates the relations between Architecture, APIs, Communication Methods
and Data Representations. On the top is the Architecture itself, which consists of any

9

10 Chapter 2. Background Research

number of APIs. The collection of APIs generally utilize multiple Communication Methods
both for communication within the system in question and with interfaces located on
external systems. For any communication to take place in a well-defined way, a collection
of Data Representations must be specified. Finally, the documentation can be used to
describe and specify the usage and design choices for the four other parts. In principle, the
framework presented in Figure 2.1 could be expanded to include a more detailed description
of a software architecture, and the model is not meant to be a conclusive representation.
This thesis will not attempt to re-define the concept of software architecture, but will
instead concentrate on the solutions and methods required to implement the practical
interfaces required for the realization of a feasible content analysis environment. Thus,
Figure 2.1 can also be regarded as a visualization of the scope of this thesis within the
field of architectural design.

The existing commonly used solutions for the aforementioned components are briefly
presented in the following subsections 2.2, 2.3, 2.4 and 2.5, which also describe certain
limitations of the aforementioned topics in relation to the scope of this thesis. The figure
also shows the role of documentation, which, if properly written and maintained, should
describe the connections between the various components in a uniform format and style.
Documentation is further discussed in subsection 2.6.

The five parts of Figure 2.1 can be considered the cornerstones of an architecture, and
thus, each of these parts are further discussed in the context of the architectural solution
presented in this work: the higher level architecture and communication methods are
presented in section 4.1; the chosen API structure is explained in sections 4.3 and 4.4; data
representation is discussed in section 4.5; and methods utilized to improve documentation
can be found in subsection 4.1.5.

2.2 Architectures

Traditionally, architectures for networked systems have been described using commonly
used architecture patterns (e.g., client– server, layered or multi-tier pattern) [Bass et al.,
2012; Harrison and Avgeriou, 2007]. The content analysis domain is divided into clients
(the users of the service) and servers (the providers of the service), to put it simply.
Behind the scenes, the service often consists of a more complicated structure, perhaps of
one located in a cloud and consisting of several back-end systems performing the required
content analysis, storage, and retrieval operations. How well the designed architecture
fits the task at hand can be measured - in addition to performance and use tests - by
evaluating the architecture against a pre-defined set of quality attributes [Bass et al., 2012;
Harrison and Avgeriou, 2007]. The quality attributes can vary between use cases, but
certain common attributes always exist for networked systems, such as interoperability,
availability, reliability, and security. Thus, the quality attributes - and their relation to
the chosen approach - are discussed in detail in section 4.2.

There are four primary directions for implementing networked (in this case, web) service
architectures: RPC [Birrell and Nelson, 1984; IETF, 1976; JSON-RPC Working Group,
2015; W3C, 2007a], REST [Belwasmi et al., 2011; Fielding, 2000; Fielding and Taylor,
2002; Pautasso et al., 2008; Richardson and Ruby, 2007], hybrid, and what could be
referred to as a “proper” web service [W3C, 2004a]. In the literature, the term RPC
is often analogous with web services, even though the term [Birrell and Nelson, 1984]
predates the idea of modern web service, and the idea of remote procedure calls is much

2.2. Architectures 11

older [IETF, 1976]. In the context of this thesis, the term RPC is in its more generic
meaning - methods for delivering workloads or executing operations on remote peers.

As defined by W3C, a web service usually contains, in addition to the functional layer,
a descriptive API, which can be used for service discovery [W3C, 2004a], which may
or may not be present for RPC, REST or hybrid approaches. In fact, the technologies
for implementing a web service are not limited and implementation could be achieved
by utilizing any one of the three other architectural styles, although in principle the
lack of certain supportive functionalities (namely, the descriptive interfaces) dictate that
not all ”web services” are (strictly speaking) web services. There has been research on
descriptive interfaces for REST, although no conclusive, standard, or even commonly
used approach exists [Ludwig et al., 2009; Pautasso, 2009; Verborgh et al., 2014].
The web service approach can be and often is used to implement services based on
Service-Oriented Architecture (SOA), and the approach does have certain advantages, such
as, improvements in interoperability, location transparency, composability, modularity,
self-containment, scalability, and security [O’Brien et al., 2007; Valipour et al., 2009].

The often mentioned disadvantages of web services are the steep learning curve caused
by the apparent complexity of implementing a proper web service, and the increased
latencies caused by the overhead in message headers (e.g., SOAP headers) or by the
increased processing time of the commonly used representational formats (e.g., XML
or JSON). The message processing overhead and performance depend on the use case,
and may or may not be increased by selecting a different architectural style, but the
service design and implementation complexity are affected by the architectural choices.
In general, REST is considered easier to learn and use, and that has perhaps been the
primary reason for its increased adoption. [Aihkisalo and Paaso, 2012; Feng et al., 2009;
Guinard et al., 2012; Mulligan and Gračanin, 2009; O’Brien et al., 2007]

Looking at the illustration of the content analysis use case in Figure 1.2 (section 1.1),
we can see two separate scenarios: Clients - Front End communication and Front end
- Back ends communication. The third scenario would be the communication between
Front end and Content Providers, though this is more clearly (and strictly) defined
because the communication is specified solely by the providers. For both scenarios, RPC
implementation is possible, as is a web service based approach. However, both of these
solutions add a layer of complexity to the implementation. For the second scenario,
the complexity - if not entirely desired - is manageable, but for the first scenario, it is
problematic. Especially if the clients have performance limitations (e.g., certain mobile
devices), overhead in the communication should be minimized. More importantly, if the
client side API is designed to be a public one, the complexity can have a detrimental
effect on the developers’ interest in using the system.

A better choice for the first scenario is to use the REST architectural style. Unfortunately,
there are certain limitations in the second scenario, which prevent the use of REST. The
REST style has the requirements of statelessness, representation of resources by Uniform
Resource Identifier (URI) and the use of Create, Read, Update and Delete (CRUD)
operations 1 - in addition to a number of other requirements described by other studies
[Fielding, 2008; Li and Chou, 2011]. Of the three, statelessness can be difficult to achieve
because there may be a need to track the status of operations running on the back

1Fielding’s original work [Fielding, 2000] does not mention CRUD by name, the defined architectural
style simply requires that all methods are uniformly defined for all resources. In the context of this
thesis it is assumed that all operations use the methods of Hypertext Transfer Protocol (HTTP) in a
well-defined CRUD way.

12 Chapter 2. Background Research

ends, and the back ends in turn must keep track of callback URIs used for returning the
analysis responses. In other words, the operations are by nature stateful and more RPC
like. Similar observations about the superior applicability of RPC (or web services) for
distributed environments have been made by other researchers [Castillo et al., 2012].

Another option for the second scenario is to use a REST/RPC hybrid [Richardson and
Ruby, 2007]. In essence, by choosing the hybrid approach we would keep parts of the REST
style (e.g., CRUD and resource URIs) to preserve simplicity, but ignore the restraints
that do not fit the current use case (e.g., statelessness). Creating a hybrid can provide
advantages, but in many ways the process is equivalent to the creation of a custom design,
increasing the need for proper documentation and examples.

2.3 APIs

Any well-defined service provided by one component, module, or application for other
software elements can be considered to be an API [de Souza et al., 2004], and is an
important tool in realizing modularity and information hiding in software design [Parnas,
1972]. The importance of API design has been highlighted in several studies and literature
on best practices or guidelines for API design exists [Daughtry et al., 2009; de Souza
et al., 2004; Espinha et al., 2014; Henning, 2009; Li et al., 2013]. In general, a good -
or appropriate - API should be minimal (only functions that are required for a certain
task should be exposed), stable (changes cause problems for developers), and properly
documented.

In the scope of this thesis, APIs are limited to interfaces (or services) that are provided
for communication over a networked medium. Furthermore, the communication between
Clients and Front End, as illustrated in Figure 1.2 (section 1.1) is assumed to take place
using a commonly used protocol (e.g., HTTP), with the client devices working either on
dedicated client software or by utilizing a web browser. The clients are an integral part
of the environment, and existing literature on web API development, its limitations and
advantages, is available [Anttonen et al., 2011; Li et al., 2013; Paulson, 2005; Smith, 2006].
The design of the client and user interface (including the separation of User Interface (UI)
from the APIs) is beyond the scope of this thesis, but is briefly discussed in relation to
the architecture presented in this thesis in publications [Sillberg et al., 2013], [Rantanen
et al., 2017], Publication IV and Publication VII.

2.4 Communication Methods

Based on the existing studies, there do not seem to be any commonly used generic and
free protocols for task scheduling to external systems [Publication IV]. The design of
a lower, network, or transport, level protocol is a non-trivial task, and there is very
seldom any need to entirely re-invent the wheel, and for this reason low level protocols
are not discussed in the scope of this thesis. In general, a standard stack of Transmission
Control Protocol / Internet Protocol (TCP/IP) is assumed to exist. Additionally, HTTP
is increasing in popularity in networked systems even outside its original purpose (transfer
of hypermedia documents) and in the context of this thesis it is considered a viable choice
for all communication.

In practice, the unknown duration of a single content analysis task requires the front end
- back end communication to be asynchronous [Publication II]. There are several patterns
(e.g., polling, message queue, result callback) for achieving asynchronous communications

2.5. Data Representation 13

[Brambilla et al., 2004; Zdun et al., 2004], with the usage of callback URIs for result
submission being the most natural choice in the content analysis case, as described in
Publication IV.

The client—front-end communication can utilize both synchronous and asynchronous
communication, but synchronous communication can be easier to implement. As presented
in Publication IV and Publication VII, the architecture will primarily index, process, and
deliver metadata, with the actual content located elsewhere. Commonly, the metadata will
provide Uniform Resource Locator (URL)s for the actual content, which is downloaded
from a web server or from a larger Content Delivery Network (CDN) - i.e., any content
delivery system that can be accessed utilizing the resource URIs [Dilley et al., 2002; Guo
et al., 2005; Pallis and Vakali, 2006] is applicable with the architecture presented in this
thesis. The actual content delivery is in itself a large and much researched field, and is
not the primary focus of the research in this thesis.

2.5 Data Representation

Standards exist for multimedia content representation (e.g., ISO 15938 [ISO/IEC, 2002]),
which might work without the need to define a new format from scratch. Depending
on the use case, the existing solutions might be enough, and regardless of the problem
domain, there are many standardized formats for commonly used data types (e.g., UTF-8
[ISO/IEC, 2014; Unicode, Inc., 2016] for character encoding or ISO 8601 [ISO/IEC, 2004]
for date and time).

Creating an entirely custom (or proprietary), even binary based, format can deliver a
performance advantage when compared with commonly used formats. The disadvantages
are the design process - which depending on the complexity of the data might not be
trivial - and the increased work on parser implementation and maintenance compared
with the use of existing libraries. Using an existing library does not necessarily guarantee
better security, but with publicly available solutions the common security problems are
often resolved.

The two formats commonly used for data representation are JSON [Ecma International,
2013; IETF, 2014] and XML [W3C, 2008]. Parsers for both formats are available
(practically) on all mobile and desktop devices and programming languages [json.org,
2016; O’Reilly Media, Inc., 2016], making either one a viable choice. JSON is generally
considered to perform slightly better, although the difference between the two formats is
not significant on modern devices with the major performance factor being the parser
implementation used for data serialization [Aihkisalo and Paaso, 2012; Riva and Laitkorpi,
2009][Publication III].

The proof-of-concept implementations presented later in section 4.6 generally utilize XML
although this is primarily for historical reasons (reuse of existing software components)
and the developer’s preference. The excellent availability of libraries and frameworks also
makes it generally redundant to offer both XML and JSON, but it also makes the choice
between the two a difficult one. This thesis does not recommend either one over the other,
or even completely rule out the development of a proprietary format, as depending on
the use case each approach may be valid.

14 Chapter 2. Background Research

2.6 Documentation

Documentation is important for any software component and the architecture as a whole
is no exception. The design rationale of the architecture should be well documented
in addition to the defined quality attributes [Bass et al., 2012; Clements et al., 2010;
Tang et al., 2006]. Research also suggests that among the most common documentation
artifacts for APIs are interaction examples (e.g., client– server communication examples)
[Danielsen and Jeffrey, 2013; Maleshkova et al., 2010], in addition to the source code
itself [de Souza et al., 2005]. However, keeping examples up-to-date can be one of the
most tedious parts of the documentation, especially if continuous development or similar
methods that require constant documentation updates are utilized. In general, automated
documentation is preferred, though for complex systems, such as the content analysis
environment, achieving a fully automated solution might be problematic [Publication VI].

Based on the aforementioned research it can be concluded that documentation has two
distinct, but in no way mutually exclusive tasks. Firstly, the documentation can improve
the overall maintainability of the designed system by explaining the reasons for particular
design choices. Comprehending the limitations and possibilities of the design can also
improve the extendability and adaptability when the system evolves through future
(feature) additions and software bug fixes. Secondly, documentation can help the users of
the APIs - whether they are developers, part of the design team, or external parties - in
understanding how the APIs work and should be used, improving the usability of the
system.

The field of architecture evaluation has been studied rigorously. There exists comprehensive
literature both for evaluating the architecture requirements and the evaluation process
[Babar and Gorton, 2004; Bachmann et al., 2000; Dobrica and Niemelä, 2002; ISO/IEC,
2011b; Patidar and Suman, 2015; Roy and Graham, 2008] and for evaluation optimization
[Aleti et al., 2013]. Additionally, Nord et al. [2009] have provided a list of sample question
sets for reviewing whether the architecture conforms to several existing evaluation methods.
In the context of this thesis, the evaluation methods are not extensively studied. This is
primarily due to the fact that there are multiple projects with various internal evaluation
methods, which do not necessarily directly relate to existing evaluation methods, making
it challenging to carry out a comprehensive analysis of which method would be optimal.
Instead, this work shows the validity of the generic architecture through proof-of-concept
implementations as opposed to the existing evaluation methods generally utilized before
and during the architecture design process.

Similarly, methods for documenting architecture have been studied by several authors.
Authors such as Clements et al. [2010] (architecture views), Gerdes et al. [2016] (erosion
of documentation), de Graaf et al. [2012] (ontologies), Medvidovic and Taylor [2000]
(Architecture Description Language (ADL)), Emery and Hilliard [2009] (frameworks),
Hadar et al. [2013] (documentation strategies for agile development) and Rost et al.
[2013] (developer’s perspective) have extensively studied how to document an entire
architecture. In general, based on the related literature, the main problems of architecture
documentation are largely the same as for the documentation of individual software
components or smaller applications: documentation maintenance and relevancy are often
lacking. A few authors have also proposed tools for the creation and management of
architecture documentation [Bachmann and Merson, 2005; Emery and Hilliard, 2009;
Jansen et al., 2009; van Heesch et al., 2012] as well as comparisons of commonly used
documentation methods and strategies [Alexeeva et al., 2016; Kruchten, 2009; May, 2005].

2.6. Documentation 15

This thesis will not attempt to provide a comprehensive comparison or a recommendation
of which method to use. In principle, any method is applicable, but in practice, the
complexity of the presented architecture makes it very challenging to test and analyze
every approach. In any case, as the documentation is unquestionably an important part
of the process of designing and implementing any software architecture, section 4.1.5
will describe the methods utilized in documenting the generic architecture (iterations)
presented in this thesis.

3 Research Contribution

This chapter describes the methodology used to validate the claims presented in this
thesis. The publications included in this compilation thesis are briefly introduced and
their relations to the research topic and to the research method are explained. In sections
3.3 through 3.9, the publications are presented in chronological order with the oldest
publication first. The descriptions contain short summaries of the main content of the
publications, the author’s contribution per publication can be found at the beginning of
this thesis (in Author Contribution). The relation of the publications to the research
questions is further explored in the sections below with an illustration of the chronological
order of the publications and the studies in general.

3.1 Timeline of the Studies

The studies originated in the Seamless Services and Mobile Connectivity in Distributed
Disaster Knowledge Management (SSMC/DDKM) project. The alert message delivery
system designed in the project provided the first specification – and was also the first
evolutionary version – for the generic architecture, and the design of the system was
also the topic of the Master’s thesis of the author. The architecture was extended and
improved throughout the projects that followed the initial SSMC/DDKM project. Thus,
the research included in this doctoral thesis is greatly influenced by the work performed
over several years in the projects in which the author of this thesis has participated. The
projects provided not only the tools and the resources that helped to realize the practical
work, but also created a medium for receiving feedback from the industry and educational
partners participating in the projects – a medium, which in part guided the directions of
the research presented in this thesis.

The author’s projects and their duration are illustrated on the timeline in Figure 3.1.
In the figure the publications included in this thesis can also be seen in relation to the
projects, and color coding is used to separate the projects from one another. The figure
also shows three other important milestones in the design process: the starting date
of the architectural development in 2008 when the author started as a researcher at
Tampere University of Technology; the author’s acceptance to the doctoral program in
2011; and the date of publication for this doctoral thesis in 2017. Interestingly, two of
the publications (Publication I and Publication II) were published before the author was
accepted to the doctoral program (i.e., started his doctoral studies), and thus, they were
also published before the research questions – or the research problem – presented in this
thesis were formulated. Nevertheless, their inclusion in this thesis is well justified because
of their inherit relationship to the topic of this thesis – the aspect of architectural design
and the interfacing of complex systems. The work – both the background studies on
architectures as well as the implementation of the proof-of-concept prototypes – created

17

18 Chapter 3. Research Contribution

important knowledge on how to design and implement a practical system. In other words,
the work is an integral part of the evolution of the architectural design presented here,
and the evolution is further explored in section 4.1.

Figure 3.1: Timeline of the research with important milestones and publications.

In 2009 and 2011, the author of this thesis participated in a researcher exchange with Keio
University Shonan-Fujisawa Campus (SFC), and worked for a total of six months in Japan.
During these visits the author had the opportunity to study the Kansei-based [Nagamachi,
2010] semantic search and information system [Kiyoki and Chen, 2009; Kiyoki et al., 1994].
The first visit also included an internship awarded by the NICT of Japan, which made
it possible to obtain information on the network and computer architecture utilized in
the design and implementation of the Knowledge Grid used as the deployment platform
for the Kansei-based system. Also, the results of the researcher exchange period were
reported in scientific publications [Publication II][Soini et al., 2011][Publication III]. The
work done in co-operation with NICT and Keio University included both the design of
the first integration specifications for the architecture and also provided the first test back
end for analysis benchmarks.

The Mukautuvat OhjelmistoPalvelut (MOP, “Adaptive Software Services“, in English)
project, the Avoimista tietoVARAnnoista liiketoimintaa Satakuntaan (AVARAS, ”From
Open Data to New Business in the Region of Satakunta”, in English) project, and the
Data to Intelligence (D2I)[Digile, 2015a] program continued the iteration process for
the generic architecture. The most important influence came from the D2I program,
which helped to form the final proof-of-concept implementation (see subsection 4.6.3), and
provided significant contributions to the development of the analysis back ends utilized
for testing and benchmarking purposes. The MUVIS [MUVIS, 2015] system designed
by the Tampere University of Technology Department of Signal Processing (SGN), the
PicSOM [Aalto University, Department of Computer Science, 2015] system designed
in Aalto University, and the social media summarizer [Forss et al., 2014] from Arcada
University of Applied Sciences have been used as the test-use content analysis back ends.

3.2. Research Method 19

Also visible in Figure 3.1 is the short gap between the first two projects (SSMC/DDKM
and MOP caused by the author’s participation in another research project unrelated to
the topic of this thesis.

3.2 Research Method

The research method used in this study is “Design Science” [Fuller, 1957; March and
Smith, 1995; Simon, 1996]. Especially in the context of information systems, the purpose
of design science is to create innovations that define ideas, practices, technical capabilities
and products, which help to analyze, design, implement, manage, and use the systems
more effectively and efficiently [Denning, 1997; Hevner et al., 2004; Tsichritzis, 1997].
The result of design science research is an artifact, which will provide a solution for
the formulated problem, and its research should provide new data on the research topic
itself [Hevner et al., 2004]. The artifact is constructed for a specific function, and the
construction shows that the design problems have been resolved [March and Smith,
1995]. The resolution of the problems is in essence the process of application, testing,
modification, and extension of existing kernel theories through experience, creativity, and
intuition [Hevner et al., 2004; Markus et al., 2002; Walls et al., 1992]. In this thesis, the
artifact of the design science is the proposed generic architecture, and this thesis will
describe the design process – the evolution of the architectural iterations (section 4.1) –
and the existing technologies utilized in its construction (chapter 2).

In addition to the design process, an important factor in the creation of the artifact is the
validation process, which is typically based on case-specific performance metrics [Hevner
et al., 2004]. To validate the generic architectural design, the crucial metrics – or quality
attributes (section 4.2) – of the system need to be considered and the overall design
should be validated to conform to the requirements. The advantage of executing multiple
projects while designing the architecture is in the feedback achieved from a wide audience
– from internationally peer-reviewed conferences and publications as well as from people
involved in the research projects. The disadvantage is that in every project the validation,
risk assessment, code reviews, and background research procedures have been individually
decided with the project participants in accordance with the official project guidelines.
The procedures have, in general, closely resembled those of the Architecture Tradeoff
Analysis Method (ATAM) [Kazman et al., 2000], although the variations in the project
procedures have made it challenging to make a precise analysis of the architecture’s
usability based on any single evaluation method. Thus, this thesis will validate the
architecture through proof-of-concept implementations as opposed to utilizing an existing
validation method.

The relevancy of the research must be clearly presented with respect to the target
community [Hevner et al., 2004]. In the scope of this thesis, the community consists both
of various industrial and educational partners participating in the research projects as
well as potential developers of systems that utilize complex content analysis systems. The
relevancy of the presented research has been shown by studying the existing literature,
which has an apparent lack of studies on designing architecture for content analysis
environment (as described in section 1.1. Additionally, as the research has been carried
out over multiple research projects, discussions with the industrial and educational project
partners have indicated the importance of the content analysis research, and of the design
of a practical generic solution.

For the purpose of systematically validating the research approach of this thesis, the seven

20 Chapter 3. Research Contribution

guidelines created by Hevner et al. [2004] for assisting researchers, reviewers, editors, and
readers to understand the requirements for effective design-science research have been
followed throughout the research process. The guidelines and their meanings, in relation
to the context of this thesis, are summarized below:

1. Design as an Artifact. The primary outputs of design science in information
systems research are purposeful artifacts created to address important organizational
problems. The artifacts must be described effectively, enabling the implementation
and application of the artifacts in appropriate domains.

2. Problem Relevance. The objective of research in information systems is to acquire
knowledge and understanding that enable the development and implementation of
technology-based solutions to previously unsolved and important business problems.

3. Design Evaluation. Design is an iterative and incremental activity, and the design
artifact is complete and effective when the pre-defined requirements have been
fulfilled. The utility, quality, and efficacy of a design artifact must be demonstrated
through the design process.

4. Research Contributions. Often, the contribution of the design-science research is the
artifact itself (for example, a prototype system), which may create new knowledge
or apply existing knowledge in new and innovative ways. New value can also be
created through innovative use of evaluation methods or by extending existing
methodology.

5. Research Rigor. An important aspect is the effective use of existing theoretical
foundations and research methodologies, and appropriate metrics should be applied
to validate the created artifact.

6. Design as a Search Process. Design is essentially an iterative search process to
discover an effective solution to a problem by utilizing the available means.

7. Communication of Research. The artifact, how it can be applied, and how
it is to be constructed (implemented), must be presented to the appropriate
(technology-oriented and management-oriented) audiences.

To better illustrate how the guidelines have been utilized in the research presented in this
thesis, Table 3.1 below shows the guidelines, and their relationship to the three research
questions presented earlier in section 1.2. For reference, and for the reader’s convenience,
the research questions are also repeated below:

1. What is the optimal method of communication for syntactically incompatible back
ends?

2. What are the crucial interfaces and data formats required for cross-platform
communication?

3. What kinds of aspects are required to guarantee system maintainability?
In Table 3.1, in addition to the publications included in this thesis, several other references
can be found. Some of these refer to work ([Malik and Nieminen, 2014] presented by other
authors [Malik and Nieminen, 2014], and for others ([Sillberg et al., 2013], [TUT Pori,

3.2. Research Method 21

2016c]1 and [TUT Pori, 2015b]), the author of this thesis was one of the co-creators, but
the participation was not significant enough to justify the inclusion of the work in this
thesis. Nevertheless, all these publications – directly or indirectly – prove the validity
of the generic architecture explained in this thesis. Most of the presented publications
use case studies, user trials, or prototype applications that were used to test a part or an
aspect of the generic architecture, or describe a proof-of-concept implementation based
on the architecture. Thus, being performed by pilot users or other researchers, these
test cases can perhaps prove the validity of the approach even better than the tests
executed by the author of this thesis – or at the very least complement the author’s own
observations.

Table 3.1: Design science research guidelines [Hevner et al., 2004] in relation to the research
questions.

Question 1 Question 2 Question 3
Guideline 1:
Design as
Artifact

Present a publicly available generic architecture that assists in fulfilling the
quality attributes (as described in subsection 4.2) required for a practical
system operating in the content analysis domain.

Guideline 2:
Problem
Relevance

Based on the review of existing literature, there is no open and publicly
available existing generic architecture for integrating clients, back ends and
content providers in the content analysis domain.

Guideline 3:
Design
Evaluation

Proof-of-concept implementations of the
architecture [Publication III][Sillberg et al.,
2013][Publication IV][Publication V] and
Publication VII on VisualLabel platform,
and user trials [Malik and Nieminen, 2014].
Release of the implementation as an open source
[TUT Pori, 2015b] and deployment of the service
on a cloud platform [Digile, 2015b].

The generic architecture
should be capable of
testing and deploying
itself, as described
in the VisualLabel
Deployment Guide
[TUT Pori, 2016c], and
generating up-to-date
documentation through
automation, as discussed
in the Publication VI.

Guideline 4:
Research
Contributions

The author’s publications and this thesis provide guidelines for the design of
the generic architecture.

Guideline 5:
Research Rigor

The design of the architecture should adhere to commonly used software design
paradigms and quality requirements [ISO/IEC, 2011a].

Guideline 6:
Design as a
Search Process

The architectures described in Publication I, Publication II, Publication III
and Publication IV can be thought as the evolutionary path to the ultimate
goal.

Guideline 7:
Communication
of Research

Publication II,
Publication III,
Publication IV,
Publication VII, and
this thesis.

Author’s publication
[Sillberg et al., 2013],
Publication IV and
Publication VII, and
this thesis.

Publication VI, the
VisualLabel Deployment
Guide [TUT Pori, 2016c],
and this thesis.

The most important part of any design science research is the design process [Hevner,
2007]. Thus, this thesis will describe the evolution of the generic architecture (section
4.1) as well as presenting the proof-of-concept implementations (section 4.6) to better
illustrate the path taken to achieve the final version of the architecture. Arguably, the
presented architecture could be further improved through additional iterations and further
development, but in general, a software development process can be considered to be
”finished” when the software solution fulfills its pre-defined requirements (see section 4.2).

1The VisualLabel framework was also deployed on Digile’s (now Dimecc) FORGE cloud service[Digile,
2015b]. Unfortunately, the discontinuation of the cloud platform in 2015 [Dimecc, 2016] has made the
presentation videos for the VisualLabel implementation on the FORGE platform unavailable.

22 Chapter 3. Research Contribution

Furthermore, the study has followed the six steps of the mental model proposed by Peffers
et al. [2007], which provides a nominal process for the conduct of design science research.
The model does not require the research to follow the steps in order. In the case of
this research, the foundations of the generic architecture originate from earlier studies,
which had different goals (the creation of an emergency messaging system), and later, the
research topic focused on the content analysis domain. The case is referred to by Peffers
et al. [2007] as the design and development approach with the logical starting point being
the third step of the model. In other words, the overall research can be considered to have
started from step three, although the process of realizing this thesis started from step one,
after the goals and the research domain (content analysis) had been chosen. Additionally,
the last step (Communication) was performed continuously during the progression of the
research in the form of publications of the research work. The original steps of the mental
model, and their applicability to the scope of this thesis are listed below:

1. Problem identification and motivation.

2. Definition of the objectives for a solution (study of existing frameworks and
technologies to gain an understanding for the requirements for the architecture).

3. Design and Development (specification of the capabilities and interfaces for the
architecture).

4. Demonstration (execution of use case test scenarios and user studies to find out the
usability of the designed architecture).

5. Evaluation (analysis of the collected data).

6. Communication (submission of scientific papers to international conferences to
receive feedback on the designed architecture and finally, compilation of the doctoral
thesis).

These steps have been adapted to the context of this thesis, with the adaptations presented
in parenthesis. The steps can also be identified within the structure of this thesis: the
first stage can be found in section 1; the second stage is in section 2; the third stage is
split between three subsections, 4.3, 4.4, and 4.5; the fourth stage is in sections 4.1 and
4.6; and section 4 describes the fifth stage. The sixth stage consists of this entire thesis
and of the publications included in it, in combination with other published material as
presented in Table 3.1. A synopsis of each publication included in this thesis can be found
in this section (subsections 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 and 3.9).

3.3 Publication I

Sillberg, P., Rantanen P., Saari, M., Leppäniemi, J., Soini, J. and Jaakkola, H., “Towards
an IP-Based Alert Message Delivery System”, in Proceedings of the 6th International
ISCRAM Conference, ISBN 978-91-633-4715-3, Gothenburg, Sweden, May 10-13, 2009.

Publication I presents a system architecture designed for the delivery of emergency
messages to mobile terminals. The system can be said to represent the first iteration of
the final generic architecture presented in this thesis. Several key architectural points
of the system are utilized in the final architectural solution. Two different methods of
communication are used, each designed for a specific goal – or, as in this case, target

3.4. Publication II 23

user group. Unauthorized users access the messages provided by the system in a RESTful
way by retrieving Atom-based feeds. Authorized users can take advantage of the RPC
style SOAP-based communication method designed for bi-directional communication.
Additionally, the system implements a method for utilizing external service providers and
data sources. The overall system design is further explored in the author’s Master’s thesis
[Rantanen and Sillberg, 2009].

3.4 Publication II

Rantanen P., Sillberg, P., Jaakkola, H. and Nakanishi, T., “An Asynchronous
Message-based Knowledge Communication in a Ubiquitous Environment”, Database
Systems for Advanced Applications, Springer, ISBN 978-3-642-14588-9, DOI
10.1007/978-3-642-14589-6_44, pp. 434-444, 2010.

Publication II presents an extension for the system presented in Publication I (see section
3.3) designed for incorporating the use of external systems, in this case, the Knowledge
Grid developed by NICT. The extension is implemented as a mediator service (the
Grid Access Gateway), which works as a relay for translating the communication and
data formats used by two separate systems (the Message Server and the Knowledge
Grid). In the context of this thesis, the Message Server can be considered to represent
the front-end service, the Knowledge Grid is an example of a back-end service, and
the Grid Access Gateway is an implementation of a mediator API. Additionally, the
Knowledge Grid shows many of the same features as the analysis back ends discussed in
this thesis – namely, the ”unknown” duration of the requested operations, asynchronous
communications, generation or enrichment of existing metadata, and relatively loose
coupling of the participating services.

3.5 Publication III

Sillberg, P., Kurabayashi, S., Rantanen P. and Yoshida, N., “A model of evaluation:
computational performance and usability benchmarks on video stream context
analysis”, Information Modelling and Knowledge Bases XXIV, IOS Press (Frontiers
in Artificial Intelligence and Applications; Volume 251), ISBN 978-1-61499-176-2, DOI
10.3233/978-1-61499-177-9-188, pp. 188-200, 2013.

Publication III presents an environment and proof-of-concept system for video content
analysis, and describes the performance benchmarks used to validate the system. The
purpose of the system is to extract metadata (keywords) that describes the ”feeling” of
the videos by utilizing an external video analysis back end (MediaMatrix) that is based on
the Mathematical Model of Meaning (MMM) and color histograms. The paper illustrates
a three-layer architecture – consisting of clients, front end (called “Web Service” in the
publication), and back end – similar to the generic architecture presented in this thesis.
The paper shows methods for describing back end analysis tasks and task responses, as
well as client REST APIs by utilizing structured data formats (JSON and XML).

3.6 Publication IV

Rantanen P., Sillberg, P. and Soini, J., “Content Analysis System for Images”, in
Proceedings of the 16th International Multiconference Information Society, IS 2013,

24 Chapter 3. Research Contribution

Volume A, 7-11, Ljubljana, Slovenia. Josef Stefan Institute, pp. 241-244, October 7-11,
2013.

Publication IV presents a concept architecture developed for managing digital data using
content-based analysis targeted to photographic content as an example use case. The
paper illustrates how a front-end service can be utilized to provide media content for
end-user (client) devices, and how users’ media content can be delivered to back ends for
content analysis and automatic metadata generation by utilizing a task-based approach
for the delivery of analysis, search, and feedback workloads. The task-based solution
described in the paper is a form of RPC communication and it is used in combination
with a REST API targeted to client devices. A proof-of-concept implementation based
on the task-based approach is presented in another publication [Sillberg et al., 2013],
and both the task-based approach and the proof-of-concept implementation are designed
based on the generic architecture presented in this thesis.

3.7 Publication V

Rantanen P. and Sillberg, P., “Event Calendar for Internet Data Sources”, in Proceedings
of the 37th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, Croatian Society for
Information and Communication Technology, DOI: 10.1109/MIPRO.2014.6859721, pp.
1035-1040, May 26-30, 2014.

Publication V presents an event calendar service which can be used to combine data
from multiple sources and represent the enriched content in a web client by means of a
calendar view or a map view. The core platform used to implement the service is based
on the same generic architecture model as the one presented in this thesis and the service
itself can be seen as a proof-of-concept implementation. The primary focus of the paper
is in the utilization of NoSQL databases in the context of the event calendar service,
but it also discusses topics important to the topic of this thesis, namely, structured data
formats (JSON and XML) and the realization of the calendar service concept by taking
advantage of the features of the front-end service.

3.8 Publication VI

Rantanen P., “REST API Example Generation Using Javadoc”, Computer Science
and Information Systems, ComSIS Consortium, ISSN 1820-0214, 2017. Accepted for
publication.

Publication VI describes how source code based service declarations and tools commonly
used with the Java programming language can be used to automatically generate
documentation and use case examples, either by taking advantage of existing interface
declarations or, as in the case of the example presented in the paper, by implementing a
simple Example/Reference API paradigm. The focus of the paper is on how to generate
and update documentation, a goal that is important for successful software management
and especially maintenance. The API model presented in the paper is part of the larger
API model presented in this thesis (see 4.3).

3.9. Publication VII 25

3.9 Publication VII

Ahmad, I., Rantanen P., Sillberg, P., Laaksonen, J., Liu, S., Forss, T., Malik, A.,
Nieminen, M., Shetty, R., Ishikawa, S., Kallio, J., Saarinen, J. P., Gabbouj, M. and Soini,
J., “VisualLabel: An Integrated Multimedia Content Management and Access Framework
for Personal Users”, in Proceedings of the 27th International Conference on Information
Modelling and Knowledge Bases (EJC 2017), Krabi, Thailand, June 5-9, 2017. Submitted.

Publication VII presents an integrated framework – called VisualLabel – for managing
multimedia content by utilizing a front-end service in combination with multiple analysis
back ends. Each individual back end is targeted to a specific task, such as the generation of
keywords, summarization of a social media account, or content-based image retrieval. The
article explains the common use cases for content analysis needs, the overall architecture,
and a proof-of-concept implementation for the analysis, search, and representation of
multimedia content, and it also provides background research for the studies related to
CBIR systems. The article also presents a simplified version of the API model that is
further explored in this thesis (see 4.3), and the core VisualLabel framework presented in
the publication is based on the principles presented in this thesis. The paper also illustrates
the common use cases required for realizing a feasible content analysis environment.

4 The Generic Architecture

This chapter presents the main results of the studies performed for this thesis, and
discusses the conclusions made based on the observations. The chapter is divided into six
sections, each describing an important aspect of the architecture. Section 4.1 describes
the evolution of the (high-level) architecture as originally presented in the publications. A
more in-depth look at the architecture is given in section 4.2, which defines and describes
the crucial quality attributes related to the architecture and to the content analysis domain
in general. The proof-of-concept implementations based on each of the architectural
iterations are described - including an examination of the technologies chosen for each
implementation – in section 4.6. Based on this observation, two models (API and data
model) have been created that are presented in sections 4.3, 4.4, and 4.5.

4.1 Evolution of the Architecture

An important part of the Design Science approach is the search process (see 3.2), which
in this case takes the form of iterative development of the generic architecture. The
various implementations presented in the publications included in this thesis can be said
to represent the evolutionary path of the final version of the architecture. To illustrate the
path taken, this section will explain the architecture iterations, their primary components,
modifications compared with previous iterations, and the reasons behind the implemented
modifications. Many of the architecture diagrams included in this section can be found
in the original publications included in this thesis, but in the publications the diagrams
are designed and presented in different styles and icons. In this section, all diagrams are
redrawn and illustrated using the unified annotation and icon style utilized in the most
recent publication.

The reader should bear in mind that the iterations only represent the evolution of the
architectural design – the implemented systems presented in the publications do not
necessarily share the same goals, and were not used for identical purposes. Additionally,
not all of the systems share the same codebase, and in fact, most of the systems were
re-implemented (and re-designed) because of the lessons learned, improvement ideas
formed, and difficulties faced in the process of constructing previous iterations. Regardless
of the original goals of the iterations, they all represent integral steps in the overall
evolution of the architecture and as such, provide a significant contribution to the design
process as a whole. During the process of designing the iterations presented in this
subsection, many more versions – or revisions – of the architecture were drawn, but here
only the ones presented in the works published by the author of this thesis are presented.

27

28 Chapter 4. The Generic Architecture

4.1.1 The First Iteration
Figure 4.1 illustrates the initial version of the architecture as presented in Publication
I. The primary design goal of the system was to deliver emergency messages to client
devices and to enable traceability for message acknowledgements and communication
failures. Additionally, the system provided the functionality for receiving additional
emergency situation information from authenticated clients. The communication was to
be performed by utilizing networks based on TCP/IP as opposed to more traditional means
of communication (such as phone calls and text messages). These goals created some
common requirements for system design. Firstly, there was a need for user authentication
and the possibility that the users might use the service anonymously. Secondly, as the
emergency messages originate from outside the delivery system (front end), perhaps from
an emergency center or other applicable message provider, the design had to include the
means for taking advantage of any number of external service (content) providers. All
these requirements are still present in the final iteration of the design (section 4.1.4).

Figure 4.1: High level presentation of the architecture from Publication I.

In this iteration, the communication between the front end and the clients utilizes two
separate communication methods: bi-directional communications encapsulated in SOAP
messages, and one-way information retrieval. In the original publication, REST is not
mentioned, but as the information retrieval uses standard HTTP GET operations in
combination with a web feed, the implementation fulfills the requirements for RESTful
communication. The separation of client-side communication into two ”channels” was
created to allow easier access to public content (accessible by any web browser or Atom
[IETF, 2005] capable Rich Site Summary (RSS) reader) whilst reserving the more secure
SOAP-based implementation (accessible by the custom client software) for authenticated
users.

The communication between the front end and content providers was designed to utilize
content synchronization polling with provider-specific pre-defined polling intervals. If
required, for example, for more urgent messages, the external services could also work
as ”clients” for the system and post messages using the SOAP-based client interface. In
principle, the content provider synchronization functionality has remained almost identical
throughout the architecture evolution – the primary reason being the fact that utilizing
the polling approach has been the simplest and fastest to implement. The communication

4.1. Evolution of the Architecture 29

interfaces for the content providers are designed, implemented (and enforced) by the
providers, and usually the architecture designers cannot affect the provider interfaces in
any way. The only option is to create a reasonably generic synchronization mechanism
with the possibility of extending the functionality by means of content provider specific
adapters, which process and convert the information retrieved from the provider services
to a format utilized by the front-end service.

4.1.2 The Second Iteration
The second iteration can be seen in Figure 4.2, and the corresponding implementation is
explained in Publication II. The architecture reuses elements from the iteration presented
in the previous subsection (4.1.1) with the same methods of communication present for
clients and content providers, although in Publication II the content provider interfaces
are not described. Nevertheless, as explained in the publication, the two-system iterations
share the same codebase and features, including content provider synchronization.

Figure 4.2: High level presentation of the architecture from Publication II.

The most important addition to the architecture offered by the second iteration is the
concept of a back end. In a generic architecture, a back end is any service or system that
provides a pre-defined set of external functionalities (or capabilities). In many ways back
ends are a special case of content providers, as sometimes the content providers can also
provide external services identical to those provided by back ends. One example would be
photo analysis: when synchronizing the user’s photo collection with the front-end service,
it may be possible to retrieve metadata generated by the content providers, and this
metadata can be similar in nature to the metadata generated by the back ends. The main
difference between a content provider and a back end (in the context of the thesis) is the
level of control in the design of the interfaces. While in the case of content providers,
there is no real control on what features, formats, or technologies the remote interface
can include, for the back ends, the front-end interface specification dictates the back-end
implementation.
Publication II presents a use case where the NICT Knowledge Grid[Zettsu, 2012] works
as a back-end service, processing tasks generated automatically based on the data given
by the users. The presented case also illustrates the use of a mediator (or facade) service
used for translating the front-end request and response formats (in this case, the tasks or
workloads delivered to back ends) to make them compatible with the back-end formats,
and vice versa. A mediator service does not necessarily have to be a separate service
or located on dedicated hardware, but can also be part of the back-end service – for
this reason the Mediator in Figure 4.2 is illustrated using a different style and icon than
the other services (Front end and Back end. The mediator pattern is well-known in

30 Chapter 4. The Generic Architecture

object-oriented programming, and in this case it is simply extended to be applicable in the
context of communication interfaces between various systems. The mediator pattern may
be a valid approach when the back-end interfaces cannot be modified or the modifications
are for some reason not preferable. Regardless of the case, to preserve the interoperability
and uniformity of the front-end interfaces, the front end should not be modified on a
back-end basis. The architecture does not limit the number of back ends, and thus,
making back end specific modifications to the interface could in practice cause severe
problems in interface maintenance and design.

In the original publication (Publication II), the presented architecture includes a slight
design oversight. The messages the users post to the system are analyzed in a very back
end specific way on the front-end service, even though content analysis is not the primary
task of the front end, but that of the back ends. Of course, the message parsing in the
case presented in the publication is quite simple, and some level of analysis does always
take place on the front end (such as detecting content types and data sources), but in
general, the analysis should be limited to discovering which back end should process the
given content.

The communication between the front end and clients uses basic, simpler, and synchronized
HTTP operations, but an asynchronous method was chosen for front end and back ends.
The primary reason for the choice was an issue often encountered with content analysis: it
is very difficult to estimate how long a specific operation will last, and in many cases, the
operations can take a relatively long time. Asynchronous communications increase the
overall complexity of the system (e.g., tracking of request-response pair identifiers, the
use of callback URLs...), but in turn, they can free resources by keeping the connections
active only when necessary.

4.1.3 The Third Iteration
From the architectural point of view, the third iteration offers only one alteration – the
removal of the SOAP-based secure communication channel. The change was part of an
attempt to simplify and unify the client interface, and provide all of the features through
RESTful interfaces. Additionally, the third iteration marks the move from emergency
messaging to the content analysis domain, which caused, or made possible, format changes
on the client side and in part made the SOAP-based (more complex) interface redundant as
all of the required features could be implemented utilizing a simpler, yet more customized
XML based format. In principle, a standard or industry de facto format on the client-
and back-end side would be preferable, but in practice, it might be difficult to find a
suitable format, which was also the case with the content analysis domain.

Figure 4.3: High level presentation of the architecture from Publication III.

On the back-end side, the third iteration attempted to mimic REST like simplicity, and
although the interfaces turned out to be closer to traditional RPC – or one type of REST
hybrid – the design proved to be a working setup. The main reason for this was the need

4.1. Evolution of the Architecture 31

to maintain certain state information related to the progress of the tasks delivered to the
back ends. Thus, the design took elements from the web service and SOAP world (such
as callback URIs, identifiers, and status information), but utilized a more lightweight, but
still XML based format. The back-end and client-side data types were unified for easier
design, management, and implementation of parsers and data structures.

4.1.4 The Final Iteration
The final iteration is shown in Figure 4.4. All participants from the previous iterations are
present – also, a mediator service could exist between the Front end and the Back ends,
as illustrated in Figure 4.2, but to keep the figure more understandable, this has been left
out. In the earlier emergency messaging use cases, the information retrieved from the
content providers was generated by the providers themselves, but in the case of content
analysis, the retrieved data is often created by the clients – the same clients that use
the front-end service. In fact, only metadata is synchronized between the front end and
content providers, while the actual data content remains on the content provider service
and is only temporarily accessed when needed by the back ends for analysis purposes.
The metadata varies for each content provider and data type: for photos it contains the
photo URL and perhaps Exif information or annotations the user has associated with the
photos; for social media profiles, the metadata could contain the messages the user has
posted to his/her account.

Figure 4.4: High level presentation of the generic architecture from Publication IV and
Publication VII.

Generally, there are three key issues that dictate which data – or metadata – is retrieved
during the content provider synchronization.

Firstly, the use case creates the basic requirements of what is required and what can be
omitted. Secondly, the technical limitations regarding certain types of content can cause
problems. For example, in the case of photos or videos, there might be extensive storage
space and network bandwidth requirements, and in practice, it might be difficult or even
redundant to duplicate the data on the front-end service, and it might be better to simply
synchronize a minimal set of metadata containing information on how to access the data.
This would leave most of the heavy lifting for the content provider, freeing resources from
the front-end service. It is also worth noting that, after the initial analysis phase, the

32 Chapter 4. The Generic Architecture

source data is not necessarily needed and queries can be executed based on the generated
analysis results. The third important point is not necessarily relevant for research or
testing purposes, but is crucial for the final end-user product: the legal restrictions. It
is entirely possible that the content provider terms of use or intellectual property laws
limit the use of data – storing and retrieving metadata or temporarily caching data for
analysis purposes is usually considered fair use, but making persistent copies of data
might not be.
The architecture does not consider the physical construction of the working system, but
the options for enabling better scalability are discussed later in the subsection 4.2.2. The
architecture does not define where the individual participants should be located in relation
to each other. The content providers are most likely located separately from the front end
and back ends because of their nature as external services. The front end and back ends
can be located in a single cloud environment or in their own individual environments,
which are in turn connected through the public Internet, Virtual Private Network (VPN),
Demilitarized zone (DMZ), or similar network structure. From the client’s perspective,
the front end and back ends appear as a single service. However, because of the way
the interfaces are implemented, each back end could also be considered to represent an
individual service, and can be directly accessed by clients and other services. On a higher
level, the architecture can be regarded as being an implementation of SOA, and the
design takes many features from SOA design, such as unassociated, loosely coupled and
self-contained services and distributed capabilities.
In principle, the participants (front end and back ends in particular) could even be located
on the same physical hardware (server) and still implement the presented architecture
although it has been primarily designed for interfacing systems, which are too complex
to be implemented on a single hardware instance. By design, the back ends could be
duplicates (for scalability) or simply offer different capabilities (for example, one back
end could provide photo analysis, while another would offer text summarization).

4.1.5 Documentation
All of the presented iterations utilize some level of automation in the process of providing
documentation for the architecture. In the first (subsection 4.1.1), second (subsection
4.1.2), and third iterations (subsection 4.1.3), the automated process was mainly limited
to utilizing Javadoc, Doxygen, or a similar tool for producing method descriptions
based on source code comments and annotations, which is a very typical way of providing
documentation. The final documentation, including the usage and data structure examples,
was created manually and consisted of Word documents or Portable Document Format
(PDF) files. In the first three iterations, the development work was mainly done by
one internal team, which had full access to the source code and other material related
to the development process. In practice, this meant that the production of the final
documentation was of lower priority, and more specifically, the usage examples could be
provided after the development process had finished.
During the development of the final iteration (subsection 4.1.4), the number of external
teams increased, the access to source code and material became limited, and the
importance of the designed interfaces grew. This also increased the importance of the API
documentation and it became crucial to provide usage examples for the work-in-progress
interface revisions. As the interfaces and data structures were occasionally modified
based on the feedback from teams responsible for the back-end development, keeping
the documentation and example code up-to-date became a real maintenance nightmare.

4.2. Quality Attributes 33

Modifying the Word documents and PDF files whilst maintaining a coherent look and
feel to all the documentation can be a very tedious and error-prone process.

On top of the increased documentation requirements from external parties, the later
iterations utilized a certain amount of code and design solutions from the earlier versions.
The previous iterations were – depending on the project in question – either adequate
or lacking in documentation. In particular, projects primarily oriented for research or
prototyping contained code with poor or non-existent documentation or the documentation
on the rationale of the design was missing, making it challenging to decipher the reasoning
behind certain design choices (particularly, choices in implementation and source code).

These reasons led to the realization that the documentation process should be more tightly
integrated into the development process and also into the API design itself [Publication
VI], as it can be very difficult to modify the code style of a large codebase to adhere to
different documentation methods later in development. In our case, the complexity and
size of the final proof-of-concept implementation made it challenging to organize resources
for testing multiple documentation strategies. Furthermore, as the proofs-of-concept were
largely developed as part of research projects, which had their own documentation and
reporting requirements, the need for easy-to-use and versatile documentation tools and
methods was more acute. The parts of the documentation that could not be created
through automated means (for example, by utilizing methods described in [Publication
VI) were created using online tools. Tools such as Asana (task and project management
service [Asana, 2017]) and The Bug Genie (bug and issue tracking [The Bug Genie, 2017])
were commonly used, together with online diagram tools such as Web Sequence Diagrams
[Web Sequence Diagrams, 2017]. In fact, quick sketching of diagrams was often done with
online tools even when the final diagram would later be done with a more heavyweight
application like Microsoft Visio or a Unified Modeling Language (UML) editor. Ultimately,
all documentation – with the exception of certain project reports that still required a
traditional word processor – was created by web-based tools and submitted either to the
task management service (which was limited only to project members) or published on
the public wiki page [TUT Pori, 2015g]. The advantage of this approach was not only
the relatively easy setup for the required tools, but also the fact that all of the tools also
provided either an entirely free service for trial or limited use, or an open source version
of the software.

4.2 Quality Attributes

The quality attributes – or non-functional requirements – are an important part of any
architecture design [Chen et al., 2013; Cleland-Huang et al., 2013], and it is commonly
accepted that the quality of a software system can be determined and evaluated at the
architecture level with quality attributes [Bass et al., 2012; Matinlassi, 2006; Tarvainen,
2007]. For an architecture or a model to be valid, it must fulfill a set of predefined quality
attributes, although in related research [Bosch and Molin, 1999; Dobrica and Niemelä,
2002], it has also been noted that the quality attributes of the final system cannot reliably
be measured by simply looking at the software architecture design. The quality attributes
can also be conflicting and interrelated with each other [Henningsson and Wohlin, 2002].
Keeping these points in mind, section 4.6 will show the applicability of architecture for
final system design through the descriptions of proof-of-concept implementations, while
this section concentrates on the attributes and their relations. Nevertheless, considering
the importance of the quality attributes, and the fact that the research in this thesis

34 Chapter 4. The Generic Architecture

attempts to find out whether a generic architecture for the content analysis domain can
be realized, it is crucial to take a look at the attributes that define the pre-requirements
for overall architectural design in the content analysis use case.

Throughout the design and evolution of the generic architecture, certain characteristics
were repeatedly focused on and deemed important based on observations and the
experiences gained during the development, as well as, based on the performed background
research. These characteristics – i.e., requirements or quality attributes – were as follows:
interoperability, extensibility, and flexibility; scalability and availability; testability,
usability, and maintainability; portability, adaptability, and reliability; and security. There
are other quality attributes related to software development in general, and this section
does not attempt to provide a complete, exhaustive look at software quality management,
but instead attempts to shed light on the importance of the chosen attributes. Why the
attributes were chosen, and how their fulfillment is guaranteed in the design of the generic
architecture, are explained below.

4.2.1 Interoperability, Extensibility, and Flexibility

Interoperability refers to the ability of systems to usefully exchange information [Bass
et al., 2012; ISO/IEC, 2011a; Kosanke, 2006]. Extensibility is the ability to acquire new
features [Dobrica and Niemelä, 2002]. Flexibility is the degree to which a product or
system can be used with effectiveness, efficiency, freedom from risk, and satisfaction
in contexts beyond those initially specified in the requirements [ISO/IEC, 2011a]. The
attributes are very closely related in the generic architecture. On the one hand, we need
to make sure the various systems can understand each other, and on the other hand,
we need to ensure that the chosen method of communication is flexible enough to allow
a relatively easy way to add new features. The most important interfaces to consider
in this respect are the one between the front end and the clients, and the one between
the front end and the back ends – for the reason that there is very limited control over
the interface towards content providers. The interfaces are illustrated in Figure 4.5 by
Interface A and Interface B, respectively. Additionally, the construction of the API is
further explained in section 4.3.

Figure 4.5: Realization of interoperability, extensibility and flexibility through task-based
content delivery and analysis.

4.2. Quality Attributes 35

Figure 4.5 illustrates the content analysis side. Additionally, a functional system would
most likely include query and possibly feedback methods on the client side (Interface A).
These have been omitted because it generally depends on the use case which features
and methods are exposed on Interface A. For example, the service could analyze the
user’s social media profile, including photos and status messages, but it might be only
required to create a method that provides a simple list of keywords extracted, regardless
of whether the keywords originated from the photos or from the status messages. In a
way, Interface A is perhaps the simpler of the two interfaces. Based on the practical
experience gained throughout the architecture development, Interface A should utilize
the same data formats and types (if possible) as Interface B, but hide the functionality
of Interface B. It is possible to pass parameters through Interface A that control the
behavior of the methods of Interface B, but that might create unnecessary complexity to
the overall design. When designing Interface A, one should think of the minimal set of
features the clients really need and pursue that direction.

The Content in Figure 4.5 is a very generalized representation of the content delivery and
in this case may contain data directly uploaded by the user or data (or metadata)
synchronized from an external content provider, and can be of any type and size.
Regardless of the origin of the content, the next step is to decide what to do with
the content, which affects or even creates our interoperability and extensibility problem.
Unfortunately, because of the inherit complexity of the analysis methods, it would be very
difficult to implement all of the desired features on a single back end, or on the front-end
service. On the other hand, the architecture does not enforce the implementation of a
certain feature on any one component. To preserve better extensibility and interoperability
(as well as maintainability), the roles of the components should be clearly defined. In
the architecture, the primary purpose of a back end is to provide analysis capabilities,
and thus, implementing analysis functionality on the front end is not recommended. In
some cases there may be exceptions to this rule. For example, content analysis can be
performed on the client if the client resources are sufficient and the results can be included
as metadata in the content delivery. A practical example of client-based content analysis
would be a camera that contains dedicated software or hardware for face recognition.

The solution offered for the problem is the RPC or hybrid REST Task-based approach
presented in Publication IV in combination with capability-categorized back ends. In
practice this means that the front end keeps a register of known back ends and their
capabilities and based on these capabilities, 1 the service knows how to divide the incoming
content into separate tasks and to which back end each task should be delivered. By
utilizing multiple analysis back ends, as wide a range of metadata as possible can be
gathered and more accurate search results can be achieved by combining the metadata
[Publication IV][Sillberg et al., 2013].

The task-based approach can be seen in Figure 4.5. When the generic Content is identified
as containing two separate data types, two tasks (Task A and Task B) are generated, one
for each back end (Back End A and Back End B). Depending on the case and front-end
configuration, it is also possible to send the same Task A to Back End B if B is capable
of processing it. If the service needs to be extended with new content types, it is enough
to create new capabilities, which in a properly designed system would have no effect on
the existing features.

1An example of capability listing can be found in the proof-of-concept service implementation
VisualLabel [TUT Pori, 2015c].

36 Chapter 4. The Generic Architecture

As mentioned before, the structure of the tasks can vary considerably, but there are a
few general guidelines or issues that should be kept in mind when designing the content
delivery 2:

• Utilization of identifiers. The tasks should always contain a universally unique task
identifier, and possibly a back-end identifier. Delivering the back-end identifier
(and other relevant identifiers [Publication IV]) with the tasks releases the back
ends from the responsibility of keeping track of their own identifiers per front end,
because their own identifier is always included in each task. This also has another
advantage, which may not be obvious. As long as the tasks are self-contained –
i.e., they include all details that the back end requires to respond to the task –
multiple different front-end services can utilize the same back ends, assuming that
the network configuration and the authentication schemes allow it.

• Back end specific task contents. Creating the tasks individually for each back end
can save bandwidth and reduce the need to transfer data that the back end is not
going to use anyway, but will require a method for filtering included content 3.
Moreover, often the query methods in Interface A (client side) should also include
functionality to filter the result set and similar features can be relatively easily
added to tasks.

• How much of the task is of generic content and what is data type specific? The
level of generalization should also be reflected in the design of the task format. The
levels of data are more thoroughly discussed in section 4.5. The input and output
data types and formats should be uniformly defined.

• The tasks should contain the requirements for what is to be processed and what
should be the expected outcome, but the front end should not care about how the
results are produced. In other words, the tasks represent the interface (agreement)
between the front end and the back end, and define the inputs and outputs of the
operation.

Regardless of the implementation of the task delivery, the back ends will return metadata
containing the generated results, which the front end will incorporate in its database. In
situations where there are no results, it is preferable to require the back ends to respond
in any case, even if there are no actual errors present, as this will help the front end to
manage the task scheduling. If nothing is returned, it is difficult to figure out whether
the analysis failed and requires future re-scheduling or if there simply were no results.
Depending on the case, it might also be advantageous to keep track of the status of the
analysis, for example, by allowing the back ends to return results for only part of the
given task in cases where the full analysis would take a very long time.

4.2.2 Scalability and Availability
Scalability is the ability of a system to either handle increases in load without impact on
the performance of the system, or the ability to be readily enlarged [Microsoft Developer
Network, 2016], while availability is the degree to which a system, product, or component

2Example task can be seen in the VisualLabel proof-of-concept implementation [TUT Pori, 2015f].
3One possibility is to use separate data groups as in the VisualLabel proof-of-concept implementation

[TUT Pori, 2015e].

4.2. Quality Attributes 37

is operational and accessible when required for use [ISO/IEC, 2011a]. The improvement
of scalability was one of the two primary reasons for separating the front end and the
back end, with the other reason being testability, which is discussed in subsection 4.2.3),
and both topics are further explored in [Publication IV].

Figure 4.6: Scalability with a single front end and multiple back ends.

Figure 4.6 illustrates the basic use with a single Front end (and Index), multiple Content
providers, multiple Clients, and multiple Back ends. To make the figure (and all subsequent
figures in this subsection) easier to read, the communication between the Front end, Back
ends and Content Providers is simplified, but the synchronization is assumed to take
place as presented previously in Figure 4.4 in subsection 4.1.4. Each of the Back ends
(and their nodes, as presented next in Figure 4.7) may also contain internal databases
used for back end specific functionality (such as for storing feature vectors or learning
data for photo analysis), but for clarity, these are not illustrated in the figures.

In Figure 4.6, the Front end is solely responsible for dividing the tasks between the
many Back ends, either for load-balancing reasons or because of the (analysis) capability
limitations of the individual Back ends. Depending on the point of view, the centralized
control of balancing can either be an advantage or a disadvantage. The advantage is that
the functionality can be entirely implemented on the front end, although that creates
additional complexity and overhead in the form of keeping track of the current load
status of the (analysis) Back ends. When designing the proof-of-concept implementations
(subsection 4.6), the front end was never used for load balancing, but only for distributing
the tasks based on the back-end capabilities.

Often the analysis back ends are complex systems themselves, and by default contain their
own load-balancing or load-distributing models. This was also the case with the back
ends used as examples in this thesis. The back ends are better aware of their own load
status than the front end, and creating an elaborate balancing functionality on the front
end would be both time-consuming and redundant. A more feasible approach would be to
specify a task prioritization feature, which would allow the back ends to reschedule – or
temporarily interrupt – on-going tasks for the duration of the analysis of more important

38 Chapter 4. The Generic Architecture

Figure 4.7: Scalability with a front-end service and multiple back-end services with multiple
nodes.

tasks. The multiple Back ends, each with their own set of child Nodes used for load
balancing are illustrated in Figure 4.7.

The computing resource requirements for analysis can be greater than the computing
requirements of the Front end (service), but the tasks seldom require real-time processing.
In fact, due to the technical limitations of the available processing power, the real-time
analysis of large data sources may not be achievable in a practical scenario. On the
other hand, client-side operations, such as content queries, should be answered within a
reasonable time frame. High latencies can have a considerable effect on the user experience,
thus creating a more acute strain on the front-end service performance. For this reason,
it might be advantageous to multiply the front-end service, and it might be even more
crucial for the end-user experience than the relative speed of the content analysis. After
the initial analysis phase, the results indexed on the front end can also be used for queries,
both reducing load on the back end and increasing computing requirements for the front
end. Thus, from the perspective of the end users, the key factor in guaranteeing good
availability lies more on the functionality of the front end than in the operation of the
back ends. Delayed task execution on back ends generally results in an iterative, delayed
delivery of results, but problems on the front end will cause immediate and noticeable
effects on the use of the entire system.

The Front end instances are not interrelated and can be duplicated, as illustrated in
Figure 4.8. The Front ends can freely create new tasks as long as the uniqueness of the
task identifiers can be guaranteed, and because the tasks contain the required identifiers
and callback URLs, the Back ends can easily respond to tasks that arrive from any
Front end instance. In practice, the design and implementation of the metadata index
largely controls how the Front ends can be duplicated, being the sole storage of the task-,
user-, and configuration-related information. Several free and/or open solutions exist

4.2. Quality Attributes 39

Figure 4.8: Scalability with multiple front ends and multiple back ends.

for managing distributed databases (for example, [Apache Software Foundation, 2016c,d;
Oracle Corporation, 2016a]). The topic of metadata indexing is also briefly discussed in
the author’s own publication Publication V, as well as in a more general fashion by other
authors [Lourenço et al., 2015].

The pattern shown in Figure 4.8 can easily be combined with back end specific nodes,
as seen previously in Figure 4.7 without much effect on the generic architectural design.
Which approach to take depends on the use case: the higher the expected usage (load)
on the service, the more complex (scaled) the front end and back end duplication needs
to be. The performance of each individual component – both system and programming
components – has a significant effect on the performance of the complete system, making
it difficult to recommend any particular pattern. Thus, this subsection will settle for
describing the options and will leave the choice to the actual developers of the final
systems.

40 Chapter 4. The Generic Architecture

4.2.3 Testability, Usability, and Maintainability
Testability is the degree of effectiveness and efficiency with which test criteria can be
established for a system, product, or component, and tests can be performed to determine
whether those criteria have been met [ISO/IEC, 2011a]. Usability is the degree to
which a product or system can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use [ISO/IEC, 2011a].
Maintainability is the degree of effectiveness and efficiency with which a product or system
can be modified by the intended maintainers [ISO/IEC, 2011a].
To achieve better testability, usability, and maintainability, the generic architecture follows
the design principle of Separation of Concerns (SoC) [Dijkstra, 1982; Reade, 1989]. The
features are encapsulated into separate components (front end, back end, client, content
provider) and by defining relatively loosely coupled interfaces, each component can be
individually tested for both performance and usability [Publication III]. Using REST or
REST like methods in the service design, each part can be easily tested either directly by
using a standard web browser or indirectly using an HTTP client with a slightly larger
feature set 4.
The usability of individual components of the architectural design, and the design of the
connecting interfaces, can be achieved by taking advantage of requirements engineering
(such as defining use cases) and further refinement through auditing within the project
group 5. To validate the usability of the content analysis concept, and thus the feasibility
of the architecture, user trials were performed, although these concentrated mostly on the
design and implementation from the perspective of the web client [Malik and Nieminen,
2014; Sillberg et al., 2013] – or the user’s perspective – with the teams responsible for the
development of their respective back ends performing their own benchmarks [Publication
VII]. From the user’s perspective, it might appear that the quality of the results provided
by the analysis back ends would play a crucial role in the usability of the system, but
this is only partially true. From the architecture’s perspective, the quality of the results
is irrelevant. There are two primary reasons for this:

• The architecture is simply the generic transport that enables the basic functionalities.
It defines the inputs and outputs, the requirements and desired outcomes, but the
actual data content – both source data and analysis results – can be anything
within the boundaries of the designed specification. In an ideal case, to preserve
generalizability and extensibility, the architecture – unlike the implementation or
the analysis algorithms – should not have any opinion on the data.

• Analysis results are seldom perfect, and a more important feature is one that allows
real-time or off-line improvement and learning in order to achieve better results
in the future. This kind of feature can be implemented by utilizing both direct
and indirect observation of the user’s actions, and the gathered information can be
relayed to the analysis back ends by using the same task-based approach as utilized
in the delivery of the analysis tasks [Publication IV].

It is a well-known fact that software maintenance can be expensive [Dubey and Rana,
2011]. One of the primary costs lies in software enhancement and in the addition of new

4It is also relatively simple to create a web-based test page for running basic tests for HTTP operations
[TUT Pori, 2016b].

5The use cases for the VisualLabel proof-of-concept implementation are available at [TUT Pori,
2015d], and are also discussed in Publication VII

4.2. Quality Attributes 41

features [Glass, 2002], with the most important maintenance artifact being the program
code [de Souza et al., 2005]. To enhance the usability and re-usability of an existing
code base, proper documentation is crucial, and in many cases this can be achieved, if
not entirely, then at least assisted by utilizing automated tools [Publication VI]. In the
generic architecture presented in this thesis, the automatic generation of documentation
is taken into account in the interface design, and is more thoroughly discussed in section
4.3, and also in Publication VI.

4.2.4 Portability, Adaptability, and Reliability
Portability is the degree of effectiveness and efficiency with which a system, product, or
component can be transferred from one hardware instance, software, or other operational
or usage environment to another [ISO/IEC, 2011a]. Adaptability is the capability of the
software product to be adapted for different specified environments [ISO/IEC, 2011a;
Tarvainen, 2007]. Reliability is the ability of a system to remain operational over time
[ISO/IEC, 2011a; Microsoft Developer Network, 2016]. Reliability depends on individual
components, component interactions, and the execution environment, and not all the
information related to the reliability schematics is always available when designing an
architecture [Immonen and Niemelä, 2008]. Thus, reliability is not strictly an attribute of
the design, but more of the implementation, but in this case the means chosen to improve
adaptability and portability can equally well be suited for reliability.
In the design of each iteration of the architecture (section 4.1), and when implementing
the proofs-of-concept (section 4.6, one of the main goals has been to use commonly used,
free, and open components in combination with standard or industry de facto protocols.
Much of the basic features required for today’s systems have already been implemented
in various publicly available libraries or frameworks, making it redundant to start the
development from scratch. Depending on the developer’s know-how, custom designs and
implementations can also create issues already solved by others.
It can be challenging to find pre-made solutions for every content analysis algorithm,
nor are there always full featured protocol implementations available to take advantage
of, but below the content analysis layer, the web services, servers, and communication
methods are not that different from their more traditional web counterparts [Publication
III]. The advantage of utilizing well-known and tested components is also reflected in
portability, as many solutions (for example, the Java environment) are by design portable
from one environment to another.

4.2.5 Security
Security is the degree to which a product or system protects information and data so
that persons or other products or systems have the degree of data access appropriate to
their types and levels of authorization [ISO/IEC, 2011a]. There has been a lot of research
on the security of software and networked systems [Gilliam et al., 2003; McGraw, 2006;
Microsoft Corporation, 2003; Wang and Wang, 2003]. The generic guidelines presented in
the related research are in many cases applicable to the domain of this thesis (as the work
is related to both of these topics), but in this subsection more attention is given to the
specific issues related to the content analysis environment and the generic architecture.
Figure 4.9 presents the same (final) iteration of the generic architecture as in Figure 4.4 in
section 4.1.4 with the addition of the illustration of the flow of data through the system.
A lot of personal data can pass through the system, which means that the minimum

42 Chapter 4. The Generic Architecture

Figure 4.9: The flow of data throughout the system.

security measure to take is to use encrypted communications, by utilizing Secure Sockets
Layer / Transport Layer Security (SSL/TLS). Some of the data can easily be understood
to be confidential, such as the credentials provided by the clients upon authentication,
or the data that passes through the front-end service when performing a third-party
authentication using an external identity or content provider [Rantanen et al., 2017].

Some of the data may or may not require a more secure approach. The content exchanged
between the client and the front end, and the metadata and user content synchronized
between the front end and the content provider, can in some use cases contain sensitive
information about the users of the system. If the data is something readily available on
the Internet, the security requirements may not be so high, but if transferring, for example,
a user’s private social media profile, a more subtle approach is in order. In practice, there
is very rarely any real need to implement different security policies for different metadata
or user content, and usually a certain security practice is either directly dictated or at
the very least recommended by the content provider – and there are generally no good
reasons not to follow the provider’s recommendations.

Similarly, the tasks and the metadata generated by the back end could contain the
user’s confidential information, although user passwords or other credentials should never
be passed to the back ends. As a more general rule, no single party should have any
credentials or any other personal information about the user that they do not absolutely
need. If the back ends require access to private data located on an external content
provider, a better approach than giving the user’s credentials is to re-route the back-end
requests through the front end, which will provide static links to the content [Publication
IV]. Depending on the available network topology, one option for enhancing security
could be the utilization of a DMZ or VPN solution for the front end and back end
communication (content providers usually cannot be included because of their external
nature), but even in this case, there is usually no valid reason to give any user credentials
to the back ends. The fewer places the user’s personal details are located, the lower the
risk that they are leaked, stolen, or otherwise misused.

4.3. API Model 43

A case of particular interest is the content directly or indirectly retrieved by the back end
from the content provider. As mentioned, no credentials are provided, but depending on
the case (for example, using the social media profile case), the content may contain a lot of
details about the user and it is not completely out of the question that the identity of the
user (or other users for that matter) could be discovered by simply analyzing the provided
content. Another issue closely related to the concept of security is retaining the user’s
trust. From the purely technical perspective, a lot of user details from hobbies to friends
and even to daily habits can be extracted through the means of content analysis, but in
principle, only information that the user has given consent to use should be processed
and indexed. In principle, this is a point that is just as important to bear in mind as the
utilization of transport layer security, but one that is far easier to forget in practice.

4.3 API Model

The design of interfaces is perhaps the most important point in the description of
an architecture. Thus, the high-level architecture is presented in Figure 4.10 from the
perspective of the interfaces. The diagram is a combination of different diagrams originally
presented in Publication VI and Publication VII. The structure and flow of the diagram
is similar to that presented previously in Figure 4.4 in subsection 4.1.4 with clients on one
end (Figure 4.4 left and Figure 4.10 top), and the back ends at the other end (Figure 4.4
right and Figure 4.10 bottom). If compared to Figure 4.5, the Client APIs are Interface
A, and Interface B consists of Server APIs in combination with Back end APIs.

Figure 4.10: API model of the generic architecture.

In this case, Clients is a more abstract term, and the same clients (i.e., one application)
do not necessarily access both the Client APIs and Content Provider Service APIs.
Developers are a group (and not an interface or an end point – this is illustrated in the
figure by the different, dotted outline of the Developers box) that develops, debugs, or
designs applications and components for an implementation based on the architecture.
What the Content Provider Service APIs contain depends on the use case, but they
are often the interfaces that are utilized to gain access to the user’s content or content
metadata, as well as for performing third-party authentication when required.

44 Chapter 4. The Generic Architecture

The primary reason for placing Clients, Content Provider Service APIs, and Developers
on the top of the figure – on the same level – is to enhance the visual clarity of the figure,
but they also have one thing in common. In general, the three participants on the top
have more limited access permission for the front-end service (presented as the large box
with multiple APIs in the middle of the figure) than the back ends, which implement the
Back end APIs or the optional Mediator APIs. Even in a scenario in which the back ends
are not located in a secure network with the front ends, by nature they create metadata
that is closely associated with the (personal) content of the user. An important issue
to keep in mind is that, even when the user content is delivered to the back ends in an
apparently anonymous manner, by studying the automatically generated metadata and
the information extracted from the user content, it might be possible to discover the true
identity of the user, or even identities of other users (for example, identities of the user’s
friends through face recognition performed on image content). If the back ends utilize
previously analyzed content or analysis results from the user in question or from other
users in future analysis, the chances of discovering user-related data increase, but even
a single analysis task can contain enough data for the discovery of confidential details
about a user.

In the case of the three parties on the top of the diagram, the access is limited to a very
specific set of content: the private content they already possess or otherwise would have
access to; the content publicly available; and in the case of content providers, to the
metadata shared by the front end when accessing the Content Provider Service APIs. In
other words, it is much easier to control what information is shared with Clients, Content
Provider APIs, and Developers. On the other hand, the back ends are considered (more)
internal in the service composition, and they should be more trusted in the way they
operate with the user content, as it is much more difficult to control what the Clients,
Content Provider APIs, and Developers do with the content they are provided with.
Therefore, when designing the APIs, one should carefully consider how the user content is
used, accessed, and shared amongst the participants of the content analysis environment.

Example APIs provide methods for generating example types and objects generally used
in the system environment. Reference APIs provide functionally identical methods to
Client APIs, Server APIs, and Back end APIs, or a functional subset of the three APIs
[Publication VI]. They can also be exactly the same as their counterparts, but with access
limited to the test data, or separate APIs with mockup implementations. Regardless of
the implementation, their primary purpose remains the same, to allow testing without
affecting the working behavior of the service. Today, many services offer public – or
conditionally public through mandatory user registration – APIs, and it can create
additional value to the developers if a ”sandbox” environment can be provided for testing
purposes. The disadvantage of creating dedicated – or dedicated through the use of
mockup data or test users – testing methods is the increased extra work. The required
development time varies depending on the complexity of the base service. The advantage,
in addition to providing the developers with a more usable service, is the improvement of
software management through the possibility of utilizing the methods in the automatic
generation of documentation and example cases (as described in [Publication VI]). The
Example APIs can also be used to generate objects usable in other system tests, such as
in unit tests, and Reference APIs can be used to test the architectural concepts before
implementing a fully working version.

Based on the inherent nature of the APIs, as well as the practical experience gained when
designing the various iterations for the generic architecture, the following ground rules or

4.3. API Model 45

guidelines for each API can be described:

• Content Provider Service APIs and Content Provider APIs. The interface between
these two is always defined by the content provider in question. The interface may
or may not be optimal for the use case, but there is seldom any direct way to affect
it. Sometimes the content providers offer pre-made libraries that implement the
interface for ease of use – just like the interface, these may or may not be easily
usable in the architectural design.

• Client APIs. These can be freely defined according to the preferences of the
architecture designer – but with great power comes great responsibility. These
APIs are also the primary external end point, and especially if the APIs are designed
for public use, great care should be given to the design process. If these are poorly
designed, the usability and desirability (whether the users and developers want to
use the service or not) of the service can be significantly reduced.

• Example APIs and Reference APIs. These are optional to implement, but can
offer added value to the service, and provide possibilities for documentation and
maintenance practices – with the cost of increased development time.

• Server APIs and Back end APIs are the two end points of the same interface, the
former being located on the front end and the latter being implemented by the
back ends. This is perhaps the most important interface for a functional system. It
should be generic and unified enough to allow ease of use and extensibility while at
the same time enabling the various requirements of the multiple back ends. The
structure of this interface is discussed in more depth in section 4.5.

One part missing from Figure 4.10 is one often found on services designed by following
the traditional web service approach: an interface, which could be used to access and
retrieve the web service descriptions using, for example, SOAP or WSDL. The model does
not really recommend whether to include such an interface or not. Client APIs, Server
APIs, and Back end APIs as the main interfaces could all have their own corresponding
description interfaces. These interfaces, even though in some cases they could be crucial
for the overall architectural functionality, are not always relevant for the basic use case
scenarios – and in practice, were never required when implementing our proofs-of-concept.
Additionally, the common interface description languages (such as WSDL) present the
interface, (i.e., the inputs and outputs), but it is up to the programmer to design and
implement the logic behind the interface. This, of course is the purpose of the description
languages, but ultimately it does not remove the need to read the documentation, use
cases, and examples to fully understand how a service works. In the past there was a lack
of easy-to-use frameworks and software platforms that could be utilized to implement web
services, and so the creation of the interfaces was a laborious task. The automatic stub
generation offered by many WSDL style approaches provided some level of automation.
The disadvantage was that the service descriptions themselves were rather complex, and
for an experienced programmer it was often much easier to simply write the code for the
services rather than to design the WSDL files. This kind of approach was perhaps not
the “right thing” to do, but was nevertheless often the case. Today, many methods (such
as annotation-based interface definitions) have made creating the interfaces much easier,
further increasing the temptation to ignore the interface description languages. There
is an on-going design trend, which favors simplicity in interface design in combination

46 Chapter 4. The Generic Architecture

with non-machine readable interface descriptions (for example, REST API with human
readable online API documentation, a paradigm used by many large software companies.
The relative increase of REST, RPC, and REST/RPC hybrid APIs compared to the
amount of more traditional ”web service” (e.g., WSDL) based solutions has also been
observed by other authors [Maleshkova et al., 2010].

4.4 Interface Layer Model

This subsection compares the interface layers of the generic architecture with other
commonly used layer models. The purpose of the comparison is not to prove the
superiority of the generic architecture, or even to highlight the differences, but to provide
a description of the important layers of the architecture and their positions compared
with other existing models.

Figure 4.11: Interface layer model as compared to other models.

The generic architecture can be divided into six primary layers – data, task, presentation,
session, communication, and network – of which the first five are of more importance
for the context of this thesis, with the network layer implemented by the underlying
network architecture. The layers are presented in Figure 4.11, and compared with the
TCP/IP [IETF, 1989; Microsoft Technet, 2016] and Open Systems Interconnection (OSI)
[ISO/IEC, 1994] layers. The figure also shows examples of the technologies used to
implement the layers – the example protocols and practices are also the ones used in the
proof-of-concept implementations (see section 4.6).
The TCP/IP model consists of four layers (Application, Transport, Internet, Link),
of which the first layer equals OSI layers five through seven (Session, Presentation,
Application) and the last three equal OSI layers one through four (Physical, Data link,
Network, Transport). The layers of the generic architecture mirror the ones found on
the OSI model because there is no valid reason to invent entirely new layers. Thus, the
generic architecture layers make only two changes: the OSI application layer is separated
into two layers (Data and Task), and one new layer (Communication) is added.
The re-layering of the OSI application layer is done to illustrate the existence of a more
generic application layer, which in this thesis is called the Task (or operation, or workload
”container”) layer, and a more payload- or content-specific layer named Data. The
architecture layers presented in the figure are mainly related to the interface between
the front end and the back ends, but are equally applicable to illustrate the two other
interfaces (i.e., front end–client and front end–content provider interfaces) with one
exception. The Data/Task separation is specific to the communication directed towards

4.5. Data Layer Model 47

the back ends and does not exist on the other interfaces. In the case of the content
providers, the application layer formats and practices vary between the providers in
question. For clients, only the Data layer might be required – perhaps in combination
with a use case specific data container format.

The Communication layer fits into a more generally defined Application layer of the
TCP/IP model, but it does not have a well-defined position in the OSI model, being
located somewhere between OSI layers one through four and five through seven. Moreover,
even for the TCP/IP model, one could argue that the Communication level could belong
to the Transport layer. The Communication layer is added to visualize the role of HTTP
in particular. In the past, HTTP used to be more clearly defined as an Application
layer protocol, but in the modern Internet it is more of a lower-level protocol utilized to
”transport”6 the higher-level application content. For this reason, the Communication layer
could also be called the Transport layer, but in this context it is termed Communication
(as it enables the higher-layer communication and content transfer) to separate it more
clearly from the similarly named layers of the two other models. In a communication
pattern, where HTTP or any comparable protocol is not used, the Communication can
be thought to be missing or consist of the raw communication protocols utilized on the
socket level.

Excluding the Network and Session layers, the other four layers (Data, Task, Presentation,
and Communication) have their corresponding data layers, and these are further discussed
in the following section 4.5. The Session layer cannot be neatly placed in any of the
data layers, making its role as a layer slightly peculiar – both in the generic architecture
layer model and in the OSI model. In principle, in any model, for a layer to be a layer it
should be separate from the other layers as well as having a certain dependency towards
the layers below and above it, but depending on the technologies used the authentication
– or session creation – can take place on the Network layer (e.g., routing, DMZ), on the
Communication layer (e.g., HTTP digest, basic authentication) or on the Data layer (e.g.,
custom implementations, identifiers). The data format of the authentication process can
be anything from JSON to cookies to plain or unstructured text. Due to the layer’s elusive
nature, great care should be taken when designing it. In a well-designed system, the
authentication – and authorization – schemes should be separated as cleanly as possible
from the content delivery to allow future modifications and additions. Additionally, the
popularity of third-party authentication has increased in recent years and support for
it should be included in the overall design from the beginning, because ad hoc security
implementations can cause potential problems [McGraw, 2002].

4.5 Data Layer Model

The common data layers for the front-end–back-end communication and content-based
analysis in general, as utilized in the design of the generic architecture, and in the
proof-of-concept implementations, can be seen in Table 4.1.

Starting from the bottom, the first layer is the Communication layer. In every iteration of
the architecture (see subsection 4.1), this layer was implemented using a standard set of
protocols because of the wide variety of existing libraries and frameworks. The protocols
operating at this layer should (only) provide generic operations (create, retrieve, update,
and delete) for the basic content transfer and communication needs and on top of these

6TCP/IP and OSI models both include a transport layer, but for both of the models this layer is a
packet-switching or segmentation layer, and is not directly responsible for higher-level content delivery.

48 Chapter 4. The Generic Architecture

Table 4.1: Data layers and characteristics.

Layer Characteristics Protocols Implementation
Data Task type specific. Extended XML,

extended JSON.
Depends on task type, very
difficult to generalize.

Task Unified, typed,
generalized.

Extended XML,
extended JSON.

Custom defined, identical
for all payload types, type
information for detecting task
types.

Representation Standard, de
facto.

XML, JSON. Implemented by various
libraries, frameworks and
parsers, no modifications to
default implementations.

Communication Standard, de
facto.

HTTP. Implemented by various
libraries and frameworks,
no modifications to default
implementations.

more advanced features can be built on. One of the most commonly utilized protocols of
this level is the HTTP.

The Representation layer defines the generic structure used to represent the data content.
In general, it is better to choose a commonly used format (XML and JSON being
the most popular choices) to take advantage of existing solutions to both reduce the
development time and to improve interoperability and extensibility. By designing a custom
format, performance improvements can be gained, but designing and implementing an
extensible format is no trivial task and such an approach might be limited to cases
where the actual data to be transferred is simple or when good performance is crucial
[Publication I][Publication III]. The two primary concerns for the overall performance
on the Representation layer are the overhead caused by the data structure of the chosen
format and the efficiency of the parser implementations. In the content analysis use case,
both of these concerns have only a minimal impact on the overall performance because of
the relatively long duration of the actual content analysis process.

In practice, it is often very difficult – if not impossible – to define a data format that
is applicable for all intents and purposes. As illustrated in Table 4.1 above, the data is
dependent on the task type, or in other words, of the operation in question. The actual
data can only be generalized up to a point. For example, videos, audios, and photos can
have an identifier, an URL, and a filename, but there are usually details that require
content-specific fields or elements. For example, video and audio can have a bit rate,
but photos cannot. Implementing all the required fields on a single type would create a
bloated, hard-to-maintain super type, and a better approach is to have a simpler base
type, which is extended for more complex use cases – an approach very common in
object-oriented programming. The split into Task and Data layers follows from this same
principle: the Task contains the general structure required for delivering and receiving
analysis tasks and responses while the Data describes the task-specific data content.

Depending on the case, multiple tasks can utilize the same data types and the data types
themselves can be extended from a more simple base specification. It is also worth noting
that even though it can be difficult to generalize the Data layer, standardized formats for
presenting individual data types (e.g., date and time formats and character encodings)
exist, and should be used when they are able to increase interoperability. The back-end
requirements, as well as the currently utilized data, should not entirely dictate the data
formats – otherwise problems may arise when the specifications are to be expanded with

4.5. Data Layer Model 49

new use cases and operations. Thus, the design of the Task layer should be such that
the content on the Data layer is irrelevant and could be changed without modifications
on the Task layer. The Task layer can be thought to represent the generic container for
data, and for content delivered from the front end to the back ends, the tasks usually
consists of:

• General details of the task, such as the task and back-end identifiers, callback URLs,
and the task type (e.g., video analysis task, social media summarization task...).

• Possible case-specific operations to be performed in pre-defined, numerical or textual,
typed syntax. For example, should visual or audio analysis be performed for a video,
or should face detection be performed for a photo?

• Accepted output data formats if required. In practice, assuming that one task type
returns a certain pre-defined output, the data format can also be a valid approach.

• Additional data related to the task type, in a format defined by the Data layer
specification. For example, a list of objects that define the accessible URLs for the
files to be analyzed.

The tasks should only be delivered to back ends that can actually process them, based on
the known capabilities of the back ends. The relevancy of the data from the perspective
of the back ends can also be improved by implementing pre-defined back end specific data
groups or filters in the task delivery mechanism. Whether filters are used or not, the back
ends should never assume anything about the received data – i.e., all unknown content
should be either ignored or responded to with an error code. Ignoring new or unknown
fields or elements in the task and data contents can be used to allow the extendability of
the format, but it can also cause potential issues. Based on practical experience in running
the proof-of-concept implementations, the unknown data on the Task layer should not be
ignored to lessen the possibility of errors in the analysis process. On the other hand, it is
often safe to ignore unknown data on the Data level, assuming that the modifications on
the data representation do not break backward compatibility (which they should not do).

In turn, the tasks – or task responses – returned from the back ends to the front end
usually consist of:

• The same task and back-end identifiers as in the original task. The response can also
mirror all the common fields of the original task, although this may be redundant,
as based on the identifiers, the front end should be able to resolve all missing
information.

• A status field, which can be used to either return the default OK message or an
error code if the task processing failed. Note that, in general, back end specific
error codes should not be allowed, and if for any reason additional information
needs to be returned, it is much better to allow an optional message field for back
end specific error codes used only for logging. Depending on the analysis methods
used, the back ends can theoretically return an unlimited variety of errors, but the
front end can only resolve – or even understand – a very generic set of errors (e.g.,
missing files, connection timeouts).

• The results in a valid format as described by the Data layer specification.

50 Chapter 4. The Generic Architecture

As can be seen from the nature of the Task layer, in some cases it cannot be used or its
use is undesirable. Similarly to the interface layers presented in section 4.4, the Task layer
cannot be enforced on the content providers if their interfaces do not by nature implement
it. In the case of front end to client communication, there is necessarily no operation to
define, and often only the data is required. Or to put it another way, the client queries
are often simple enough to be managed with the combination of the basic operations
supported by HTTP and a list of parameters provided either within the request body or
in the query URL.

4.6 Proof-of-Concept Implementations

Based on the design science approach, a model or a theory can be validated by an
iterative – or evolutionary – approach, and by rigorous testing and improvement of the
chosen solution. In addition to the various architectural iterations, the proof-of-concept
implementations, demos, and prototype systems can be thought to prove the feasibility of
the presented architecture – if no practical systems can be built based on the architecture,
what point would there be for the architecture to exist? For this reason, this section and
its subsections will describe the implementations mentioned earlier in Table 3.1 in section
3.2, and also found in the publications included in this thesis. For each implementation,
the original goals are presented, and the utilized technologies are listed. The technologies
are listed only for the components that have been partially or fully designed by the author
of this thesis, and for that reason the back-end technologies are not mentioned – but
references to additional information are provided for each back end. Additionally, the
relation of each implementation to an architectural iteration presented earlier in section
4.1 is described.

Figure 4.12: Visualization of the development process of the proof-of-concept implementations.

The relation between the implementations and the iterations of the architecture is
visualized in Figure 4.12. The development time for each iteration can be seen in the
figure, and the colors correspond to the projects the author of this thesis has participated

4.6. Proof-of-Concept Implementations 51

in, as illustrated earlier in Figure 3.1 (section 3.1). The proof-of-concept implementations
were implemented as part of the research projects and not all of the implementations have
an exact ”release date,” nor were all of the implementations made public beyond what
was reported in the scientific articles. For example, source codes or detailed specifications
(such as class diagrams) of the earlier implementations were only delivered to project
partners and included in the final reports of the project, but they were not made publicly
available. The dates roughly match the publication dates of the scientific articles, and the
publications discuss the stable versions of the prototype implementations. The VisualLabel
marker shows the date of the initial commit to the public source code repository located
at GitHub [TUT Pori, 2015b]

4.6.1 IP-based Alert Message Delivery System
The first proof-of-concept system was an Internet Protocol (IP) based alert message
delivery system, and it was based on the architectural iteration presented in subsection
4.1.1. The primary goal was to develop a system that could be interfaced with external
systems for the retrieval of emergency messages. The messages would be delivered to
clients by utilizing a SOAP [W3C, 2007a] based communication channel, which could also
be used by the clients to send confirmation messages or further information about the
emergency situation. Another method of delivery was Atom [IETF, 2005] based feeds,
which could be accessed by any capable reader, simple web browser, or the implemented
test client. The research focus was on the use of the standards or commonly used
protocols of the emergency messaging field to enhance interoperability with other systems.
[Publication I][Rantanen and Sillberg, 2009]

The key technologies used in the implementation were:

• For client– front end (server) communication, Common Alerting Protocol (CAP)
encapsulated in SOAP for bi-directional communication, and Atom delivered using
HTTP/REST were utilized.

• For front end–content provider communication, either the same SOAP-based
approach or polling from external sources utilizing source-specific protocol (generally
HTTP based retrieval) were used. Extensible Stylesheet Language Transformations
(XSLT) was used to convert the retrieved messages to the client format.

• The front end was implemented in Java, using the Apache Axis2 [Apache Software
Foundation, 2016b] framework for web service and SOAP functionality, and was
deployed on Apache Tomcat[Apache Software Foundation, 2016e], and tested on
Linux, OS X, and Windows Operating System (OS). The database was implemented
on the popular MySQL server[Oracle Corporation, 2016b].

• The test client was implemented in Qt and C/C++, and tested on Maemo OS on
the Nokia N810 device, and on Linux, OS X, and Windows OS.

As described in Publication II, the system was further extended to better utilize external
back ends for content enrichment, and as a testing back end, the Knowledge Grid [Zettsu,
2012] from NICT was utilized. On the basis of the challenges faced and discoveries made,
the architecture was updated to include a mediator component for message translation
and the architecture evolved to its second iteration (presented in subsection 4.1.2).

52 Chapter 4. The Generic Architecture

4.6.2 Kansei-based Video Analysis System
The goal was to design and implement a system which could take advantage of the existing
video analysis back end [Kitagawa et al., 2010] developed at Keio University Shonan
Fujisawa Campus (SFC). The back end would utilize Kansei-based – or MMM based, to
be more specific – analysis methods to discover the ”mood” or ”feeling” of the images. In
practice, the back end would produce keywords applicable to each of the videos provided.
These keywords could be used to enable search functionalities on the front end. The main
technologies used in the implementation were:

• Client– front end and front end to back end communications utilized either XML or
JSON based protocols extended with custom data format over HTTP/REST.

• The front end was implemented using Java and the Twonky [Lynx Technology,
2016] platform, and tested on Windows OS.

• The test client was implemented in Qt, and tested on Linux, OS X, and Windows
OS.

The primary purpose was to test the feasibility of the video analysis by using video
content commonly available on the public Internet, as explained in [Publication III],
but by doing so, the usability of the larger architectural solution was also tested. As
described previously in subsection 4.1.3, this third iteration saw a removal of certain
redundant interfaces (namely, the removal of the SOAP query interface), which were no
longer needed to realize the core functionality of the system.

4.6.3 VisualLabel
VisualLabel is the most complete implementation based on the generic architecture,
and is based on the final architectural iteration described in subsection 4.1.4. The goal
was to design a system which could take advantage of multiple analysis back ends, each
specialized in their individual analysis methods, as well as utilizing the popular third-party
content providers (Google, Twitter, Facebook) as data sources, content storages, and
authentication providers. The metadata generated by the back ends (MUVIS [MUVIS,
2015], Summarizer [Forss et al., 2014], and PicSOM [Aalto University, Department
of Computer Science, 2015]) would be used to realize an end user focused content
management system for photo and video content. The system would also take advantage
of a user feedback mechanism, which would enable the analysis back ends to learn and to
improve their future results based on the user’s actions. Publication VII provides the
most conclusive description, but parts of the architecture and its components have been
discussed in other publications: The usability from the user’s (or client’s) point of view
has been discussed both in the publication co-authored by the author [Sillberg et al.,
2013] and in a user trial performed and published by Aalto University, Finland [Malik
and Nieminen, 2014], the overall architecture has been presented in Publication IV, and
the integration with social media services and the utilization of text summarization has
been described in another publication by the thesis author [Rantanen et al., 2017]. The
technologies utilized in the implementation are:

• The client– front end and front end–back end communications use XML based
protocol, with the back-end side generalized with a task-based container layer. The

4.6. Proof-of-Concept Implementations 53

data layer format in both cases is identical, although not standard because no
generalized commonly used protocols for the content analysis domain exist.

• The front end was implemented in Java with the partial use of the dependency
injection and security features of the Spring Framework [Pivotal Software, 2016],
running on Apache Tomcat [Apache Software Foundation, 2016e]. The metadata
index (database) was implemented by utilizing a database hybrid – a combination
of MySQL server [Oracle Corporation, 2016b] and Apache Solr [Apache Software
Foundation, 2016d], as described in Publication V.

• The web-based test clients were implemented in Hypertext Markup Language
(HTML) and JavaScript (primarily with jQuery [The jQuery Foundation, 2016])
and tested on various desktop operating systems (Linux, OS X, Windows) and
mobile devices (Android, Windows Phone, MeeGo, Sailfish OS, iOS).

• The service (consisting of the frond end and multiple back ends) was tested for
scalability and portability in two configurations.

– In setup 1, the front end and the summarizer back end were deployed on
servers located in Pori, Finland. The MUVIS back end was deployed in
Tampere, Finland and the PicSOM back end was running in Espoo, Finland.
The communications took place over the public Internet.

– In setup 2, the front end and all back ends were deployed on their individual
virtual instances on the cloud service provided by Digile’s Forge platform
[Digile, 2015b].

– In both deployment setups the actual deployment process could be achieved
through automated tools (a combination of Apache Ant [Apache Software
Foundation, 2016a] and Ansible scripts [Red Hat, Inc, 2016], as described in
the VisualLabel Deployment Guide [TUT Pori, 2016c]).

• Additionally, the platform implementation utilized the standard Javadoc tool with
customized Taglets to achieve automatic documentation generation for interfaces
and classes with the possibility of creating method call examples directly within
the interface documentation [Publication VI].

The source codes for VisualLabel have been published as an open source (Apache 2.0
license) and can be freely downloaded from GitHub [TUT Pori, 2015b]. The development
guides [TUT Pori, 2016c] and use case descriptions [TUT Pori, 2015d], which can help
to both utilize the VisualLabel proof-of-concept implementation in the future, as well
as providing guidance for the design of similar or related content analysis systems, have
been made publicly available. Unfortunately, the presentation material for VisualLabel
on Digile’s Forge cloud platform is no longer available, because the Forge Service Lab
has been discontinued [Dimecc, 2016]. The feature videos are still available [Multimedia,
2016], but these only illustrate the back end and user interface features – and not the
supporting architecture itself.

4.6.4 Event Calendar for Internet Data Sources
The Publication V presents an event calendar service that can be used to retrieve data
from multiple sources (content providers) and present them either on a map or in a

54 Chapter 4. The Generic Architecture

more traditional calendar view – both views are part of a web client implemented using
HTML5 and JavaScript. The service implementation is essentially the same as the one
presented in subsection 4.6.3 with the exception of missing back ends. Content providers
are present, but they offer a different set of data than in the content analysis case, and
unlike the content analysis case, no back ends are needed as the retrieved data is simply
indexed on the front end and sorting and presentation of the data is performed by the
web client. Since the event calendar service shares the same codebase as VisualLabel, the
implementation technologies for the front end and the database are the same (as listed in
subsection 4.6.3 above).

In other words, the event calendar implementation can be seen to prove that the same
basic approach utilized with the content analysis case in VisualLabel can be used at
least on the calendar content as long as certain base rules – or similarities – are met:
the system consists of a clearly defined front end service (a central point of the data
exchange); and there are any number of external data sources or providers to be utilized.

Even though the use case presented in Publication V is not in the content analysis domain,
the basic architecture would make it possible to add more advanced features easily through
the introduction of content analysis back ends. For example, if you needed to extract
more information concerning already retrieved events from the web, a back end could be
dedicated to the task, or perhaps another back end could process the user’s social media
profile to obtain the user’s personal events. Thus, the proof-of-concept implementation
utilizes the same final iteration of the architecture explained previously in section 4.1.4 as
VisualLabel, but because of a more simple use case, it does not take advantage of all of
the features provided by the architectural design.

5 Conclusions

This chapter will present the main findings of the studies described in this thesis. The
main focus of this chapter is on the summarization and presentation of the results of
the studies (see chapter 4) described in this thesis in relation to the research problem
presented in section 1.2. The relationship of the findings to the publications included in
this thesis as well as the research problem has been visualized earlier in Table 3.1, and
thus, the reader should refer to chapter 3 for further discussion on that topic. Chapter 3
also provides a more in-depth look at the research methodology utilized in this thesis.
The following sections will provide the answers to the research questions formulated in
section 1.2, show the method of validation for the results of the study, offer an insight
into future directions for research, and conclude with a brief summary.

5.1 Research Answers

Despite excessive research on the topic of content analysis, and on technology in particular,
there is still a limited number of practical implementations. One of the problems is that
most of the existing research focuses more on the design of the CBIR systems themselves,
on the metrics or general principles of the analysis benchmarking, without taking into
account the larger architecture required to implement a usable system. Additionally, in
many cases, the various CBIR implementations are considered to be competing against
each other, even though a more practical approach is to combine the systems under
a single extendable generic architecture. There have been a lot of studies on software
architecture on a more general level, and even though the researched architectures share
similarities with content analysis systems, there has not been a comprehensive study on
how the architectures should be used within the content analysis domain.
For an architectural design to be a valid software design paradigm and for it to allow
the realization of a feasible system, the solution must comply with the quality attributes
relevant for the content analysis use case – as reflected in the discussion in section 4.2.
Additionally, the architecture must describe a reasonably high-level design and define
the crucial interfaces required for the system to work as intended. Figure 5.1 presents
the high-level architecture for the content analysis environment first shown in Figure 1.2
(section 1.1). The figure has been redrawn to include the API solutions recommended
based on the studies presented in this thesis.
Figure 5.1 can also be used to illustrate the main findings of this study in relation to the
research questions presented at the beginning of the study (section 1.2). The research
questions and their answers are further discussed below.
Question 1: What is the optimal method of communication for syntactically incompatible
back ends?

55

56 Chapter 5. Conclusions

Figure 5.1: High level architecture diagram for content analysis environment with interfaces
described.

Considering the interface between Clients and Front end in Figure 5.1, the optimal
method of communication varies. In general, synchronized method calls can be easier to
implement, but asynchronous communication can also be used if required. The REST
style approach can be simpler to implement, can provide a more lightweight option for
the implementation of the interface, and is usually easier for the developers of the system
to learn how to use. In most cases, the Front End developers can dictate the entire
specification, with the client developers simply following the specification. However, the
interface specification should be as stable as possible with a minimal amount of changes
that could break the backward compatibility.

The Front End –Back Ends communication is by nature of the analysis tasks asynchronous.
The communication could be implemented with a “proper” web service design, though
in the prototypes presented in this thesis, a more RPC like REST hybrid approach was
chosen. The primary reasons for a more lightweight approach were the high initial learning
curve and effort required for implementing a full web service. Additionally, the extra
functionalities provided by web services (such as descriptive interfaces) were very rarely
if ever needed in practice. From a developer’s perspective, it would be easiest if both
interfaces would utilize the same type of design, but in practice this might not be possible
to implement – especially certain requirements imposed by the REST style could make
the style very difficult to use for back end communication.

Despite the differences in the communication methods, both interfaces should utilize the
same data structures and formats to simplify the design and implementation processes.
The communication with the Content Providers (in Figure 5.1 above) is entirely dictated
by the specifications given by the providers themselves. One of the formats utilized by the
providers could be chosen for client and back-end side communication, although different
providers generally use different or even mutually incompatible formats, making it difficult
to use exactly the same formats throughout the entire content analysis environment.
Also, even though the back-end requirements are an important part of the interface
specification, ad hoc changes to the specification should never be taken based on the
requirements of an individual back end, in order to preserve better interoperability and

5.2. Validation 57

compatibility with all back ends.

Question 2: What are the crucial interfaces and data formats required for cross-platform
communication?

The higher-level interfaces are shown in Figure 5.1 and explained in the conclusions for
Question 1 above, and further discussed in sections 4.3 (Figure 4.10) and 4.5 (Table 4.1).
In general, it is often better to utilize well-known (and thus, well-tested) protocols and
formats, although in practice it might be difficult to find an existing generic solution
that fits the use case at hand. Based on the experience of building the proof-of-concept
implementations, it is difficult to recommend any specific data formats for the content
analysis case. The de facto representation formats (JSON and XML) are extensively
supported on most programming languages and on every commonly used platform, and
picking either one will provide a stable base for further development.

To ensure interoperability and extendability, the chosen solution should provide a generic
container structure (in this case, task-based containers), and the content-specific formats
should be built on top of the container in order to minimize the relative ”size” of the
incompatible data structures in each request and response. There is very seldom a valid
reason to utilize different formats in different communication scenarios (e.g., client– front
end vs. front end–back end). In many cases, the various communications require only a
subset of the whole (specified) data structure and these subsets should be well defined
per use case in examples and documentation.

Question 3: What kind of aspects are required to guarantee system maintainability?

Ensuring good maintainability in a complex system can be a difficult task. The use of
well-known formats and design patterns can reduce errors in the architectural design as well
as in the design process itself. One of the most important tools for preserving the usability
of the system for both designers and users (or developers) is proper documentation.
Keeping the documentation up-to-date can be time-consuming, so utilizing automated
methods for generating the appropriate documentation for all software products is
preferred. It can be difficult to modify the documentation to adhere to a different
documentation method or style later in the development cycle, and thus, how the
documentation is to be created, utilized, and implemented in the APIs and in the source
code should be a high priority consideration when designing any software architecture.

5.2 Validation

The research of this thesis follows the design-science paradigm. The research process was
validated by following the seven guidelines [Hevner et al., 2004] created for understanding,
executing, and evaluating design-science research, and by progressing through the steps
of the mental model [Peffers et al., 2007] for utilizing design science. The relevance of
the research has been shown by a study of the existing literature. The relevance has also
been shown by the research efforts over multiple years of studies and research projects
during which feedback, guidance, and future directions were received from educational
and industrial partners working on the content analysis field. The search and development
process for the architecture development was illustrated through the presentation of the
architecture iterations. The validity of the individual iterations – as well as of the final
architecture – has been enhanced by submitting the results to international peer-reviewed
conferences and journals, which have provided feedback and improvement ideas for the
research.

58 Chapter 5. Conclusions

The participation of the author of this thesis in the development of the proof-of-concept
implementations can be seen both as an advantage and disadvantage for the validation of
the architecture. The participation proves the author’s work and contribution for the
design and development of the architecture, but it also means that no external party
has independently realized a working system based on the design guidelines. In practice,
the complexity and size of the content analysis system makes it challenging to organize
an entirely separate team for constructing a proof-of-concept. On the other hand, the
author’s work in implementing the final proof-of-concept (VisualLabel) was minimal when
compared to the implementation of the whole system. The back ends and test clients
were implemented by other team members or by people working in different institutions
or companies based on the designed specifications. All of the analysis engines utilized
as back ends were products of multi-year research projects unrelated to the research
on generic architecture presented in this thesis. Regardless of the unrelated origins of
the components, using the generic architecture as a baseline, a working system was
implemented and shown to work as intended. The implementation work took advantage of
the material made publicly available online (development guides, use cases, data formats,
and communication and API call examples).
Ultimately, the most important outcome of design-science research – in the context of
information systems research – is the design artifact, in this case, the generic architecture
itself. The realization of the architecture through instantiations (proof-of-concept
demonstrations) can be seen to demonstrate both that the research problem has been
solved and that the approach can be used to create a practical software implementation.
The work presented in this thesis also described the crucial quality attributes required
for a feasible content analysis system. The study of the quality attributes within the
scope of the generic architecture was performed to validate that the solution presented
can achieve its designated goals and purposes. The final iteration of the architecture,
including the development guides, use cases, and the source code for a proof-of-concept
implementation, has been published and is freely available for anyone. This can both
help to validate the research, and also to provide a base for studies by other researchers.

5.3 Thesis Contribution

The studies presented in this thesis have been carried out over several research projects,
all of which have targeted the same goal, namely how to construct relatively generic and
practical interfaces that can be used to achieve the interoperability of complex systems.
Keeping this in mind, the primary contribution of the work must be the answer to this
research problem, which was first presented in section 1.2:
Is it possible to define a generic architecture, which describes how clients,
back ends, and content providers can be connected in a meaningful way?
Based on the studies performed, this thesis claims that: yes, it is possible to define a
generic architecture for the content analysis environment. More specifically, this thesis
explained how the crucial interfaces for the system should be constructed utilizing the
API model, presented in section 4.3 and the Data Layer Model, presented in section 4.5.
Using the presented architecture, it is possible to separate the content analysis problem
into abstract (layered) tasks, which can be flexibly delivered to analysis back ends for
content analysis, search, and feedback purposes.
This thesis has also highlighted the lack of research on interface and architecture design
in the content analysis domain, regardless of their importance for the realization of a

5.4. Future Work 59

feasible system. Naturally, algorithms and analysis methods are the very essence of
content analysis, but to increase the number of real-life systems, more thought should be
put into how algorithms, content analysis systems, and methods can be utilized in an
interoperable and flexible way to achieve a practical implementation.

Table 5.1: Contributions to the architecture structure and its primary components.

Architecture
High-level architecture and interface specifications (Publication
IV, Publication VII and sections 4.1.4 and 4.2.2, and Figure 5.1).

VisualLabel proof-of-concept implementation [Publication
VII][TUT Pori, 2015g], source codes [TUT Pori, 2015b].

Documentation
Description of common
quality attributes for a
generic content analysis
architecture (in section 4.2).

Documentation for the
VisualLabel proof-of-concept
(deployment guides [TUT
Pori, 2016c], use cases
[Publication VII][TUT Pori,
2015d], APIs and examples
[TUT Pori, 2015a]).

Methods for automatic API
documentation generation
[Publication VI], source
codes [TUT Pori, 2016a].

APIs
API model (introduced in Publication VI and Publication VII,
described in section 4.3).

APIs and examples [TUT Pori, 2015a].

Interface Layer Model (section 4.4).

Methods for automatic API documentation generation
[Publication VI], source codes [TUT Pori, 2016a].

Communication Methods
Asynchronous transfer studies
for the content analysis
ecosystem [Publication II].

Data representations
Data Layer Model (section 4.5).

The task-based approach
(described in Publication IV,
further discussed in sections
4.2.1, 4.2.2, 4.2.3 and 4.2.5).

Furthermore, the contribution of the thesis to the research framework (introduced in
section 2.1) and to the architecture structure (illustrated in Figure 2.1) is described in
Table 5.1. The table lists the main outcomes of the research presented in this thesis and
their relation to the architecture building blocks with references to the sections of this
thesis or the related publications provided for the reader’s convenience. Some of the work
(namely, the implementation source code, wiki pages) listed in Table 5.1 has also been
partially produced by other researchers. In addition, section 3.2 and Table 3.1 can be
consulted for studies that have been conducted in co-operation with the author of this
thesis, but are not included in the publications of this compilation thesis. All of the
content should provide assistance for people who are involved in the design of systems in
the content analysis domain.

5.4 Future Work

As presented in this thesis, the content analysis ecosystem and all of its components
have been extensively studied. Utilizing the solution provided, there is no acute need to
further explore the architectural design choices available for the content analysis domain.
One possible future direction would be the design of a model for validating whether an
existing implementation conforms to the guidelines and design decisions recommended
in this thesis. The emphasis of the work presented here has been on the design and
implementation of new systems although the provided guidelines can also be used when

60 Chapter 5. Conclusions

making modifications to existing implementations. However, this work does not offer a
precise and systematic means or a model for the validation of existing architectures.

The methods and technologies described in this thesis were briefly tested – through
the implementation of proof-of-concept systems – in use cases not directly related to
content analysis, but their applicability to a wider use has not been thoroughly validated.
Thus, expansion to other domains is one possible future direction for related research. In
particular, the improvement and design of methods utilized for automatic documentation
might be an important future topic.

Another subject, not only related to the content analysis domain, but also to API design
and usage in general is the rather strict ”limitations” enforced by external APIs (such
as those enforced by content provider APIs). There does not seem to be much research
on how well the public APIs match common use cases – or the use cases as specified
by the users of the APIs – despite the fact that the quantity of public APIs is growing
[Anthony, 2016]. Additionally, even though many companies host online forums and bug
trackers, the impact of the feedback is unknown – i.e., what is the effect of the feedback
on the evolution of APIs in general? It is entirely possible that the way external APIs
are implemented requires unwanted modifications to be made in the intended design
of the system. Today, there are often many competing services available for commonly
required operations (such as for image hosting), and based on experience of designing
the proof-of-concept implementations – and from a developer’s perspective in general
– it would be interesting to see statistics or studies on how the commonly used public
APIs evolve (the number of breaking and non-breaking changes, the average lifetime
of an individual API, etc.), and how an individual developer (or team) can affect the
development of public APIs.

Additionally, encouraged by the positive feedback received from the industry partners of
the D2I program, the development of the VisualLabel framework and the proof-of-concept
implementation will continue on the APILTA (Avoin PIlvipalvelukonsepti joukkoistetun
Liikennedatan TArpeisiin, ”Open Cloud Platform for Crowdsourcing Based Services”, in
English) project, which began at Tampere University of Technology, Pori Department in
autumn 2016. The designed architecture and the task-based approach will be utilized for
the collection, analysis, and refinement of traffic data produced by external back ends,
mobile sensors, and crowdsourcing.

5.5 Summary

This thesis discussed the problems of designing and implementing a complex system for a
content analysis ecosystem. The system – or architecture – would consist of any number
of both desktop and mobile clients and of a single front-end service, which would utilize
any number of external service providers and back ends designed for various content
analysis tasks. These tasks could include, for example, text summarization, photo analysis,
or content-based search. The background research suggested that despite the extensive
studies on content analysis in general, there is a lack of research on how to implement a
usable system consisting of all of the required parts, as the priority of existing studies has
been almost entirely placed on algorithm and analysis method design.

The purpose of the research presented in this thesis was to study how to define a
generic, extendable, and maintainable system within the content analysis domain. This
thesis described the methods, technologies, and principles required in the architectural

5.5. Summary 61

design. Furthermore, the work was validated through several architectural iterations and
proof-of-concept implementations, which were also presented in this thesis.

Based on the studies performed, it was concluded that it is possible to realize a generic
architecture – or generic interfaces – by following layered API and data models presented
in this thesis in combination with commonly used (standard or industry de facto)
architectural and technical solutions (REST and hybrid REST/RPC) and representation
formats (JSON and XML). In conclusion, the study shows that the existing technologies
are sufficient for realizing the generic architecture when proper design of the interfacing
protocols and formats is utilized.

References

Aalto University, Department of Computer Science (2015). PicSOM, The Content-Based
Image and Information Retrieval Group. http://research.ics.aalto.fi/cbir/.
Retrieved September 20, 2015.

Aihkisalo, T. and Paaso, T. (2012). Latencies of service invocation and processing
of the rest and soap web service interfaces. In proceedings of the 2012 IEEE
Eighth World Congress on Services, pages 100–107, Honolulu, Hawaii, USA. DOI:
10.1109/SERVICES.2012.55.

Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., and Meedeniya, I. (2013). Software
architecture optimization methods: A systematic literature review. IEEE Transactions
on Software Engineering, 39(5):658–683, DOI: 10.1109/TSE.2012.64.

Alexeeva, Z., Perez-Palacin, D., and Mirandola, R. (2016). Design decision documentation:
A literature overview. Software Architecture, pages 84–101, ISBN: 978-3-319-48991-9,
DOI: 10.1007/978-3-319-48992-6_6.

Anthony, A. (2016). NORDIC APIS - Tracking the Growth of the API Economy. http:
//nordicapis.com/tracking-the-growth-of-the-api-economy. Retrieved August
8, 2016.

Antonelli, M., Dellepiane, S. G., and Goccia, M. (2006). Design and implementation
of web-based systems for image segmentation and cbir. IEEE Transactions on
Instrumentation and Measurement, 55(6), DOI: 10.1109/TIM.2006.884286.

Anttonen, M., Salminen, A., Mikkonen, T., and Taivalsaari, A. (2011). Transforming the
web into a real application platform: new technologies, emerging trends and missing
pieces. In proceedings of the 2011 ACM Symposium on Applied Computing (SAC ’11),
pages 800–807, Taichung, Taiwan. DOI: 10.1145/1982185.1982357.

Apache Software Foundation (2016a). Apache Ant. http://ant.apache.org. Retrieved
May 24, 2016.

Apache Software Foundation (2016b). Apache Axis2/Java. http://axis.apache.org/
axis2/java/core/. Retrieved May 24, 2016.

Apache Software Foundation (2016c). Apache Hadoop. http://hadoop.apache.org.
Retrieved May 17, 2016.

Apache Software Foundation (2016d). Apache Solr. http://lucene.apache.org/solr.
Retrieved May 17, 2016.

63

http://research.ics.aalto.fi/cbir/
http://dx.doi.org/10.1109/SERVICES.2012.55
http://dx.doi.org/10.1109/TSE.2012.64
http://dx.doi.org/10.1007/978-3-319-48992-6_6
http://nordicapis.com/tracking-the-growth-of-the-api-economy
http://nordicapis.com/tracking-the-growth-of-the-api-economy
http://dx.doi.org/10.1109/TIM.2006.884286
http://dx.doi.org/10.1145/1982185.1982357
http://ant.apache.org
http://axis.apache.org/axis2/java/core/
http://axis.apache.org/axis2/java/core/
http://hadoop.apache.org
http://lucene.apache.org/solr

64 References

Apache Software Foundation (2016e). Apache Tomcat. http://tomcat.apache.org.
Retrieved May 24, 2016.

Asana (2017). Asana work and project management. https://asana.com/. Retrieved
January 17, 2017.

Atrey, P. K., Hossain, M. A., Saddik, A. E., and Kankanhalli, M. S. (2010). Multimodal
fusion for multimedia analysis: a survey. Multimedia Systems, 16(6):345–379, ISSN:
0942-4962, DOI: 10.1007/s00530-010-0182-0.

Babar, M. A. and Gorton, I. (2004). A survey on software architecture evaluation methods.
In proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC ’04),
pages 600–607, Busan, Korea. DOI: 10.1109/APSEC.2004.38.

Bachmann, F., Bass, L., Carriere, J., Clements, P. C., Garlan, D., Ivers, J., Nord, R.,
and Little, R. (2000). Software architecture documentation in practice: Documenting
architectural layers. technical note, Carnegie Mellon University.

Bachmann, F. and Merson, P. (2005). Experience using the web-based tool wiki for
architecture documentation. technical note, Carnegie Mellon University.

Bass, L., Clements, P., and Kazman, R. (2012). Software Architecture in Practice.
Addison-Wesley Professional, 3rd edition, ISBN: 978-0321815736.

Belwasmi, F., Glitho, R., and Chuyan, F. (2011). Restful web services for service
provisioning in next-generation networks: A survey. IEEE Communications Magazine,
49(12):66–73, DOI: 10.1109/MCOM.2011.6094008.

Birrell, A. D. and Nelson, B. J. (1984). Implementing remote procedure calls. ACM
Transactions on Computer Systems (TOCS), 2(1):39–59, DOI: 10.1145/2080.357392.

Bosch, J. (2004). Software architecture: The next step. Software Architecture, pages
194–199, ISBN: 978-3-540-22000-8, DOI: 10.1007/978-3-540-24769-2_14.

Bosch, J. and Molin, P. (1999). Software architecture design: evaluation and
transformation. In proceedings of the IEEE Conference and Workshop on
Engineering of Computer-Based Systems, pages 4–10, Nashville, Tennessee, USA.
DOI: 10.1109/ECBS.1999.755855.

Brambilla, M., Ceri, S., and Riccio, M. P. A. (2004). Managing asynchronous web services
interactions. In proceedings of the IEEE International Conference on Web Services,
pages 80–87, San Diego, California, USA. DOI: 10.1109/ICWS.2004.1314726.

Camera & Imaging Products Association (2015). Exchangeable image file format for
digital still cameras: Exif Version 2.3, CIPA DC-008-Translation-2012, Standard of the
Camera & Imaging Products Association. http://www.cipa.jp/std/documents/e/
DC-008-2012_E.pdf. Retrieved September 20, 2015.

Cardinaels, K., Meire, M., and Duval, E. (2005). Automating metadata generation: the
simple indexing interface. In proceedings of the 14th international conference on World
Wide Web, Chiba, Japan. DOI: 10.1145/1060745.1060825.

Castillo, P. A., García-Sánchez, P., Arenas, M. G., Bernier, J. L., and Merelo, J. J. (2012).
Distributed evolutionary computation using soap and rest web services. Advances in
Intelligent Modelling and Simulation, pages 89–111, ISBN: 978-3-642-30153-7, DOI:
10.1007/978-3-642-30154-4_5.

http://tomcat.apache.org
https://asana.com/
http://dx.doi.org/10.1007/s00530-010-0182-0
http://dx.doi.org/10.1109/APSEC.2004.38
http://dx.doi.org/10.1109/MCOM.2011.6094008
http://dx.doi.org/10.1145/2080.357392
http://dx.doi.org/10.1007/978-3-540-24769-2_14
http://dx.doi.org/10.1109/ECBS.1999.755855
http://dx.doi.org/10.1109/ICWS.2004.1314726
http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
http://dx.doi.org/10.1145/1060745.1060825
http://dx.doi.org/10.1007/978-3-642-30154-4_5

References 65

Chen, L., Babar, M. A., and Nuseibeh, B. (2013). Characterizing architecturally
significant requirements. IEEE Software, 30(2):38–45, ISSN: 0740-7459, DOI:
10.1109/MS.2012.174.

Cleland-Huang, J., University, D., Hanmer, R. S., Supakkul, S., and Mirakhorli, M. (2013).
The twin peaks of requirements and architecture. IEEE Software, 30(2):24–29, ISSN:
0740-7459, DOI: 10.1109/MS.2013.39.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord,
R., and Stafford, J. (2010). Documenting Software Architectures: Views and Beyond.
Addison-Wesley Professional, 2nd edition, ISBN: 978-0321552686.

Danielsen, P. J. and Jeffrey, A. (2013). Validation and interactivity of web api
documentation. In proceedings of the 2013 IEEE 20th International Conference
on Web Services (ICWS ’13), pages 523–530, Santa Clara, California, USA. DOI:
10.1109/ICWS.2013.76.

Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2008). Image retrieval: Ideas, influences, and
trends of the new age. ACM Computing Surveys, 40(2), DOI: 10.1145/1348246.1348248.

Daughtry, J. M., Farooq, U., Myers, B. A., and Stylos, J. (2009). Api usability: Report on
special interest group at chi. ACM SIGSOFT Software Engineering Notes, 34(4):27–29,
DOI: 10.1145/1543405.1543429.

de Graaf, K. A., Tang, A., Liang, P., and van Vliet, H. (2012). Ontology-based
software architecture documentation. In proccedings of the 2012 Joint Working
Conference on Software Architecture & 6th European Conference on Software
Architecture (WICSA-ECSA ’12), pages 121–130, Helsinki, Finland. DOI:
10.1109/WICSA-ECSA.212.20.

de Souza, C. R. B., Redmiles, D., Cheng, L.-T., Millen, D., and Patterson, J.
(2004). Sometimes you need to see through walls - a field study of application
programming interfaces. In proceedings of the 2004 ACM conference on Computer
supported cooperative work (CSCW ’04), pages 63–71, Chicago, Illinois, USA. DOI:
10.1145/1031607.1031620.

de Souza, S. C. B., Anquetil, N., and de Oliveira, K. M. (2005). A study of the
documentation essential to software maintenance. In proceedings of the 23rd annual
international conference on Design of communication: documenting & designing for
pervasive information (SIGDOC ’05), pages 68–75, Coventry, United Kingdom. DOI:
10.1145/1085313.1085331.

Denning, P. J. (1997). A new social contract for research. Communications of the ACM,
40(2):132–134, DOI: 10.1145/253671.253755.

Digile (2015a). Data to Intelligence (D2I) SHOK program. http://www.datatointell
igence.fi. Retrieved September 20, 2015.

Digile (2015b). FORGE Service Lab at GitHub. https://github.com/forgeservicelab.
Retrieved September 20, 2015.

Dijkstra, E. W. (1982). Selected Writings on Computing: A personal Perspective. Springer
New York, ISBN: 978-1-4612-5697-7, DOI: 10.1007/978-1-4612-5695-3.

http://dx.doi.org/10.1109/MS.2012.174
http://dx.doi.org/10.1109/MS.2013.39
http://dx.doi.org/10.1109/ICWS.2013.76
http://dx.doi.org/10.1145/1348246.1348248
http://dx.doi.org/10.1145/1543405.1543429
http://dx.doi.org/10.1109/WICSA-ECSA.212.20
http://dx.doi.org/10.1145/1031607.1031620
http://dx.doi.org/10.1145/1085313.1085331
http://dx.doi.org/10.1145/253671.253755
http://www.datatointelligence.fi
http://www.datatointelligence.fi
https://github.com/forgeservicelab
http://dx.doi.org/10.1007/978-1-4612-5695-3

66 References

Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. (2002).
Globally distributed content delivery. IEEE Internet Computing, 50(58):50–58, DOI:
10.1109/MIC.2002.1036038.

Dimecc (2016). FORGE Service Lab, asset links. http://www.dimecc.com/forge-ser
vice-lab-discontinued/. Retrieved October 18, 2016.

Dobrica, L. and Niemelä, E. (2002). A survey on software architecture analysis methods.
IEEE Transactions on Software Engineering, 28(7):638–653, ISSN: 0098-5589, DOI:
10.1109/TSE.2002.1019479.

Dubey, S. K. and Rana, A. (2011). Assessment of maintainability metrics for
object-oriented software system. ACM SIGSOFT Software Engineering Notes,
36(5):1–7, ISSN: 0163-5948, DOI: 10.1145/2020976.2020983.

Ecma International (2013). Standard ECMA-404 – The JSON Data Interchange Format
. http://www.ecma-international.org/publications/standards/Ecma-404.htm.
Retrieved July 25, 2016.

Emery, D. and Hilliard, R. (2009). Every Architecture Description Needs a Framework:
Expressing Architecture Frameworks Using ISO/IEC 42010. In proccedings of the Joint
Working IEEE/IFIP Conference on Software Architecture, 2009 & European Conference
on Software Architecture (WICSA/ECSA 2009), pages 31–40, Cambridge, United
Kingdom. DOI: 10.1109/WICSA.2009.5290789.

Espinha, T., Zaidman, A., and Gross, H.-G. (2014). Web api growing pains:
Stories from client developers and their code. In proceedings of the IEEE
Conference on Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week, pages 84–93, Antwerp, Belgium.
DOI: 10.1109/CSMR-WCRE.2014.6747228.

Feng, X., Shen, J., and Fan, Y. (2009). Rest: An alternative to rpc for web
services architecture. In proceedings of the 1st International Conference on
Future Information Networks (ICFIN 2009), pages 7–10, Beijing, China. DOI:
10.1109/ICFIN.2009.5339611.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, California, USA, ISBN:
0-599-87118-0.

Fielding, R. T. (2008). REST APIs must be hypertext-driven. http://roy.gbiv.com/u
ntangled/2008/rest-apis-must-be-hypertext-driven. Retrieved July 20, 2016.

Fielding, R. T. and Taylor, R. N. (2002). Principled design of the modern web architecture.
ACM Transactions on Internet Technology, 2(2):115–150, DOI: 10.1145/514183.514185.

Forss, T., Liu, S., and Björk, K.-M. (2014). Extracting people’s hobby and interest
information from social media content. In proceedings of Terminology and Knowledge
Engineering 2014, Berlin, Germany.

Fu, Z., Lu, G., Ting, K. M., and Zhang, D. (2011). A survey of audio-based music
classification and annotation. IEEE Transactions on Multimedia, 13(2):303–319, ISSN:
1520-9210, DOI: 10.1109/TMM.2010.2098858.

http://dx.doi.org/10.1109/MIC.2002.1036038
http://www.dimecc.com/forge-service-lab-discontinued/
http://www.dimecc.com/forge-service-lab-discontinued/
http://dx.doi.org/10.1109/TSE.2002.1019479
http://dx.doi.org/10.1145/2020976.2020983
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://dx.doi.org/10.1109/WICSA.2009.5290789
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747228
http://dx.doi.org/10.1109/ICFIN.2009.5339611
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://dx.doi.org/10.1145/514183.514185
http://dx.doi.org/10.1109/TMM.2010.2098858

References 67

Fuller, R. B. (1957). A comprehensive anticipatory design science. Journal - Royal
Architectural Institute of Canada, 34, ISSN: 0383-6835.

Gerdes, S., Jasser, S., Riebisch, M., Schröder, S., Soliman, M., and Stehle, T. (2016).
Towards the essentials of architecture documentation for avoiding architecture erosion.
In proccedings of the 10th European Conference on Software Architecture Workshops
(ECSAW ’16), Copenhagen, Denmark. DOI: 10.1145/2993412.3004844.

Gilliam, D. P., Wolfe, T. L., and Sherif, J. S. (2003). Software security checklist for
the software life cycle. In proceedings of the 12th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, pages 243–248,
Linz, Austria. DOI: 10.1109/ENABL.2003.1231415.

Glass, R. L. (2002). Facts and Fallacies of Software Engineering. Addison-Wesley
Professional, 1st edition, ISBN: 978-0321117427.

Guinard, D., Ion, I., and Mayer, S. (2012). In search of an internet of things service
architecture: Rest or ws-*? a developers’ perspective. Mobile and Ubiquitous Systems:
Computing, Networking, and Services, pages 326–337, ISBN: 978-3-642-30972-4, DOI:
10.1007/978-3-642-30973-1_32.

Guo, L., Chen, S., Xiao, Z., and Zhang, X. (2005). Analysis of multimedia workloads
with implications for internet streaming. In proceedings of the 14th international
conference on World Wide Web (WWW ’05), pages 519–528, Chiba, Japan. DOI:
10.1145/1060745.1060821.

Gupta, V. and Lehal, G. S. (2009). A survey of text mining techniques and applications.
Journal of Emerging Technologies in Web Intelligence, 1(1), ISSN: 1798-0461.

Hadar, I., Sherman, S., Hadar, E., and Harrison, J. J. (2013). Less is more: Architecture
documentation for agile development. In proccedings of the 2013 6th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE), San
Francisco, California, United States. DOI: 10.1109/CHASE.2013.6614746.

Hanbury, A. (2008). A survey of methods for image annotation. Journal of Visual
Languages and Computing, 19(5):617–627, DOI: 10.1016/j.jvlc.2008.01.002.

Harrison, N. B. and Avgeriou, P. (2007). Leveraging architecture patterns to satisfy quality
attributes. In proceedings of the 1st European conference on Software Architecture
(ECSA’07), pages 263–270, Madrid, Spain. ISBN: 978-3-540-75131-1.

Haslhofer, B. and Klas, W. (2010). A survey of techniques for achieving
metadata interoperability. ACM computing Surveys, 42(2):617–627, DOI:
10.1145/1667062.1667064.

Henning, M. (2009). Api design matters. Communications of the ACM - Security in the
Browser, 52(5):45–56, DOI: 10.1145/1506409.1506424.

Henningsson, K. and Wohlin, C. (2002). Understanding the relations between software
quality attributes - a survey approach. In proceedings of the 12th International
Conference on Software Quality, volume 12, pages 1–12, Ottawa, Canada.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian Journal
of Information Systems, 19(2):87–92.

http://dx.doi.org/10.1145/2993412.3004844
http://dx.doi.org/10.1109/ENABL.2003.1231415
http://dx.doi.org/10.1007/978-3-642-30973-1_32
http://dx.doi.org/10.1145/1060745.1060821
http://dx.doi.org/10.1109/CHASE.2013.6614746
http://dx.doi.org/10.1016/j.jvlc.2008.01.002
http://dx.doi.org/10.1145/1667062.1667064
http://dx.doi.org/10.1145/1506409.1506424

68 References

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS Quarterly, 28(1):75–105.

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., and America, P. (2005).
Generalizing a model of software architecture design from five industrial approaches.
In proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05), Pittsburgh, Pennsylvania, USA. DOI: 10.1109/WICSA.2005.36.

Hu, W., Xie, N., Li, L., Zeng, X., and Maybank, S. (2011). A survey on visual
content-based video indexing and retrieval. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 41(6):797–819, ISSN: 1094-6977,
DOI: 10.1109/TSMCC.2011.2109710.

IETF (1976). Internet Engineering Task Force, RFC 707, A High-Level Framework for
Network-Based Resource Sharing. https://tools.ietf.org/html/rfc707. Retrieved
September 20, 2015.

IETF (1989). Internet Engineering Task Force - Network Working Group, RFC 1122,
Requirements for Internet Hosts – Communication Layers. https://tools.ietf.org
/html/rfc1122. Retrieved May 21, 2016.

IETF (2005). Internet Engineering Task Force - Network Working Group, RFC 4287,
The Atom Syndication Format. https://tools.ietf.org/html/rfc4287. Retrieved
May 24, 2016.

IETF (2014). Internet Engineering Task Force, RFC 7159, The JavaScript Object
Notation (JSON) Data Interchange Format. https://tools.ietf.org/html/rfc7159.
Retrieved July 25, 2016.

Immonen, A. and Niemelä, E. (2008). Survey of reliability and availability prediction
methods from the viewpoint of software architecture. Software & Systems Modeling,
7(49), ISSN: 1619-1366, DOI: 10.1007/s10270-006-0040-x.

ISO/IEC (1994). International Organization for Standardization / International
Electrotechnical Commission, ISO/IEC 7498-1:1994. Information technology - Open
Systems Interconnection - Basic Reference Model: The Basic Model.

ISO/IEC (2002). International Organization for Standardization / International
Electrotechnical Commission, ISO/IEC 15938-1:2002 Information technology –
Multimedia content description interface – Part 1: Systems.

ISO/IEC (2004). International Organization for Standardization / International
Electrotechnical Commission, ISO 8601:2004 Data elements and interchange formats –
Information interchange – Representation of dates and times.

ISO/IEC (2011a). International Organization for Standardization / International
Electrotechnical Commission, ISO/IEC 25010:2011. Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models.

ISO/IEC (2011b). International Organization for Standardization / International
Electrotechnical Commission, ISO/IEC 42010:2011. Systems and software engineering -
Architecture description.

http://dx.doi.org/10.1109/WICSA.2005.36
http://dx.doi.org/10.1109/TSMCC.2011.2109710
https://tools.ietf.org/html/rfc707
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc4287
https://tools.ietf.org/html/rfc7159
http://dx.doi.org/10.1007/s10270-006-0040-x

References 69

ISO/IEC (2014). International Organization for Standardization / International
Electrotechnical Commission, ISO/IEC 10646:2014 Information technology – Universal
Coded Character Set (UCS).

Jansen, A., Avgeriou, P., and van der Ven, J. S. (2009). Enriching software
architecture documentation. Journal of Systems and Software, 82(8):1232–1248, DOI:
10.1016/j.jss.2009.04.052.

JSON-RPC Working Group (2015). JSON-RPC 2.0 Specification. http://www.jsonrpc.
org/specification. Retrieved September 20, 2015.

json.org (2016). JSON. http://json.org/. Retrieved July 25, 2016.

Junga, K., Kimb, K. I., and Jainc, A. K. (2004). Text information extraction in images and
video: a survey. Pattern Recognition, 37(5):977–997, DOI: 10.1016/j.patcog.2003.10.012.

Kazman, R., Klein, M., and Clements, P. (2000). Atam: Method for architecture
evaluation. technical report, Carnegie Mellon University.

Kitagawa, H., Ishikawa, Y., Li, Q., and Watanabe, C. (2010). Mediamatrix: A video
stream retrieval system with mechanisms for mining contexts of query examples.
Database Systems for Advanced Applications, pages 452–455, ISBN: 978-3-642-12097-8,
DOI: 10.1007/978-3-642-12098-5_48.

Kiyoki, Y. and Chen, X. (2009). A semantic associative computation method for automatic
decorative-multimedia creation with kansei information. In proceedings of the Sixth
Asia-Pacific Conference on Conceptual Modeling (APCCM ’09), volume 96. Australian
Computer Society, Inc., ISBN: 978-1-920682-77-4.

Kiyoki, Y., Kitagawa, T., and Hayama, T. (1994). A metadatabase system for semantic
image search by a mathematical model of meaning. ACM SIGMOD Record, 23(4):34–41,
DOI: 10.1145/190627.190639.

Kosanke, K. (2006). Iso standards for interoperability: a comparison. Interoperability of
Enterprise Software and Applications, pages 55–64, ISBN: 978-1-84628-151-8, DOI:
10.1007/1-84628-152-0_6.

Kosch, H. and Maier, P. (2010). Content-based image retrieval systems - reviewing and
benchmarking. Journal of Digital Information Management, 8(1):54–64.

Krippendorff, K. H. (2012). Content Analysis: An Introduction to Its Methodology. SAGE
Publications, 3rd edition, ISBN: 978-1412983150.

Kruchten, P. (2009). Documentation of software architecture from a knowledge
management perspective - design representation. Software Architecture Knowledge
Management - Theory and Practice, pages 39–57, ISBN: 978-3-642-02373-6, DOI:
10.1007/978-3-642-02374-3_3.

Kruchten, P., Obbink, H., and Stafford, J. (2006). The past, present, and future of software
architecture. IEEE Software, 23(2):22–30, ISSN: 0740-7459, DOI: 10.1109/MS.2006.59.

Lee, I. and Guan, L. (2004). Semi-automated relevance feedback for distributed
content based image retrieval. In proceedings of IEEE International Conference
on Multimedia and Expo (ICME ’04), pages 1871–1874, Taipei, Taiwan. DOI:
10.1109/ICME.2004.1394623.

http://dx.doi.org/10.1016/j.jss.2009.04.052
http://www.jsonrpc.org/specification
http://www.jsonrpc.org/specification
http://json.org/
http://dx.doi.org/10.1016/j.patcog.2003.10.012
http://dx.doi.org/10.1007/978-3-642-12098-5_48
http://dx.doi.org/10.1145/190627.190639
http://dx.doi.org/10.1007/1-84628-152-0_6
http://dx.doi.org/10.1007/978-3-642-02374-3_3
http://dx.doi.org/10.1109/MS.2006.59
http://dx.doi.org/10.1109/ICME.2004.1394623

70 References

Lew, M. S., Sebe, N., Djeraba, C., and Jain, R. (2006). Content-based multimedia
information retrieval: State of the art and challenges. ACM Transactions
on Multimedia Computing, Communications and Applications, 2(1):1–19, DOI:
10.1145/1126004.1126005.

Li, J., Xiong, Y., Liu, X., and Zhang, L. (2013). How does web service api evolution affect
clients? In proceedings of the 2013 IEEE 20th International Conference on Web Services
(ICWS ’13), pages 300–307, Santa Clara, California, USA. DOI: 10.1109/ICWS.2013.48.

Li, L. and Chou, W. (2011). Design and describe rest api without violating rest: A petri
net based approach. In proceedings of the 2011 IEEE International Conference on Web
Services (ICWS), pages 508–515, Washington, D.C., USA. DOI: 10.1109/ICWS.2011.54.

Liang, J., Doermann, D., and Li, H. (2005). Camera-based analysis of text and documents:
a survey. International Journal of Document Analysis and Recognition (IJDAR),
7(2-3):84–104, ISSN: 1433-2833, DOI: 10.1007/s10032-004-0138-z.

Lourenço, J. R., Cabral, B., Carreiro, P., Vieira, M., and Bernardino, J. (2015). Choosing
the right nosql database for the job: a quality attribute evaluation. Journal of Big
Data, ISSN: 2196-1115, DOI: 10.1186/s40537-015-0025-0.

Lu, G. (2001). Indexing and retrieval of audio: A survey. Multimedia Tools and
Applications, 15(3):269–290, ISSN: 1380-7501, DOI: 10.1023/A:1012491016871.

Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L., and Wassermann, B. (2009).
Rest-based management of loosely coupled services. In proceedings of the 18th
international conference on World wide web (WWW ’09), pages 931–940, Madrid,
Spain. DOI: 10.1145/1526709.1526834.

Lynx Technology (2016). Twonky. http://www.lynxtechnology.com/twonky-overview.
Retrieved May 24, 2016.

Maleshkova, M., Pedrinaci, C., and Domingue, J. (2010). Investigating web
apis on the world wide web. In proceedings of the 2010 8th IEEE European
Conference on Web Services (ECOWS ’10), pages 107–114, Ayia Napa, Cyprus. DOI:
10.1109/ECOWS.2010.9.

Malik, A. and Nieminen, M. (2014). Understanding the usage and requirements of the
photo tagging system. Human IT, 12(3):117–161, ISSN: 1402-150X.

Maramba, I. D., Davey, A., Elliott, M. N., Roberts, M., Roland, M., Brown, F., Burt, J.,
Boiko, O., and Campbell, J. (2015). Web-based textual analysis of free-text patient
experience comments from a survey in primary care. JMIR (Journal of Medical Internet
Research) medical informatics, 3(2), DOI: 10.2196/medinform.3783.

March, S. T. and Smith, G. F. (1995). Design and natural science research
on information technology. Decision Support Systems, 15(4):251–266, DOI:
10.1016/0167-9236(94)00041-2.

Markus, M. L., Majchrzak, A., and Gasser, L. (2002). A design theory for systems
that support emergent knowledge processes. MIS Quarterly, 26(3):179–212, ISSN:
0276-7783.

http://dx.doi.org/10.1145/1126004.1126005
http://dx.doi.org/10.1109/ICWS.2013.48
http://dx.doi.org/10.1109/ICWS.2011.54
http://dx.doi.org/10.1007/s10032-004-0138-z
http://dx.doi.org/10.1186/s40537-015-0025-0
http://dx.doi.org/10.1023/A:1012491016871
http://dx.doi.org/10.1145/1526709.1526834
http://www.lynxtechnology.com/twonky-overview
http://dx.doi.org/10.1109/ECOWS.2010.9
http://dx.doi.org/10.2196/medinform.3783
http://dx.doi.org/10.1016/0167-9236(94)00041-2

References 71

Matinlassi, M. (2006). Quality-Driven Software Architecture Model Transformation.
Towards Automation. PhD thesis, VTT Technical Research Centre of Finland /
University of Oulu, Oulu, Finland, ISBN: 951-38-6848-6.

May, N. (2005). A survey of software architecture viewpoint models. In proccedings of
the The Sixth Australasian Workshop on Software and System Architectures (AWSA
2005), pages 13–24, Brisbane, Australia.

McGraw, G. (2002). Managing software security risks. Computer, 35(4):99–101, DOI:
10.1109/MC.2002.993782.

McGraw, G. R. (2006). Software Security: Building Security In. Addison-Wesley
Professional, 1st edition, ISBN: 978-0321356703.

Medvidovic, N. and Taylor, R. N. (2000). A classification and comparison framework
for software architecture description languages. IEEE Transactions on Software
Engineering, 26(1):70–93, DOI: 10.1109/32.825767.

Microsoft Corporation (2003). Improving Web Application Security: Threats and
Countermeasures. Microsoft Press, 1st edition, ISBN: 978-0735618428.

Microsoft Developer Network (2016). Chapter 16: Quality Attributes. https://msdn.m
icrosoft.com/en-us/library/ee658094.aspx. Retrieved May 17, 2016.

Microsoft Technet (2016). TCP/IP Protocol Architecture. https://technet.microsof
t.com/en-us/library/cc958821.aspx. Retrieved May 21, 2016.

Money, A. G. and Agius, H. (2008). Video summarisation: A conceptual framework
and survey of the state of the art. Journal of Visual Communication and Image
Representation, 19(2):121–143, DOI: 10.1016/j.jvcir.2007.04.002.

Mulligan, G. and Gračanin, D. (2009). A comparison of soap and rest implementations of
a service based interaction independence middleware framework. In proceedings of the
2009 Winter Simulation Conference (WSC), pages 1423–1432, Austin, Texas, USA.
DOI: 10.1109/WSC.2009.5429290.

Multimedia, D. (2016). D2I presentation videos. https://www.youtube.com/playlist
?list=PLOHi43f5MZrjfzKHfujh9eO60EDk80Qb9. Retrieved October 19, 2016.

MUVIS (2015). A System for Content-Based Indexing and Retrieval in Multimedia
Databases. http://muvis.cs.tut.fi. Retrieved September 20, 2015.

Müller, H., Müller, W., Marchand-Maillet, S., Pun, T., and Squire, D. M. (2003). A
framework for benchmarking in cbir. Multimedia Tools and Applications, 21:55–73,
DOI: 10.1023/A:1025034215859.

Nagamachi, M. (2010). Kansei/Affective Engineering. CRC Press, ISBN:
978-1-4398-2133-6.

Navon, J. and Fernandez, F. (2011). The essence of rest architectural style.
REST: From Research to Practice, pages 21–33, ISBN: 978-1-4419-8302-2, DOI:
10.1007/978-1-4419-8303-9_1.

Nord, R., Clements, P. C., Emery, D., and Hilliard, R. (2009). A structured approach for
reviewing architecture documentation. technical report, Carnegie Mellon University.

http://dx.doi.org/10.1109/MC.2002.993782
http://dx.doi.org/10.1109/32.825767
https://msdn.microsoft.com/en-us/library/ee658094.aspx
https://msdn.microsoft.com/en-us/library/ee658094.aspx
https://technet.microsoft.com/en-us/library/cc958821.aspx
https://technet.microsoft.com/en-us/library/cc958821.aspx
http://dx.doi.org/10.1016/j.jvcir.2007.04.002
http://dx.doi.org/10.1109/WSC.2009.5429290
https://www.youtube.com/playlist?list=PLOHi43f5MZrjfzKHfujh9eO60EDk80Qb9
https://www.youtube.com/playlist?list=PLOHi43f5MZrjfzKHfujh9eO60EDk80Qb9
http://muvis.cs.tut.fi
http://dx.doi.org/10.1023/A:1025034215859
http://dx.doi.org/10.1007/978-1-4419-8303-9_1

72 References

Ntoulas, A., Najork, M., Manasse, M., and Fetterly, D. (2006). Detecting spam web pages
through content analysis. In proceedings of the 15th international conference on World
Wide Web (WWW ’06), pages 83–92, Edinburgh, Scotland, United Kingdom. DOI:
10.1145/1135777.1135794.

Oracle Corporation (2016a). MySQL Cluster CGE. http://www.mysql.com/products
/cluster/. Retrieved May 17, 2016.

Oracle Corporation (2016b). MySQL Community Server. http://dev.mysql.com/down
loads/mysql/. Retrieved May 24, 2016.

O’Brien, L., Merson, P., and Bass, L. (2007). Quality attributes for service-oriented
architectures. In proceedings of the International Workshop on Systems Development
in SOA Environments (SDSOA ’07), Minneapolis, Minnesota, USA. DOI:
10.1109/SDSOA.2007.10.

O’Reilly Media, Inc. (2016). xml.com. http://www.xml.com/pub/rg/XML_Parsers.
Retrieved July 25, 2016.

Pallis, G. and Vakali, A. (2006). Insight and perspectives for content delivery networks.
Communications of the ACM - Personal information management, 49(1):101–106, DOI:
10.1145/1107458.1107462.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, DOI: 10.1145/361598.361623.

Patidar, A. and Suman, U. (2015). A survey on software architecture evaluation
methods. In proceedings of the 2015 2nd International Conference on Computing
for Sustainable Global Development (INDIACom), pages 967–972, New Delhi, India.
ISBN: 978-9-3805-4415-1.

Paulson, L. D. (2005). Building rich web applications with ajax. Computer, 38(10):14–17,
DOI: 10.1109/MC.2005.330.

Pautasso, C. (2009). Restful web service composition with bpel for rest. Data & Knowledge
Engineering, 68(9):851–866, DOI: 10.1016/j.datak.2009.02.016.

Pautasso, C., Zimmermann, O., and Leymann, F. (2008). Restful web services vs. ’big’ web
services: making the right architectural decision. In proceedings of the 17th International
Conference on World Wide Web, Beijing, China. DOI: 10.1145/1367497.1367606.

Peffers, K., Tuunanen, T., Rothenberger, M., and Chatterjee, S. (2007). A
design science research methodology for information systems research. Journal
of Management Information Systems, 24(3):45–77, ISSN: 1402-150X, DOI:
10.2753/MIS0742-1222240302.

Perry, D. E. and Wolf, A. L. (1992). Foundations for the study of software architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40–52, ISSN: 0163-5948, DOI:
10.1145/141874.141884.

Pivotal Software (2016). Spring Framework. https://projects.spring.io/spring-f
ramework. Retrieved May 24, 2016.

http://dx.doi.org/10.1145/1135777.1135794
http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/
http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mysql/
http://dx.doi.org/10.1109/SDSOA.2007.10
http://www.xml.com/pub/rg/XML_Parsers
http://dx.doi.org/10.1145/1107458.1107462
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1109/MC.2005.330
http://dx.doi.org/10.1016/j.datak.2009.02.016
http://dx.doi.org/10.1145/1367497.1367606
http://dx.doi.org/10.2753/MIS0742-1222240302
http://dx.doi.org/10.1145/141874.141884
https://projects.spring.io/spring-framework
https://projects.spring.io/spring-framework

References 73

Rahman, M. M., Bhattacharya, P., and Desai, B. C. D. (2007). A framework for medical
image retrieval using machine learning and statistical similarity matching techniques
with relevance feedback. IEEE Transactions on Information Technology in Biomedicine,
11(1), DOI: 10.1109/TITB.2006.884364.

Rantanen, P. and Sillberg, P. (2009). Mobiilia päätelaitetta hyödyntävä
viestinvälitysratkaisu katastrofi- ja hätätilanteisiin. Master’s thesis, Tampere University
of Technology.

Rantanen, P., Sillberg, P., Soini, J., and Jaakkola, H. (2017). Tag suggestions from social
media profiles. Information Modelling and Knowledge Bases XXVIII, pages 354–361,
ISBN: 978-1-61499-719-1, DOI: 10.3233/978-1-61499-720-7-354.

Reade, C. (1989). Elements Of Functional Programming. Addison-Wesley, 1st edition,
ISBN: 978-0201129151.

Red Hat, Inc (2016). Ansible is Simple IT Automation. https://www.ansible.com.
Retrieved May 24, 2016.

Richardson, L. and Ruby, S. (2007). RESTful web service. O’Reilly Media, ISBN:
978-0-596-52926-0.

Riva, C. and Laitkorpi, M. (2009). Designing web-based mobile services with
rest. Service-Oriented Computing - ICSOC 2007 Workshops, pages 439–450, ISBN:
978-3-540-93850-7, DOI: 10.1007/978-3-540-93851-4_42.

Robles, O. D., Bosque, J. L., Pastor, L., and Rodriguez, A. (2005). Performance analysis of
a cbir system on shared-memory systems and heterogeneous clusters. In proceedings of
the Seventh International Workshop on Computer Architecture for Machine Perception
(CAMP’05), Palermo, Italy. DOI: 10.1109/CAMP.2005.40.

Rost, D., Naab, M., Lima, C., and von Flach Garcia Chavez, C. (2013). Software
architecture documentation for developers: A survey. In proccedings of the 7th European
conference on Software Architecture (ECSA’13), pages 72–88, Montpellier, France.
DOI: 10.1007/978-3-642-39031-9_7.

Roy, B. and Graham, T. N. (2008). Methods for evaluating software architecture: A
survey. technical report, School of Computing, Queen’s University at Kingston, Ontario,
Canada.

Salton, G. (1968). Automatic content analysis in information retrieval. technical report,
Cornell University.

Schedl, M., Gómez, E., and Urbano, J. (2014). Music information retrieval: Recent
developments and applications. Foundations and Trends in Information Retrieval,
8(2-3):127–261, ISBN: 978-1-60198-807-2.

Sillberg, P., Rantanen, P., and Soini, J. (2013). A content based tool for searching,
connecting and combining digital information - case: Smart photo service. In proceedings
of the 16th International Multiconference Information Society (IS 2013), volume A,
pages 249–252, Ljubljana, Slovenia. Josef Stefan Institute.

Simon, H. A. (1996). The Sciences of the Artificial. The MIT Press, 3rd edition, ISBN:
978-0262691918.

http://dx.doi.org/10.1109/TITB.2006.884364
http://dx.doi.org/10.3233/978-1-61499-720-7-354
https://www.ansible.com
http://dx.doi.org/10.1007/978-3-540-93851-4_42
http://dx.doi.org/10.1109/CAMP.2005.40
http://dx.doi.org/10.1007/978-3-642-39031-9_7

74 References

Smith, K. (2006). Simplifying ajax-style web development. Computer, 39(5):98–101,
DOI: 10.1109/MC.2006.177.

Soini, J., Sillberg, P., and Rantanen, P. (2011). Deployment of new techniques for searching,
sorting, processing and presenting data. In proceedings of the 14th International
Multiconference Information Society (IS 2011), volume A, pages 179–182, Ljubljana,
Slovenia. International Multiconference Information Society IS.

Swanberg, D., Shu, C. F., and Jain, R. (1992). Architecture of a multimedia information
system for content-based retrieval. In proceedings of the Third International Workshop
on Network and Operating System Support for Digital Audio and Video, pages 387–392,
La Jolla, California, USA.

Tang, A., Babar, M. A., Gorton, I., and Han, J. (2006). A survey of architecture
design rationale. Journal of Systems and Software, 79(12):1792–1804, DOI:
10.1016/j.jss.2006.04.029.

Tarvainen, P. (2007). Adaptability evaluation of software architectures; a case
study. In proceedings of the 31st Annual International Computer Software
and Applications Conference, volume 2, pages 579–586, Beijing, China. DOI:
10.1109/COMPSAC.2007.240.

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2009). Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, ISBN: 978-0470167748.

The Bug Genie (2017). The bug genie - friendly issue tracking and project management.
http://thebuggenie.com/. Retrieved January 17, 2017.

The jQuery Foundation (2016). jquery. https://jquery.com/. Retrieved May 18, 2016.

Tipaldo, G. (2014). L’analisi del contenuto e i mass media. Il Mulino, ISBN:
978-8815248329.

Trojacanec, K., Dimitrovski, I., and Loskovska, S. (2009). Content based image
retrieval in medical applications: An improvement of the two-level architecture. In
proceedings of IEEE Eurocon 2009, pages 118–121, St. Petersburg, Russia. DOI:
10.1109/EURCON.2009.5167614.

Tsichritzis, D. (1997). The dynamics of innovation. The Next Fifty Years of Computing,
pages 259–265, ISBN: 978-0-387-98588-6, DOI: 10.1007/978-1-4612-0685-9_19.

Tsytsarau, M. and Palpanas, T. (2011). Survey on mining subjective data on the
web. Data Mining and Knowledge Discovery, 24(3):478–514, ISSN: 1384-5810, DOI:
10.1007/s10618-011-0238-6.

TUT Pori (2015a). Tampere University of Technology, Pori Department. CAFrontEnd
Specification. http://visuallabel.github.io/javadoc/visuallabel/documents.
html. Retrieved January 17, 2017.

TUT Pori (2015b). Tampere University of Technology, Pori Department. VisualLabel at
GitHub. https://github.com/visuallabel. Retrieved September 20, 2015.

TUT Pori (2015c). Tampere University of Technology, Pori Department. VisualLabel at
GitHub, Analysis Back End Capabilities. http://visuallabel.github.io/javadoc/
visuallabel/service/tut/pori/contentanalysis/AnalysisBackend.Capabilit
y.html. Retrieved May 16, 2016.

http://dx.doi.org/10.1109/MC.2006.177
http://dx.doi.org/10.1016/j.jss.2006.04.029
http://dx.doi.org/10.1109/COMPSAC.2007.240
http://thebuggenie.com/
https://jquery.com/
http://dx.doi.org/10.1109/EURCON.2009.5167614
http://dx.doi.org/10.1007/978-1-4612-0685-9_19
http://dx.doi.org/10.1007/s10618-011-0238-6
http://visuallabel.github.io/javadoc/visuallabel/documents.html
http://visuallabel.github.io/javadoc/visuallabel/documents.html
https://github.com/visuallabel
http://visuallabel.github.io/javadoc/visuallabel/service/tut/pori/contentanalysis/AnalysisBackend.Capability.html
http://visuallabel.github.io/javadoc/visuallabel/service/tut/pori/contentanalysis/AnalysisBackend.Capability.html
http://visuallabel.github.io/javadoc/visuallabel/service/tut/pori/contentanalysis/AnalysisBackend.Capability.html

References 75

TUT Pori (2015d). Tampere University of Technology, Pori Department. VisualLabel
at GitHub, Content Analysis Use Cases. https://github.com/visuallabel/CAFro
ntEnd/wiki/Use-Cases. Retrieved May 18, 2016.

TUT Pori (2015e). Tampere University of Technology, Pori Department. VisualLabel at
GitHub, Data Groups. http://visuallabel.github.io/javadoc/visuallabel/co
re/tut/pori/http/parameters/DataGroups.html. Retrieved May 16, 2016.

TUT Pori (2015f). Tampere University of Technology, Pori Department. VisualLabel at
GitHub, Photo Task Example. http://visuallabel.github.io/javadoc/visualla
bel/service/tut/pori/contentanalysis/PhotoTaskDetails.html. Retrieved May
16, 2016.

TUT Pori (2015g). Tampere University of Technology, Pori Department. VisualLabel at
GitHub, wikipages. https://github.com/visuallabel/CAFrontEnd/wiki/What-i
s-VisualLabel%3F. Retrieved January 17, 2017.

TUT Pori (2016a). Tampere University of Technology, Pori Department. Javadocer source
codes for VisualLabel doclet extensions. https://github.com/visuallabel/javadoc
er. Retrieved January 17, 2017.

TUT Pori (2016b). Tampere University of Technology, Pori Department. VisualLabel
at GitHub, A simple web page for testing the basic HTTP operations. https://gith
ub.com/visuallabel/CAFrontEnd/blob/master/web/debug/poster.jsp. Retrieved
May 18, 2016.

TUT Pori (2016c). Tampere University of Technology, Pori Department. VisualLabel at
GitHub, Deployment Guide. https://github.com/visuallabel/CAFrontEnd/wiki
/Deployment-Guide. Retrieved May 18, 2016.

Typke, R., Wiering, F., and Veltkamp, R. C. (2005). A survey of music information
retrieval systems. In proceedings of the 6th International Conference on Music
Information Retrievals (ISMIR 2006), London, United Kingdom.

Unicode, Inc. (2016). The Unicode Standard. http://www.unicode.org/standard/sta
ndard.html. Retrieved July 25, 2016.

Valipour, M. H., Amirzafari, B., Maleki, K. N., and Daneshpour, N. (2009). A brief survey
of software architecture concepts and service oriented architecture. In proceedings of the
2nd IEEE International Conference on Computer Science and Information Technology,
(ICCSIT 2009), pages 34–38, Beijing, China. DOI: 10.1109/ICCSIT.2009.5235004.

van Heesch, U., Avgeriou, P., and Hilliard, R. (2012). A documentation framework
for architecture decisions. Journal of Systems and Software, 85(4):795–820, DOI:
10.1016/j.jss.2011.10.017.

Verborgh, R., Harth, A., Maleshkova, M., Stadtmüller, S., Steiner, T., Taheriyan, M., and
de Walle, R. V. (2014). Survey of semantic description of rest apis. REST: Advanced
Research Topics and Practical Applications, pages 69–89, ISBN: 978-1-4614-9298-6,
DOI: 10.1007/978-1-4614-9299-3_5.

Vogel, J. and Schiele, B. (2006). Performance evaluation and optimization
for content-based image retrieval. Pattern Recognition, 39(5):897–909, DOI:
10.1016/j.patcog.2005.10.024.

https://github.com/visuallabel/CAFrontEnd/wiki/Use-Cases
https://github.com/visuallabel/CAFrontEnd/wiki/Use-Cases
http://visuallabel.github.io/javadoc/visuallabel/core/tut/pori/http/parameters/DataGroups.html
http://visuallabel.github.io/javadoc/visuallabel/core/tut/pori/http/parameters/DataGroups.html
http://visuallabel.github.io/javadoc/visuallabel/service/tut/pori/contentanalysis/PhotoTaskDetails.html
http://visuallabel.github.io/javadoc/visuallabel/service/tut/pori/contentanalysis/PhotoTaskDetails.html
https://github.com/visuallabel/CAFrontEnd/wiki/What-is-VisualLabel%3F
https://github.com/visuallabel/CAFrontEnd/wiki/What-is-VisualLabel%3F
https://github.com/visuallabel/javadocer
https://github.com/visuallabel/javadocer
https://github.com/visuallabel/CAFrontEnd/blob/master/web/debug/poster.jsp
https://github.com/visuallabel/CAFrontEnd/blob/master/web/debug/poster.jsp
https://github.com/visuallabel/CAFrontEnd/wiki/Deployment-Guide
https://github.com/visuallabel/CAFrontEnd/wiki/Deployment-Guide
http://www.unicode.org/standard/standard.html
http://www.unicode.org/standard/standard.html
http://dx.doi.org/10.1109/ICCSIT.2009.5235004
http://dx.doi.org/10.1016/j.jss.2011.10.017
http://dx.doi.org/10.1007/978-1-4614-9299-3_5
http://dx.doi.org/10.1016/j.patcog.2005.10.024

76 References

W3C (2004a). World Wide Web Consortium, Web Services Architecture. http://www.
w3.org/TR/ws-arch/. Retrieved July 19, 2016.

W3C (2004b). World Wide Web Consortium, Web Services Glossary, W3C Working
Group Note. http://www.w3.org/TR/ws-gloss. Retrieved September 20, 2015.

W3C (2007a). World Wide Web Consortium, SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition), W3C Recommendation. http://www.w3.org/TR/soa
p12-part1/. Retrieved September 20, 2015.

W3C (2007b). World Wide Web Consortium, Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language, W3C Recommendation. http://www.w3.org/TR
/wsdl20. Retrieved September 20, 2015.

W3C (2008). World Wide Web Consortium, Extensible Markup Language (XML) 1.0
(Fifth Edition). https://www.w3.org/TR/xml/. Retrieved July 25, 2016.

Walls, J. G., Widmeyer, G. R., and Sawy, O. A. E. (1992). Building an information
system design theory for vigilant eis. Information Systems Research, 3(1):36–59, ISSN:
1526-5536, DOI: 10.1287/isre.3.1.36.

Wang, H. and Wang, C. (2003). Taxonomy of security considerations and software quality.
Communications of the ACM - E-services: a cornucopia of digital offerings ushers in
the next Net-based evolution, 46(6), DOI: 10.1145/777313.777315.

Web Sequence Diagrams (2017). Web sequence diagrams. https://www.websequenced
iagrams.com/. Retrieved January 17, 2017.

Wikipedia (2016). Content analysis. https://en.wikipedia.org/wiki/Content_anal
ysis. Retrieved April 28, 2016.

Yoshitaka, A. and Ichikawa, T. (1999). A survey on content-based retrieval for multimedia
databases. IEEE Transactions on Knowledge and Data Engineering, 11(1):81–93, ISSN:
1041-4347, DOI: 10.1109/69.755617.

Zdun, U., Völter, M., and Kircher, M. (2004). Pattern-based design of an asynchronous
invocation framework for web services. International Journal of Web Services Research,
1(3):42–62, DOI: 10.4018/jwsr.2004070103.

Zettsu, K. (2012). Knowledge processing technology: An overview of knowledge cluster
systems. Journal of the National Institute of Information and Communications
Technology, 59(3/4):155–168.

Zhang, D., Islam, M. M., and Lu, G. (2012). A review on automatic image annotation
techniques. Pattern Recognition, 45(1):346–362, DOI: 10.1016/j.patcog.2011.05.013.

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-gloss
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20
https://www.w3.org/TR/xml/
http://dx.doi.org/10.1287/isre.3.1.36
http://dx.doi.org/10.1145/777313.777315
https://www.websequencediagrams.com/
https://www.websequencediagrams.com/
https://en.wikipedia.org/wiki/Content_analysis
https://en.wikipedia.org/wiki/Content_analysis
http://dx.doi.org/10.1109/69.755617
http://dx.doi.org/10.4018/jwsr.2004070103
http://dx.doi.org/10.1016/j.patcog.2011.05.013

Publications

Publication I

Sillberg, P., Rantanen P., Saari, M., Leppäniemi, J., Soini, J. and Jaakkola, H., “Towards
an IP-Based Alert Message Delivery System”, in Proceedings of the 6th International
ISCRAM Conference, ISBN 978-91-633-4715-3, Gothenburg, Sweden, May 10-13, 2009.

Printed with the permission of the Information Systems for Crisis Response and Management
(ISCRAM).

Original publication is available under Creative Commons copyright agreement at http:
//www.iscramlive.org/ISCRAM2009/papers/.

http://www.iscramlive.org/ISCRAM2009/papers/
http://www.iscramlive.org/ISCRAM2009/papers/

Rantanen et al. Towards an IP-Based Alert Message Delivery System

Proceedings of the 6th International ISCRAM Conference – Gothenburg, Sweden, May 2009
J. Landgren and S. Jul, eds.

Towards an IP-Based Alert Message Delivery System

Pekka Sillberg
Tampere University of

Technology (TUT), Pori
Finland

pekka.sillberg@tut.fi

Petri Rantanen
Tampere University of

Technology (TUT), Pori
Finland

petri.rantanen@tut.fi

Mika Saari
Tampere University of

Technology (TUT), Pori
Finland

mika.saari@tut.fi

Jari Leppäniemi
Tampere University of

Technology (TUT), Pori
Finland

jari.leppaniemi@tut.fi

Jari Soini

Tampere University of
Technology (TUT), Pori

Finland
jari.o.soini@tut.fi

Hannu Jaakkola

Tampere University of
Technology (TUT), Pori

Finland
hannu.jaakkola@tut.fi

ABSTRACT

Advancements in technology have provided new opportunities for the delivery of emergency messages. However,
some of the issues concerning data security and technical solutions are quite different from the problems of the
traditional means of communication. The Internet poses its own set of challenges. This paper presents a few
emergency messaging system proposals made by other researchers and also introduces a new proposition put
forward by the authors of this paper. This will demonstrate how to use client-server architecture to deliver
emergency alert messages in IP-based networks. The proposed system uses Atom feeds to deliver alert messages and
also provides a feedback channel for client data. In this scenario clients could have any kind of device from mobile
terminals to desktop computers.

Keywords

IP-based alert message, Mobile Emergency Announcement, Common Alerting Protocol, Atom feed, Information
systems

INTRODUCTION

Mobile terminals have become an essential part of everyday life. The penetration level of mobile phones is
approaching 100% in well-developed economies and even in less developed economies the number of phones is
rising very quickly. From this aspect, the use of mobile phones for delivering emergency information is justified. In
this paper the objective is how to utilize mobile technology to supply disaster information and especially
communication by mobile phone. We have worked with a communication system that delivers alert messages. One
main research area is how to send alert messages to mobile devices. This paper describes the communication
mechanism which is needed to send and receive alert messages in mobile devices.

The major challenges of emergency management are to reduce the human and economic costs of the emergency.
One of the most important elements to achieve this goal is to make the general public aware of and prepare them for
an upcoming emergency situation. According to the Organization for the Advancement of Structured Information
Standards (OASIS, 2005), the emergency management cycle consists of the four main phases shown in Figure 1.

Rantanen et al. Towards an IP-Based Alert Message Delivery System

Proceedings of the 6th International ISCRAM Conference – Gothenburg, Sweden, May 2009
J. Landgren and S. Jul, eds.

The purpose of the Prevention and Mitigation phase is to lower the possibility of the disaster – or emergency –
occurring and/or to minimize the damage caused. Actions done for this phase are generally long-term processes. The
Preparation phase typically consists of actions taken when a disaster is anticipated or impending in order to ensure a
rapid and more effective response. Actions taken during the Response phase are aimed at saving human life, the
protection of assets, the supply of vital goods and services, and the protection of the environment. The Response
phase begins as the disaster/emergency strikes and continues until the Recovery phase takes over. Recovery is the
process by which communities return to a normal level of functioning. (OASIS, 2005)

One of the most important features of an emergency alert system – regardless of what medium/media it uses as its
transfer layer – should be its ability to deliver the emergency alert effectively to as many of the people under threat
as possible. According to a study made by Verma and Verma (2005), a good emergency alert system should have
the properties of locality, automated operation, non-intrusiveness, spontaneity, ubiquity and support for second
languages. These properties are not tied only to emergency alert systems working over the Internet, thus they may be
applied to any emergency alert system. Locality means that the emergency alert should be available to the general
population that is affected by the emergency. The automated operation of the emergency alert system means that it
should be able to switch to alert mode from normal mode and vice versa without the need for manual intervention.
Non-intrusiveness and spontaneity are especially aimed at emergency alert systems but may also be applied to
“normal” emergency alert systems. Non-intrusiveness means that the user's activities should not be disrupted by the
alert system. When the alert system is spontaneous, it can deliver and show alerts to the user without the user
needing to do any predetermined action manually. Ubiquity by definition means “being everywhere,” thus in an alert
system context it means that alerts should be provided to everyone affected, and should not miss out any user in the
affected area. The support for a second language simply means that the emergency alert system should be able to
provide alerts in another or many other languages.

SSMC/DDKM - The Project

The starting point of this study is the ongoing SSMC/DDKM (Seamless Services and Mobile Connectivity in
Distributed Disaster Knowledge Management) research project, coordinated by the Tampere University of
Technology (TUT). The general goal of this two-year research project (Soini, Leppäniemi and Jaakkola, 2008) is to
study and develop the methods, processes and technologies to support improved knowledge management in disasters
and accidents. The ability to build a reliable situational model based on the history and current knowledge of the
situation and on good practices concerning comparable accidents/disasters is important in minimizing the
consequences of an accident. The project is funded 70% by Tekes (the Finnish Funding Agency for Technology and
Innovation) and 30% by a consortium consisting of two Finnish ICT companies and the Finnish Emergency
Response Centre Agency. The SSMC/DDKM project includes two dimensions: international and national. The
project is based on international research co-operation between several organizations. The leading forces are NICT
(National Research Institute on Information and Communication Technology) and Keio University (SFC) in Japan.

Figure 1. The Disaster and Emergency cycle
(Adapted from OASIS, 2005; Alexander, 2002)

Rantanen et al. Towards an IP-Based Alert Message Delivery System

Proceedings of the 6th International ISCRAM Conference – Gothenburg, Sweden, May 2009
J. Landgren and S. Jul, eds.

The Japanese project has been given government financing for a 5-year period. The goal of this international part is
to develop a distributed disaster knowledge management system, which supports the connectivity of separate
knowledge sources (NICT, 2007a, 2007b). In the national dimension the project focuses on investigating current
collaboration – taking into account both technical and social aspects – in accident and disaster situations between the
Finnish authorities who are responsible for producing, disseminating and utilizing information in these situations.

The structure of this paper is the following: first, the background of the subject is introduced in the section entitled
“Emergency alert systems on the Internet.” The standards used are also mentioned. In the next section “Towards an
IP-based alert Message Delivery System,” the basic construction of our proposed emergency message alert system is
described. At the beginning we describe the protocol used in client - server communication. The section entitled
“Communication flow between server and client” includes two cases for messaging between client and server: a
basic case and an extended case. The basic case is demonstrated by a sequence diagram of message transportation.
The extended case demonstrates the use of a feedback channel. Finally the study is summarized in the “Conclusion”.

EMERGENCY ALERT SYSTEMS ON THE INTERNET

What makes IP-based (such as Internet) emergency alert systems plausible are the many possibilities the Internet has
to offer. For example more and more of the mobile devices sold nowadays have the option of connecting to the
Internet using wireless networks – or other high bandwidth networks – and can also run programs made to support
emergency messaging. This can enable services where one could report immediately from the disaster site thus
giving first hand knowledge for use in emergency management. The service provided could easily be expanded to
giving alerts, warnings or instructions before and after the emergency incident. IP-based alerting systems also allow
other devices accessing the network to use the service, such as desktop computers and personal digital assistants
(PDA). This is a great advantage over emergency alert systems designed solely for mobile phones (for example
SMS messages).

When sending or receiving information over the Internet or any other IP-based network architecture, there are
basically two possible implementations: The first one is to make a custom – free or proprietary – protocol and use it
over the existing network infrastructure – and the second option is to use a standardized protocol. In many cases the
first kind of implementation (proprietary protocol) may be the faster way of transmitting information and more
optimized regarding bandwidth usage. However, the custom structure of the chosen protocol could cause problems
when communicating with third party software or when interfacing with other systems. Therefore, especially with
emergency messaging, this is not a desirable outcome. The interoperability with multiple systems, devices and
software should be one of the prime goals of development.

To overcome the interoperability problems in emergency information transfer the second option is preferable, i.e. a
commonly known and standardized protocol. For emergency messages the Common Alerting Protocol (CAP) of the
Organization for the Advancement of Structured Information Standards (OASIS, 2008) is a good choice because of
its standardized format (CAP v1.1, 2005; Botterell, 2006) and completely free and open nature. CAP has already
been used in many official systems and especially in Atom feeds (CAP Cookbook, 2008; RFC 4287, 2005). CAP
itself is a part of a larger protocol family known as Emergency Data Exchange Language (EDXL). EDXL has
standardized means, for example, for sending messages using eXtensible Markup Language (XML) with and
without the XML-based SOAP protocol (EDXL-DE v1.0, 2006). In conclusion, using standard means and protocols
is the second and recommended implementation option. Both the Atom feed-based approach and the SOAP protocol
are used in the emergency message system proposition presented in this paper. Next we will examine a few other
systems that have also been developed for delivering emergency alerts.

There have been many previous propositions that use CAP or Atom or both for sending and receiving emergency
messages. X-Capatom (IBM developerWorks, 2007) is quite similar to our proposal and there are also similarities
with Art Botterell's Advanced EAS Relay Network (AERN) proposition's “Secure server” approach (Botterell,
2003). Botterell (2003) describes many other means for emergency message delivery and primarily these are meant
to improve the United States' existing Emergency Message System (EAS), but the same ideas can be applied to
other systems. When referring to AERN in this paper, the “Secure server” approach is meant. The AERN
architecture is free and open for use for anyone, as is X-Capatom.

Both X-Capatom and AERN represent a system which has one or multiple secure servers and the content of these
servers is updated by some authorized party. Since only selected individuals or parties can add or modify content on
the server, the information can be solely trusted as long as the server is not compromised. This is the basic idea of
the approach. X-Capatom does not especially mention the “Secure server” approach by name, but it can be

Rantanen et al. Towards an IP-Based Alert Message Delivery System

Proceedings of the 6th International ISCRAM Conference – Gothenburg, Sweden, May 2009
J. Landgren and S. Jul, eds.

considered to belong to this category. AERN describes the architecture more and does not go too deeply into
technical, code-level details.

X-Capatom in turn concentrates more on describing the basic functions and technical details of the system. IBM's X-
Capatom pages (IBM developerWorks, 2007) even have a Java™ based reference implementation. As the name
implies, X-Capatom uses a combination of Atom feeds and CAP to deliver messages. This approach has the major
advantage of being able to deliver messages to many programs which are not originally meant to read emergency
message information. Atom feeds can be read using many of the basic Really Simple Syndication (RSS) readers and
by normal web browsers. It is also possible to make customized third party software that interprets the feeds in some
specific and predefined way and displays the information to end users, but this is optional. X-Capatom uses Atom
Publishing Protocol (RFC 5023, 2007) for modifying, deleting and adding new information to Atom feeds. The
reference implementation does not have any kind of user authorization or user control even though the X-Capatom
recommends adding such features when using the system. The feeds themselves are available for everyone to read.

In summary, the techniques and methods presented earlier in this section share many common elements and basic
ideas with the emergency messaging system proposed by the authors of this paper. In next section the new proposal
and implementation example are described in more detail.

TOWARDS AN IP-BASED ALERT MESSAGE DELIVERY SYSTEM

The system that we are introducing in this paper is fundamentally based on the integration of two different
messaging channels working together in a single system. The diagram (Figure 2) below illustrates the basic
operation of the system. In our example the feed channel uses Atom feeds as a transfer medium. The feeds are
compiled by the server using data it has collected from various sources. These information sources could be
basically any type. These feeds contain the elements of Atom and CAP – or any other XML-based format –
elements with the necessary processing information for use by the client software. Feeds can be used as standalone
feeds in any RSS/Atom reader and can still offer sufficient information about the incident for the user. In cases
where the user does have an enhanced reader program, the processing information in the feed can offer extended
features. For example, one feature could be an automatically initiated alert if a predefined threshold value is
exceeded. Another example could be opening a map program showing the location of the coordinates included in the
feed.

The Atom feeds, i.e. the alert messages, should be constructed in such a way that every reader (normal RSS/Atom
readers or enhanced clients) is capable of understanding all the Atom-specific elements of the feeds and seeing the
crucial alert information. This means that processing information meant for enhanced clients should only include
meta-information of the information already provided in the common part of the Atom feed. In this way different
kinds of clients/devices receive the same information, and only the layout and the presentation vary. In case of the
previously mentioned example of opening the map program, if the client device cannot show maps, the user can still
see the coordinates and verbal descriptions of the location. This kind of difference in the visual presentation of the
information may affect the intelligibility of the alert messages (e.g. it might be difficult for the user to figure out the
precise geographical location of the coordinates).

In our example the extended messaging channel is using SOAP encapsulated messages. This channel allows users to
initiate the data transfer between the server and client as well as the other way around. In other words, use of this
kind of approach enables a feedback channel as well as a wide range of services and features. But this approach is

Figure 2. Simple communication
sequence

Rantanen et al. Towards an IP-Based Alert Message Delivery System

Proceedings of the 6th International ISCRAM Conference – Gothenburg, Sweden, May 2009
J. Landgren and S. Jul, eds.

not completely free of problems and/or drawbacks. For instance, the server needs to know where its users are (IP
addresses etc.) and some network applications such as Network Address Translators (NAT) and firewalls may
interfere with connection attempts made by the server. Also, client devices running software for listening to a server,
in order to make a connection, may make them vulnerable to security threats.

The emergency message delivery system proposal presented in this paper follows the ”Secure server” approach and
the ”Client software” approach (Verma and Verma, 2005). The feed-based system was chosen because it enables
normal users, that is, users who are not known to the system in any way to read emergency messages using whatever
software they prefer. Atom feeds were chosen purely because of Atom's status as the Internet Engineering Task
Force (IETF) standard (RFC 4287, 2005). RSS feeds may be used more often, but there is no common agreement
about what RSS feeds can or cannot include. In some cases this kind of freedom can be a good thing, but when a
standardized format is required it is not. Additionally, unlike Atom, RSS does not state what to do with XML
elements and this is left to the XML processing programs to decide. Atom especially defines that unknown elements,
fields or attributes should not be processed in anyway. This means that any software working as a client cannot start
guessing what to do with this kind of unknown data. In emergency messaging it is crucial that unknown messages
are not interpreted wrongfully or “guessed.” All client – and of course server-side – programs should process the
messages similarly and notify the user in the case of unclear messages. This can be done with RSS, but it is not
required by any standard. It should be noted that nothing guarantees that programs using Atom do not just ignore the
unknown data and continue normally, but in well-made programs this kind of behavior is not desirable. Another gain
in using Atom compared to RSS is its ability to clearly state whether the feed content is just a collection of elements
from some other message (for example a CAP message) or the complete original message in the form of a link
pointing to another destination (Westfall, 2007).

System overview

The picture below (Figure 3) shows a generalized overview of our proposal i.e. the system described in this paper. In
essence, the purpose of the system is to relay messages. The system is used to relay emergency alert information, but
the same basic model could be used with any kind of information

The “Server” is the connecting part between two sides, the trusted sources – which could be thought of as the
providers of the information – and the information consumers. The major difference between this model and the X-
Capatom is that in the basic usage scenario there is no need for user management or authorization. This is because
no information is needed about the “normal users” reading the feeds – this is also true with X-Capatom. The
providers of the information should also be trusted automatically. These trusted sources could be anything from
CAP messages offered by official sources or other Atom feeds – RSS feeds are also possible despite their

Figure 3. Overview of system

Rantanen et al. Towards an IP-Based Alert Message Delivery System

Proceedings of the 6th International ISCRAM Conference – Gothenburg, Sweden, May 2009
J. Landgren and S. Jul, eds.

nonstandard nature. This allows some servers to work as information providers for other servers, or in other words,
they could behave like a client of a server.

All information coming from trusted sources should be transmitted over secure communication lines to guarantee
that the messages are authentic. The secure communication could be anything from Virtual Private Networks (VPN)
to Secure Sockets Layer / Transport Layer Security (SSL/TLS) using certificates (for example X.509 certificates). It
is also possible to use certificates and unencrypted data when only message integrity is required. SSL/TLS is also a
good choice for message authentication checks in Atom feeds because it requires very little changes in the operation
of the web server, though it should be noted that using encryption causes extra workload on the server side.
Unencrypted data and X.509 certificates are often enough in feeds because the information is meant to be read by
anyone and there is no risk of information leaks to unwanted parties or individuals. If the system is used to relay
confidential information that often means that the information is meant for a relatively small group of individuals
and in that case the extra workload caused by data encryption is smaller.

The figure 3 (above) also shows the possibility of an authenticated user. Because the server can receive messages
from the trusted sources side over an SSL/TLS connection, the same functionality enables it to receive messages
from “Normal users.” These users must be known to the server and authenticated before any information can be
received. Connection to authenticated users can be thought of as a secondary means of information retrieval and can
be used for example to transmit real-time, on-location data between different authorities (for example between the
police and fire departments). Knowing certain clients and collecting information about them – such as IP addresses
and/or geographic locations – also makes it possible to connect to these clients directly. In this paper's emergency
message system the direct connection to clients and the feed-based information relay are separated to different usage
cases and these cases are described below (Figure 4) in more detail. Direct connection includes both sending
information to clients and receiving information from them.

Communication flow between server and client

The differences to existing systems are pointed out using a couple of example cases (basic and extended). In
principle most World Wide Web (WWW) pages (such as Web portals and news pages) use the basic approach
where the client is solely responsible for fetching (i.e. pulling) the information. This is also how many other
messaging services work. Extended cases use the push approach for transmitting information from sender to
receiver, that is from client to server or from server to client.

Communication between the server and the client is quite simple and straightforward. The diagram below (Figure 4)
describes the most common use cases offered by the system as a whole.

In every case there is an optional authentication phase. During this phase both server and client may be authenticated
and they may form a secure connection if necessary. In cases where the client makes the initiating connection to the
server using an SSL or TLS connection, the server side can be verified by the certificate it uses. When the server
initiates the connection, both sides may need to verify each other. For example, the challenge-response-
authentication method may be used. Phases or actions with dashed lines can be skipped if they are not needed or if it

Figure 4. Sequence diagrams of most common use cases

Rantanen et al. Towards an IP-Based Alert Message Delivery System

Proceedings of the 6th International ISCRAM Conference – Gothenburg, Sweden, May 2009
J. Landgren and S. Jul, eds.

has been decided not to use them. Even though the authentication step can be skipped, it may not be advisable due to
possible security threats.

Basic case

This is the most basic step (Figure 4 above, leftmost sequence diagram) that can be done in any reader that supports
Atom feeds. Retrieval of the feed is done either by giving the direct access to a requested feed or by searching for a
suitable feed from the available feeds. Firstly, the authentication step is made as described in the previous section.
Then the feed will be retrieved to the client device. From that point the software decides how the feed is displayed.
If the client software is a basic RSS reader, it will show the Atom content of the feed as it should. When a user is
reading the feed with software designed to interpret the enhanced feed, not only will it show the content of the
message(s), but also perform special features based on the extra information included in the feed.

Extended cases

These two cases (Figure 4 above, middle and rightmost sequence diagram) illustrate the use of the extended
messaging channel. As a reminder, users of this messaging channel must be registered and authenticated. Therefore
authenticated users are referred to as “users” below unless otherwise stated. In case number one (Figure 4, center
sequence diagram), the client software initiates the connection and in the second case (Figure 4, rightmost sequence
diagram) the server is the initiating side. In both cases a message, a reply to some earlier message, a command etc.
can be delivered to the receiver. An example of using case 2 could be the following: the server receives a message
that is a very important alert and certain user(s) must get it immediately. As a result the server opens the messaging
channel to these clients and sends the alert to them. An example of case 1: the client software notices that the IP
address bound to the device has changed for some reason. The client software then opens the messaging channel to
the server and updates the user information to match the situation (this is just a simplified example and does not
describe the steps that may need user intervention such as asking permission to open the data connection).

As both messaging channels are integrated in one system, they may seamlessly use information from/about the user,
available feeds and other information to enable various emergency alerting services. Although the focus has been on
emergency alerts and the like, the system is not limited to them alone. With proper extensions the system may be
used for the delivery of traffic information, weather information and so on. Basically, the emergency alerting system
could be just one small part of a larger information delivery system.

We believe that there are two promising features in the system introduced here. The first is the combination of two
communication channels that allows a “simple” messaging service using one of the channels and the other channel
enables the feedback from user to server. This also allows for additional possibilities such as executing certain
features on the client device. The second feature is that the new system may be run virtually on any platform or
system that is able to connect to the Internet. The next step we are taking in the research will be the implementation
of the system as a proof-of-concept styled demo system. The demo is anticipated to be ready in summer 2009.

CONCLUSION

Mobile terminals have become an essential part of everyday life. These have provided new opportunities for the
delivery of emergency messages using mobile phones. In this paper we have shown how to utilize mobile
technology to supply disaster information to both mobile terminals and desktop computers. We have also presented
a few emergency messaging system proposals made by other researchers and also introduced a new proposition of
our own. We have given a brief survey of the delivery of emergency alerts using the Internet. We have outlined a
structure for communication between server and client. This is the most important part of a messaging system, when
further research and demo application development are included in the scope. The proposed system uses Atom feeds
to deliver alert messages, which makes it possible for clients to use any kind of device, from mobile terminals to
desktop computers. The next step in our research will be to develop a demo of both the server and the client
application.

REFERENCES

1. Alexander, D. (2002) Principles of Emergency Planning and Management, Terra Publishing.
2. Botterell, A. (2003) An Advanced EAS Relay Network Using the Common Alerting Protocol, White Paper,

http://www.incident.com/cap/docs/aps/Advanced_EAS_Concept.pdf (retrieved 10.12.2008)

Rantanen et al. Towards an IP-Based Alert Message Delivery System

Proceedings of the 6th International ISCRAM Conference – Gothenburg, Sweden, May 2009
J. Landgren and S. Jul, eds.

3. Botterell, A. (2006) The Common Alerting Protocol: An open Standard for Alerting, Warning and Notification,
in proceedings of the 3rd International ISCRAM Conference (B. Van de Walle and M.Turoff, eds.), Newark, NJ.

4. CAP Cookbook (2008) http://www.incident.com/cap (retrieved 10.12.2008)
5. Common Alerting Protocol v1.1 (2005) OASIS Emergency Management TC,

http://www.oasisopen.org/committees/download.php/14759/emergency-CAPv1.1.pdf (retrieved 10.12.2008)
6. Emergency Data Exchange Language, Distribution Element, v1.0 (2006) OASIS Emergency Management TC,

http://docs.oasis-open.org/emergency/edxl-de/v1.0 (retrieved 10.12.2008)
7. Finnish Funding Agency for Technology and Innovation (Tekes), http://www.tekes.fi/eng (retrieved 15.4.2008)
8. IBM developerWorks (2007) X-Capatom, https://www.ibm.com/developerworks/library/x-capatom (retrieved

10.12.2008)
9. NICT (2007a), in proceedings of the First International Symposium on Universal Communication (ISUC),

Kyoto, Japan.
10. NICT (2007b), in proceedings of the First International Workshop on Knowledge Cluster Systems. Keijanna,

Japan.
11. Organization for the Advancement of Structured Information Standards (2008) http://www.oasis-open.org

(retrieved 10.12.2008)
12. Organization for the Advancement of Structured Information Standards (2005) User Requirements Document

OASIS_TA22_REQ_003_DSF
13. RFC 4287 (2005) The Atom Syndication Format, IETF Network Working Group
14. RFC 5023 (2007) The Atom Publishing Protocol, IETF Network Working Group
15. Soini, J., Leppäniemi, J. and Jaakkola, H. (2008) Towards Seamless Collaboration in Distributed Disaster

Knowledge Management, in proceedings of the Information Society 2008 Conference, Ljubljana, Slovenia.
16. Tampere University of Technology (TUT), http://www.tut.fi (retrieved 15.4.2008)
17. Verma, P. and Verma, D. (2005) Internet Emergency Alert System, in proceedings of Military Communications

Conference (MILCOM 2005), Hawthorne, NY, USA.
18. Westfall, J. (2007) CAP Index Format Proposal, http://www.incident.com/cap/feed-format-proposal.pdf

(retrieved 10.12.2008)

Publication II

Rantanen P., Sillberg, P., Jaakkola, H. and Nakanishi, T., “An Asynchronous
Message-based Knowledge Communication in a Ubiquitous Environment”, Database
Systems for Advanced Applications, Springer, ISBN 978-3-642-14588-9, DOI
10.1007/978-3-642-14589-6_44, pp. 434-444, 2010.

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and
storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010

Printed with the permission of Springer.

Original publication is available at http://link.springer.com/chapter/10.1007%2F
978-3-642-14589-6_44.

http://link.springer.com/chapter/10.1007%2F978-3-642-14589-6_44
http://link.springer.com/chapter/10.1007%2F978-3-642-14589-6_44

An Asynchronous Message-based Knowledge
Communication in a Ubiquitous Environment

Petri Rantanen, Pekka Sillberg, Hannu Jaakkola, and Takafumi Nakanishi

1 Tampere University of Technology (TUT),
Pohjoisranta 11 A, 28100 Pori, Finland

{petri.rantanen,pekka.sillberg,hannu.jaakkola}@tut.fi
2 National Institute of Information and Communications Technology (NICT),

3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289, Japan
takafumi@nict.go.jp

Abstract. This paper presents the required operational logic for relay-
ing user requests from traditional Server/Client-based systems to services
or additional information sources that require asynchronous communica-
tions. The paper describes a simple syntax for user-generated messages
that can be used to determine where the messages should be forwarded.
The paper also explains how replies to these messages should be pro-
cessed. In the scope of this paper the Knowledge Grid works as the
external source of information, but the same principle could be applied
to any information source.

Key words: IP-based alert message system, Knowledge grid, Message-
based System, Asynchronous communication

1 Introduction

The original context of the topic discussed in this paper is management of disas-
ter related knowledge in connection with serious accidents and catastrophes. In
this kind of situation the availability of up-to-date information about the acci-
dent is important for the authorities as well as their opportunity to guide people
in the accident area to survive in exceptional circumstances. A fast reaction to
the situational knowledge is a precondition for successful rescue operations. It
provides an opportunity to limit financial losses and human suffering. In the
globalized world, major accidents and catastrophes are also becoming global –
involving citizens of several countries. As a result, the interest in rescue opera-
tions and information distribution is also global. In many cases even the access
to public knowledge – available on the Internet – is highly beneficial.

This paper is based on the long-term collaboration between the organizations
of the authors – Tampere University of Technology (Finland), and NICT and
Keio University (Japan). In addition, the research consortium covers partners
from Germany, the Czech Republic, and Indonesia. The purpose of the joint
research activity is to develop technologies and processes that improve the avail-
ability of knowledge in disasters. The kernel of this joint activity is the GRID

2 An Asynchronous Message-based Knowledge Communication

based distributed knowledge management platform. This system has the capacity
to mine information items from public sources and authorities repositories, and
combine individual information items to create valid knowledge to be utilized in
the disaster context. Seamless – place, time, terminal independent, symmetric –
access to the sources of knowledge is recognized as vital. This is supported by the
Asynchronous Message-based Communication system that is being developed in
this joint research activity. The system is based on open protocols and provides
two-directional access between the terminals available in the disaster area and
the services provided by the connection server. The upward direction may be
utilized to transfer data, e.g. photos, data stream or measured data, from the
accident area to the authorities, and the downward direction may be utilized to
distribute information and guidance to the people in the accident area.

The wider context of the project related to this paper is the openness and
interoperability of information systems based on the ideas of the Service Ori-
ented Architecture (SOA) approach. It is based on standardized interfaces and
protocols and deep understanding of complex processes crossing organizational
borders. The inspiration for the project comes from the fact that every serious
accident and catastrophe demands coordinated collaboration between several
authorities that may also represent different nations and cultures. The knowl-
edge repositories of authorities – legacy systems – are typically closed, unable
to interoperate with each other and with open sources of knowledge. SOA-based
interfaces would provide a safe and easily implementable solution to this prob-
lem. The Asynchronous Message-based communication protocol further extends
access to registered service users using their mobile terminals to communicate
with the integrated service architecture.

This paper introduces the results of the joint Finnish-Japanese research activ-
ity. The focus of the paper is to describe the integration of the systems designed
and developed by the organizations of this paper’s authors. The purpose of the
integration is to promote the use of the both systems and act as a starting
point for developing more features between the systems. Chapter 2 opens the
discussion on the motivation to develop asynchronous message-based communi-
cation. Chapter 3 describes the IP-based message delivery system developed in
the earlier research. Chapter 4 gives an overview of the main components of the
extended system, Chapter 5 explains the operational logic of the system, and
Chapter 6 includes the summary of the research.

2 Why Asynchronous Message-based Communication?

The nature of a Knowledge Grid query is that it is unknown beforehand how
long it will take. Processing the result may take any amount of time from a few
seconds to a very long time. Opening and keeping the request open to the service
provider until the result is received is not very efficient and ties up resources for
the whole length of the request. There are a few ways to build asynchronous Web
services to work around this issue. All listed methods have their own advantages
and disadvantages. [10]

An Asynchronous Message-based Knowledge Communication 3

One of the approaches is to use one-way notifications between client and
service provider. Also a few variations of request/reply operations can be used.
The request/reply operations with polling requires the most simple client im-
plementation as it does not need its own Web service but requires the client
to implement the polling system to check the service provider periodically for
results. It may also require more than one request to retrieve the response if the
service provider has not yet completed the query. This approach provides a level
of decoupling but leaves the responsibility of retrieving the results to the client.

As the processing time of the Knowledge Grid query may be unknown, it
might be better to let the service provider handle the retrieval and sending
of results. Both one-way notification and a simple request/reply operation can
be used. The client is required to implement its own Web service, supply the
endpoint address of this service so the service provider can send the results and
supply correlation ID to identify the query. The disadvantages of this type of
approach are that it requires quite a large amount of implementation. Also there
may be difficulties for the service provider to reach the client when it needs to
send the results. On the other hand, if the client is already acting as a Web service
for someone else, typically most of the implementation, firewall configurations
and so on have already been done. The advantages are a high level of decoupling
and the fact that the client can just “fire and forget” the query and let the
service provider handle the sending of the results.

One of the possible scenarios for the system could be a traveler or tourist,
who uses the message delivery system for receiving travel news, advisories and
alerts. When the traveler encounters some event, he or she may want to report
that event to other users of the system. Also our traveler may want to know more
detailed information on this kind of event. In this case a new Knowledge Grid
query may be initiated. The data provided by the Knowledge Grid is background
data on the requested subject (and not for example situational awareness data
for an emergency), and as such a small delay in response is not critical. The
client software may also poll the feeds at some predefined time interval, which
means the information will not always be retrieved in real-time in either case.

3 IP-based Knowledge Delivery System

The system described in this paper is based on the research published in paper
[2]. The paper proposes a system architecture that can be used to provide alert
messages to mobile and desktop clients using IP-based networks. The system
uses a traditional Client/Server architecture and secure server approach [1]. The
system offers two alternative messaging channels. The first messaging channel
is an SOAP-based [4] synchronous bi-directional communication between the
server and the client. The other channel is an Atom feed-based [3] information
resource that can be retrieved by any kind of client from proprietary custom
software to basic Really Simple Syndication (RSS) readers.

The fundamental idea of the system has been unaltered, but it has received
more functionality. The original system concept used RSS-feeds and other in-

4 An Asynchronous Message-based Knowledge Communication

formation sources provided by trusted parties as resources. Messages from these
sources were added to Atom feeds provided by the server or sent directly to
clients depending on the use case. The system also offered the possibility for
clients to add additional information to existing feeds. In this paper the ap-
proach is extended by adding a Knowledge Grid as an additional resource. The
server has been added with the ability to process and respond to client generated
messages and to relay clients requests to server-known information sources. In
this paper, the designed server is called Message Server.

���� � �������� �		

Fig. 1. Communication overview.

Figure 1 shows the Server/Client-system with the Knowledge Grid working
as an additional information resource. The right side of the figure shows the
communication between the clients and the Message Server. The feeds are pulled
by the clients at some pre-defined time interval using standard HTTP GET
commands and SOAP-messages are transferred using HTTP POST. In our use
cases, the clients are users, but they could as well be automated sensors or any
other kind of devices.

The original system proposal uses Common Alerting Protocol (CAP) [8] en-
capsulated in SOAP messages. CAP-messages are a standardized way for in-
forming and alerting in emergency situations, but may be cumbersome for more
casual messaging. Therefore we added a GeoRSS [5] extended Atom as a new
message type. Though GeoRSS has multiple variations [6][7] and is not an official
standard, we chose it because it is often used on the Internet and has a standard
way of presenting coordinate data [9]. For our experiments, GeoRSS is a good
starting point for testing of the system. Adding different kind of message types
should be quite easy based on our experience of adding the GeoRSS message
type. For more specific cases, a suitable message type should be created and
used for better communication and messaging.

The left side shows the asynchronous communication between the Message
Server and the Knowledge Grid. The communication is shown in the figure below
to give a complete overview of the designed system and is explained in more detail
in the following chapter.

An Asynchronous Message-based Knowledge Communication 5

4 Asynchronous Communication for a Knowledge-based
System

One of the design goals of accessing Knowledge Grid was to clearly separate the
services of the Knowledge Grid and the Message Server. This approach has the
benefit of requiring both of the systems – Knowledge Grid and Message Server
– to implement only the common interface for communication. The systems can
be developed independently, and if needed the designed interfaces can be opened
to provide additional services to third party clients and servers.

Figure 2 shows an overview of asynchronous communication. The Knowl-
edge Grid and the implemented Grid Access Gateway which is needed to enable
communications with the Knowledge Grid and Message Server are shown in the
figure. These three components will be explained in more detail in the following
section. In our implementation, the Knowledge Grid functioned as the external
information source, but the same operational logic could be applied to any source
including possible third party systems.���� ��������	�
�� �
�� ������

Fig. 2. Asynchronous communication.

4.1 Knowledge Grid

Recently, a wide variety of knowledge items have been created by using collabo-
rative environments in each community. Unfortunately, this knowledge is mainly
utilized only for sharing information resources within each community.

An event affects various aspects of an area, field, or community. For example,
in the case of a disaster, a secondary impact and secondary disaster may affect
other areas such as the environment, economy, and healthcare. In order to un-
derstand the arbitrary concept, it is important to transfer significant knowledge
related to accidental or irregular events to actual users from various knowledge
bases.

References [11–13] have proposed a Knowledge Grid, which provides an in-
frastructure of acquisition, analysis, and delivery for knowledge sites. In par-
ticular, the interconnection method for knowledge bases has been presented by

6 An Asynchronous Message-based Knowledge Communication

references [12, 13]. This method provides the interconnection of heterogeneous
knowledge based on the Knowledge Grid and representation of related concepts
in heterogeneous fields. It navigates to related contents in these heterogeneous
fields depending on the context. Furthermore, these knowledge bases that exist
independently can be used more effectively when arranged.

This method represents a lot of different concepts with contents over the
heterogeneous fields in a PC client. However, in the case of mobile devices, it is
difficult to represent these related contents provided by the method, because a
mobile device does not have a screen large enough to represent a lot of various
related contents and the mobile user cannot wait for the computation of this
method.

In order to solve these issues, it is important to realize asynchronization com-
munications and the resulting delivery by streaming. It is necessary for mobile
users to push the halfway result at any time to deliver the results which have
been computed by deep analysis during a long processing time. A mobile device
can receive the halfway result at any time and it can be presented to the user
little by little. In this paper, we have developed asynchronized communication
for the interconnection computation of heterogeneous knowledge based on the
Knowledge Grid.

4.2 Grid Access Gateway

The Grid Access Gateway works as a common interface between the Message
Server and the Knowledge Grid. The Message Server and the Knowledge Grid
did not have mutually compatible interfaces, which meant that the design of a
middleware between the two systems was necessary. One option would have been
to change the interface of either the Knowledge Grid or the Message Server to
include compatibility with the other system, but we decided to couple the sys-
tems as loosely as possible. This approach allowed the gateway to be developed
separately, which also means that the gateway itself would work like any third
party system connected to a server.

In its current implementation, the only function of the gateway is to pro-
vide simple message translation services. This means converting the messages
forwarded by the Message Server to the format understood by the Knowledge
Grid and vice versa. The Knowledge Grid messages – or more precisely replies to
the forwarded user queries – are converted to the client message format and sent
to the Message Server like any other message. In other words, the Grid Access
Gateway works like an additional service for the server and like a basic client
software.

4.3 Message Server

The original Message Server implementation functioned like a traditional web
server and used basic transactions when transferring information to and from
the clients. In a strict alert message relay this approach poses no problems, but
by itself it does not include internal logic to handle asynchronous data transfers.

An Asynchronous Message-based Knowledge Communication 7

In the case of an external information source that for some reason cannot send
immediate responses to requests this causes a problem. Our solution was not
to change the behavior of the Message Server, but to add to it a functionality
to recognize and forward to other services user queries that included messages
needing additional processing. This way the server could be kept as simple as
possible, but still enable enhanced functionality to clients using the server.

If the chosen design is used, there is no need for a separate server interface
for the responses of the forwarded queries. The receivers of the relayed requests
can work as “clients” to the Message Server and send the responses as a normal
message. This message is then processed normally by the server and added to
a feed which can be read by other clients or forwarded to clients when needed.
Depending on the case, the messages can also be sent directly to clients by the
service that processed the request. The latter case will save server resources, but
on the other hand it may be easier for the users if they receive all the messages
from the same source, and that all the services seem to be offered by the same
party.

Relaying the requests also simplifies the addition of new services to the Mes-
sage Server as it is not necessary to modify the server to understand all the
possible different kinds of service responses. The downside of this approach is
that the responses that can be added to the servers feeds are limited to the mes-
sage types recognized by the server. For text-based information relay this should
not pose a problem, but for more complex data types – like video or audio –
a different approach must be taken. One possible solution could be to provide
a link to the data and host the content on another location, which would also
reduce the network load on the Message Server. Another option would be to
encode the data inside the XML using for example Multipurpose Internet Mail
Extensions (MIME).

5 Implementation and Usage Scenarios

In this implementation, encryption is not used by default. Encryption can be
enabled if required by the user, but as long as the messages are considered
to be casual user-to-user messages, encryption is not necessary. One possible
encryption method is for example Transport Layer Security/Secure Socket Layer
(TLS/SSL).

Accessing the data in external sources requires the user to type in the query
by using special markup recognized by the Message Server. The query can be
written to any message type (for example CAP or GeoRSS) and to any element
that is allowed by the type to have a clear text description. We chose to use
regular expressions to match and extract the query from the message. This
gives the possibility to define the query syntax flexibly. The following regular
expression is the currently used in our implementation:

Regular expression for matching and extracting the query

(\w|\-)+(\?\?)(\w|\s)+(\,(\w|\s)+)*\.

8 An Asynchronous Message-based Knowledge Communication

The syntax consists of five sections: target, double question marks, method,
parameter(s), and end sign. Basically target, method and parameter consist of
alphanumeric characters. In addition to this, the target may consist of character
“-”. The method and the parameter may additionally have whitespace charac-
ters. The target is always followed by double question marks. The target method
and parameters are separated with a comma, and the end sign is a period. An
example of a external query shown below:

Example syntax for invoking external query

nict-kcs??article_query,EnvironmentNews,Tokyo,Hurricane.

Target in this example is “nict-kcs” and method is “article query”. After the
method there is three more parameters: context, place and keyword and values
are “EnvironmentNews”, “Tokyo” and “Hurricane” respectively. Interpretation
of the query would be that user wants NICT’s Knowledge Grid to provide some
kind of information (articles) about hurricanes around the Tokyo area in the
context of environment news.

To reduce the need for memorizing the full syntax, the user does not need to
fill in all the parameter(s) and can let the client or Message Server software fill
in the missing parameters. For example, if the full method call requires a target,
target method and parameters which are context, datetime, place and keyword,
the Server software could accept queries with only target, place and keyword.
The remainder of the required parameters would be filled in automatically using
default values. How and which parameters are requested from the user depends
on the service that needs to be invoked and on the client software used.

Based on the given target and the function, the Message Server can relay
the request to the actual service provider. The server itself does not process the
parameters. This way the server only needs a list of valid targets and their real
location, for example the IP address and the function that should be called on
the target. Based on the given information the server creates a simple SOAP-
encapsulated message targeted to the requested function. The message includes
the unprocessed parameters, unique identifier, URI, function and XML names-
pace information. The identifier can be used by the server to match service
responses to specific requests. The servers URI, function and namespace used by
the XML are provided to services in order to make returning the results possible.
Just like the messages between the server and the clients, the messages between
the server and the service providers can be encrypted when required.

5.1 Usage Scenarios

Information retrieval from the Knowledge Grid is divided into two phases, cre-
ating the Knowledge Grid query and receiving the results. Figure 3 shows a
simplified sequence diagram of creating a Knowledge Grid query. In fact, the
Knowledge Grid and the Grid Access Gateway shown in the figure are inter-
changeable as the user-made query can be directed to basically any other kind
of service. These use cases are applying the Knowledge Grid and the Article

An Asynchronous Message-based Knowledge Communication 9

query as an example. The users query is basically a query for the articles that
are related to the context and keywords that the user is interested in, hence the
terms “Article query” and “Article feed” which contains the results of the query.

The use case begins when the user creates a New message. This new message
is then added to the Message Server’s own feed database and can then be read by
other users. If the message contains the query syntax described in section 5, the
Message Server will then generate a corresponding query to the target specified
by the user. In this case, this is the Article query in the figure. The target of the
query, the Knowledge Grid, has a Web service interface to provide the article
information. This is the target where the query should be sent by the Message
Server. When the Grid Access Gateway receives the query, it will create a Grid
query which starts processing on the Knowledge Grid.

��� ���������	
���
������
�
����
������������� ���� ������� !�� " #$%&'()(**&+(,((%

-����!.��� ��/��0��
Fig. 3. Creating a new Knowledge Grid query.

The second use case – receiving the results of the Knowledge Grid query – is
shown in Figure 4. The Grid Access Gateway periodically checks for the status of
the grid query and, if the Knowledge Grid has processed the results, they will be
returned to the Grid Access Gateway. After this, the Grid Access Gateway will
add identification data to the result and send it back to the original caller. The
original caller may then process the information received, like in our example,
the update article feed. This phase will be repeated until the Knowledge Grid
announces to the Grid Access Gateway that there will be no more results.

Users may read the article feed at any point after the initial article query has
been made. At first the feed will be empty, but once the Knowledge Grid has
processed and returned some results, the feed will be updated and the items in
it will increase.

6 Summary

This paper presented a simple operational logic that allows connecting a syn-
chronous Client/Server system with an additional information source or service
that requires asynchronous communications. The paper described the required

10 An Asynchronous Message-based Knowledge Communication

Fig. 4. Receiving the results of the Knowledge Grid query.

changes on the server side and the use cases involved in forwarding messages
from user queries to the Knowledge Grid and returning the replies to the users.
In the designed system, the Grid Access Gateway was used to transform message
formats between the Message Server and the Knowledge Grid.

In future research, the designed system – including the Message Server,
Knowledge Grid and client software – will be further modified to handle a wider
range of message types. The research will also concentrate more on general mes-
saging and less on pure alert message delivery. This will include researching the
presentation of Knowledge Grid data to an end user who is using a mobile device.

Acknowledgments.

This work is partially funded by the Finnish Funding Agency for Technology
and Innovation (Tekes) Seamless Services and Mobile Connectivity in Disaster
Knowledge Management (SSMC/DDKM) research project and the Academy of
Finland UbiKnowS project. In SSCM/DDKM the work is based on the mem-
orandum of understanding – “mobile knowledge management architecture” be-
tween Tampere University of Technology (TUT) and the National Institute of
Information and Communications Technology (NICT).

References

1. Botterell, A.: An Advanced EAS Relay Network Using the Common Alerting Pro-
tocol, White Paper (2003)

2. Sillberg, P., Rantanen, P., Saari, M., Leppäniemi, J., Soini, J. and Jaakkola, H.:
Towards an IP Based Alert Message Delivery System, In: Information Systems for
Crisis Response and Management Conference, Gothenburg, Sweden (2009)

3. The Atom Syndication Format, RFC 4287, http://www.ietf.org/rfc/rfc4287.txt
4. SOAP Version 1.2, W3C Recommendation 27 April 2007,

http://www.w3.org/TR/soap12
5. GeoRSS Wiki, http://www.georss.org/
6. GeoRSS encodings, GeoRSS Wiki, http://www.georss.org/Encodings
7. W3C Geospatial Vocabularity, W3C Incubator Group Report 23 October 2007,

http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/

An Asynchronous Message-based Knowledge Communication 11

8. Common Alerting Protocol v1.1, OASIS Emergency Management TC,
http://www.oasisopen.org/committees/download.php/14759/emergency-
CAPv1.1.pdf

9. World Geodetic System 84 (WGS 84), Implementation manual, version 2.4, World
Geodetic System (1998)

10. IBM Developer Works, Asynchronous operations and Web services, Part 2,
http://www.ibm.com/developerworks/webservices/library/ws-asynch2

11. Zettsu, K., Nakanishi, T., Iwazume, M., Kidawara, Y. and Kiyoki, Y.: Knowledge
Cluster Systems for Knowledge Sharing, Analysis and Delivery among Remote Sites,
Information Modelling and Knowledge Bases (IOS Press), 19, pp.282-289, 2008.

12. Nakanishi, T. , Zettsu, K. , Kidawara, Y. and Kiyoki, Y.: Towards Interconnective
Knowledge Sharing and Provision for Disaster Information Systems -Approaching
to Sidoarjo Mudflow Disaster in Indonesia-,In Proc. of The 3rd Information and
Communication Technology Seminar (ICTS2007), pp. 332-339, Surabaya, Indonesia
(2007).

13. Nakanishi, T. , Zettsu, K. , Kidawara, Y. and Kiyoki, Y.: Approaching to Inter-
connection of Heterogeneous Knowledge Bases on a Knowledge Grid, In Proc. of
The International Conference on Semantics, Knowledge and Grid (SKG 2008), pp.
71-78, Beijing, China (2008).

Publication III

Sillberg, P., Kurabayashi, S., Rantanen P. and Yoshida, N., “A model of evaluation:
computational performance and usability benchmarks on video stream context
analysis”, Information Modelling and Knowledge Bases XXIV, IOS Press (Frontiers
in Artificial Intelligence and Applications; Volume 251), ISBN 978-1-61499-176-2, DOI
10.3233/978-1-61499-177-9-188, pp. 188-200, 2013.

Printed with the permission of IOS Press.

Original publication is available at http://ebooks.iospress.nl/publication/7645.

http://ebooks.iospress.nl/publication/7645

A Model of Evaluation: Computational
Performance and Usability Benchmarks

on Video Stream Context Analysis

Pekka SILLBERG a, Shuichi KURABAYASHI b, Petri RANTANEN a and
Naofumi YOSHIDA c

a Tampere University of Technology (TUT), Pori, Finland
b Keio University, Japan

c Komazawa University, Japan

Abstract. This paper presents a model of evaluation for computing performance
and usability benchmarks. The target evaluation is context analysis of video
streams. The paper describes the required system components, system architecture
and evaluation model, as well as the test cases that can be performed using the
designed environment. During the modelling, design, implementation and prelimi-
nary tests of the environment, some issues, problems and good-to-know key points
were discovered which are explained in this paper. Reference guidance for future
test cases is also given. The modelling and experimental results presented in this
paper are based on the test environment, and the observations of the cooperation
project between Tampere University of Technology Pori Unit and Keio University
Shonan Fujisawa Campus.

Keywords. Kansei, Video Analysis, Test Environment, Evaluation

1. Introduction

The possible problems caused by the classification, search and analysis of the vast
amount of information available in both offline and online sources (web) are one of
the research issues in the on-going MOP (Mukautettavat OhjelmistoPalvelut, in English:
Adaptive Software Services) project co-ordinated by Tampere University of Technology
(TUT) Pori Unit. An important part of the research is the study of methods that realize
efficient and automatic generation of meaningful (usable) metadata. One of the afore-
mentioned methods is the Kansei-based analysis designed by Kiyoki et al. [9][10]. This
method – called the Mathematical Model of Meaning (MMM) – enables the creation of
word matrixes that can be used to calculate the correlations between words, and also in-
cludes the means for extracting (Kansei) words from various media content (video [18],
audio [7][6], web [8]). TUT Pori Unit and Keio University have a long history of co-
operation, and in the spirit of previous good experiences a researcher exchange was orga-
nized, in which two researcher from TUT Pori Unit (the authors of this paper) travelled
to Keio SFC (Japan) to study the MMM and its applications.

1.1. Project Background

The MMM has been proved as working concept by many previous papers and research
projects (see Chapter 1), but no uniform test environment exists for running more com-
prehensive tests and performance benchmarks. The researchers at Keio SFC expressed
great interest in testing the MMM inside a more complete system with real-life data. In
addition, the industry partners of the MOP project were very interested in the video anal-
ysis features promised by the MMM. As a result of these wishes, a test environment con-
sisting of a simple test application, web service and video analysis back-end were devel-
oped where the main focus was laid on video analysis. The goal was to provide a system
that could be used to analyze videos, and the system should also allow the end-user to
search for the analyzed video content using a keyword-based search.

1.2. Kansei-based Video Analysis

In the scope of this paper Kansei1 is limited to the context of video analysis, and more
specifically to the video analysis methods provided by the MMM. The MMM uses color
histograms to define the meanings of the Kansei words, which in this case are adjectives.
The words and their relations to certain color patterns (histograms) are defined by the
research done in the field of color psychology. In our test environment a color impression
matrix containing 182 adjectives, each corresponding to a specific emotion in human
perception, was used.

Figure 1. Color-Emotion association for defining color features in 182 sets of color schema related to 130
color variations. Each color-emotion definition, such as vigorous(cs1) defines a set of weight for colors.

Figure 1 shows example color adjectives that define color features in 182 sets of
color schema related to 130 color variations. Each color schema corresponds to a spe-
cific emotion. This matrix consists of 120 chromatic colors and 10 monochrome colors
defined in Color Image Scale [11] which is based on the Munsell color system. Each
color schema, which corresponds to a specific emotional perception of humans, is de-
scribed by using a combination of several colors from the 130 basic color set. The more
in depth explanations for the color-to-emotion relationship in the context of image and
video analysis can be found in the papers by Sasa et al. [22] and Kurabayashi et al. [13].
The purpose of the method is to generate a feeling or mood automatically for the media
content. For example, based on the analysis a video might be classified by the keyword
aggressive or by the keyword cute. The method also calculates values for each keyword,

1Kansei Engineering was invented by Mitsuo Nagamachi in the 1970ies [14].

which can be used for comparing the media content [12]. The values indicate how sim-
ilar to the defined histograms the analyzed video content was. This functionality could
be used to rank the search results (for example, by showing better matches at the top
of the result list) based on how well they match the keywords provided by the user. An
important note to make is that the video analysis is based on the picture alone, the audio
track is ignored.

The system analyzes the continuous color-emotion features in a video by performing
the following four steps as depicted in Figure 2.

• Step-1: The system decodes an input video stream and captures each frame in the
decoded video stream.

• Step-2: The system converts RGB (Red, Green, Blue) color values to HSV (Hue,
Saturation, Value) color values per pixel of each image. HSV is a widely adopted
color space in image and video retrieval because it describes perceptual and scal-
able color relationships.

• Step-3: The system clusters HSV pixels into the closest color of the predefined
130 Munsell basic colors, and calculates the percentage of each color to all pixels
of the image. And then the system creates 130 HSV color histogram.

• Step-4: The system extracts the color-impression for each frame in the video by
correlation calculations between 182 color schemas (182 impression word sets)
and 130 basic HSV colors.

Figure 2. A procedure for analyzing color-impression along timeline in a video data.

2. Test Environment

Figure 3 illustrates the overall system architecture. The system consists of three com-
ponents (Video Analysis Back-end, Web Service, and Test Application), which two of
(Video Analysis Back-end and Web Service) can be located on the same hardware if
so desired. The reasoning behind separating the Video Analysis Back-end and the Web
Service is to provide better scalability (the possibility of addding additional back-end
analyzers) and also to enable the testing of the back-end implementation with or without
the Web Service. If the Media Analysis Back-end and Web Service had been integrated
into a single server, that would have made it more difficult to benchmark the computing
performance of the individual components of the system. In addition, the interfaces pro-
vided by both the Video Analysis Back-end and Web Service were implemented using

Representational State Transfer (REST) architecture. The use of RESTful web service
methods allowed the initial tests to be performed with a web browser, without the need
to develop the Test Application immediately.

All communications between the Test Application and Web Service were imple-
mented using Hypertext Transfer Protocol (HTTP) and Extensible Markup Language
(XML). The Video-Analysis Back-end used in our test environment provides the re-
sponse messages in JavaScript Object Notation (JSON). There have been many studies
on the network performance with comparisons of XML and JSON [20][19][3], and as
a general rule JSON is slightly more efficient. In the case of our test environment, the
choice of language for data representation, formatting and interchange can be considered
less important. There are two reasons for this. Firstly, in most cases (testing the behavior
on different video codecs, testing different video content, etc.) all results are achieved
running the same system, in which case the performance effect caused by the language
is always the same. Secondly, the time used for basic data transfers (HTTP GET/POST),
and parsing the associated content is negligible when compared to the time taken to
download and analyze the video files. In the light of the above, the choice was made to
use the languages that would allow the easiest and fastest implementation of the system.
Our Video-Analysis Back-end implementation (see subsection 2.1) already had a partial
interface implementation using JSON, and the use of XML was recommended for the
platform we used to implement the Web Service. Another option would have been to use
custom-made protocols or languages for representing and transferring the data, but the
design, implementation and testing of the required components is a non-trivial task, and
the decision was made to use well-known solutions.

In the test environment, the Test Application works both as the provider of the video
content and as the end-user of the system. In practice, the content could be provided by
the user or by some third party content provider.

Figure 3. Test environment overview.

The Figure 3 also shows the two main use cases for the performance analysis. The
upper part of figure shows the phases required for analyzing the video content and the
lower part shows the phases needed for content search. In more details the phases are as
follows:

• Video analysis (upper part of Figure 3):

∗ The video content (a single Uniform Resource Locator pointing to the video, or
a list with multiple URLs) is sent from the test application to the Web Service.

∗ The content is passed by the Web Service to the Video Analysis Back-end.
∗ The Video-Analysis Back-end downloads the actual video file from the given

URL and analyzes the content. The results (the matching words and their val-
ues) are returned to the Web Service.

∗ The Web Service stores the results as a metadata related to the given Video
Content on its local database.

∗ The Web Service notifies the Test Application of the results of the video anal-
ysis.

• Search based on keywords (lower part of Figure 3):

∗ The Test Application sends the keyword (or list of keywords) to the Web Ser-
vice.

∗ If videos matching the submitted keywords are found, the results (the list of
video URLs and their corresponding keyword/value pairs) are returned to the
Test Application.

As mentioned before, using the test environment, the Test Application could directly
send the Video Content directly to the Video Analysis Back-End, but in that case the
results would not be saved by the Web Service, and thus the results could not be included
in the results list returned in the search case.

2.1. Video Analysis Back-end

The Video Analysis Back-end (in Figure 3) is implemented using the MediaMatrix
[12][16] software developed at Keio SFC. MediaMatrix includes a REST interface that
can be used to analyze video content, and also provides the required functionality to cus-
tomize the color impression matrix used – in practice by making it possible to upload
new color definitions in the form of comma-separated values (.csv) file. The importance
of allowing the use of multiple color definitions is crucial because people’s association
of colors to emotions varies greatly. In addition to personal differences, there are cultural
and contextual differences that need to be taken into account. For example, in western
cultures black is often associated with mourning, but in Japanese culture it can mean age
and experience. For these reasons, the choice of color definitions should be made very
carefully in the end-user products, and preferably tested with user studies. The current
implementation for the Video Analysis Back-end processes one frame of video per sec-
ond without any additional optimizations. The frame extraction and the decoding of the
video content are done using FFmpeg [4], which allows the use of a wide range of video
formats. The MediaMatrix also enables the analysis of video content using three possible
methods: finding words that are dominant throughout the entire video; finding words that
appear frequently during the entire video; and finding emergent words. Emergent words
have considerably higher values than other words whether they appear consistently in the
whole video or just within a shorter time-span.

2.1.1. Video Analysis, Example Method Call

An example method call to the REST interface provided by MediaMatrix can be seen
below:

Example Query (Video Analysis):
http://video-analysis.example.org/MediaMatrixService/analyzeURL?url=
http%3A%2F%2Fexample.org%2video.mp4

Example response in JSON format:
{

"MD5":"07097427c5aa85620232b836ccc409aa",
"frequent":{

"intense":2.134337902069092,
...

},
"dominant":{ ... },
"emergent":{ ... }

}

In this example the video content has been provided by passing a single URL as
the parameter. The response contains the MD5 Message-Digest Algorithm [5] of the
color impression matrix used for generating the metadata for possible future reference.
The other included information are keyword/value pairs grouped by the method that
was used to extract them. For the sake of simplicity, the list of keyword/value pairs has
been reduced to a single pair and only the results generated by the frequent method are
shown. The actual results usually contain a predefined number of keyword/value pairs
(for example, the top 10 keywords extracted by each method). The result could include
all extracted keywords, but keywords with very low values (partial matches) may not
be meaningful. The word values are normalized from the original matrix used by the
MMM algorithms. The values inside each method (frequent, dominant, emergent) are
comparable within the group, but not necessarily with values located in other groups.

2.2. Web Service

The main purpose of the Web Service (server) in Figure 3 is to provide a database that
can be used later for retrieval of the video metadata previously generated by video anal-
ysis. In our test environment the MediaFusion platform [15] was used. This platform of-
fered built-in tools for easily implementation of the REST interfaces needed by the Test
Application and the communication protocols used to transmit the video content to the
Video Analysis Back-end. The role of the Web Service is fairly simple, and basically
any platform, from professional server environments to open-source implementations,
could be used. When implementing the Web Service the platform most familiar to the
developers often offers the easiest and the fastest way for design and implementation.

Using the interfaces provided by the Web Service, the Test Application can perform
keyword-based queries, which can include any number of keywords. For example, ag-
gressive forceful would return all videos that contain aggressive and forceful content). In
addition to keywords the system should accept values for the keywords. This function-
ality could be used for both limiting the search results (only return video content that is
close to the values) and also for providing a similarity search functionality. In the case
of a similarity search, the keyword/value pairs for the desired content must be known
beforehand. The pairs could have been received from a previously executed keyword
search or from a manual run of a video through the Video Analysis Back-end.

Another possible implementation for the similarity search could be to allow the user
to submit a reference video that would be analyzed by the Video Analysis Back-end and
the results of that analysis would be used as the keyword/value pairs for the search. If
the aforementioned implementation is desired, it should be noted that based on the pre-
liminary computing performance tests the current implementation of the Video Anal-

ysis Back-end is somewhat resource-intensive. The analysis ratio (how many minutes
of video can be analyzed in one minute) is currently about 10:1 for basic web content
(360p, 600kbit/s), but drops closer to 1:1 for high definition content (1080p, 15Mbit/s).
In practice, low quality user content could be analyzed on the fly, but the wait times for
high quality content analysis would be too long.

Besides the web service (REST) interfaces provided for the Test Application and
the required functionality to enable the method calls to the Video Analysis Back-end,
the Web Service includes a database for storing the results of the video analysis. The
database should at least contain tables for the metadata required for video searches (video
URL and the related keyword/value pairs). In addition, the method used to extract the
keywords (frequent, dominant or emergent) and the information about the color impres-
sion matrix used can be helpful, especially since the metadata generated using different
methods and matrixes will not be comparable.

2.2.1. Video Search, Example Method Call

An example method call to the keyword-based search REST interface is seen below:

Example Query (Keyword Search):
http://webservice.example.org/rest/kanseiservice/patternSearch?pattern=intense

Example response in XML format:
<?xml version="1.0" encoding="UTF-8" ?>
<response service="kanseiservice" method="patternSearch">
<stat>ok</stat>
<results>
<result>
<itemId>0</itemId>
<url>http://example.org/video.mp4</url>
<keywords>

<keyword>
<method>frequent</method>
<value>2.134337902069092</value>
<word>intense</word>

</keyword>
...

</keywords>
</result>

</results>
</response>

The list of keywords, or in this case the single keyword intense, is provided by using
the parameter pattern. The return message includes the list of results that in the example
case consists only of a single result, and the list of keywords, keyword values and the
information about which method was used to extract the keyword (in the example the
method was frequent). The element itemId is a unique identifier that can be manually set
as a parameter for the video URL when the URL is analyzed. If it is omitted it will be
generated automatically by the Web Service as long as the analysis is executed through
the interface provided by the Web Service, and not by calling the interface offered by the
Video Analysis Back-end directly.

2.3. Test Application

The Test Application (in Figure 3) was implemented with the Qt framework [21]. Qt
was chosen because of its robust and easy to use (C++ -based) selection of network and
user interface components that can be used in a cross-platform environment (Windows,
Mac OS X, Linux/Unix support for desktops, Symbian support for mobile devices). The

selection of programming language for the application is not crucial, and a comparable
language for Android or iOS could equally well have been used. The main feature re-
quirements were a simple user interface and the ability to measure the time spent running
the designated computing performance benchmarks. Both features are easy enough to
implement using many of the publicly available user interface toolkits or using the na-
tive Software Development Kits (SDK) that are available for modern desktop and mobile
operating systems.

Figure 4. Test Application, search (left) and analysis (right) views.

Figure 4 shows the simple user interfaces for the video search (left) and analysis
(right) functions. In the search view the keyword can be typed to initiate the search. The
view also enables the user to choose whether he/she wants to target the search to ALL
extracted keyword/value pairs or search only for the pairs extracted by a specific method
(frequent, dominant or emergent). The selection of the method only affects the ranking
of the results. All keyword/value pairs are always visible in the result list, as can be seen
in the Figure 5. From the Analyze view (right side of Figure 4), the user can initiate the
video analysis. This can be done either by submitting a single URL or by giving a list of
URLs in a single file. The Initial Item ID is a unique identifier given for the video, and
will be automatically incremented by the Test Application if the user provides the initial
value in the case of multiple URLs. The value corresponds to the element of the same
name visible in the example, in subsection 2.2.1.

In the result list (Figure 5) the results are generally listed in descending order with
the best matching content on top. An exception to this can occur if the user does not
target his searches to a specific Kansei method (see Figure 4) because the results (key-
word/value) pairs are not necessarily comparable to each other, but they are always
ranked by the keyword values. For this reason, one should be careful when observing the
results. From the result list the user can also select the video name to view that particular
video using the default video player application installed in the operating system. This
way, the user can easily play the videos in the result list, and compare whether the videos
match the keyword or not. The Figure 5 also shows the log view. The log view shows the
time taken to execute the operations.

Figure 5. Test Application, result (left) and log (right) views.

2.4. Video Content

For a meaningful user studies, the content should be as close to possible to the content
that the user might actually be watching. Fortunately, there are many sources available in
the Internet that can be used for content acquisition. Unfortunately, often these sources do
not come without problems. One of the main issues with online content is that the actual
media (source, file) is often hidden and must be resolved using case-specific crawlers.
This is the case with many of the popular video sites, such as YouTube [26], MetaCafe
[17] or Yahoo [25]. In a simple case the download link must be parsed from a HTML
page, in the worst case the video is only available by using a browser plug-in (such
as Adobe Flash Player [1]). In addition, the online content can become unavailable at
any time, or the direct download link for the video file can become invalid and need
to be resolved again. As the research work was done in co-operation between Japanese
and Finnish universities the region and country restrictions enforced by online content
providers also caused problems – some of the content was available from Finland, but
not from Japan, and vice versa. These issues made direct, repetitive and consistent use of
online content problematic.

To overcome these problems, but still keeping in mind the requirement for real-life
content, it was decided to pre-download the video files used for the testing and have them
hosted on a dedicated server. In addition to guaranteeing the availability of the files, this
also solved the possible issues that could be caused by the varying network bandwidths
available from the online video services. The pre-downloaded dataset consisted of a to-
tal of more than 170 videos downloaded from well-known sources. When downloading
online content, it should be noted that in the case of online video content providers [27],
downloading may be forbidded by the Terms of Service rules. In some jurisdictions, even
private, educational and research use of copyrighted material might be prohibited, which
can make it harder to use real-life video content. The dataset collected for our testing
purposes consisted of the following videos:

• The newest 50 Anime Videos uploaded to YouTube [26] on September 5th, 2011.
• A collection of 50 movie trailers from Aol. [2], Yahoo [25] and Warner Bros.

[23].

• The 50 most watched music videos from YouTube [26] (week of August 30th,
2011).

• Various high definition videos from Xiph.org [24].
• Around 20 test videos were captured using a smartphone.

The quality settings for anime and music videos were: resolution of 360p and approx-
imate bit rate of 600 kbit/s. The anime videos were encoded with MP4/h.264 and the
music videos were encoded with FlashVideo/h.264. The movie trailers had a resolution
of 480p with approximate bit rates of 2500kbit/s encoded with QuickTime/h.264. Anime
videos, movie trailers and music videos were downloaded with the normal quality of-
fered by the online content providers. After resolving the direct links and downloading
the videos, it was observed that some of the videos (namely music videos) contained
only a single image throughout the entire video clip. For a method that only analyzes the
picture, this is not a very good starting point. Nevertheless, from the user’s point of view
the feeling or mood of the video is created even with videos with only a single frame.
Also, there were huge variations in video lengths, with durations ranging from a few
seconds to nearly half an hour. No videos were excluded from the dataset on the basis
of the content, but it is worth bearing in mind these differences when running the test
cases. Due to the limitations of availability, three music videos were not downloaded –
two of the videos had country restrictions concerning Japan, and one video was marked
as improper by the content provider.

The smartphone videos were captured using a Nokia C7-00 smartphone with high
definition settings for 720p videos. The videos were of variable length (from 10 seconds
to 45 minutes). The purpose of the self-captured videos were to allow both the testing
of user-generated content, and also to make sanity checks for the analysis algorithms –
by capturing videos ranging from a blank wall (still scenery) to random fractal shapes
(movement and abstract shapes).

3. Tests Cases

The tests have two parts: testing the computing performance and testing the usability
of the search results. The first part is fairly straightforward, consisting of running the
collected dataset through the video analysis and measuring the time. Depending on the
results the Video Analysis Back-end may need optimizations – a better selection algo-
rithm for the video frames to be analyzed is one option. Based on the preliminary tests
the time spent on relaying the analysis request through the Web Service is negligible (a
few hundred milliseconds) compared to the time required to analyze a video file (from
5 to 30 seconds depending on the video file length and bit rate). It should also be noted
that as the video analysis is based on color, the video content should be pre-processed
before analysis. Letterbox formatted videos can offset the analysis by showing dark ar-
eas which should not be included in the analysis. Additional problems can be created by
using user-generated, poor quality content with blurry or shaky video and possible color
distortions.

The second part of the test process is more difficult. In our case a color impression
matrix with 182 words (adjectives) representing human emotions was used. The associa-
tion of colors with emotions varies from one person to another and also between different
cultures. Because of this the color matrix should be kept relatively simple and universal.

In practice, an universal matrix that is usable for every user could be very difficult to
make, and the matrix may need to be user specific or case specific. In addition to the
color-emotion associations, the selection of adjectives should be validated. In the optimal
case a list of often-used adjectives representing human emotions should be collected and
the color representation for these words should be created. The adjectives could – at least
in theory – be collected from the web’s search engines, but whether color impressions
for the words could be created easily is unknown.

In our preliminary tests a generalized matrix was used to extract words for the videos
of the dataset. After extraction, the videos were shown to a limited number of users
(13 members of research staff from TUT Pori Unit), who rated (with a score of 1 to
5) how well the keywords matched the video content in their opinion. Based on these
tests, the adjectives chosen for the test were the most common cause of complaints by
the participants. Many of the words were thought to be difficult to understand, which
was partly due to the fact that the words were English, but none of the participants were
native English speakers. In other cases participants disagreed about what a specific word
should mean. For example, some people felt that the use of the keyword forceful required
the video to include aggressive or intense action, but others felt that even a video with
a little movement could be considered forceful if the singer’s voice in a music video
sounded forceful. In this case the weakness of only processing the picture became clear;
in real-life applications – especially in the case of music videos – the audio track should
also be analyzed. Another example could be the word metallic, which could mean that
the video has elements related to robots, machines or technology, or that only the colors
of the video were metallic in appearance (for example, like silvery).

In the preliminary tests, differences in people’s watching habits were also observed.
Some participants only glimpsed parts of the video, while others watched the entire video
clip before making their assessment about their feelings. Repetitive watching of – not
necessarily interesting – video content can also be tiresome, which could affect the user’s
impression of the video.

Based on the preliminary tests, the results were somewhat mixed. In the case of
simple keywords, such as cute, simple and forceful, the results were generally good, and
the participants felt that the extracted keywords matched the video content. But when
more complex words such as sharp, formal or dauntless were included in the tests, the
participants felt that the matches were not very good. In addition, with more complex
words the variance in the answers grew, with some participants rating the matches as
excellent, but others rating the matches as poor. Based on these observations, more care
should be put into selecting of the keywords.

4. Conclusions and Future Research

The goal of the research was to design a test environment that could be used for Kansei-
based video analysis using the Mathematical Model of Meaning. The system implemen-
tation can be considered to have met the assigned goals. The tests run with the system
were only preliminary and user studies targeted for a much wider audience should be
performed to allow a more conclusive and definite analysis of the usability of the video
analysis. Still, some observations can be made. The creation of a good color impression
matrix can be difficult, and in practical implementations the matrixes may have to be

personalized for the user. The personalization of the matrixes was not implemented in
this test environment, and it is a possible direction for future research. In real-life im-
plementations, it could be beneficial to combine multiple methods of analysis. Different
methods could be used to complement each other, such as running both Kansei-based
analysis and shape recognition for the picture, and tonality analysis for the sound.

While the analysis of computing performance can be quite simple, the other side of
the study – observing human emotions – can be very challenging. There is no easy way
to assess the usability of Kansei-based analysis. The results (keywords) created by the
analysis are meant to relate to human emotions, and the only way of to validate them
is to perform additional user studies (that is, running videos through the analyzer and
asking users for feedback). The field of (color) psychology may provide a starting point
for studies, but whether human emotions can fully be transformed into parameters and
usable metadata remains to be seen.

Acknowledgements

This work is partially funded by the Finnish Funding Agency for Technology and Inno-
vation (Tekes). The MediaFusion platform used in the test environment was provided by
PacketVideo Corporation. The research was made possible by the good and long-lasting
co-operation between TUT Pori Unit and Keio University SFC, and the commonly orga-
nized researcher exchange in the summer of 2011.

References

[1] Adobe Flash Player, http://adobe.com/flashplayer, retrieved January 2nd, 2012.
[2] Aol. Moviefone, Aol. movie trailers, http://www.moviefone.com/, retrieved January 2nd, 2012.
[3] Chilingaryan, S.: The XMLBench Project: Comparison of Fast, Multi-platform XML Libraries,

Database Systems for Advanced Applications, Lecture Notes in Computer Science, (2009), Volume
5667/2009, pp. 21-34.

[4] The FFmpeg project, http://ffmpeg.org, retrieved January 2nd, 2012.
[5] IETF Network Working Group: RFC 1321, The MD5 Message-Digest Algorithm,

http://tools.ietf.org/html/rfc1321, (1992).
[6] Imai, S., Kurabayashi, S., Ijichi, A. and Kiyoki, Y.: A music database system with content analysis and

visualization mechanisms, in proceedings of Parallel and Distributed Computing and Systems (2008),
Orlando, Florida.

[7] Kitagawa, T. and Kiyoki, Y.: Fundamental Framework for Media Data Retrieval Systems using Media-
lexico Transformation Operator - in the Case of Musical MIDI Data, Information Modelling and knowl-
edge bases XII, IOS Press, (2001), pp. 316-326.

[8] Kiyoki, Y., Chen, X. and Kitagawa, T.: A Semantic Associative Search Method for WWW Information
Resources, WISE, (2000), pp. 230-237.

[9] Kiyoki, Y., Kitagawa, T. and Hayama, T.: A metadatabase system for semantic image search by a math-
ematical model of meaning, ACM SIGMOD Record, vol. 23, no. 4, (1994), pp. 34- 41.

[10] Kiyoki, Y., Kitagawa, T., and Kurata, K.: An adaptive learning mechanism for semantic associative
search in databases and knowledge bases, Information modeling and knowledge bases VIII, IOS Press,
(1998), pp. 345-360.

[11] Kobayashi, S.: Color Image Scale, Oxford University Press, USA/Kodansha International, Japan,
(1992), ISBN 4-7700-1564-X.

[12] Kurabayashi, S. and Kiyoki, Y.: MediaMatrix: A Video Stream Retrieval System with Mechanisms for
Mining Contexts of Query Examples, Database Systems for Advanced Applications, Lecture Notes in
Computer Science, Volume 5982/2010, (2010), pp. 452-455.

[13] Kurabayashi, S., Ueno, T. and Kiyoki, Y.: A Context-Based Whole Video Retrieval System with Dy-
namic Video Stream Analysis Mechanisms, ISM ’09 Proceedings of the 2009 11th IEEE International
Symposium on Multimedia, (2009).

[14] Nagamachi M. (ed.): Kansei/Affective Engineering, CRC Press, (2010), ISBN 978-1-4398-2133-6.
[15] MediaFusion platform, http://www.pv.com/products/mediafusion, retrieved January 2nd, 2012.
[16] MediaMatrix, http://web.sfc.keio.ac.jp/ kurabaya/mediamatrix.html, retrieved January 2nd, 2012.
[17] metacafe the Video Entertainment Engine, http://www.metacafe.com/, retrieved January 2nd, 2012.
[18] Miura, N., Kurabayashi S. and Kiyoki Y.: An Automatic Extraction Method of Time- Series Impression-

Metadata for Color Information of Video Streams, ICDEW ’05 Proceedings of the 21st International
Conference on Data Engineering Workshops, (2005), IEEE Computer Society Washington, DC, USA,
ISBN 0-7695-2657-8.

[19] Nurseitov, N., Paulson, M., Reynolds, R. and Izurieta, C.: Comparison of JSON and XML Data Inter-
change Formats: A Case Study, in proceedings of The International Conference on Computer Applica-
tions in Industry and Engineering (CAINE), (2009), San Francisco, California, USA.

[20] Peng, D., Cao, L. and Xu, W.: Using JSON for Data Exchanging in Web Service Applications, Journal
of Computational Information Systems 7: 16 (2011), pp. 5883-5890.

[21] Qt cross-platform application and UI framework, http://qt.nokia.com/, retrieved January 2nd, 2012.
[22] Sasa, A., Krisper, M., Kiyoki, Y., Kurabayashi, S. and Chen, X.: A Personalized Recommender Sys-

tem Model Using Colour-impression-based Image Retrieval and Ranking Method, ICIW 2011 proceed-
ings of the Sixth International Conference on Internet and Web Applications and Services, (2011), St.
Maarten, The Netherlands Antilles.

[23] Warner Bros. movie trailers http://www.warnerbros.com/, retrieved January 2nd, 2012.
[24] Xiph.org: Test Media, a repository for freely redistributable test sequences. Retrieved December 29th,

2011.
[25] Yahoo! Movies, http://movies.yahoo.com/trailers, retrieved January 2nd, 2012.
[26] YouTube, http://www.youtube.com, retrieved January 2nd, 2012.
[27] YouTube, Terms of Service, http://www.youtube.com/t/terms, retrieved January 2nd, 2012.

Publication IV

Rantanen P., Sillberg, P. and Soini, J., “Content Analysis System for Images”, in
Proceedings of the 16th International Multiconference Information Society, IS 2013,
Volume A, 7-11, Ljubljana, Slovenia. Josef Stefan Institute, pp. 241-244, October 7-11,
2013.

Printed with the permission of Josef Stefan Institute.

Original publication is available at http://is.ijs.si/is2013/zborniki.asp?lang=en
g.

http://is.ijs.si/is2013/zborniki.asp?lang=eng
http://is.ijs.si/is2013/zborniki.asp?lang=eng

CONTENT ANALYSIS SYSTEM FOR IMAGES

Petri Rantanen, Pekka Sillberg, Jari Soini

Department of Software Engineering

Tampere University of Technology - Pori

P.O.Box 300, FIN-28101 Pori, Finland

Tel: +358 40 8262890; fax: +358 2 6272727

e-mail: jari.o.soini@tut.fi

ABSTRACT

This paper presents a concept architecture developed for

managing digital data. The paper introduces the basics of a

simple task-based system, which can be used for scheduling

content analysis tasks on remote back-ends. The interaction

between client software, front-end service, and content

analysis back-ends are illustrated in combination with an

optional feedback mechanism designed for improvement of

analysis results. The paper describes the system

components and overall system architecture, and also

explains how task generation and data analysis are

implemented. The presented concept architecture is

applicable to various forms of media, but the focus of this

paper is on image content.

1 INTRODUCTION

The research topic deals with the challenges of managing

vast amounts of data. Currently, there is a huge amount of

digital data stored in many different kinds of digital storage,

even at individual level. Moreover, the stored data is not

only big, but it is also unstructured. The problem is simply

how to manage all this stored digital data. Tampere

University of Technology is involved in a large national

research project called Data to Intelligence (D2I). The aim of

the D2I project is to study and develop methods and tools

for the management, processing, and utilization of large

amounts of data captured from the environment, Internet

and many other sources. In addition, new business

opportunities are being developed around this material. As

part of this project, the study focuses on examining the

challenges related to processing digital data automatically.

For example, humans can process text, images, videos,

audio, and other forms of data effortlessly, but these are the

most difficult to process automatically by computer.

2 TASK-BASED ANALYSIS SYSTEM FOR IMAGE

CONTENT

The system consists of a front-end service, which provides

a REST API for the clients, and can be used to execute

search queries, modify content on the front-end, and can

also be used to connect external accounts of 3
rd

 party

content storage services. The front-end does not store any

actual content, but only maintains a metadata base, which is

used for resolving the links to the content stored on external

accounts. In addition to being capable of retrieving content

and the associated metadata located on external accounts,

the front-end can utilize various content analysis engines

for the process of extracting additional metadata. In the

scope of this paper, the focus is on content analysis

engines capable of image analysis, and more specifically,

content-based image retrieval [1, 2].

Figure 1: Overall system architecture.

The main purpose of the multiple analysis back-end (content

analysis engine) approach is to make it possible to gather as

wide a range of metadata as possible – as generally most

systems are more suitable for one task, and do not perform

as well with other types of tasks. For example, a back-end

capable of feature extraction cannot do description text

summarization. In principle, the multiple analysis back-end

approach could also be used for load-balancing if there are

multiple mirrors of the same back-end available, but this

would require knowledge of the current load status of said

back-ends, or the back-ends should be dedicated to the

tasks provided by the front-end. For these reasons, in our

scenario, the back-ends are responsible for their own load-

balancing and resource allocation. In an ideal scenario, all

analysis results would be shown to the user immediately

after the content has been uploaded, and with a relatively

small content base this can be achieved, but in the case of

thousands, or tens of thousands of images, there may be a

significant delay before the analysis operation is completed.

Depending on the overall quality of the results, this may

force the user to recheck his/her images after the analysis

has finished. The total time required for analysis depends on

the content and is difficult to estimate precisely. In practice,

the results are seldom perfect, and thus, a mechanism for

user feedback is required. The feedback may be requested

during the initial upload of the content, or some time after,

depending on the desired use case. The overall system

architecture is shown in Figure 1.

Google's Picasa was our choice for the content storage

service, but any of the alternative services (Flickr, Amazon,

etc.) could have been chosen as well, as the only

requirements were the ability to store image content and a

public REST API, which could be easily used to access the

image details from the user's account. There are several

advantages in using a public service. It saves the trouble of

implementing “just another content storage,” and also

enables the use of network and storage capabilities not

necessarily otherwise available for research purposes. In

addition, this approach makes the testing process easier, as

the participants can use the content provider's APIs and

well-known web clients for adding, updating, and removing

content. If the test cases are very complex, it may be

necessary to implement an additional client for browsing the

content, or for executing other tasks that are not possible

with the default client of the content provider. Whether this

kind of split between two (or more) client applications is an

issue or not depends on the use cases, but for us, the

resources and time saved by not implementing new image

storage were well worth it.

In the current implementation, two analysis back-ends,

MUVIS [10] and PicSOM [11, 12, 13] are used, which have

been provided by the partners of our research project. If any

other back-end had been used, that back-end would

naturally have implemented our interface specifications,

which is not usually possible with commercial systems.

Unfortunately, no commonly used generic and free

protocols exist for task scheduling to external systems.

Also, there is an apparent lack of open public services that

could be used for advanced media analysis (such as feature

extraction), which are not limited to the extraction of basic

media details (e.g. Exchangeable Image File Format metadata

[14]) that can easily be extracted without the use of external

analysis back-ends. It should be noted that some metadata

could be extracted by uploading the content to one or

several of the publicly available content storage systems,

and then retrieving the metadata generated by those

systems, but in addition to being a somewhat cumbersome

process, it may also be in violation of the terms of service

agreements of the services in question – there may be limits

on what purposes the services can be used for, and what it

is permitted to do with the automatically generated content.

The basic concept of the system is based on the work done

on previous research projects [3, 4]. An important point to

make is that even though the system is suited to work as an

end-user system, its primary purpose is to work as a test

platform for content analysis engines in the scope of the D2I

project. From this point of view, the client interface is

secondary, and the communication protocols for the back-

ends are of greater concern. The communication with the

back-ends is basically two-fold. In the first phase, the back-

ends are provided with a workload, which they should

analyze, and report their findings back to the front end. In

the second phase, these results should be validated by the

user, either by asking for direct feedback [5, 6] or indirectly

by automatically generating feedback based on the user’s

actions [7, 8, 9]. These two phases form the two basic task

types of our system: the analysis task and the feedback

task.

3 TASK-BASED APPROACH

The communication between the front-end and back-ends is

achieved by using tasks and task responses. The tasks

contain information about the type of the task and the actual

contents (workload). The task workload generally consists

of a list of images, in which each image contains the required

base details (e.g. image URL, identifier), and any optional

metadata (e.g. the description of the image) that might be

useful for the back-end, but is not strictly speaking required

for the completion of the task. The “usefulness” of metadata

is decided by using a list of predefined data group

classifiers, which are specific to a certain type of a task and

the back-end in question – i.e. the task contents may vary

from back-end to back-end, and from task type to task type,

if needed. An example of a data group classifier could be

“keywords,” which, if present in the configuration, would

trigger the inclusion of keywords associated with images

into the generated task.

Figure 2: Sequence diagram for scheduling a new task on an

analysis back-end.

For the content analysis, the current implementation of the

system provides two task types: analysis and feedback . The

analysis task is used for requesting media analysis work

from a back-end, such as tag or keyword extraction. A

simple use case illustrating the task of type analysis is

provided in Figure 2.

In Figure 2, the analysis task is generated after the user has

connected his/her account to the system. The task

generation may also be triggered by a web crawler, or by

periodical synchronization with a previously connected

account. If the account contains valid image content, the

metadata of this image is stored in a database on the front-

end, and based on this data a new task is generated for

submission to back-ends. The task procession is always

asynchronous, and the analysis back-end is free to initiate

the actual analysis whenever it is most convenient. After the

task has finished on the back-end, a notification is sent to

the front-end. This notification message should contain any

extracted metadata, and any possible error situations that

occurred during analysis. Depending on the severity of the

error, the image in question may be included in a new task,

scheduled for a later execution – corrupted image data will

never be successfully analyzed, but a temporary network

error may resolve itself after a while. It should be noted that

the task finished notification may contain only partial

analysis results, which means that the back-end may

provide the results progressively, or try the analysis again

at a later date if needed.

Upon generation of a task, the base details of the task are

added to the front-end database. These details include, for

example, the list of image identifiers contained in the task,

the ID of the task, the back-ends which should partake in

the execution of the task, and optional user details. The

back-ends may provide results for the tasks as long as the

tasks are available. The tasks may become unavailable after

a certain time period (expired tasks), or if all the content for

the task is deleted by the user.

The user details can be passed to the back-ends, or the task

can behave entirely in an anonymous manner, in which case

the back-ends will not have any details about who owns the

image content. The user details will never contain sensitive

data about the user (such as a user name or password to the

external account), and will only contain the user identifier

assigned by the front-end, which can be used by the back-

end to differentiate the users from each other. The URL links

to image content are always provided as links pointing to

the front-end, which will handle authentication to the

external account, and provide necessary URL redirection for

reaching the image content. This functionality can be used

to hide the real user credentials from back-ends, but it also

makes the back-end implementation simpler, because they

only need to implement the interface for communicating with

the front-end, and not all of the various authentication

schemes used by the supported services. The disadvantage

of this approach is the increased traffic on the front-end

generated by the URL redirection requests.

The list of images and their details are dynamically

generated based on the image identifiers and the available

metadata. For the basic use case, depicted in Figure 2, this

approach has no practical advantage, but using the system

also makes it possible to give the back-ends only the task ID

when scheduling the task. Thus, the back-ends may retrieve

the task details just before starting the analysis, and in this

way receive the most up-to-date metadata, which may

contain results from previously finished analysis runs (i.e.

from other back-ends). The back-end may always disregard

the details provided in the Add Task call, and manually

retrieve the task details. Disregarding the details may come

into question if the analysis on the back-end is for some

reason started after a very long time has passed since the

Add Task call was received. For the basic analysis

functionality this may not be required, as new images are

never added to existing tasks, and submitting results for

images that have been removed from the task is not

considered an error. If the addition of new images to the old

tasks were allowed, this would require more complex

synchronization logic between the front-end and the back-

ends. The same functionality can be achieved in a simpler

way by creating new tasks when adding new content.

3.1 Task Results

When submitting the result (Task Finished call, in Figure 2),

the back-ends cannot directly modify the details of the

images. Instead, each image contains an object list, which

may contain objects created either by the user, the front-

end, or by the back-ends. These objects contain predefined

fields for the object name, value, object type, and any

special fields associated with a specific object type. The

currently supported types are metadata, keyword, face, and

object. Metadata is the simplest type, containing a basic

name-value pair of information, such as GPS coordinates.

Keyword (or “tag”) and face are special types of metadata,

and they are used when keyword-based queries or people-

based queries are performed by the user. These two types

may also contain coordinate (or area) information, which can

be used to pinpoint the data to a specific position over the

image. The face recognition data is in our case extracted by

one of our own back-ends, but the metadata could also be

extracted directly from the external account if the public API

of that particular service supports the functionality. Object

type is a generic container, which is stored as -is on the

database. In addition to the type-specific fields each object

contains an object ID, which should be provided by the

object creator, such as the user or the back-end. If the ID is

missing, it will be generated automatically – internally, a

separate ID is also generated for each object, to preserve ID

uniqueness. A single object can be associated with multiple

images, in which case modifications to a single image can be

reflected to other images. Upon submitting a new object, the

submitter is also recorded on the database, and by using the

submitter ID (user identifier, or back-end identifier) and the

object ID, it is possible to update pre-existing objects. This

enables the user to update his/her own objects, and the

back-ends to update their earlier results. Any object creator

can modify only objects it has created itself, with some

exceptions; the user can always modify objects that are

associated with his/her content whether they were originally

created by him/her or the automated extraction process; and

back-ends can never overwrite object information explicitly

modified by a user whether the object was originally created

by the back-end or not. There is a possibility that a back-

end might later on provide results that would be better than

those the user had originally accepted, but allowing the

back-end to override the user's modifications generates

various usability issues. The “correctness” of a result can

be strongly related to a particular user, and making an

automatic foolproof estimation of improvement can be very

difficult. It could be argued that the user would be more

willing to preserve his/her own modifications, even if they

are – relatively speaking – worse, as opposed to the idea of

an automatic system repeatedly updating his/her content. If

the updates happen very rarely, they could be confirmed

manually by the user.

3.2 Feedback Tasks

The feedback task is often “indirectly” created by the user.

Certain operations, such as changing the image description,

or updating a pre-existing object can trigger the creation of a

feedback task. The purpose of the feedback task is both to

provide the back-ends with statistical information about

how the users use their objects, and to enable self-learning

functionality in the back-ends. If the back-ends cache

information about previously analyzed images and the

objects they have created, the feedback information can, in

principle, be used to enhance future analysis results or point

out mistakes in previous results. As the Task Finished may

be called at any time in the future as long as the task is valid,

the back-end may update its previous analysis results based

on the feedback. At the very least, the information should

help the back-ends to discover results that are repeatedly

incorrect, or do not generally match the users' perception. If

the feedback task also contains user details, the feedback

can be targeted to a specific user, and it could affect the

future analysis results of that particular user.

4 SUMMARY AND FUTURE WORK

This paper briefly presented the basic operating principles

of a task-based content analysis system. The system is one

solution for improving the management of a huge amount of

digital data, in this case, images. The full documentation for

the system, including the proposed protocol specification, is

to be published as the research project (D2I) progresses. In

addition to improving the basic system, research is ongoing

into methods for collecting user feedback. For long-term

research, there are also plans for extending the system to

implement audio and video capabilities.

References

[1] M.S. Lew, N. Sebe, C. Djeraba, R. Jain. Content-Based

Multimedia Information Retrieval: State of the Art and

Challenges. ACM Transactions on Multimedia

Computing, Communications and Applications. Vol. 2,

No. 1. pp. 1-19. 2006.

[2] R. Datta, J. Li, J.Z. Wang. Content-Based Image Retrieval

– Approaches and Trends of the New Age. MIR'05

Proceedings of the 7th ACM SIGMM International

workshop on Multimedia Information Retrieval. pp. 253-

262. Singapore. 2005.

[3] P. Rantanen, P. Sillberg, H. Jaakkola, T. Nakanishi. An

Asynchronous Message-based Knowledge

Communication in a Ubiquitous Environment. Lecture

Notes in Computer Science Vol. 6193. pp. 434-444. 2010.

[4] P. Sillberg, S. Kurabayashi, P. Rantanen, N. Yoshida. A

Model of Evaluation: Computational Performance and

Usability Benchmarks on Video Stream Context

Analysis. Information Modelling and Knowledge Bases

XXIV. Vol. 251. pp. 188-200. 2013.

[5] N. Vasconcelos, A. Lippman. Learning from user

feedback in image retrieval systems. Advances in Neural

Information Processing Systems. Vol. 12. pp. 977-986.

2000.

[6] Y. Rui, T.S. Huang, M. Ortega, S. Mehrotra. Relevance

Feedback: A Power Tool for Interactive Content-Based

Image Retrieval. IEEE Transactions on Circuits and

Systems for Video Technology. Vol. 8, No. 5. pp. 644-

655. 1998.

[7] P. Maes, R. Kozierok. Learning Interface Agents. AAAI-

93 Proceedings of the 11th National Conference on

Artificial Intelligence. Washington D.C., USA. 1993.

[8] E. Agichtein, E. Brill, S. Dumais. Improving Web Search

Ranking by Incorporating User Behavior Information.

SIGIR'06 Proceedings of the 29th Annual International

ACM SIGIR Conference on Research and Development

in Information Retrieval. pp. 19-26. Seattle, Washington,

USA. 2006.

[9] L.A. Granka, T. Joachims, G. Gay. Eye-Tracking Analysis

of User Behavior in WWW Search. SIGIR'04

Proceedings of the 27th Annual International ACM

SIGIR Conference on Research and Development in

Information Retrieval. pp. 478-479. Sheffield, South

Yorkshire, UK. 2004.

[10] MUVIS, A System for Content-Based Indexing and

Retrieval in Multimedia Databases.

http://muvis.cs.tut.fi/. 2013.

[11] J. Laaksonen, M. Koskela, S. Laakso, E. Oja. PicSOM –

Content-based image retrieval with self-organizing maps.

Pattern Recognition Letters Vol. 21. pp. 1199–1207. 2000.

[12] J. Laaksonen, M. Koskela, S. Laakso, E. Oja. Self-

organizing maps as a relevance feedback technique in

content-based image retrieval. Pattern Analysis &

Applications. Vol. 4. pp. 140–152. 2001.

[13] The Content-Based Image and Information Retrieval

Group, Department of Information and Computer

Science, Aalto University.

http://research.ics.aalto.fi/cbir/. 2013.

[14] Exchangeable image file format for digital still cameras:

Exif Version 2.3. http://www.cipa.jp/english/hyoujunka/
kikaku/pdf/DC-008-2010_E.pdf. 2010.

Publication V

Rantanen P. and Sillberg, P., “Event Calendar for Internet Data Sources”, in Proceedings
of the 37th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, Croatian Society for
Information and Communication Technology, DOI: 10.1109/MIPRO.2014.6859721, pp.
1035-1040, May 26-30, 2014.

Printed with the permission of Institute of Electrical and Electronics Engineers - IEEE.

Event Calendar for Internet Data Sources

P. Rantanen* and P. Sillberg*
* Tampere University of Technology/Pori Unit, Pori, Finland

{petri.rantanen,pekka.sillberg}@tut.fi

Abstract – Several nations in Europe have released formerly

closed data sources collected by government agencies and

municipalities. These open data initiatives have enabled new

and innovative services. The research presented in this

paper is funded by the European Union Regional Fund as

part of the Satakunta Regional Centre for Economic

Development, Traffic and Environment funding program,

and by the City of Pori. One of the goals of the research is to

study how open data can be utilized technically. This paper

presents technologies found useful for the implementation of

a service utilizing open data. These technologies are

presented in this paper as part of an event calendar service

that uses open data sources available in the region of

Satakunta, Finland. The overall architecture of the service is

described briefly, and the paper focuses on the open source

components used to implement the user interface, front-end

service, and database. Despite the use of region-specific data

sources, the utilized solutions i.e. hybrid databases, search

platforms, and HTML5 technologies can be exploited in the

design of other services.

I. INTRODUCTION

The research presented in this paper is part of the
AVARAS project. AVARAS is an Open Data Project in
the Satakunta Region in Western Finland conducted by
Tampere University of Technology, Pori Unit. The idea of
it is to study and implement business opportunities related
to Open Data. It is a regional activity with close
connections to more than ten SME-sized software
companies that are used to guide and direct the project
activities. The project is funded by the European Union
Regional Fund as part of the Satakunta Regional Centre
for Economic Development, Traffic and Environment
funding program. [1]

One of the main goals of the project is to study how
open data sources can be utilized technically. The research
is conducted using pilot applications, which will be openly
available for public use. Their purpose is especially to
publish interfacing technologies and interface
specifications, which can be re-used in new applications.
Similar activities are taking place in other regions in
Finland [2], [3]. This paper presents one of the pilot
applications designed in the AVARAS project.

The application presented in this paper is an event
calendar service, which utilizes event data available on the
public Internet. The service does not require any input
from the event publishers, and can be set to crawl any
number of sources automatically. There are many event
calendars available on the Internet and the idea of an event
calendar is in no way a new one, even though one could
argue that there are not that many calendars that can list

external events without some kind of input from the event
publisher or event provider. Nevertheless, the main reason
for choosing an event calendar application in particular
was the type of container it provides. Basically any data
can be thought of as “an event”: the daily weather
forecast, road accident reports, sports events, or movie
showtimes – which are used as an example case in Section
V of this paper. In a way, the idea of an event calendar can
be generalized to contain almost any kind data. This paper
does not go into too much detail when describing the basic
calendar functionalities, but attempts to illustrate how the
chosen technologies could be used both in this use case
and perhaps in a more general way outside the event
calendar context by describing the advantages and
disadvantages of the chosen technological solutions.

As mentioned above, the example shown in Section V
uses details of movies from the local cinema as a data
source, though any other data source could have been
chosen as well. The other sections of this paper are as
follows: Section II gives a short overall presentation of the
chosen system architecture; Section III describes the
chosen database solution; Section IV explains the
designed REST interface; Section VI discusses some of
the issues related to the application; and finally, Section
VII summarizes the paper.

II. SYSTEM OVERVIEW

The system introduced in this paper is an effort to
utilize publicly available data in the region of Satakunta,
Finland, and also test the usability of open source software
components and libraries. The selection was made partly
by suggestions from the steering committee of the project,
and partly guided by academic ambitions. Fig. 1 illustrates
the basic organization of the system. There are three
distinct components: data storage, front-end service, and
client, which are described in more detail in Sections III,
IV and V, respectively.

Figure 1. System overview

The Client is in principle an HTML web page, which
accesses the Front-end Service’s RESTful (e.g. [4], [5])
interface to retrieve data, and then visualizes this data in a
calendar view. The client allows the user to narrow down
the dataset by entering filtering terms such as date, time,
keywords and also free text searches.

The Front-end Service is an access point to the
features of the system. It provides user authentication,
RESTful API for data in XML format, and adapts the data
sources to make them suitable for indexing and storing.
The service is written in Java and the main open source
components it utilizes are Apache Tomcat [6] and Spring
Framework [7].

Our database solution includes features from both the
traditional RDBMS and NoSQL [8] approaches. The
Document Index uses the Apache Solr [9] search platform
as it is specialized in indexing and searching, while the
RDBMS is based on MySQL [10] and is used to store the
document relationships and basic structural information
such as user credentials.

III. DATABASE

The searching and indexing of data provided by open
data sources is the key point of the system. The database
solution must have good search capabilities, but it also
must be able to handle loosely structured data. Different
data sources are often provided in various formats, thus it
may be difficult to parse the same data from them all. For
example, one source could simply list the names of the
performers while another source may contain performer
names, email addresses, and groups they belong to.

The SQL approach with its well-defined table-column
structure was considered too rigid for the data we might
encounter. Of course, we could define all possible
columns and leave them null if not available, but that
would not be very practical. From the NoSQL approach
we found a solution, Apache Solr, which had the
capability to index and store the data, as well as
sophisticated text search features.

The most interesting feature of Solr is its ability to
index any kind of text in various ways. With relatively
small changes and additions to the Solr core’s basic setup,
it is possible to enable request handlers such as full text
search, “more like this,” and auto completion [11]. As a
security measure, the database section in our system is
behind the front-end service. This means that the client
cannot access features of the database directly. A simple
call through API was implemented on the front-end
service to handle requests.

There is often a need for storing relationships between
documents, and implementing this feature was
cumbersome with Solr alone. For storing simple data
types, such as strings, texts, dates, or a list of strings, Solr
can manage with no problems. Issues arise if there is a
need to store complex and denormalized data within the
same document. For example, take the situation where
there is an event involving many performers in it, and for
every performer we need to store a name, email address
and URL for the website. There are several possible
approaches on how to solve the issue:

1. Store performer data in synchronized lists inside
the same event document. This requires some
extra effort in marshalling objects, but Solr can
still index the document effectively. Maintenance
of the document or parts of it suffers from the
denormalized data format and from the way Solr
handles updates (complete overwrite, i.e. no
partial updates).

2. Store performer data in another Solr core as
separate documents, and store the relationship (i.e.
performer ID) in the original event document.
This approach allows easier maintenance and is
closer to the traditional relational approach. Solr
cannot handle joins as fluently as SQL does, so
extra lookups and queries are required. Extra
work is required for fully utilizing search and
indexing in the Solr multi-core setup.

3. Store performer data in another Solr core as
separate documents, but store the relationship (i.e.
performer ID and event ID) in another database
(e.g. MySQL). If the only task of this other
database is mapping of relationships, a graph
database (e.g. [12], [13]) might be an alternative
choice for a SQL database. This hybrid – or
polyglot [8] – approach is much like the previous
case, but the handling of relationships might be
easier. This increases complexity due to the use of
another database technology.

4. Store both the event data and the performer data
in the same Solr core, but store the relationship
(i.e. performer ID and event ID) in a separate
database. Use of a single Solr core simplifies
indexing and searching. Storing of multiple types
of documents in a Solr core can be achieved as
Solr allows dynamic field assignments. The type
of document must be known when the data is
marshaled. Compared to the first case,
maintenance of these smaller documents may be
easier.

A combination of multiple databases is called the
polyglot persistence model by reference [8]. Together they
may create an ecosystem that is more powerful than the
sum of its parts [8]. In theory, one could choose any
combination of database techniques if using them together
generates more benefits than drawbacks (e.g. code
complexity, time to develop).

We chose the hybrid approach (3) for the event
calendar implementation. In our use case the main event
details and minor event details are stored in separate Solr
cores, and the relationships are stored in a MySQL
database. The minor event details can contain information
such as event location and event organizer, or sub events
which belong to the main event. In principle the minor
event details could be stored directly to relational
database, but this would prevent using Solr’s text indexing
and search functionality. On the other hand, the details
could be merged with the main event details, and stored in
a single core as described in the approach 1 above. In
practice this would require flattening of very complex
objects to key-value pair lists, which is more difficult than
separating the less important data into individual cores.

Naturally, dividing the data between multiple cores will
have an effect on the complexity of search queries and the
search performance if the queries need to be targeted to
multiple cores. In addition to a performance gain, in our
use case there is also an additional advantage achieved by
flattening certain important data with the main event
details, which is perhaps not immediately evident. Event
details often contain various performer details, such as
description of a band, movie studio or names of the artists.
These descriptions generally vary depending on the data
source and analyzing the details to form a single combined
entity is difficult. A simple solution to this problems is to
ignore the performer-event relations altogether and flatten
the data into a single core. This will cause all details to be
duplicated and appear slightly different for each event, but
it will also enable the use of Solr’s text search features
when querying for the event details. From the text
indexer’s point of view these minor differences in the
descriptions are irrelevant.

IV. FRONT-END SERVICE

The front-end service implements interfaces for three
kinds of functionality: user management, suggestions, and
search. In our demo implementation the user management
is limited to basic functionality, i.e. creating a new user
and modifying user details (such as password and email
address). User authentication is provided using the Spring
Security [14] framework and in principle supports all
features supported by the framework. The reason for
implementing only a minimal set of user authentication
and authorization features is the nature of the processed
data, which consists of publicly available content. There is
no need to check user authorization when accessing the
content. Of course, the service could be extended with the
possibility to add user-created content, but this would
complicate the implementation and is not the focus of our
current demo implementation. The user management
could also be utilized for personalized calendars, but this
functionality is not currently implemented.

The suggestion API provides the user with search
suggestions. It is implemented using the text indexing
features found on Solr and works similarly to the
functionality found on many search engines. For example,
if the user types “Hobb”, based on the indexed content the
system may suggest search terms “Hobby” or “Hobbit”.

The search API provides the functionality required for
content queries and offers features such as free-text
search, content filtering, sorting, and paging. Many of the
currently available open source databases directly offer
interfaces for the aforesaid features [15], [9], which can be
easily used over HTTP by using GET or POST. In this
case content filtering refers to filtering by values (e.g. only
return events taking place between January 1st and
January 10th), though similar functionality could also be
used to implement filtering for improper content (e.g. do
not show adult content to anonymous users or to children).

Depending on the use case, these interfaces might be
all that is necessary. The limitations of the APIs are not so
much on the basic functionality, but more on the user
management. The NoSQL database APIs often do not
enforce – or even provide only a very limited – user

authentication. In a way this is a shame, as in many cases
the REST interface provided by the NoSQL databases
could be all that is needed for the query operations. Then
again, perhaps the idea is, that it is not the task of the
NoSQL database to perform user authentication. Of
course, in many cases this does not matter so much as it is
often the case with web applications, that the user
authentication is performed by the front-end service or by
some kind of mediator interface, and the user does not
directly interact with the database. The similar approach is
possible with Solr and with any other NoSQL database. If
a complex authentication scheme is required it might be
better to implement a front-end service with interfaces
combined with user authentication and authorization. The
demo implementation presented in this paper uses the
aforementioned design pattern by providing a separate
REST interface for query operations, which in turn will
delegate the requests to the database when appropriate.

Another advantage received from implementing a
separate front-end service is the additional control gained
over the requests. This enables simplifying the search
queries or limiting the set of available search filters or
even resolving the XML element (or JSON object) names
given in a query to database field names to be used for
sorting and filtering. In particular, mapping element
names to database fields is often required when the actual
field names defined in the database are hidden to end
users or developers using the API. As document databases
generally offer output in the form of XML or JSON, it is
possible to use the field names defined in the document
directly in the response returned to the user, but this is
generally not a good practice – it is much easier to change
the internal implementation when the fields defined in the
database layer are not directly being used by the users of
the service API. Also, defining separate field names and
XML element names is often a minor task, for example by
using annotations in Java. Both the Solr Java
implementation (SolrJ) [16] and Spring Data framework
[17] provide annotation support for defining Solr field
names for Java objects, and the annotations can be
combined with Java Architecture for XML Binding
(JAXB) [18] or Google GSON [19] to provide XML and
JSON responses. This way the response Java objects that
are deserialized from Solr query responses can be directly
serialized to XML or JSON for external service API
responses.

On Solr, database queries cannot modify the database
content and thus the risk of code injection can be
mitigated by rejecting all other user requests except
queries. In our use case, there is no risk of users retrieving
content they are not authorized to view by running a
malicious query, as all of the content is publicly available.
Also, it should be noted that implementing user
preferences does not necessarily require user
authentication. For example, if the user always wants to
see the latest events or only events of a certain type (such
as sports), the preferences can be stored on the client
software or in local storage [20] on a web browser and
from these preferences the required filter parameters can
be generated and appended to the queries.

V. CLIENT

Fig. 2 illustrates a calendar with events retrieved from
XML API [21] provided by a local cinema in the City of
Pori. The calendar view could include any events indexed
by the front-end service, but for simplicity only movie
events are shown in this example. The view in the figure
is a screenshot from a web browser. The main page layout
is created using the w2ui JavaScript UI Library [22],
which consists of plugin extensions for the popular jQuery
library [23] and the calendar view itself is an embedded
component created with the FullCalendar jQuery plugin
[24]. There are many open source alternatives that can be
used to implement web user interfaces (e.g. [25], [26]) and
calendars (e.g. [27], [28]), and it is possible to implement
a new user interface from scratch using basic JavaScript or
jQuery, but in many cases the pre-made plugins and
libraries provide a better starting point. The choice
between the various alternatives is partly use case-specific
as not all libraries provide similar functionality, and partly
based on the developer’s preference or pre-knowledge of a
particular library. In this use case we use movie details
from the local cinema.

Figure 2. Calendar view

The calendar view in Fig. 2 shows all events currently
listed in the events panel on the left. In the example case,
no search terms have been given and thus all movie events
known by the system are shown. The search field at the
top left accepts both free text search and the basic query
syntax of the Solr query parser. The Solr query syntax is
based on the Lucene Query Parser syntax, which can be
somewhat cryptic for end users. There are alternatives for
the default parser such as the Extended DisMax Parser
[21], which can provide better usability. However, in
general, users will most likely prefer free text search over
syntax-based queries, and it is better to create filter
parameters and additional search terms programmatically
and append them to the search query given by the user.
The additional parameters can originate from, for
example, checkbox selections or user preference options.

Figure 3. Map view

Fig. 3 shows the location of a selected event on a map
using the Google Maps API [30] embedded in a w2ui
panel. Showing a map and directions is often quite simple,
but they can provide a lot of additional value for the end
user. Most of the online map services provide JavaScript
APIs, which can be used to show a location on a map and
provide guidance to the location from the user’s current
location [31] on foot, by car or by public transportation.
Unfortunately, in most cases the directions are not turn-
by-turn capable and cannot as such be used to navigate
directly to the target location except by continuously re-
calling the mapping service, which can be very resource-
intensive. To enable turn-by-turn navigation, the use of a
native map application found on a mobile device is often
required. If more complex map operations are required,
the use of a native map application may be a better choice
than a web-based client. In addition to extended
functionality, native applications generally perform much
better on mobile devices when compared to JavaScript
web applications with similar functionality.

VI. DISCUSSION

This paper presented an event calendar service, which
can be used to show data retrieved from various data
sources, and provided some technological insight on how
to implement the aforesaid service. Nevertheless, there
remain several problems with the current implementation,
and these problems are not strictly related only to the
application in question. As mentioned above, the newer
database technologies have not yet been fully utilized, and
because of this it is often hard to find ready-made
solutions for the problems. This is especially true when
compared to traditional relational databases – several good
books have been written and best practices developed to
solve various implementation problems related to
relational databases. The lack of best practices naturally
creates problems for adapting new technologies, but on
the other hand it makes the subject an excellent research
topic. When adapting to a new technology, there is also a
great temptation to abandon the old models and use new
technology for every use case – even when it is not
appropriate to do so. For example, it is possible to use a

key-value database or document database to map
relationships, even though that is not what they are
designed for, while a relational database would be a more
appropriate choice.

Another problem is finding the event sources from the
Internet. It is relatively easy to find listings (e.g. [32]) of
usable event APIs by using a simple web search, but
utilizing the sources requires implementing parsers for
each of the various APIs. Implementing a parser is
generally a straight forward task, but it does require one to
study the API documentation and perform some
programming work. Another option is to search events
from popular web pages such as Facebook or Google
Calendar – or use the APIs provided. The availability of
events is dependent on the services used, and extracting
the events may require special permissions from the
publishers of the events whether they are the users of the
service or the service operators. In practice it may be
better to use the service APIs directly instead of crawling
the web in hope of finding up-to-date event details in
sensible format is difficult. Also, in many cases the online
calendar applications are dynamically populated with, for
example, JavaScript, and can be very challenging to parse.
Extracting content from dynamically created web pages
has been researched by e.g. [33] and [34].

In addition to purely technical problems, there are also
other issues related to implementation and usage. In many
cases it is often difficult to figure out whether the data in
question is actually open data or merely openly available
[35], [36]. This can be illustrated by using the example
chosen in this paper. If the cinema does not show
copyright notices or present license agreements on its web
page nor are there any present in the provided data, does
that mean that the data is truly open and free to use?
Should permission be asked from the cinema owner, or
maybe from the company who made the movies, or even
from the company who made the local translations of the
movie descriptions? In our use case one might assume that
showing the movie details and showtimes on a public
calendar is only good publicity for the cinema and a way
to advertise in a way the cinema did not think of, but
legally this may not be the case.

Also, many open data sources do offer data freely, but
with certain limitations. The user may have to register
first, or maybe the data cannot be shown openly and freely
in all possible use cases. Finding these license agreements
is not always a simple task. The service presented in this
paper mostly ignores these issues by being a technology
demo, but when designing an actual implementation,
which will be a publicly available service, one should be
careful to check that the apparently free and open data is
truly free and open.

VII. SUMMARY

This paper presented an event calendar service, which
can be used to visualize open data. The overview of the
service was presented, and the chosen technical solutions
were explained. The issues encountered while
implementing the service were also dealt with briefly. The
pilot application proved that the chosen technologies were
promising candidates for future studies. In the future, our

research will continue to focus on the new database
technologies. We will also continue to improve the
calendar implementation, with a possibility of running a
user trial on a local summer festival. It was also found that
there is a need for a separate study on the issues
concerning the licensing of open data.

REFERENCES

[1] Tampere University of Technology, AVARAS Regional Initiative
to Reveal the Opportunities of Open Data,
https://www.tut.fi/avaras/?page_id=424. Retrieved February 24th,
2014.

[2] Open Data TRE, Open Data TRE,
http://www.hermiagroup.fi/opendatatre. Retrieved February 24th,
2014.

[3] Helsinki Region Infoshare, Helsinki Region Infoshare | Open
regional data, http://www.hri.fi/en/about. Retrieved February 24th,
2014.

[4] R. T. Fielding, Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of
California, Irvine, 2000.

[5] Wikipedia.org, Representational state transfer,
http://en.wikipedia.org/wiki/Representational_state_transfer.
Retrieved February 24th, 2014.

[6] The Apache Software Foundation, Apache Tomcat,
http://tomcat.apache.org. Retrieved February 24th, 2014.

[7] GoPivotal Inc., Spring Framework, http://projects.spring.io/spring-
framework. Retrieved February 24th, 2014.

[8] E. Redmond and J. R. Wilson, “Seven databases in seven weeks,”
O'Reilly Media, ISBN 978-1-934356-92-0, 2012.

[9] The Apache Software Foundation, Apache Lucene - Apache Solr,
http://lucene.apache.org/solr. Retrieved February 24th, 2014.

[10] Oracle Corporation, MySQL, http://www.mysql.com. Retrieved
February 24th, 2014.

[11] The Apache Software Foundation, Suggester - a flexible
‘autocomplete’ component, http://wiki.apache.org/solr/Suggester.
Retrieved February 24th, 2014.

[12] Neo Technology, Neo4j, http://www.neo4j.org. Retrieved
February 24th, 2014.

[13] I. Robinson, J. Webber, and E. Eifrem, “Graph databases,”
O’Reilly Media, ISBN 978-1-44935-626-2, 2013.

[14] GoPivotal Inc., Spring Security,“ http://projects.spring.io/spring-
security. Retrieved February 24th, 2014.

[15] MongoDB Inc., mongoDB – HTTP Interface,
http://docs.mongodb.org/ecosystem/tools/http-interfaces.
Retrieved February 24th, 2014.

[16] The Apache Software Foundation, SolrJ,
https://wiki.apache.org/solr/Solrj. Retrieved February 24th, 2014.

[17] GoPivotal Inc., Spring Data, http://projects.spring.io/spring-data.
Retrieved February 24th, 2014.

[18] E. Ort and B. Mehta, “Java Architecture for XML Binding
(JAXB),”
http://www.oracle.com/technetwork/articles/javase/index-
140168.html, 2003. Retrieved February 24th, 2014.

[19] Google Inc., google-gson, http://code.google.com/p/google-gson.
Retrieved February 24th, 2014.

[20] World Wide Web Consortium, “Web Storage,”
http://www.w3.org/TR/webstorage, 2013. Retrieved February 24th,
2014.

[21] Finnkino Oy, XML Services, http://www.finnkino.fi/xml.
Retrieved February 24th, 2014.

[22] w2ui, JavaScript UI – w2ui, http://w2ui.com/web. Retrieved
February 24th, 2014.

[23] The jQuery Foundation, jQuery, http://jquery.com. Retrieved
February 24th, 2014.

[24] A. Shaw, FullCalendar - Full-sized Calendar jQuery Plugin ,
http://arshaw.com/fullcalendar. Retrieved February 24th, 2014.

[25] Telerik, jQuery-powered framework for desktop-style apps and
mobile sites | Kendo UI Web, http://www.telerik.com/kendo-ui-
web. Retrieved February 24th, 2014.

[26] PrimeTek, PrimeFaces, http://primefaces.org. Retrieved February
24th, 2014.

[27] K. Stetz, CLNDR, http://kylestetz.github.io/CLNDR. Retrieved
February 24th, 2014.

[28] Bic.cat, BIC Calendar, http://bichotll.github.io/bic_calendar.
Retrieved February 24th, 2014.

[29] The Apache Software Foundation, ExtendedDisMax,
http://wiki.apache.org/solr/ExtendedDisMax. Retrieved February
24th, 2014.

[30] Google Inc., Google Maps, https://maps.google.com. Retrieved
February 24th, 2014.

[31] World Wide Web Consortium, “Geolocation API Specification,”
http://www.w3.org/TR/geolocation-API, 2013. Retrieved
February 24th, 2014.

[32] W. Santos, “93 Events APIs: Eventful, Upcoming, Google
Calendar,” http://blog.programmableweb.com/2012/05/01/93-
events-apis-eventful-upcoming-google-calendar. Retrieved March
28th, 2014.

[33] C. Duda, G. Frey, D. Kossmann, and C. Zhou, “AJAXSearch:
crawling, indexing and searching web 2.0 applications,” in
Proceedings of the VLDB Endowment, New Zealand, vol. 1,
issue 2, pp. 1440-1443, August 2008.

[34] S. Choudhary et al., “Crawling rich internet applications: the state
of the art,” in Proceedings of the 2012 Conference of the
Advanced Studies on Collaborative Research, Canada, pp. 146-
160, November 2012.

[35] Open Knowledge Foundation, Open Definition,
http://opendefinition.org/od. Retrieved February 24th, 2014.

[36] Open Knowledge Foundation, Open Licenses Service,
http://licenses.opendefinition.org. Retrieved February 24th, 2014.

Publication VI

Rantanen P., “REST API Example Generation Using Javadoc”, Computer Science
and Information Systems, ComSIS Consortium, ISSN 1820-0214, 2017. Accepted for
publication.

Printed with the permissions of ComSIS Consortium.

Publication VII

Ahmad, I., Rantanen P., Sillberg, P., Laaksonen, J., Liu, S., Forss, T., Malik, A.,
Nieminen, M., Shetty, R., Ishikawa, S., Kallio, J., Saarinen, J. P., Gabbouj, M. and Soini,
J., “VisualLabel: An Integrated Multimedia Content Management and Access Framework
for Personal Users”, in Proceedings of the 27th International Conference on Information
Modelling and Knowledge Bases (EJC 2017), Krabi, Thailand, June 5-9, 2017. Submitted.

VisualLabel: An Integrated Multimedia

Content Management and Access

Framework

Iftikhar AHMAD
a
, Petri RANTANEN

b 1
, Pekka SILLBERG

b
, Jorma LAAKSONEN

d
,

Shuhua LIU
c
, Thomas FORSS

c
, Aqdas MALIK

d
, Marko NIEMINEN

d
, Rakshith

SHETTY
d
, Satoru ISHIKAWA

d
, Jarno KALLIO

e
, Jukka P. SAARINEN

f
, Moncef

GABBOUJ
a
 and Jari SOINI

b

a
 Department of Signal Processing, Tampere University of Technology, Tampere,

Finland
b
 Pori Department, Tampere University of Technology, Pori, Finland

c
 Arcada University of Applied Sciences, Helsinki, Finland

d
 Department of Computer Science, Aalto University, Espoo, Finland

e
 Lynx Technology Finland Oy, Tampere, Finland

f
 Nokia Technologies, Tampere, Finland

Abstract. With the rapid growth of image and video data as well as the fast spread

of user-generated content in social media and the cloud, it has become increasingly
difficult for users to have efficient access and effective management of their digital

content. In this paper we present a novel integrated open source multimedia

content management and access framework, called VisualLabel, that enables smart
photo services based on automated visual content analysis, annotation, search and

retrieval using the start-of-the-art analysis back ends for services such as Facebook,

Flicker. This paper includes a detailed descriptions of the high-level architecture
used in the VisualLabel framework and proof-of-concept implementations of a

front-end service along with three analysis back ends and a web client, all of which

demonstrate the basic functionality provided by the framework.

Keywords. CBIR, content management, framework, REST, web client

1. Introduction

 -

 [13], T [61] etc.),

it has become increasingly difficult for users to have efficient access and management

of their digital content. Multimedia data growth is prodigious and increasing every year.

As the number of users of multimedia handheld devices (e.g. smartphones, tablets, etc.)

is increasing and low-end (feature) handheld devices are getting equipped with better

camera and Internet connectivity, user generated content is also growing. Therefore,

most of the digital data in network drives and social me

 [51]. New multimedia handheld devices combined with web

technologies provide users with new forms of multimedia sharing such as story-telling

and social networking. Personal multimedia content is not only

 [40]). Finding an image

of interest from the terabytes of data distributed on shared network drives and social

media websites is a challenging research problem for scientists, engineers and users

alike.

The use of annotated metadata helps in organizing multimedia items. Flickr,

Facebook and YouTube have shown that manually assigning text to images and videos

can be fun and helpful for search purposes. People can annotate their multimedia

content so that it can later be used for a text-based search to find a specific media item.

Manually assigning text to a multimedia item is not only subjective but also noisy at

least and at most can be t [12]. Consequently, proper text

processing is required to use this metadata. Some of this metadata may be

automatically generated during image capture, such as date, time, device information

and location. Additional metadata can be generated by using different state-of-the-art

object detection and other image analysis algorithms.

Current Content-based Image Retrieval (CBIR) systems can be divided into two

categories: stand-alone

 [46]. None of these systems combine social media

sites with network d

 -

 - - [73]. Due

to the semantic ga - -

 [12].

 [6]) to use the

surrounding text for image s

 [8]. These sys -

 [30] proposes

collective network of binary classifiers (CNBC) framework to achieve a high retrieval

performance. The CNB “ q ”

approach by allocating several networks of binary classifiers (NBCs) to discriminate

each class and performs evolutionary search to find the optimal binary classifier in each

NBC. To the best of our knowledge, none of the systems uses the surrounding text

from social media sites along with image metadata to create ground truth and train the

system for efficient CBIR.

Traditionally, CBIR uses the Euclidean distance or the cosine similarity distance

fun - [12]. However, these functions

may not be optimal for content-based image retrieval due to the semantic gap

mentioned earlier. Therefore, there has been a lot of research into automatic feature

extracti

 -

 [31] proposes feature synthesis to improve the

discrimination power of the features for efficient retrieval.

It is hard to teach what we see around us and how we perceive it to machines.

Although visual similarity is more critical in the case of machine-to-machine

interaction but for humans, semantic similari

 [65], such as deep learning, provide new

methods for content-based image retrieval. With the -

 [33]. There are a number of libraries available

that provide pre-trained models for feature extraction.

CBIR is extensively used in remote sensing, satellite images, digital libraries,

education, entertainment, medical images (X-rays, MRI etc.), face/finger print

databases, map and personal content management. Nevertheless, there remains the

question of how to enable this technology fo [12] to manage

multimedia items from social media along with personal repositories. In our study we

mainly focus on personal content management although the technology can be used in

all of the areas mentioned above. We have developed a novel and comprehensive open

source content analysis framework – called VisualLabel – that provides multiple views

of the same multimedia items shared on social media sites and network drives for

 ’ ’

data by using state-of-the-art machine learning algorithms to detect faces and different

 j ’

also utilize multiple external web and cloud services (such as Flickr), and offers the

end-user a Representational State Transfer (REST) Application Programming Interface

(API) for multimedia organization and retrieval.

 2 gives the background of the

studies

 -

 3.3, we provide details about back-end systems and their contributions. User

exp

 5.

2. Related Studies

Digital cameras have revolutionized photography and provided a large volume of

inexpensive digital images and videos. Early efforts were mainly focused on metadata

to organize images. Although early digital cameras did not produce that much metadata,

manually assigning metadata is not only subjective

 -

 [39]. These systems focus on color/texture region extraction in both the

uncompressed and compressed domain. The color set concept is used in their several

variations of color, texture and shape features. Instead of decompressing the existing

compressed images to obtain the texture features, Smit

 [67] developed the

SIMPLIcity system, in which categorization – such as graph versus photograph,

textured versus non-textured – is applied to images, and different sets of features are

used for each category. MUVIS was developed as stand-alone applications for content-

based multimedia indexing and retrieval in multimedia databases. It supports

 - [1] is an extension of MUVIS to

perform content-based multimedia retrieval on mobile devices. Local feature

repr - -

 - [50] implemented the

MARS system, which includes relevance feedback. MARS uses user relevance

feedback to refine th q

q [9] is a web solution based on a color and

texture hist -

 - [25] provides a visual search service as

a REST API. The web-based Mobile-MUVIS, Anaktisi and BRISC provide query-by-

example or brows

 - q

 [4]

is content-based i q -

 [6].

All the above systems and frameworks mainly focus on feature extraction or

learning and content retrieval only, whereas VisualLabel is a comprehensive

framework for multimedia data management. It provides alternative ways to manage

the media items by using different back-end systems with different capabilities. It

specifies an interface for securely data exchange and considering privacy issues. Social

media sites contain personal data of the user that individuals might want to share with

friends and family members but might not share it publically. VisualLabel framework

hide the personal information of the user and only pass the media items to the back-end.

Back-end delete the media items after analysis and pass the analysis results to the

VisualLabel server.

VisualLabel provide adaptive user interface for a wide range of devices. It displays

automatically generated metadata during media capture and back-end generated to the

users. User can provide feedback on the generated metadata and this feedback is

provided back to the back-end for incremental learning. It also provides seem less

integration to different social media sites, to collect multimedia items along with

metadata (comments, likes etc.) and create context of a user activity.

3. VisualLabel Framework

A general overview of the VisualLabel framework can be seen in Figure 1. The main

users can be categorized into four groups: clients, front end(s), back ends and content

providers. The clients perform queries and browse the content enriched with metadata

using the service provided by the fron

 3.4.

On a higher level, there is only a single front end – or front-end service – though in

practice there might be several front-end servers depending, for example, on scalability

and performance requirements. The front end works as the central point that binds the

service framework together by synchronizing the content from the providers, creating

tasks for back ends a -

 3.2.

Figure 1. VisualLabel framework.

There is usually more than one analysis back end, either for load-balancing reasons

or because of back-end capability limitations. In our case, the back ends have slightly

or widely different capabilities – one back end could generate keyword tags based on

 ’

back ends utilized in our framework and their capabilities are d

 3.3.

 ’ ’

 – [42] and Facebook. The users generally use the

external service through applications or web interfaces provided by the services

themselves and the VisualLabel framework accesses the content hosted on the services

by utilizing REST APIs or similar interfaces provided by the services.

Another novelty of the VisualLabel framework are the efficient interfaces of the

proposed architecture. The API model for VisualLabel is shown in Figure 2. In the

figure, Content Provider Service APIs are implemented by the external content

provider services. Client APIs, Content Provider APIs and Server APIs are

implemented on the front end. Mediator APIs – if required – are implemented on the

back end or on some intermediate service. Finally, Back-end APIs are implemented by

the analysis back ends. This architecture hides the algorithms and communications

protocols from the end user and thus provides a more efficient and simple to use

interfaces.

Figure 2. API model.

Clients are the end-users of the service and use both the APIs offered by the

providers (Content Provider Service APIs, in Figure 2) and the Client APIs. Content

Provider Service APIs are defined by the content providers and their counterparts on

the front end are the Content Provider APIs, which are in

 ’ ’ [7].

Using public REST APIs is generally the easiest solution and most companies offer

pre-made libraries for commonly used programming languages (such as Java and

JavaScript) that help in implementing access to their services. The downside is that

these APIs cannot be modified to match the needs of the user – in this case, the front-

end service – and the implementation is dependent on the content pro ’

specification. Whether the limitations enforced by the content providers matter or not

depends on the use case, but it does imply that the front-end implementation must be

 ’

Client APIs are a RESTful service, which contains the basic interfaces required for

user management (e.g. account creation, user login, external account connectivity) as

well as the more specific interfaces that enable the modification and removal of the

generat q

 [18] for the client-side interface is based on

three reasons: firstly, REST is becoming a de facto method for building client

interfaces, mainl j

 - -

 [16] [23].

Server APIs contain both the callback methods for Back-end APIs and the utility

methods for checking status information for ongoing tasks. The status information can

contain the same information as that delivered to the back ends, such as media details

and information about the runtime progress of the task – i.e., which back ends are

participating in the task and whether or not the analysis has been successful. Error

 ’ iled

analysis simply results in a smaller amount of metadata.

Back-end APIs contain the methods necessary for scheduling new tasks for

analysis and can be considered to be the counterparts for Server APIs. Mediator APIs

may be needed in case an external ba ’

implementation cannot be modified to match the specification dictated by the proposed

VisualLabel framework. The Mediator APIs can be on an entirely separate middleware

server or hidden behind the back-end interface implementation.

The communication between the Server and the Back-end APIs – whether

Mediator APIs are present or not – should be routed through more secure channels

either by using stronger authorization rules or establishing a demilitarized zone (DMZ)

between the components. Unlike client and content provider connections, which are

individually authenticated, the back ends have a much higher level of access to the

front end and vice versa. User credentials are never delivered to the back ends, but the

tasks often contain static Uniform Resource Locators (URL), which can both ensure

user anonymity on the back-end analysis, and it can be used to directly access the

 ’

credentials are not transferred between the front end and the back end, the tasks

themselves may contain sensitive content, such as the status messages posted by a user

on a private social media account.

The Server and Back-end APIs do not fully follow the RESTful p

 [47]. In particular, the

resource representation does not strictly adhere to the resource-oriented model even

though the tasks –i.e., the workloads delivered to the analysis back ends – can be

considered to be resources for the service. The tasks are identified by Uniform

Resource Identifiers (URI), though the links are not cacheable because the task content

is not guaranteed to be static. Removal of a media item would cause the item to

disappear from the task or the addition of more metadata could cause the task to be

updated. In either case, the identifier – and the links remain the same. Also, the

communication includes certain state-fullness in the form of a front end keeping track

of the remote tasks and their progress. Thus, by nature, the APIs are more closely

related to the traditional Remote Procedure Call (RPC) interaction.

3.1. Use Cases

The primary goal of the proposed VisualLabel framework is the novel integration and

utilization of the numerous CBIR solutions in combination with the existing services –

such as social media web sites, network drives, and other content storage services –

which are commonly use today. Existing literature contains no such comprehensive

framework. Our study also shows that users feel that there is a need for better tagging

services and richer features. VisualLabel aims to provide the high-level architecture

and required APIs for integrating multiple analysis engines (back ends) for a feasible

 - - -

 [64].

To enable the desired functionality and the interoperability of the back ends within

the VisualLabel framework, certain common use cases need to be defined. The

 [42]), or that the

user can create an account (use case 1, Table 1). The implementation for the first use

case is not important in terms of VisualLabel and is fully up to the choices of the third

party content providers.

Table 1. VisualLabel use cases.

Use case # Use case name

1 Creation of an external account (e.g. social media or

network drive account)

2 Account creation on the VisualLabel framework

(service)

3 Content upload to the external account

4 External account synchronization and task construction

5 Back-end task analysis and metadata generation

6 Content browsing

7 Content-based query operations

 ’

forms to create a new user and then manually connecting the desired external accounts

to the service or by simply creating a new account using the credentials of the external

account. Both approaches are common on many popular Web applications. Similarly,

to use case 1, case 3 can be fully implemented by third party content providers. Use

case 3 could also be integrated directly into a potential Web or a mobile application.

Cases 4 and 5 can be considered two parts of the same operation. The purpose of these

cases is to process the connected external accounts for usable content (case 4), which

could be delivered to the analysis engines for further analysis (case 5). The metadata

 ’

accounts. This enriched content can be shown to the user to help the user organize and

browse their media collections more efficiently (cases 6 and 7).

In principle, the order execution for the use cases follows the numerical order

presented in Table 1, though in a simplified fashion, with the initial use case being at

the top. In practice, many of the cases can be repetitive or cyclic in nature. For example,

the user can perform any number of query operations (case 7), or return to connect to

another external account (case 2). Additionally, account synchronization (case 4) and

back-end analysis (case 5) should be performed periodically to ensure that the

modifications or additions made by a user to the connected accounts are properly

updated.

3.2. VisualLabel Front End

The purpose of the front-end service – as shown in Figure 1 – is to integrate a native

client or a Web client with the back-end analysis engines, and to provide feasible

interfaces for the realization of the use cases illustrated in Table 1. There are three

important tasks performed by the front end: user management; task generation; and

query processing.

For user management, in addition to more traditional functionalities (e.g. user

account management, service login etc.), also includes more complex operations such

as external account synchronization and content redirection to clients and back ends.

The user can connect any number of external accounts to the service either by first

creating new credentials for the service and connecting the external account to these

credentials, or by registering directly with external credentials, for example, by using a

Google or Facebook account. In either case, the connected account will be periodically

synchronized with the front-end service. The synchronization operation consists of

 ’

accounts the metadata can be anything from basic user details to status messages that

the user has posted. For photo, video and audio content the metadata always contains

the information needed to access the content, in addition to other content-specific

metadata. In fact, the actual files hosted by the content providers are not transferred to

the front end or stored anywhere on the VisualLabel service other than temporarily on

the back ends for the duration of the content analysis. Not storing the files helps to

minimize the potentially massive storage space requirements and also lowers the

bandwidth requirements since the files are not directly hosted by the service.

The indexed metadata is used to construct analysis, feedback and search tasks for

the back ends. The t -

 [44], in this section we provide a short description of the task types used

and the task functionality in general.

Analysis tasks are created automatically upon account synchronization or

whenever the user submits new content for analysis. The responses to analysis tasks

contain automatically extracted metadata, such as faces or keyword tags detected in the

 ’ can be

modified by the user, updated by the back ends or used in search queries.

Feedback tasks are always created after the user has made changes to the media

content. The feedback task creation can be indirect or direct. Indirect task creation can

happen after the user modifies the indexed metadata or after account synchronization

when certain changes, such as content deletion or addition, are detected. In general, if a

user repeatedly makes the same changes into automatically generated content, this can

be assumed to mean that the metadata is incorrect or simply something the user does

not prefer. Direct feedback is created when the client software takes advantage of the

provided feedback interface. The interface can be used to rank the extracted metadata,

and to give feedback on the quality of the search results.

Providing the back ends with information about the actions of the user can help the

back ends improve their analysis results in the future. How the back ends take

advantage of the provided feedback is solely defined by the back ends themselves, and

is not specified by the framework. Similarly, to the case of metadata generation for

analysis tasks, the feedback processing implementations are specific to each back end

and to the analysis methods chosen by the back ends. The front end and the framework

itself are not interested – at least in principle –in how the back ends produce their

results, but in what kind of results the back ends can provide.

Search tasks are created when the user performs a query, which cannot be directly

resolved by the front end. For example, if the user uploads an external reference photo

not known by the service to be used for the search of similar photos, the query cannot

be executed simply by looking at the indexed metadata on the front end, but the photo

must be delivered to the back ends for further analysis. From the performance point-of-

view, the search tasks can be considered to be more demanding for the back ends than

analysis or feedback tasks. The reason is that there is a certain timeframe within which

the back ends must respond in order for the functionality to remain usable. For search

tasks, users often feel the service is not responsive or too slow if the operation takes

more than a few seconds. The analysis and feedback tasks can be processed at the pace

and order decided by the back ends as long as the results are returned within a

reasonable time period.

All tasks are strictly using VisualLabel framework syntax, and although the

metadata used in the task can be in different format but if necessary, the metadata

retrieved from other sources is translated to the common format. The simple reason for

this is to allow the back ends to operate on a single format without knowledge of the

various external services and formats specified by these services. There is one practical

problem related to this approach. In some cases, it might be difficult or cumbersome to

translate all content from the external services to the VisualLabel format, or to

implement a conversion module. In practice, some information may get lost in the

conversion. It is worth noting however, that not all information about the external

source is removed. The tasks – and the task items – contain identifiers, which denote

the origin of the data. The reason for this is that even though two services may belong

to the same service category, analysis of the two data sources may differ. For example,

although both Facebook and Twitter are social media websites, and with status

messages, likes, friends, and followers they do contain similar elements, it may be

advantageous for the analysis engine to know from which social media service the data

originates.

The task and metadata format for the framework are Extensible Markup Language

(XML), but could as well be j

 q [48], though in practice the

service implementation – and the format parser implementation – dictates most of the

available performance gains when using reasonable sized payloads, with the choice of

format being secondary.

3.3. VisualLabel Back Ends

A back end is any system or service that implements the defined back-end API (see

Figure 2). Back ends are the systems that analyze the task content provided by the front

end and either generate new metadata or participate in extended query operations (such

as query-by-example). This section presents the three content analysis back ends with

different capabilities utilized in the implementation of the VisualLabel framework.

3.3.1. Cloud MUVIS

Content-based multimedia retrieval has been an active area of research for decades,

with applications in a range of areas such as personal visual content management,

security, etc. Cloud-MUVIS (CMUVIS) is used for content-based image retrieval in the

VisualLabel framework. It is a cross-platform, robust, and scalable computing platform

for content-based multimedia retrieval. CMUVIS is a big data processing system with a

small footprint, using a distributed computing model where small portions of a large

database are processed in parallel. However, as the data volumes are increasing at an

enormous rate, a huge amount of processing power for analysis is required. CMUVIS

uses burst mode computing to process data that utilizes underlying resources (Cores,

Memories and Disk access) efficiently. CMUVIS provides a Fex Application

Programming Interface (APIs) for feature extraction and content-based query

operations. As shown in Figure 3, the CMUVIS framework processes different data

partitions in parallel.

Figure 3. Cloud MUVIS system.

The main goal of the VisualLabel framework is to organize personal visual content

(images and videos) that contains human faces. Therefore, it is important for a back-

end system to detect faces and recognize them. For facial features, we use a recently

proposed feature selection algorithm, namely a cardinal sparse q

 fi

informative and discriminant features given that can achieve good accuracy when used

 fi

CMUVIS as a back-end system provides a content-based search of the multimedia

items that consist of the following model. As shown in Figure 3, tasks on the left side

are processed offline and features are extracted, and online query is performed on the

right side.

In offline processing,

1. The image is checked for a face(s), and it/they are registered

2. Objects in an image are detected and labeled using deep learning

3. Convolutional neural-network features are extracted from the image for

similarity distance.

In the online query operation first a face is detected in the incoming query image;

if there is a face, then all the images with a similar face are found. Otherwise, deep

convolutional features are extracted from the query image and compared against all the

images in the database, thus a sorted list is created based on a similarity score.

Figure 4. Cloud MUVIS offline and online operations.

Figure 4 shows the offline analysis task (on the left) and online content-based

query operation sequence (on the right).

3.3.2. PicSOM

The PicSOM back end is used for automatic content-based annotation of image and

video content. These annotations can be of two types: keyword-based and sentence-

based. The keyword annotation has been developed mainly for the video domain,

especially for use in TRECVID Semantic Indexing (SIN) tas

 [32] has been obtained by using late

fusion of multiple (up to 10-40) outputs from SVM detectors

 [53] and MPEG-7 Scalable Color features. The speed, on the other hand,

follows from the utilization of homogeneous kernel map linear SVM [15]. As all the

features we used are extracted in frames (either in all I-frames or in selected key-

frames), the final fusion step combines the frame-level detection results with the shot

level by using max pooling. From the TRECVID SIN training data, the PicSOM back

end has a basic set of 350 visual keywords it can recognize from both images and

videos.

 -

 [60] databases

 - [63] recurrent

neural network. In the image domain, we use multiple features to train different

sentence generators, which are then used to evaluate each other's outputs in order to

select the most accurate caption for the input image. In the video domain, in additio

 j [66]. The former is used as

inputs to 80 content classifiers trained with the COCO categories. The latter, together

with the outputs of the COCO category classifications, are fed as inputs to t

 [24]. The information flow and processing stages are illustrated in Figure 5.

Figure 5. [54].

In the VisualLabel framework, the PicSOM back end is able to collect sets of

images that share a common keyword (i.e., a class label or tag) and then extract DCNN

and other features from them. A linear SVM classifier can then be trained and used to

generate corresponding keywords for any images and videos the front end sends to the

back-end. For sentence-based annotation, the back end can take in images and videos,

extract the required DCNN and dense trajectory features, and generate a caption to

describe the input visual content.

3.3.3. Social Media Tag Extractor

Visual labels or tags are generally of three types:

1. Content Labels: labels generated from direct analysis of visual content to

identify types of physical objects or activity/actions in images or videos

through learning from datasets labeled with object concept terms.

2. Context Labels: Location and space; Time; Social, Cultural and Personal Life

events (Social media (face book); Domain and Topics.

3. Subjective Quality Labels: Opinions or sentiments.

Content- “ ” s they indicate what the

image is and what it is about, using terms from general or domain specific formal

concept taxonomy, following standard schemes for classification/tagging. They are

professionally defined, accurate, consistent, controlled vocabulary, restrictive and static

in nature; therefore, they can easily suffer from coverage and scaling problems.

For images with little textual information, annotation using visual content is a

natural solution. However, formal concept and object labels from visual content

analysis are much more machine-friendly than user-friendly. There is a need to explore

more relevant and user- “ ”

intention to leverage the potential of social media resources for the benefit of visual

annotation, to make use of social context information in facilitating image organization,

access and utilization.

Context-based labels can be personal, social, or domain- and topic-dependent.

Social tags and text associated with images and videos on popular social media sites

are sources of rich semantic clues and context clues for broader indexing. They are

author-given and may be general or personal, subjective or objective. They are user-

 ’ terminology, flexible, unstructured, and

with no vocabulary control, informal with non-hierarchical flat organization. Therefore,

there can be lots of noise, errors, irrelevance, redundancy, and ambiguity, with a

varying level of granularity. They are eme [62].

Given an input image, our goal of automatic image annotation is to assign a few

relevant text keywords to the image that reflect not only its visual content but also its

social context. To explore the possibilities of leveraging social media content as a

resource for visual labeling, we have developed a tag extraction system that applies

heuristic rules and a TF-IDF term weighting method to extract image tags from

associated tweets. The system retrieves tweet-image pairs from public Twitter accounts,

analyzes the tweet to extract a number of items as candidate tags: named entities

(location, people and organization), hashtags, keywords and phrases (TF-IDF weighted

words, frequency weighted bigram and trigrams). The ranking algorithm examines the

extracted items and removes any redundancy between named entities, hashtags and

ngrams (representing topics). Then post-processing is done to remove noisy tags,

currently based on heuristic rules, which will later on be extended with more advanced

methods. The system output will be a balance of different types of tags, depending on

the targeted usage. The system also contains components to detect the language of the

tweet and automatically translate a non-English tweet into English to be analyzed. The

extracted tags are then translated back into the original language. The pre-processing of

Twitter text is straightforward; the only requirements are, to pay special attention to

some special characters and add to the stop word lists. Emoticons are removed for the

time being, as we only target content and context labels, not sentiment labels.

For named entity recognition, we have applied the Stanford Named Entity

Recognizer, which identifies the names of people, places, and organizations quite

satisfactorily. Other types of proper nouns, e.g. names of products, books, magazines,

movies, sports, and other events and activities can often be identified in the hashtags or

key phrase list. Keyword and key phrase extraction help select a small set of words or

phrases that are content bearing. As tweets have a very short text body, we have taken

the simplest method for word weighting: TF-IDF for individual word weighting.

N-gram extraction allows to extract multi-word or phrase labels to describe any

entities, topics, and activities better. Each of the ngrams is weighted by adding together

the unigram weights for each word the ngram contains. Ngrams that start with or end

with stop-words and punctuation are omitted. For language transla

 [72] translation resource to translate content of any

language into English.

The extracted tags are a mixture of concepts at different levels, and can sometimes

overlap with high level concept and formal tags, but in most cases this does not happen.

Hashtags can overlap substantially with Named Entities and text tags (key words and

ngrams). We use heuristic rules for the first layer post-analysis and processing of the

tags: (1) keep all hashtags; (2) named entities in hashtags are considered more relevant,

so they get higher priority; (3) Ngram weighting is adjusted by individual word TF-IDF

weighting; (4) we consider variety a necessity and priority of a good tag set, to include

location, time, organization, people and topics.

Removing noisy tags is important. As expected, the extracted tags are of varying

levels of granularity. There is a lack of consistency and lack of relationships between

the tags when comparing with content-based labels.

A Facebook profile summarizer that contributes to the larger VisualLabel

framework through summarization of Facebook content to extract information on the

 ’ Figure 6). By utilizing statistical text

summarization techniques and heuristic methods, Facebook profiles and timeline

 ’

hobbies and interests. The extracted key terms/phrases could be a different set of useful

context indicators. They may also find use in other applications. A baseline system was

developed as a simple, generic system that applies heuristic rules and the TF-IDF term

weighting method in determining the most representative terms indicating hobbies and

interests.

Figure 6. Facebook profile content analysis.

A pilot test was done to collect feedback from users concerning the perceived

usefulness of the extracted tags. The baseline system was then extended to include new

functionality to help set limits on the scope of relevant content, extract Named Entities,

use of predefined dictionaries to identify even low-scoring hobbies and interests, and

use of machine translation to handle content in multiple languages.

Our pilot test with a limited amount of English-dominant user profiles shows a

43% average of useful tags, with the highest being 55% and lowest at 25%. Keyword

extraction seems more useful in the analysis of social media content than a sentence-

based summary, due to the fact that social media content is not structured as

professional texts. Named Entity Recognition becomes effective when combining state-

of-the-art tools with semi-structured Facebook profile content.

3.4. Web Client

There is no built-in or default client to access the VisualLabel services as a whole,

but we created several smaller HTML5-based prototype applications for demonstrating

the features of the system. “

 ” [52]. The application (in Figure 7, Figure 8 and Figure 9) is used to

display the photos of the user retrieved from various content providers (e.g. Picasa,

Facebook and Twitter). It enables the user to browse, search, and tag photos using a

web browser. The main goals of the application are: to explore the feasibility of

keywords generated by the underlying back-end services; to study the user experience

associated with photo tagging; and to utilize HTML5 technology to determine

compatibility and usability on a broad range of devices and form factors (e.g. tablets,

mobile phones, desktops).

One of the most important features of a modern web service is support for cross-

platform compatibility. In general, the simplest way to achieve similar functionality on

multiple devices is to implement an HTML5 and JavaScript based web application –

similar to the one presented in this section. There can be minor differences in the

behavior of the web user interface caused by hardware variations of the devices (screen

resolution, input devices, etc.) and by differences in the cap

 - [27]. As an illustration of cross-

platform use the main view of the prototype client can be seen running on multiple

devices in Figure 7 (left) on the Android operating system on Google Nexus; the

Maemo software platform on the older Nokia N900; the Windows Phone operating

system on the Microsoft Lumia 532; and Sailfish OS on the Jolla smartphone. For

comparison, The Figure 7 (right) also shows the same user interface on the Google

Chrome desktop web browser. As can be seen in the figure, the user interface is

virtually identical on each device. In our case the web prototype implementation

directly uses the client-side REST API methods using AJAX. Implementing the web

client in this way makes it easier to modify the client application as there is no strong

coupling between the service and the user interface. Additionally, the same REST API

could be used to implement a native client on any device if so desired, for example, if a

more native look and feel is needed, or if the web browser on the device is not

sufficient in terms of features or performance for processing the web page.

Figure 7. Web client running on a desktop web browser (left) and on several mobile devices (right).

The photos in the main view (Figure 7) are arranged in a 3x3 grid, and by swiping

left or right the user can page through the photos. The arrow buttons located on the left

and right can also be used for navigation in lieu of swiping. From this view, the user

may click any photo to get a full screen view of the clicked photo, open a search

overlay (as seen in Figure 8) by clicking the magnifier glass icon on the tool bar, or

initiate a content-based search (screen shot on Figure 9) by long-clicking a photo.

Figure 8. Web client search view.

The search overlay of the prototype application (Figure 8) displays the people tags

on the left side, selected search terms in the middle, and keyword tags on the right. The

tags may contain keywords generated and suggested by an analysis back end, tags

obtained from the originating content provider, or tags added and edited by the user.

The free text search input field in the middle is aided by an autocomplete feature,

which suggests similar strings of text which have appeared before in any tag of the

 ’

The goal is to provide the user an overall impression of what can be found among the

photos, and the user can utilize any combination of the provided search options (free

text, tags and people search).

Figure 9. Web client content-based search results.

In the similarity search mode, the chosen photo is processed by back ends in order

to return visually similar photos. The photos used in the similarity search are generally

from the authenticated user, but it is also possible to use public photos from other users.

The results of the similarity search can be seen in Figure 9. The blue-framed photo in

the top left-hand corner is the reference photo, i.e. the photo that the user wanted to use

in the similarity search. The result photos are laid out in a 3x3 grid in the same way as

in the main view. There are only eight results in the example, but should there be more,

the same navigation features, as available in the main view, can be used to browse

through them. The user may also invoke a new similarity search from this mode by

long clicking any photo.

4. Experiments

To validate the feasibility of the proposed VisualLabel framework, two types of

experiments were performed. Because of the inherent complexity of the overall

architecture, it is difficult to test out all components with a single test or benchmark.

 ’

 ’

Additionally, the back-end designs and implementations were tested separately to

validate the correctness of the generated tags. The performed experiments are explained

in the following subsections.

4.1. User Study

It is important to understand how people manage their digital photos on different

devices. In particular, handheld devices are not only limited in their input and output

methods and display properties but different devices also have different hardware and

software features. To understand the actual needs and the current behavior of users

regardin [3]. The user

study was based on the task analysis approach together with pre-test and post-test

questionnaires, and was carried out with 15 participants at the Usability Lab of Aalto

University. The participants came from various backgrounds including students,

entrepreneurs, and software engineers. Out of the 15 participants, ten were male and

five were female. Nine of the participants were aged between 18–24 years, five

participants were between 25-34 years old, and one was 39 years old. In each session

we discussed with the users their current photographic practices in general, and more

specifically photo tagging. The actual task analysis was carried out on a semi-

automated photo tagging application running on the VisualLabel framework. Each

participant carried out nine different tasks on a tablet device that addressed navigation,

searching, and tagging, designed to study actual user interaction and behavior.

The study results give a clear indication that tagging personal photos is not actively

used by most of the participants as only a few of them (2 participants) frequently

engaged in tagging activities. The most important reason mentioned by the participants

was the effort required to carry out tagging on a huge number of photos. Some of the

participants did not feel the need for tagging their photos; on the other hand, some of

them were not aware of the benefits of tagging, as they had never become familiar with

the practice. After carrying out the tasks with the web client, the respondents

considered the tagging activity highly beneficial for organizing and searching their

personal photo collections. Based on the interactions and the input from the users, it

became evident that usage and adoption of tagging features can be enhanced by

increasing the visibility of tagging and by bundling social elements such as linking and

sharing photos on social networking sites into web applications. Moreover, associated

features such as highly relevant and comprehensible automatic tag suggestions may

also improve the adoption of tagging features.

4.2. CMUVIS Back End

 [54] for content-

based multimedia retrieval. As there are not enough images to train a big network from

a single user or a few users, we therefore use a pre-trained network for feature

extraction. In Figure 10, the first column shows the query image and subsequent

columns show the retrieval results.

Figure 10. CMUVIS query results.

CMUVIS evaluated the relevance of VisualLabel by participating in the Microsoft

Bing International Challenge on Web Image Retrieval and our two submissions were

ranked second and fourth positions. Contesting systems are requested to generate a

floating-point score on each image-query pair that reflects how relevant the text-query

could be

 [45] is formed by a text-processing module combined

with a module performing PCA-assisted perceptron regression with random sub-space

selection (P2R2S2). P2R2S2 uses features [54] as a starting point and transforms them

into more descriptive features via unsupervised training. The relevance score for each

query-image pair is obtained by comparing the transformed features of the query image

and the relevant

 [45].

4.3. PicSOM Back End

Two series of experiments were carried out with the PicSOM back-end system in order

to evaluate its applicability to the use cases of the VisualLabel framework. First, the

precision of the produced keyword annotations for video shots was evaluated in the

TRECVID 2014 Semantic Indexing Task. Second, the accuracy of the video shot

captions was assessed at the Large Scale Movie Description Challenge 2015, as

described in the subsections below.

4.3.1. Video Shot Keyword Annotation

The mean extended inferred average precision (MXIAP) measure is used in the

TRECVID Semantic Indexing Task (SIN) to assess the query results submitted by the

participants of this annual evaluation. Figure 11 displays the MXIAP results of the 75

submitted results in the TRECVID 2014 SIN task with black and gray bars, the former

being the PicSOM team's submissions and the latter belong to other groups. The

MXIAP values are average results of 30 queries for different keywords such as

"running", "stadium", "beach" and "hand". For each keyword, the participants

submitted a maximum of four runs with a maximum of 2000 video shots from the

evaluation data, in decreasing order of relevance to the keyword or visual concept in

question. For the individual submissions, the PicSOM team's best result was ranked in

fifth place and among all the participating groups we were second.

Figure 11. Results of the TRECVID 2014 semantic indexing task.

The latest developments in the PicSOM back end's performance in TRECVID

2014 SIN are shown by the red bars in Figure

 [56], we improved the MXIAP to 0.308. Further improvements

were obtained by implementing a learning mechanism for the feature weights. With

concept independent weighting, our best precision was 0.319, and when the feature

weights were tuned for each concept separately, we scored an MXIAP of 0.323,

ranking third in the TRECVID 2015 SIN task. This result shows that the performance

of the PicSOM back end is on a par with the state-of-the art in video shot keyword

annotation.

Figure 11 illustrates the MXIAP results of the TRECVID 2014 SIN. The black

bars denote the PicSOM back end's original submitted results; the red bars (third,

fourth and seventh bar on the left-hand side) show the results with the current

implementation in the VisualLabel framework, whereas the gray bars are other teams'

submissions in TRECVID 2014.

4.3.2. Video Shot Caption Generation

We tested the video caption generation system of the PicSOM back end by

participating in the Large Scale Movie Description Challenge 2015. This was the first

time the challenge was organized and only four groups out of 60 who had registered for

the challenge were able to submit their results. The task was to generate captions to

describe the visual content of video clips extracted from 17 videos in the public test set

and 20 videos in the blind test set. In both cases, there were approximately 10 000 clips

with an average duration of 5 seconds per caption.

The generated captions were evaluated both by automatic measures and by

humans. In the automatic evaluation, the PicSOM system was ranked third in the

challenge. However, when human evaluators were asked to assess the correctness,

grammar, relevance, and helpfulness for a random sample of 1200 captions generated

by the participating systems, our back end scored best with respect to the first three

measures and second with respect to the last one. We can thus conclude that the

PicSOM back end of VisualLabel represents the state-of-the art in sentence-based

video content description and therefore we have used it for image label caption

generation.

4.4. Summary

In this paper we presented novel integrated open source multimedia content

management and access framework, called VisualLabel. The framework enables smart

photo services based on automated visual content analysis, annotation, search and

retrieval using the start-of-the-art analysis back ends for social media services, such as

Facebook and Flicker. The framework includes REST APIs designed for information

exchange between clients, front end, back ends, and social media and network-drive

servic - -

 [64].

 ’

results different views of the same content can be presented to the user. The user can

modify, add, or delete the metadata generated by the back-ends, and feedback can be

provided to the back ends for further learning and improvement of content analysis.

Back-end services use state-of-the-art deep learning methods for content analysis and

provide the front end with the results. The text summarizer back end uses text from

social media sites, processes it, and combines it with CMUVIS and PicSOM generated

labels for the purposes of data visualization.

Based on the performed user study, it is concluded that the service presented here

can be helpful for visual content management and organization needs.

References

[1] I. Ahmad, M. Gabbouj, A Generic Content-based Image Retrieval Framework for Mobile Devices.

Journal of Multimedia Tools and Applications, Springer Science+Business Media, LLC 2010 (2010).
[2] T. Aihkisalo, T. Paaso, Latencies of Service Invocation and Processing of the REST and SOAP Web

Service Interfaces. In proceedings of IEEE Eighth World Congress on Services (SERVICES), Honolulu,

Hawaii, USA (2012), 100-107.
[3] M. Aqdas, M. Nieminen, Understanding the Usage and Requirements of the Photo Tagging System.

Human IT, Volume 12, Issue 3 (2014), 117-161.

[4] S. Ardizzoni, I. Bartolini, M. Patella, Windsurf: Region-based image retrieval using wavelets. In
Proceedings of Tenth International Workshop on Database and Expert Systems Applications (1999),

167-173.

[5] I. Bartolini, P. Ciaccia, M. Patella, Adaptively browsing image databases with PIBE, Multimedia Tools
and Applications, Volume 31, Issue 3 (2006), 269-286.

[6] Baidu, http://www.baidu.com Accessed 23 February 2016.

[7] Charles Bihis, Mastering OAuth 2.0, Packt Publishing (2015).
[8] D. Cai, X. He, Z. Li, W. Y. Ma, J. R. Wen, Hierarchical clustering of www image search results using

visual, textual and link information. In proceedings of the ACM International Conference on

Multimedia (2004).

[9] S. A. Chatzichristofis, K. Zagoris, Y. S. Boutalis, N.Papamarkos, Accurate image retrieval based on

compact composite descriptors and relevance feedback information, International Journal of Pattern

Recognition and Artificial Intelligence (2009).
[10] G. Ciocca, I. Gagliardi, R. Schettini, Quicklook 2: An integrated multimedia system. Journal of Visual

Languages & Computing, Volume 12, Issue 1 (2001), 81-103.

[11] Describing and Understanding Video & The Large Scale Movie Description Challenge (LSMDC), at
ICCV 2015, https://sites.google.com/site/describingmovies/challenge Accessed 23 February 2016.

[12] R. Datta, Dhiraj Joshi, Jia Li, James Z. Wang, Image Retrieval: Ideas, Influences, and Trends of the

New Age. ACM Computing Surveys, Volulme 40, Issue 2, 1-60 (2000).
[13] FaceBook, https://www.facebook.com/facebook/info/?tab=page_info Accessed 23 February 2016.

[14] Facebook, Manually Build a Login Flow, https://developers.facebook.com/docs/facebook-

login/manually-build-a-login-flow Accessed 23 February 2016.
[15] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, C.J. Lin, LIBLINEAR: A library for large linear

classification. Journal of Machine Learning Research 9 (2008), 1871-1874.

[16] X. Feng, J. Shen, Y. Fan, REST: An Alternative to RPC for Web Services Architecture. In proceedings
of the First International Conference on Future Information Networks (ICFIN), Beijing, China (2009).

[17] R.T. Fielding, Architectural Styles and the Design of Network-based Software Architectures. Doctoral

dissertation, University of California, Irvine, USA (2000).
[18] R.T. Fielding, N. Richard, Principled design of the modern Web architecture. ACM Transactions on

Internet Technology, Volume 2, Issue 2 (2002), 115-150.
[19] Flickr, https://www.flickr.com/about Accessed 23 February 2016.

[20] B. Gao, T. Y. Liu, T. Qin, X. Zheng, Q. S. Cheng, W. Y. Ma, Web image clustering by consistent

utilization of visual features and surrounding texts. In proceedings of the ACM International
Conference on Multimedia (2005).

[21] Google, https://www.google.com Accessed 23 February 2016.

[22] Google Identify Platform, Using OAuth 2.0 to Access Google APIs,
https://developers.google.com/identity/protocols/OAuth2 Accessed 23 February 2016.

[23] D. Guinard, I. Ion, S. Mayer, In Search of an Internet of Things Service Architecture: REST or WS-*?

 ’ , Mobile and Ubiquitous Systems: Computing, Networking and Services,
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering, Volume 104, Springer Berlin Heidelberg (2012), 326-337.

[24] S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Computation, Volume 9, Issue 8,
(1997), 1735-1780.

[25] imprezzeo, http://www.imprezzeo.com/about/overview/ Accessed 23 February 2016.

[26] S. Ishikawa, M. Koskela, M. Sjöberg, R.M. Anwer, J. Laaksonen, E. Oja, PicSOM experiments in
TRECVID 2014. In proceedings of the TRECVID 2014 Workshop. Orlando, FL, USA (2014).

[27] JQuery, https://jquery.com Accessed 23 February 2016.
[28] Y. Kalantidis, G. Tolias, Y. Avrithis, M. Phinikettos, E. Spyrou, P. Mylonas, S. Kollias, VIRaL: Visual

Image Retrieval and Localization. In Multimedia Tools and Applications, Springer, Volume 51,

Number 2 (2011), 555-592.
[29] A. Karpathy, L. Fei-Fei, Deep visual-semantic alignments for generating image descriptions. In

proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).

[30] S. Kiranyaz, S. Uhlmann, J. Pulkkinen, M. Gabbouj, and T. Ince, Collective network of evolutionary
binary classifiers for image retrieval, in Proceedings of the IEEE Workshop on Evolving and Adaptive

Intelligent Systems, EAIS 2011, Paris, France (2011), 147-154.

[31] S. Kiranyaz, J. Pulkkinen, T. Ince and M. Gabbouj, Multi-dimensional Evolutionary Feature Synthesis
for Content-based Image Retrieval, in Proceedings of the IEEE International Conference on Image

Processing, ICIP 2011, Brussels, Belgium (2011), 3645 - 3648.

[32] M. Koskela, J. Laaksonen, Convolutional network features for scene recognition. In proceedings of the
22nd ACM International Conference on Multimedia, Orlando, Florida (2014).

[33] A. Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, ImageNet classification with deep convolutional
neural networks. In Advances in neural information processing systems (2012), 1097–1105.

[34] M. O. Lam, T. Disney, D. S. Raicu, J. Furst, D. S. Channin, BRISC: An Open Source Pulmonary

Nodule Image Retrieval Framework. Journal of Digital Imaging. Vol 20, Supplement 1 (2007), 63-71.
[35] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C. L. Zitnick, Microsoft

COCO: Common objects in context. In European Conference on Computer Vision (ECCV) (2014).

[36] D. G. Lowe, Object recognition from local scale-invariant features. In ICCV, (1999) , 1150–1157.
[37] H. Luan, Y.T. Zheng, M. Wang, T.S. Chua, Visiongo: towards video retrieval with joint exploration of

human and computer. Inform. Sci. 181 (2011), 4197–4213.

[38] MS COCO Captioning Challenge, http://mscoco.org/dataset/#captions-challenge2015 Accessed 23
February 2016.

[39] MUVIS, http://muvis.cs.tut.fi Accessed 23 February 2016.

[40] OneDrive, https://onedrive.live.com Accessed 23 February 2016.
[41] P. Over, G. Awad, M. Michel, J. Fiscus, W. Kraaij, A.F. Smeaton, G. Quénot, R. Ordelman, TRECVID

2015 -- an overview of the goals, tasks, data, evaluation mechanisms and metrics. In proceedings of

TRECVID 2015. NIST, USA, (2015).
[42] Picasa, https://picasa.google.com Accessed 23 February 2016.

[43] T. Quack, U. Monich, L. Thiele, B. S. Manjunath, Cortina: A system for largescale, content-based Web

image retrieval. In proceedings of the ACM International Conference on Multimedia (2004).
[44] P. Rantanen, P. Sillberg, J. Soini, Content Analysis System for Images. In proceedings of the 16th

International Multiconference Information Society (IS 2013), Volume A, 7-11, Josef Stefan Institut,

Ljubljana, Slovenia (2013), 241-244.
[45] J. Raitoharju, H. Zhang, E.C. Ozan, M.A. Waris, M. Faisal, G. Cao, M. Roininen, I. Ahmad, R. Shetty,

S. P.C., S. Uhlmann, K. Samiee, S. Kiranyaz, M. Gabbouj, TUT MUVIS Image Retrieval System

Proposal For MSR-Bing Challenge 2014. In proceedings of IEEE International Conference on
Multimedia & Expo, ICME 2014, Chengdu, China (2014).

[46] retrievr, http://labs.systemone.at/retrievr/about Accessed 23 February 2016.

[47] L. Richardson, S. Ruby, RESTful Web Services, O'Reilly Media (2007).

[48] C. Riva, M. Laitkorpi, Designing Web-Based Mobile Services with REST. Service-Oriented

Computing - ICSOC 2007 Workshops, Lecture Notes in Computer Science, Volume 4907 (2009), 439-

450.
[49] A. Rohrbach, M. Rohrbach, N. Tandon, B. Schiele, A dataset for movie description. In proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).

[50] Y. Rui, T. Huang, S. Mehrotra, Content-based image retrieval with relevance feedback in Mars. In
Proceedings of the IEEE International Conference on Image Processing (ICIP) (1997).

[51] S. Sagiroglu, D. Sinanc, Big data: A review. In Proceedings of the IEEE International Conference on

Collaboration Technologies and Systems (CTS) (2013), 42-47.
[52] P. Sillberg, P. Rantanen, J. Soini, A Content Based Tool For Searching, Connecting and Combining

Digital Information - Case: Smart Photo Service. In Proceedings of the 16th International

Multiconference Information Society (IS 2013), Volume A, 7-11, Josef Stefan Institut, Ljubljana,
Slovenia (2013), 249-252.

[53] K.E.A. van de Sande, T. Gevers, C.G.M. Snoek, Evaluating color descriptors for object and scene

recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 32, Issue 9
(2010), 1582-1596.

[54] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, OverFeat: Integrated Recognition,

Localization and Detection using Convolutional Networks. In proceedings of ICLR (2014).

[55] R. Shetty, J. Laaksonen, Video captioning with recurrent networks based on frame- and video-level
features and visual content classification, ICCV 2015 Workshop on Describing and Understanding

Video & The Large Scale Movie Description Challenge, Santiago, Chile (2015).

[56] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition
ArXiv: 1409.1556 (2014).

[57] J. R. Smith, S. F. Chang, VisualSeek: A fully automated content based image query system. In

proceedings of ACM International Conference on Multimedia, Boston, MA, USA (1996), 87–98.
[58] J. R. Smith, S. F. Chang, Visually searching the web for content. IEEE Multimedia Magazine, Volume

4, Issue 3 (1997), 12-20.

[59] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A.
Rabinovich (2014) Going deeper with convolutions. ArXiv: 1409.4842.

[60] A. Torabi, P. Chris, L. Hugo, C. Aaron, Using descriptive video services to create a large data source

for video annotation research. ArXiv: 1503.01070 (2015).
[61] Twitter, https://about.twitter.com, accessed 23 February 2016.

[62] Vander Wal, Folksonomy Definition and Wikipedia,
http://www.vanderwal.net/random/entrysel.php?blog=1750, accessed 23 February 2016.

[63] O. Vinyals, A. Toshev, S. Bengio, D. Erhan, Show and tell: A neural image caption generator. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015).
[64] VisualLabel source code repository, https://github.com/visuallabel, accessed 23 February 2016.

[65] Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu, Yongdong Zhang, Jintao Li,

Deep learning for content-based image retrieval: A comprehensive study. In proceedings of the ACM
International Conference on Multimedia (2014), 157–166.

[66] H. Wang, A. Kläser, C. Schmid, C. Liu, Dense trajectories and motion boundary descriptors for action

recognition. International Journal of Computer Vision, Volume 103, Issue 1 (2013), 60-79.
[67] J. Z. Wang, J. Li, G. Wiederhold, SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture

Libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 23, Issue 9, (2001),

947-963.
[68] X. J. Wang, W. Y. Ma, Q. C. He, X. Li, Grouping Web image search result. In proceedings of the ACM

International Conference on Multimedia (2004).

[69] L. Wu, S. C. H. Hoi, Enhancing bag-of-words models with semantics-preserving metric learning. IEEE
MultiMedia, Volume 18, Issue 1 (2011), 24–37.

[70] J. Wu and J. M. Rehg, Centrist: A visual descriptor for scene categorization. IEEE Trans. Pattern Anal.

Mach. Intell.,Volume 33, Issue 8 (2011), 1489–1501.
[71] Yahoo, https://www.yahoo.com Accessed 23 February 2016.

[72] Yandex Translate API, https://tech.yandex.com/translate Accessed 23 February 2016.

[73] J. Yang, Y. G. Jiang, A. G. Hauptmann, C. W. Ngo, Evaluating bag-of-visual-words representations in
scene classification. Multimedia Information Retrieval (2007), 197–206.

[74] Youtube, https://www.youtube.com/yt/about/en-GB Accessed 23 February 2016.

[75] M. Zeiler, R. Fergus, Visualizing and understanding convolutional networks. ArXiv: 1311.2901 (2013).
[76] E. Zavesky, S. F. Chang, Cuzero: Embracing the frontier of interactive visual search for informed users.

In ACM MIR (2008).

[77] H. Zhang, S. Kiranyaz, M. Gabbouj, Cardinal sparse partial least square feature selection and its

application in face recognition. 22nd European Signal Processing Conference, EUSIPCO 2014, Lisbon,

Portugal (2014).

[78] H. J. Zhang, C. Y. Low, S. W. Smoliar, J. H. Wu, Video parsing retrieval and browsing: An integrated
and content-based solution. In proceedings of ACM Multimedia, San Francisco, California, USA

(1995), 15-24.

Petri Rantanen
Architecture for Interfacing Content Analysis Back Ends

Julkaisu 1460 • Publication 1460

Tampere 2017
ISBN 978-952-15-3912-1
ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

TTY Julkaisu 1460 • TU
T P

ublication 1460 P
etri R

antanen

	main
	Abstract
	Preface
	List of Figures
	List of Tables
	List of Abbreviations and Definitions
	List of Publications
	Author Contribution
	Table of Contents
	Introduction
	Research Area
	Research Questions
	Thesis Structure

	Background Research
	Research Framework
	Architectures
	APIs
	Communication Methods
	Data Representation
	Documentation

	Research Contribution
	Timeline of the Studies
	Research Method
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V
	Publication VI
	Publication VII

	The Generic Architecture
	Evolution of the Architecture
	The First Iteration
	The Second Iteration
	The Third Iteration
	The Final Iteration
	Documentation

	Quality Attributes
	Interoperability, Extensibility, and Flexibility
	Scalability and Availability
	Testability, Usability, and Maintainability
	Portability, Adaptability, and Reliability
	Security

	API Model
	Interface Layer Model
	Data Layer Model
	Proof-of-Concept Implementations
	IP-based Alert Message Delivery System
	Kansei-based Video Analysis System
	VisualLabel
	Event Calendar for Internet Data Sources

	Conclusions
	Research Answers
	Validation
	Thesis Contribution
	Future Work
	Summary

	References
	Publications

