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Abstract

Bayesian filtering is a framework for the computation of an optimal
state estimate fusing different types of measurements, both current
and past. Positioning, especially in urban and indoor environments,
is one example of an application where the powerful mathematical
framework is needed to compute as a good position estimate as
possible from all kinds of measurements and information.

In this work, we consider the Gaussian mixture filter, which is
an approximation of the Bayesian filter. Especially, we consider
filtering with just a few components, which can be computed in
real-time on a mobile device. We have developed and compared
different Gaussian mixture filters in different scenarios. One
filter uses static solutions, which are possibly ambiguous, another
extends the Unscented transformation to the Gaussian mixture
framework, and some filters are based on partitioning the state
space. It is also possible to use restrictive, inequality constraints,
efficiently in Gaussian mixture filters.

We show that a new filter called the Efficient Gaussian mixture
filter outperforms other known filters, such as Kalman-type filters
or particle filter, in a positioning application. We also show that
another new filter, the Box Gaussian mixture filter, converges weakly
to the correct posterior. All in all we see that the Gaussian mixture
is a competitive framework for real-time filtering implementations,
especially in positioning applications.
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CHAPTER 1
Introduction

This thesis consists of an introduction and six published articles.
The purpose of this introductory chapter is to give a short unified
background of the problem and summarise the results of publica-
tions [P1–P6].

1 Background

Personal positioning has become very popular in recent years. In
good signal environments, such as open-sky environments, a satel-
lite based positioning system, e.g. Global Positioning System (GPS,
which is also a popular abbreviation for any positioning device),
provides accurate and reliable positioning. However, in poor signal
environments, such as urban canyons or indoors, satellite based
positioning systems do not work satisfactorily or at all.

One possible solution for this problem is to also use other possible
measurements and information in positioning. There are plenty of
possible measurements sources, e.g. local wireless networks such
as cellular networks [26, 53, 79, P1] or WLAN [3, 46, 65, R7] and
map or floor plan information [18, 20, 40, R6], [51, 76, 83]. We call
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positioning that uses measurements from many different sources
hybrid positioning . Many of these possible measurements are so
called “signals of opportunity”, which are not originally intended for
positioning, furthermore many of these measurements are highly
nonlinear. For these reasons, conventional positioning algorithms
such as the extended Kalman filter [P1] or the minimum least
squares estimator [R4] do not work satisfactorily in hybrid posi-
tioning. More sophisticated measurement fusion methods for
hybrid positioning are needed.

One possible fusion method is the Bayesian method, which is a
probabilistic method [43, 64]. The Bayesian method enable different
kinds of measurement and information to be fused. Futhermore,
under some conditions it is possible to compute an optimal estim-
ator recursively, which is an important property for real-time imple-
mentation. Unfortunately, it is not possible to compute this
Bayesian solution analytically. Therefore, plenty of different approx-
imate solutions, called filters, exist for this problem. For the rest of
this thesis, we study these filters.

2 Problem statement

The problem of estimating the state of a stochastic system from
noisy measurement data is considered. We consider the discrete-
time system with a nonlinear measurement model:

Initial state: x0 (1a)

State model: xk = Fk−1xk−1+wk−1 (1b)

Measurement model: yk = hk (xk )+ vk (1c)

where k ∈ N\{0}, vectors xk−1 ∈ Rn x and yk ∈ Rn yk represent
the state of the system and the measurement, respectively.
Matrix Fk−1 ∈ Rn x×n x is the known state transition matrix, and
wk−1 ∈ Rn x is the state model noise with known statistics. Function
hk : Rn x → Rn yk is a known measurement function, and vk ∈ Rn yk

is the measurement noise with known statistics. Subscript k repres-
ents time tk . The aim of Bayesian filtering is to find the conditional

2



probability distribution given all current and past measurements,

called the posterior and denoted xk |y1:k , where y1:k
△
= {y1, . . . ,yk }. We

consider the Bayesian filtering problem because the knowledge of
the posterior enables one to compute an optimal state estimate with
respect to any criterion. For example, the minimum mean-square
error estimate is the conditional mean of xk [8, 63]. We assume
that noises wk and vk are white, mutually independent and inde-
pendent of the initial state x0; these assumptions allow posteriors to
be computed recursively. We use the abbreviation V (wk ) = Qk and
V (vk ) =Rk for the covariance of the state model noise and the covari-
ance of the measurement noise, respectively. We assume that initial

state x0 has density function px0

△
= px0|y1:0 . If noises wk−1 and vk have

density functions pwk−1 and pvk
, respectively, then the posterior can

be determined according to the following relations [17, 63].

Prediction: p (xk |y1:k−1) =

∫

p (xk |xk−1)p (xk−1|y1:k−1)dxk−1 (2a)

Update: p (xk |y1:k ) =
p (yk |xk )p (xk |y1:k−1)

∫

p (yk |xk )p (xk |y1:k−1)dxk

(2b)

where the transitional density (also referred to as transition
equation) p (xk |xk−1) = pwk−1(xk − Fk−1xk−1) and the likelihood
p (yk |xk ) = pvk

(yk − hk (xk )). We call the distribution xk |y1:k−1 the
prior.

Usually assumptions that noises wk−1 and vk have density functions
are too strict. In some cases, the state model noise or the measure-
ment noise does not have density function; this happens when we
know that some components of the state are constant in time or
our measurements contain restrictive information [P2], respectively.
Throughout the remainder of this work, it is assumed that:

• Initial state x0 has density function.
• Either state noise wk−1 has density function pwk−1 , or state

transition matrix Fk−1 is nonsingular.
• Measurement noise vk has stricly positive density pvk

or vk = 0
and

∫

yk=hk (xk )
p (xk |y1:k−1)dxk > 0.

3



These assumptions guarantee that the posterior has a density func-
tion p (xk |y1:k ). Because the state transition function is linear, then
the prior (prediction step), or at least the mean and covariance of
the prior, is usually easy to compute. For example, results for Gaus-
sian mixture case are given in [P6, Theorem 6]. So the biggest chal-
lenge in solving this Bayesian filtering problem is how to update
the prior to obtain the posterior (update step). An illustration of
our problem is in Figure 1, which presents the posterior when the
prior1 is Gaussian and we have two measurements, one linear2 and
one range3 measurement, with (zero mean independent) Gaussian
noise.

Figure 1: Posterior density with Gaussian prior, one linear measure-
ment, one range measurement, and Gaussian noise.

We see that a crucial question in developing filters is how to store the
distribution for the next time step. As we will see in Section 3 this is
also one criterion for classifying filters. Note that the illustration in
Figure 1, as well as other illustrations in Figures 2-9, are in 2D for
practical reasons.4 The real positioning applications are usually in
6D or higher dimensional state space. However, these illustrations,
Figures 1-9, give a quite good idea of our problem and solutions.

1 x− ∼N2

��

50
40

�

,

�

902 0
0 902

��

.

2 0=
�

1 1
�

x + vlinear, vlinear ∼N1
�

0, 902
�

.
3
p

2 · 90= ‖x‖I+ vrange, vrange ∼N1
�

0, 202
�

.
4 These illustrations are computed using MATLAB-software and 2002 grid points.
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The goal of this work is to develop an efficient filter with respect
to computational and memory requirements. However, more
important property than efficiency is that the filter is consistent [P1,
R1], [50] and informative. Roughly speaking, a filter is consistent
if the true estimation error is smaller than the estimated error, and
informative if the difference of these errors is small.

3 Literature review

In this section, we give a brief literature review of filtering. We
consider the problem that is presented in Section 2 and the filters
that we have used in publications [P1–P6]. For further information
see e.g. [5, 8, 13, 22, 29, 56, 57, 63, 71, 80]. This section contains
different interpretations of the celebrated and well known Kalman
Filter (KF) [39] (Section 3.1), Kalman-type filters (Section 3.2) and
nonlinear filters (Section 3.3) especially Gaussian mixture filter,
which we study also in Section 4.

3.1 Kalman filter

If the measurement function hk (1c) is linear and all the noises and
the initial state are Gaussian, then posterior xk |y1:k is Gaussian, and
its mean and covariance can be computed exactly using KF [2, 27].
KF considers the system:

Initial state: x0, V(x0) = P0 (3a)

State model: xk = Fk−1xk−1+wk−1, V(wk−1) =Qk−1 (3b)

Meas. model: yk =Hk xk + vk , V(vk ) =Rk (3c)

where initial estimate (mean of initial state) is x̂0, covariance P0 is
non-singular, noises wk−1 and vk have zero mean and covariances
Rk are non-singular. KF algorithm is given as Algorithm 1. However,
this Bayesian interpretation is not the only interpretation of KF. We
present other interpretations of KF: the Best Linear Unbiased Estim-
ator (BLUE) interpretation and a deterministic interpretation.
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Algorithm 1: Kalman filter

1. Start with initial estimate x̂0 and estimate error covariance P0.
Set k = 1.

2. Prior estimate of state at tk is x̂−k = Fk−1x̂k−1, and estimate error
covariance is P−k = Fk−1Pk−1FT

k−1+Qk−1.

3. Posterior estimate of state at tk is x̂k = x̂−k + Kk

�

yk −Hk x̂−k
�

,
and estimate error covariance is Pk = (I−Kk Hk )P

−
k , where

Kalman gain Kk = P−k HT
k

�

Hk P−k HT
k +Rk

�−1
.

4. Increment k and repeat from 2.

BLUE interpretation of Kalman filter

BLUE interpretation drops the assumptions that initial state and
noises are Gaussian and seeks unbiased and linear estimator5 which
minimizes the cost function E (‖xk − x̂k‖2) . It can be shown that the
posterior estimate of KF at tk (Algorithm 1) minimizes that cost func-
tion, see for example [2, 5, 10, 39].

Deterministic interpretation of Kalman filter

Consider the deterministic least-squares problem

x̂k = argminxk

 

‖x̂0−x0‖2P−1
0
+

k
∑

n=1

�

‖wn−1‖2Q−1
n−1
+ ‖vn‖2R−1

n

�

!

,

where wn−1 = xn−Fn−1xn−1 and vn = yn−Hnxn . Here we assume that
all necessary matrices are non-singular. Now x̂k is the same as the
posterior estimate of KF at tk (Algorithm 1) see example [38]. Note
that this interpretation is truly deterministic: there are no assump-
tions of noise statistics or independence.

5 Estimator x̂k is unbiased if E (xk − x̂k ) = 0 and linear if x̂k = A

�

x̂k−1

yk

�

, where

matrix A is arbitrary.
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We conclude that KF is a good choice for the linear system even if
we do not know the noise statistic exactly or what the interpretation
of the problem is. Unfortunately, in the general, nonlinear measure-
ment function case, these three problems usually produce different
solutions. Therefore, in the nonlinear case, it is more important
to think about the interpretation of the measurement and the state
than in the linear case. In this thesis, as mentioned, we have chosen
the Bayesian interpretation of the state and our goal is to compute
the posterior, see Section 2. For an example of the frequentist inter-
pretation see [91].

3.2 Kalman-type filters

Because KF works well for linear systems (3) there are many KF
extensions to the nonlinear system (1). We call these extensions
Kalman-type filters. Kalman-type filters approximate only the mean
(estimate) and covariance (error estimate) of the posterior. If neces-
sary, a Kalman-type filter approximates the posterior as Gaussian
with those parameters.

Many Kalman-type filters are based on BLUE. Let

E

��

x

y

��

=

�

x̂−

ŷ

�

and V

��

x

y

��

=

�

Px x Px y

Py x Py y

�

(4)

then the BLUE of the state x is [8]

x̂ = x̂−+Px y P−1
y y

�

y − ŷ
�

E
�

(x − x̂ )(x − x̂ )T
�

= Px x −Px y P−1
y y

Py x .
(5)

Kalman-type filters use BLUE recursively, so that at every time
instant the Kalman-type filter approximates these expectations (4)
based on previous state and error estimates and computes new
state and error estimates using (5), e.g. Algorithms 2-4. Natur-
ally, different Kalman-type filters do these approximations using
different methods. Next, we present some of these approximations.

Maybe the best know KF extension is the Extended Kalman Filter
(EKF) [5, 8, 22, 29, 57, 63, 71]. EKF is based on BLUE and it linearizes
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Algorithm 2: Extended Kalman filter

1. Start with the mean x̂0 = E (x0) and the covariance P0 = V (x0)

of the initial state. Set k = 1.
2. Prior mean of state at tk is x̂−k = Fk−1x̂k−1, and prior covariance

is P−k = Fk−1Pk−1FT
k−1+Qk−1.

3. Posterior mean of state at tk is x̂k = x̂−k +P
x y k

P−1
y y k

�

yk − ŷk

�

and

posterior covariance is Pk = P−k −Px y k
P−1

y y k
PT

x y k
, where

Px y k
= P−

k
HT

k
, Hk = h ′

k
(x̂−

k
),

Py y k
=Hk P−

k
HT

k
+Rk and ŷk = hk (x̂

−
k
).

4. Increment k and repeat from 2.

the measurement function hk (1c) around the prior mean and uses
this linearization to compute the necessary expectations (4) [2, 8].
EKF algorithm for system (1) is given as Algorithm 2. This EKF
Algorithm 2 is used in publications [P1–P5, R1–R6]. It is also
possible to compute higher order EKF, which takes into account the
higher order terms of the Taylor series of the measurement func-
tion. For example, Second Order Extended Kalman Filter (EKF2)
takes into account the second order terms of the Taylor series [8].
EKF2 algorithm for system (1) is given as Algorithm 3. This EKF2
Algorithm 3 is used in publications [P1–P3, R1, R4–R6]. EKF2 uses
the assumption that the posterior is Gaussian, contrary to EKF,
which does not use this, usually incorrect, assumption. Modified
Gaussian Second Order Filter [29, 57] is the same as EKF2.

One big drawback of EKF and the higher order EKF is that the
approximation of the measurement function is computed in the
prior mean estimate, so if it is incorrect then the approximation of
the measurement function is incorrect and the next estimate of the
prior mean is incorrect, and so on. One example of a situation where
EKF estimate veers away from the true route and gets stuck in an
incorrect solution branch is given in [P1]. One approach to avoiding
this kind of situation is to use different linearization points that do

8



Algorithm 3: Second order extended Kalman filter

1. Start with the mean x̂0 = E (x0) and the covariance P0 = V (x0)

of the initial state. Set k = 1.
2. Prior mean of state at tk is x̂−k = Fk−1x̂k−1, and prior covariance

is P−k = Fk−1Pk−1FT
k−1+Qk−1.

3. Posterior mean of state at tk is x̂k = x̂−k +P
x y k

P−1
y y k

�

yk − ŷk

�

and

posterior covariance is Pk = P−k −Px y k
P−1

y y k
PT

x y k
, where

P
x y k
= P−

k
HT

k
, Hk = h ′

k
(x̂−

k
),

ŷk = hk (x̂
−
k
)+

1

2

n yk
∑

i=1

e i tr
�

Ḧ
k i

P−
k

�

, Ḧ
k i
= hk

′′
i
(x̂−

k
) and

Py y k
=H

k
P−

k
HT

k
+R

k
+

1

2

n yk
∑

i=1

n yk
∑

j=1

e
i
e T

j
tr
�

Ḧ
k i

P−
k

Ḧ
k j

P−
k

�

.

4. Increment k and repeat from 2.

not depend on the prior, if possible. The name of that kind of KF
extension is Linearized Kalman Filter (LKF) [22, 71]. One possible
choice for the linearization point is likelihood peak(s), see [P3]or the
mean of a truncated Gaussian, see [P5]. Of course, if we have more
than one linearization point, we usually end up to Gaussian mixture
filter, see Section 3.3. Another possibility is to generate linearization
points using the state model; this idea is used in [47, 48]. It is also
possible to compute EKF (or LKF), use the posterior mean estimate
as a linearization point of LKF and iterate this procedure. The name
of that kind of filter is Iterated Extended Kalman Filter (IEKF) [8, 29].
Note that IEKF computes the maximum a posterior estimate not the
posterior mean estimate [8].

One drawback of EKF and the higher order EKF is that we have to
compute the derivative of the measurement function analytically,
which is not always possible or practical. Because of this, there
are many derivative-free Kalman filter extensions. Note that in
some cases, computing derivative analytically is not a problem at
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all [R1]. Central difference filter [68], first-order divided difference
filter [60] and Unscented Kalman Filter (UKF) [33, 35, 36, 37] are
examples of derivative-free Kalman-type filters. These filters are
also referred to as linear regression Kalman filters [49] and sigma-
point Kalman filters [88]. These filters use different numerical inte-
gration methods to compute the expectations (4). For example, UKF
uses so called Unscented Transformation (UT) [35] that approxi-
mates expectation values of x ∼Nn (x̂ ,P)

E (h(x )) =

∫

h(ξ)px (ξ)dξ≈
2n
∑

i=0

ω
i
h(χ

i
), (6)

where ωi and χi are so called extended symmetric sigma-point set
of distribution Nn (x̂ ,P), which are given in Table 1.1 [36].

Table 1.1: Extended symmetric sigma-point set of Nn (x̂ ,P)

Index (i ) Weight (ωi ) sigma-point (χi )
0 ω0 x̂

1, . . . ,n
1−ω0

2n
x̂ +

Æ

n

1−ω0
Pe i

n +1, . . . ,2n
1−ω0

2n
x̂ −

Æ

n

1−ω0
Pe i−n

Approximation (6) is accurate if function h is third order polyno-
mial [33]. In Table 1.1, the weight of the mean point ω0 < 1 is a
freely selectable constant. The choiceω0 = 1− n

3
is justified because

it guarantees that approximation (6) is accurate for some fourth
order polynomial [36]. However, if we use negative weight ω0, it
is possible to produce non-positive semidefinite posterior covari-
ance Pk and usually this causes problems. If ω0 =

2
3

and n = 1
then UT coincides with three points Gauss-Hermite rule, which has
also been applied to Kalman-type filter framework; Gauss-Hermite
filter [28]. UT needs 2n + 1 points and three point Gauss-Hermite
rule generalization to higher dimension needs 3n points, and thus
UT and Gauss-Hermite rules coincide only in the one dimensional
case [28, 36].
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UKF algorithm for system (1) is given as Algorithm 4. This UKF
Algorithm 4 is used in publications [P3, P4, P5, R4, R6]. The
extended symmetric sigma point set used in Algorithm 4 is the
conventional choice of sigma points [33, 37], but there are also other
possible choices [36] such as the simplex sigma-point set, which use
the minimum number of sigma-points (n+1) [31]. It is also possible
to scale sigma-points so that the predicted covariance is certainly
positive semidefinite [30]. Algorithm 4 assumes that the state model
noise w is Gaussian and exploits the linearity of the state model (1b),
so it is not precisely the same as the conventional UKF. Publication
[P4] extends UKF to Gaussian mixture filter framework, where every
sigma point is replaced by a Gaussian distribution.

Algorithm 4: Unscented Kalman filter

1. Start with the mean x̂0 = E (x0) and the covariance P0 = V (x0)

of the initial state. Set k = 1.
2. Prior mean of state at tk is x̂−k = Fk−1x̂k−1, and prior covariance

is P−k = Fk−1Pk−1FT
k−1+Qk−1.

3. Posterior mean of state at tk is x̂k = x̂−k +P
x y k

P−1
y y k

�

yk − ŷk

�

and

posterior covariance is Pk = P−k −P
x y k

P−1
y y k

PT
x y k

, where

P
x y k
=

2n
∑

i=0

ω
i

�

χ
i
− x̂−

k

��

hk (χi
)− ŷ

k

�T
, ŷ

k
=

2n
∑

i=0

ω
i
hk (χi

) and

P
y y k
=R

k
+

2n
∑

i=0

ω
i

�

h
k
(χ

i
)− ŷ

k

��

h
k
(χ

i
)− ŷ

k

�T
.

Here ωi and χi are extended symmetric sigma-point set of
distribution Nn

�

x̂−k ,P−k
�

given in Table 1.1.
4. Increment k and repeat from 2.

This list of different interpretations, variations and extension of
Kalman-type filters is not exhaustive. For example, it is possible to
use UKF to maintain and propagate information about the higher
order moments [32, 34, 87].
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3.3 Nonlinear filters

If the true posterior has multiple peaks as in Figure 1, it is unlikely
that a Kalman-type filter that computes only the mean and covari-
ance achieves good performance. Hence, we have to use more
sophisticated nonlinear filters. A sophisticated nonlinear filter is
one that has convergence results. Possible filters are e.g. grid mass
filters [45, 75, 76, R2, R3], point mass filters [9, 11, 63, 70], particle
filters [6, 16, 17, 21, 24, 25, 63] and Gaussian mixture filters [4, 5, 78,
82, P3–P6]. In this section, we consider particle filters and Gaussian
mixture filters.

Particle filter

A particle filter (PF) – or the sequential Monte Carlo, or Bayesian
bootstrap filter – simulates a sample (particles with weights) from
the posterior distribution and approximates the posterior and espe-
cially the moments of the posterior using these weighted particles.
A particle filter algorithm for system (1) is given as Algorithm 5.

Algorithm 5: Particle filter

Here we denote particles with superscript i = 1, . . . ,n pf: x
(i )

k being
the i th particle at time tk .

1. Initialise samples from the initial distribution x
(i )
0 ∼ px0(x ),

and assign all weights to w
(i )
0 =

1
n pf

. Set k = 1.
2. Simulate particles x

(i )

k from proposal distribution p (xk |x (i )k−1)

and compute weights of particles w
(i )

k =w
(i )

k−1p (yk |x (i )k ).
3. Normalize weights and compute posterior mean and covari-

ance using particles.
4. Resample (Algorithm 6) if effective sample size is smaller than

some threshold value.
5. increment k and continue from 2.

Note that Algorithm 5 is only one special case for system (1), actu-
ally quite a narrow case, of particle filters. This particle filter
Algorithm 5 is used in publications [P2–P6, R2–R6]. It is well know

12



that without the resampling step (Step 4 in Algorithm 5) the degen-
eracy phenomenon occur, which means that after a certain number
of recursive steps, all but one particle will have negligible normal-
ized weights [63]. We use systematic resampling [41] (Algorithm 6)
every time when the effective sample size (approximation) [42]

n eff =
1

∑n pf

i=1

�

w
(i )

k

�2

is smaller than some threshold value n thr.

Algorithm 6: Systematic resampling

Here we denote the current particles by x̄ (i ) and their weights by
w̄ (i ). This algorithm simulates n pf particles x (i ) with equal weights
w (i ) = 1

n pf
from discrete distribution defined by current particles and

weights.

1. Simulate the starting point: z 1 ∼U
�

0, 1
n pf

i

and set i = 1.

2. Compute current comparison point z i = z 1+(i −1) 1
n pf

3. Set w (i ) = 1
n pf

and x (i ) = x̄ (j ), where j is set in such a way that
∑j−1

k=1 w̄ (k )< z i ≤
∑j

k=1 w̄ (k )

4. Stop, if i = n pf, otherwise increment i and continue from 2.

The particle filter has several convergence results (see e.g. [16, 17,
25]), especially weak convergence results when there are a finite
number of measurements and all measurement are fixed. The defin-
ition of weak convergence is found for example in [P6, Definition 8].
Even though the particle filter is very flexible, it requires that the
likelihood function p (yk |xk ) is strictly positive, because otherwise
it is possible that all the weights are zero which destroys the particle
filter. Unfortunately, all likelihoods of our system (1) are not strictly
positive. One heuristic method of handling the situations where all
weights are zero is to re-initilize particle filters using, e.g. EKF, which
is what we are using in our publications, but after that the conver-
gence results do not hold anymore.

It is also possible to use (a bank of) UKF or another Kalman-type
filter to compute the proposal distribution (Step 2 in Algorithm 5)
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of PF [89, 90]. Note that if we change the proposal distribution, the
equation of weight will also change (Step 2 in Algorithm 5).

Gaussian mixture filter

Gaussian Mixture Filter (GMF), also called Gaussian sum filter, is a
filter whose approximate prior and posterior densities are Gaussian
Mixtures (GMs), a convex combination of Gaussian densities. We
assume (see Section 2) that the prior and the posterior distributions
have density functions, but in general GM does not necessarily have
a density function [P6, Definition 4]. GMF is an extension of Kalman-
type filters. One motivation to use GMF is that any density function
px may be approximated as density function of GM pgm as closely as
we wish in the Lissack-Fu distance sense [14, Chapter 18]6, [52, 78]:

∫

|px (x )−pgm(x )|dx . (7)

The outline of the conventional GMF algorithm for system (1) is
given as Algorithm 7 (for detailed algorithm, see e.g. [P5, P6]). Here
we assume that the initial state x0, the state model noise wk−1 and
the measurement noise vk are GMs. Because the initial state and
the posterior approximations are GMs then also the prior approxim-
ations at each step are GMs (Step 2), see [P6, Theorem 6].

Algorithm 7: Gaussian mixture filter

1. Start with initial state x0. Set k = 1.
2. Compute prior approximation x−k .
3. Approximate x−k as a new Gaussian mixture if necessary.
4. Compute GM posterior approximation xk .
5. Reduce the number of components.
6. Increment k and repeat from 2.

6 Note that for all ε > 0 there is a continuous density function pc(x ) with compact
support such that

∫

|px (x )−pc(x )|dx <ε [66, Theorem 3.14].
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The heart of the GMF is the approximation of an arbitrary density
function with a Gaussian mixture (Step 3). There are numerous
approaches to do that. We present one conventional method. More
methods are in Section 4. The density function of GM approxima-
tion pgm of a density function px is defined as [4]

pgm(x )∝
n gm
∑

i=1

px (x
(i )
g )N

x
(i )
g

cgI (x ), (8)

where the mean values x
(i )
g are used to establish a grid in the region

of the state space that contains the significant part of the probability
mass, n gm is the number of grid points and cg > 0 is determined
so that the error in the approximation, e.g. Lissack-Fu distance (7),
is minimized. It can be shown that pgm(x ) converges almost every-
where uniformly to any density function of practical concern as the
number of components n gm increase and cg approaches zero [4,
78]. Moreover, Lissack-Fu distance (7) converges to zero. This
Step (Step 3) is executed only when it is necessary. One possible
criterion is to check if all prior covariances do not satisfy inequality
P−i <εI, for some predefined ε, where P−i is the covariance of the i th
component [5]. A more sophisticated method is to execute Step 3 if
nonlinearity is significant [P4].

The update step of Algorithm 7 (Step 4) is usually computed as
a bank of EKFs, see detailed algorithm e.g. [P6, Algorithm 2]. It
is possible to compute the update step using a bank of another
Kalman-type filters [P3] or bank of PFs [44]. There are also other
methods of computing the posterior weights than what is in the
algorithm given in [P6, Algorithm 2], e.g. methods based on quad-
ratic programming [28]. Furthermore, in some cases, it is possible
to combine Step 3 and Step 4, e.g. in EGMF [P5].

The crucial point when applying GMF to real-time implementa-
tions is the number of components GMF uses. The number of
components easily explodes if we do not use some method to
reduce the number of components (Step 5). The possible methods
are, e.g. forgetting [78, P3, P6], merging [67, 78, P3, P6], resam-
pling [P3], clustering [67] or minimizing some cost function, see
e.g. Step 3 or [55]. One possible method for this problem is taking
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a sample from the posterior and using the weighted expectation-
maximization algorithm to fit an m -component GM [89], but
usually this method is quite slow.

It can be shown that GMF (Algorithm 7) with some assump-
tions and specific approximations convergences (weakly) to the
correct posterior when the number of components increases [5],
[P6, Section IV]. Even if we use component reduction, especially
in higher dimension, conventional approximations (8) yield GMF
which is not applicable in real-time implementation. However it
may be possible to derive GMF that works notably better than
Kalman-type filters and uses only a few components, see Section 4
and publications [P3–P6].

4 Development of the Gaussian mixture filter

In this section, we summarize the contributions of publications [P2–
P6] to the development of GMF. We use the assumptions of Section 2
except that we assume that initial state x0, state model noise wk−1

and measurement noise vk are GMs. Moreover, we use Gaussian
mixture posterior approximation.

4.1 Restrictive information

Restrictive information tells that the state is inside some
area A. Restrictive information can be modelled with inequality
constraints [69, 72, 73]. There are many different methods of taking
into account inequality constraints e.g. [23, 62, 69, 72, 73]. However,
in our view, the most natural way is to model the restrictive infor-
mation as a measurement (1c) with zero noise which produces
likelihood which is one inside A and zero outside A [P2]7. An
example of using restriction information in such a way is in Figure 2,
where on the left hand side is posterior without using restrictive
information and the right hand side using it.

7 This approach also independently proposed in [72] and [73], which were
published after abstract of [P2] was submitted.
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Figure 2: Left: the same as Figure 1. Right: the same posterior with
120◦ base station sector information.

The left hand side of Figure 2 is the same as Figure 1, where prior
is Gaussian and we have two measurements, one linear and one
range measurement with Gaussian noise. Restrictive information
that is used on the right hand side of Figure 2 is 120◦ base station
sector information. Note that the vertical scales of the left and right
plots are different. In this case, we see that sometimes restrictive
information notably improves state estimation. Because of this, it
is important that we can use that kind of information with Kalman-
type filters. This is the focus of publication [P2].

If the area A is restricted by two parallel planes and the distribu-
tion of the state is Gaussian (or GM), it is possible to efficiently
compute the mean and covariance of the restricted state [69, 72,
P2]. In publication [P2], we develop an approximation to extend
this method to cases where the area A is a polyhedron and apply
it to base station cell-ID information [79] (see [P2] and Figure 3).

The left hand side of Figure 3 is the same as the right hand side
of Figure 2, which presents the optimal way to use 120◦ base
station sector information. The right hand side of Figure 3 uses the
method presented in publication [P2] to approximate base station
sector information and after that it uses conventional EKF. When
we compare the left and right hand sides of Figure 3, we see that
this approximate way to use base station sector information is quite
good. One advantage of this new approximation method (box-
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Figure 3: Left: the same as the right hand side of Figure 2. Right:
posterior approximation using first approximated 120◦ base
station sector information (see [P2]) and then EKF.

method) is that it approximates restrictive area as polyhedron Ȧ [P2,
Figure 1] so that the mean and covariance of the restricted posterior
can be computed using standard one dimensional Gaussian cumu-
lative density function and basic algebra.

We use cell-ID information as restrictive information also in public-
ations [P4, P5]. It is also possible to construct restrictive information
from a digital map or floor plan [R6]. The method of using restrictive
information with Kalman-type filter [P2] is a basis and an inspira-
tion of the Box Gaussian mixture approximation of Section 4.3 and
publications [P5, P6].

4.2 Approximate the likelihood as GM

In Section 4.1 we allowed the components of the measurement
noise to be zero, which means that the measurement noise does
not have density function. However, henceforth we assume that
the measurement noise is GM with density function pvk

. Based
on our assumptions, the prior (approximation) is always GM. So it
is convenient to consider only Gaussian prior case with Gaussian
measurement noise pvk

(v ) =N0
Rk
(v ). The generalizations to the GM
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cases are straightforward, see [P3, P6]. Our problem is to approx-
imate/compute the posterior (2b)

p (xk |y1:k )∝ p (yk |xk )p (xk |y1:k−1),

where the likelihood is

p (yk |xk ) =N0
Rk

�

yk −hk (xk )
�

and the prior is

p (xk |y1:k−1) =N
x−

k

P−
k

(xk ).

As we mentioned in Section 3.3, the usual method of computing the
posterior is to linearize the measurement equation around the prior
mean (EKF) [P3]:

hk (xk )≈ hk (x
−
k
)+h ′

k
(x−

k
)(xk −x−

k
).

Quite often, when there are enough measurements, this is a good
approximation, but when the likelihood has several peaks in the
neighbourhood of the prior mean, this approximation fails. One
possible way to avoid this problem is to approximate the likelihood
as GM [P3]

p (yk |xk )≈
n gm
∑

j=1

N0
Rk

�

yk −hk (z j )−h ′
k
(z j )(xk − z j )

�

, (9)

where z j , j = 1, . . . ,n gm are the likelihood peaks8 (also referred to as
static solutions). An example for using this approximation is shown
in Figure 4.

The left hand side of Figure 4, which is the same as Figure 1, is
the posterior when the prior is Gaussian and we have two measure-
ments, one linear and one range measurement with Gaussian noise.

8 If hk (x ) depends only on the first d elements of x ∈Rn and z =

�

z peak

z rest

�

, where

z peak ∈Rd , maximizes the likelihood function then z is acceptable likelihood peak
if and only if z rest = 0. Furthermore, it is reasonable to consider only clearly distinct
likelihood peaks.
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Figure 4: Left: the same as Figure 1. Right: posterior approximation
using GM likelihood approximation, ErrGML = 0.115 (10).

The right hand side of Figure 4 is the posterior approximation using
a two-component likelihood GM approximation (9). The error

Errapp = sup
ξ

|Fx (ξ)− Fxapp(ξ)|, (10)

where Fx (ξ) = P(x ≤ ξ) is cdf of the correct posterior and Fxapp (ξ)

is cdf of the approximated posterior. Motivation for using that
error statistic come from definition of weak convergence [P6, Defin-
ition 8]. Usually this error statistic has to be computed using some
multidimensional numerical integration method and so it is not
very useful for extensive testing of different filters [76, Section 5].
The error of Figure 4 posterior approximation is ErrGML= 0.115. This
error is rather small if we compare it with the error of EKF approxim-
ation ErrEKF = 0.393.

We show that in the hybrid positioning case, using this approxim-
ation when likelihood has several peaks outperforms Kalman-type
filters such as EKF, EKF2 and UKF (see [P3]). In the hybrid posi-
tioning case, it is sometimes possible to compute the likelihood
peaks in closed form [7, 74, 77], publication [P3, Appendix B] also
presents some new cases where it is possible. Moreover, the method
of approximating likelihoods as GM, is one way to apply multiple
static position solutions in a filtering framework.

Approximating likelihood as GM has also been applied in the radar
tracking applications [85, 86]; publication [86] approximates the
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measurement noise vk (1c) as GM and then converts these mixture
components to the state space. It is a nice idea, but it does not work
with range measurements, because small measurement noise in the
range measurement does not generate small likelihood compon-
ents.

It is possible to approximate almost all likelihoods inside a inter-
esting region with sufficient accuracy as GM (see Algorithm 7 Step 3).
For example in Figure 5 the likelihood of 2D range measurement
with Gaussian noise is approximated as GM with 18 components
using the conventional method (8).9 However, this method usually
needs a huge amount of GM components, especially in higher
dimension. Furthermore, many of these components are unneces-
sary because after multiplying the likelihood and the prior, usually,
many of these components have almost zero weight. Hence, it is not
worthwhile to apply this approximation method to real-time imple-
mentations.

Figure 5: Left: exact likelihood of 2D range measurement with Gaus-
sian noise. Right: GM 18 components approximation of like-
lihood using (8).

Publication [P3] also presents a non-Bayesian approach to robusti-
fying GMF using likelihood peaks: if the measurements are unlikely,
we add new component(s) to the posterior with appropriate weights.

9 That kind of approximation is used as initial state GM approximation in range-
only target tracking application [19].
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These new components approximate the likelihood function so that
the means of the components are likelihood peaks. This method is
justified if there is a possibility that our prior is wrong. This method
is related to Hough transformation [59] that uses the sum of likeli-
hood functions instead of a product as in Bayesian filtering.

4.3 Approximate the prior as GM

In Section 4.2, we computed the posterior (2b)

p (xk |y1:k )∝ p (yk |xk )p (xk |y1:k−1),

by approximating likelihood p (yk |xk ) as GM. In this section, we use
a bank of EKFs to compute the posterior approximation, but before
the update step we approximate the prior p (xk |y1:k−1) as GM. It can
be shown that if GM approximation of the prior converges to the
correct prior, and the covariance of GM approximation becomes
smaller, the posterior approximation of the bank of EKFs converges
to the correct posterior [5, P6]. More discussion about the conver-
gence results is in Section 4.5. However, the main interest is not
in a convergence result but in developing a filter that works well
also with a few mixture components. In this section, we consider
two ways to approximate the prior as GM with a small number of
mixture components: the Sigma Point GM approximation [P4] and
the Box GM approximation [P5, P6]. Another possibility to approx-
imate prior as GM is to approximate the state model noise wk−1 (1b)
as GM with small covariance [4]. So if the posterior GM components
have small covariances, this approximation guarantees that the next
prior components have small covariances too.

Sigma Point GM approximation

The Sigma Point GM approximation (SPGMA) is an “extension” of
sigma-point to GM framework. SPGMA is given in Table 1.2 [P4,
P5]. In Table 1.2, we use a slightly different parametrization than in
publication [P4]. Parameter τ ∈ [0,1] defines the size of the covari-
ances of SPGMA. Special cases areτ= 0 when SPGMA is actually the
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same as the original Gaussian and τ = 1 when SPGMA is the same
as the extended symmetric sigma-point set of distribution Nn (x̂ ,P),
Table 1.1. Parameter α0 is the weight of the GM component whose
mean is the same as the mean of the original distribution x̂ .

Table 1.2: Sigma Point GM approximation of distribution Nn (x̂ ,P)

Index (i ) Weight (αi ) Mean (x̂ i ) Covariance (Pi )
0 α0 x̂ (1−τ2)P

1, . . . ,n 1−α0

2n
x̂ +τ

p

n

1−α0
Pe i (1−τ2)P

n +1, . . . ,2n 1−α0

2n
x̂ −τ

p

n

1−α0
Pe i−n (1−τ2)P

Publication [P4] shows that SPGMA has the same mean, covari-
ance and third moments as the original distribution Nn (x̂ ,P) [P4,
Appendix B]. An example of using this approximation is presented
in Figure 6.

Figure 6: Left: the same as Figure 1. Right: posterior approximation
using SPGM prior approximation, ErrSPGMF = 0.236 (10).

The left hand side of Figure 6, which is the same as Figure 1. The
right hand side of Figure 6 is the posterior approximation using
the SPGM prior approximation, with parameters α0 = 0.5 and
τ= 0.6. This approximation is also called the Sigma Point Gaussian
Mixture Filter (SPGMF) [P5]. The error (10) of this approximation is
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ErrSPGMF = 0.236. This error is better than the error of EKF approx-
imation but worse than the error of GM likelihood approximation of
Section 4.2. Note that SPGMA does not need the knowledge of likeli-
hood peaks so it can be used in a wider range of situations than the
GM likelihood approximation.

In publications [P4] and [P5] we show that SPGMA with the bank of
EKFs (SPGMF [P5]) gives almost the same results as the particle filter
in the hybrid positioning case.

Box GM approximation

The idea of the Box GM approximation (BGMA) is to partition the
state space into sets A i , where i = 1, . . . ,n gm, and approximate
the distribution inside every set with one GM component using
moment matching, see Table 1.3.

Table 1.3: BGMA of n-dimensional distribution, whose density func-
tion is px (ξ). Sets A i , where i = 1, . . . ,n gm, are the partition
of Rn .

Weight (αi ) Mean (x̂ i ) Covariance (Pi )
∫

A i
px (ξ)dξ

∫

A i
x

px (ξ)

αi

dξ
∫

A i

�

x − x̂ i

��

x − x̂ i

�T px (ξ)

αi

dξ

The moment matching method guarantees that the mean and
covariance of BGMA coincide with the original distribution [P6,
Theorem 18]. Here we assume that the distribution is non-singular
Gaussian but this basic idea is also applicable to other distributions
that have a density function. The partition of the state space can
be constructed, for example, using parallel planes [P5, Figure 1] or
using a (bounded) polyhedron [P6, Figure 1]. One major advantage
of BGMA is that we can use current measurements in an intelligent
way to construct the partition of the state space. For example, with
range measurement [P5] it is reasonable to align the parallel planes
such that the normal vector is perpendicular to the vector u prior→bs
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from the prior mean to the base station because this minimizes the
effect of nonlinearity [P4, Equation (8)]. Vector u prior→bs is the eigen-
vector of the Hessian matrix of the range measurement whose eigen-
value is 0 [R1].

An example for using BGMF [P5] is presented in Figure 7. The left
hand side of Figure 7 is the same as Figure 1. The right hand side of
Figure 7 is the posterior approximation using BGMA of the prior [P5],
with parameter

l =
�

−∞ −1.04 1.04 ∞
�

=Φ−1
��

0 0.15 0.85 1
��

.

Black lines in the Figure 7 illustrate parallel planes10 which are using
for partitioning the state space. The error (10) of this BGMF approx-
imation is ErrBGMF = 0.188. We see that BGMF with three compon-
ents gives better approximation than SPGMF with five compon-
ents. So our illustrative example supports the conclusion of public-
ation [P5] that BGMF outperforms SPGMF.

Figure 7: Left: the same as Figure 1. Right: posterior approximation
using BGMA of prior, ErrBGMF = 0.188 (10). Black lines illus-
trate parallel planes that are using for partitioning the state
space10.

10 These planes (lines) satisfy equation a T (x − x̂ ) = ±1.04 [P5, Section IV-B], where

a = np
nT Pn

, n =

�

−40
50

�

, P=

�

902 0
0 902

�

and x̂ =

�

50
40

�

(see page 4). Note

a T Pa = 1 and a T u prior→bs = 0 where (see page 24) u prior→bs = 0− x̂ .
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4.4 Approximate the posterior as GM

In Section 4.2 we computed the posterior (2b)

p (xk |y1:k )∝ p (yk |xk )p (xk |y1:k−1),

by approximating the likelihood p (yk |xk ) as GM, and in Section 4.3
we approximated the prior p (xk |y1:k−1) as GM. In this section, we
directly approximate the posterior as GM. This method is called
Efficient Gaussian Mixture Filter (EGMF) [P5] and it is related to
BGMF when the partition (sets A i , i = 1, . . . ,n gm) of the state space is
constructed using parallel planes, see Section 4.3. The idea of EGMF
is to approximate the posterior inside every set A i with one GM
component. The i th GM component is computed using LKF, where
the linearization point is the same as the i th linearization point of

BGMF
�

∫

A i
x

px (ξ)

αi

dξ Table 1.3
�

. The final posterior component is

the moment matching approximation of the truncated (using set A i )
output of LKF (see more details in publication [P5]).11

Figure 8: Left: the same as Figure 1. Right: posterior approximation
using EGMF, ErrEGMF = 0.177 (10).

An example of using EGMF [P5] is presented in Figure 8. The left
hand side of Figure 8 is the same as Figure 1. The right hand side

11 If the state is constant, that is the state model (1b) is xk = xk−1, then it is possible
to use the truncated Gaussian as a prior without approximating it as a Gaussian.
Actually it is enough that the nonlinear part of the state is constant, that is the first
d dimensions [P6, Equation (8)]. This approach is called the piecewise Gaussian
approximation [80, 81].
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of Figure 8 is the posterior approximation using EGMF [P5] with
the same parameters as BGMF in Section 4.3. The error (10) of this
EGMF approximation is ErrEGMF = 0.177. We see that EGMF outper-
forms BGMF (see Section 4.3 and publication [P5]).

4.5 Convergence result of BGMF

Not only does BGMA have the same mean and covariance as
the original Gaussian distribution [P6, Theorem 18], but it also
has convergence results. When we increase the number of GM
components, BGMA converges weakly to the original Gaussian [P6,
Theorem 21 and Corollary 22]. Note that the sets that form the parti-
tioning of the state space do not have to be bounded. Thus, we can
increase the number of components only in the dimensions that
contribute to the measurement nonlinearity (d first dimensions, see
[P6, Equation (8) and Definition 16]). We use notation BGMFN=· for
a filter that uses BGMA [P6, Section V]. Here N is the parameter
of BGMA [P6, Definition 16]. The number of BGMA components
is (2N 2 + 1)d . An example of using BGMFN=4 [P6] is presented in
Figure 9.

Figure 9: Left: the same as Figure 1. Right: posterior approximation
using BGMFN=4, ErrBGMF, N=4 = 0.008 (10).

The left hand side of Figure 9 is the same as Figure 1. The right hand
side of Figure 9 is the posterior approximation using BGMFN=4. The
error (10) of this BGMFN=4 approximation is ErrBGMF = 0.008. More
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results with different values of parameter N are given in Table 1.4
and in Figure 10. Table 1.4 contains also a summary of the previous
results. Note that EKF is BGMFN=0. In Table 1.4, we see that
it is possible to get much better accuracy than EKF in nonlinear
situation with only a few extra Gaussian components. The mean
of the error of the particle filter with 105 particles (Algorithm 5)
in this illustrative example is ErrPFnpf=105 = 0.017. In this example,

BGMFN=3 having 361 Gaussian components gives better results
than PFn pf=105 . More results for hybrid positioning application are
given in Section 5.

Table 1.4: Summary of different filters’ performance in our illustrative
problem in Figure 1.

Filter Sec. & Pub. n gm ErrFilter (10)
EKF 3.2 & [P1] 1 0.393
GML 4.2 & [P3] 2 0.115

BGMF 4.3 & [P5] 3 0.188
EGMF 4.4 & [P5] 3 0.177

SPGMF 4.3 & [P4] 5 0.236
BGMFN=1

4.5 & [P6]

9 0.093
BGMFN=2 81 0.033
BGMFN=3 361 0.013
BGMFN=4 1089 0.008
BGMFN=5 2601 0.005

In publication [P6, Section VI] we have shown that BGMFN=·

converges weakly to the correct posterior. Our illustrative example
also supports convergence results (see Table 1.4 and Figure 10).
Actually from Figure 10 we can see that the error (10) of BGMF in
our illustrative problem approximatively satisfy the power function

ErrBGMF ≈
1

exp(1)
n−0.55

gm .
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Figure 10: The error (10) of BGMF with different values of para-
meter N .

5 Hybrid positioning results

In this section, we briefly present some simulation results of
different filters in hybrid positioning applications and some prac-
tical notes for real world implementations.

5.1 Sensitivity analysis of GMFs

In this section we study the sensitivity of the new GMF algorithms
to variations of parameters. GMFs have plenty of different para-
meters, most of then are known and common for all GMFs, such
as the threshold values for forgetting components. In this section,
we consider two new parameters. The first one is SPGMF parameter
τ [P4, Section 5] and the second one is parameter l . Both filters
BGMF [P5, Section IV-B] and EGMF [P5, Section VI] use this l para-
meter.

29



First we recomputed the one step comparison of EKF, SPGMF, BGMF
and EGMF [P5, Section VII] using a wide range of parameters τ
and l . This test is also in [P4, Section 5.1]. The results are shown
in Figures 11 and 1212.

100 500 1000 1500
0

1

2

3

4

Mahalanobis distance

Distance between prior mean and base station

 

 

EKF
SPGMF

mean

BGMF
mean

EGMF
mean

Nonlinearity

Figure 11: The results of one step comparison of EKF, SPGMF, BGMF
and EGMF when the parameter of SPGMF τ∈ [0.3,0.7] and
the parameter of BGMF and EGMF Φ(l 2) ∈ [0.05,0.25].

In this case, we assume that parameter τ∈ [0.3,0.7] and parameter

l =Φ−1
��

0 Φ(l 2) 1−Φ(l 2) 1
��

,

where Φ(l 2) ∈ [0.05,0.25]. This means, for example, that BGMA [P5,
Section IV-B] splits the original Gaussian to GM with three mixture

12 Often users are only interested in the mean of the posterior so we have computed
the Mahalanobis distance between the means. Mahalanobis distance, however,
does not tell everything about accuracy so we have computed also the Lissack-Fu
distance.

30



100 500 1000 1500
0

1

2
Lissack−Fu distance

Distance between prior mean and base station

 

 

EKF
SPGMF

mean

BGMF
mean

EGMF
mean

Nonlinearity

Figure 12: The results of one step comparison of EKF, SPGMF, BGMF
and EGMF when the parameter of SPGMF τ ∈ [0.3,0.7] and
the parameter of BGMF and EGMF Φ(l 2)∈ [0.05,0.25].

components so that the weights of these components are Φ(l 2),
1 − 2Φ(l 2) and Φ(l 2). Figures 11 and 12 show the mean statistics
when the parameters are uniformly distributed in the current set.
Moreover, the figures show the ranges of variation of different GMFs.
Based on these figures we can say that in this case all GMFs are more
accurate than EKF.

We also recomputed the simulations with “base station test
bank” [P5, Section VIII-A] using parameters

τ∈
¦

0.15, 0.151, · · · , 0.849, 0.85
©

and l =Φ−1
��

0 Φ(l 2) 1−Φ(l 2) 1
��

, where

Φ(l 2) ∈
¦

0.15, 0.151, · · · , 0.449, 0.45
©

.
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Table 1.5: The Recomputed hybrid position simulations using a wide
range of parameters τ and l . The original simulation is
found in [P5, Section VIII-A].

Time Err. Err. Err. Inc.
Solverparameter ∝ rms 95% ref %
EKF 10 236 465 83 6.6
SPGMFτ∈[0.15,0.85] 94 207±12 400±28 65±4 3.2±0.7
BGMFΦ(l 2)∈[0.15,0.45] 54 196±7 375±23 59±4 3.3±0.6
EGMFΦ(l 2)∈[0.15,0.45] 52 203±15 382±33 60±6 2.7±0.8
Ref ∞ 155 287 0 0.1

We use the following threshold parameters: we forget components
whose weights are less than 10−6, we merge two components if the
distance d i j [P3, Page 834] is less than 10−3, and finally, if neces-
sary, we use resampling so that the number of components is less
or equal than 40 [P3]. Note that this is much less than the number
of components of the conventional GMF (8).

These simulations were made using the Personal Navigation Filter
Framework (PNaFF) [R5]. The “base station test bank” contains base
station range measurements, altitude measurements and restrictive
information which are base station 120◦ sector and maximum range
information. The results of these simulations are given in Table 1.5.
Table 1.5 contains the range of variation of different error statistics.
The main reason for using these error statistics is that it is possible to
compute these error statistics in reasonable time. More discussion
about these error statistics is found in publication [76, Section 5].

We see that all new GMFs: SPGMF, BGMF and EGMF give better
results (in all listed criteria, except time) than EKF regardless of the
values of parameters τ and l . We see that BGMF has smaller vari-
ations of results than EGMF. However, it is possible to obtain slightly
better performance with EGMF than BGMF or SPGMF. More discus-
sion about the sensitivity analysis of BGMF is presented in publica-
tion [1].
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5.2 Summary of hybrid positioning results

These simulations were made using the Personal Navigation Filter
Framework (PNaFF) [R5], and the test bank used is the same as the
“base station test bank” of publication [P5, Section VIII-A]. See also
Sectio 5.1 and [P5, Table II].
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Figure 13: The RMS-error of the different particle and Gaussian
mixture filters in hybrid positioning applications.

Figure 13 presents 3D root mean square position error (RMS-error)
of different filters versus the relative computational time of our
Matlab implementation (CPU-time). The x-axis is set to value
155 (RMS-error for PFn pf=106 ), which is nearly optimal result for
RMS-error statistic [P5, Table II]. Figure 13 shows different GMF
variants and the particle filter with different number of particles
n = 200,300,400, . . . ,4400,4500. So the number of particle filters
(red stars in Figure 13) is 44. EKFno res., EKF, EKF2, BGMF and
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EGMF are explained in the publication [P5, Table II]. The difference
between BGMF and BGMFN=1 is that BGMFN=1 uses BGMA with
parameter N = 1 [P6, Definition 16] when it splits the prior Gaus-
sian component to GM whereas BGMF uses the method of publica-
tion [P5]. BGMFN=1,A ,G is the same as BGMFN=1 but it adds mixture
components that approximate the likelihood when all measure-
ments are unlikely, and approximates the likelihood as a Gaussian
mixture when the likelihood has more than one peak (for more
details see [P3, P4]). The computational time is scaled so that the
computation time of EKFno res. is 1. EKFno res. is the conventional
EKF which does not use restrictive information. All other filters use
restrictive information.

Based on publication [R4], these filters (GMFs and PFs) are the most
efficient filters for hybrid positioning applications. Note that public-
ation [R4] does not contain GMFs of publications [P4–P6]. It is
also good to keep in mind that Kalman-type filters (Section 3.2) are
special cases of GMFs. Positioning methods such as static posi-
tioning (positioning which uses only the current measurements),
grid mass filters, point mass filters and batch least squares do not
achieve the same performance as GMFs or PFs [R4].

PF is a random algorithm13, and thus different realizations produce
different results. This phenomenon can be seen in Figure 13.
Because of that, we ran the particle filter 100 times, with 4500
particles using the current test bank, and got the following RMS-
error: minimum 178, mean 189 and maximum 206. So, PFn pf=4500

produces almost the same RMS-error results as EGMF, whose RMS-
error is 191. However, CPU-time of PFn pf=4500 is about two times
the CPU-time of EGMF and the maximum memory requirement of
PFn pf=4500 in our implementation is 252 kB whereas EGMF uses only
35 kB.

All in all, we see that GMF is a competitive filter for hybrid posi-
tioning applications (in our problem statement Section 2). Of
course it depends heavily on the application and the comparison

13 Strictly speaking GMFs are also random algorithms if we use resampling method
for the reduction of the number of components [P3]. However the variance of
GMFs is very small compared to PFs so we do not take this into account.
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criteria which filter is the best and so it is possible to justify the use of
some other methods such as the particle filter for some hybrid posi-
tioning applications. More hybrid positioning simulation results
can be found in publications [P1–P6] and [R1–R8].

5.3 Some notes for real world implementation

In this thesis, we have considered solving the discrete-time system
(Equation (1)) and we have assumed that we know the models
exactly. However, usually in real world applications, lots of work
is needed to find out sufficiently accurate models. It is clear that
(one-component) Gaussian error models are no longer adequate
for hybrid positioning in urban environments, because of, e.g. the
non-line of sight effect. Solutions for these problems are, e.g. better
models, robust methods [12, 54, 61] and/or interacting multiple
models [58, 84]. Often these methods produce an algorithm which
is a special case of GMF. However, the first necessary requirement
for a good hybrid position filter is that it works with Gaussian error
models. Hence it is reasonable to test filters with Gaussian error
models (see Section 5.2) and consider only the filters which do not
have a problem with simulated Gaussian errors.

Although our problem statement (Section 2) is very wide it does
not cover all possible hybrid position applications. In “finger-
printing” [R7], for example, we do not have an analytic formula
of the measurement function h (Equation (1c)) and thus, we do
not have the derivative of the measurement function, which is a
necessary requirement for many filters of this thesis. Of course it is
possible to develop new filters for these applications. For example,
we have proposed one method for using “fingerprint” data in hybrid
positioning in publication [3].

6 Conclusions and future work

In this thesis, we have studied Gaussian mixture filters, especially,
in the situation where the measurement function is nonlinear but
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otherwise the system is linear and Gaussian. We considered hybrid
positioning applications but most of the results are also applic-
able to other applications. One natural, popular and good ques-
tion is, which filter is the best? Unfortunately, the answer is not
unique. First of all we have to specify what “the best” means. A good
filter gives correct solutions within some tolerance even if there are
some blunder measurements and, considering personal positioning
application, it is possible to implement in real-time using a mobile
device. Secondly, we have seen that it depends heavily on the applic-
ation and the measurements which filter is good or the best.

If we have enough measurements so that a unique static solution is
almost always available, then the posterior is usually unimodal. In
that case EKF work quite well and it is fast to compute and has small
memory requirements. However, if nonlinearity is significant, it is
good to use other Kalman-type filter, such as, EKF2, if the Hessian
of the measurement function is easy to compute, otherwise UKF. If
we do not have enough measurements for a unique static solution,
but we have multiple static solution candidates, it is good to approx-
imate the likelihood as GM.

In case that we have only a few measurements and we do not have
static solution available, these methods do not work satisfactorily.
First of all, in this hard case, it is good to use all available measure-
ments and other information with known measurement models.
For example, cell-ID information improves the performance of the
filter. In the hard case, it is good to use some filter that has conver-
gence results and adjusts the number of particles14 so that the filter
works satisfactorily. It is good to keep in mind that when we have
only a few measurements, it is not possible to get the same perform-
ance as in cases where we have plenty of measurements, even if the
filter works correctly. However, the hard case is very challenging for
filtering and a Kalman-type filter usually does not work at all, and
what is worst, a Kalman-type filter does not even know if it is failing.
Because of that, it is practical, in the hard case, to use a filter which

14 In broad sense, the word “particle” does not only mean the particle of the particle
filter. The number of particles is a parameter of the filter so that when number of
particles converges to infinity then the filter converges to correct posterior. So in
BGMF Gaussian components are particles.
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gives at least a consistent error estimate, or to wait until we have
enough measurement for a good state estimate.

In this thesis, we have developed a method for using restrictive infor-
mation (inequality constraints) efficiently with GMF. In the case of
multiple static solutions, we have shown how to approximate the
likelihood as GM and how to robustify the filter using these static
solutions. In some hybrid positioning cases, the new filter, Efficient
Gaussian mixture filter, outperforms other filters such as conven-
tional Kalman-type filters as well as the particle filter. EGMF is
intended to be used when the computational and memory require-
ments are crucial and it does not have, in general, convergence
result. For the hard case, we have developed the Box Gaussian
mixture filter, which is not as efficient as EGMF for a small number
of components. However, BGMF converges weakly to the correct
posterior at given time instant. All in all, we see that GMF is a
competitive filter for hybrid positioning applications. Furthermore
EKF, which works well in satellite based positioning solutions, is a
special case of GMF.

There is a lot of future study left in the current GMF. For example,
how to build a more efficient partitioning of the state space in BGMF,
how many components are enough for some given accuracy, how
to reduce the number of components more efficiently, and how to
select what kind of filter to use and to make this selection adaptively.
Of course, it is worthwhile to do more tests with BGMF in different
scenarios and also in totally different application.

Naturally there are lots of interesting aspects in real world imple-
mentation that we do not cover in this thesis. In real world appli-
cations, it is usually necessary to use some robust method. The
example of robust methods are in [12, 54, 61]. Many robust methods
have been developed for Kalman-type filters. Often it is quite
straightforward to apply these methods to GMF, especially when
GMF has the form of the bank of Kalman-type filters. Note that
BGMF has the form of the bank of Kalman-type filters but EGMF
does not. However, there are still some open questions. Our robus-
tifying method, which is presented in [P3], is quite good if we have
the static solution available but it is not enough on its own. Because
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of this, we need these other robustifying methods. Other current
research field is how to use micro electro mechanical system inertial
sensor [15]measurements in hybrid positioning, especially if we do
not have enough sensors for relative position solutions. One possib-
ility is to use the measurements of these sensors to adjust the para-
meters of the state model.
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ABSTRACT

This paper presents a new hybrid positioning algorithm
whereby restrictive information such as base station sector
and maximum range can be used in a Kalman-type filter.
This new algorithm is fast to compute and gives almost the
same accuracy as the particle filter with millions of parti-
cles. Simulations show that in some cases restrictive infor-
mation such as mobile phone network sector and maximum
range information dramatically improve filter accuracy. We
also present the mathematical fundamentals of the algo-
rithm.

1 INTRODUCTION

Hybrid positioning means that measurements used in posi-
tioning come from many different sources e.g. Global
Navigation Satellite System (GNSS), Inertial Measurement
Unit (IMU), or local wireless networks such as a cellular
network, WLAN, or Bluetooth. Range, pseudorange,
deltarange, altitude, and compass measurements are typical
measurements in hybrid positioning. Restrictive informa-
tion can be used in positioning. By restrictive information,
we mean the knowledge that the state e.g. position, is inside
some area, which is the most often a polyhedron. In the
simplest case, the area is a half-space. Base station sector
and maximum range information (Cell ID) are examples of
restrictive information [17].

Filters are used to compute an estimate of the state using
current and past measurement data. Filters also give an
approximation of the error covariance matrix. Kalman-
type filters approximate the probability distribution of
the state as a Gaussian or as a mixture of Gaussians.
Extended Kalman Filter (EKF) [8, 10], Second Order
Extended Kalman Filter (EKF2) [2], Unscented Kalman
Filter (UKF) [9] and Gaussian Mixture Filter (GMF) [16, 7]
are examples of Kalman-type filters.

Maybe the most popular example is EKF, which is very
commonly used in satellite-based positioning and has also
been applied to hybrid positioning. Unfortunately, EKF
has a serious consistency problem in highly nonlinear situ-
ations [1], i.e. the error covariance matrix is sometimes
grossly underestimated. Contrary to satellite based posi-
tioning, highly nonlinear situations are common in hybrid
positioning. Because of this, many researchers have investi-
gated the use of general nonlinear Bayesian filter, which is
usually implemented as a particle filter (SMC, Sequential
Monte Carlo) [6, 13] or a point mass based filter [4, 14].
These filters usually work correctly and give good posi-
tioning accuracy but require much computation.

An outline of the paper is as follows. After problem formu-
lation in Section 2, the basic idea of the new algorithm
is presented in Section 3. Section 4 provides the mathe-
matical fundamentals of the algorithm. In Section 5, we
concentrate on hybrid positioning application and illustrate
how the new algorithm works in practice with sector and
maximum range information. Finally, simulation results are
given in Section 6.

We show in Section 6 that in some cases the new hybrid
positioning algorithm gives almost the same accuracy as a
particle filter. In addition, the new algorithm avoids most of
the consistency problems that plague the traditional EKF.
The biggest advantage of the new algorithm is that it can use
restrictive information and still needs notably less computa-
tion time than a particle filter. Because of this, it is conceiv-
able that the algorithm can be implemented in a mobile
device such as a mobile phone.
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2 BAYESIAN FILTERING

We consider the discrete-time non-linear non-Gaussian
system

xk = fk−1(xk−1) + wk−1, (1)

yk = hk(xk) + vk, (2)

where the vectors xk ∈ Rnx and yk ∈ Rnyk represent the
state of the system and the measurement at time tk, k ∈ N,
respectively. We assume that errors wk and vk are white,
mutually independent and independent of the initial state
x0. The aim of the filtering is to find conditional probability
density function (posterior)

p(xk|y1:k), (3)

where y1:k
△
= {y1, . . . ,yk}. Posterior can be determined

recursively according to the following relations.

Prediction:

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1;

(4)

Update:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
, (5)

where the transition pdf p(xk|xk−1) can be derived
from (1) and the likelihood p(yk|xk) can be derived
from (2). The initial condition for the recursion is given
by the pdf of the initial state p(x0|y1:0) = p(x0). Knowl-
edge of the posterior distribution enables one to compute
an optimal state estimate with respect to any criterion. For
example, the minimum mean-square error (MMSE) esti-
mate is the conditional mean of xk [2, 13]. In general and in
our case the conditional probability density function cannot
be determined analytically. Because of this, there are
many approximative solutions of conditional mean. Some
popular Kalman-type approximative solutions of condi-
tional mean include:

EKF (Extended Kalman Filter) Kalman filtering applied
to a linearization of system (1), (2). EKF is very
commonly used in satellite-based positioning and it
has also been applied in hybrid positioning [10]. The
EKF algorithm is described for example in [2, 8].

EKF2 (Second Order Extended Kalman Filter) an elabo-
ration of EKF that models nonlinearity better. Modi-
fied Gaussian Second Order Filter [8, 12] is the same
as EKF2. The EKF2 algorithm is given for example
in [2].

PKF (Position Kalman Filter) works by filtering a
sequence of static position and velocity solutions [1].
The idea is that we first solve position and velocity
and then filter them; this idea is called two-stage
estimator [5]. When we have enough measure-
ments, we can find position and velocity for example
by Weighted Least Squares (WLS) or closed-form
methods [15]. WLS also approximates the errors of
the solution. At time instants when there are not
enough measurements to fix position and velocity,
PKF does not use any measurements.

2.1 Restrictive information

As we have seen, in the underdetermined case sometimes
we have situation that posterior is multimodal and that
can inflict inconsistency [1]. However, sometimes we
have some extra information which may remove the multi-
modality. We call this extra information restrictive infor-
mation. As mentioned previously, it is very common that
we have restrictive information in hybrid positioning. For
example, a mobile phone network, WLAN and Bluetooth
base stations have specific range and if we ”hear” the base
station then we are inside the base station range. Of course
restrictive information can also restrict other state variables
than only position. More formally, restrictive information
is measurement with measurement function (2)

h(x) =
{

1, if x ∈ A
0, if x /∈ A

, (6)

where A ⊂ Rnx . In this paper, we consider only a case
where restrictive information does not have error, so then
error term v = 0 is constant random variable. The like-
lihood function of restriction information is characteristic
function (5), (6)

p(1|x) = χA(x) =
{

1, if x ∈ A
0, if x /∈ A

, (7)

and respectively p(0|x) = χA(x), where A is the comple-
ment of A. Unfortunately, it is not straightforward to
use restrictive information with Kalman-type filters because
measurement is a dichotomy variable and the measurement
function is not linear.

3 NEW ALGORITHM IN A NUTSHELL

The main idea of the new algorithm is that we use some
Kalman-type filter and extend it to use restrictive informa-
tion. Here we present the new algorithm in the case where
posterior is Gaussian, for example EKF, EKF2, PKF.

1. Compute the posterior without restrictive information
using Kalman-type filter.
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2. If there is new restrictive information, model restric-
tive information as a likelihood function that is one
inside a certain polyhedron and zero outside.

3. Compute new mean and covariance estimates.

4. Approximate the posterior distribution with a Gaus-
sian, with the new mean and covariance.

5. Repeat this every timestep.

The heart of this algorithm is stage 3, where we update
posterior mean and covariance. Notice that this algorithm
does not require any other measurements, so the algorithm
works also if there is only restriction information.

We can apply this algorithm also when posterior is Gaus-
sian mixture. In this case, we apply this algorithm to
every mixture component, and finally compute new mixture
weights.

4 DERIVATION OF THE ALGORITHM

In this section, we concentrate on the mathematical funda-
mentals of the new algorithm. First of all, the algorithm
changes only the update part (5) so prediction part (4)
remains the same as in the ordinary filter.

1. Compute the posterior without restrictive informa-
tion using Kalman-type filter.

Because of the independence, we can write likelihood func-
tion as the product

p(yk|xk) = χA(xk)p(y′k|xk), (8)

where A is the intersection of all new restrictive informa-
tion, this means that state is inside A at time instant tk and
y′k are other measurements than restrictive information at
time instant tk. Using Eqs. (5) and (8) we find that

p(xk|y1:k) ∝ χA(xk)p(xk|y′1:k), (9)

where

p(xk|y′1:k) =
p(y′k|xk)p(xk|y1:k−1)∫

p(y′k|xk)p(xk|y1:k−1)dxk
(10)

is posterior without current restrictive information. This
can be computed using the ordinary Kalman-type filter. We
use notation that µold and Σold represent the approxima-
tions of the mean and the covariance matrix of this distri-
bution, respectively. We also approximate p(xk|y′1:k) with
a Gaussian.

2. If there is new restrictive information, model restric-
tive information as a likelihood function that is one
inside a certain polyhedron and zero outside.

We use the same restrictive information only once within a
certain time period, because otherwise our approximation

error can accumulate and cause unwanted phenomena. Let
the area A be inscribed in the polyhedron (see Fig 1)

B =





x|




bT
1
...

bT
n


x ≤ β





= {x|Bx ≤ β}, (11)

where matrix B is organized so that the first inequality
reduces probability the most, that is
∫

bT
1 xk≤β1

p(xk|y′1:k)dxk ≤ · · · ≤
∫

bT
n xk≤βn

p(xk|y′1:k)dxk

⇐⇒
β1 − bT

1 µold√
bT
1 Σoldb1

≤ · · · ≤ βn − bT
nµold√

bT
nΣoldbn

.

(12)

We use Gram-Schmidt orthonormalization on {b1, . . . , bn}
with inner product < x, y >= xT Σoldy, and get matrix A
whose row space is same than the row space of matrix B
and AΣoldAT = I. Now we approximate the likelihood of
restrictive information with one inside the polyhedron (see
Fig 1)

A′ = {x | |Ax −Axmid| ≤ α} (13)

and zero elsewhere. So we replace χA in Eq. (9) with χA′ .
Vectors Axmid and α we select so that B is subset of A′

and probability that state is inside A′ is as small as possible.
Then also A is subset of A′. If

X =
[

x1, . . . , xN

]
(14)

are vertices of polyhedron B, then

α =
up− low

2
(15)

and

Axmid = Aµold −
up + low

2
, (16)

where

up = Aµold − min
i∈{1,...,N}

(AXei) (17)

and

low = Aµold − max
i∈{1,...,N}

(AXei) . (18)

Operators min and max are taken separately with every
components. We use this same notation through the paper.

3. Compute new mean and covariance estimates.

In this stage, we compute the approximation of the mean
µnew and the covariance matrix Σnew of the modified poste-
rior p(xk|y1:k) (9), where A is replaced with A′. This
approximation is accurate if the old posterior p(xk|y′1:k)
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is Gaussian and A = A′. First we compute probability that
state is inside polyhedron A′,

pnew =
∫

χA′(xk)p(xk|y′1:k)dxk

=
∫

|z|≤α

pz(z)dz

=
n∏

i=1

(Φ (upi)− Φ (lowi)) ,

(19)

where Φ (x) is cumulative density function (cdf) of x, when
x ∼ N(0, 1). The idea of the solution is that with the
change variables,

z = Axk −Axmid,

E(z) = µz = Aµold −Axmid,

V(z) = Σz = AΣoldAT = I,

(20)

we can compute the integral iteratively. We use this same
idea also in the following integrals, when computing mean
and covariance matrix. If posterior is Gaussian mixture then
the new weight is proportional to old weight times the prob-
ability pnew.

The approximation of the mean of the posterior distribution
p(xk|y1:k) is

µnew =
∫

xk
χA′(xk)p(xk|y′1:k)

pnew
dxk

=
A−1

pnew

∫

|z|≤α

zpz(z)dz + xmid

= A−1

∫
zpz′(z)dz + xmid

(35)
= µold + ΣoldAT ǫ

(21)

where

pz′(z) =
χ|z|≤α(z)pz(z)

pnew

(22)

and

ǫ =
n∑

i=1

ei

exp
(
−upi

2

2

)
− exp

(
− lowi

2

2

)

√
2π (Φ (upi)− Φ (lowi))

. (23)

Details of the computation are given in Appendix A,
Eq. (35). Here we assumed that A ∈ RnA×mA is square
matrix (nA = mA) and non-singular, so polyhedron A′ is a
bounded ”box”.

Now we show that Eq. (21) holds also when we have an
unbounded area. If nA < mA we can add more rows
to matrix A and elements to vector α, this means that we
add more restrictive information. When the added elements
αi, i ∈ {nA, . . . , mA} tend to infinity, we get same equa-
tion as previously, because ǫi, i ∈ {nA, . . . , mA} go to
zero.

The approximation of the covariance matrix of the posterior
distribution p(xk|y1:k) is

Σnew =
∫

(xk − µnew)(xk − µnew)T χA′(xk)p(xk|y′1:k)
pnew

dxk

= A−1

∫
(z − µz′)(z − µz′)T pz′(z)dzA−T

(37)
= A−1(I− Λ)A−T

= Σold − ΣoldAT ΛAΣold,

(24)

where

µz′ = µz + ǫ = Aµnew −Axmid, (25)

Λ = diag(δ) + diag(ǫ) diag(Aµnew −Axmid), (26)

where

δ =
n∑

i=1

αiei

exp
(
−upi

2

2

)
+ exp

(
− lowi

2

2

)

√
2π (Φ (upi)− Φ (lowi))

. (27)

Details of the computation are given in Appendix A,
Eq. (37). This equation also works when matrix A is not
a square matrix. Proof goes similarily than previously.

4. Approximate the posterior distribution with a Gaus-
sian, with the new mean and covariance.

This stage usually produces the most approximation errors
in this algorithm. This is the reason why we use each
restrictive information only once.

5. Repeat this every timestep.

5 EXAMPLE OF THE NEW ALGORITHM

In this section, we illustrate how the new algorithm works.
In this example, Fig 1, restrictive information consists of
two base station Cell IDs, which means that we know the
base stations sector and maximum range information. In
the figure, dark area (area A in Eq. (9)) is the intersection
of these information and so we know that user is inside this
area. Black dashed polyhedron represents an polyhedron
approximation of the true restrictive area (11). Black solid
polyhedron represents the certain polyhedron approxima-
tion of the polyhedron approximation of the true restrictive
area (13). Red man stands on prior mean and a red dashed
ellipse represent prior covariance. The covariances (Σ) are
visualized with ellipses that satisfy the equation

(x− µ)T Σ−1(x − µ) = 2.2173. (28)

The constant was chosen so that if the distribution is Gaus-
sian then there is 67% probability mass inside the ellipse.
Respectively, blue man stands on posterior mean and a blue
solid ellipse represent posterior covariance.
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Figure 1: Red means prior distribution. Dashed black
polyhedron represents the first approximation of
restrictive area (11). Solid black polyhedron
represents the certain approximation of the true
restrictive area (13). Blue represents the mean
and covariance approximations after applying
the restrictive information.

It is quite evident that using restrictive information
improves estimates notably only when there is much prob-
ability mass outside the restrictive area. Usually, this
happens two different cases. The first case is that we
have only a few measurement, which causes large poste-
rior covariance without restrictive information, but we have
quite good restrictive information such as sector informa-
tion. Other possibly is that Kalman-type filters works
totally wrong, this means that filter is inconsistent so that
predicted errors are smaller than actual errors [1]. Both
of these cases are possible in hybrid positioning, so it is
reasonable to use restrictive information in hybrid posi-
tioning. In Section 6, we see more specifically how restric-
tive information improves Kalman-type filter performance
in hybrid positioning.

6 SIMULATIONS

In the simulations, we use the position-velocity model, so
the state x =

[
rT

u , vT
u

]T consists of user position vector ru

and user velocity vector vu, which are in East-North-Up
(ENU) coordinate system. In this model the user velocity is
a random walk process [3]. Now the state-dynamic Eq. (1)
is

xk = Φk−1xk−1 + wk−1, (29)

where

Φk−1 =
[

I ∆tkI
0 I

]
, (30)

∆tk = tk− tk−1, and wk−1 is white, zero mean and Gaus-
sian noise, with covariance matrix

Qk−1 =




∆t3kσ2
p

3 I 0
∆t2kσ2

p

2 I 0
0 ∆t3kσ2

a
3 0 ∆t2kσ2

a
2

∆t2kσ2
p

2 I 0
∆tkσ2

p

1 I 0
0 ∆t2kσ2

a
2 0 ∆tkσ2

a
1




, (31)

where σ2
p = 2 m2

s3 represents the velocity errors on the East-

North plane and σ2
a = 0.1 m2

s3 represents the velocity errors
in the vertical direction. [11, 1]

In our simulations, we use base station range measure-
ment, altitude measurement, satellite range measurement
and satellite deltarange measurement.

yb = ‖rb − ru‖+ ǫb,

ya =
[

0 0 1
]
ru + ǫa,

ys = ‖rs − ru‖+ b + ǫs,

ẏs =
(rs − ru)T

‖rs − ru‖
(vs − vu) + ḃ + ǫ̇s,

(32)

where rb is base station position vector, rs is satellite posi-
tion vector, b is clock bias, vs is satellite velocity vector, ḃ is
clock drift and ǫ:s are error terms. We use satellite measure-
ments only when there is more than one satellite measure-
ment available, so that bias can be eliminated. These are the
same measurements equations as in the paper [1]. Restric-
tive information that we use are base station sector infor-
mation and maximum range information.

From Fig. 2, we get an idea of how the new algorithm
works. These simulations use only a few (one or two at the
same time instant) base station range measurements with
variance (100 m)2 and altitude measurement with variance
(300 m)2. In this case, restrictive information keeps the
filter always consistent (not inconsistent). In this paper, we
use the general inconsistency test, with risk level 5% [1].
Restrictive information also decreases the mean error from
442 meters to 93 meters.

In Table 1, we have listed a summary of a hundred 300
second simulations. The simulations use only a few (one or
two at the same time instant) base station range measure-
ments with variance (80 m)2 and altitude measurements
with variance (300 m)2. Summary consist of following
columns: Time is relative computation time using Matlab
and our implementation, so that computation time of EKF is
one. This is not entire truth, but gives an idea of complexity
of each algorithm. Err. µ is 2D position error mean. Err.
95% tells that 95 % errors are less than this limit. Err. ref.
is 2D error to reference posterior mean, which is computed
using particle filter with 1 · 106 particles. Err. <50 is how
many percentage of times 2D position error is less than
50 meter. Inc. % is how many percentage of time filter is
inconsistent with respect to the general inconsistency test,
with risk level 5% [1]. Solvers are organized so that mean
positioning errors are in descending order. We also test
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Figure 2: This figure illustrate how the new algorithm,
EKF with restrictive information (EKFBOX),
improve EKF in mobile phone positioning. In
this case EKF and EKFBOX mean of the posi-
tion errors are 442 m and 93 m, respectively.

positioning using only restrictive information, we call this
the BOXsolver. We also use ”BOX” suffix when we use the
new algorithm for incorporating restrictive information.

Table 1: Summary of 100 different simulations with very
poor geometry. Simulations only use a few base
station range measurements and very inaccurate
altitude measurements; an example of this geom-
etry is in Fig. 2.

Time Err. Err. Err. Err. Inc.
Solver ∝ µ 95% ref <50 %
EKF 1 393 1356 358 11 28.1
EKF2 1.5 368 1028 314 8 8.4
BOX 1 314 669 253 3 0.1
EKFBOX 2 192 625 126 19 7.7
EKF2BOX 3 186 582 114 17 5.1
SMC 74 145 436 17 25 0.2
Ref ∞ 145 423 0 26 0.1

From Table 1, we see that restrictive information improves
greatly filters performance. Every statistic, except CPU
time, of the Kalman-type filters is improved by the new
algorithm. Also, difference between the reference solution
(particle filter), which uses all restrictive information, and
EKF(2)BOX-solver is quite small. However EKF(2)BOX-
solver’s computation time is much less than the particle
filter (SMC). SMC and reference solvers are the same
solver, but SMC solver uses 104 particles, when reference
solves uses 106 particles. Note that the geometry is quite
bad and traditional solvers like EKF(2) give even worse
results than BOX-solver, which uses only restrictive infor-
mation and not range measurements or altitude measure-
ments at all.

In Table 2 we have listed a summary of a hundred simu-
lations, but now simulations use normal suburban geom-
etry. This means that simulations use few base station
range measurements, very inaccurate altitude measure-
ments, some (not more than five) satellite pseurange and
delta pseudorange measurements, with variance (20 m)2

and (2m
s )2 respectively. We see that errors are smaller, of

course, than in Table 1. If we concentrate on the error ratio
of different filters, we see that results are quite same than
previosly. So the new algortihm improves Kalman-type
filters much and these EKF(2)BOX-solvers give almost the
same accuracy as particle filters.

Table 2: Summary of 100 different simulations with
normal suburban geometry. Simulations use few
base station range measurements, very inaccurate
altitude measurements, some satellite pseurange
and delta pseudorange measurements.

Time Err. Err. Err. Err. Inc.
Solver ∝ µ 95% ref <50 %
BOX 1 285 644 279 5 0.7
EKF 1 76 255 46 60 2.1
EKF2 1.5 88 330 56 59 2.0
EKFBOX 2 60 195 23 63 0.5
EKF2BOX 2 60 196 21 63 0.4
SMC 50 53 166 4 66 0.1
Ref ∞ 53 164 0 66 0.0

7 CONCLUSIONS

We presented a new hybrid positioning algorithm, which
makes possible to use restrictive information with Kalman-
type filters. The new algorithm needs clearly less compu-
tation time than the general nonlinear Bayesian filters such
as the particle filter with 104 particles. Simulations show
that the new algorithm is very well suited to hybrid posi-
tioning application, where we have sector and maximum
range restrictive information. In this application, the new
algorithm improves EKF and EKF2 much and gives almost
same accuracy as reference particle filters.
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A AUXILIARY INTEGRALS

In this section, we compute some auxiliary integrals. Here
z is nz-dimensional Gaussian random variable with mean
µz and covariance matrix is identity matrix. So the density
function of z is

pz(z) =
nz∏

i=1

pzi(zi) =
nz∏

i=1

exp
(
− (zi−µzi

)2

2

)

√
2π

(33)

and so

pz′(z) =
χ|z|≤α(z)pz(z)

pnew

=
nz∏

i=1

χ|zi|≤αi
(zi) exp

(
− (zi−µzi

)2

2

)

(Φ (upi)− Φ (lowi))
√

2π

=
nz∏

i=1

pz′
i
(zi),

(34)

which is also a density function.

Auxiliary integral of derivation of Eq. (21)

µz′ =
∫

zpz′(z)dz

=
∫

(z − µz)
nz∏

i=1

pz′
i
(zi)dz + µz

=
nz∑

j=1

ej

∫
(zj − µzj )

nz∏

i=1

pz′
i
(zi)dz + µz

=
nz∑

j=1

ej

∫ αj

−αj
(zj − µzj )pzj (zj)dzj

Φ (upj)− Φ (lowj)
+ µz

=
nz∑

j=1

ej

exp
(
−up2

j

2

)
− exp

(
− low2

j

2

)

√
2π (Φ (upj)− Φ (lowj))

+ µz

= ǫ + µz,

(35)

where pnew is defined in Eq. (19) and from Eqs. (15), (16)
and (20) we get that

up = µz + α and low = µz − α. (36)

Auxiliary integral of derivation of Eq. (24)

Σz′ =
∫

(z − µz′)(z − µz′)T pz′(z)dz

=
nz∑

j=1

eje
T
j

∫
(zj − µz′

j
)2pz′(z)dz

=
nz∑

j=1

eje
T
j

∫
(zj − µzj − ǫj)2pz′(z)dz

=
nz∑

j=1

eje
T
j

∫
(zj − µzj )

2pz′
j
(z)dzj − diag(ǫ)2

= I− diag(δ)− diag(ǫ) diag(Aµnew −Axmid)
(37)
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ABSTRACT

This paper studies the Gaussian Mixture Filter (GMF)
in hybrid navigation and is divided into three parts
focusing on different problems. The first part deals
with approximating the likelihood function as a Gaus-
sian mixture. The second part gives a new way to
robustify GMF by adding more components, and the
third part concentrates on different ways to reduce the
number of mixture components so that the algorithm is
fast without losing significant information. Finally, we
compare GMF with other filters using simulations.

1 INTRODUCTION

Hybrid navigation means navigation using measurements
from different sources e.g. Global Navigation Satellite
System (e.g. GPS), Inertial Measurement Unit, or local
wireless networks such as a cellular network, WLAN,
or Bluetooth. Range, pseudorange, deltarange, altitude,
restrictive and compass measurements are examples of
typical measurements in hybrid navigation.

The most popular example of navigation filters is the
Extended Kalman Filter (EKF), which linearizes system
and measurement models and then applies the traditional
Kalman Filter [6, 9]. EKF is commonly used in satellite
based positioning and has also been applied to hybrid navi-
gation [11]. Unfortunately, EKF has a serious consistency
problem in highly nonlinear situations, which means that
EKF does not work correctly [2]. In highly nonlinear situa-
tions, we sometimes have multiple static position solutions,
which means that likelihood function has multiple peaks
with significant weight. In this case, it is more reasonable

to approximate the likelihood as a Gaussian mixture and
use GMF (section 4) than to approximate with only one
Gaussian as the EKF does.

We present a new method to robustify the GMF in
section 5, which takes into consideration that the prior
distribution might be wrong. This is usually the case when
the filter has inconsistency problems. In a nutshell, the
idea of the new method is following: if measurements are
unlikely with respect to the prior, the new method adds
mixture components so that the new mixture consists of the
prior or posterior distribution plus extra component(s) that
are approximately proportional to the likelihood function.
This is better than the traditional robust approach which
can discard good measurements because an erroneous prior
makes them seem unlikely. The proposed method does not
replace old methods but rather extends them.

One major challenge in using GMF efficiently is keeping
the number of components as small as possible without
losing significant information. We study in section 6 both
the traditional component reduction methods, merging and
forgetting, and new resampling algorithms similar to the
ones used in particle filters.

In the simulations part in section 7, we compare different
GMFs with different Kalman type filters such as EKF and
the Unscented Kalman Filter (UKF) [10], as well as with
a bootstrap particle filter [4]. We compare the mean esti-
mates given by the filters to the true track and to the mean
estimate of the nearly optimal particle filter. We also look
at the computation times and different inconsistency statis-
tics. It is interesting to notice that none of the filters domi-
nate with respect to all of the criteria, so with suitable
weighting of the criteria we could make any of the filters
win the comparison. However, generally it is possible
to develop GMF which works better than EKF or UKF
especially when we consider a robust viewpoint. Natu-
rally GMF needs more computations than EKF or UKF but
usually less than the particle filter.

2 BAYESIAN FILTERING

We consider the discrete-time non-linear non-Gaussian
system

xk = fk−1(xk−1) + wk−1, (1)

yk = hk(xk) + vk, (2)
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where the vectors xk ∈ Rnx and yk ∈ Rnyk represent the
state of the system and the measurement at time tk, k ∈ N,
respectively. We assume that errors wk and vk are white,
mutually independent and independent of the initial state
x0. We denote the density functions of wk and vk by pwk

and pvk
, respectively. The aim of filtering is to find the

conditional probability density function (posterior)

p(xk|y1:k),

where y1:k
△
= {y1, . . . , yk}. The posterior can be deter-

mined recursively according to the following relations.
Prediction (prior):

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1;

(3)

Update (posterior):

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
, (4)

where the transition pdf is

p(xk|xk−1) = pwk−1(xk − fk−1(xk−1))

and the likelihood

p(yk|xk) = pvk
(yk − hk(xk)). (5)

The initial condition for the recursion is given by the pdf
of the initial state p(x0|y1:0) = p(x0). Knowledge of
the posterior distribution (4) enables one to compute an
optimal state estimate with respect to any criterion. For
example, the minimum mean-square error (MMSE) esti-
mate is the conditional mean of xk [6, 17]. In general
and in our case, the conditional probability density func-
tion cannot be determined analytically.

3 GAUSSIAN MIXTURE FILTER

The idea of GMF [3] is that both prior density (3) and
posterior density (4) are Gaussian mixtures

p(x) =
p∑

i=1

αi Nµi

Σi
(x), (6)

where Nµi

Σi
(x) is the normal density function with mean µi

and covariance matrix Σi. Weights are non-negative and
sum to one. The mean of a Gaussian mixture (6) is

µ =
p∑

i=1

αiµi

and the covariance

Σ =
p∑

i=1

αi(Σi + (µi − µ)(µi − µ)T ).

We assume that the prior (3) and likelihood (5) are

p(x) =
p∑

i=1

αi Nµi

Σi
(x) and

p(y|x) =
m∑

j=1

βj NHjx
R (y).

Then the posterior is a Gaussian mixture (see appendix A)

p(x|y) =

∑m
j=1

∑p
i=1 αiβj NHjµi

Pi,j
(y)Nx̂i,j

P̂i,j
(x)

∑m
j=1

∑p
i=1 αiβj NHjµi

Pi,j
(y)

, (7)

where

Pi,j = HjΣiHT
j + R,

x̂i,j = µi + Ki,j(y −Hjµi),

P̂i,j = (I−Ki,jHj)Σi and

Ki,j = ΣiHT
j P−1

i,j .

4 GAUSSIAN MIXTURE APPROXIMATION OF
LIKELIHOOD

Henceforth we assume that errors wk and vk are zero-
mean Gaussian with covariance matrix Qk and Rk, respec-
tively. Also we assume that the initial state x0 is a Gaussian
mixture and that the state model (1) is linear so

fk−1(xk−1) = Φk−1xk−1.

If the posterior density p(xk|y1:k) is a Gaussian mixture (6)
then the next prior density (3) is (see appendix A (11))

p(xk+1|y1:k) =
p∑

i=1

αi

∫
NΦkxk

Qk
(xk+1)Nµi

Σi
(xk)dxk

=
p∑

i=1

αi NΦkµi

ΦkΣiΦT
k +Qk

(xk+1),

which is also a Gaussian mixture. So the actual problem is
how to approximate/compute the new posterior density (4),
that is, how to approximate the product

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1),

where (see (5))

p(yk|xk) =
exp

(
− 1

2‖yk − hk(xk)‖2
R−1

k

)

√
det(2πRk)

and

‖yk − hk(xk)‖2
R−1

k

= (yk − hk(xk))T R−1
k (yk − hk(xk)).

There are many possibilities to do this. We can use the
same methodology that Kalman filter extensions use to get

GMFEKF Extended Kalman Filter (EKF) [6, 9], linearize
the measurement function around the prior mean
x̂k|k−1

hk(xk) ≈ hk(x̂k|k−1) + h′k(x̂k|k−1)(xk − x̂k|k−1).
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GMFEKF2 Second Order Extended Kalman Filter [9] is an
elaboration of EKF that models nonlinearity better.
Modified Gaussian Second Order Filter [14] is the
same as EKF2.

GMFUKF Unscented Kalman Filter [10] is based on the
numerical integration method called the unscented
transformation.

Often these are quite good approximations, but sometimes
especially when likelihood has several peaks in a neigh-
bourhood of the prior mean, these approximations fail.
These are actually situations where the above filters and
other unimodal Kalman filter extensions can easily have
consistency problems. Because of this, we develop a new
approximation that works better in this situation. First we
compute (see appendix B)

z = argminxk

[
(yk − hk(xk))T R−1

k (yk − hk(xk)
]
, (8)

which is possibly ambiguous, so we denote the minimizers
z1, . . . , zm. We consider only the situation where there is a
finite number of minimum points. Then we approximate

p(yk|xk) ≈
m∑

j=1

exp
(
− 1

2‖ỹk −Hkj xk‖2
R−1

k

)

√
det(2πRk)

, (9)

where Hkj = h′k(zj) and ỹk = yk − hk(zj) + Hkj zj . This
approximation ensures that the posterior is also a Gaussian
mixture, and takes into consideration the possibility that the
likelihood has multiple peaks. An other benefit is that this
approximation is independent of prior mean, so it is quite
good even if the prior is totally wrong. This is a very impor-
tant feature when we study the robustness of the GMF. We
use this approximation in two different ways

GMFnew1 approximate the likelihood as a Gaussian
mixture (9) when we find that the likelihood has one
or more peaks. When there is an infinite number of
peaks or we do not find any peaks, GMFnew1 works
like GMFEKF.

GMFnew2 approximate the likelihood as a Gaussian
mixture (9) only when we find that the likelihood has
a finite number and more than one peak, otherwise
GMFnew2 works like GMFEKF.

5 NEW WAY TO ROBUSTIFY GMF

Many robust filters are based on using innovation
yk − hk(xk) such that too big innovations are down-
weighted or the corresponding measurement discarded [8,
12, 16]. These approaches assume that the prior is correct,
which is not always true.

We present a new heuristic to robustify GMF. This method
does not replace old methods but complements them,
because we can use both methods at same time. If measure-
ments are unlikely (see (10)), we will add new compo-
nents with appropriate weights. These new components

approximate likelihood function and thus do not depend
on the prior information. If we assume that the prior is
possibly wrong, it is justified to add components approx-
imating likelihood function, because likelihood is propor-
tional to posterior if we have constant prior (prior density
with very large covariance). Other components might be
appropriately scaled posterior components or prior compo-
nents.

Next we elaborate on the unlikeliness of measurements.
We know that

p(yk|y1:k−1) =
∫

p(yk|xk)p(xk|y1:k−1)dxk.

Now substitute the prior

p(xk|y1:k−1) =
p∑

i=1

αi Nµi

Σi
(xk)

and the approximate likelihood (9) to obtain (compare
to (7))

p(yk|y1:k−1) =
m∑

j=1

p∑

i=1

αi Nµi,j

Σi,j
(yk),

which is also a Gaussian mixture where

µi,j = hk(zj) + Hkj (µi − zj) and

Σi,j = Hkj ΣiHT
kj

+ Rk.

Furthermore,

P
(
‖yk − µi,j‖2

Σ−1
i,j

> ath, ∀i, j
)

< path , (10)

where
∫∞

ath
χ2

nyk
(x)dx = path , χ2

nyk
(x) is density func-

tion of χ2(nyk
)-distribution. So now measurements are

unlikely if

‖yk − µi,j‖2
Σ−1

i,j

> ath, ∀i, j,

where ath is some threshold parameter that is a function of
the risk level path .

6 COMPONENTS REDUCTION

One major challenge in using GMF efficiently is keeping
the number of components as small as possible without
losing significant information. There is many ways to do
so. We use three different types of mixture reduction algo-
rithms: forgetting, merging and resampling.

Forgetting Give zero weight to mixture components
whose weights are lower than some threshold value,
for example

min
(
0.001, 0.01 max

i
(αi)

)
.

After that, normalize weights of the remaining
mixture components.
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Merging Merge two mixture components to one if
distance between components is lower than some
threshold value. Distance is for example [18]

dij =
αiαj

αi + αj
(µi − µj)

T Σ−1 (µi − µj) .

Merge components so that merging preserves the
overall mean and covariance. This method,
”collapsing by moments”, is optimal in the sense of
Kullback-Leibler distance [15].

Resampling If after forgetting and merging there are too
many mixture components, we can use a resampling
algorithm to choose which mixture components to
keep, then normalize the weights of these mixture
components. This approach induces less approxima-
tion error, using L1-norm, than merging two distant
components.

7 SIMULATIONS

In the simulations, we use the position-velocity model, so

the state x =
[

ru

vu

]
consists of user position vector ru

and user velocity vector vu, which are in East-North-Up
(ENU) coordinate system. In this model the user velocity is
a random walk process [7]. Now the state-dynamic Eq. (1)
is

xk = Φk−1xk−1 + wk−1,

where

Φk−1 =
[

I ∆tkI
0 I

]
,

∆tk = tk− tk−1, and wk−1 is white, zero mean and Gaus-
sian noise, with covariance matrix

Qk−1 =




∆t3kσ2
p

3 I 0
∆t2kσ2

p

2 I 0
0 ∆t3kσ2

a
3 0 ∆t2kσ2

a
2

∆t2kσ2
p

2 I 0
∆tkσ2

p

1 I 0
0 ∆t2kσ2

a
2 0 ∆tkσ2

a
1




,

where σ2
p = 2 m2

s3 represents the velocity errors on the East-

North plane and σ2
a = 0.1 m2

s3 represents the velocity errors
in the vertical direction. [13, 2]

In our simulations, we use base station range measure-
ments, altitude measurements, satellite range measure-
ments and satellite doppler measurements (see (2)).

yb = ‖rb − ru‖+ ǫb,

ya =
[

0 0 1
]
ru + ǫa,

ys = ‖rs − ru‖+ b + ǫs,

ẏs =
(rs − ru)T

‖rs − ru‖
(vs − vu) + ḃ + ǫ̇s,

where rb is a base station position vector, rs is a satellite
position vector, b is clock bias, vs is a satellite velocity

vector, ḃ is clock drift and ǫ:s are error terms. We use
satellite measurements only when there is more than one
satellite measurement available, so that bias can be elimi-
nated. These are the same measurements equations as in
the papers [2, 1].

7.1 Example where GMF beats EKF

As mentioned before, EKF has a serious consistency
problem in highly nonlinear situations, which means that
EKF does not work correctly [2]. One example of highly
nonlinear situations is shown in Fig. 1, where we have
only range measurements from two base stations. In this
case EKF’s estimate veers away from the true route and
gets stuck in an incorrect solution branch. GMF, which
approximates likelihood as a Gaussian mixture (see (9))
finds both peaks of the posterior function. So in this case
we can say that GMF works better than EKF. Nevertheless,
it is important to notice that before EKF select the incor-
rect solution branch it gives better estimates than GMF.
This is because prior mean, which is the linearization point
of EKF, is usually a better state estimate than likelihood
peaks, around which GMF is linearized. Thus EKF usually
gives smaller 2D root-mean-square position error than the
variant of GMF that always uses likelihood peak(s) as
linearization points (see section (7.2)).

100 m

Start

True
EKF
GMF

mean

GMF
components

Figure 1: One example where GMF beats EKF. Here true
posterior has two peaks and GMF finds them but
EKF selects incorrect solution branch.

7.2 Summary of suburban cases

In Table 1, we have listed a summary of two hundred
120 second simulations, which use typical suburban geom-
etry. This means that simulations use a few base station
range measurements with variance (100 m)2, inaccurate
altitude measurements with variance≈ (75 m)2, some (not
more than five) satellite pseudorange and doppler measure-
ments, with variance≈ (25 m)2 and ≈ (2m

s )2 respectively.
Summary consist of following columns: Time is computa-
tion time using Matlab in our implementation, scaled so
that computation time of EKF is 1. This gives a rough
idea of the time complexity of each algorithm. Err. rms
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is 2D root mean square position error. Err. 95% gives a
radius containing 95 % of the 2D errors. Err. ref. is 2D
error to reference posterior mean, which is computed using
a particle filter with 106 particles. Inc. % is percentage of
time where filter is inconsistent with respect to the general
inconsistency test, with risk level 5% [2]. Solvers are sorted
so that rms errors are in descending order.

Different GMF subscripts indicate how solvers make the
updating step, see section 4. Every GMF variant adds
components that approximate the likelihood whenever
measurements are unlikely (see section 5). Also, every
GMF variant keeps the number of mixture components
very small (not more than eight) using component reduc-
tion (see section 6). PF103 indicates particle filter with
systematic resampling and 103 particles [4].

Table 1: Summary of 200 different simulations with
typical suburban geometry. Simulations use a
few base station range measurements, altitude
measurements, some satellite pseudorange and
doppler measurements.

Time Err. Err. Err. Inc.
Solver ∝ rms 95% ref %
GMFnew1 6 189 381 66 1.7
EKF 1 183 368 36 2.8
UKF 3 183 361 24 1.5
EKF2 1 182 374 27 1.4
GMFekf2 2 178 366 28 0.9
GMFukf 5 177 356 24 1.0
GMFekf 2 173 352 34 2.2
GMFnew2 6 172 332 41 1.6
PF103 5 153 326 22 0.5
Ref ∞ 146 307 0 0.1

The following conclusions can be drawn based on simula-
tions and theory.

• The new GMF robustifying heuristic (section 5)
improves results a bit, even if simulated data does
not have any outliers. That is, GMFEKF, GMFEKF2

and GMFUKF give better results than EKF, EKF2 and
UKF, respectively. One reason for this is that there
are some simulations where EKF, EKF2 and UKF are
inconsistent and adding components which approxi-
mate the likelihood to GMF gives better results.

• GMFnew1 has bigger errors than EKF, which indicates
that it is not always reasonable to approximate likeli-
hood as a Gaussian mixture.

• GMFnew2 gives better results than other GMFs, espe-
cially GMFnew1 and EKF. So it is reasonable to
approximate likelihood as Gaussian mixture only
when there is risk that posterior has multiple signif-
icant peaks, e.g. when likelihood has more than one
peak.

• It seems that PF103 gives better results than the GMFs,
with simulated data without outliers. The basic PF103

is not expected to work very well with real data.

• Even if GMFnew2 gives better results (especially Err.
95%) than traditional GMFs such as EKF, there are
still some inconsistency problems.

8 CONCLUSIONS

In this article, we have studied three aspects of the Gaussian
Mixture Filter: how to approximate the likelihood func-
tion as a Gaussian mixture, a heuristic method to robus-
tify GMF by adding more components, and different ways
to reduce the number of mixture components so that the
algorithm is fast without losing significant information.
We also compared GMFs with different filters using simu-
lations. We test especially two Gaussian mixture filters
that use a new way to robustify GMF, use at most eight
mixture components and approximate likelihood as Gaus-
sian mixture. GMFnew2 , which approximates likelihood
as Gaussian mixture only when likelihood has more than
one peak and otherwise computes updating step like EKF,
works much better than EKF. GMFnew1 is the same as
GMFnew2 except that it approximates likelihood as Gaus-
sian mixture always when likelihood has peak(s). Simula-
tions show that the GMFnew2 works better than EKF, EKF2
or UKF, with respect to the estimation errors. However,
GMFnew1 gives larger errors than EKF. So this new method
approximates likelihood as a Gaussian mixture, beats EKF
actually only when EKF has possible problems e.g. poste-
rior has multiple peaks. Simulations also show that
”robust” GMF gives better results than basic GMF.

A POSTERIOR OF GMF

We assume that prior (3) is

p(x) =
p∑

i=1

αi Nµi

Σi
(x),

and likelihood (5) is

p(y|x) =
m∑

j=1

βj NHjx
R (y).

Then the posterior is (4)

p(x|y) =

∑m
j=1 βj NHjx

R (y)
∑p

i=1 αi Nµi

Σi
(x)

∫ ∑m
j=1 βj NHjx

R (y)
∑p

i=1 αi Nµi

Σi
(x)dx

=

∑m
j=1

∑p
i=1 αiβj NHjx

R (y)Nµi

Σi
(x)

∑m
j=1

∑p
i=1 αiβj

∫
NHjx

R (y)Nµi

Σi
(x)dx

(11)
=

∑m
j=1

∑p
i=1 αiβj NHjµi

Pi,j
(y)Nx̂i,j

P̂i,j
(x)

∑m
j=1

∑p
i=1 αiβj NHjµi

Pi,j
(y)

,

835 



where

Pi,j = HjΣiHT
j + R,

x̂i,j = µi + Ki,j(y −Hjµi),

P̂i,j = (Σ−1
i + HT

j R−1Hj)−1

= (I−Ki,jHj)Σi and

Ki,j = ΣiHT
j P−1

i,j .

Here we use the fact that

NHjx
R (y)Nµi

Σi
(x) =

exp
(
− 1

2a2

)
√

2π
(ny+nx)√

a1

= NHjµi

Pi,j
(y)Nx̂i,j

P̂i,j
(x),

(11)

where
a1 = det(R) det(Σi)

= det
([

Σi 0
0 R

])

= det
([

I 0
Hj I

] [
Σi 0
0 R

] [
I HT

j

0 I

])

= det
([

Σi ΣiHT
j

HjΣi HjΣiHT
j + R

])

= det
([

I Ki,j

0 I

] [
P̂i,j 0
HjΣi Pi,j

])

= det(Pi,j) det(P̂i,j)

and
a2 = ‖y −Hjx‖2

R−1 + ‖x− µi‖2
Σ−1

i

= ‖x‖2
HT

j R−1Hj+Σ−1
i

− 2(yT R−1Hj + µT
i Σ−1

i )x . . .

+ ‖y‖2
R−1 + ‖µi‖2

Σ−1
i

= ‖x− x̂i,j‖2
P̂−1

i,j

− ‖HT
j R−1y + Σ−1

i µi‖2
P̂i,j

. . .

+ ‖y‖2
R−1 + ‖µi‖2

Σ−1
i

= ‖x− x̂i,j‖2
P̂−1

i,j

− 2µT
i Σ−1

i P̂i,jHT
j R−1y . . .

+ ‖y‖2
P−1

i,j

+ ‖µi‖2
HT

j P−1
i,j Hj

= ‖x− x̂i,j‖2
P̂−1

i,j

+ ‖y −Hjµi‖2
P−1

i,j

.

B COMPUTING LIKELIHOOD PEAKS

In this section, we give a strategy to compute (8)

z = argminr

[
(y − h(r))T R−1(y − h(r))

]
, (12)

where r is position of mobile station. Assume that we have
nr range measurements and nl approximate linear measure-
ments, for example pseudorange difference measurements
or altitude measurement. Here we assume that

dim(y) = nr + nl ≥ dim(r) = 3.

Now

h(r) =




‖r1 − r‖
...

‖rnr − r‖
Hr


 .

Matrix R−1 is positive definite so

(y − h(r))T R−1 (y − h(r)) ≥ 0,

and equality holds only when y = h(r). First, we try to
find closed-form solutions z so that y = h(z) [20, 19, 5].
If we have only linear measurements we get

z =
(
HT R−1H

)−1
HT R−1y

= argminr

[
(y −Hr)T R−1(y −Hr)

]
,

(13)

if
(
HT R−1H

)−1 exists, otherwise we have an infinite
number of solutions. If there is no closed-form solution and
we have at least one range measurement we use iterative
weighted least squares (IWLS) to find solution. The initial
iterate z0 for WLS-algorithm can be found, for example,
by omitting some measurements and using the closed-form
solution, see equation (13), or by one of the following
closed-form equations, respectively.

One range meas and two linear meas

z = rline + nT
line(r1 − rline)nline,

where

rline =
[

nT
line
H

]−1

y, and nline =
HT

1,: ×HT
2,:

‖HT
1,: ×HT

2,:‖
,

where we assume that ‖HT
1,: × HT

2,:‖ > 0. Here z is
the point on a line r = rline+knline, for which distance
from sphere y1 = ‖r1 − r‖ is minimum. This straight
line does not intersect the sphere because we have
assumption that we do not have closed-form solution.

Two range meas and one linear meas We select our
indices so that y1 ≥ y2. We assume that matrix
R = diag[σ2

1 , σ
2
2 , σ2

3 ]. There are three cases:

Separate spheres (y1 − ‖r1 − r2‖ < −y2)

z = r1 + k
r2 − r1

‖r2 − r1‖
, (14)

where

k =
σ2

1σ2
2

σ2
1 + σ2

2

(
y1

σ2
1

+
‖r2 − r1‖ − y2

σ2
2

)
.

Intersecting spheres (−y2 ≤ y1 − ‖r1 − r2‖ ≤ y2)

z = r0 ±
√

y2
1 − ‖r1 − r0‖2

(
HT

1,: − (H1,:n)n
)

‖HT
1,: − (H1,:n)n‖ ,

where

± =
y3 −H1,:r0

|y3 −H1,:r0|

r0 =
r2 + r1

2
+

y2
1 − y2

2

2‖r2 − r1‖
n

n =
r2 − r1

‖r2 − r1‖
.
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Sphere inside another (y2 < y1 − ‖r1 − r2‖)

z = r1 + k
r2 − r1

‖r2 − r1‖
, (15)

where

k =
σ2

1σ2
2

σ2
1 + σ2

2

(
y1

σ2
1

+
‖r2 − r1‖+ y2

σ2
2

)
.

Three range meas Use only two range measurements and
use previous item. If these two spheres intersect then
replace HT

1,: = r0 − r3 and ± = +.

One interesting observation is that if we have only two
range measurements and they do not intersect, then equa-
tions (14) or (15) give analytic solution of (12) regardless
of dimension of state r.
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ABSTRACT

This paper presents, develops and compares Gaussian
Mixture Filter (GMF) methods for hybrid positioning. The
key idea of the developed method is to approximate the
prior density as a Gaussian mixture with a small number
of mixture components. We show why it is sometimes
reasonable to approximate a Gaussian prior with a multi-
component Gaussian mixture. We also present both simu-
lated and real data tests of different filters in different
scenarios. Simulations show that GMF gives better accu-
racy than Extended Kalman Filter with lower computa-
tional requirements than Particle Filter, making it a reason-
able algorithm for the hybrid positioning problem.

1 INTRODUCTION

Hybrid positioning means that measurements used in posi-
tioning come from many different sources e.g. Global
Navigation Satellite System (GNSS), Inertial Measurement
Unit (IMU), or local wireless networks such as a cellular
network, WLAN, or Bluetooth. Range, pseudorange, delta
range, altitude, base station sector and compass measure-
ments are examples of typical measurements in hybrid posi-
tioning.

Positioning filters are used to compute an estimate of
state variables such as position, velocity, attitude using

current and past measurement data. A consistent filter also
provides correct information on the accuracy of its state
estimate, e.g. in the form of an estimated error covari-
ance. The Extended Kalman Filter (EKF) [6, 10], which
is very commonly used in satellite based positioning, has
also been applied to hybrid positioning [12, 9]. Unfortu-
nately, EKF can be badly inconsistent in highly nonlinear
situations, and such situations are much more common in
hybrid positioning than when using only GNSS measure-
ments [3]. Because of this, many researchers have proposed
using a general nonlinear Bayesian filter, which is usually
implemented as a particle filter or a point mass filter. If
the dynamics and measurement models are correct, these
filters usually work and give good positioning accuracy but
require much computation time.

In this paper, we consider the family of Gaussian Mixture
Filters [18, 4]. Generally, GMF is a filter whose approx-
imate prior and posterior densities are Gaussian mixtures,
meaning a linear combination of Gaussian densities where
weights are between 0 and 1. GMF is an extension of
Kalman type filter. In particular, EKF, Unscented Kalman
Filter (UKF) [11] and a bank of EKF are special cases of
GMF and this is one motivation for considering GMF in
hybrid positioning. A second motivation is the fact that
any probability density can be approximated as closely
as desired with a Gaussian mixture. The third motiva-
tion is that the GMF is a very flexible algorithm. It can
take into consideration for example multiple static solu-
tions [2], multiple measurement or dynamic models and
mixture error models.

An outline of the paper is as follows. In section 2, we glance
at Bayesian filtering. In section 3, we study basics of the
Gaussian Mixture Filter. In section 4, we discuss different
possibilities when it is reasonable to use GMF. In section 5
we present a method for splitting (approximating) Gaussian
as Gaussian mixture. Finally, we present simulation results
where we compare different GMFs and a bootstrap particle
filter [5].
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2 BAYESIAN FILTERING

We consider the discrete-time non-linear non-Gaussian
system

xk = fk−1(xk−1) + wk−1, (1)

yk = hk(xk) + vk, (2)

where the vectors xk ∈ Rnx and yk ∈ Rnyk represent the
state of the system and the measurement at time tk, k ∈ N,
respectively. We assume that errors wk and vk are white,
mutually independent and independent of the initial state
x0. We denote the density functions of wk and vk by pwk

and pvk
, respectively. The aim of filtering is to find the

conditional probability density function (posterior)

p(xk|y1:k),

where y1:k
△
= {y1, . . . , yk}. The posterior can be deter-

mined recursively according to the following relations.
Prediction (prior):

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1;

(3)

Update (posterior):

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
, (4)

where the transition pdf is

p(xk|xk−1) = pwk−1(xk − fk−1(xk−1))

and the likelihood

p(yk|xk) = pvk
(yk − hk(xk)). (5)

The initial condition for the recursion is given by the pdf
of the initial state p(x0|y1:0) = p(x0). Knowledge of the
posterior distribution (4) enables one to compute an optimal
state estimate with respect to any criterion. For example,
the minimum mean-square error (MMSE) estimate is the
conditional mean of xk [6, 16]. In general and in our case,
the conditional probability density function cannot be deter-
mined analytically.

3 GAUSSIAN MIXTURE FILTER

The idea of GMF [18, 4] (also called Gaussian Sum Filter)
is that both prior density (3) and posterior density (4) are
Gaussian mixtures

p(x) =
N∑

i=1

αi Nµi

Σi
(x), (6)

where Nµi

Σi
(x) is the normal density function with mean µi

and covariance matrix Σi. Weights are non-negative and
sum to one. The mean of a Gaussian mixture (6) is (see
appendix A)

µgm =
N∑

i=1

αiµi

and the covariance matrix is

Σgm =
N∑

i=1

αi(Σi + (µi − µ)(µi − µ)T ).

3.1 Example of GMF

Now we assume that the prior (3) and likelihood (5) are

p(x) =
N∑

i=1

αi Nµi

Σi
(x) and

p(y|x) =
M∑

j=1

βj NHjx
R (y).

Then the posterior is a Gaussian mixture (see [2])

p(x|y) =

∑M
j=1

∑N
i=1 αiβj NHjµi

Pi,j
(y)Nx̂i,j

P̂i,j
(x)

∑M
j=1

∑N
i=1 αiβj NHjµi

Pi,j
(y)

,

where

Pi,j = HjΣiHT
j + R,

x̂i,j = µi + Ki,j(y −Hjµi),

P̂i,j = (I−Ki,jHj)Σi, and

Ki,j = ΣiHT
j P−1

i,j .

3.2 Reduction number of components

One major challenge in using GMF efficiently is keeping
the number of components as small as possible without
losing significant information. There are many ways to do
so. We use three different types of mixture reduction algo-
rithms: forgetting, merging and resampling. [2, 18, 17].

Reducing the number of components makes it possible that
when the situation becomes favourable to a one component
filter (e.g. EKF) we can merge mixture components into
one, and after which the filter works identically to a one
component filter.

4 WHERE DO MIXTURE COMPONENTS COME
FROM?

It is reasonable to ask why to use Gaussian Mixture Filter,
rather than a Gaussian Filter e.g. EKF. It is well known
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that in linear-Gaussian case the Kalman Filter is an analytic
solution for Bayesian filtering and, of course, in a linear-
Gaussian case we should use the Kalman Filter. Neverthe-
less, there are a lot of possible reasons why it is reasonable
use GMF. Sometimes Gaussian density function is not a
good enough approximation of our exact posterior. Possible
reasons to why exact posterior is not Gaussian and how
mixture components arise are:

Initial state is not Gaussian Usually this kind of prob-
lems can be computed using multiple parallel Gaus-
sian filters, this method is also called the bank of Gaus-
sian filters. Banks of Gaussian filters are special cases
of GMF.

Multiple Models If we use a multiple Gaussian model
approach [6] or the error density functions are not
Gaussian then we come to GMF.

Nonlinearity of models If our state model (1) and/or
measurement model (2) are nonlinear then usually
posterior is not Gaussian. Here we consider only
the nonlinearity of the measurement model. When
the measurement model is nonlinear there are at least
two ways to use GMF. It is possible to approxi-
mate likelihood function (5) as Gaussian Mixture,
which is very reasonable when we have multiple static
positions/velocity solutions (see paper [2]). Second
possibility is to approximate prior density as Gaus-
sian Mixture so that covariance matrices of mixture
components are small enough. This method is the
main contribution of this paper. We present this
method in section 5.

This is not a complete list of where mixture components
arise, but more like an example of different possibilities.
One further example is heuristic (robust) approach, which
also leads to GMF, as presented in paper [2]. The idea of
this heuristic method is to add more mixture components
which approximate likelihood when all measurements are
unlikely.

5 SPLITTING A SINGLE GAUSSIAN INTO A
GAUSSIAN MIXTURE

As we know, EKF in hybrid positioning [3] has a consis-
tency problem. The key reason for inconsistency is nonlin-
earity. Now we consider how we can measure and over-
come nonlinearity. We assume that n-dimensional prior
state is

x ∼ N(x̂, P) (7)

and measurement model is

y = h(x) + v,

where measurement error v ∼ N(0, σ2), (σ > 0), is inde-
pendent of the prior state. We consider a scalar measure-
ment case. We say that the nonlinearities are significant if

tr(HePHeP) & σ2,

where He is Hessian matrix of h(x) [3, 10]. This defini-
tion comes from comparing EKF and Second Order EKF
(EKF2) [6], which is also called Modified Gaussian Second
Order Filter [10, 15]. We use function

Nonlinearity =

√
tr(HePHeP)

σ
− 1, (8)

which gives positive values when nonlinearity is significant.
One possibility to overcome nonlinearity is to approximate
prior density function p(x) as a Gaussian mixture

p(x) ≈
N∑

i=0

αi Nx̂i

Pi
(x), (9)

so that covariance matrices Pi are smaller than the prior
covariance matrix P. This approximation (9) can be formed
in many ways. Here we present an approximation loosely
based on the sigma points [11] and we call this approx-
imation the sigma point Gaussian mixture (SPGM). This
SPGM approximation contains 2n + 1 mixture compo-
nents, whose covariance matrices are

Pi = (1 − τ2)P,

weights αi and means x̂i are listed in Table 1. Parame-
ters τ and κ have the restrictions τ ∈ (0, 1) and κ > 0.
These restrictions ensure that approximation (9) is a proper
density function. We find that SPGM has the same mean,
covariance matrix, and third moments as the original Gaus-
sian distribution (7) (see Appendix B).

Table 1: Weights and means of Gaussian mixture approxi-
mation (9) of Gaussian
Ind. αi x̂i

0 κ
κ+n x̂

1, . . . , n 1
2(κ+n) x̂ + τ

√
κ + n

√
Pei

n + 1, . . . , 2n 1
2(κ+n) x̂− τ

√
κ + n

√
Pei−n

5.1 Example of SPGM

This example presents a comparison between SPGM-EKF
posterior and EKF posterior, when prior distribution is

x ∼ N
([

d
0

]
,

[
1002 0

0 3002

])
, (10)

and we get one base station range measurement (2), where

y = 1000, h(x) = ‖x‖ and v ∼ N(0, 1002).
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Figure 1: Mahalanobis distance between exact mean and
mean approximations. Significance of nonlin-
earity (see equation (8)) is also shown.

The base station is located in origin and so d is the distance
between prior mean and the base station. ”Exact” posterior
density function pexact(x) is computed using a point-mass
filter, with 5002 points [8]. Approximation of exact density
function is computed using EKF and SPGM-EKF. SPGM-
EKF first approximates prior (10) using SPGM approxi-
mation, with parameters κ = 4 and τ = 1

2 (see section 5).
After that SPGM-EKF computes posterior approximation
using EKF for each component and finally assigns these
components appropriate weights.

Comparison between SPGM-EKF and EKF contains two
parts. First we compute Mahalanobis distance between
exact posterior mean and the approximations means

√
(µexact − µapp)T Σ−1

exact(µexact − µapp).

These results are shown in Figure 1. The value of the
Nonlinearity function (8) is also plotted in Figure 1. We see
that Mahalanobis distance between EKF mean and exact
mean increases rapidly when nonlinearity becomes more
significant. In that case SPGM-EKF gives much better
results than EKF. Furthermore, SPGM-EKF gives always
as good results as EKF even when there is no significant
nonlinearity.

Second, we compute the first order Lissack-Fu distance
∫
|pexact(x) − papp(x)|dx,

between exact posterior and the approximations (also called
total variation norm). These results are in Figure 2. The
value of the Nonlinearity function (8) is also plotted in
Figure 2. We see that SPGM-EKF gives smaller Lissack-
Fu distance than EKF. Difference between SPGM-EKF
Lissack-Fu distance and EKF Lissack-Fu distance increases

100 500 1000 1500
0

1

2
Lissack−Fu distance

Distance between prior mean and base station

 

 

EKF

SPGM−EKF

Nonlinearity

Figure 2: Lissack-Fu distance between exact posterior
and posterior approximations. Significance of
nonlinearity (see equation (8)) is also shown.

when nonlinearity becomes more significant. EKF Lissack-
Fu distance is almost 2 (maximum value) when d = 100,
so the exact posterior and the EKF posterior approximation
are almost totally separate.

In this example, SPGM-EKF gives much better results
than EKF when nonlinearity is significant. One inter-
esting finding is that in this example SPGM-EKF works at
least as well as EKF in all cases. This is very important
and nice property when we consider cases where we have
many measurements at the same time and only some of the
measurements have significant nonlinearity. This finding
predicts also that in these cases SPGM-EKF works better
than EKF. Our simulations also verify this assumption (see
section 6).

6 SIMULATIONS

In the simulations, we use the position-velocity model, so

the state x =
[

ru

vu

]
consists of user position vector ru

and user velocity vector vu, which are in East-North-Up
(ENU) coordinate system. In this model the user velocity is
a random walk process [7]. Now the state-dynamic (1) is

xk = Φk−1xk−1 + wk−1,

where

Φk−1 =
[

I ∆tkI
0 I

]
,
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∆tk = tk − tk−1, and wk−1 is white, zero mean and Gaus-
sian noise, with covariance matrix

Qk−1 =




∆t3kσ2
p

3 I 0
∆t2kσ2

p

2 I 0
0 ∆t3kσ2

a
3 0 ∆t2kσ2

a
2

∆t2kσ2
p

2 I 0
∆tkσ2

p

1 I 0
0 ∆t2kσ2

a
2 0 ∆tkσ2

a
1




,

where σ2
p = 2 m2

s3 represents the velocity errors on the East-

North plane and σ2
a = 0.1 m2

s3 represents the velocity errors
in the vertical direction. [14, 3]

In our simulations, we use base station range measure-
ments, altitude measurements, satellite pseudorange
measurements and satellite delta range measure-
ments (see (2)).

yb = ‖rb − ru‖+ ǫb,

ya =
[

0 0 1
]
ru + ǫa,

ys = ‖rs − ru‖+ b + ǫs,

ẏs =
(rs − ru)T

‖rs − ru‖
(vs − vu) + ḃ + ǫ̇s,

where rb is a base station position vector, rs is a satellite
position vector, b is clock bias, vs is a satellite velocity
vector, ḃ is clock drift and ǫ:s are error terms. We use
satellite measurements only when there is more than one
satellite measurement available, so that bias can be elimi-
nated. These are the same measurements equations as in
the papers [2, 1].

6.1 Summary of suburban cases

On Table 2, we have listed a summary of two hundred 120
second simulations, which use typical suburban geometry.
This means that simulations use a few base station range
measurements with variance (100 m)2, inaccurate altitude
measurements with variance ≈ (75 m)2, some (not more
than five) satellite pseudorange and delta range measure-
ments, with variance ≈ (25 m)2 and ≈ (2m

s )2 respectively.
Summary consist of following columns: Time is compu-
tation time using Matlab in our implementation, scaled so
that computation time of EKF is 1. This gives a rough
idea of the time complexity of each algorithm. Err. rms
is 2D root mean square position error. Err. 95% gives a
radius containing 95 % of the 2D errors. Err. ref. is 2D
error to reference posterior mean, which is computed using
a particle filter with 106 particles. Inc. % is a percentage
of time where the filter is inconsistent with respect to the
general inconsistency test, with risk level 5% [3]. Solvers
are sorted so that rms errors are in descending order. These
testcases and filters EKF, UKF and GMFnew2 , are the same
as in the paper [2].

GMFnew2 approximates the likelihood as a Gaussian
mixture only when we find that the likelihood has

a finite number and more than one peak, otherwise
GMFnew2 works like EKF. GMFnew2 uses also a robust
method, that is it adds components that approximate
the likelihood whenever measurements are unlikely.
See more details in paper [2].

GMFnew2 is the best GMF from the paper [2]. Other GMFs
are named in the following way: Superscript tells how
GMF makes the updating step. GMF takes one compo-
nent at the time and uses same updating formula than
the superscript filter e.g. EKF. In the update step, GMF
update also weight of the component. Updated weight is
proportional to wold N0

R(innovation). Subscript indicates
different sources of mixture components so that

S: means that we Split prior components to Gaussian
mixture if nonlinearities are significant (SPGM, see
section 5)

A: means that we Add mixture components which approx-
imate likelihood when all measurements are unlikely.
(see section 4 and paper [2])

G: means that when likelihood has more than one but
finite number of peaks we approximate likelihood as
a Gaussian mixture. (see section 4 and paper [2])

PFN indicates particle filter with systematic resampling and
N particles [5].

Table 2: A summary of 200 different simulations with
typical suburban geometry. Simulations use a
few base station range measurements, altitude
measurements, some satellite pseudorange and
delta range measurements.

Time Err. Err. Err. Inc.
Solver ∝ rms 95% ref %
EKF 1 183 368 36 2.8
UKF 2 183 361 24 1.5
GMFnew2 4 172 332 41 1.6
GMFukf

S,A,G 8 164 321 28 0.2
GMFukf

S 7 163 325 18 0.5
GMFekf

S 2 160 327 26 1.0
PF103 4 155 322 20 0.3
GMFekf

S,A,G 4 153 305 34 0.4
PF104 25 146 303 6 0.2
Ref ∞ 146 307 0 0.1

These results are the realization of random variables and if
we run these simulations again we possibly get a slightly
different result. The following conclusions can be drawn
based on simulations and theory.

• The new method of splitting Gaussian as Gaussian
Mixture using sigma points when there is signifi-
cant nonlinearity, (SPGM, see section 5) improves
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results with every criterion (except time) regardless
what updating method we use (EKF or UKF). SPGM-
methods gives slightly better results than GMFnew2 .

• We get as good as or even better results when we use
methods A and G proposed in [2].

• In this simulated case GMFekf
S,A,G and PF103 give

comparable results. Also the computation time is
almost equal.

• We can say that GMFS,A,G is almost always consis-
tent, because inconsistency is only 0.2%−0.4% when
the inconsistency of reference solutions is 0.1%.

• PF104 gives better results than GMFekf
S,A,G, but needs

much more computation time.

6.2 Summary of suburban cases with sector and
maximum range information

On Table 3, we have listed a summary of two hundred 120
second simulations, which use typical suburban geometry.
Parameters and notations are the same than Table 2, but in
these simulations every base station range measurements
contains information of 120◦-sector and maximum range.
So we know that user is inside this particular area, which
is restricted using sector and maximum range information.
Here these sector and maximum range information (also
called restrictive information) are used in the way proposed
in paper [1].

Table 3: A summary of 200 different simulations with
typical suburban geometry. Simulations use a few
base station range measurements with sector and
maximum range information, altitude measure-
ments, some satellite pseudorange and delta range
measurements.

Time Err. Err. Err. Inc.
Solver ∝ rms 95% ref %
UKF 2 147 296 22 0.8
EKF 1 145 293 28 1.4
GMFukf

S 4 145 296 20 0.6
GMFekf

S 2 139 286 24 0.8
GMFukf

S,A,G 5 137 291 24 0.3
GMFekf

S,A,G 3 137 285 28 0.5
PF103 3 134 281 20 0.4
PF104 20 129 287 6 0.1
Ref ∞ 129 290 0 0.1

The following conclusions can be drawn based on simula-
tions with sector and maximum range information.

• Use sector and maximum range information improves
SPGM-methods results a little, because there is only
small nonlinearity and EKF and UKF do not have
dramatic inconsistency problem.

• On Table 2, GMFekf
S,A,G is the best GMF and here

GMFekf
S,A,G and GMFukf

S,A,G give comparable results.
Because the UKF update method needs more compu-
tation than the EKF update method and results are
almost comparable then it is better to use the EKF
update method.

• Also in this case GMFekf
S,A,G and PF103 give compa-

rable results and PF104 which gives a better result
needs much more computation time.

6.3 Simulation with real data

50 m

Start/Finish

Base
station

 
True

Building

GMF

EKF
PF

5000

Figure 3: Simulation with real data uses on every time step
one simulated base station range measurement,
and additionally about 5 − 7 satellite measure-
ments when true route is outside the building.
See also Table 4.

On Table 4 and Figure 3 we give results on our simulations
which contains also real data. This test uses about 5 − 7
satellite pseudorange and satellite delta range measure-
ments when user is outside the building, measured using the
iTrax03/16 GPS OEM receiver. This data was measured 16
August 2007 in campus area of the Tampere University of
Technology by walking. We use also simulated base station
range measurements, so that on every time step we have
one base station range measurement. Active base station
changes randomly between two possibilities so that the
probability that current measurement comes from the same
base station as on the previous time step is 0.75. We simu-
late the range measurement errors from ǫb ∼ N(0, 102).

As we see in Figure 3, GMFekf
S is the only filter whose

estimated track has approximately the same shape as the
true track. GMFekf

S also gives much better statistics (except
time) than EKF or PF5000, see Table 4. There is approxi-
mately 37 percent of time when the effective sample size of
PF5000 is smaller than 10, this means that almost all parti-
cles have approximately zero weight. In this case PF5000

reverts to EKF and after that re-initializes the samples from
EKF posterior. Even though GMFekf

S gives good results
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Table 4: Statistics of simulation with real data. See also
Figure 3.

Time Err. Err. Inc.
Solver ∝ rms 95% %
EKF 1 55 143 15
PF5000 28 42 71 22
GMFekf

S 2 14 26 9

there is some inconsistency problem; we think that some
of these inconsistency problems are caused by our model
mismatch. Model mismatch is the important reason for the
re-initializations of the particle filter. In fact, it seems that
particle filter is more vulnerable to modeling errors than
GMF.

7 CONCLUSIONS

In this article, we have studied Gaussian Mixture Filter for
hybrid positioning application. We have presented a new
method for splitting (approximating) a single Gaussian into
a Gaussian Mixture so that we get better posterior approx-
imations. Simulations show that GMF (GMFekf

S,A,G to be
more specific) gives much better accuracy than Extended
Kalman Filter and comparable results with PF1000, with
simulated data. With real data simulation GMFekf

S gives
better results than PF5000. In fact PF5000 works only
partially with real data because there is quite often situa-
tion that almost all particles have zero weights. So there
is a lot of work to improve particle filter performance with
real GPS data. In real data cases we find it is important to
build good models, because model mismatch causes maybe
more inconsistency problems than filter approximations.

A BASICS OF GAUSSIAN MIXTURE

We call a n-dimensional random variable z a Gaussian
mixture if it has the density function of form

pz(z) =
N∑

j=1

αj Nµj

Σj
(z). (11)

The characteristic function of Gaussian x ∼ N(µ, Σ) is [13]

φx(t) = exp(itT µ− 1
2
tT Σt).

So the characteristic function of Gaussian mixture z (11) is

φz(t) =
N∑

j=0

αj exp(itT µj −
1
2
tT Σjt)

=
N∑

j=0

αjφxj (t).

Mean of Gaussian mixture z (11) is

E(z) =
1
i
(φ′z(t)|t=0)

T

=
1
i

N∑

j=0

αjφxj (0)(iµj − Σj0)

=
N∑

j=0

αjµj
△
= µgm.

(12)

Covariance matrix of Gaussian mixture z (11) is

V(z) = −φ′′z (t)|t=0 − E(z) E(z)T

=
N∑

j=0

αj

(
Σj + µjµ

T
j

)
− µgmµT

gm

=
N∑

j=0

αj

(
Σj + (µj − µgm)(µj − µgm)T

)

△
= Σgm.

(13)

The third moments E(zizjzk) of Gaussian mixture z (11)
can be computed as follows

E(zzT zk) = −1
i

∂

∂tk
φ′′z (t)|t=0

=
N∑

j=0

αj

(
Σjµ

k
j + µjµ

T
j µk

j

+ ΣjekµT
j + µje

T
k Σj

)
,

(14)

where k = 1, . . . , n, vl is l. component of the vector v and
ek is vector whose k. component is one and others are zeros.

B SPLITTING A SINGLE GAUSSIAN INTO A
GAUSSIAN MIXTURE

In this appendix, we show that the mean, covariance matrix
and third moments of the approximation given in Table 1
are the same as those of the approximated distribution (7).

Mean of the approximation is (12)

µapp =
2n∑

j=0

αj x̂j

=
κ

κ + n
x̂ +

n∑

j=1

1
2(κ + n)

(x̂ + τ
√

κ + n
√

Pej)

+
2n∑

j=n+1

1
2(κ + n)

(x̂− τ
√

κ + n
√

Pej−n)

= x̂ +
n∑

j=1

1
2(κ + n)

τ
√

κ + n
√

Pej

−
n∑

l=1

1
2(κ + n)

τ
√

κ + n
√

Pel

= x̂.
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Covariance matrix of the approximation is (13)

Σapp =
2n∑

j=0

αj(Pj + (x̂j − µapp)(x̂j − µapp)T )

= (1− τ2)P +
2n∑

j=0

αj(x̂j − x̂)(x̂j − x̂)T

= (1− τ2)P + τ2
n∑

j=1

(
√

Pej)(
√

Pej)T

= (1− τ2)P + τ2
n∑

j=1

√
Peje

T
j

√
P

T

= P.

The third moments of the Gaussian (7) are (14)

E(xxT xk) = Px̂k + Pekx̂T + x̂eT
k P + x̂x̂T x̂k.

Third moments of the approximation are (14)

E(xappx
T
appx

k
app)

=
2n∑

j=0

αj

(
Pjx̂

k
j + x̂j x̂

T
j x̂k

j + Pjekx̂T
j + x̂je

T
k Pj

)

= (1 − τ2)
(
Px̂k + Pekx̂T + x̂eT

k P
)

+ α0x̂x̂T x̂k

+
n∑

j=1

αj(x̂ + Aej)(x̂ + Aej)T eT
k (x̂ + Aej)

+
n∑

j=n

αj(x̂−Aej)(x̂− Aej)T eT
k (x̂−Aej)

= (1 − τ2)
(
Px̂k + Pekx̂T + x̂eT

k P
)

+ x̂x̂T x̂k

+ 2
n∑

j=1

αj

(
Aeje

T
j AT x̂k

+ x̂eT
j AT eT

k Aej + Aej x̂
T eT

k Aej

)

= (1 − τ2)
(
Px̂k + Pekx̂T + x̂eT

k P
)

+ x̂x̂T x̂k

+
n∑

j=1

τ2
(√

Peje
T
j

√
P

T
x̂k

+ x̂eT
k

√
Peje

T
j

√
P

T
+
√

Peje
T
j

√
P

T
ekx̂T

)

= (1 − τ2)
(
Px̂k + Pekx̂T + x̂eT

k P
)

+ x̂x̂T x̂k

+ τ2(Px̂k + x̂eT
k P + Pekx̂T )

= Px̂k + Pekx̂T + x̂eT
k P + x̂x̂T x̂k

= E(xxT xk).

where A = τ
√

κ + n
√

P.
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Efficient Gaussian Mixture Filter
for Hybrid Positioning
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Abstract—This paper presents a new way to apply Gaussian
Mixture Filter (GMF) to hybrid positioning. The idea of this new
GMF (Efficient Gaussian Mixture Filter, EGMF) is to split the
state space into pieces using parallel planes and approximate
posterior in every piece as Gaussian. EGMF outperforms the
traditional single-component positioning filters, for example the
Extended Kalman Filter and the Unscented Kalman Filter, in
nonlinear hybrid positioning. Furthermore, EGMF has some
advantages with respect to other GMF variants, for example
EGMF gives the same or better performance than the Sigma Point
Gaussian Mixture (SPGM) [1] with a smaller number of mixture
components, i.e. smaller computational and memory requirements.
If we consider only one time step, EGMF gives optimal results
in the linear case, in the sense of mean and covariance, whereas
other GMFs gives suboptimal results.

I. INTRODUCTION

Positioning filters, such as GMF [2]–[4], are used to compute
an estimate of the state using current and past measurement
data. Usually, the mean of the posterior distribution is this
estimate. A consistent filter also provides correct information
on the accuracy of its state estimate, e.g. in the form of
an estimated error covariance. Generally, GMF is a filter
whose approximate prior and posterior densities are Gaussian
Mixtures (GMs), a linear combination of Gaussian densities
where weights are between 0 and 1. GMF is an extension
of Kalman type filters. In particular, The Extended Kalman
Filter (EKF) [5]–[8], Second Order Extended Kalman Filter
(EKF2) [5], [6], [9], Unscented Kalman Filters (UKF) [10] and
a bank of these filters, are special cases of GMF.

Hybrid positioning means that measurements used in posi-
tioning come from many different sources e.g. Global Nav-
igation Satellite System, Inertial Measurement Unit, or local
wireless networks such as a cellular network. Range, pseudo-
range, delta range, altitude, base station sector and compass
measurements are examples of typical measurements in hybrid
positioning. In the hybrid positioning case, it is usual that
measurements are nonlinear and because of that posterior den-
sity may have multiple peaks (multiple positioning solutions).
In these cases, traditional single-component positioning filters,
such as EKF, do not give good performance [9]. This is the
reason for developing GMF for hybrid positioning [1]. Other
possibility is to use a general nonlinear Bayesian filter, which
is usually implemented as a particle filter or a point mass filter.
These filters usually work correctly and give good positioning
accuracy but require much computation time and memory.

An outline of the paper is as follows. In Section II, we glance
at Bayesian filtering. In Section III, we study the basics of the
GM and of the GMF. In Section IV, we present the new method,
box GM approximation, to approximate Gaussian as GM. In
Section V we apply the box GM approximation to the filtering
framework and get the Box Gaussian Mixture Filter (BGMF).
In Section V we also present Sigma Point Gaussian Mixture
Filter (SPGMF) [1]. In Section VI, we develop BGMF so that
it gives exact mean and covariance in one step linear case.
We call that new filter the Efficient Gaussian Mixture Filter
(EGMF). In Section VII, we compute one step comparison of
EKF, SPGMF, BGMF and EGMF. Finally in Section VIII, we
present simulation results where we compare different GMFs
and a bootstrap particle filter [11].

II. BAYESIAN FILTERING

We consider the discrete-time non-linear non-Gaussian sys-
tem

xk = fk−1(xk−1) + wk−1, (1)

yk = hk(xk) + vk, (2)

where the vectors xk ∈ Rnx and yk ∈ Rnyk represent the
state of the system and the measurement at time tk, k ∈ N,
respectively. We assume that errors wk and vk are white,
mutually independent and independent of the initial state x0.
We denote the density functions of wk and vk by pwk

and
pvk

, respectively. The aim of filtering is to find the conditional
probability density function (posterior)

p(xk|y1:k),

where y1:k
△
= y1, . . . , yk are past and current measurements.

The posterior can be determined recursively according to the
following relations.
Prediction (prior):

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1; (3)

Update (posterior):

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
, (4)

where the transition pdf is

p(xk|xk−1) = pwk−1(xk − fk−1(xk−1))
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and the likelihood

p(yk|xk) = pvk
(yk − hk(xk)).

The initial condition for the recursion is given by the pdf of
the initial state p(x0|y1:0) = p(x0). Knowledge of the posterior
distribution (4) enables one to compute an optimal state esti-
mate with respect to any criterion. For example, the minimum
mean-square error (MMSE) estimate is the conditional mean
of xk [5], [12]. In general and in our case, the conditional
probability density function cannot be determined analytically.

III. GAUSSIAN MIXTURE FILTER

A. Gaussian Mixture
Definition 1 (Gaussian Mixture): an n-dimensional random

variable x is N -component Gaussian Mixture (GM) if its
characteristic function has the form

ϕx(t) =
N∑

j=1

αj exp
(

itT µj −
1
2
tT Σjt

)
, (5)

where µj ∈ Rn, Σj ∈ Rn×n is symmetric positive semidefinite
(Σj ≥ 0), αj ≥ 0 and

∑N
j=1 αj = 1. We use the abbreviation

x ∼ M(αj , µj , Σj)(j).
If random variable x is GM, x ∼ M(αj , µj , Σj)(j) and all

matrices Σj are symmetric positive definite (Σj > 0), then x
has a density function

px(ξ) =
N∑

j=1

αj Nµj

Σj
(x), (6)

where Nµj

Σj
(x) is the Gaussian density function with mean µj

and covariance Σj

Nµj

Σj
(x) =

1
(2π)

n
2
√

detΣj

e−
1
2 (x−µj)

T Σ−1
j (x−µj).

Theorem 2: Let x ∼ M(αj , µj , Σj)(j). Then the mean of x
is

E(x) =
N∑

j=1

αjµj ,

and the covariance of x is

V(x) =
N∑

j=1

αj

(
Σj + (µj − E(x))(µj − E(x))T

)
.

Proof: Using the properties of characteristic function [13],
we get

E(x) =
1
i

(ϕ′x(t)|t=0)
T =

N∑

j=1

αjµj

and
V(x) = −ϕ′′x(t)|t=0−E(x) E(x)T

=
N∑

j=1

αj(µjµ
T
j + Σj)− E(x) E(x)T

=
N∑

j=1

αj

(
Σj + (µj − E(x))(µj − E(x))T

)
.

Theorem 3: Let random variables x ∼ M(αj , µj , Σj)(j) and
v ∼ N(0, R) be independent. Define y = Hx + v, where
H ∈ Rm×n. Then

y ∼ M(αj , Hµj , HΣjHT + R)(j).

Proof: Because x and v are independent then Hx and v
are also independent. Futhermore,

ϕHx+v(t)
Ind.= ϕHx(t)ϕv(t) = ϕx(HT t)ϕv(t)

(5)
=

N∑

j=1

αi exp
(

itT Hµj −
1
2
tT HΣjHT t

)
exp

(
−1

2
tT Rt

)

=
N∑

j=1

αj exp
(

itT Hµj −
1
2
tT

(
HΣjHT + R

)
t

)
.

B. Gaussian Mixture Filter

GMF is (an approximation of) the Bayesian Filter (see
Section II). The idea of GMF [2]–[4] (also called Gaussian Sum
Filter) is that both prior density (3) and posterior density (4)
are GMs.

Algorithm 1 Linearized GMF
Initial state at time t0: x0 ∼ M(α+

j,0, x
+
j,0, P

+
j,0)(j)

for k = 1 to n do
1) Prediction step, prior at time tk (see Thm. 3):

M(α−j,k, x−j,k, P−j,k)(j),

where
α−j,k = α+

j,k−1

x−j,k = Fk−1x
+
j,k−1

P−j,k = Fk−1P+
j,k−1Fk−1

T + Qk−1

2) Approximate selected components as GM (see Sec-
tion IV)

3) Update step, posterior at time tk [14]:

M(α+
j,k, x+

j,k, P+
j,k)(j),

where

α+
j,k ∝ α−j,k N

hk(x̄j,k)+Hj,k(x−
j,k
−x̄j,k)

Hj,kP−
j,k

HT
j,k

+Rk
(yk)

x+
j,k = x−j,k+Kj,k(yk−hk(x̄j,k)−Hj,k(x−j,k−x̄j,k))

P+
j,k = (I−Kj,kHj,k)P−j,k

Kj,k = P−j,kHT
j,k(Hj,kP−j,kHT

j,k + Rk)−1

Here Hj,k = ∂hk(x)
∂x

∣∣
x=x̄j,k

and x̄j,k are selected
linearization points, e.g. in EKF x̄j,k = x−j,k.

4) Reduce number of components: forgetting, merging
and resampling [2], [15], [16].

end for

Algorithm 1 presents one version of GMF, Linearized GMF.
Algorithm 1 uses the following assumptions:
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1) Initial state x0 is non-singular GM, which means that x0

has density function (6).
2) State model (1) is linear

xk = Fk−1xk−1 + wk−1.

3) Errors wk ∼ N(0, Qk) and vk ∼ N(0, Rk) and Rk is
non-singular.

Note that it is straightforward to extend Linearized GMF to
cases where also the errors wk and vk are GMs.

IV. APPROXIMATE GAUSSIAN AS GAUSSIAN MIXTURE

As we know, EKF in hybrid positioning [9] has a consistency
problem. The key reason for inconsistency is nonlinearity. Now
we assume that we have only one measurement and our prior
is Gaussian x ∼ N(x̂, P). The application to the general case
is given in Section V.

One measure of nonlinearity is [1], [6], [9]

Nonlinearity =

√
tr(HePHeP)

R
− 1, (7)

where He is Hessian matrix of scalar measurement h(x), R is
a covariance of measurement error and P is a covariance of the
state component. One possibility to overcome the nonlinearity
problem (i.e. minimize Nonlinearity (7)) is to approximate
Gaussian as GM whose components have smaller covariance
matrices than the orginal Gaussian. One method for doing
so is the Sigma Point Gaussian Mixture (SPGM) [1] (see
Section IV-A). One drawback of SPGM is that SPGM splits
one Gaussian to 2nx + 1 components GM, regardless of our
measurement equation and Hessian matrix He. Because of this,
we present a new method of approximating Gaussian as GM
(see Section IV-B). We call this method as a Box GM, because
it has connection to the ”Box”-method [17].

A. Sigma Point GM approximation

The SPGM is given on Table I. SPGM has the same
mean, covariance, and third moments as the original Gaussian
distribution x ∼ N(x̂, P) [1].

TABLE I
SPGM M(αj , µj , Σj)(j) APPROXIMATION OF GAUSSIAN x ∼ N(x̂, P),

PARAMETERS τ ∈ (0, 1) AND κ > 0.

Index j αj µj Σj

0 κ
κ+nx

x̂ (1− τ2)P

1, . . . , nx
1

2(κ+nx)
x̂ + τ

√
κ + nx

√
Pej (1− τ2)P

nx + 1, . . . , 2nx
1

2(κ+nx)
x̂− τ

√
κ + nx

√
Pej−n (1− τ2)P

B. Box GM approximation

The idea of the Box GM approximation is that we split the
state space using parallel planes and approximate the Gaussian
inside every piece with one GM component using moment
matching method. The Box GM approximation of the Gaussian
x ∼ N(x̂, P), with P > 0, is

xN ∼ M(αj , µj , Σj)(j), (8)

where index j = 1, . . . , nbox, and parameters are

αj =
∫

Aj

px(ξ)dξ = Φ (lj)− Φ (lj−1) ,

µj =
∫

Aj

ξ
px(ξ)
αj

dξ = x̂ + Paǫj, ǫj =
e−

l2
j−1
2 − e−

l2
j
2√

2παj

,

Σj =
∫

Aj

(ξ − µj)(ξ − µj)T px(ξ)
αj

dξ

= P− Pa


 lje

−
l2
j
2 − lj−1e

−
l2
j−1
2√

2παj

+ ǫ2j


 aT P.

where Φ is the standard normal cumulative density function
and sets Aj have the following form

Aj =
{
x
∣∣lj < aT (x− x̂) ≤ lj+1

}
,

where aT Pa = 1 and vector l is monotonic increasing so that
l1 = −∞ and lnbox+1 = ∞ so these sets constitute a partition
of Rnx .

1) Mean and covariance of the Box GM approximation: In
this Section, we compute the mean and the covariance of the
GM approximation xN Eq. (8). First of all, because Σj > 0 ∀j,
αj > 0 ∀j and

nbox∑

j=1

αj =
nbox∑

j=1

∫

Aj

px(ξ)dξ =
∫

px(ξ)dξ = 1,

then xN is a valid GM. The mean of xN is

E (xN ) Thm. 2=
nbox∑

j=1

αjµj =
nbox∑

j=1

∫

Aj

ξpx(ξ)dξ = x̂.

The covariance of xN is

V (xN ) Thm. 2=
nbox∑

j=1

αj(µjµ
T
j + Σj)− x̂x̂T

=
nbox∑

j=1

∫

Aj

ξξT px(ξ)dξ − x̂x̂T = P.

So the mean and the covariance of the GM approximation are
the same as the mean and the covariance of the ordinary Gaus-
sian. Because of this, we can say that Box GM approximation
is a moment matching method.

2) Contour plot of the Box GM approximation: In Fig. 1 we
compare the density function of the Gaussian distribution

x ∼ N
([

0
0

]
,

[
13 −12
−12 13

])
. (9)

and the density function of its approximation by a Box GM

with parameters a ≈
[

0.2774
0

]
and

l =
[
−∞ −1.28 1.28 ∞

]

≈ Φ−1
([

0 0.1 0.9 1
])

.

Fig. 1 shows the contour plots of the Gaussian and the Box
GM density functions so that 50% of probability is inside the
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0.5

Planes

Gaussian

Box GM

Fig. 1. Contour plot example of the Box GM, when approximating density
is Gaussian Eq. (9)

innermost curve and 95% of probability is inside the outermost
curve. We see that the density function of the Box GM is quite
good approximation of the Gaussian density function Eq. (9).

V. BOX GAUSSIAN MIXTURE FILTER AND
SIGMA POINT GAUSSIAN MIXTURE FILTER

Box Gaussian Mixture Filter (BGMF) is a straightforward
application of the Box GM approximation to the Gaussian
Mixture filtering framework. BGMF is a Linearized GMF
(see Alg. 1), where the step 2 is the following. First we
compute Nonlinearity (7) statistics for every component and
measurement. We select the components that have at least one
highly nonlinear measurement with Nonlinearity > 0. Every
selected component we replace by its Box GM approximation
(Section IV-B).

The SPGMF, which is presented in the paper [1] with name
GMFekf

S , is also a Linearized GMF (see Alg. 1) and almost the
same as BGMF. Only difference between SPGMF and BGMF
is that SPGM approximates selected Gaussians using SPGM
approximation (see Table I), while BGMF uses the Box GM
approximation (Section IV-B).

VI. EFFICIENT GAUSSIAN MIXTURE FILTER

In this Section, we derive a new GMF, Efficient Gaussian
Mixture Filter (EGMF). Prediction step (Eq. (3)) of EGMF is
the same as prediction step of Linearized GMF (see Alg. 1).
Now we consider update step (Eq. (4)). Assume that prior
distribution is a GM

x ∼ M(βi, x̂i, Pi)(i)

and measurement model is (see (2))

y = h(x) + v,

where v ∼ N(0, R). Now the posterior density function is

p(x|y) ∝
nprior∑

i=1

βi Nx̂i

Pi(x)N0
R(y − h(x))

=
nprior∑

i=1

βi
ni∑

j=1

χAi
j
(x)Nx̂i

Pi(x)N0
R (y − h(x)) ,

where aiT Piai = 1 ∀i, Ai
j =

{
x
∣∣lij < aiT (x− x̂i) ≤ lij+1

}
,

vectors li are monotonic increasing so that li1 = −∞ and
lini+1 = ∞. So for all i sets Ai

j constitute a partition of Rnx .
BGMF (see Section V) approximates

χAi
j
(x)Nx̂i

Pi(x) ≈ αi
j N

µi
j

Σi
j

(x) and

N0
R (y − h(x)) ≈ N0

R

(
y − h(µi

j)−Hµi
j
(x− µi

j)
)

where αi
j , µi

j and Σi
j are computed using the Box GM

algorithm (see Section IV-B) and Hµi
j

= h′(µi
j). So BGMF

approximates both prior and likelihood before multiplying
them. EGMF first approximates the likelihood as

N0
R (y − h(x)) ≈ N0

R

(
y − h(µi

j)−Hµi
j
(x− µi

j)
)

and then multiplies it with the prior:

p(x|y) ∝
⋆≈

nprior∑

i=1

βi
ni∑

j=1

χAi
j
(x)Nx̂i

Pi(x)N0
R

(
y − h(µi

j)−Hµi
j
(x− µi

j)
)

=
nprior∑

i=1

βi
ni∑

j=1

χAi
j
(x)γi

j N
x̂i

j

Pi
j

(x)

(10)

where

γi
j = N

h(µi
j)+H

µi
j
(x̂i−µi

j)

H
µi

j
PiHT

µi
j

+R
(y)

x̂i
j = x̂i + Ki

j(y − h(µi
j)−Hµi

j
(x̂i − µi

j))
Pi

j = (I−Ki
jHµi

j
)Pi

Ki
j = PiHT

µi
j

(Hµi
j
PiHT

µi
j

+ R)−1.

Note that ⋆ approximation is exact if h(x) is linear. Then we
use the Box GM algorithm (see Section IV-B) and get

p(x|y) ∝ ⋆≈
nprior∑

i=1

βi
ni∑

j=1

χAi
j
(x)γi

j N
x̂i

j

Pi
j

(x)

=
nprior∑

i=1

ni∑

j=1

βiγi
jχBi

j
(x)N

x̂i
j

Pi
j

(x)

≈
nprior∑

i=1

ni∑

j=1

ᾱi
jβ

iγi
j N

µ̄i
j

Σ̄i
j

(x)

(11)

where ᾱi
j , µ̄i

j and Σ̄i
j are computed using the Box GM

algorithm, when we noted that

Bi
j =

{
x
∣∣mi

j < biT (x − x̂i
j) ≤ mi

j+1

}

=
{
x
∣∣lij < aiT (x− x̂i) ≤ lij+1

}
= Ai

j ,
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Fig. 2. Mahalanobis distance between exact mean and mean approximations.
Significance of nonlinearity (see equation (7)) is also shown.

where

bi =
ai

√
aiT Pi

ja
i
⇒ biT Pi

jb
i = 1

mi =
li + aiT (x̂i − x̂i

j)√
aiT Pi

ja
i

⇒ mi
j < mi

j+1 ∀j ,

mi
1 = −∞ and mi

ni
= ∞.

Now we get that the posterior of EGMF is

p(x|y) ≈
∑nprior

i=1

∑ni

j=1 ᾱi
jβ

iγi
j N

µ̄i
j

Σ̄i
j

(x)
∑nprior

i=1

∑ni

j=1 ᾱi
jβ

iγi
j

.

If we consider the linear case and only one time step, EGMF
gives a correct mean and a correct covariance, because linearity
ensures that ⋆ approximation in Eq. (10) is exact and the Box
GM approximation maintains the mean and the covariance in
Eq. (11) (see Section IV-B1). SPGMF and BGMF can give a
wrong mean and a wrong covariance in one time step linear
case.

VII. ONE STEP COMPARISON OF
EKF, SPGMF, BGMF AND EGMF

This is the same example as in paper [1], but we have
included BGMF (Section V) and EGMF (Section VI) to this
example. This example presents a comparison between EKF
posterior, SPGMF (Section V) posterior, BGMF posterior and
EGMF posterior, when prior distribution is

x ∼ N
([

d
0

]
,

[
1002 0

0 3002

])
,

and we get one base station range measurement (2), where

y = 1000, h(x) = ‖x‖ and v ∼ N(0, 1002).

The base station is located in origin and so d is the distance
between prior mean and the base station. ”Exact” posterior
density function pexact(x) is computed using a point-mass filter,

100 500 1000 1500
0

1

2
Lissack−Fu distance

Distance between prior mean and base station

 

 

EKF

SPGMF

BGMF

EGMF

Nonlinearity

Fig. 3. Lissack-Fu distance between exact posterior and posterior approxima-
tions. Significance of nonlinearity (see equation (7)) is also shown.

with 5002 points [18]. Approximation of the exact density
function is computed using EKF, SPGMF, BGMF and EGMF.
The SPGMF uses parameters κ = 4 and τ = 1

2 and the BGMF

and EGMF uses parameters a =
[

0
1

300

]
and

l =
[
−∞ −1.28 1.28 ∞

]

≈ Φ−1
([

0 0.1 0.9 1
])

.

Note that both BGMF and EGMF have only three GM com-
ponents whereas SPGMF has five GM components.

Comparison between EKF, SPGMF, BGMF and EGMF
contains two parts. First we compute the Mahalanobis distance
between the mean of the exact posterior mean and means of
approximations

√
(µexact − µapp)T Σ−1

exact(µexact − µapp).

These results are shown in Fig. 2. The value of the Nonlinearity
function (7) is also plotted in Fig. 2. We see that Maha-
lanobis distance between EKF mean and exact mean increases
rapidly when nonlinearity becomes more significant. In that
case SPGMF, BGMF and EGMF give much better results than
EKF. EGMF has the same or smaller Mahalanobis distance
than BGMF. Furthermore, SPGMF, BGMF and EGMF give
always as good results as EKF even when there is no significant
nonlinearity.

Second, we compute the first order Lissack-Fu distance
∫
|pexact(x) − papp(x)|dx,

between exact posterior and the approximations (also called a
total variation norm). These results are in Fig. 3. The value
of the Nonlinearity function (7) is also plotted. We see that
SPGMF, BGMF and EGMF give smaller Lissack-Fu distance
than EKF. Difference between EGMF Lissack-Fu distance and
EKF Lissack-Fu distance increases when nonlinearity becomes
more significant. EKF Lissack-Fu distance is almost 2 (max-
imum value) when d = 100, so the exact posterior and
the EKF posterior approximation are almost totally separate.
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Furthermore, EGMF has Lissack-Fu distance same as or smaller
than BGMF.

Overall SPGMF, BGMF and EGMF work almost identically
although EGMF and BGMF use only three mixture component
versus five SPGMF mixture components. In this example,
EGMF gives the best results compared to the other filters.
Furthermore SPGMF, BGMF and EGMF all give much better
results than EKF when nonlinearity is significant.

VIII. SIMULATIONS

In the simulations, we use the position-velocity model, so

the state x =
[

ru

vu

]
consists of user position vector ru and

user velocity vector vu, which are in East-North-Up (ENU)
coordinate system. In this model the user velocity is a random
walk process [19]. Now the state-dynamic (1) is

xk = Φk−1xk−1 + wk−1,

where

Φk−1 =
[

I ∆tkI
0 I

]
,

∆tk = tk − tk−1, and wk−1 is white, zero mean and Gaussian
noise, with covariance

Qk−1 =




∆t3kσ2
p

3 I 0
∆t2kσ2

p

2 I 0
0 ∆t3kσ2

a
3 0 ∆t2kσ2

a
2

∆t2kσ2
p

2 I 0
∆tkσ2

p

1 I 0
0 ∆t2kσ2

a
2 0 ∆tkσ2

a
1




,

where σ2
p = 2 m2

s3 represents the velocity errors on the East-
North plane and σ2

a = 0.01 m2

s3 represents the velocity errors in
the vertical direction. [9], [20]

In our simulations, we use base station range measurements,
altitude measurements, satellite pseudorange measurements and
satellite delta range measurements (see Eq. (2)).

yb = ‖rb − ru‖+ ǫb,

ya =
[

0 0 1
]
ru + ǫa,

ys = ‖rs − ru‖+ b + ǫs,

ẏs =
(rs − ru)T

‖rs − ru‖
(vs − vu) + ḃ + ǫ̇s,

where rb is a base station position vector, rs is a satellite
position vector, b is clock bias, vs is a satellite velocity vector, ḃ
is clock drift and ǫ:s are error terms. We use satellite measure-
ments only when there is more than one satellite measurement
available, so that bias can be eliminated. These are the same
measurements equations as in the papers [1], [15], [17].

Simulations are made using Personal Navigation Filter
Framework (PNaFF) [21]. PNaFF is a comprehensive simu-
lation and filtering test bench that we are developing and using
in the Personal Positioning Algorithms Research Group. PNaFF
uses Earth Centered Earth Fixed (ECEF) coordinate system so
we have converted our models from ENU to ECEF.

TABLE II
A SUMMARY OF 200 DIFFERENT SIMULATIONS WITH BASE STATION

MEASUREMENTS.

Time Err. Err. Err. Inc.
Solver ∝ rms 95% ref %
EKFno res. 4 284 622 127 9.9
EKF 10 236 465 83 6.6
EKF2 11 214 433 65 2.8
UKF 23 213 421 58 2.3
SPGMF 62 210 399 69 3.3
PF2500 38 201 397 73 21.9
BGMF 32 194 371 58 2.8
EGMF 32 191 360 57 2.8
Ref ∞ 155 287 0 0.1

A. Summary of base station cases

On Table II, we have listed a summary of two hundred
120 second simulations, which use only base station mea-
surements. This means that simulations use base station range
measurements with variance (80 m)2, very inaccurate altitude
measurements with variance (300 m)2 and restrictive infor-
mation. Restrictive information is in our case base station
120◦-sector and maximum range information. So when we
have restrictive information we know that user is inside the
particular area, which is restricted using sector and maximum
range information. Restrictive information are used in the same
way as in paper [17]. Summary consist of following columns:
Time is computation time using Matlab in our implementation,
scaled so that computation time of EKF is 10. This gives a
rough idea of the relative time complexity of each algorithm.
Err. rms is 3D root mean square position error. Err. 95% gives
a radius containing 95 % of the 3D errors. Err. ref. is 3D error
to reference posterior mean, which is computed using a particle
filter with systematic resampling and 106 particles [11]. Inc. %
is a percentage of time where the filter is inconsistent with
respect to the general inconsistency test, with risk level 5% [9].
Solvers are sorted so that rms errors are in descending order.
PFN indicates particle filter with systematic resampling and N
particles [11], so reference solution is the same as PF106 . On
these simulations BGMF splits, when highly nonlinearity exists,
one GM component into four components with equal weights.
In that case the parameter l of the Box GM approximation (see
Section IV-B) is

l = Φ−1
([

0 1
4

1
2

3
4 1

])
.

EGMF also uses the same l parameter (see Section VI).
In Table II, the results are the realization of random variables

and if we run these simulations again we possibly get a slightly
different result. The following conclusions can be drawn based
on simulations and theory.
• Both BGMF and EGMF give a better result (in all listed

criteria) than SPGMF or PF2500

• Computation time of BGMF and EGMF is approximately
half of computation time of SPGMF.

• EGMF gives much better results than traditional EKF
(EKFno res.).

65



TABLE III
A SUMMARY OF 1000 DIFFERENT SIMULATIONS WITH BASE STATION AND

SATELLITE MEASUREMENTS.

Time Err. Err. Err. Inc.
Solver ∝ rms 95% ref %
EKFno res. 6 115 215 23 3.0
EKF 10 101 184 16 2.1
UKF 28 95 174 11 1.1
SPGMF 38 95 173 13 1.2
PF2500 43 95 160 12 1.8
EKF2 11 94 176 12 1.2
BGMF 20 93 170 12 1.0
EGMF 20 92 169 12 1.0
Ref ∞ 83 156 0 1.2

• PF2500 has a serious inconsistency problem, i.e. it under
estimates the state covariance.

B. Summary of mixed cases

In Table III, we have listed a summary of one thousand
120 second simulations, which use both base station and
satellite measurements with varying parameters. Parameters
are following: variance of base station range measurement
= (30 m)2, variance of satellite pseudorange measurement
≈ (3 m)2 and variance of delta range measurement≈ (0.1 m

s )2.
We use restrictive information in the same way as simulations
on Section VIII-A. Also notations and filters are the same as
simulations on Section VIII-A.

The following conclusions can be drawn based on simula-
tions.
• Order of filter in Table III is almost the same as in Table II.
• Differences between different filters are smaller than in

Table II, because there are also satellite measurements
(very accurate linear measurements).

• Computation time of BGMF and EGMF is approximately
half of computation time of SPGMF.

• EGMF gives much better results than traditional EKF
(EKFno res.).

IX. CONCLUSION

In this article, we have presented two new Gaussian Mixture
Filters for the hybrid positioning: the Box GMF and the
Efficient GMF. BGMF and EGMF are almost the same filter,
because of this their performances are almost the same. Nev-
ertheless EGMF gives slightly better results than BGMF. Both
filters outperform the Sigma Point GMF, which outperforms the
traditional single-component Kalman type filters such as EKF,
UKF and EKF2. EGMF and BGMF also outperform particle
filter, when number of particles is selected so that particle filter
uses about the same time of computation as EGMF. GMFs and
EKF works equivalently if we have only linear measurements,
but the more nonlinearity occurs the better result GMFs give
compared to EKF.
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for their comments and suggestions. This study was partly
funded by Nokia Corporation. The author acknowledges the
financial support of the Nokia Foundation and the Tampere
Graduate School in Information Science and Engineering.

REFERENCES
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On the Convergence of
the Gaussian Mixture Filter

Simo Ali-Löytty

Abstract—This paper presents convergence results for the Box
Gaussian Mixture Filter (BGMF). BGMF is a Gaussian Mixture
Filter (GMF) that is based on a bank of Extended Kalman Filters.
The critical part of GMF is the approximation of probability
density function (pdf) as pdf of Gaussian mixture such that
its components have small enough covariance matrices. Because
GMF approximates prior and posterior as Gaussian mixture it is
enough if we have a method to approximate arbitrary Gaussian
(mixture) as a Gaussian mixture such that the components have
small enough covariance matrices. In this paper, we present the
Box Gaussian Mixture Approximation (BGMA) that partitions
the state space into specific boxes and matches weights, means
and covariances of the original Gaussian in each box to a GM
approximation. If the original distribution is Gaussian mixture,
BGMA does this approximation separately for each component
of the Gaussian mixture. We show that BGMA converges weakly
to the original Gaussian (mixture). When we apply BGMA in a
Gaussian mixture filtering framework we get BGMF. We show
that GMF, and also BGMF, converges weakly to the correct/exact
posterior distribution.

Index Terms—Extended Kalman Filter, Filter banks, Filtering
techniques, Filtering theory, Gaussian distribution

I. INTRODUCTION

THE problem of estimating the state of a stochastic system
from noisy measurement data is considered. We consider

the discrete-time nonlinear non-Gaussian system

xk = Fk−1xk−1 + wk−1, (1a)
yk = hk(xk) + vk, (1b)

where the vectors xk ∈ Rnx and yk ∈ Rnyk represent the state
of the system and the measurement at time tk, k ∈ N\{0},
respectively. The state transition matrix Fk−1 is assumed to
be non-singular. We assume that errors wk and vk are white,
mutually independent and independent of the initial state x0.
The errors as well as the initial state are assumed to have
Gaussian mixture distributions. We assume that initial state
x0 and measurement errors vk have density functions px0 and
pvk

, respectively. We do not assume that state model errors
wk have density functions. These assumptions guarantee that
the prior (the conditional probability density function given
all past measurements y1:k−1

△
= {y1, . . . , yk−1}) and the

posterior (the conditional probability density function given
all current and past measurements y1:k

△
= {y1, . . . , yk}) have

density functions p(xk|y1:k−1) and p(xk|y1:k), respectively.
We use the notation x−k,exact for a random variable whose

S. Ali-Löytty is with the Department of Mathematics, Tampere University
of Technology, Finland e-mail: simo.ali-loytty@tut.fi.

density function is p(xk|y1:k−1) (prior) and x+
k,exact for a ran-

dom variable whose density function is p(xk|y1:k) (posterior).
The posterior can be determined recursively according to the
following relations [1], [2].
Prediction (prior):

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1; (2)

Update (posterior):

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
, (3)

where the transitional density

p(xk|xk−1) = pwk−1(xk − Fk−1xk−1)

and the likelihood

p(yk|xk) = pvk
(yk − hk(xk)).

The initial condition for the recursion is given by the pdf
of the initial state px0(x0)

△
= p(x0|y1:0). Knowledge of the

posterior distribution (3) enables one to compute an optimal
state estimate with respect to any criterion. For example,
the minimum mean-square error (MMSE) estimate is the
conditional mean of xk [2], [3]. Unfortunately, in general and
in our case, the conditional probability density function cannot
be determined analytically.

There are many different methods (filters) to compute the
approximation of the posterior. One popular approximation is
the so-called Extended Kalman Filter [2]–[10], that linearizes
the measurement function around the prior mean. EKF works
quite well in many applications, where the system model is
almost linear and the errors Gaussian but there are plenty of
examples where EKF does not work satisfactorily. For exam-
ple, in satellite positioning systems, EKF works quite well,
but in a positioning system based on the range measurements
of nearby base stations EKF may diverge [11].

There are also other Kalman Filter extensions to the nonlin-
ear problem, which try to compute the mean and covariance
of the posterior, for example Second Order Extended Kalman
Filter (EKF2) [3], [4], [11], Iterated Extended Kalman Filter
(IEKF) [3], [10] and Unscented Kalman Filters (UKF) [12],
[13]. These extensions usually (not always) give better perfor-
mance than the conventional EKF. However, if the true pos-
terior has multiple peaks, one-component filters that compute
only the mean and covariance do not achieve good perfor-
mance, and because of that we have to use more sophisticated
nonlinear filters. Here sophisticated nonlinear filter mean filter
that has some convergence results. Possible filters are e.g.
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a grid based method (e.g. Point Mass Filter) [2], [14]–[17],
Particle Filter [1], [2], [18], [19] and Gaussian Mixture Filter
(GMF) [6], [20], [21]. Some comparison of different filters
may be found for example in [22], [23].

In this paper we consider Gaussian Mixture Filter, also
called Gaussian Sum Filter, which is a filter whose approx-
imate prior and posterior densities are Gaussian Mixtures
(GMs), a convex combination of Gaussian densities. One
motivation to use GMF is that any continuous density function
px may be approximated as a density function of GM pgm as
closely as we wish in the Lissack-Fu distance sense, which is
also norm in L1(Rn)-space [21] [24, Chapter 18]:

∫
|px(x) − pgm(x)|dx. (4)

Because the set of all continuous functions, with compact
support is dense in L1(Rn) [25, Theorem 3.14], we can
approximate any density function px as a density function
of GM [26]. The outline of the conventional GMF algorithm
for the system (1) is given as Algorithm 1. In Algorithm 1

Algorithm 1 Gaussian mixture filter
Approximate initial state x0 as GM x+

0 .
for k = 1 to nmeas do
1) Prediction: Compute prior approximation x−k .
2) Approximate x−k as a new GM x̄−k if necessary.
3) Update: Compute GM posterior approximation x̄+

k .
4) Reduce the number of components of x̄+

k and get x+
k .

end for

all random variables x+
0 , x−k , x̄−k , x̄+

k , and x+
k are GMs and

approximations of the exact random variables x0
△
= x+

0,exact,
x−k,exact, x−k,exact, x+

k,exact, and x+
k,exact, respectively. This algo-

rithm stops at time tnmeas .
The major contribution of this paper is a new method to

approximate a Gaussian mixture as a Gaussian mixture, such
that the components have arbitrary small covariance matrices.
We call this method the Box Gaussian Mixture Approximation
(BGMA) (Section V). We show that BGMA converges weakly
to the original GM. One big advantage of BGMA compared to
other GM approximations [6], [20], [21] is that BGMA does
not require that the norm of the covariance matrices approach
zero when the number of mixture components increases. It is
sufficient that only parts of the covariance matrices approaches
zero when the number of mixture components increases. Thus,
BGMA subdivides only those dimensions where we get non-
linear measurements. For example, in positioning applications,
nonlinear measurements often depend only on the position. So,
using BGMA, it is possible to split only position dimension
into boxes instead of the whole state space, which contains
usually at least the position vector and the velocity vector.
This means that significantly fewer mixture components are
needed than in the previous GM approximations.

Another major contribution of this paper is the proof that
the general version of the Gaussian Mixture Filter converges
weakly to the exact posterior distribution. Especially, the
Box Gaussian Mixture Filter (BGMF), which is GMF filter

(Algorithm 1) that uses BGMA in Step 2, converges weakly
to the exact posterior distribution. In this work BGMF is a
generalization of the filter having the same name (BGMF) in
our earlier work [27].

An outline of the paper is as follows. In Section II, we
study the basics of the GM. In Section III, we give the
general algorithm of GMF, which is also the algorithm of
BGMF. In Section IV, we present the convergence results
of GMF. In Section V, we present the BGMA, show some
of its properties and that it converges weakly to the original
Gaussian (mixture). In Section VI, we combine the previous
sections and present BGMF. Finally in Section VII, we present
a small one-step simulation where we compare BGMF and a
particle filter [18].

II. GAUSSIAN MIXTURE

In this section, we define the Gaussian Mixture (GM)
distribution and present some of its properties, such as the
mean, covariance, linear transformation and sum. Because GM
is a convex combination of Gaussians, we first define the
Gaussian distribution.

Definition 1 (Gaussian): An n-dimensional random vari-
able xj is Gaussian if its characteristic function has the form

ϕxj (t) = exp
(

itT µj −
1
2
tT Σjt

)
, (5)

where µj ∈ Rn and Σj ∈ Rn×n is symmetric positive
semidefinite (Σj ≥ 0)1. We use the abbreviation

xj ∼ Nn(µj , Σj) or xj ∼ N(µj , Σj).

Gaussian random variable is well defined, that is the func-
tion (5) is a proper characteristic function [28, p.297].

Theorem 2 (Mean and Covariance of Gaussian): Assume
that xj ∼ N(µj , Σj). Then E(xj) = µj and V(xj) = Σj

Proof: We use the properties of the characteristic func-
tion [29, p.34] to get

E(xj) =
1
i

(
ϕ′xj

(t)|t=0

)T

=
1
i

exp
(

itT µj −
1
2
tT Σjt

)
(iµj − Σjt)

∣∣∣
t=0

= µj

and

V(xj) = E(xjx
T
j )− E(xj) E(xj)T

= −ϕ′′xj
(t)|t=0−µjµ

T
j

= −
[ (

(iµj − Σjt)(iµj − Σjt)T − Σj

)
· . . .

exp
(

itT µj −
1
2
tT Σjt

)]∣∣∣∣
t=0

− µjµ
T
j

= µjµ
T
j + Σj − µjµ

T
j

= Σj .

1If A ≥ B then both matrices A and B are symmetric and xT (A−B)x ≥ 0
for all x.
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Theorem 3 (Density function of non-singular Gaussian):
Assume that xj ∼ N(µj , Σj), where Σj > 0 (positive definite
matrix)2. Then the density function of the random variable x
is

pxj (ξ)
△
= Nµj

Σj
(ξ) =

exp
(
− 1

2‖ξ − µj‖2
Σ−1

j

)

(2π)
n
2
√

det(Σj)
,

where ‖ξ − µj‖2
Σ−1

j

= (ξ − µj)
T Σ−1

j (ξ − µj).

Proof: We know that the characteristic function ϕxj (t)
is absolutely integrable. Thus using the properties of the
characteristic function [29, p.33] we get

pxj(ξ) =
1

(2π)n

∫
exp

(
−itT ξ

)
ϕxj (t)dt

=
1

(2π)n

∫
exp

(
itT (µj − ξ)− 1

2
tT Σjt

)
dt

=

√
det(Σj)

(2π)
n
2

∫
exp

(
itT (µj − ξ)− 1

2 tT Σjt
)
dt

(2π)
n
2
√

det (Σj)

⋆=
exp

(
− 1

2 (ξ − µj)
T Σ−1

j (ξ − µj)
)

(2π)
n
2
√

det (Σj)

⋆ see [28, p.297].
Definition 4 (Gaussian Mixture): An n-dimensional ran-

dom variable x is an N -component Gaussian Mixture if its
characteristic function has the form

ϕx(t) =
N∑

j=1

αj exp
(

itT µj −
1
2
tT Σjt

)
, (6)

where µj ∈ Rn, Σj ∈ Rn×n is symmetric positive semidefi-
nite, αj ≥ 0, and

∑N
j=1 αj = 1. We use the abbreviation

x ∼ M(αj , µj , Σj)(j,N).

We show that GM is well defined, which means that func-
tion (6) is in fact a characteristic function. First, assume that
all matrices Σj are positive definite. We know that function

p(ξ) =
N∑

j=1

αj Nµj

Σj
(ξ), (7)

is a density function, that is
∫

p(ξ)dξ = 1 and p(ξ) ≥ 0 for
all ξ. Because

∫
exp(itT ξ)p(ξ)dξ =

∫
exp(itT ξ)




N∑

j=1

αj Nµj

Σj
(ξ)


 dξ

=
N∑

j=1

αj

∫
exp(itT ξ)Nµj

Σj
(ξ)dξ

(5)=
N∑

j=1

αj exp
(

itT µj −
1
2
tT Σjt

)
,

2If A > B then both matrices A and B are symmetric and xT (A−B)x > 0
for all x 6= 0.

function (6) is the characteristic function of a continuous n-
dimensional Gaussian Mixture. The density function of this
distribution is given in equation (7).

Now, let at least one of the covariance matrices Σj be
singular. Take ǫ > 0 and consider the positive definite
symmetric matrices Σǫ

j = Σj + ǫI. Then by what has been
proved,

ϕxǫ(t) =
N∑

j=1

αj exp
(

itT µj −
1
2
tT Σǫ

jt

)

is a characteristic function. Because function (6) is the limit
of characteristic functions

lim
ǫ→0

ϕxǫ(t) =
N∑

j=1

αj exp
(

itT µj −
1
2
tT Σjt

)
,

and it is continuous at t = 0, then this function (6) is a
characteristic function [28, p.298].

Theorem 5 (Mean and Covariance of mixture): Assume
that

ϕx(t) =
N∑

j=1

αjϕxj (t)

where E(xj) = µj ∈ Rn, V(xj) = Σj ∈ Rn×n, αj ≥ 0, and∑N
j=1 αj = 1. Then

E(x) =
N∑

j=1

αjµj
△
= µ and

V(x) =
N∑

j=1

αj

(
Σj + (µj − µ)(µj − µ)T

)
.

Proof: We use the properties of the characteristic func-
tion [29, p.34] to get

E(x) =
1
i

(ϕ′x(t)|t=0)
T

=
N∑

j=1

αj
1
i

(
ϕ′xj

(t)|t=0

)T

=
N∑

j=1

αjµj
△
= µ

and

V(x) = −E(x) E(x)T − ϕ′′x(t)|t=0

= −µµT +
N∑

j=1

αj

(
−ϕ′′xj

(t)|t=0

)

= −µµT +
N∑

j=1

αj

(
Σj + µjµ

T
j

)

=
N∑

j=1

αj

(
Σj + µjµ

T
j − µµT

)

=
N∑

j=1

αj

(
Σj + (µj − µ)(µj − µ)T

)
.
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Note that Theorem 5 does not assume that the distribution is
a Gaussian mixture, these results are valid for all mixtures.

Theorem 6 (Linear transformation and sum of GM):
Assume that an n-dimensional random variable

x ∼ M(αj , µj , Σj)(j,N)

and an m-dimensional random variable

v ∼ M(βk, rk, Rk)(k,M)

are independent. Define a random variable y = Hx+v, where
matrix H ∈ Rm×n. Then

y ∼ M(αj(l)βk(l), Hµj(l) + rk(l), HΣj(l)HT + Rk(l))(l,NM),

where j(l) = [(l − 1) mod N ]+1 and k(l) = ⌈ l
N ⌉.3 We also

use the abbreviation

y ∼ M(αjβk, Hµj + rk, HΣjHT + Rk)(j∗k,NM).

Proof: Since x and v are independent, also Hx and v are
independent.

ϕHx+v(t)
ind.= ϕHx(t)ϕv(t)

= E
(
exp

(
itT (Hx)

))
ϕv(t)

= E
(
exp

(
i
(
HT t

)T
x
))

ϕv(t)

= ϕx(HT t)ϕv(t)

=
N∑

j=1

αj exp
(

itT Hµj −
1
2
tT HΣjHT t

)
· . . .

M∑

k=1

βk exp
(

itT rk −
1
2
tT Rkt

)

=
NM∑

l=1

αj(l)βk(l) exp
(

itT
(
Hµj(l) + rk(l)

)
. . .

− 1
2
tT
(
HΣj(l)HT + Rk(l)

)
t

)
.

Corollary 7: Assume that an n-dimensional random vari-
able

x ∼ M(αj , µj , Σj)(j,N)

and
y = Ax + b,

where A ∈ Rm×n and b ∈ Rm. Then

y ∼ M(αj , Aµj + b, AΣjAT )(j,N).

Proof: Now b ∼ M(1, b, 0)(k,1). Constant random vari-
able b and x are independent, so using Theorem 6 we get

y ∼ M(αj , Aµj + b, AΣjAT )(j,N).

Note that if x ∼ N(µ1, Σ1) then x ∼ M(1, µj , Σj)(j,1). So
Theorem 6 and Corollary 7 hold also for Gaussian distribu-
tions.

3Ceiling function ⌈x⌉ = min {n ∈ Z|n ≥ x} and modulo function (a
mod n) = a + n⌈− a

n
⌉.

III. ALGORITHM OF GAUSSIAN MIXTURE FILTER

In this section, we give the algorithm of Gaussian Mix-
ture Filter for the system (1) (Algorithm 2). The subsec-
tions III-A–III-D present the details of this algoritm. Algo-
rithm 2 uses the following assumptions:

1) Initial state

x0 ∼ M(α+
i,0, µ

+
i,0, Σ

+
i,0)(i,n0)

is a continuous Gaussian Mixture, that is, Σ+
i,0 > 0 for

all i.
2) Errors are GMs

wk ∼ M(γj,k, w̄j,k, Qj,k)(j,nwk
) and

vk ∼ M(βj,k, v̄j,k, Rj,k)(j,nvk
),

where all Rj,k > 0.
3) Measurement functions are of the form

hk(x) = h̄k(x1:d) + H̄kx. (8)

This means that the nonlinear part h̄k(x1:d) only de-
pends on the first d dimensions (d ≤ nx). We assume
that functions h̄k(x1:d) are twice continuously differen-
tiable in Rd \ {s1, . . . , sns}.4

Algorithm 2 Gaussian mixture filter
Initial state at time t0: x+

0 ∼ M(α+
i,0, µ

+
i,0, Σ

+
i,0)(i,n0)

for k = 1 to nmeas do
1) Prediction (see Sec. III-A):

x−k ∼ M(α−i∗j,k, µ−i∗j,k, Σ−i∗j,k)(i∗j,n−
k

)

2) Approximate x−k as a new GM x̄−k if necessary (see
Sec. III-B):

x̄−k ∼ M(ᾱ−i,k, µ̄−i,k, Σ̄−i,k)(i,n̄−
k

)

3) Update (see Sec. III-C):

x̄+
k ∼ M(ᾱ+

i∗j,k, µ̄+
i∗j,k, Σ̄+

i∗j,k)(i∗j,n̄+
k

)

4) Reduce the number of components (see Sec. III-D):

x+
k ∼ M(α+

i,k, µ+
i,k, Σ+

i,k)(i,nk)

end for

A. Prediction, Step (1)

Prediction is based on Eq. (1a) and Thm. 6 (see also Eq. (2)).

x−k ∼ M(α−i∗j,k, µ−i∗j,k, Σ−i∗j,k)(i∗j,n−
k

),

where
n−k = nk−1nwk−1 ,

α−i∗j,k = α+
i,k−1γj,k−1,

µ−i∗j,k = Fk−1µ
+
i,k−1 + w̄j,k−1 and

Σ−i∗j,k = Fk−1Σ+
i,k−1Fk−1

T + Qj,k−1.

4For example, in positioning applications that are based on range measure-
ments and a constant velocity model nx = 6 (position+velocity), d = 3
(position) and si is position vector of the ith base station [11], [27]
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B. Approximate GM as a new GM, Step (2)

There are different methods to compute Step (2). Here we
present one conventional method. Another method, namely, the
Box Gaussian Mixture Approximation, is given in Section V.
The density function of a new GM approximation px̄−

k
is [20]

px̄−
k
(ξ) ∝

n̄−
k,g∑

i=1

px−
k
(ξ(i)

g )Nξ
(i)
g

cgI
(ξ), (9)

where the mean values ξ
(i)
g are used to establish a grid in the

region of the state space that contains the significant part of
the probability mass, n̄−k,g is the number of grid points and
cg > 0 is determined such that the error in the approximation,
e.g. the Lissack-Fu distance (4), is minimized. So

x̄−k ∼ M(ᾱ−i,k, µ̄−i,k, Σ̄−i,k)(i,n̄−
k

),

where

n̄−k = n̄−k,g,

ᾱ−i,k =
px−

k
(ξ(i)

g )
∑n̄−

k,g
i=1 px−

k
(ξ(i)

g )
,

µ̄−i,k = ξ(i)
g and

Σ̄−i,k = cgI.

It can be shown that px̄−
k
(x) converges almost everywhere

uniformly to the density function of x−k as the number of
components n̄−k increases and cg approaches zero [20], [21].
Moreover, the Lissack-Fu distance (4) of the approximation
converges to zero.

Step (2) is executed only when necessary. If it is not
necessary then x̄−k = x−k . A conventional criterion is to check
if some prior covariances do not satisfy inequality P−i < ǫI,
for some predefined ǫ, where P−i is the covariance of the ith
component [6, p.216]. Note that finding reasonable grid points
ξ
(i)
g and an optimal constant cg > 0 usually requires some

heavy computation.

C. Update, Step 3

The update Eq. (3) is usually computed approximately using
a bank of EKFs. In this paper we use that approximation. It
is possible to compute the update step using a bank of other
Kalman-type filters [30] or a bank of PFs [31]. Using the bank

of EKFs approximation we get

px̄+
k
(ξ) ∝ pvk

(yk − hk(ξ))px̄−
k
(ξ)

=
nvk∑

j=1

n̄−
k∑

i=1

βj,k Nv̄j,k

Rj,k
(yk − hk(ξ)) ᾱ−i,k N

µ̄−
i,k

Σ̄−
i,k

(ξ)

≈
nvk∑

j=1

n̄−
k∑

i=1

ᾱ−i,kβj,k N
µ̄−

i,k

Σ̄−
i,k

(ξ) · . . .

Nv̄j,k

Rj,k

(
yk − hk(µ̄−i,k)−Hi,k(ξ − µ̄−i,k)

)

=
nvk∑

j=1

n̄−
k∑

i=1

ᾱ−i,kβj,k N
µ̄−

i,k

Σ̄−
i,k

(ξ) · . . .

NHi,kξ
Rj,k

(
yk − hk(µ̄−i,k) + Hi,kµ̄−i,k − v̄j,k

)

Thm. 25=
nvk∑

j=1

n̄−
k∑

i=1

ᾱ−i,kβj,k N
µ̄+

i∗j,k

Σ̄+
i∗j,k

(ξ) · . . .

N
Hi,kµ̄−

i,k

Hi,kΣ̄−
i,k

HT
i,k

+Rj,k

(
yk − hk(µ̄−i,k) + Hi,kµ̄−i,k − v̄j,k

)
,

(10)

where Hi,k = ∂hk(ξ)
∂ξ

∣∣
ξ=µ̄−

i,k

. So

x̄+
k ∼ M(ᾱ+

i∗j,k, µ̄+
i∗j,k, Σ̄+

i∗j,k)(i∗j,n̄+
k

), (11)

where
n̄+

k = nvk
n̄−k ,

ᾱ+
i∗j,k =

ᾱ−i,kβj,k N
hk(µ̄−

i,k
)+v̄j,k

Hi,kΣ̄−
i,k

HT
i,k

+Rj,k
(yk)

∑nvk
j=1

∑n̄−
k

i=1 ᾱ−i,kβj,k N
hk(µ̄−

i,k
)+v̄j,k

Hi,kΣ̄−
i,k

HT
i,k

+Rj,k
(yk)

,

µ̄+
i∗j,k = µ̄−i,k + Ki∗j,k(yk − hk(µ̄−i,k)− v̄j,k),

Σ̄+
i∗j,k = (I−Ki∗j,kHi,k) Σ̄−i,k and

Ki∗j,k = Σ̄−i,kHT
i,k

(
Hi,kΣ̄−i,kHT

i,k + Rj,k

)−1

.

D. Reduce the number of components, Step 4
One major challenge when using GMF efficiently is keeping

the number of components as small as possible without losing
significant information. There are many ways to do so. We use
two different types of mixture reduction algorithms: forgetting
and merging [21], [30], [32].

1) Forgetting components: We re-index the posterior ap-
proximation x̄+

k Eq. (11) such that

x̄+
k ∼ M(ᾱ+

i,k, µ̄+
i,k, Σ̄+

i,k)(i,n̄+
k

),

where ᾱ+
i,k ≥ ᾱ+

i+1,k. Let ǫf = 1
2N be the threshold value. Let

n̄+
k,f be the index such that

n̄+
k,f∑

i=1

ᾱ+
i,k ≥ 1− ǫf

We forget all mixture components whose index i > n̄+
k,f and

after normalization we get x̄+
k,f. Now

x̄+
k,f ∼ M(ᾱ+

i,k,f, µ̄
+
i,k,f, Σ̄

+
i,k,f)(i,n̄+

k,f)
, (12)
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where

ᾱ+
i,k,f =

ᾱ+
i,k

∑n̄+
k,f

j=1 ᾱ+
j,k

, µ̄+
i,k,f = µ̄+

i,k and Σ̄+
i,k,f = Σ̄+

i,k.

2) Merging components: Our merging procedure is iter-
ative. We merge two components, say the i1th component
and the i2th component, into one component using moment
matching method if they are sufficiently similar, that is if (for
simplicity we suppress indices k and f) both

‖µ̄+
i1
− µ̄+

i2
‖ ≤ ǫm1 and (13a)

‖Σ̄+
i1
− Σ̄+

i2
‖ ≤ ǫm2 (13b)

inequalities hold. Here we assume that the threshold values
ǫm1 −→

N→∞
0 and ǫm2 −→

N→∞
0. The new component, which re-

places components i1 and i2, is a component whose weight,
mean and covariance matrix are

ᾱ+
i1,m = ᾱ+

i1
+ ᾱ+

i2

µ̄+
i1,m =

ᾱ+
i1

ᾱ+
i1,m

µ̄+
i1

+
ᾱ+

i2

ᾱ+
i1,m

µ̄+
i2

and

Σ̄+
i1,m =

ᾱ+
i1

ᾱ+
i1,m

(
Σ̄+

i1
+
(
µ̄+

i1
− µ̄+

i1,m

) (
µ̄+

i1
− µ̄+

i1,m

)T)
+ . . .

ᾱ+
i2

ᾱ+
i1,m

(
Σ̄+

i2
+
(
µ̄+

i2
− µ̄+

i1,m

) (
µ̄+

i2
− µ̄+

i1,m

)T)
,

respectively. After re-indexing (forgetting component i2) we
merge iteratively more components until there are no suffi-
ciently similar components, components that statisfy inequal-
ities (13). Herewith, after re-indexing, we get

x+
k ∼ M(α+

i,k, µ+
i,k, Σ+

i,k)(i,nk).

IV. CONVERGENCE RESULTS OF GMF

In this section, we present the convergence results of GMF.
First we present some well know convergence results.

Definition 8 (Weak convergence): Let x and xN , where
N ∈ N, be n-dimensional random variables. We say that xN

converges (weakly) to x if

FxN (ξ) −→
N→∞

Fx(ξ),

for all points ξ for which the cumulative density function
Fx(ξ) is continuous. We use the abbreviation

xN
w−→

N→∞
x.

Theorem 9: The following conditions are equivalent
1) xN

w−→
N→∞

x.
2) E(g(xN )) −→

N→∞
E(g(x)) for all continuous functions g

that vanish outside a compact set.
3) E(g(xN )) −→

N→∞
E(g(x)) for all continuous bounded

functions g.
4) E(g(xN )) −→

N→∞
E(g(x)) for all bounded measurable

functions g such that P(x ∈ C(g)) = 1, where C(g)
is the continuity set of g.

Proof: See, for example, the book [33, p.13].

Theorem 10 (Slutsky Theorems): 1) If

xN
w−→

N→∞
x,

and if f : Rn → Rk is such that P(x ∈ C(f)) = 1,
where C(f) is the continuity set of f , then

f(xN ) w−→
N→∞

f(x).

2) If {xN} and {yN} are independent, and if xN
w−→

N→∞
x

and yN
w−→

N→∞
y, then

[
xN

yN

]
w−→

N→∞

[
x
y

]
,

where x and y are taken to be independent.
Proof: See, for example, the book [33, p.39, p.42].

Now we show the convergence results of GMF (Algo-
rithm 2). The outline of the convergence results of GMF is
given in Algorithm 3. The details of the convergence results
are given in Sections IV-A–IV-D. The initial step of Algo-
rithm 3 is self-evident because we assume that the initial state
is a Gaussian mixture. Furthermore if our (exact) initial state
has an arbitrary density function it is possible to approximate
it as a Gaussian mixture such that the approximation weakly
converges to the exact initial state (Sec. III-B).

Algorithm 3 Outline of showing the convergence results of
the Gaussian mixture filter (Algorithm 2)

Initial state: Show that x+
0

w−→
N→∞

x+
0,exact.

for k = 1 to nmeas show
1) Prediction, Sec. IV-A:

x+
k−1

w−→
N→∞

x+
k−1,exact =⇒ x−k

w−→
N→∞

x−k,exact.

2) Approximation, Sec. IV-B:

x−k
w−→

N→∞
x−k,exact =⇒ x̄−k

w−→
N→∞

x−k,exact.

3) Update, Sec. IV-C:

x̄−k
w−→

N→∞
x−k,exact =⇒ x̄+

k
w−→

N→∞
x+

k,exact.

4) Reduce the number of components, Sec. IV-D:

x̄+
k

w−→
N→∞

x+
k,exact =⇒ x+

k
w−→

N→∞
x+

k,exact.

end for

A. Convergence results of Step 1 (prediction)

Here we show that if x+
k−1

w−→
N→∞

x+
k−1,exact then

x−k
w−→

N→∞
x−k,exact (Thm. 11).

Theorem 11 (Prediction convergence): If

x+
k−1

w−→
N→∞

x+
k−1,exact,
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wk−1 and {x+
k−1,N |N ∈ N}5 are independent, and wk−1 and

x+
k−1,exact are independent then

x−k
w−→

N→∞
x−k,exact.

Proof: Because wk−1 and {x+
k−1,N |N ∈ N} are indepen-

dent then wk−1 and {Fk−1x
+
k−1,N |N ∈ N} are independent.

From Thm. 10 we see that

Fk−1x
+
k−1

w−→
N→∞

Fk−1x
+
k−1,exact

and [
Fk−1x

+
k−1

wk−1

]
w−→

N→∞

[
Fk−1x

+
k−1,exact

wk−1

]
.

Because

x−k =
[

I I
] [ Fk−1x

+
k−1

wk−1

]
and

x−k,exact =
[

I I
] [ Fk−1x

+
k−1,exact

wk−1

]

it follows that
x−k

w−→
N→∞

x−k,exact.

B. Convergence results of Step 2 (approximation)

Here we show that if x−k
w−→

N→∞
x−k,exact then x̄−k

w−→
N→∞

x−k,exact.
It is enough to show that

Fx−
k
(ξ)− Fx̄−

k
(ξ) −→

N→∞
0,

for all ξ. If we use the conventional approximation method
see Sec. III-B and if we use the new method (BGMA) see
Thm. 21 and Corollary 22.

Furthermore, we require that the most of the covariance
matrices Σ̄−k,i,N of the components of our GM approximation
x̄−k,N are arbitrary small. That is if ǫ > 0 then there is N0

such that for all N > N0

d∑

j=1

(
Σ̄−k,i,N

)
j,j

< ǫ, (14)

for almost all i. Both the conventional approximation
(Sec. III-B) and BGMA (Sec. V and Corollary 20) satisfy
this requirement.

C. Convergence results of Step 3 (update)

Here we show that if x̄−k
w−→

N→∞
x−k,exact then x̄+

k
w−→

N→∞
x+

k,exact.

The distribution x̄+
k is computed from the prior approximation

x̄−k using the bank of EKF approximations (Sec. III-C). We use
the abbreviation x̄+,Bayes

k for the distribution that is obtained
from the prior approximation x̄−k using the exact update Eq. (3)
(see also Eq. (15)). First we show that if x̄−k

w−→
N→∞

x−k,exact then

5Usually we suppress the index N (parameter of GMF), that is x+
k−1,N

△
=

x+
k−1

.

x̄+,Bayes
k

w−→
N→∞

x+
k,exact (Thm. 12). After that it is enough to show

that

Fx̄+,Bayes
k

(ξ)− Fx̄+
k
(ξ) −→

N→∞
0,

for all ξ (Thm. 13).
Theorem 12 (Correct posterior convergence): Assume that

x̄−k
w−→

N→∞
x−k,exact,

and the density functions of x̄−k and x−k,exact are px̄−
k
(ξ) and

px−
k,exact

(ξ), respectively. Now

x̄
+,Bayes
k

w−→
N→∞

x+
k,exact.

Proof: Using the assumptions and Thm. 9 we get that
∫

p(yk|ξ)px̄−
k,N

(ξ)dξ −→
N→∞

∫
p(yk|ξ)px−

k,exact
(ξ)dξ,

where the likelihood p(yk|ξ) = pvk
(yk−hk(ξ)). Furthermore,

all these integrals are positive because

p(yk|ξ)px̄−
k,N

(ξ) > 0 and p(yk|ξ)px−
k,exact

(ξ) > 0,

for all ξ. Respectively, because a set {x |x < z} is open6, we
get that
∫ z

−∞
p(yk|ξ)px̄−

k,N
(ξ)dξ −→

N→∞

∫ z

−∞
p(yk|ξ)px−

k,exact
(ξ)dξ,

for all z. Combining these results we get that

Fx̄+,Bayes
k

(z) −→
N→∞

Fx+
k,exact

(z),

for all z, where

Fx̄+,Bayes
k

(z) =

∫ z

−∞ p(yk|ξ)px̄−
k
(ξ)dξ

∫
p(yk|ξ)px̄−

k
(ξ)dξ

and

Fx+
k,exact

(z) =

∫ z

−∞ p(yk|ξ)px−
k,exact

(ξ)dξ
∫

p(yk|ξ)px−
k,exact

(ξ)dξ
.

(15)

Theorem 13 (Bank of EKFs convergence): Let

Fx̄+
k
(z) =

∫ z

−∞ pEKF(yk|ξ)px̄−
k
(ξ)dξ

∫
pEKF(yk|ξ)px̄−

k
(ξ)dξ

and

Fx̄+,Bayes
k

(z) =

∫ z

−∞ p(yk|ξ)px̄−
k
(ξ)dξ

∫
p(yk|ξ)px̄−

k
(ξ)dξ

,

where the likelihood

p(yk|ξ) = pvk
(yk − hk(ξ))

and the bank of EKF likelihood approximations7 (see Eq. (10))

pEKF(yk|ξ) = pvk
(yk − hk(µ̄−i,k)−Hi,k(ξ − µ̄−i,k)).

Then
Fx̄+,Bayes

k
(ξ)− Fx̄+

k
(ξ) −→

N→∞
0.

6Here sign ′′ <′′ is interpreted elementwise.
7Note that current approximation is also a function of index i (see Eq. (10)).
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Proof: It is enough to show that
∫ ∣∣∣p(yk|ξ)− pEKF(yk|ξ)

∣∣∣px̄−
k
(ξ)dξ −→

N→∞
0.

Now∫ ∣∣∣p(yk|ξ)− pEKF(yk|ξ)
∣∣∣px̄−

k
(ξ)dξ

≤
nvk∑

j=1

n̄−
k∑

i=1

βj,kᾱ−i,k

∫ ∣∣∣Nv̄j,k

Rj,k
(z)−Nv̄j,k

Rj,k
(z̃i)
∣∣∣Nµ̄−

i,k

Σ̄−
i,k

(ξ)dξ

=
nvk∑

j=1

n̄−
k∑

i=1

βj,kᾱ−i,k√
det (2πRj,k)

· . . .
∫ ∣∣∣∣exp

(
−1

2
‖z‖2

R−1
j,k

)
− exp

(
−1

2
‖z̃i‖2

R−1
j,k

)∣∣∣∣N
µ̄−

i,k

Σ̄−
i,k

(ξ)dξ

=
nvk∑

j=1

n̄−
k∑

i=1

βj,kᾱ−i,k√
det (2πRj,k)

ǫi,j ,

where z = yk − hk(ξ), z̃i = yk − hk(µ̄−i,k) − Hi,k(ξ − µ̄−i,k)
and ǫi,j is
∫ ∣∣∣∣exp

(
−1

2
‖z‖2

R−1
j,k

)
− exp

(
−1

2
‖z̃i‖2

R−1
j,k

)∣∣∣∣N
µ̄−

i,k

Σ̄−
i,k

(ξ)dξ.

It is easy to see that

ǫi,j < 1. (16)

Based on the assumptions (see p. 4) we know that almost all
µ̄−i,k have a neighbourhood C̄i such that

∣∣ξT hk
′′
j (x)ξ

∣∣ ≤ cHξT

[
Id×d 0

0 0

]
ξ, for all ξ ∈ Rnx (17)

where cH is some constant, j ∈ {1, . . . , ny}, ny is the number
of measurements (length of vector y), d see p. 4 and x ∈
C̄i. We select C̄i such that it is as big as possible (union
of all possible sets). Especially we see that if x ∈ C̄i then[

x1:d

x̄

]
∈ C̄i, where x̄ ∈ Rnx−d is an arbitrary vector.

The index set I1 contains the index i if both inequalities (14)
and (17) hold, the rest of the indices belong to the index set
I2. Now∫

|p(yk|ξ)− pEKF(yk|ξ)|px̄−
k
(ξ)dξ

=
nvk∑

j=1

n̄−
k∑

i=1

βj,kᾱ−i,k√
det (2πRj,k)

ǫi,j ,

(16)
≤

nvk∑

j=1

∑

i∈I1

βj,kᾱ−i,k√
det (2πRj,k)

ǫi,j +
∑

i∈I2

ᾱ−i,k√
det
(
2πR̄k

) ,

where det
(
2πR̄k

)
= minj det (2πRj,k). Since almost all

indices belong to the index set I1,

∑

i∈I2

ᾱ−i,k√
det
(
2πR̄k

) −→N→∞
0.

Appendix C (Lemma 27) shows that ǫi,j −→
N→∞

0 when i ∈ I1.

D. Convergence results of Step 4 (reduce the number of
components)

Here we show that if x̄+
k

w−→
N→∞

x+
k,exact then x+

k
w−→

N→∞
x+

k,exact.

First we show that if x̄+
k

w−→
N→∞

x+
k,exact then x̄+

k,f
w−→

N→∞
x+

k,exact,
(Thm. 14), see Eq. (12).

Theorem 14 (Forgetting components): If

x̄+
k

w−→
N→∞

x+
k,exact

then

x̄+
k,f

w−→
N→∞

x+
k,exact.

(See Sec. III-D1.)
Proof: Take arbitrary ǫ > 0, then there is an n1 such that

|Fx+
k,exact

(ξ)− Fx̄+
k
(ξ)| ≤ ǫ

2
,

for all ξ when N > n1. Now

|Fx+
k,exact

(ξ)− Fx̄+
k,f

(ξ)|
= |Fx+

k,exact
(ξ) − Fx̄+

k
(ξ) + Fx̄+

k
(ξ)− Fx̄+

k,f
(ξ)|

≤ |Fx+
k,exact

(ξ) − Fx̄+
k
(ξ)|+ |Fx̄+

k
(ξ)− Fx̄+

k,f
(ξ)|

≤ ǫ

2
+

1
2N

≤ ǫ,

for all ξ ∈ Rnx , when N ≥ max(n1,
1
ǫ ). This completes the

proof (see Def. 8).
Theorem 15 (Merging components): If

x̄+
k,f

w−→
N→∞

x+
k,exact

then

x+
k

w−→
N→∞

x+
k,exact.

(See Sec. III-D2.)
Proof: Based on Thm. 14 it is enough to show that

|Fx̄+
k,f

(ξ)− Fx+
k
(ξ)| −→

N→∞
0,

for all ξ. Because all cumulative density functions are contin-
uous and

‖µ̄+
i1
− µ̄+

i1,m‖ −→
N→∞

0,

‖µ̄+
i2
− µ̄+

i1,m‖ −→
N→∞

0,

‖Σ̄+
i1
− Σ̄+

i1,m‖ −→
N→∞

0 and

‖Σ̄+
i2
− Σ̄+

i1,m‖ −→
N→∞

0

then

|Fx̄+
k,f

(ξ)− Fx+
k
(ξ)| −→

N→∞
0.

This completes the proof (see Def. 8).
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V. BOX GAUSSIAN MIXTURE APPROXIMATION

In this section, we define the Box Gaussian Mixture Ap-
proximation (BGMA) and present some of its properties.
Finally, we show that BGMA converges weakly to the original
distribution.

Definition 16 (BGMA): The Box Gaussian Mixture Ap-
proximation of x ∼ Nn(µ, Σ), note n

△
= nx, where Σ > 0,

is

xN ∼ M(αi, µi, Σi)(i,(2N2+1)d),

where the multi-index i ∈ Zd, with d ≤ n and ‖i‖∞ ≤ N2.
The parameters are defined as

αi =
∫

Ai

px(ξ)dξ,

µi =
∫

Ai

ξ
px(ξ)
αi

dξ, and

Σi =
∫

Ai

(ξ − µi)(ξ − µi)T px(ξ)
αi

dξ,

(18)

where the sets

Ai =
{
x
∣∣l(i) < A(x − µ) ≤ u(i)

}
,

constitute a partition of Rn. We assume that A =
[

A11 0
]
,

A11 ∈ Rd×d and

AΣAT = I. (19)

Here the limits l(i) and u(i) are

lj(i) =
{ −∞, if ij = −N2

ij

N − 1
2N , otherwise

,

uj(i) =
{ ∞, if ij = N2

ij

N + 1
2N , otherwise

.

Now we show that the assumption Eq. (19) enables feasible
computation time for the parameters of BGMA.

Theorem 17 (Parameters of BGMA): Let

xN ∼ M(αi, µi, Σi)(i,(2N2+1)d),

be the BGMA of x ∼ Nn(µ, Σ), where Σ > 0 (see Def. 16).
Then the parameters are

αi =
d∏

j=1

(Φ (uj(i))− Φ (lj(i))) ,

µi = µ + ΣAT ǫi, and

Σi = Σ− ΣAT ΛiAΣ,

where

Φ(x) =
∫ x

−∞
N0

1 (ξ)dξ,

Λi = diag(δi + diag(ǫiǫ
T
i )),

ǫi =
d∑

j=1

ej
e−

1
2 lj(i)

2 − e−
1
2uj(i)2

√
2π (Φ (uj(i))− Φ (lj(i)))

, and

δi =
d∑

j=1

ej
uj(i)e−

1
2uj(i)2 − lj(i)e−

1
2 lj(i)

2

√
2π (Φ (uj(i))− Φ (lj(i)))

,

where ej ∈ Rd is the jth column of the identity matrix I. The
sets Ai, and limits l(i) and u(i) are given in Def. 16.

Proof: We use the following block matrix notation

Σ =
[

Σ11 Σ12

Σ21 Σ22

]
, Ā =

[
A11 0

−DΣ21Σ−1
11 D

]
,

where D =
(
Σ22 − Σ21Σ−1

11 Σ12

)− 1
2 . Because Σ > 0 then

D > 0. We see that ĀΣĀT = I. We use the variable
transformation

x̄ = Ā(x− µ).

Because x ∼ N(µ, Σ) then x̄ ∼ N(0, I), and if x ∈ Ai then
x̄ ∈ Bi and vice versa. Here

Bi =

{
x̄

∣∣∣∣∣

[
l(i)
−∞

]
< x̄ ≤

[
u(i)
∞

]}
.

Now we compute parameters Eq. (18)

αi = P(x̄ ∈ Bi) =
d∏

j=1

(Φ (uj(i))− Φ (lj(i))) ,

µi = µ +
∫

Bi

Ā−1η
px̄(η)

αi
dη = µ + ΣAT ǫi,

Σi = Ā−1

∫

Bi

(η − ǫi)(η − ǫi)T px̄(η)
αi

dηĀ−T

= Σ− ΣAT ΛiAΣ.

Here we have used the knowledge that Ā−1 = ΣĀT .
In Fig. 1, we compare the density function of the Gaussian
distribution

x ∼ N2

([
0
0

]
,

[
13 12
12 13

])

and the density function of its BGMA with parameters d = 2,
N = 2 and

A =

[
1√
13

0

− 12
5
√

13

√
13
5

]
.

Fig. 1 shows the contour plots of the Gaussian and the BGMA
density functions such that 50% of the probability mass is
inside the innermost curve and 95% of the probability mass
is inside the outermost curve.

Theorem 18 shows that BGMA has the same mean and
covariance as the original distribution.

Theorem 18 (Mean and Covariance of BGMA): Let

xN ∼ M(αi, µi, Σi)(i,(2N2+1)d),

be the BGMA of x ∼ Nn(µ, Σ), where Σ > 0 (see Def. 16).
Then

E(xN ) = µ and V(xN ) = Σ.

Proof: Now

E(xN ) Thm. 5=
∑

i

αiµi
Def. 16=

∑

i

αi

∫

Ai

ξ
px(ξ)
αi

dξ

=
∑

i

∫

Ai

ξpx(ξ)dξ =
∫

ξpx(ξ)dξ = µ,
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0.95

0.5

Gaussian

BGMA

Fig. 1. Example of the BGMA

and

V(xN ) Thm. 5=
∑

i

αi

(
Σi + (µi − µ)(µi − µ)T

)

=
∑

i

αi

(
Σi + µi(µi − µ)T

)

Def. 16=
∑

i

αi

(∫

Ai

ξ(ξ − µi)T px(ξ)
αi

dξ + µi(µi − µ)T

)

Def. 16=
∑

i

αi

∫

Ai

ξξT px(ξ)
αi

dξ − µµT

=
∫

ξξT px(ξ)dξ − µµT = Σ.

Lemma 19 considers bounded boxes of Def. 16, i.e. boxes
with parameters d = n and ‖i‖∞ < N2. Lemma 19 shows
that a ball with radius rin = 1

2N‖A‖ fits inside all boxes, and

all boxes fit inside a ball whose radius is rout =
√

n
2N ‖A−1‖.

Note that the proportion of these radiuses rin
rout

= 1√
nκ(A)

does
not depend on the parameter N . Here κ(A) = ‖A‖‖A−1‖ is
the condition number of matrix A.

Lemma 19: Let

A =
{

x
∣∣∣− 1

2N
1 < Ax ≤ 1

2N
1
}

,

Rin =
{

x
∣∣∣‖x‖ ≤ rin

}
and Rout =

{
x
∣∣∣‖x‖ ≤ rout

}
,

where 1 is a vector allof whose elements are ones,

rin =
1

2N‖A‖ , rout =
√

n

2N
‖A−1‖

and A is non-singular. Now Rin ⊂ A ⊂ Rout.
Proof: If x ∈ Rin then

‖Ax‖ ≤ ‖A‖‖x‖ ≤ 1
2N

.

So Rin ⊂ A. If x ∈ A then

‖x‖ ≤ ‖Ax‖‖A−1‖ ≤ ‖ 1
2N

1‖‖A−1‖ ≤
√

n

2N
‖A−1‖.

So A ⊂ Rout.

Corollary 20 considers the center boxes (‖i‖∞ < N2) of
BGMA (Def. 16) and shows that the covariances of the first
d dimensions converge to zero when N approaches infinity.

Corollary 20: Covariances Σi are the same as in Def. 16.
Now

d∑

j=1

Σij,j −→
N→∞

0, when ‖i‖∞ < N2.

Proof: Because
d∑

j=1

Σij,j =
∫

Ai

‖ξ1:d − µi1:d‖2 px(ξ)
αi

dξ

Lem. 19
≤

∫

Ai

d

N2
‖A−1

11 ‖2 px(ξ)
αi

dξ

=
d

N2
‖A−1

11 ‖2

then
∑d

j=1 Σij,j −→
N→∞

0, for all ‖i‖∞ < N2.

Theorem 26 (see Appendix B) shows that the BGMA
converges weakly to the original distribution when the center
boxes are bounded. Theorem 21 uses this result to show that
BGMA converges weakly to the original distribution even if
all boxes are unbounded.

Theorem 21 (BGMA convergence, Gaussian case): Let

xN ∼ M(αi, µi, Σi)(i,(2N2+1)d)

be BGMA of x ∼ Nn(µ, Σ), where Σ > 0 (see Def. 16). Now

xN
w−→

N→∞
x.

Proof: First we define new random variables

x̄ = Ā(x− µ) ∼ N(0, I) and

x̄N = Ā(xN − µ) ∼ M(αi, Ā(µi − µ), ĀΣiĀT )(i,(2N2+1)d),

where Ā is defined in Thm. 17. Note that ĀΣiĀT are diagonal
matrices. It is enough to show that (because of Slutsky’s
Theorem 10)

x̄N
w−→

N→∞
x̄.

Let FN and F be the cumulative density functions correspond-
ing to the random variables x̄N and x̄. We have to show that

FN (x̄) −→
N→∞

F (x̄), ∀x̄ ∈ Rn. (20)

Because

FN (x̄) =
∑

i

αi

∫ x̄1

−∞
Nǫi

I−Λi
(η1)dη1

∫ x̄2

−∞
N0

I (η2)dη2

= GN (x̄1)
∫ x̄2

−∞
N0

I (η2)dη2,

F (x̄) =
∫ x̄1

−∞
N0

I (η1)dη1

∫ x̄2

−∞
N0

I (η2)dη2

= G(x̄1)
∫ x̄2

−∞
N0

I (η2)dη2,

where x̄ =
[

x̄1

x̄2

]
, it is enough to show that

x̄N1:d

w−→
N→∞

x̄1:d (21)
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Based on Thm. 26 (see Appendix B), Eq. (21) is true, which
implies the theorem.

Corollary 22 (BGMA convergence, GM case): Let

x̄j,N ∼ M(ᾱi, µ̄i, Σ̄i)(i,(2N2+1)d)

be the BGMA of xj ∼ Nn(µj , Σj), where Σj > 0 (see
Def. 16). Let x be the GM whose density function is

px(ξ) =
Nx∑

j=i

αj Nµj

Σj
(ξ).

and xN be the GM whose density function is

pxN (ξ) =
Nx∑

j=i

αjpx̄j,N (ξ).

Now

xN
w−→

N→∞
x.

Proof: Take arbitrary ǫ > 0, then there are nj,
j = 1, . . . , Nx such that (Thm. 21)

|Fxj (ξ)− Fx̄j,Nj
(ξ)| ≤ ǫ, (22)

for all j and ξ, when Nj > nj . Now

|Fx(ξ)− FxN (ξ)| =
∣∣∣

Nx∑

j=1

αj

(
Fxj (ξ)− Fxj,N (ξ)

) ∣∣∣

≤
Nx∑

j=1

αj |Fxj (ξ) − Fxj,N (ξ)|

(22)
≤

Nx∑

j=1

αjǫ = ǫ,

for all ξ, when N > maxj{nj}.

VI. BOX GAUSSIAN MIXTURE FILTER

The Box Gaussian Mixture Filter (BGMF) is a GMF
(Sec. III) that approximates the prior x−k as a new GM
(Step 2 in Algorithm 2) using BGMA (Sec. V) separately for
each component of the prior. Section IV shows that BGMF
converges weakly to the exact posterior distribution.

VII. SIMULATIONS

In the simulations we consider only the case of a single

time step. Our state x =
[

ru
vu

]
consists of the 2D-position

vector ru and the 2D-velocity vector vu of the user. The prior
distribution is

x ∼ N







100
10
10
10


 ,




90000 0 0 0
0 7500 0 2500
0 0 1000 0
0 2500 0 7500





 ,

and the current measurement (see Eq. (8)) is



500
0
0
0


 =




‖ru‖
0
0
0


+




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


x + v,

where v is independent of x and

v ∼ N







0
0
0
0


 ,




104 0 0 0
0 103 0 0
0 0 1 0
0 0 0 1





 .

So now d = 2 and n = 4 (see Def. 16). The current posterior
of the 2D-position is shown in Fig. 2. We see that the posterior
distribution is multimodal.

−1000

−500 

0    

500  
700  

1000 

−200

0   

200 

0  

0.5

1  

r
2

r
1

Fig. 2. The posterior of the position.

Now we compute the posterior approximations using BGMF
(Algorithm 2 steps (2) and (3)) and a Particle Filter [18].
BGMF uses BGMA with parameters N ∈ {0, 1, 2, . . . , 9} ;
the corresponding numbers of posterior mixture components
are (Def. 16)

nBGMF ∈ {1, 9, 81, . . . , 26569} .

The numbers of particles in the Particle Filter are

nPF ∈
{
22 · 100, 23 · 100, . . . , 217 · 100

}
.

We compute error statistics

|P (xtrue ∈ C)− P (xapp. ∈ C)|,

where the set C =
{
x
∣∣∣ |eT

1 x− 600| ≤ 100
}

(see Fig. 2). We
know that P (xtrue ∈ C) ≈ 0.239202. These error statistics are
shown as a function of CPU time in Fig. 3. Thm. 9 shows
that these error statistics converge to zero when the posterior
approximation converges weakly to the correct posterior.

Fig. 3 is consistent with the convergence results. It seems
that the error statistics of both BGMF and PF converge to
zero when the number of components or particles increase.
We also see that in this case 210 · 100 ≈ 1e5 particles in
PF are definitely too few. However, BGMF gives promising
results with only 81 components (N = 2) when CPU time is
significantly less than one second, which is good considering
real time implementations.

VIII. CONCLUSION

In this paper, we have presented the Box Gaussian Mixture
Filter (BGMF), which is based on Box Gaussian Mixture
Approximation (BGMA). We have presented the general form
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Error

PF

BGMF

N=0 (EKF)
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n=8e5
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Fig. 3. Simulation results of BGMF and PF.

of Gaussian Mixture Filters (GMF) and we have shown that
GMF converges weakly to the correct posterior at given time
instant. BGMF is a GMF so we have shown that BGMF
converges weakly to the correct posterior at given time in-
stant. We have illustrated this convergence result with a tiny
example in which BGMF outperforms a basic particle filter.
The assumptions of BGMF fit very well in positioning and
previous work [27] shows that BGMF is feasible for real
time positioning implementations. BGMF also has smaller
computational and memory requirements than conventional
GMFs, because it splits only those dimensions where we get
nonlinear measurements.

APPENDIX A
PRODUCT OF TWO NORMAL DENSITIES.

The aim of this appendix is to compute the product of two
Gaussian densities (Theorem 25).

Lemma 23: If A > 0 (s.p.d.) then

‖a±A−1b‖2
A = aT Aa± 2bT a + bT A−1b.

Proof:

‖a±A−1b‖2
A =

(
a±A−1b

)T
A
(
a±A−1b

)

= aT Aa± aT b± bT a + bT A−1b

= aT Aa± 2bT a + bT A−1b

Lemma 24: If Σ1, Σ2 > 0 then

‖x− µ‖2
Σ−1

1
+ ‖y −Hx‖2

Σ−1
2

= ‖x− µ̄‖2
Σ−1

3
+ ‖y −Hµ‖2

Σ−1
4

,

where

µ̄ = µ + K(y −Hµ),
Σ3 = (I−KH)Σ1,

K = Σ1HT Σ−1
4 , and

Σ4 = HΣ1HT + Σ2.

Proof:

‖x− µ‖2
Σ−1

1
+ ‖y −Hx‖2

Σ−1
2

Lem. 23= xT (Σ−1
1 + HT Σ−1

2 H)x − 2(µT Σ−1
1 + yT Σ−1

2 H)x

+ µT Σ−1
1 µ + yT Σ−1

2 y
Lem. 23= ‖x− Cc‖2

C−1 − cT Cc + µT Σ−1
1 µ + yT Σ−1

2 y

= ‖x− µ̄‖2
Σ−1

3
+ ‖y −Hy‖2

Σ−1
4

,

where c = Σ−1
1 µ + HT Σ−1

2 y,

C = (Σ−1
1 + HT Σ−1

2 H)−1

⋆1= Σ1 − Σ1HT (HΣ1HT + Σ2)−1HΣ1

= (I−KH)Σ1 = Σ3,

in step ⋆1 we use the matrix inversion lemma [34, p.729].

Cc = (I−KH)Σ1(Σ−1
1 µ + HT Σ−1

2 y)

= (I−KH)µ + (I−KH)Σ1HT Σ−1
2 y

= (I−KH)µ + Σ1HT Σ−1
2 y −K(Σ4 − Σ2)Σ−1

2 y

= (I−KH)µ + Σ1HT Σ−1
2 y − Σ1HT Σ−1

2 y + Ky

= µ + K(y −Hµ) = µ̄

and

cT Cc = (Σ−1
1 µ + HT Σ−1

2 y)T ((I−KH)µ + Ky)

= (µT Σ−1
1 + yT Σ−1

2 H)((I −KH)µ + Ky)

= µT (Σ−1
1 −HT Σ−1

4 H)µ + µT HT Σ−1
4 y . . .

+ yT (Σ−1
2 H− Σ−1

2 HKH)µ + yT Σ−1
2 HKy

(23)= µT (Σ−1
1 −HT Σ−1

4 H)µ + µT HT Σ−1
4 y . . .

+ yT Σ−1
4 Hµ + yT (Σ−1

2 − Σ−1
4 )y

= −(yT Σ−1
4 y − 2µT HT Σ−1

4 y + µT HT Σ−1
4 Hµ) . . .

+ yT Σ−1
2 y + µT Σ−1

1 µ

= −‖y −Hy‖2
Σ−1

4
+ yT Σ−1

2 y + µT Σ−1
1 µ.

Σ−1
2 HK = Σ−1

2 − Σ−1
4 (23)

Theorem 25 (Product of two Gaussians): If Σ1, Σ2 > 0
then

Nµ
Σ1

(x)NHx
Σ2

(y) = Nµ̄
Σ3

(x)NHµ
Σ4

(y),

where

µ̄ = µ + K(y −Hµ),
Σ3 = (I−KH)Σ1,

K = Σ1HT Σ−1
4 , and

Σ4 = HΣ1HT + Σ2.
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Proof:

Nµ
Σ1

(x)NHx
Σ2

(y)

=
exp

(
− 1

2‖x− µ‖2
Σ−1

1

)

(2π)
nx
2
√

det(Σ1)

exp
(
− 1

2‖y −Hx‖2
Σ−1

2

)

(2π)
ny
2
√

det(Σ2)

Lem. 24=
exp

(
− 1

2‖x− µ̄‖2
Σ−1

3

)
exp

(
− 1

2‖y −Hµ‖2
Σ−1

4

)

(2π)
nx
2 (2π)

ny
2
√

det(Σ1) det(Σ2)

(24)=
exp

(
− 1

2‖x− µ̄‖2
Σ−1

3

)

(2π)
nx
2
√

det(Σ3)

exp
(
− 1

2‖y −Hµ‖2
Σ−1

4

)

(2π)
ny
2
√

det(Σ4)

= Nµ̄
Σ3

(x)NHµ
Σ4

(y)

where nx and ny are dimension of x and y, respectively.

det(Σ1) det(Σ2)

= det
([

Σ1 0
0 Σ2

])

= det
([

I 0
H I

] [
Σ1 0
0 Σ2

] [
I HT

0 I

])

= det
([

Σ1 Σ1HT

HΣ1 HΣ1HT + Σ2

])

= det
([

I K
0 I

] [
Σ3 0

HΣ1 Σ4

])

= det(Σ3) det(Σ4)

(24)

APPENDIX B
BGMA CONVERGENCE WHEN d = n

Theorem 26 (BGMA convergence when d = n): Let

xN ∼ M(αi, µi, Σi)(i,(2N2+1)d)

be the BGMA of x ∼ Nn(µ, Σ), where Σ > 0 (see Def. 16).
We assume that d = n. Now

xN
w−→

N→∞
x.

Proof: Let FN and F be the cumulative density functions
corresponding to the random variables xN and x. We have to
show that

FN (x) −→
N→∞

F (x), ∀x ∈ Rn. (25)

Let x ∈ Rn be an arbitrary vector whose components are xj ,
and define the index sets

IN(x) = {i|µi ≤ x and ‖i‖∞ < N2},
OUT (x) = {i|µi � x and ‖i‖∞ < N2},
OUTj(x) = {i|(µi)j > xj and ‖i‖∞ < N2} and

OUT l
j(x) =

{i|lrin < (µi)j − xj ≤ (l + 1)rin and ‖i‖∞ < N2},
where rin = 1

2N‖A‖ and less than or equal sign ′′ ≤′′ is
interpreted elementwise. First we show that

∑

i∈IN(x)

αi → F (x). (26)

Now

F (x− 2rout1)− ǫedge ≤
∑

j∈IN(x)

αj ≤ F (x + 2rout1),

where rout =
√

n
2N ‖A−1‖ and

ǫedge = P


x ∈

⋃

‖i‖∞=N2

Ai


 .

We see that rout −→
N→∞

0 and ǫedge −→
N→∞

0. Using these results
and the continuity of the cumulative density function F (x)
we see that equation (26) holds. So equation (25) holds if

ǫN (x) = FN (x)−
∑

i∈IN(x)

αi −→
N→∞

0, ∀x ∈ Rn. (27)

Now we show that this equation (27) holds. We find upper
and lower bounds of ǫN (x). The upper bound of ǫN(x) is

ǫN (x) =
∫

ξ≤x

pxN (ξ)dξ −
∑

i∈IN(x)

αi

≤ ǫedge +
∫

ξ≤x

∑

i∈OUT (x)

αi Nµi

Σi
(ξ)dξ

≤ ǫedge +
n∑

j=1

∫

ξj≤xj

∑

i∈OUTj (x)

αi Nµi

Σi
(ξ)dξ

= ǫedge + n

∞∑

l=0

∫

ξj≤xj

∑

i∈OUT l
j
(x)

αi Nµi

Σi
(ξ)dξ

≤ ǫedge + n

∞∑

l=0

∫

ξj≤xj

∑

i∈OUT l
j (x)

αi Nxj+lrin

r2
out

(ξj)dξj

≤ ǫedge + n

∞∑

l=0

∫

y≤0

N
l

rin
rout

1 (y)dyαmax

(29)
≤ ǫedge + n

(
κ(A)

√
2πn + 2
4

)
αmax,

(28)

where

αmax = sup
j,l




∑

i∈OUT l
j
(x)

αi




≤ sup
j,c∈R

(P (|xj − c| ≤ 4rout)) .
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and
∞∑

l=0

∫

y≤0

N
l

rin
rout

1 (y)dy

=
∞∑

l=0

∫

y≤0

exp
(
− y2

2 + l rin
rout

y − 1
2

(
l rin
rout

)2
)

√
2π

dy

≤
∞∑

l=0

exp

(
−1

2

(
l
rin

rout

)2
)∫

y≤0

exp
(
− y2

2

)

√
2π

dy

=
1
2

∞∑

l=0

exp

(
−1

2

(
l
rin

rout

)2
)

≤ 1
2

(
1 +

∫ ∞

0

exp

(
−1

2

(
l
rin

rout

)2
)

dl

)

Lem. 19=

(
κ(A)

√
2πn + 2
4

)
.

(29)

The lower bound of ǫN (x) is

ǫN (x) =
∫

ξ≤x

pxk
(ξ)dξ −

∑

i∈IN(x)

αi

≥ −
∫

ξ�x

∑

i∈IN(x)

αi Nµi

Σi
(ξ)dξ

≥ −
n∑

j=1

∫

ξj>xj

∑

i∈IN(x)

αi Nµi

Σi
(ξ)dξ

≥ −n

−1∑

l=−∞

∫

ξj>xj

Nxj+(l+1)rin

r2
out

(ξj)dξjαmax

(29)
≥ −n

(
κ(A)

√
2πn + 2
4

)
αmax

(30)

So from equations (28) and (30) we get that

|ǫN (x)| ≤ ǫedge + n

(
κ(A)

√
2πn + 2
4

)
αmax,

because ǫedge −→
N→∞

0 and αmax −→
N→∞

0 then ǫN(x) −→
N→∞

0. Now
using Eq. (26) we get

FN (x) → F (x), ∀x ∈ Rn.

APPENDIX C
LEMMA FOR UPDATE STEP

Lemma 27: Let ǫi,j =
∫

⋆ dx, where8

⋆ = Nµi

Σi
(x)
∣∣∣∣exp

(
−1

2
‖z‖2

R−1
j

)
− exp

(
−1

2
‖z̃i‖2

R−1
j

)∣∣∣∣ ,

z = y − h(x), z̃i = y − h(µi) − h′(µi)(x − µi), i ∈ I1 (see
Thm. 13). Now

ǫi,j −→
N→∞

0.

8Here we simplify a little bit our notation.

Proof: First we define sets Ci,k ⊂ C̄i which become
smaller when N becomes larger.

Ci,k =
{

x

∣∣∣∣
∥∥[ Id×d 0

]
(x− µi)

∥∥ ≤ 1
k

}
,

where i ∈ I1, k > kmin and

kmin = max
j

(√
nycH(3

√
‖Rj‖‖R−1

j ‖+ 2)
2

,
√
‖R−1

j ‖
)

.

(31)

Because Ci,k ⊂ C̄i the Hessian matrices h1
′′
j (x) are bounded

when x ∈ Ci,k. So there is a constant cH such that (17)

∣∣ξT h′′j (x)ξ
∣∣ ≤ cHξT

[
Id×d 0

0 0

]
ξ, (32)

where j ∈ {1, . . . , ny}.
Now

ǫi,j =
∫

Ci,k

⋆ dx +
∫

∁Ci,k

⋆ dx. (33)

We show that
∫

Ci,k
⋆ dx−→

k→∞
0 and

∫
∁Ci,k

⋆ dx −→
N→∞

0 for all

k. We start to approximate integral
∫

Ci,k
⋆ dx, and our goal is

to show that
∫

Ci,k
⋆ dx−→

k→∞
0. Now

∫

Ci,k

⋆ dx =
∫

Ci,k

Nµi

Σi
(x)|fi,j(x)|dx, (34)

where

fi,j(x) = exp
(
−1

2
‖z‖2

R−1
j

)
− exp

(
−1

2
‖z + ζi‖2

R−1
j

)
,

ζi = h(x)− h(µi)− h′(µi)(x− µi).
(35)

Using Taylor’s theorem we get

ζi =
ny∑

j=1

ej
1
2
(x − µi)T h′′j (x̄j)(x− µi),

where x̄j ∈ Ci,k for all j ∈ {1, . . . , ny} and ej is the jth
column of the identity matrix Iny×ny . Now

‖ζi‖ ≤
ny∑

j=1

∣∣∣∣
1
2
(x− µi)T h′′j (x̄j)(x− µi)

∣∣∣∣

(32)
≤

ny∑

j=1

cH

2

∥∥[ Id×d 0
]
(x− µi)

∥∥2

x∈Ci,k

≤ nycH

2k2
,

(36)

where k > kmin. So ‖ζi‖ −→
k→∞

0, for all i ∈ I1 when x ∈ Ci,k.
Now we start to approximate fi,j(x), our goal being Eq. (44).
We divide the problem into two parts, namely, ‖z‖2

R−1
j

≥ k2

and ‖z‖2
R−1

j

< k2. First we assume that ‖z‖2
R−1

j

≥ k2. Now

‖z‖2 ≥
‖z‖2

R−1
j

‖R−1
j ‖ ≥ k2

‖R−1
j ‖

(31)
> 1 (37)
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and using Eq. (31), Eq. (36) and Eq. (37) we get

‖ζi‖≤min
j

(
1, ‖z‖, 1

3
√
‖Rj‖‖R−1

j ‖

)
. (38)

Now
∣∣∣∣‖z + ζi‖2

R−1
j

− ‖z‖2
R−1

j

∣∣∣∣

=
∣∣∣∣2zT R−1

j ζi + ‖ζi‖2
R−1

j

∣∣∣∣
≤ (2‖z‖+ ‖ζi‖) ‖R−1

j ‖‖ζi‖
(38)
≤ 3‖z‖‖R−1

j ‖‖ζi‖
(40)
≤ 3

√
‖Rj‖

√
‖z‖2

R−1
j

‖R−1
j ‖‖ζi‖

(38)
≤
√
‖z‖2

R−1
j

(‖z‖2
R−1

j

≥k2>1)

≤ 1
k
‖z‖2

R−1
j

.

(39)

Here we used the inequality

‖z‖2 = zT R−
1
2

j RjR
− 1

2
j z

≤ ‖Rj‖‖R−
1
2

j z‖2 = ‖Rj‖‖z‖2
R−1

j

.
(40)

So when ‖z‖2
R−1

j

≥ k2 we can approximate Eq. (35) as follows

fi,j(x)

≤ exp
(
−1

2
‖z‖2

R−1
j

)
+ exp

(
−1

2
‖z + ζi‖2

R−1
j

)
,

(39)
≤ exp

(
−1

2
‖z‖2

R−1
j

)
+ exp

(
−k − 1

2k
‖z‖2

R−1
j

)

‖z‖2
R−1

j

≥k2

≤ 2 exp
(
−k2 − k

2

)
.

(41)

Now we assume that ‖z‖2
R−1

j

< k2, then

∣∣∣∣‖z + ζi‖2
R−1

j

− ‖z‖2
R−1

j

∣∣∣∣

=
∣∣∣∣2zT R−1

j ζi + ‖ζi‖2
R−1

j

∣∣∣∣
(40)
≤
(

2
√
‖Rj‖k + ‖ζi‖

)
‖R−1

j ‖‖ζi‖
(36)
≤
(

2
√
‖Rj‖k + ‖ζi‖

)
‖R−1

j ‖nycH

2k2

(38)
≤
(

2
√
‖Rj‖k + 1

)
‖R−1

j ‖nycH

2k2

≤ 2cmax
1
k
,

(42)

where cmax = maxj

(
2
√
‖Rj‖+ 1

)
‖R−1

j ‖nycH
4 . So when

‖z‖2
R−1

j

< k2, we can approximate Eq. (35) as follows

fi,j(x) ≤
∣∣∣∣1− exp

(
1
2
‖z‖2

R−1
j

− 1
2
‖z + ζi‖2

R−1
j

)∣∣∣∣
(42)
≤ exp

(
cmax

1
k

)
− 1.

(43)

Combining these results we get that if k > kmin, then

fi,j(x) ≤ max
(

2 exp
(
−k2 − k

2

)
, . . .

exp
(

cmax
1
k

)
− 1
) (44)

Using this result we get (Eq. (34))
∫

Ci,k

⋆ dx =
∫

Ci,k

Nµi

Σi
(x)|fi,j(x)|dx,

≤ max
(

2 exp
(
−k2 − k

2

)
, exp

(
cmax

1
k

)
− 1
) (45)

and then
∫

Ci,k
⋆ dx−→

k→∞
0.9

Finally we approximate the second integral
∫

∁Ci,k
⋆ dx of

Eq. (33) and our goal is to show that
∫

∁Ci,k
⋆ dx −→

N→∞
0, for

all k. Now
∫

∁Ci,k

⋆ dx ≤
∫

∁Ci,k

Nµi

Σi
(x)dx

= P(x ∈ ∁Ci,k)

= P
(∥∥[ Id×d 0

]
(x− µi)

∥∥ >
1
k

)
.

We know that (see Sec. IV-B, Sec. III-B (conventional approx-
imation) and Corollary 20 (BGMA))

d∑

j=1

(Σi)j,j −→
N→∞

0, ∀i ∈ I2. (46)

Using this information, Chebyshev’s inequality and

[
Id×d 0

]
(x − µi) ∼ N

(
0, (Σi)(1:d,1:d)

)
,

we see that
∫

∁Ci,k
⋆ dx −→

N→∞
0 for all k and i ∈ I1. Collecting

these results we get Eq. (33) ǫi,j −→
N→∞

0.
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9Actually it is straightforward to see that this integral converges to zero
because fi,j(µi) = 0 and function fi,j(x) is continuous. However based on
Eq. (44) we have some idea of the speed of convergence.
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[16] N. Sirola and S. Ali-Löytty, “Local positioning with parallelepiped mov-
ing grid,” in Proceedings of 3rd Workshop on Positioning, Navigation
and Communication 2006 (WPNC’06), Hannover, March 16th 2006, pp.
179–188.

[17] N. Sirola, “Nonlinear filtering with piecewise probability densities,”
Tampere University of Technology, Research report 87, 2007.

[18] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[19] D. Crisan and A. Doucet, “A survey of convergence results on particle
filtering methods for practitioners,” IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 3, pp. 736–746, March 2002.

[20] D. L. Alspach and H. W. Sorenson, “Nonlinear bayesian estimation
using gaussian sum approximations,” IEEE Transactions on Automatic
Control, vol. 17, no. 4, pp. 439–448, Aug 1972.

[21] H. W. Sorenson and D. L. Alspach, “Recursive Bayesian estimation
using Gaussian sums,” Automatica, vol. 7, no. 4, pp. 465–479, July
1971.

[22] T. Lefebvre, H. Bruyninckx, and J. De Schutter, “Kalman filters for non-
linear systems: a comparison of performance,” International Journal of
Control, vol. 77, no. 7, May 2004.
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