
Pia Niemelä
From Legos and Logos to Lambda
A Hypothetical Learning Trajectory for Computational Thinking

Julkaisu 1565 �‡ Publication 1565

Tampere 2018

Tampereen teknillinen yliopisto. Julkaisu 1565
Tampere University of Technology. Publication 1565

Pia Niemelä

From Legos and Logos to Lambda
A Hypothetical Learning Trajectory for Computational Thinking

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Festia Building, Auditorium Pieni sali 1,
at Tampere University of Technology, on the 14th of September 2018, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2018

Doctoral candidate: Pia Niemelä

Pervasive Computing
Computing and Electrical Engineering
Tampere University of Technology
Finland

Supervisor: Professor Hannu-Matti Järvinen
Pervasive Computing
Computing and Electrical Engineering
Tampere University of Technology
Finland

Instructors: Professor Petri Ihantola
Big Data Learning Analytics
Department of Education
University of Helsinki
Finland

Professor Petri Nokelainen
Industrial and Information Management
Business and Built Environment
Tampere University of Technology
Finland

Pre-examiners: Professor Mike Joy
University of Warwick
The United Kingdom

Professor Arnold Pears
KTH Royal Institute of Technology
Sweden

Opponent: Professor Erkki Sutinen
Interaction Design Department of Information Technology
University of Turku
Finland

ISBN 978-952-15-4183-4 (printed)
ISBN 978-952-15-4187-2 (PDF)
ISSN 1459-2045

Abstract

This thesis utilizes design-based research to examine the integration of computational
thinking and computer science into the Finnish elementary mathematics syllabus. Al-
though its focus is on elementary mathematics, its scope includes the perspectives of
students, teachers and curriculum planners at all levels of the Finnish school curriculum.
The studied artifacts are the 2014 Finnish National Curriculum and respective learning
solutions for computer science education. The design-based research (DBR) mandates
educators, developers and researchers to be involved in the cyclic development of these
learning solutions. Much of the work is based on an in-service training MOOC for Finnish
mathematics teachers, which was developed in close operation with the instructors and
researchers. During the study period, the MOOC has been through several iterative
design cycles, while the enactment and analysis stages of the 2014 Finnish National
Curriculum are still proceeding.

The original contributions of this thesis lie in the proposed model for teaching compu-
tational thinking (CT), and the clari�cation of the most crucial concepts in computer
science (CS) and their integration into a school mathematics syllabus. The CT model
comprises the successive phases of abstraction, automation and analysis interleaved with
the threads of algorithmic and logical thinking as well as creativity. Abstraction implies
modeling and dividing the problem into smaller sub-problems, and automation making
the actual implementation. Preferably, the process iterates in cycles, i.e., the analysis
feeds back such data that assists in optimizing and evaluating the e�ciency and elegance
of the solution. Thus, the process largely resembles the DBR design cycles. Test-driven
development is also recommended in order to instill good coding practices.

The CS fundamentals are function, variable, and type. In addition, the control �ow of
execution necessitates control structures, such as selection and iteration. These structures
are positioned in the learning trajectories of the corresponding mathematics syllabus
areas of algebra, arithmetic, or geometry. During the transition phase to the new syllabus,
in-service mathematics teachers can utilize their prior mathematical knowledge to reap
the bene�ts of ‘near transfer’. Successful transfer requires close conceptual analogies, such
as those that exist between algebra and the functional programming paradigm.

However, the integration with mathematics and the utilization of the functional paradigm
are far from being the only approaches to teaching computing, and it might turn out
that they are perhaps too exclusive. Instead of the grounded mathematics metaphor,
computing may be perceived as basic literacy for the 21st century, and as such it could
be taught as a separate subject in its own right.

iii

Preface

My family used to play a lot together, especially games involving strategy. In addition
to games, my Mom felt compelled to foster our analytical thinking by providing us with
‘developing toys’, such as puzzles and lego. Mom was also a determined fan of mathematics,
and we children almost grew tired of hearing about all of its bene�ts. Nevertheless, she
still managed to sow the seed of interest. Computing grew from another source; my �rst
contact with a computer was due to my uncle and his brand-new computer, a Spectrum.
I can well remember sitting in front of a tv display screen with my cousin overwhelmed
about opening scenes where computers would change the world, as they inexorably did.

After graduating from the Department of Technical Physics (�) in Helsinki’s Aalto
University, I started working for Nokia as a software engineer, Java being my ‘logo’, the
ultimate seedbed of computational thinking. The shift from natural sciences towards
software profession had begun, yet the road ahead was going to be bumpy. After Nokia laid
o� thousands of engineers, including myself, I had once-in-a-lifetime chance to ful�ll my
other calling: pedagogy. The transition from being a scienti�c positivist to a relativistic
humanist was not easy, but I eventually graduated as a class- and mathematics teacher
in 2015 from University of Tampere. I have worked as a progressively inquiring teacher
ever since, alternating between teaching and research.

This cross-disciplinary thesis synthesizes the accumulated experiences engraved on the
palms of my hands, if not quite on my heart. The majority of the research was carried
out at Tampere University of Technology under the research project ‘Skills, Education
and Future of Work’ funded by the Academy of Finland. I would like to express my
sincere gratitude to my professors, Hannu-Matti and the two Petris. Hannu-Matti, you
restored my faith in human kind (read: professor kind). It is easy to work for a person
that you respect. The thesis was greatly improved by the review comments received from
the pre-examiners, Professors Joy and Pears, who pointed out the many vague rambling
sections which required more concrete argumentation. During the process, I have shared
my troubles with Kati and Martti, my fellow wanderers, and Tiina O., Irina and Katariina.
Thank you all for the in-depth discussions and ‘think-tanking’. My thanks also go to
Maarit, Maria, Antti J., Antti V., Ville I., Charis, Ekaterina, Chelsea, Adrian, MOT,
Google Translator and all the co-authors and reviewers of my publications, but none more
so than to Tiina Partanen. In addition, my family, Rikun Ruusut and PEO2017, thanks
for providing alternative ideas to ponder when I was simply fed-up with my thesis.

Darling Petteri, you are my rock! You gave me the space and time to construct all these
models, while keeping the house going in the meantime. Thank You! Last spring, wonder
of wonders, we became ‘gamma’ (�) and ‘taata’ (�). Once the remaining lambdas are
�nished, there are still plenty of letters for us to explore before the Final
 .

Yours, Pia

v

Contents

Abstract iii

Preface v

Acronyms ix

List of Publications xi

1 Introduction 1
1.1 Objectives of the thesis . 2
1.2 Outline and contributions . 3

2 Literature review 5
2.1 Computational thinking (CT) positioned 5
2.2 Didactic research of mathematics in resonance with CT 12
2.3 The anticipated bene�ts of mathematics-CS integration 16
2.4 The transition of mathematics teachers to CS 17

3 Research methods and theoretical frameworks 21
3.1 Socio-constructivism as an underlying epistemology of FNC-2014 22
3.2 Design-based research . 26
3.3 Qualitative and quantitative data . 28
3.4 Analyses conducted . 28
3.5 Method summary . 29

4 Overview and relevance of the publications 31
4.1 Publication I: Signi�cance of pedagogy- and context awareness 32
4.2 Publication II: A holistic view of CS education 33
4.3 Publication III: A problematic switch from visual to textual 34
4.4 Publication IV: CS curriculum comparison: UK, US, FI 35
4.5 Publication V: Transfer of mathematics teachers’ prior knowledge 36
4.6 Publication VI: CT/CS integrated in mathematics syllabus 37
4.7 Publication VII: Necessary but under-taught discrete mathematics 38
4.8 Publication VIII: Paradigms compared in mathematics-suitability 39

5 Results and discussion 41
5.1 CT as an embedded commodity of mathematics 41
5.2 Mathematics and CS concept overlap . 45
5.3 Mathematics teachers’ professional development 48

vi

Contents vii

6 Conclusions 51
6.1 Implications for FNC-2014 . 51
6.2 Conclusive CT model . 53
6.3 Further research . 56

Bibliography 57

Publications 69

Acronyms

ACM Association for Computing Machinery
CAS computer algebra system
CAS Computing-At-School teacher coalition (in the UK)
CS computer science
CSTA computer science teacher association (in the US)
CT computational thinking
DBR design-based research
FNC Finnish National Curriculum
ICT information and communication technology
IEEE Institute of Electrical and Electronics Engineers
IMRD introduction-method-results-discussion style of structuring articles
ISTE International Society for Technology in Education
K �12 school years from Kindergarden (K) to Year 12,

in the Finnish system the elementary and high school (upper secondary)
MBA master of business administration
MER multiple external representations
MOOC massive open on-line course
OECD The Organisation for Economic Co-operation and Development
PISA Programme for International Student Assessment
SDT self-determination theory
SNA social network analysis
SNS social networking site
STEM science-technology-engineering-mathematics
SW software
SWE software engineering
SWEBOK software engineering body of knowledge
TIMSS Trends in International Mathematics and Science Study
TPACK technological pedagogical content knowledge
TPD teacher’s professional development
TUT Tampere University of Technology
UKNC UK National Curriculum
UML uni�ed modeling language
USCC US Core Curriculum
Yn year at school, numbering in sequence starting from 1, e.g., Y1

ix

List of Publications

I Niemelä, P., Isomöttönen, V., and Lipponen, L., �Successful design of learning
solutions being situation aware,� Education and Information Technologies, vol. 21,
no. 1, pp. 105 �122, 2016.
Personal contributions : The whole resource group participated in the content
analysis phase. The situation awareness model was co-created with the second
author. The author wrote the article, which was then reviewed by the co-authors.

II Niemelä, P., Di Flora, C., Helevirta, M., and Isomöttönen, V., �Educating future
coders with a holistic ICT curriculum and new learning solutions,� Journal of
Systemics, vol. 14, no. 2, pp. 19 �23, 2016.
Personal contributions: The author wrote the original article while the co-
authors reviewed and rewrote selected parts of the original draft. Cristano di Flora
organized the survey in Rovio.

III Niemelä, P., �All Rosy in Scratch Lessons: no Bugs but Guts with Visual Program-
ming,� in Frontiers in Education Conference Proceedings (FIE), 2017.
Personal contributions: The author wrote the article by herself. The interview
data was collected by the author, but Scratch coursework was granted by the
computing teacher. The initial results were re�ected both with the students and
the teacher, which led to the improved version of the motivation category model.

IV Niemelä, P. S. and Helevirta, M., �K �12 curriculum research: The chicken and the
egg of math-aided ICT teaching,� International Journal of Modern Education and
Computer Science, vol. 9, no. 1, p. 1, 2017.
Personal contributions: Both authors participated in writing and reviewing,
however, the �rst author’s contribution was more prominent. The background
discussions were essential in shaping up the end results and conclusions.

V Partanen, T., Niemelä, P., Mannila, L., and Poranen, T., �Educating Computer
Science Educators Online: A Racket MOOC for Elementary Math Teachers of
Finland,� in Proceedings of the 9th International Conference on Computer Supported
Education, vol. 1, 2017.
Personal contributions: Partanen wrote the initial draft, which Niemelä re-
structured to follow the introduction-method-results-discussion (IMRD) style. All
authors contributed in the review phase.

xi

xii List of Publications

VI Niemelä, P., Partanen, T., Harsu, M., Leppänen, L., and Ihantola, P., �Computa-
tional thinking as an emergent learning trajectory of mathematics,� in Proceedings
of Koli Calling International Conference on Computing Education Research, vol.
17, no. 1, 2017.
Personal contributions: The teachers’ essays were reviewed together, however,
the contribution of the �rst and second author were the most prominent. The draft
was mainly written by the �rst author, but the second author’s input was signi�cant.
The learning trajectories were sketched in a group among the �rst, second and third
author. In the end, Harsu streamlined and shortened the draft as a conference paper.
Leppänen’s contributions were proof-reading and several proposals for improving
the draft in the review phase. In addition, Professor Ihantola made his remarks in
order to improve the scienti�c quality, e.g., concerning methodology.

VII Niemelä, P., and Valmari, A., �Elementary math to close the digital skills gap,� in
Proceedings of the 10th International Conference on Computer Supported Education,
vol. 1, 2018.
Personal contributions: The section that concerned terminology (CS, SWE,
and ICT) and the development of the CS as a discipline was written by the second
author. The �rst author wrote the remaining sections. Background discussions were
in�uential in interpreting the results and wording them. The review process was
short but e�cient and aligned the controversial issues. The paper was granted the
best student paper award.

VIII Niemelä, P., Partanen, T., Mannila, L., Poranen, T., and Järvinen, H.-M., �Code
ABC MOOC for math teachers,� Revised Selected Papers. Vol. 865. Springer,
2018.
Personal contributions: The article was written as an extension of Publication
V. The scope, however, was widened to cover the tracks of Code ABC MOOC
that target the secondary level, e.g., Python and Racket. Partanen and Poranen
reviewed the Racket track feedback while the �rst author concentrated on the Python
side. The comparison highlighted the underlying paradigms and the results were
illustrated as a table with the adjacent columns of Python and Racket. Professor
Järvinen was consulted in the paradigm issues in particular, whereas Mannila, as
the expert of CT, reviewed the entirety and balanced the functional paradigm
preferences with valid points about Python’s general usefulness.

1 Introduction

The 21st century society is digitizing at a rapid pace and the job descriptions of current
professions are changing accordingly (Frey and Osborne, 2017). In addition to the changes
in existing professions, new, previously unseen occupations are emerging, such as bloggers,
community managers, and data analysts - or even ‘full-stack jedis’. Both domestic and
multinational governing bodies have recognized the skills gap of computer science and the
growth in the need for a digitally �uent workforce. Consequently, the EU has outlined a
strategy for improving e-skills for the 21st century to foster competitiveness, growth, and
jobs. The UK House of Commons has recently published two reports: The Digital Skills
Crisis (Blackwood, 2016) and The Digital Skills Gap (House of Commons, 2016). These
reports quanti�ed the price of the shortage of skilled CS personnel and claimed that the
digital skills gap costs the British economy ¿63 billion a year in lost GDP. The Cognizant
Center for the Future of Work conducted a survey of over 2000 executives and 150 MBA
students to summarize the digital viewpoints of European businesses; three-quarters of
the respondents worried about the development of the right skills sets for the workforce
in 2020 as the shift to digitalization accelerates (Davis, 2017). Globally, this shift is also
seen as a more dynamic allocation of new digital talents and as an increase of a freelance
workforce, referred to as a liquid workforce (Gupta, 2017) or liquid modernity (Nicolaides
and Marsick, 2016).

The discussion of the role of computer science in education is global, since a number of
countries all over the world have introduced computational thinking, programming or
computer science into their K �12 curricula. The literacy of the 21st century includes
computing, which is comparable to basic skills such as reading and writing. Curricula and
syllabi are at the heart of making computational thinking accessible for K �12 students.
The Finnish National Curriculum 2014 (FNC-2014) integrates computational thinking
and programming as parts of the mathematics syllabus. These changes have been in e�ect
since autumn 2016. However, computational thinking and targeted computer science (CS)
concepts must be determined more meticulously; the current description leaves space for
speculation, various learning experiments and initiatives, and further research.

Computing in FNC-2014 divides into two complementary parts: the right mindset, i.e.,
computational thinking, and then the actual computing, that is, the programming basics
of the selected programming language. Integrating computing into elementary education
is a signi�cant change. Currently, Finnish teacher training has not fully adapted to the
change and is in the middle of a transition phase. Both pre- and in-service teachers need to
learn to compute and to obtain a core understanding about the fundamental CS concepts.
In teacher training, the CS basics need to re�ect a clear theoretical perspective, de�ne
the exact fundamental concepts and their integration into mathematics to streamline the
learning trajectory between mathematics and computing by explicating their conceptual
similarities.

1

2 Chapter 1. Introduction

Years 1�2 Years 3�6 Years 7�9
Digital

competence
using digital

media
impact of technology, tech-integration

Mathemat-
ics

step-by-step
instructions

visual
programming

algorithmic thinking,
coding conventions

Crafts robotics,
automation

embedded systems,
own artifacts

Table 1.1. Computing-related topics in Finnish National Board of Education (2014)

FNC-2014 has been applied since August 2016 and it emphasizes the importance of digital
competence as a part of general education throughout the school years; see Table 1.1.
Digital competence is set as a cross-curricular aim, so that searching for, handling, and
presenting information should utilize the latest information technology. Mathematics will
provide a theoretical base for CS and teach the required programming skills, whereas
crafts can provide new opportunities for self-expression in applying these new skills.

1.1 Objectives of the thesis

The main objective of this thesis is to contribute to the computing syllabus of FNC-2014
by clarifying the most crucial CS concepts and the application of computational thinking
in a mathematics-proof manner.

The primary research questions are:

ˆ RQ1. How to integrate computational thinking into the mathematics syllabus?

ˆ RQ2. Which are the computer science fundamentals that suit mathematics education
best?

ˆ RQ3. How to train in-service mathematics teachers as computing teachers?

The main goal of this research was to examine the anticipated approach to computational
thinking and CS basics in elementary mathematics, and to execute the research by following
appropriate ethical guidelines and practices. The achieved outcome is a clari�cation of
the practices of computational thinking and the current computing syllabus with regard
to its most essential content, i.e. its fundamental concepts. Previously, Marttala (2017)
has identi�ed the need to amplify the learning goals, and several other sources, such as
Tulivuori (2018), have demanded more resources for in-service teacher training.

In addition to the integration of CS into mathematics, this study also examines the process
by which mathematics teachers are transformed into computing teachers. The target of
this thesis is relevant because of the topicality and strategic importance of computing
education. FNC-2014 is paving the way for the integration of computing into the Finnish
school curriculum. Although previous waves of CS integration have left traces on the
teacher population, the emphasis which FNC-2014 brings to the issue is relatively new.
The literature review focuses on state of the art of the research on math-CS integration.
The review reveals that the Finnish approach to math-CS integration is globally unique,
which adds to the novelty of this study.

1.2. Outline and contributions 3

1.2 Outline and contributions

This thesis is divided into six chapters. The contents of each chapter are summarized
below. Chapter 1 is an introduction to the �eld of CS education at the elementary
level. The background and motivation for the study are given, followed by the research
questions and the document outline. Chapter 2 reviews the relevant computational
thinking research. Chapter 3 introduces the methods used, which are a blend of both
qualitative and quantitative data, making this a mixed-method approach. The results
contribute to the development of in-service training and curriculum planning, which
are developed in iterative cycles, thus complying with design-based research practices.
Chapter 4 gives an overview of each of the nine publications on which this thesis is based.
Chapter 5 synthesizes the main �ndings as answers to the research questions. Chapter 6
crystallizes the implications of the research for embedding CS into mathematics and
speculates on the implications for other school syllabi as well. The �nal model presented
in Chapter 6 is a synthesis of the computational thinking models used in the study, and
the thesis concludes with suggestions for Further research which emphasize the need for
in-�eld testing to review the e�ects of the integration on learning outcomes, and to aid in
the preparation of suitable learning material.

The main contributions are as follows:

ˆ a learning trajectory for computational thinking,

ˆ speci�cation of the most fundamental CS concepts and integrating them into the
mathematics syllabus, and

ˆ analysis of the feedback obtained from mathematics teachers who participated
in the in-service training MOOCs. From this analysis, and the comparison of
computing conventions backed by their respective learning theories, the best-suited
programming paradigm, i.e., the one least prone to misconceptions in the context
of mathematics, can be inferred.

2 Literature review

FNC-2014 introduces the integration of computational thinking and CS into the mathe-
matics syllabus. Although previous initiatives to introduce CS into schools have left some
traces on current teaching practice, FNC-2014 emphasizes its importance more strongly
than ever before. During the literature review, the latest state-of-the-art research revealed
that the Finnish approach of integrating computing into mathematics is relatively rare,
so this study is breaking new ground.

2.1 Computational thinking (CT) positioned

Using mechanical tools to assist in calculations is an ancient practice. Tedre (2014)
regards Quipus of the Incas or Chinese counting rods as early types of computing.
Modern computing, as it is understood today, started to develop as a consequence of
many theoretical and technological advances in the 1930s. The �rst steps were connecting
Boolean logic to digital circuits, and �nding a formal de�nition of an algorithm. This
continued in the 1940s with the formalization of computable functions, storing data in
memory (Tedre, 2014), and the invention of von Neumann architecture (Von Neuman,
1945).

In this thesis, computing is regarded as holistic machine-based problem solving. Its
supra-conceptual discipline, CS, aims to formalize the discipline as a science. However,
CS’s position at the intersection of science, engineering, and mathematics has always
complicated its categorization. This implies that it must have a robust theoretical
basis and acceptable means and methods to examine, test and prove theories in order
to reach conclusions that are of indisputable scienti�c signi�cance (Denning, 2005).
According to Dijkstra (1974), these methods comprise, e.g., proofs, program veri�cation,
and discrete mathematical and algebraic extensions which are speci�cally designed to
formalize computing. However, because certain aspects of CS and Software Engineering
(SWE) often mix and merge, CS as a discipline is still hard to de�ne.

This thesis addresses the underlying division between theoretical CS and the more
industry-oriented SWE, as can be inferred by the metaphor associated with computing
education in Fig. 2.1. In addition to theoretical elaborations, CS aims to formalize CS
practices in order to provide as error-free, and high-quality software as possible. SWE,
on the other hand, is more prosaic and aims to implement computer programs in order
to produce a desired outcome. Programming thus encompasses the whole process from
de�ning user requirements to o�ering well-tested deliverables to the consumer. Although
computing and programming may be seen as siblings: computing resides more in a
more theoretical, ideal world, whereas programming falls into the realms of the practical
world, with its tight schedules and budgets. Under this de�nition, programming bene�ts

5

6 Chapter 2. Literature review

Figure 2.1. CT situated in the landscape of CS and its neighboring disciplines (Denning, 2009;
Dijkstra, 1974; Niemelä and Valmari, 2018, , as a combination of these)

from speci�cational thinking, user-centered design, process management skills, and the
re�ective procedures of iterative development. In contrast, CT aims to instill the desired
mindset in young (and older) learners, and this is the central concept of this dissertation.
This concept is analyzed in more detail below.

In the earlier publications on which this thesis is based, the accepted terminology had
not yet been established so the terms computing and programming have been used
interchangeably; Publication II and Publication IV even employ the term ‘information
and communication technology’ (ICT). However, the terms used in the later publications
are more precise, with computing and CS coming to the fore. In an attempt to explain
the nuances between all these concepts in more in detail, PublicationVII clari�es the
development of the Finnish SW industry, which has had an in�uence on the accepted
terminology now in use. To widen the perspective to cover speci�cational thinking would
require the inclusion of other school subjects in addition to mathematics, such as English,
which would enhance the realization of the ‘human-friendly’ element of the topic. In
the end, the terms ‘computing’ and ‘CS’ are regarded as being closest to the procedures
embodied in teaching CT/CS integrated with mathematics at elementary-school level. To
distinguish between CT and CS, CT is more abstract thinking skill and a convention of
achieving things exempli�ed by algorithmic and logical thinking, whereas CS refers to
certain fundamental concepts and procedures, and is a more substantial topic.

2.1.1 Papert promotes Turtle to sca�old CT

Recent school curriculum enhancements utilizing programming have given added impetus
to CT in Finland, although Papert, the CS education luminary, had in fact heralded the
importance of CT notably earlier, started from late sixties. The next quotation is from
the year 1996: ‘Computer science develops students' computational and critical thinking
skil ls and shows them how to create, not simply use, new technologies. This fundamental
knowledge is needed to prepare students for the 21st century, regardless of their ultimate
�eld of study or occupation’. Therefore, CS is not merely using computers, but it also
means using them to create digital artifacts and carrying out authentic projects that
provide options for self-expression. By identifying themselves as potential creators, CS
students can experience a feeling of empowerment.

Papert applied the fundamental ideas of child psychologists and constructivists, such
as Piaget and Bruner, to computer science education. In Mindstorms, Papert (1996)

2.1. Computational thinking (CT) positioned 7

develops the theoretical basis of Piaget’s genetic epistemology and children’s cognitive
development, in an attempt to combine them with the a�ective side of learning. By
providing plenty of computational stimuli, such as turtles � whether �oor, screen or
dyna turtles � a child’s spontaneous sense of geometry and logic is stimulated in order
to develop its understanding of CT, and other powerful concepts, such as the laws of
physics. On the basis of his observations of children playing with turtles and elaborating
on their instructional language, LOGO, Papert goes so far as to see parallels between
the Turtle system’s computational geometry, and Euclid’s axiomatic and Descartes’s
analytic geometry. In the search for appropriate algorithms, children are encouraged
to fully experience the concrete operations with ‘body-tonic’ movements by imagining
themselves in the place of the commanded turtle. This turns ‘a stereotypically disembodied
mathematics to activities engaging a full range of human sensitivities’ (Papert, 1980).
Papert thus aims to foster in children the propensity to consider how they themselves can
assist a computer in solving problems. According to him, thinking about thinking turns a
child into an epistemologist as they work out how to get the computer to act correctly.

To promote the development of the child’s CT, Papert anticipates that the shift from
straightforward triadic and square turns to more challenging circular ones will make them
receptive to more advanced mathematical ideas. Instead of the simpler actions needed for
straight-line turns, i.e. moving forward and then taking a new direction, circular turns
are more demanding. To introduce the concept of circular motions, Papert recommends:
move-a-little, turn-a-little. However, this procedure only approximates the smooth arc
of a circle. To achieve the ideal outcome, each step ought to be ever shorter, ultimately
being squeezed into in�nitesimal steps approaching zero. Such an exercise may provide
the dawn of ‘computational Turtle geometry’ in a learner, whose required di�erential
thinking anticipates the skills needed in mathematical analysis and calculus. For Papert
himself, playing with gears was his ‘Turtle experience’ and the catalyst for CT.

The Turtle exercises not only engage students but are Papert promotes a more playful,
or � using his vocabulary � a more bricoleur way of nurturing computing basics and
mathematical practices in sync. According to his interpretation, computing is applied
mathematics, and playing with turtles provides a gentle way of practicing it and strength-
ening a child’s self-e�cacy. For formal mathematics lessons, Papert is concerned about
the increasing number of math-phobic students that label themselves as too stupid to
learn. He hypothesizes that this trend is a consequence of an over-rigid methods of
problem-solving which pressurize the learner into getting it right on the �rst attempt, or
in his words, the ‘technology of grading’. Because of this phobia, students appear to be
mathematical under-performers.

To counteract this trend, Papert sees exploration and debugging as integral parts of the
incremental and �exible problem-solving practices required in computing, and suggests
applying an analogous mindset to mathematics. Papert emphasizes that, in the context
of CS, the question is not whether a solution is right or wrong, but whether it is �xable.
Moreover, debugging need not be limited merely to problem solving, but can be extended
to encompass self-re�ective practices required in any learning process, stretching into the
realms of meta-cognitive skills. To further exploit the early programming experience, the
gained experiences should be explicitly abstracted. This abstraction will foster progress in
the more cognizant phase of formal operations that takes place about the age when children
switch from primary to secondary school (Piaget, 1972). Schooling and literacy naturally
a�ect a learner’s rate of development. In mathematics, the abstraction could mean e.g.
noting the regularities of triangles, squares, and circles, inducting these observations to

8 Chapter 2. Literature review

such time-proof laws and lemmas, prototyped by Papert’s powerful ideas.

2.1.2 The second wave of CT

In her seminal article, Wing (2006) re-emphasizes the importance of CT by proclaiming
its pivotal role in computing education, yet fails to provide a comprehensive de�nition.
Even if no absolute consensus on the de�nition has been reached � and it is questionable,
whether it can be reached given the current diversity of de�nitions � the majority of
the experts in the �eld are content with Wing’s later description (2010): ‘ The thought
processes involved in formulating problems and their solutions so that the solutions are
represented in a form that can be carried out by an information-processing agent.’ An
exemplar for such thought processes are small children, referred to as epistemologists by
Papert, who guide turtles to draw geometrical shapes: they learn the basics of computing
and simultaneously unfold the regularities of Euclidean geometry.

In summary, de�ning CT comprehensively is a challenge. To complicate the situation
further, the paradigms, languages and tools used each bring their own �avor to the
learning experience, which the analogous ‘divide-and-conquer’ approaches tend to conceal.

CT decomposed

Barr and Stephenson (2011) de�ne data collection, its analysis and representation, problem
decomposition, abstraction, algorithms, automation, parallel code and simulation as
the cornerstones of CT. However, parallel code and simulation, for instance, are not
commensurable with the all-encompassing principles of abstraction and automation,
but more concerned with minor formalities and implementation details. In addition to
researchers, many teacher associations and education organizations have participated in
e�orts to clarify the practices of teaching CT. These organizations include the International
Society for Technology in Education (ISTE), the Computer Science Teachers Association
(CSTA), and Computing-at-School in the United Kingdom (CAS-UK). ISTE is a not-
for-pro�t organization dedicated to supporting the use of information technology in
teaching K �12 students as well as supporting their teachers in including CS education in
their syllabi. The ISTE de�nition (ISTE, 2015) complies more or less with the model
constructed by Barr and Stephenson (2011).

Like ISTE, CSTA promotes computer science education both in America and worldwide
by empowering K �12 CS teachers. Although mainly prominent in America, CSTA
consulted with the co-located ISTE in de�ning CT in an elementary-education-proof
manner. The outcome of this highlights problem-solving as the core pro�ciency, which
involves, e.g., abstraction and analysis skills (CSTA, 2016). In addition, the character of
the ideal student was described, which comprises such qualities as con�dence, persistence,
and tolerance of ambiguity (Seehorn et al., 2011); skills that are especially needed when
problem solving is open-ended. In 2016, CSTA reorganized the previous standard strands
from 2011 into the new concept sets of computing systems: data & analysis, networks
& Internet, algorithms & programming, and �nally, the impacts of computing (CSTA,
2016). Compared with the previous strands, data & analysis and network & Internet
were new, re�ecting the newly-realized importance of these areas. In essence, the renewed
strands approach the ISTE model.

In contrast to ISTE and CSTA, who represent CS issues concerned with the American
school curriculum, Computing-at-School (CAS-UK) re�ects the UK’s more European view
of CT. Regarding problem solving, CAS-UK divides the solution phases into more abstract,

2.1. Computational thinking (CT) positioned 9

and more practical solutions (Csizmadia et al., 2015). The former consist of problem
solving, and the latter of the application of technical skills in order to solve the problem
computationally. As elements of CT, CAS-UK lists logic, algorithms, decomposition,
�nding patterns, abstraction and evaluation.

The last model introduced here is from Grover and Pea (2013). The model manages to
capture all the essential super-classes of abstraction, algorithms and assessment, which
are de�ned in more detail below:

ˆ abstractions as pattern generalizations, and as a key to dealing with complexity,

ˆ algorithms as structured problem decomposition, the algorithmic notions of �ow of
control, and systematic processing of information,

ˆ assessment to evaluate students’ understanding and use of abstraction, conditional
logic, and algorithmic thinking. Instead of teachers assessing their students, which
demonstrates the ‘technology of grading’, the goal should be self-re�ecting students
familiar with the conventions of debugging and systematic error detection, and with
optimizing performance and e�ciency.

2.1.3 CT problem-solving heuristics

In abstracting and systematizing problem solving with algorithms, Papert’s most promi-
nent exemplar comes from the mathematics side, namely, the eminent Hungarian didact
of mathematical education, Pólya (1887 �1985). Papert introduces the Pólyan heuristic
strategy of problem-solving to achieve more perceptive learning (Pólya, 1945). The
strategy includes principles such as the decomposition of problems (divide-and-conquer),
the recognition of analogous patterns, generalization, and specialization, the echoes
of which are carried far into the discourse of CT, as heuristic means of systematizing
problem-solving.

These systematics and means of abstraction are not restricted to mathematics alone, but
may be found in other science-technology-engineering-mathematics (STEM) subjects as
well, in particular physics. Thus, other templates, besides that of Pólya, may be introduced.
Most Finnish didactics and path�nders, e.g. Kurki-Suonio and Kurki-Suonio (2000),
regard mathematics as an abstraction primer, especially in geometry (proportionality
and symmetry), where the very same principles are transferable to more advanced topics,
even up to the domain of modern physics. Later, quanti�cations � dividing, multiplying,
adding and reducing implemented in the form of thought experiments for approaching
zero or in�nity � provide a means for the mental assessment of the anticipated rules
and relations between the examined quantities. In summary, the means of abstraction
introduced in CT are not epistemologically unique but rather shared between all the
subjects that exploit mathematical problem-solving methods, e.g. other natural sciences.

2.1.4 Computing curricula abroad

The majority of the European countries surveyed (17 out of 21) introduce computing
as an emergent new addition in their K �12 curricula (Balanskat and Engelhart, 2014;
Heintz et al., 2016). Starting from the primary education, various approaches have been
suggested by di�erent projects and stakeholders. In the beginning no computer is even
necessary. For instance, in the TACCLE3 project, the CAS-UK teachers (N � 357)
employ unplugged, contextualized activities, such as playing with robots and lots of

10 Chapter 2. Literature review

hands-on practice with digital artifacts (García-Peæalvo et al., 2016). In addition, the
CS Unplugged project has assembled an inspirational exercise package to be used in a
school context without computers to learn about binary numbers, trees as data structures,
and basic algorithms for searching, such as binary search (Rodriguez et al., 2017). In
compliance, CAS-Barefoot de�nes its own model to teach CT, the prominent subtopics
being algorithms and logic (Barefoot, 2014). In the UK, computing as a school subject
comprises a more holistic and system-wide view of computer systems, networks, and
architectures, as de�ned by the General Certi�cate of Secondary Education (GCSE, 2015).
In addition, the GCSE strongly emphasizes starting the strand of security and ethics
already in the early school years. To foster computational creativity, students have to
implement digital artifacts once they have gained the required skills.

In their review, Heintz et al. (2016) examine the curricula of Australia, New Zealand,
Estonia, Finland, Sweden, Norway, the UK, South Korea, and the USA in detail. In
Australia (2015) and New Zealand the subject is called Digital Technologies (DT), and has
a strong focus on CT, as well as the development of both digital literacy and programming
skills. In Australia, the subject is mandatory at junior level (K �Y6), and is optional
thereafter (Y7 �12). In New Zealand, DT is only taught in high school (Y10 �12), and
covers programming and, albeit only cursorily, a wide range of CS topics including
algorithms, human-computer interaction, arti�cial intelligence and computer graphics.

Estonia has plunged straight into the issue, linking programming with tangible digital
exercises such as robotics and electronics. In contrast, much of Scandinavia is lagging
behind. In Finland, Sweden, and Norway, the whole education system is in turmoil due
to rapid changes and inadequate resourcing. If the goal is to be riding the crest of a
digital education wave, the vocational education of teachers is a bottleneck to realizing
this ambition. For instance, Swedish schools have provided elective computer science
courses since the 1970s, originally called informatics, and later changed to information
technology. As in Finland, Sweden introduces programming as part of the mathematics
and crafts curriculum, e.g. the algebra section examines how algorithms are created and
the problem-solving section analyzes algorithms by actually implementing programs and
testing them out. In crafts, students study what materials can be enhanced with digital
technology and construct two- and three-dimensional diagrams, models, and patterns,
both with and without digital tools. Moreover, these models are backward-compatible
with mathematics calculations.

In addition to mathematics and craft, in 2017 Sweden added technology as a core
subject in the curriculum (Skolverket, 2017). To aid progress towards this goal, Sweden’s
innovation agency Vinnova funds several in-service training projects for Swedish teachers,
such as ‘Computational thinking for all’ started in 2016 (Heintz and Mannila, 2018).
This addition to the curriculum aims to give students an insight into how computing
is intertwined with industrial and scienti�c practices, and how it can be applied in
various contexts. The ‘comments’ appendix highlights the link between problem-solving in
mathematics and computing (Skolverket, 2017): ‘problem solving consists of modeling it,
i.e., translating a situation into mathematical language of symbols. A general model can
be expressed as an algorithm that is created based on a mathematical or everyday function
and can solve various kinds of problems, such as sorting large amounts of data. Students
should therefore meet the content how algorithms can be created when programming for
mathematical problem solving. When students use programming to solve mathematics
problems, they also have the opportunity to create, test and improve the algorithms.’

In Norway, educators trumpet the success of their primary school students in the Trends

2.1. Computational thinking (CT) positioned 11

in International Mathematics and Science Study (TIMMS). However, according to the
PISA tables, the situation for lower-secondary school students is not as encouraging.
In 2015, Norway created the initiative ‘Science for the Future’, whose main goals were
to increase students’ interest in mathematics-science-technology (MST), to strengthen
the pre-service teacher training, and to decrease gender bias (Norwegian Ministry of
Education and Research, 2010). Programming is introduced as part of the Mathematics
curriculum, starting from giving step-by-step instructions as the basis for programming
in Years 1 �3. In Years 4 �6, students learn how to use algorithms for programming
by utilizing sequences, repetition and abstraction. The algorithms are then created,
tested and improved as part of programming for mathematical problem solving. Another
Norwegian initiative, Lær Kidsa Koding, lobbies government, schools, and politicians to
achieve a more established position for computing in the school curriculum (LLC, 2017).
Overall, Norwegian educators desire the curriculum to be constructively more aligned
and concise by providing more in-depth learning focusing only on the core competencies.

The early birds of computer science education were South Korea, the UK and the US.
However, in South Korea enthusiasm for the topic waned between 2004 and 2012 in
favor of subjects that ensure easier access to higher education, such as mathematics. By
renewing the informatics curriculum in 2018, South Korea is attempting to recover the
initiative. In comparison, the UK and the US are performing much more strongly. The
UK has added compulsory courses of CS and o�ers GCSE exams for the quali�cation. In
addition, it provides strong assistance to teachers. For example, the CAS-UK community
freely delivers useful material and training in CS. In the US, computer science is still an
elective subject. However, the vision of the government has been clear. For example, in
2013 President Obama promoted the project Hour-of-Code by Code.org (Partovi, 2014;
Wilson, 2015). In addition, there are many strong actors, such as Google, Microsoft, and
several organizations such as CSTA and ISTE that are realizing this vision with parallel
projects, such as CS4All (Vogel et al., 2017), and to balance the gender bias, CS4All-G
(Marghitu et al., 2014). These new fancy initiatives, tools and extra-curricular hack clubs
have managed to reverse the trend of falling enrollments on the CS courses.

In short, the main current dilemmas for school curriculum planners seem to be whether
or not computing requires a syllabus of its own, i.e. should it be taught as a separate
subject, whether that subject should be optional, and what fundamental concepts should
be covered. If there is no formal quali�cation for teaching CS, the quality of teaching
will vary and depend on ‘good luck in the teacher lottery’. In addition, if CS is to be
integrated into other subjects, it is more challenging to target the learning outcomes in
a formal and standardized way. Heintz et al. (2016) noted that many vocal proponents
advocate teaching CS as its own separate subject, purely from the perspective of the
subject itself, and it seems likely that this may well be the best approach.

Critical views

Integrating mathematics with computing is not risk-free, and for this approach to be
implemented e�ciently, the CS elements of the syllabus need to be developed with re�ective
feedback loops. For instance, a recent OECD report (OECD, 2015) demonstrated that
the greater the extent to which technology was merged with the mathematics syllabus,
the poorer were the results. In addition, motivational aspects should be taken into
account. For instance, South Korea su�ers from falling enrollments in computing courses,
apparently because the students’ attitudes towards the subject became more negative due
to the increase of computer science lessons in elementary school. The reasons identi�ed

12 Chapter 2. Literature review

were the absence of an appropriate policy and comprehensive evaluation methods (Choi
et al., 2015). As a remedy, the authors of this Korean study recommend determining a
robust policy, goal clari�cation, formal quali�cations, and adequate resourcing in teacher
training.

In addition, there are a remarkable number of groundless promises associated with CT. For
example, according to Mark Guzdial, a professor in the School of Interactive Computing
at Georgia Tech, ‘..There is no reliable research showing that computing makes one more
creative or more able to problem-solve. It won't make you better at something unless
that something is explicitly taught’, and he continues, ‘You can't prove a negative, but in
decades of research no one has found that skil ls automatically transfer’ (Pappano, 2017).
In addition to Guzdial, Hemmendinger (2010) pleads for caution and reminds readers
that algorithmic thinking is anything but new. As he points out, the term ‘algorithm’ has
its origins in 9th-century Persia (Rocker, 2006). The author does, however, list scalability,
feasibility and optimizing resources as the integral characteristics of computing. Similarly,
Tedre and Denning (2016) recall the long history of CT, which they trace back to the
1950s. Instead of exaggerating the advantages, the authors would prefer to explore the
results of previous learning experiments in order to avoid repeating the same mistakes
over and over again. Furthermore, the authors question the transferability of algorithmic
thinking, which, according to them has hardly ever transferred to the bene�t of other
subjects, despite the high expectations it arouses.

2.2 Didactic research of mathematics in resonance with CT

The novelty value of learning programming basics integrated with elementary mathe-
matics has not yet worn o�. In mathematical thinking, the exemption from mechanical
calculations a�ords an opportunity to concentrate on higher-level operations, such as the
phases of abstraction, algorithmic thinking, and analysis. The emergence of symbolic cal-
culators and computer algebra systems (CAS) technology in the nineties gave a foretaste
of what was to come and led researchers to start talking about the instrumentalization of
mathematics. The current emergence of computers in mathematics teaching demands a
theoretical extension to deal with programming languages as instruments.

2.2.1 Abstraction as moving from procedural to conceptual
knowledge

Abstraction means leveraging one’s thoughts above the concrete towards more abstract
and general ideas, i.e., from procedures to concepts, or, to give it a more didactic wording
and �avor, from structural to functional knowledge. Procedures cover the routines
of rote calculations, whereas conceptual learning comprises internalization of central
concepts and seeing how these concepts interact with previously-learned knowledge. In
mathematics, the threads of procedural and conceptual approaches are interwoven in the
praxis of mathematics lessons. Hibert and Lefevre (1986) introduced this dichotomy of the
procedural versus the conceptual in their book; the edition was renewed and completed
in 2013. According to the authors, similar overlapping dichotomies commonly exist in the
discipline of knowledge building. For instance, Piaget (1972) based his theory of genetic
epistemology on the transfer from concrete to formal operations, where formal operations
comprise abstractions developed by hands-on experiments. Anderson (1990) distinguished
between procedural and declarative knowledge, where declarative knowledge is substituted

2.2. Didactic research of mathematics in resonance with CT 13

for conceptual. Brownell and Chazal (1935) emphasized the need for the nexus of isolated
skills to be connected to existing knowledge in order to enhance conceptual understanding.

There are several parallels in mathematics that highlight the di�erent nature of these
types of knowledge, for instance: procedural vs. conceptual knowledge (Tall et al.,
2001), syntactic vs. semantic (Resnick et al., 2009), skills vs. principles (Gelman and
Gallistel, 1978), or structural vs. functional (Cai et al., 2011). Cai et al. argue that in
mathematics routines ‘naked equations and [emphasizes] procedures for solving equations
are all hallmarks of a structural focus’ which is in contrast to the functional approach,
involving a much higher level of conceptual emphasis.

In moving from procedural to conceptual/functional, a supportive educational framework
is crucial. Instead of an excess of routine calculations, a mathematics teacher should
provide puzzles and open-ended problems. These should be meaningful for the students,
enhance their understanding of the problem area and foster algorithmic thinking. Such
open-ended problems should have their origin in real-life and should require the handling
of large amounts of data and extensive calculations so that the solution can only be found
with the help of calculators and computers, such as many statistical calculation, e.g.,
getting smooth bell-shape curves from a normal distribution.

Although most research emphasizes the importance of conceptual over procedural knowl-
edge, nowadays the bidirectional nature of their interaction is noted to be bene�cial for
both: ‘ two forms of knowledge are treated as distinct, but linked in critical, mutually
bene�cial ways’ (Artigue, 2002; Hiebert, 2013, for instance). To exemplify this inter-
relatedness, Hiebert (2013) describes the conceptual bridge of a place-value. Even if the
place-value procedure has been correctly executed by the learners when doing subtractions,
i.e., borrowing from the next decade succeeds, they will only reach a full conceptual
understanding of the principle by internalizing the geometrically increasing magnitudes of
ten-base blocks, and seeing place as an indicator of this magnitude. For instance, to fully
understand subtraction, a student must internalize the next place as being a ten-block
store from which one can borrow.

In Hungarian mathematics, for example, di�erent tangible manipulatives sca�old cognitive
bridges of this kind (Tikkanen, 2008; Varga, 1988): place-value exercises are carried out
with various appliances, such as place-value charts, number lines (in paper, with tape on
a �oor), abacuses, and construction series. Hungarian mathematics, more speci�cally the
Varga-NemØnyi method (Kurvinen et al., 2014), is not restricted to the decimal number
system only, but the exercises cover di�erent number systems (e.g. binary). In addition
to place-values, commonly known conceptual bridges include, e.g., ideas of the common
denominator and the relative sizes of quantities (Hiebert, 2013).

2.2.2 Conceptual abstraction leveraged with algebra

The transition from arithmetic to algebra exempli�es the process of abstraction in
stepping from the procedural to the conceptual in that students must transfer from
number mathematics to letter mathematics. Vygotsky (1980) asserted that, ‘the student
who has mastered algebra attains a new higher plane of thought, a level of abstraction
and generalization that transforms the meaning of the lower (arithmetic) level’. Abstract
thinking consists of the expression of generality, whereas algebraic thinking utilizes a
learner’s natural ability to make mathematical sense. The expression of generality in
increasingly systematic, conventional symbol systems is, according to Kaput (2008), one

14 Chapter 2. Literature review

of the core aspects of algebraic reasoning, the other being syntactically guided actions
within organized systems of symbols.

The pitfalls of the transition into algebra have been well-documented (Fong et al., 2014;
Schanzer, 2015). Various experimental approaches have been utilized to ease the threshold
of transition, such as early algebraization (Kieran, 2011) and fostering functional thinking
at the elementary level (Wilkie, 2016a). Both the above approaches aim to move the
transition phase to an earlier stage in the learner’s education, from the secondary to
primary level, using age-appropriate content, of course. As pointed out by Carraher et al.
(2008) however, early algebra does not mean algebra early. For instance, Kieran (2004)
thinks that algebraic thinking can be taught without the use of the letter-symbolic, and
can be built up by identifying numerical and geometric patterns and by trying to describe
them with alternative means, by the learners inventing their own systems of notation, for
instance. She also focuses on seeing expressions and equations with ‘algebra eyes’.

In algebra, the most fundamental concepts are variables and functions. According to
Küchemann (1978), the concept of a variable evolves through six progressive stages
starting from being a single, irrelevant value, then being recognized as a label or an object,
then as a speci�c unknown, a generalized number, and �nally as a functional relation.
According to Wilkie’s epistemological view, internalizing algebra requires deepening levels
of objecti�cation, which she called arithmetic, factual, and contextual generalizations
(Wilkie, 2016a). As an intermediate phase before the symbolic one, she also notes the value
of pro-numerals (e.g.,number_ of _ articles). In word problems, pro-numerals associate
e�ortlessly with an unknown in the problem description. In particular, Wilkie focused
on growing patterns and their role in developing functional thinking. In generalizing
the patterns, a student should develop a recursive solution that requires consecutive
calculations of the next steps. Explicit generalization should capture the direct rule and
relational correspondence, i.e., a rule for thenth term.

2.2.3 Algorithmic thinking in mathematics

An algorithm is a streamlined sequence of steps required to solve a problem (Doleck
et al., 2017). At its simplest, a cooking recipe or driving directions represent such a
sequence (Yadav et al., 2016). Streamlining means the optimization of time and resources
in problem solving. In optimization, computing has to take into account the limits of
the concrete world, such as scalability, feasibility, the optimization of computer resources
and performance, and the processes of interpretation and compilation (Hemmendinger,
2010). In mathematics, streamlining the solution has a di�erent �avor. Facets such
as elegance, simplicity, intricacy and logical approach are appropriate stream-lineage
measures (Dreyfus and Eisenberg, 1996; Halmos, 1968).

Research demonstrates that even if children do not know how to express their thoughts
in symbolic language, they are endowed with intuitive problem-solving capabilities. If
the instructional framework is well designed, it can foster the development of children’s
skills in more advanced algorithmic competencies such as sorting and searching (Baroody,
2004; Clements and Sarama, 2007). To get to the very essence of algorithmic thinking,
it must be understood that the iterative and recursive processes are substantive, and
inherently more frequent in discrete, numerical methods, and computing. In classical,
calculus-heavy mathematics, such iterations are not as frequent. Mathematics praxis
that use an iterative approach are, for instance, sums, products, recursions, e.g. factorial,
bracketing of roots, approximations and theory derivations, where the exact solution is
approached inductively, or in tiny increments. Discrete mathematics provides a number

2.2. Didactic research of mathematics in resonance with CT 15

of abstraction tools for algorithmic development in computing, such as set and graph
theory, probability and combinatorics, and the methods of formal logic. Sets, relations
and graphs are helpful in presenting much of the discrete data intrinsic to computing.

2.2.4 Multiple external representations to facilitate abstraction

Multiple external representations (MERs) illustrate the same topic from di�erent perspec-
tives. For example, a function may appear as a relation ofx and y, a graph, a map from
argument set to image set, or as a metaphor for a function machine. Flexibility in moving
from one representation to another indicates deeper understanding (McGowen et al., 2000).
Wilkie and Clarke (2016) describe representational �exibility as a resilience with the
order of operations, and �uency with distributive laws and the equivalence of expressions.
In terms of practicing algebraic abstractions, pre-algebra exercises are a good approach,
using such pedagogic devices as growing patterns (Wilkie, 2016a,b; Wilkie and Clarke,
2016), pictorial equations in Singaporean mathematics (Cai et al., 2011), and games.
Some startling examples from DragonBox Algebra demonstrate that even a �ve-year
old child is capable of solving algebra problems if the presentation is age-appropriate
(Liu, 2012). Overall, much younger students than was previously expected are capable
of learning and presenting their algebraic thinking (Brizuela et al., 2015). Although a
lack of experience often hinders the growth of abstract thinking and intuition, (Jurdak
and Mouhayar, 2014), McGowen and Tall (2010) posit ‘met-befores’ as the foundation of
mathematical intuition.

2.2.5 Analysis in CT associates with sociomathematical norms

Yackel and Cobb (1996) study the paradigm of sociomathematical norms, which Stephan
(2014) de�nes as normative criteria according to which students of a class create and
justify their mathematical work. These norms are applied in negotiations of the criteria
of di�erent, e�cient, or sophisticated mathematical solutions and the criteria for an
acceptable mathematical explanation. A mathematics teacher challenges students to
invent multiple alternatives ending up with the same result. Among the presented
alternatives, the class should evaluate the most sophisticated and elegant solution. In
addition, the authors emphasize the need for a rationale and justi�cation. This approach is
seconded by IzsÆk (2011), who sees that teachers elicit students’ thoughts by engaging them
in classroom conversations to explicitly compare di�erent approaches, thereby encouraging
the emergence of more powerful algebraic representations. In terms of teaching algebra,
Koellner et al. (2011) also challenge teachers to pose Socratic questions to push students
forward in their thinking. Argumentation provides a means of capitalizing on a student’s
contribution and making it accessible to the whole class.

To conclude, the common practices of mathematics, such as using everyday problems as
material, breaking down problems into smaller sub-issues (Pólya, 1945), re�ning their
stages (Joutsenlahti, 2003), optimizing the solution, and thinking of the rationality of the
results and alternatives for potentially more optimal solutions (Yackel and Cobb, 1996)
are good ways to practice the principles of CT in mathematics, and this is nothing new.

2.2.6 Instrumentalization

The emergence of Computer Algebra System (CAS) calculators in mathematics in the
1990s triggered a number of studies that aimed at revealing these tools’ in�uence on
learning. Compared to the plain old pen-and-paper method, a student was equipped

16 Chapter 2. Literature review

with an additional instrument to assist in solving more complex and computing-intensive
problems. In illustrating the e�ect of calculators in a mathematics class, Trouche and
Drijvers (2010) suggest the analogy of a single musical instrument in an orchestra. As with
a violin player, a CAS player �rst needs to master his instrument. The authors specify the
entity of an instrument with the following equation: instrument � tool� use scheme. The
tool becomes an instrument only when students know how to ‘play’ it. This process of
taking possession is called ‘instrumental genesis’. In order to capture this genesis, Drijvers
and Trouche (2008) have coined terms for the two counter-directional sub-processes
involved, instrumentation and instrumentalization; see Fig. 2.2.

Figure 2.2. Instrumental genesis: a student takes a tool into possession and starts to lean on it.

Brie�y put, instrumentation is the user’s engraving on a tool in order to customize it for
their use, whereas instrumentalization is when the tool etches its marks on the user’s
activities and schemes. During instrumentation, a student customizes the tool, e.g.,
chooses suitable themes and shortcut keys, and de�nes scripts for certain tasks to be
automatically executed. In other words, the student rede�nes the tool to suit their own
purposes. During instrumentalization, in turn, a student adapts the tool for di�erent
purposes and begins to think and solve new problems with the tool. In this way, the tool
leaves its trace on the action schemes of a student. Later, the same group of researchers
revisited the idea of instrumental genesis and enhanced it with documentational genesis,
where a mathematics teacher transforms resources into documents for their own use in
teaching (Gueudet and Trouche, 2009). In school math lessons, CAS calculators have
now been largely superseded by computers. With computers, instrumentalization may be
interpreted as the internalization of the �rst programming language as a �xed starting
point, although the path should eventually lead to di�erent languages and paradigms.

2.3 The anticipated bene�ts of mathematics-CS integration

Mathematics has been chosen as the basis for CS as they both require algebraic, logic and
problem-solving skills. Compared with CS, mathematics has a well-established learning
trajectory which has evolved gradually into its current form since the very beginning of
the modern school system. Despite the fact that certain areas have been dropped and
some reintroduced, the core content of the school math syllabus has remained largely the
same for decades. There have been new initiatives in teaching math. For instance, due to
the so-called ‘New Mathematics Movement’, set theory has experienced a kind of yo-yo
e�ect: �rst, having being pushed into Finnish elementary schools in the seventies, after
which it gradually vanished from the syllabus (Bernack-Schüler et al., 2015; Pehkonen,
2001). New Mathematics aimed at bringing school mathematics as closely in line as
possible with higher-level, scienti�c mathematics rooted in set theory. However, the
approach was too theoretical and the learning outcomes su�ered.

2.4. The transition of mathematics teachers to CS 17

A school curriculum re�ects the society in which it exists, so as society changes, it
becomes necessary to review the content of the curriculum and the weighting of certain
syllabus topics. For example, the current shortage of software engineers has shifted
the educational imperative in Finland away from the more traditional natural sciences
towards CS. According to the feedback from professional software engineers in the �eld,
if elementary math teaching in schools is to be more supportive of CS, then the emphasis
should be shifted away from continuous mathematics and towards discrete mathematics.
The FNC-2014 integration of CS into the school curriculum is the biggest revision of the
Finnish school syllabus for a long while. It is, however, justi�ed by recent research, and is
based on the obvious inter-relatedness of mathematics and CS. For instance, the practices
of mathematical thinking are deeply interwoven into CT, in particular with regard to
problem solving (Wing, 2008). This can be divided into several sub-skills, depending on
the categorization used. For example, abstraction � in particular in conjunction with
algebra (Susac et al., 2014) � and analytic and critical-thinking skills (Elliott et al., 2001)
are frequently mentioned as sub-skills of mathematical thinking that overlap with CT.

Since FNC-2014 has already stipulated that CS be integrated with mathematics, there
is a positive bi-directional synergy between the two subjects that can be exploited.
Even though the transfer from mathematics to CS has already been recognized (Lent
et al., 1991; Zeldin and Pajares, 2000), the transfer in the opposite direction, from CS to
mathematics, may not be that obvious. However, certain topics, such as algebraic variables,
functions, and logic can be taught either directly or indirectly through programming and
familiarization with the basic concepts of CS. If the bene�ts of integration, especially
improved learning outcomes, could be reliably demonstrated, it would be a powerful
selling point for the mathematics teachers who now have to implement the changes.

2.4 The transition of mathematics teachers to CS

The requirement of teaching programming basics integrated into mathematics lessons
has challenged and accelerated Finnish math teachers’ professional development (TPD).
Successful TPD increases a teacher’s perception of self-e�cacy. The self-reinforcement
and self-e�cacy theories of Bandura (2006) provide a view on motivational factors,
where self-e�cacy is a more accurate predictor of successful professional development
than the teacher’s actual achievements. Depending on the achieved self-e�cacy level,
Kennedy (2016) discusses the enactment problems of bringing new skills, in this context
programming skills, into a classroom context. Accordingly, the ‘whole teacher’ framework
for TPD recommends that the focus is not only on skills and knowledge, but also on
attitudes and practices (Chen and McCray, 2012). In measuring the e�ectiveness of
a learning intervention, both the participants’ content knowledge and technological
pedagogical content knowledge (TPACK) should be evaluated (Voogt et al., 2013), where
content knowledge represents skills and knowledge and TPACK is a more holistic view of
the e�ciency with which teachers exploit technology in their teaching.

Lavonen et al. (2012) examine in-service teachers’ adoption of new technology and re�ect
on the process through the theoretical lens of technological di�usion (Rogers, 2003). The
teacher will accept an innovation gratefully, provided that it is easy to use and it adds
value to the subject. The adoption is further promoted when the society also notices the
bene�ts (visibility). A well-planned technological innovation also meets the demands of
self-determination theory (GagnØ and Deci, 2005; Lavonen, 2008):

18 Chapter 2. Literature review

ˆ A user desires his autonomy, competence and group cohesion to be strengthened
through use of new technologies;

ˆ A user is involved because he �nds the activity interesting and derives spontaneous
satisfaction from the activity itself;

ˆ A functional innovation has a high level of availability, with the following features:
easily learned and remembered, e�cient, faultless and pleasant to use.

Sinclair et al. (2011) pay special attention to the teacher’s attitude. They state that
a teacher’s negative attitude is re�ected in the attitudes of his students. The more
constructive and exploratory the attitude of the teacher, the more the students are
challenged to enter into discussion, particularly in an open atmosphere during mathematics
lessons. Consequently, researchers emphasize the importance of the teacher’s attitude
in successful technology education. Sinclair et al. (2011) recommend collegiality and
co-teaching as one means for teachers to reach the required level of self-e�cacy. In
addition to these a�ective factors, the situational aspects of the teacher’s learning also
have to be taken into account. The school and classroom context, the available resources,
e.g. computers and technical support, and in-service training options all have an e�ect on
learning. In Finland, the curriculum change was applied suddenly, before the introduction
of appropriate in-service training opportunities. Therefore, several of the publications
for this thesis examine the Code ABC MOOC, an in-service training MOOC for Finnish
mathematics teachers.

This MOOC aims to build on the existing, well-functioning mathematics syllabus by
exploiting and transferring this knowledge for programming skills. The exploitation
of prior knowledge is expected to create positive feelings of self-e�cacy from the very
beginning. Consequently, the TPACK model has been exploited in an attempt to occupy
the newly-created space between mathematics and computing. The aim of the MOOC was
to increase both content and pedagogical knowledge. In particular, the MOOC focuses on
a smooth transfer between the two disciplines by highlighting the similarities of content
knowledge and providing stimulating exercises which encourage the teachers to re�ect on
the FNC-2014 curriculum enhancement. The change in the teachers’ perceived self-e�cacy
is one metric for assessing the MOOC course learning outcomes. Kennedy (2016) talks
about enactment problems in bringing new programming skills into the classroom context
after attending a professional development course. She highlights the gap between the
course set-up and the actual teaching context of a real classroom. For practicing in-service
mathematics teachers, good self-e�cacy in mathematics is assumed to lower the transfer
threshold and facilitate the transfer of mathematical knowledge to computing. However,
further research will be needed to analyze the long-term e�ects of the MOOC, e.g., a
follow-up study on how many participants actually started using the learned material
and skills in the classroom would be extremely pertinent. As Kennedy (2016) points out,
real enactment in the school context is the �nal test.

The MOOC has a Q&A discussion forum that employs functionalities of a social networking
site (SNS) for math teachers, and this is why it can be regarded as an interactive value
creation forum. In any SNS, the dominant users create relevant content to appeal to a
mass audience, but a more typical user assumes an information-seeking pro�le (Bechmann
and Lomborg, 2013). Trust et al. (2016) refer to professional learning networks. The
authors state that the shifting technological landscape requires new knowledge, skills and
attitudes. Professional learning networks o�er a resource for teachers who wish to satisfy

2.4. The transition of mathematics teachers to CS 19

their diverse, interconnected, and holistic TPD needs. Many previous TPD studies have
emphasized that prolonged interventions, combining re�ective practices with the learning
process, follow-ups on a regular basis, and co-learning with other teachers de�nitely have
a favorable e�ect on learning outcomes and their long-term e�ects (Avalos, 2011).

2.4.1 Metaphors and paradigms shape perceptions

In determining the role of computer science in education, various metaphors are used, e.g.
computer science as literacy, a maker mind-set, or grounded mathematics (Burke, 2016).
If the literacy metaphor is used, then programming as digital literacy emphasizes the
same logical skills as those applied in constructing linguistically correct sentences, such as
utilizing and/or/not in order to express the internal logic of a sentence. From a ‘maker
mindset’ perspective, the programming language should be as productive as possible, with
a low learning curve, and a ‘low �oor and high ceiling’, which implies the use of visual
programming languages such as Scratch. Other studies, however, have questioned the
bene�ts of Scratch in developing problem-solving skills and good programming practices
(Gülbahar and Kalelioglu, 2014; Meerbaum-Salant et al., 2011).

In addition to metaphors, programming paradigms are essential in de�ning the angle of
approach in teaching programming. Each paradigm has its own command set and pro-
gramming technique, which leads to di�erent kinds of implementations and programming
styles. Each paradigm also has its own strengths; some problems are easy to solve with
one paradigm, but another paradigm may be more e�cient or �exible in other contexts.
Consequently, there are already regular arguments about ‘the right paradigm for the job’.
In order to make su�ciently informed decisions about which language and paradigm to
select, the decision-makers should have an adequate understanding about the alternatives
available, and their implications.

The division of programming languages into di�erent paradigms is not easy, and multi-
paradigm languages further blur the categorizations. Wegner (1989) divides languages
simply into two fundamental categories of imperative and declarative languages. In this
division, the imperative paradigm is largely comprised of procedural, object-oriented and
distributed (parallel) languages, whereas the declarative one consists of functional, logical,
and database languages. However, a distributed, parallel paradigm does not �t with, for
example, an object-oriented paradigm, which may well also be implemented in parallel.
Furthermore, Bal and Grune (1994) propose the former sub-categories of procedural,
object-oriented, functional and logic paradigms as the main categories.

The categorization is further challenged by multi-paradigm languages constantly increasing
in number. Therefore, instead of paradigms, languages may be categorized based on
the supported features. Jordan et al. (2015) recommend a feature model, arguing that
the current categorization is too vague to help software engineers (and educators) assess
the suitability of a language for a particular project and purpose. The feature model
has thus been developed based on an analysis of the actor, the agent, the function,
the objective, and the procedural programming languages. These features encompass
type systems, mutability/immutability, input/output systems, the declarativeness of
expressions, metaprogramming, and considerations of concurrency and modularity. Much
like Jordan, Van-Roy and Haridi (2004) categorize languages based on their declarativeness
and expressiveness. The more �ne-grained feature model of Van Roy (2009) de�nes
declarativeness as a horizontal axis and adds features such as procedure, state, closure,
port and thread in ascending order of complexity and descending order of declarativeness.

20 Chapter 2. Literature review

2.4.2 Transfer between mathematics and CS

To foster successful transfer, a teacher should emphasize the common underlying con-
ceptual bases (Jarvis and Pavlenko, 2008), in this case those of mathematics and CS.
In general, a successful transfer correlates with already acquired expertise: the more
knowledgeable the learner, the more well-rounded their skills and the more �exible their
mental models, the more readily they will adopt the new knowledge (Bransford et al.,
2000). An expert �nds analogies by exploiting their previously-constructed knowledge.
Without too much e�ort, an expert is capable of identifying the signi�cant points of the
new material, and can thus learn faster and cope better with open-ended problems, these
being the cognitive hallmarks of expertise (Billett, 2001). A novice, on the other hand,
can become bogged down by the amount of data and may concentrate on irrelevancies.
In de�ning the concept of expertise, the Gestalt psychologists (e.g. Köhler, 1970) refer to
the insight experience that helps learners �nd the right solutions intuitively and enables
them to predict outcomes in new situations.

A transfer may happen either near or far, laterally or vertically (GagnØ, 1965), or by
the low road or the high road (Perkins and Salomon, 1988), all of which imply a certain
hierarchy of learning. As the terms suggest, ‘near’ and ‘low road’ transfer occur semi-
automatically in similar contexts, whereas ‘far’ and ‘high-road’ transfer only occur once
the similarity has become clear after a process of abstraction. Sometimes far transfer
also suggests an element of innovation (Butter�eld and Nelson, 1991, inventive transfer)
or creativity (Haskell, 2000, creative transfer), especially when the transfer engenders
new concepts. In addition, Rich et al. (2013) state that one of the complementary
subjects tends to be interpreted in learners’ minds in a more abstract manner while the
other encourages the learner to focus more on the application. In most comparisons,
mathematics is regarded as being more abstract than computing, which is regarded as
being a type of applied mathematics (Dijkstra, 1982). In mathematics, educators have
long talked about procedural and conceptual knowledge (Gray and Tall, 1994). Procedural
knowledge consists of well-internalized mathematical routines, ‘processes’, and these may
form concepts if they are explicitly abstracted. Conceptual knowledge, on the other hand,
comprises possession of the relevant concepts and their relationships. It is assumed that
the practice of both mathematical routines and concepts can provide appropriate bridges
for programming learning interventions by exploiting transfer mechanisms.

Transfer between mathematics and computing is streamlined by bridging the gap between
corresponding concepts in mathematics and CS. Bridging includes fostering the transfer
by clearly explaining the similarities between the concepts. Convergent cognition exploits
the synergy of teaching two complementary disciplines in sync: the bridge between them
is supported with trusses, such as an instructional framework that highlights the link.
Rich et al. (2013), however, claim that the convergent-cognition approach requires an
adequate intellectual maturity. Similarly, the method of deliberate practice proposed by
Ericsson et al. (2006) is intentionally aimed at elaborating the content to seek analogies
and to build connective cognitive links. According to Lehtinen et al. (2014), this implies
‘conscious e�ort, a great deal of thinking, problem solving, and re�ection for analyzing,
and conceptualizing’. Explicit abstraction raises the level of perception in order to
recognize the analogies despite minor deviations in details (Perkins and Salomon, 1988).
In this thesis, the transferability of prior knowledge is anticipated to help in-service
trained mathematics teachers to learn computing, catalyzed by the similarity between
mathematics and functional programming.

3 Research methods and theoretical
frameworks

The chapter reports the methods exploited, but it �rst addresses the broader epistemo-
logical underpinnings of FNC-2014, such as socio-constructivism, that are also inherently
embodied in the studied learning solutions, e.g., in in-service trainings, where the integra-
tion with mathematics teaching is also in�uential. In overall, the publications employ
mixed methods and design-based research. The methods used will be introduced under
the relevant research questions in a more detail. The method- and data triangulation
of the included publications add to the reliability of the results. Moreover, the research
�ndings are in compliance, thereby con�rming each other.

RQ1:CT, ‘How to integrate CT into the mathematics syllabus?’, examines the integration
of CT by exploiting the shared practices in mathematics. The data collection comprises a
survey, interviews, essays, a questionnaire and the speci�cation texts for the CS curricula
and syllabi in secondary and higher education. The informants ranged from school
students (Y10) to teachers and SW engineers. Taken together, the literature reviews
in the publications provide an in-depth overview of the variations in the de�nitions of
CT. Only a few of the curricula mentioned CT by name, so the associated skills, such as
algorithmic and logical thinking, are referred to instead. In-service trained teachers and
educators are seldom CS experts, so their re�ections mainly echo the learned content,
and unique and original ideas are rare. However, if they have already gained �rst-hand
teaching experience, some of the course topics might sound impractical, whereas the
verisimilitude of other topics to their own experience a�rms the topic’s value, and this
is manifested in their re�ective essays. The qualitative data of the essays is further
elaborated as a hypothetical learning trajectory of computing, where algorithmic thinking
in particular comes into focus.

The views of the students (PIII), teachers (PV,VI ,VIII), and engineers (PII ,VII) con-
tribute to the research �ndings. Their interviews are transcribed, and these and other
survey data are analyzed with the content analysis means of classi�cation and thematiza-
tion. The analysis ultimately targets �nding the entities and relations of meanings and
combining it as a common narrative (Vilkka, 2005), embodied as a learning trajectory of
CT in this thesis. Hsieh and Shannon (2005) divide content analysis orientations into
conventional, summative, and directed one in an ascending order of the eminence of
theory. The orientation here is summative: the results are re�ected on a dialog with
previous CT models, still remaining sensitive to meanings proposed by the informants,
such as engagement through creativity and authentic self-expression, and the prominence
of speci�cational thinking concerning engineers. Reliability is pursued by reviewing the
results against computing syllabi abroad and the recommendations set by ACM/IEEE.

21

22 Chapter 3. Research methods and theoretical frameworks

To respond to RQ2:CS, ‘Which are the CS fundamentals that suit mathematics education
best?’, the K �12 syllabi of di�erent countries are compared, and the comparison is
stretched to higher education by taking into account the recommendations of the ACM
and the IEEE. In addition, the evaluation of the most useful and suitable topics from
practicing SW engineers and mathematics teachers enriches the analysis. Finding the
most prominent CS fundamentals is signi�cantly easier than the de�nition of a thorough
CT model. The CS concepts and teaching practices are already established. Technical
universities share a more or less common view of how the basics of CS ought to be
taught, even if the languages and paradigms vary. The prominence of the CS concepts are
evaluated simply by their frequency of occurrence in the quantitative data analysis. In the
qualitative analysis, the teachers’ authentic voices are heard by selecting any especially
enlightening quotations. Even though the order of prominence of the CS fundamentals
is clear, in the MOOC, the geometry-related, creative exercises rank surprisingly high,
because of the motivational boost they are capable of providing.

RQ3:TCH, ‘How to train in-service mathematics teachers as computing teachers?’, ap-
proaches the question of the appropriate means of training teachers from various angles.
For instance, how e�ective is the MOOC for in-service training? How can we assess the
value of the informal learning which takes place online? The MOOC feedback, surveys
and essays provide a plethora of data to be analyzed. The data illustrates the teachers’
sentiments and concerns regarding the changes in their job descriptions, as well as the
programming languages and paradigms they have to deal with. In evaluating the suitabil-
ity of the taught material, and a paradigm selection, easily transferable knowledge that
complements teachers’ prior knowledge is considered a bene�cial approach.

Each individual teacher functions as an independent agent of their own learning. However,
in knowledge building and professional development, it is not just the individual’s personal
objectives which are of importance, but the more general requirements of society as a
whole must also be taken into consideration, such as employability issues. The background
theories used to evaluate the e�ectiveness of the in-service training are based on those of
‘teacher professional development’, ‘technological and pedagogical content knowledge’,
and ‘adaptive expertise’. In addition, the data analyses presented here try to capture what
is worth learning by observing the data through the overall theoretical lens of curriculum
theory and research. The following sections introduce epistemological underpinnings
implied by FNC-2014 as a research target, the underlying methodology of design-based
research, including the research data, the analyses conducted, and a summary table of
the publications referred to and the corresponding methods.

3.1 Socio-constructivism as an underlying epistemology of
FNC-2014

The studied and developed learning solutions in this thesis are directly or indirectly
connected to the current curriculum, hence its epistemological rudiments are in�uential.
As in the previous curriculum, FNC-2004, the dominant learning theory in FNC-2014 is
constructivism, in essence socio-constructivism, which underpins a large family of related
theories (Kimonen and Nevalainen, 2005; Kuusisaari et al., 2016). In the current version
constructivism is only implicitly present. The speci�cation text describes an ideal active
learner without naming any particular learning theory. However, Kuusisaari et al. (2016)
interpret the curriculum as still mainly relying on socio-constructivism, socio-cultural,
and humanistic learning perceptions.

3.1. Socio-constructivism as an underlying epistemology of FNC-2014 23

These theories emphasize an individuals’ own work in active information seeking and
its structuring as consistent constructions, i.e., as schemas and other elaborations. In
addition, an active learner ought to be aware of the best means of learning for him, the
whole learning process being supported by proper meta-cognitive and self-regulation skills
(Piaget and Duckworth, 1970). The cognitive constructivism of Piaget and Duckworth
(1970) highlights in particular the process of building schemata and the increasing
complexity of these mental structures. As a development psychologist, Piaget studied
children’s cognitive development for the whole of his career and described learning as
the construction of schemata by employing two main mechanisms: when a child faces
a new concept, ‘assimilation’ strengthens the schema; a new concept snaps smoothly
into the sketch, whereas ‘accommodation’ deals with the inconsistencies in a schemata
that mandate its reconstruction. In particular, Piaget’s genetic epistemology emphasizes
re�ective abstraction as the way to deliberately construct such conceptual knowledge. In
summary, cognitive development can be characterized as changes in one’s schemata.

In contrast to Piaget’s rigid age ranges for children’s cognitive development, numerous later
research studies have demonstrated that many of Piaget’s views to be underestimations,
such as his claim of poor conservation (Donaldson, 1978), or false-belief tasks that are
manifested as a child’s ability to perceive rather sophisticated mental operations, for
instance, of settling in a seeker’s position when in a play hidden items are moved (Goldman
et al., 2012). In essence, challenging Piaget’s developmental phases has become so popular
among developmental researchers that it led to the dedicated term of ‘Piaget bashing’, and
a canonized procedure: choose one of Piaget’s claims about what 6- to 8-year-old children
cannot do, design a child-friendlier method, and demonstrate earlier ability (Doherty,
2008). This child-friendly approaches aspires towards more visual and dynamic study
set-ups instead of ones that may confuse a child by being too formal or adult-compliant. In
mathematics, children’s early abstraction skills have been proved, e.g., with visually-aided
algebra exercises that they are capable of solving earlier than expected, see Ch. 2.2.1.

Socio-constructivism, however, spotlights the social and cultural aspects of learning more
than the internal cognitive processes, which, according to Piaget, happen endogenously
while a child grows. In development, Vygotsky and his seminal work depict the prominence
of language, connections with peers, and master/apprentice relations as a means of
learning, where the zone of proximal development is thought to be especially fruitful
(Vygotsky, 1980). As the latest extension of active learning, FNC-2014 introduces
phenomenon-based learning in conjunction with other experimental and active learning
approaches, such as ‘learning by doing’ (Dewey, 1902) and ‘learning by making’ (Papert,
1980). Both emphasize the a�ective side of learning and aim �rst at motivating students
with engaging exercises. In Finnish educational discourse, Papert has enjoyed a solid
reputation from the late sixties, when LOGO was introduced. Indeed, it is only recently
that his reputation has started to fade. However, the programming addition in FNC-2014
has revived his reputation. According to Papert’s interpretation, computing is applied
mathematics, thus these are mutually supportive. Piaget has his say also in the didactics
of mathematics by bringing a more ‘bricoleur’ learning approach, engaging students with
a strong hands-on emphasis, and promoting computers as excellent tools for doing this.
Papert’s interpretation of constructivism is called constructionism.

The spiral curriculum takes the learning content and splits it into suitable and age-
appropriate portions for each school year, with each revisit deepening the review (Bruner,
2009). Bruner aims to solidify the learning of even the most complex known issues by
iterative revisits `until the student has grasped the full formal apparatus that goes with

24 Chapter 3. Research methods and theoretical frameworks

them'. Similarly, the theory of a ‘learning trajectory’ has its roots in constructivism and
active learning theories (Clements, 2002), and shares the idea of a consistent path for
a learner to follow. The path consists of well-justi�ed building blocks speci�ed as the
result of learning experiments and the selection of the most functional approach. In both
approaches, well-designed exercises sca�old the way to abstraction for students.

P II Vygotsky (1980) socio-constructivism:
hands-on exercises with peers

P III Ryan and Deci (2000) self-determination theory:
math-competent often intrinsically motivated

P IV Wing (2006) CT model:
abstraction-automation-analysis

P VII Pinar (2012) curriculum theory - education worth knowing
feedback: algorithmic and logical thinking

P V,VI ,VIII Piaget and Duckworth (1970) progressive sketches of
Sarama and Clements (2009); Vygotsky (1980) a learning trajectory for CT, paradigm considerations

RQ1:CT

RQ2:CS RQ3:TCH
I

V,VI ,VIII

IIIII ,IV,VII

P II � algorithms&data structures
P IV Schanzer

(2015)
algebra linkage

P VII ACM&IEEE
(2013)

discrete mathematics

P V,VI ,
VIII

Papert
(1980)

learning by making,
math-CS integration:
func, var, type, ctrl structures

P I Endsley (1995) situation-awareness of
pedagogy and context
in particular

P III Maloney et al.
(2010)

prof. learning network
constructionism

P V,VI ,
VIII

Schanzer (2015) transfer between algebra and
CS, paradigms

Burke (2016) metaphors connected to CS
Papert (1996) constructionism, CS for all
Voogt et al. (2013) TPACK
Mezirow (1997) transformative learning,

disorienting dilemma

Figure 3.1. Research questions, contributions, and referenced theories

This thesis complies with the learning theories of constructivism, e.g., the theories of
Piaget, Vygotsky and constructionism of Papert in Fig. 3.1. Even if the underlying
epistemological background has not been stated in each publication, the overall research
topic, FNC-2014 and its programming enhancement, implies it. In reviewing previous CT
models, Papert is referenced in the publicationsV, VI , VIII , as sharing the same goals of
integrating CS and mathematics. Several of his viewpoints are in�uential, e.g., considering
the a�ective side of learning, and enriching mathematics with real-life problems solved
with peers. A learning trajectory was selected as the means of elaboration, and the most
central CS concepts were positioned beside the corresponding concepts in mathematics
to be introduced in sync. The hardest work has already been done in specifying the
mathematics syllabus and dividing the content into suitable portions for school periods,

3.1. Socio-constructivism as an underlying epistemology of FNC-2014 25

which provides attachment points to construct a learning trajectory for CT as well.

3.1.1 Mathematics and CS thrive in tandem through transfer

From the educational point of view, algebra is ideally positioned in the overlapping
parts of the syllabi of mathematics and computing, and near transfer is the educational
mechanism to exploit that synergy (Schanzer, 2015). Transfer happens more easily with
no conceptual contradictions and with as clear and explicit a ‘notational machine’ as
possible, which in Schanzer’s dissertation implies the construction of robust knowledge
structures. In comparing paradigms, math-suitability is assessed as compliance with
mathematical rules. Assignment is particularly problematic as a source of ‘mind bugs’:
what is i � i � 1 but a false sentence in the mathematical sense. Its full explanation
necessitates a comprehensive review of memory issues, even if the intention is to stay at
a higher abstraction level. Moreover, out-of-scope assignments of global variables cause
side-e�ects. If the global variables are exploited in Boolean conditions, the vertical line
test of function will fail by returning varying values for one input.

The literature supports the hypothesis of conceptual challenges being caused by the
assignment. Multiple common misconceptions in computing are related to data handling
implying di�culties with assignment. As common misconceptions after the �rst CS course
in higher education, literature itemizes issues, such as storing input and reading data
in BASIC (Bayman and Mayer, 1983), instance variable initiating, actual vs. formal
parameters in Java (Fleury, 2000), and the memory model, references and pointers,
primitive and reference type variables (Kaczmarczyk et al., 2010).

Knowing multiple paradigms is educative. However, the preferred order and, especially,
the selection of the very �rst programming language are divisive issues. The popularity of
the language is one justi�cation for its selection, avoiding misconceptions in the context of
math is another, and providing forward-compatibility for continuation of CS studies is yet
another. With regard to this last consideration, the transition from a more restricted to a
looser system is considered easier than the other way around. In particular, removing an
assignment from the tool set is later felt to be an inconvenience. A functional paradigm
contains a concise command set that is easily mastered throughout, yet it possesses a
considerable power of expression. Without side-e�ects, the purely functional paradigm is
the closest to mathematics, or to be speci�c, a coherent part of it, the paradigm being
derived from lambda calculus.

Comparing learning outcomes between, for example, imperative and functional paradigms
is cumbersome. The test set-up should not be biased in either direction, thus an extensive
exploitation of either variables or functions should be avoided. Algebra � or more broadly
mathematics � provides an objective test to measure the outcomes of the integration. As
a subject, mathematics has a solid reputation: a number of countries utilize it as an entry
criterion in many �elds of higher education, such as technological and medical faculties.
For example, in South Korea, CS has lost in popularity but mathematics has gained
because of its anticipated pro�tability in a later career (Choi et al., 2015). In mathematics,
the progress is more measurable and the assessment criteria are well-known, thus riding
on its reputation is considered a viable strategy in establishing the position of CS as
well. Counter-intuitively, mathematics teachers were measured to be more successful in
teaching CS for youngsters than CS teachers themselves (Schanzer, 2015). Teaching CS
is such a new thing that neither proper quali�cations for teachers nor distinct learning
outcomes have been speci�ed. Besides, mathematics teachers have a head start: they are
more experienced in pedagogy and teaching abstract thinking skills analogous to CT.

26 Chapter 3. Research methods and theoretical frameworks

3.2 Design-based research

Design
Cycle

Enact
Analy

se
(R

e)
de

sig
n Develop

Figure 3.2. DBR cy-
cles (Collins, 1992; The
Design-Based Research
Collective, 2003)

The overall methodology is mainly based on design-based re-
search (DBR), which implies the theory-driven development of
educational solutions combined with their empirical proofs (An-
derson and Shattuck, 2012; Ørngreen, 2015; Wang and Hanna�n,
2005). Suhonen et al. (2012) trace the development of design-
based research over the last 60 years, starting with design science,
which systematizes the design process (Fuller, 1957), through
design research, which investigates the design of man-made ar-
tifacts (Archer, 1965), and ending up with design-based research,
which is delimited to educational learning artifacts only (The
Design-Based Research Collective, 2003).

Design-based research consists of consecutive iterations of design,
development, enactment, and analysis, see Fig. 3.2. In education,
the design and development phases involve both designers and
teachers; the teachers help de�ne the problem, and the designers
come up with a solution. The solution is then enacted by the
teachers in a real school context, and the feedback from the
teachers is analyzed and used as the basis for further development.
It is a continuous feedback loop in which, preferably, the same group of designers and
developers have a chance to observe, analyze and re-design the solution based on feedback
and research �ndings. However, in the case of large-scale, long-term projects, the analysis
phase is often executed by third-party researchers who are remote from the original
designers. Unless these third-party researchers’ results are well disseminated, the bene�ts
of the continuous design cycle and the information it provides are largely lost.

Figure 3.3. Nested design cycles of curriculum updates
(update/10 years) and Code ABC MOOC tracks (2 up-
dates/year)

Involving teachers from early on
in the design process ensures con-
textually �tting learning solutions
that address real classroom prob-
lems, support teachers’ pedagog-
ical practices and add value to
the end-users’ learning. Thus, the
practices of user-centered design
may facilitate the enactment of
the learning solution.

Fig. 3.3 illustrates two nested
DBR development cycles: the
outer cycle of curriculum devel-
opment, which may be inter-
preted as an instructional arti-
fact, is released in approximately
ten-year cycles (Finnish National
Board of Education, 1994, 2004,
2014). The inner cycle speci-
�es one particular implementa-
tion of a MOOC providing in-
service training for mathematics
teachers, as this is examined in

3.2. Design-based research 27

several publications of this study. It is iterated in half-year cycles. The outer cycle
comprises the phases in the design and publication of the new curriculum by the Finnish
National Agency for Education. This includes the development of new learning material
by commercial and non-commercial providers, the enactment and implementation of the
curriculum in the school context by teachers and principals, the collection of data about
the learning outcomes, the analysis and interpretation of the results, i.e. the learning
outcomes, and the incremental improvement and �ne-tuning of the new curriculum. Thus,
the design and development process is a large-scale e�ort involving a great number of
government o�cers, educators, and scholars. The development of FNC-2014 is understood
as a narrative for the whole nation, which can be analyzed and evaluated by all its citizens
and organizations. This study, however, is mainly concerned with the analysis of new
curriculum requirements, and to a lesser extent the development of learning material and
the enactment of the curriculum changes; the subsequent redesign phase will take place in
the future. Nevertheless, the results of this study will be disseminated to the respective
stakeholders, who hopefully will use this and other completed research to �ne-tune the
next curriculum.

The inner cycle represents a smaller-scale e�ort by a handful of volunteers who have
created the Code ABC MOOC for Finnish mathematics teachers who are keen to learn
the CS basics. This MOOC has been executed once a semester since the autumn of 2015,
totaling four iterations during the research period of this thesis. The MOOC was designed
to closely follow the Finnish ministry of Education’s written speci�cations for FNC-2014.
FNC-2014 is based on the constructivist theory of learning, i.e. the aim is for the learner
to construct their own knowledge base. This theory underpins a large family of related
theories, all of which emphasize consistent knowledge building by an individual whose
knowledge is modeled on schemata and other elaborations. In the MOOC, the feedback
is collected after each topic in the MOOC syllabus, and in compliance with the principles
of DBR, the iterative feedback is analyzed in order to make further improvements to the
content.

The articles about the Code ABC MOOC, Publications V, VI , and VIII , explicitly exploit
design-based research, yet the method is implicitly present throughout the thesis. The
MOOC comprises four tracks, Scratch Junior, Scratch, Python, and Racket. This thesis
mainly concentrates on the Python and Racket tracks, which are designed for secondary
schools. However, this study acknowledges and emphasizes the value of Scratch as a
primer, especially in the way it improves the self-e�cacy of Finnish primary school
students.

Most Finnish primary schools make great use of Scratch, which, if necessary, can usefully
be extended to the secondary level as well. PublicationIII discusses the motivational
aspects of Scratch, which o�ers many ready-made learning examples. Besides engaging
young children’s interest, Scratch is designed as a social networking site which facilitates
teachers’ professional development by enabling them to network and exploit other teachers’
experiences. In addition to FNC-2014, the Code ABC MOOC and Scratch, PublicationI
studies twelve learning solutions developed by incubating start-ups and small and medium-
sized enterprises. In the research project, the design-based approach was prominent:
observation data and feedback from the teachers were used to redesign the learning
solutions. The entrepreneurial narratives revealed the values and visions that guide the
strategy and determine the success of the product.

28 Chapter 3. Research methods and theoretical frameworks

3.3 Qualitative and quantitative data

This is a longitudinal study conducted over a variety of sites, which is re�ected in the
variety of research data. Not all the data were new, nor speci�cally collected for this
study. For instance, Publication IV compares the computing curriculum speci�cations
of the UK, US, and Finland, and Publication VII exploits the quantitative data of
previous mathematics topic evaluations among SW engineers. The other studies, however,
utilize interviews and surveys from learning solution developers, computing students, and
practicing mathematics teachers in order to collect data speci�cally for this thesis.

3.4 Analyses conducted

The analyses of the study combine both qualitative and quantitative research approaches,
which is referred to as mixed-method (Denscombe, 2008). The choice of method depends
mainly on the nature of the data, e.g., plenty of numeric data implies a quantitative
method, whereas open-ended questions with textual input imply a qualitative approach.
Two good examples of quantitative research are PublicationV, which analyses the teachers’
Likert-scale feedback from the Code ABC track topics, and PublicationVII , which uses a
numeric evaluation of mathematics topics by SW engineers to cross-correlate and con�rm
the validity of previous research.

All the interviews were recorded and transcribed. This data, and the answers to the many
open-ended questions were examined further using the content analysis methodology.
ATLAS.ti, a workbench for the qualitative analysis of textual and audio data, was utilized
once in the beginning, while in other cases, the categorizations were either manual or the
occurrence frequencies were calculated with the help of Python scripts or Excel functions.

The validity of the main �ndings of this study is further increased through the use
of triangulation. As described in the previous section, the mixture of methodological
approaches implies a method triangulation. In addition, the Code ABC MOOC is explored
using both numerical data and essays, and by comparing various tracks and exploring free-
form discussions on social media. The basic conventions of Finnish curriculum planning
are also analyzed with reference to teaching in a foreign culture, in the international
school in Cambodia (Publication III). Distancing oneself from the usual conventions may
also be interpreted as one type of data triangulation. The fact that di�erent researchers
evaluated the same data in comparing the Code ABC MOOC track and analyzing the
social media data is further evidence of researcher triangulation.

In some studies, the sample size is too modest for the results to be generalized. For
instance, in Publication II , N � 7, the informants describe the close connection between
mathematics and CS and the need for more emphasis on teaching algorithms and data
structures. However, with so few informants, the results, although a useful indicator,
cannot be generalized to larger populations. On the other hand, in PublicationVII these
results were con�rmed with more comprehensive studies with the statistically signi�cant
sample sizes ofN � 181 and N � 212. The same mathematics-CS association was
found in Publication IV , N � 6, N � 16, and N � 54; the correlation between intrinsic
motivation in CS and competence in mathematics seems clear even if the sample size limits
the validity of too wide a generalization. With such limited sample sizes, being competent
in mathematics is only one possible explanation for students’ intrinsic motivation.

The sheer range of methods, data, and informants used for this thesis do manage to capture
a rich variety of di�erent viewpoints, and the data and methodological triangulations

3.5. Method summary 29

provide a comprehensive picture of the current situation in Finnish schools, which increases
the reliability of the main �ndings.

3.5 Method summary

Table 3.1 itemizes the publications, the methods, and how each publication contributes to
the research questions. RQ1, which handles integrating CT and mathematics, involves a
few paradigm-related issues as well. RQ2 extends into the area of discrete mathematics and
supports the CS theory basis, as well as pointing out the most prominent CS fundamentals.
RQ3, regarding teachers’ in-service training mainly exploits the MOOC and SNS feedback,
although the �rst publication also summarizes the views gained from the entrepreneurial
narratives of the learning solution developers.

30 Chapter 3. Research methods and theoretical frameworks
Ta

bl
e

3.
1.

S
um

m
ar

y
of

th
e

m
et

ho
ds

us
ed

in
th

e
ci

te
d

pu
bl

ic
at

io
ns

(P
yt

ho
n

ab
br

ev
ia

te
d

as
P

,
R

ac
ke

t
as

R
)

D
at

a
N

S
am

pl
e

M
et

ho
d/

th
eo

ry
R

Q
1:

C
T

R
Q

2:
C

S
R

Q
3:

T
C

H

I
in

te
rv

ie
w

s,
su

cc
es

s
ap

pr
ox

im
at

ed
by

tu
rn

ov
er

12
en

te
r-

pr
is

es

en
tr

ep
re

ne
ur

ia
l

na
rr

at
iv

e,
co

nt
en

t
an

al
ys

is
/

gr
ou

nd
ed

th
eo

ry
,

si
tu

at
io

n-
aw

ar
en

es
s

p
ed

ag
og

y-
an

d
co

nt
ex

t
aw

ar
en

es
s

pr
om

in
en

t
in

su
cc

es
s

II
su

rv
ey

7
S

W
en

g.
co

nt
en

t
an

al
ys

is
/

ho
lis

tic
IC

T
m

o
de

l

ab
st

ra
ct

io
n,

us
er

-c
en

te
re

d
de

si
gn

,
m

o
de

lin
g

al
go

rit
hm

s
an

d
da

ta
st

ru
ct

ur
es

III
su

rv
ey

,
fo

cu
s

gr
ou

p
in

te
rv

ie
w

,
S

cr
at

ch
co

ur
se

w
or

k,
gr

ad
es

6,
16

,5
4

Y
10

st
ud

en
ts

su
rv

ey
,

fo
cu

s
gr

ou
p

in
te

rv
ie

w
,

co
m

pa
ris

on
of

sc
ho

ol
vs

.
rn

d
M

IT
S

cr
at

ch
pr

o
js

/
S

D
T

th
eo

ry
,

in
tr

in
si

c
m

ot
iv

at
io

n

m
ot

iv
at

io
n,

se
lf-

e�
ca

cy
,

au
th

en
tic

ity

pr
of

.d
ev

el
op

m
en

t
th

ro
ug

h
re

ad
y-

m
ad

e
ex

am
pl

es
an

d
re

m
ix

in
g

IV
C

S
sy

lla
bi

3
U

K
N

C
,

U
S

C
C

,
F

N
C

co
nt

en
t

an
al

ys
is

,
m

in
d

m
ap

pi
ng

/
cu

rr
ic

ul
um

re
se

ar
ch

,
tr

an
sf

er
,

pa
ra

di
gm

s,
C

T

C
T

:a
bs

tr
ac

tio
n-

au
to

m
at

io
n-

an
al

ys
is

al
ge

br
a:

va
r/

fu
nc

U
K

N
C

di
sc

.
m

at
h:

lo
gi

c,
se

ts
,

m
at

ric
es

V
su

rv
ey

13
7

m
at

h
te

ac
he

rs
D

B
R

/tr
an

sf
er

,
ex

pl
ic

it
ab

st
ra

ct
io

n

al
go

rit
hm

ic
th

in
ki

ng
,

pr
ob

le
m

so
lv

in
g,

cr
ea

tiv
ity

:
ge

om
et

ry
ex

er
ci

se
s

en
ga

ge

fu
nc

tio
n

as
a

m
ai

n
ab

st
ra

ct
io

n,
re

cu
rs

io
n

ch
al

le
ng

in
g

in
-s

er
vi

ce
tr

ai
ni

ng
M

O
O

C
T

P
D

,
T

PA
C

K
,

ex
pl

oi
ta

bl
e

co
nt

en
t

kn
ow

l-
ed

ge
of

m
at

he
m

at
ic

s

V
I

es
sa

ys
,

co
nt

en
t

an
al

ys
is

20
6

m
at

h
te

ac
he

rs
D

B
R

/tr
an

sf
er

le
ar

ni
ng

tr
a

je
ct

or
y

ab
st

ra
ct

io
n-

au
to

m
at

io
n-

an
al

ys
is

,
lo

gi
c,

cr
ea

tiv
ity

m
at

he
m

at
ic

s
co

nc
ep

ts
->

C
S

fu
nd

am
en

ta
ls

:
fu

nc
,

va
r,

ty
p

e;
ba

si
c

ct
rl

st
ru

ct
s

in
-s

er
vi

ce
tr

ai
ni

ng
,

cu
rr

ic
ul

um
re

�e
ct

io
ns

,
se

lf-
m

ad
e

ex
er

ci
se

s,
tr

an
sf

er
,

m
et

ap
ho

rs

V
II

C
S

ed
uc

at
io

n
re

co
m

m
en

da
tio

ns
an

d
cu

rr
ic

ul
a,

qu
es

tio
nn

ai
re

s

11
,1

9,
24

18
1

21
2

S
W

pr
of

s.
co

nt
en

t
an

al
ys

is
,

co
rr

el
at

io
n,

R
2

/
cu

rr
ic

ul
um

th
eo

ry

al
go

rit
hm

ic
,

lo
gi

ca
l

an
d

sp
ec

i�c
at

io
na

l
th

in
ki

ng
,

m
o

de
lin

g

al
go

rit
hm

s
an

d
da

ta
st

ru
ct

ur
es

,
m

ul
tip

le
re

pr
es

en
ta

tio
ns

,
lo

gi
c,

se
ts

,
st

at
.,

pr
ob

.

V
III

co
ur

se
m

at
er

ia
l,

M
O

O
C

to
pi

c
fe

ed
ba

ck
32

0(
P

)
13

7(
R

)
m

at
h

te
ac

he
rs

D
B

R
,

co
nt

en
t

an
al

ys
is

,
o

cc
ur

re
nc

e
fq

of
C

S
fu

nd
am

en
ta

ls
/

cu
rr

ic
ul

um
re

se
ar

ch
,

tr
an

sf
er

ab
st

ra
ct

io
n:

�o
w

ch
ar

t,
�lt

er
pa

tte
rn

,
fu

nc
tio

ns
au

to
m

at
io

n:
ite

ra
tio

n/
re

cu
rs

io
n

an
al

ys
is

:
de

bu
gg

in
g,

te
st

in
g

P
:

va
r

R
:

fu
nc

in
-s

er
vi

ce
tr

ai
ni

ng
,

co
ur

se
fe

ed
ba

ck
,

tr
an

sf
er

,
pa

ra
di

gm
s,

m
et

ap
ho

rs

4 Overview and relevance of the
publications

The publications are organized in chronological order except for a slight deviation at
the end, where a paradigm-related issue, PublicationVIII , the paradigm comparison
of Code ABC tracks, is presented last, although it was originally written earlier as an
extension of Publication V, the Racket track presentation. The scope of the �rst three
publications is more general and they do not focus speci�cally on the integration of
CS into the mathematics syllabus. Instead, they compare the computing curricula of
di�erent countries and the pros and cons of having CS as a separate subject on the school
curriculum. Nevertheless, mathematics is a basic tenet of the pedagogical considerations
right from the start. For example, Publication II itemizes problem-solving skills practiced
in mathematics, and algorithms & data structures as the most useful skills for software
engineers, and PublicationIII hypothesizes that a student’s competency in mathematics
is an expedient predictor of intrinsic motivation for CS.

The remaining �ve publications further emphasize the prominence of mathematics. Pub-
lication IV highlights the two algebraic fundamentals of function and variable, which
serve as the common ground between mathematics and computing. This publication also
proposes a number of discrete mathematics topics to be added to FNC-2014. Publication
V and Publication VI analyze the feedback of the Code ABC MOOC participants, who
are mainly mathematics teachers. Publication V concentrates on the quantitative data
whereas Publication VI examines the qualitative data, e.g. the participants’ re�ective
essays. Publication VI also synthesizes the results of the data analysis as a learning
trajectory for CT, in which the central concepts of CS are positioned in parallel with
their mathematical equivalents. Publication VII reviews the e�ectiveness of studies on
mathematics in higher education and emphasizes the usefulness of discrete mathematics
while Publication VIII compares the math-suitability of di�erent paradigms. The Python
and Racket tracks of the Code ABC MOOC represent here the imperative and functional
paradigms respectively.

Together, the publications contribute to a consistent learning progression in integrating
mathematics and CS. They clarify the implications for both the mathematics syllabus
and teacher training, and assess the appropriateness of this approach.

31

32 Chapter 4. Overview and relevance of the publications

4.1 Publication I: Signi�cance of pedagogy- and context
awareness

Successful design of learning solutions being situation-aware

This publication was initiated while the author was working as a researcher on the SysTech
project, which investigated Finnish small- and medium-size enterprises (SMEs) developing
or delivering learning solutions for education. The project aimed to assist such enterprises
in developing their learning solutions further by collecting and analyzing feedback from
both the users, i.e., teachers, and by providing researchers’ expert evaluations of the
solutions. In order to better understand the motives and orientation of the participating
entrepreneurs, the research group carried out face-to-face interviews with twelve of them
and transcribed the interviews. These interviews captured the entrepreneurial narratives
and provide much valuable qualitative data for analysis. The data was exploited to identify
the predictors of successful learning solutions. In accordance with the grounded-theory
approach, the analysis categorizes the themes of the interviews as a conceptual framework
of situation awareness, through which the study investigates the orientations of each
enterprise.

Relevance of this study: The publication sketches out a ‘situation awareness’ frame-
work to explain why some learning solution developers were more successful than the others.
The model emphasizes the necessity of taking into account pedagogy, context, technology,
and strategy. The entrepreneurial narratives reveal the strategy- and technology-biased
nature of the enterprises, and also the fact that some of them fail to focus on pedagogy
and context as much as they should. Only a few of the enterprises were su�ciently aware
of pedagogy and context, these being the ones with already established close relation-
ships with schools, or an earlier background in teaching. The lack of sites for piloting
material, and the lack of any other feedback mechanisms for testing out their material
exacerbated the entrepreneurial developers’ inadequate understanding of teachers’ needs,
which prevented them from developing their learning solutions to their full potential.

The principles of DBR necessitate iterative design cycles in order to improve any learning
solution, i.e., feedback should be collected, analyzed and then acted upon. For the
entrepreneurs, the SysTech project was welcomed because it guaranteed them feedback on
their learning solutions from both teachers and researchers. While the teachers were able to
report their experiences as users, the researchers were able to examine the solution against
the dominant pedagogical theories behind the Finnish curriculum, socio-constructivism
being one of the most in�uential of these. Being aware of these pedagogical aspects helps
the entrepreneurs to discuss their solutions with teachers using the same terms, which
ultimately assists them in developing learning solutions most appropriate for mainstream
educational use.

This publication is based on general learning solutions, and not only those solutions that
target better computing skills. As such, it has a wider scope and provides a model for more
generally applicable learning solutions. For example, a subsequent article, Publication
VIII , con�rms that a more context-aware solution is always preferable to one that is not.
The crucial point for the developers to learn from this is the necessity of doing one’s
homework. The solution must be integrated with FNC-2014 requirements and should
be well aligned with the principles behind the currently most accepted learning theories,
most prominent among which is socio-constructivism. The main selling point of any
proposed learning solution is how well it takes into account the restrictions set by the
context.

4.2. Publication II: A holistic view of CS education 33

4.2 Publication II: A holistic view of CS education

Educating future coders with a holistic ICT curriculum and new
learning solutions

FNC-2014 emphasizes the importance of digital skills including cross-curricular digital
competence, familiarizing oneself with robotics in crafts, and computing integrated with
mathematics. However, up till now, teaching computing at elementary level has been
limited to rote learning, e.g., drilling the basic control structures such as selection (if-
then-else) and iteration (for, while). This approach manages to cover only a restricted
subset of the whole range of skills required by a skilled SW engineer (SWE). This study
surveyed practicing SW engineers in industry. The cohort consisted of seven experienced
professionals (four males, three females) with an average of eleven years in service.
Although the cohort is relatively small, the answers to the open-ended questions of the
survey revealed a rich source of qualitative data. For example, the respondents stressed
the importance of user-centered design, modeling an architecture, and managing the
requirements and the schedule as vital skills. This indicates that the current focus of CT
might be too narrow, and ought to be complemented with speci�cational thinking.

User-centered design ensures that the actual needs of a customer are met. This echoes
Papert (1980), who refers to the principle of cultural resonance, i.e.:̀ The topic (artifact)
must make sense in terms of a larger social context.'If the developed artifact is aimed
at improving a user’s personal environment and living conditions, then user-centered
design may also be regarded as a tool of empowerment. Empowered citizens who are
su�ciently aware of the wider and emerging needs of society become more innovative. Of
course, their innovations require the skills needed to implement them. After capturing
user requirements, the SWE’s process continues with modeling the software architecture,
which demands both technical skills and conceptual competence. These skills are not
exploitable in programming only, but are applicable in deliberate knowledge building, as
well, in the form of, e.g., concept mapping.

The article concludes with a holistic model for ICT teaching. Instead of teaching students
just the basics of computing, higher-level abstraction and project management skills are
also proposed as useful competences for future engineers, referred to as speci�cational
thinking later in Publication VII . Although this study does not speci�cally focus on the
concept of CT, it is implicitly present in the areas of conceptual modeling (i.e., abstraction)
and in the craftsmanship of coding as a combination of automation and analysis. This
study emphasizes that creativity and the ability to innovate and design new SW systems
are at the very heart of SWE.

Relevance of this study: Innovativeness and creativity are buzzwords often associated
with ‘arts and crafts’ curricula. However, new teaching methods and learning solutions
mean that creativity may also be fostered in STEM subjects as well. For example, building
robots, making animations, and playing games (e.g. Angry Birds Space to assimilate
gravity basics) are new engaging ways of learning. The SW engineers regarded hands-on
exercises as a vital method of learning, and games and pair-programming as a means of
fostering engagement. From the epistemological point of view, collaborative learning with
peers is absolutely aligned with both socio-constructivism and the ‘learning by making’
approach proposed by Papert (1980). According to the experienced SWEs surveyed
in this study, the essential skills also include algorithms and data structures. These
�nding are con�rmed later by Publication VII , which evaluates the pro�tability of higher

34 Chapter 4. Overview and relevance of the publications

education mathematics in one’s career. This publication contributes to curriculum theory
by examining what content is worth learning, and what is not.

4.3 Publication III: A problematic switch from visual to textual

All rosy in Scratch lessons: no bugs but guts with visual
programming

This case study addresses motivational issues and the a�ective side of learning computing.
The study was carried out at an international school in Asia that followed the UK
National Curriculum of Computing (UKNC). The study examined the development of
di�erent motivations and their impact on learning outcomes. The cohort of this study
started computing in Year 8 and used Scratch as a computing primer, followed by Khan
Academy’s JavaScript and Python basics. Surveys, interviews, and an analysis of the
Scratch coursework were employed to examine the genesis of computational thinking.

The Self-Determination Theory (Ryan and Deci, 2000) was utilized to explain the di�er-
ences in students’ motivation, which tend to grow during the school years. The innate
psychological needs, the structure of the person’s psyche and their skills pro�le a�ect the
development of intrinsic motivation, whereas extrinsic motivation is mainly shaped by
external factors. These factors consist of environmental pressures, such as control and
expectations, as well as the grading and other anticipated feedback after completing a
task. Alternatively, the after-task reward may be more abstract or remote, for example,
approval from the wider community or a position in the desired �eld. The Intentional
Learning Theory (Bereiter and Scardamalia, 1989) considers the long-term objective of
gradual knowledge building to be more comprehensive than intrinsic motivation, and is
often the preference of the ‘serious student’ who sets subject-speci�c lifelong learning
objectives.

Relevance of this study: This study concentrates on the a�ective rather than the
conceptual side of teaching computing, thus it is not at the very core of the thesis. Its
main contribution is to illustrate the importance of language selection, the order in which
those languages are introduced, the utilized methods, and their in�uence on motivation
and thus ultimately on learning. If the a�ective side is neglected, the e�orts of educators
may be stymied by students’ disengagement. The results of this study show that Scratch
is a useful tool for sca�olding programming basics and for fostering motivation in all
student groups. The discontinuity point from visual to textual programming appears
to be problematic: textual programming with JavaScript and Python seems to engage
mathematically talented students who have developed intrinsic motivation, while other
students may become more disengaged because of their self-perceived incompetence.
Those students with authentic interest areas, such as design, animation, or social media,
engaged adequately after this transition, but a few students totally lost interest, so the
motivational aspects of learning are crucial in planning a syllabus.

In the study, a minor thread elicits a viable way for CS teachers to equip themselves by
exploiting ready-made material, i.e., previous projects on the Scratch database. Scratch
is designed as a learning tool based on the pedagogical principles of constructionism
in that it calls for co-operation by encouraging sharing, contacting and remixing other
users. In that sense, Scratch is a deliberate attempt to follow Papert’s vision and can
be regarded as the successor to LOGO language (Resnick, 2012). However, care must
be taken not to get too attached to the preparatory ‘logos’. According to the theory of

4.4. Publication IV: CS curriculum comparison: UK, US, FI 35

instrumentalization, a tool must not leave too deep a trace on the action scheme of a
student. Instead, visual programming is to be exploited as a stepping stone in the process
of developing abstraction to the next phase of ‘lambdas’.

4.4 Publication IV: CS curriculum comparison: UK, US, FI

K�12 curriculum research: the chicken and the egg of math-aided
ICT teaching

This publication studies the links between mathematics and ICT to �nd the mathematical
a�ordances that can be used in teaching ICT. The study is based on a literature review and
a comparison of FNC-2014 with the equivalent curricula of the UK and the US. The most
prominent fundamentals are function and variable, both of which a novice will encounter
in even the simplest ‘Hello World’ example. On the other hand, for mathematics teachers,
algebra that introduces functions is regarded as one of the most challenging areas in the
syllabus. To sca�old learning, functions should be introduced slowly and incrementally so
that new features can be linked with students’ prior knowledge by exploiting multiple
representations. Computational functions may be interpreted as yet another external
representation of functions in mathematics.

A variable in mathematics is a straightforward concept compared with its counterpart
in computing, whose dual nature (value/address) and the range of possible types are
complications. In mathematics, with a real input value, a valid function should return
one, and only one, output value, which is also a real number. In computing, functions
are more �exible. First, return type may be non-numeric, such as a string. Secondly,
functions may return a di�erent value with the same input based on their internal state,
and thirdly, they may return no value at all. Despite of the di�erences, computing has its
roots in mathematics, and similarly, it can be perceived as problem-solving, requiring the
decomposition of a problem into smaller solvable sub-problems. Throughout the solving
process, algorithmic thinking and logic are applicable. These are also the requirements
present in FNC-2014, even if CT is not explicitly mentioned there.

Relevance of this study: The study describes bi-directional transfer implying that
computing integrated with mathematics, notably algebra, would bene�t learning math-
ematics, and vice versa. In fact, algebra learning outcomes could provide an objective
means of comparing programming languages and their e�ectiveness in learning. The
fundamentals of algebra, function and variable, and their signi�cance as the synthesizers of
mathematics and computing are highlighted. In addition, discrete mathematics modules
such as logic, basic linear algebra and set theory would be bene�cial and preparatory for
further studies of computing, see also PublicationVII .

To conclude, this study summarizes the results of comparison between the UKNC approach
of having computing as a separate subject and the Finnish approach of integrating it
with mathematics. Although there are certain bene�ts and synergy in integration, a more
versatile and dedicated computing syllabus might serve better and give more freedom both
in topic coverage and in scheduling. UKNC comprises a multitude of digital skills that are
not covered in the FNC, because there is not enough time and/or resources. For example,
security issues, the basics of computer and network architecture, and overall �uency with
technology are nowadays more comparable with core civic skills. Furthermore, computing
as a separate subject would mandate a de�nition for the required teacher quali�cations,
which would lead to improved quality of teaching.

36 Chapter 4. Overview and relevance of the publications

4.5 Publication V: Transfer of mathematics teachers’ prior
knowledge

Educating computer science educators online: A Racket MOOC for
elementary math teachers of Finland

FNC-2014 includes CS in the revised mathematics syllabus. Consequently, Finland
needs to train mathematics teachers to teach programming at the elementary level. This
paper describes how the training was accomplished by using a MOOC, the programming
language being Racket. The MOOC emphasized the link between mathematics and
programming, and exercises that included creative parts were exploited to engage the
participants. It aimed to increase both content knowledge and technological pedagogical
content knowledge (TPACK). By analyzing the course feedback, questionnaires and
exercise data, the study distills the participants’ views of the course, and the e�ects the
course has on their professional development (TPD).

Relevance of this study: This study contributes to all the main research questions of
this thesis, but in particular to the third research question, which concerns the in-service
training of teachers. Furthermore, the initial �ndings of the research reveal mathematics
teachers’ willingness to learn new skills and their appreciation of the pedagogical consid-
erations in particular: in suitability and usefulness the �nal pedagogical essay scored the
highest. It allowed re�ection on the CS enhancement to the syllabus, and its implications
for teaching mathematics. The programming exercises were designed to �t an authentic
context, i.e., teaching in a classroom setting. As such, at the same time as learning to
program, the teachers were encouraged to come up with new ideas for classroom exercises.
The �rst six programming exercises mainly aimed at improving the teachers’ knowledge
of the CS content, but the �nal essay and the exercise proposals covered the whole range
of TPACK concerns.

The second �nding of the study is that the teachers do regard the content of the course
as being both suitable and useful for their purposes. The course, especially the geometry-
related creativity challenges, generated an appreciable degree of enthusiasm, demonstrating
that this type of programming MOOC can provide a motivating and interesting form of
professional development for in-service teachers. The third �nding indicates that there is
a measurable increase in professional development and self-e�cacy. However, follow-up
research is needed to study the long-term e�ects of the course, e.g., how many participants
actually started to use the learned material and skills in their work. As Kennedy (2016)
points out, the �nal test of such a course’s e�cacy is the actual enactment of the skills
in a real classroom context. Further research needs to examine the suitability of the
material from the students’ perspective as well, and whether the course gave participants
a satisfactory insight into CT. The �nal essays from the Racket MOOC provide a plethora
of data for further analysis, and those results are reported in following PublicationVI .

4.6. Publication VI: CT/CS integrated in mathematics syllabus 37

4.6 Publication VI: CT/CS integrated in mathematics syllabus

Computational thinking as an emergent learning trajectory of
mathematics

This publication examines the Code ABC MOOC participants’ pedagogical views about
computing, and how they perceive CT and the fundamentals of CS. The MOOC trains in-
service mathematics teachers and equips them with basic programming skills. The study
complements the previous PublicationV, which analyzed exercises and other feedback
instead, such as Likert-scale questions. The data of this study, the re�ective essays, were
written during the second iteration of the Racket track MOOC in the spring of 2016.
The essays are used as a source for enlightening quotations, and the corpus is analyzed
quantitatively by scanning the occurrence frequencies of CT/CS topics in the essays, and
the mathematics syllabus areas targeted in the teachers’ exercise proposals. The teachers’
contributions are combined into a hypothetical learning trajectory for CT.

In their re�ections on CT, the topics can be categorized into the three ‘A’s: abstraction,
automation, and analysis. In addition to these three ‘A’s, logic and creativity are also
frequently mentioned. Logic includes both the ability to think consistently, and the
substance knowledge of logic, such as solving truth values of conditions. Creativity
is interpreted both as innovative problem-solving and the option of creating visually
appealing geometry art, a classroom practice that a number of the teachers clearly cherish.
In consequence, the types of programming exercises most frequently proposed by the
teachers were for geometry. Geometry was clearly favored over the more conceptually-
adjusted areas of algebra (function, variable) and arithmetic (basic operations, right order,
condition primers). In geometry exercises, the visually educational, showy and sometimes
serendipitous outcomes were found to be particularly appealing.

Judging by the vague, or non-existent descriptions obtained from their feedback, the
teachers had not internalized the fundamentals of CS as well as they had done with CT.
This is natural, since the mathematical problem-solving practices that the teachers are
familiar with are analogous to CT, but the introduced CS concepts � other than function
and variable � are not familiar to the teachers. Controversially, a few teachers considered
the integration problematic not so much from the math-teaching perspective, but more
from the perspective of teaching computing. Their fear was that the integration could
easily taint the teaching of computing, if students started to regard it as intrinsically
di�cult. Their reasoning was that mathematics already has a reputation of being a
hard subject, as exempli�ed by the following comment: ‘Current youth have no interest
in mathematics because of too much work (and complexity). Hence, �rst programming
experiences should be as remote to mathematics as possible.’

Relevance of this study: In this synthesized learning trajectory, the CS topics are
divided into the layers of CT: abstraction (function, variable, type), automation (selection,
iteration), and analysis, (testing and optimization). These layers can be mapped with
the mathematical problem-solving practices of �rst modeling the problem and dividing it
into smaller solvables (abstracting), then executing the calculation (automation), and
�nally evaluating the solution in terms of common sense, and possibly trying to capture
a more elegant one (analysis).

FNC-2014 needs to go further in de�ning what CS concepts and CT skills are required.
The Racket MOOC has contributed to this aim by re�ning its most crucial concepts
and skills required to teach CT/CS. By the end of elementary school, the CT skills and

38 Chapter 4. Overview and relevance of the publications

CS concepts that the students have learned should be the same for all students, i.e.,
standardized. Thus, the required concepts should be agreed and clari�ed. Ultimately,
raising the lower end of the bar enables the learning targets at the top end of the
educational bar to be raised as well, which is obviously the next step. Accordingly,
Publication VII extrapolates the learning trajectory of CT to tertiary education.

4.7 Publication VII: Necessary but under-taught discrete
mathematics

Elementary math to close the digital skills gap

Digitalization has shifted employability in the more traditional professions related to
natural sciences towards computer science. Many employers complain about the shortage
of skilled SW engineers. FNC-2014 aims to integrate computing into the mathematics
syllabus in order to make up for this shortage. For this change to be accomplished
e�ectively it is vital that the syllabus in its entirety should be checked and revised to
ensure that the content is appropriate for providing our future tertiary-level students with
the required digital skills and the fundamentals of CS theory. Prominent CS education
organizations such as ACM and IEEE recommend more discrete mathematics. In addition
to these recommendations, the feedback from SW professionals and educators is also
useful in assessing the value of di�erent syllabus areas. The feedback reveals an imbalance
between supply and demand, i.e., what is over-taught versus what is under-taught in
terms of the skills which will be required from students in their later working lives.

Critics claim that the Finnish school curriculum currently has too much continuous
mathematics, e.g. calculus and di�erential equations. Indeed, the data from this study
reveals that SW engineers need stronger skills in algorithms and data structures. Modeling
and �uency with multiple representations are considered valuable for illustrating and
structuring data, and these skills also facilitate problem-solving. Logic is required to
reinforce the theoretical basis of CS, as are set theory, statistics, and probability, albeit
less so. The mathematics and CS syllabi of UKNC provide a useful exemplar for the
desired syllabus content in elementary education in Finland, as does that of the United
States. The USCC de�nes modeling in order to abstract and structure data as part of
the high-school syllabus, and this topic could even be applied age-appropriately for the
elementary level. Modeling is also associated with the use case/requirement speci�cations
of SWE, prompting the coinage of a new term, ‘speci�cational thinking’. To illustrate the
learning progressions from elementary to tertiary education, this publication extrapolates
the learning trajectories of Publication VI to sketch out a consistent trajectory for the
selected topics throughout the students’ whole academic career.

Curriculum planning is a zero-sum game. If you want more discrete mathematics, then
you have to have less of something else. The proposal is to move some of the emphasis in
the math syllabus away from continuous mathematics and towards discrete mathematics
as early as the elementary level. However, CS as a separate subject allowed more space
for new contents. Including all the intended content in the current mathematics syllabus
would be extravagant.

Relevance of this study: In order to close the digital skills gap, this study examines
which areas of math are valued most highly by practicing SW engineers. Speci�cally, these
are algorithms and data structures, logic, and some minor elements of sets, statistics, and

4.8. Publication VIII: Paradigms compared in mathematics-suitability 39

probability. This study proposes that age-appropriate subsets of these areas be already
included in elementary education.

Curriculum theory values what is worth knowing. Although from an economic perspective
students are mainly regarded in terms of their usefulness for the future workforce, there
are other more holistic educational values and ideals which are needed to balance this
point of view. Instead of rather short-sighted, ‘targeted’ syllabi which would concentrate
on mastering the command set for the currently most popular programming language,
the Finnish school curriculum should widen its focus to encompass digital skills from a
broader perspective. This means that the capabilities of abstracting, automating, and
analyzing are taught in a socially relevant way, and holistically. In short, the curriculum
must foster both computational and speci�cational thinking in tandem.

4.8 Publication VIII: Paradigms compared in
mathematics-suitability

Code ABC MOOC for math teachers

Because FNC-2014 integrates computing into mathematics, Finland needs to train its
elementary mathematics teachers to teach it. The Code ABC MOOC trains teachers
by o�ering four programming languages that represent di�erent paradigms. At primary
school, class teachers teach all subjects including computing, which starts �rst with
unplugged exercises followed by visual coding, Scratch being a de facto standard tool.
Textual coding is started at secondary level, and in the MOOC, the Python and Racket
tracks are provided for this level. The majority of the Python and Racket track participants
were mathematics teachers, as intended. This study compares the math-suitability of these
two tracks. This assessment of the courses’ math-suitability is based on the feedback from
the participants about the concepts they have learned during the course. This analysis
focuses in particular on the implications of the underlying programming paradigms.

Problem-solving is at the core of CT, and is thus closely linked to mathematical thinking.
In problem solving, decomposing the problem into smaller subproblems is an essential skill.
This skill is also needed in programming, where the subproblems are often implemented
as subprograms, e.g., functions. In functional Racket, functions are more substantial than
in Python, where variables are conspicuous. To systematize function design, the Racket
track introduces Design Recipe, which is aimed at producing well-planned functions
(Felleisen et al., 2014). This recipe also promotes test-driven development: unit tests are
implemented before a function body. Both the Python and Racket courses emphasize
the importance of descriptive naming and comments to improve readability; good coding
conventions are understood to be an integral part of CT. In addition to functions and
variables, both tracks cover a substantial number of basic programming concepts such as
data types, Boolean logic, and conditionals.

The di�erence in the courses’ math-suitability re�ects the di�erences in the way the
courses respond to the target group’s needs, in this case the needs of mathematics teachers.
Critics of Python track argue that there is a mismatch between the mathematics teachers’
expectation and what the course delivers, e.g., they think that there is an excess of
pixel-wise image operations, which they consider to be irrelevant. In addition, many of
the respondents would have preferred more hands-on exercises instead of multiple-choice
questions. Racket fared better, and most of the participants regarded the pedagogical essay,

40 Chapter 4. Overview and relevance of the publications

geometric art, Turtle graphics, animation and quizzes as being suitable and interesting,
and in scores, suitability and enthusiasm correlate.

Relevance of this study: An analysis of the course content reveals a conceptual
linkage between the functional paradigm and algebra. Even though Racket is generally
regarded as being more challenging than Python because of its syntax (e.g., an abundance
of parentheses, and using recursion as a typical mechanism for iteration), the Racket track
ranks higher in suitability. This is because the track content and exercises are speci�cally
tailored to �t FNC-2014 and are designed for school mathematics lessons. The material is
prepared by a Finnish mathematics teacher who was aware of both pedagogy and context.

The publication covers all the research questions of the thesis: a description of the central
CT skills and CS fundamentals, their relevance in the context of mathematics teaching,
and the mathematics-suitability of the underlying programming paradigms. Conceptually,
a functional paradigm is closer to algebra, as stated by Schanzer (2015). In contrast,
the imperative paradigm exempli�ed by Python contains a number of elements that are
far-removed from pure mathematics, and the di�erence may lead to misconceptions.

5 Results and discussion

The chapter combines the main �ndings of the publications to respond to the thesis-wide
research questions. The results imply a CT model and the most crucial CS concepts,
which are illustrated in the form of learning trajectories attached to the corresponding
concepts in mathematics; see Fig. 6.1. In addition, the results indicate the utility of a
MOOC as a tool for in-service training of mathematics teachers and for enhancing the
participants’ professional development. In training, content that takes into account the
pedagogy, the context of mathematics lessons, and is adapted to the new requirements of
FNC-2014, scores high in suitability. In addition, the mathematics context can be noticed
by selecting such a programming paradigm that aligns best with its practices.

5.1 CT as an embedded commodity of mathematics

The CT model of this thesis is constructed based on previous CT models, a math
syllabus, and mathematics teachers’ essays re�ecting on the curriculum; the content being
analyzed summatively and divided in corresponding categories of CT. However, in the
model review, the myriad of di�erent de�nitions blurred the view, yet none of them was
comprehensive enough to act as a reference as such. In constructing the CT model, the
most appropriate parts of the models were taken as a starting point and complemented
with the topics emphasized in teachers’ feedback. Hence, the CT model combines already
existing ingredients with the teachers’ views. In their re�ections, the mathematics
teachers focus in particular on problem solving. CT and mathematical thinking share an
analogous problem-solving procedure: decomposition, solving subproblems, and evaluation
of the result. In mathematics, however, the iterative nature of solving the problem and
optimizing the solution is less prominent than in computing, where testing and debugging
are business as usual.

In summary, this thesis de�nes a matrix-style hierarchy, where CT comprises the con-
secutive phases of abstraction, automation, and analysis, while the three vertical pillars
are algorithmic thinking, logical thinking, and creativity. The CT model is visualized
in Fig. 6.1, next chapter. In the model, constructivism is inherited with the adaptation
to the mathematics syllabus. Presumably, Papert and Wing could sign the model, if
creativity and student-centered teaching methods were emphasized adequately. However,
time allocation for the new CS content is not abundant, therefore time-consuming exer-
cises are unlikely. The �rst two vertical pillars of algorithmic and logical thinking would
please the surveyed SW engineers and more widely the interests of industry. Yet in the
paradigm selection, these interest groups would favor a popularity-based criterion instead
of emphasizing conceptual analogies that implies an imperative paradigm instead of a
functional one. The following sections describe the components in more detail.

41

42 Chapter 5. Results and discussion

5.1.1 CT as subsequent phases of the three ‘A’s

Problem solving starts with modeling � or abstracting � the problem, after which it
is decomposed into smaller solvables. Once the solution is found, the result (e.g., the
order of magnitude with reference to initial values) will be analyzed and, dependent
on the level of the student’s stamina, a more optimal and elegant method to solve the
problem might be sought. Thus, mathematical problem solving resembles the phases
of abstraction, automation, and analysis in CT. Abstraction implies modeling a given
task, where a function is a means to divide functionality into general-purpose entities
structuring a program. A variable is another fundamental computational abstraction,
whose importance is highlighted more in an imperative paradigm, where a program’s
control �ow can be understood as subsequent state transitions that imply an assignment
operation. Yet another abstraction is type, which comprises both primitives and more
complex data structures. In mathematics, sets of numbers, such as integers and reals,
provide an a�ordance to have recourse to type.

In problem solving, the ability to model and abstract the data is crucial. USCC speci�es
modeling as a syllabus area of high-school mathematics (Core Standards Organization,
2015, 2017). It combines mathematics, statistics and technology, ‘. . . and the ability to
recognize signi�cant variables and relationships among them. Diagrams of various kinds,
spreadsheets and other technology, and algebra are powerful tools for understanding and
solving these problems.’ Modeling requires what is referred to as ‘speci�cational thinking’,
necessary for SW engineers in order to reach a common vision with their customers in
de�ning use cases and requirements.

According to Wing’s de�nition, CT is the automation of abstractions, i.e., automation
comprises an implementation of functions. During the implementation, a developer
has to make numerous decisions in order to ensure e�ciency and prevent errors. The
primary means of controlling the execution �ow are selection and iteration. In the
functional paradigm, iterations are often realized as recursions or higher-order functions
that manipulate lists. In the imperative paradigm, iterations make use of incremental
counters. In this fashion, the selected paradigm in�uences the automation phase and how
the data is handled and stored.

Testing, debugging, and optimizing constitute the main means of analysis. In computing,
testing and debugging are indispensable; no-one expects an error-free program at the
�rst attempt. In Publications V, VI , and VIII , the Racket track actively promotes the
test-driven approach, that is, tests being written before an actual function body.

5.1.2 Algorithmic thinking

FNC-2014 does not mention CT in the speci�cation text, but the term is traceable back
to the parallel concept of algorithmic thinking, and, for example, Denning (2009) equates
these two trains of thought. Publication II regards algorithms and data structures
as language-agnostic content that is valuable, irrespective of tools or languages chosen.
Publication VII con�rms the results: the feedback from SW engineers highlights the
prominence of algorithms and data structures in particular, and in addition to logic they
are among the rare areas of mathematics in need of more emphasis in higher education.

One has to start small, if algorithmic thinking is introduced already at primary school.
In understanding how computers work and how modular programs are to be written,
sequencing and subsequent structuring as subprograms are necessary starting points. At

5.1. CT as an embedded commodity of mathematics 43

the simplest level, command sequences may be interpreted as primitive forms of algorithms.
In fact, learning algorithms does not even require a computer, which makes them more
accessible. For example, games provide opportunities for algorithmic thinking, especially
if an attempt is made to formalize the game logic (Lamagna, 2015). The acquisition of
the very basics is followed by a re�ning of the solution, e.g., by optimizing the number of
steps, resources, and e�ciency. As with mathematics, the in-built requirements for an
elegant solution run parallel to this optimization process. The customary exercises for
algorithms are various searches and sorts, e.g., searching for the maximum or minimum, or
sorting numeric values in descending order. Although FNC-2014 lacks formal requirements
for speci�c search or sort algorithms, a few computing syllabi abroad introduce an age-
appropriate subset, e.g., UKNC comprises binary search and merge sort (Department for
Education, 2015).

5.1.3 Logic

Logic is the basis on which the whole discipline of CS is built. According to the feedback
from practicing SW engineers, logic and algorithmic thinking are two of the most useful
topics that are not taught adequately. In integrating CS with mathematics, Publication
VI envisions equations and inequalities, and the truth values of algebra as appropriate
primers for logical conditions. Boolean algebra enables the combination of conditions, and
the substitution of truth values with bits of zero and one facilitates bit-wise operations
and truth tables.

In UKNC, logic is taught comprehensively (Department for Education, 2015; English
Department for Education, 2013). In addition to the aforementioned topics, it complements
truth values with binary and hexadecimal notations that prompt bit-wise operations
of addition and shift, and truth tables. As another representation, Boolean operators
are illustrated as logic gates in circuits. If CS were not a standalone subject in the UK,
logic gates would fall into the area of physics, more speci�cally electronics, rather that
mathematics.

Moreover, the GCSE aims for students to be capable of translating English language
sentences into logical statement. Logic exercises start as word problems that �rst have to
be converted into such statements. Appropriate propositions are formulable only within
the student’s linguistically mediated grasp of the natural language sentences and their
semantics. Hence, as a logic primer, preciseness and apposite language skills are helpful.
In working life, such skills stand out in the speci�cation of use cases and requirements.
This ability to be speci�c is referred to as ‘speci�cational thinking’. In native language
and digital literacy lessons, logic is exploitable in interpreting the deeper meaning of texts
and in writing essays with a strong rationale and complete argument. Techniques such as
argument-mapping attempt to systematize one’s reasoning and explain the inferential
structure of arguments (Davies, 2011). Ultimately, logic is a crucial component of critical
thinking.

5.1.4 Creativity

In pedagogical discourse, a number of psychological and a�ective viewpoints are attached
to CT, such as creativity and innovation, in compliance with Papert’s in�uential legacy
(Resnick, 2017). As a LOGO successor, Scratch is designed speci�cally as a creation tool.
Publication III examines Scratch and the e�ects of visual programming on motivation.
The results show that the tinkering approach with creativity options is enthusiastically

44 Chapter 5. Results and discussion

received among students, and consequently, the switch from visual to more disciplined
and cognitively demanding textual programming causes problems. However, to boost
motivation, it is important to engage students by providing opportunities for creativity
and authentic self-expression. Similarly, creativity is capable of engaging in-service trained
mathematics teachers while they are solving geometry exercises, as shown in Publications
V and VI . The exercises comprise turtle moves, computer graphics and animations. In
the learning trajectory of CT, creativity is interpreted as an extrapolation of geometry,
although this is not the only option for applying creativity in the mathematics syllabus.

5.1.5 Discussion of related work

The CT model developed in this thesis complies with the seminal work of both Papert
and Wing. Papert acknowledges the mathematical foundation of computing. Beginning
with toddlers necessitates awareness of age-appropriate teaching strategies. In Papert’s
view, the fear of mathematics is the main hindrance to learning, made worse by separating
mathematics out as a theoretical subject. Instead, he would rather embed mathematics
in everyday life, embracing all activities, such as playing, gaming, and guiding turtles
with LOGO.

As a constructionist, Papert is well aware that according to Piaget’s genetic epistemology,
one has to start with the concrete constructions of ‘legos’, and proceed through visual ‘logo’
block snapping to textual programming, i.e., ‘lambda’ (viz. the functional paradigm).
The approach of this thesis is not as panoptic and inclusive as Papert describes it,
and the target age group is older, i.e., secondary school students. However, Papert’s
mathematics-rooted, consistent, and threshold-lowering approach accords with it, and the
model resembles the ‘problem solving’ procedure of mathematics. In addition, computing
exercises may be exploited as rich algebra tasks. The analysis phase of computing, in
particular, enables more accepting and forgiving practices for evaluating the result than
mathematics and its ‘technology of grading’.

Both Papert and Wing attempt to spread CS for all. Wing has been an active promoter
of CS as a school subject. However, compared with Papert who is a psychologist and
mathematician, Wing is an engineer and a computer scientist, who has a more pragmatic
approach highlighting the mutual bene�ts and multi-disciplinary applications of CS. She
sees CS as requiring thinking at multiple levels of abstraction (Wing, 2006): abstracting
data, code, and the users’ needs. In dividing CT into parts, she emphasizes abstractions
and algorithms, and describes CT as ‘automation of abstractions’. In the CT model of this
thesis, abstraction chie�y means modeling a task for implementation. In computing, the
design of functions is the main means of abstraction. Type comprises data abstraction.

In descending order of inclusiveness, the ultimate end is the functional paradigm camp
after Papert and his world-embracing computational orientation and Wing’s pro�tability-
oriented approach. The functional camp highlights computing as a sub-area of mathe-
matics, algebra being the highway to the core (Schanzer, 2015). A function is the most
detectable abstraction of a functional paradigm, an enabler of composability, and its
design is systematized with the Design Recipe of Function (Felleisen et al., 2014). This
camp promotes the educational use of Racket, which is a Scheme dialect, with the added
motivation factors of game development and ‘algebra of images’, i.e., images that can
be used as �rst-class values (Levy, 2013a). In introducing the language, emphasis is
placed on its purity; side-e�ects are prevented by hiding the assignment operations. With
this approach, the ‘cruelty of really teaching CS’ is tangible, maybe as the last nail in
the co�n for a math-o-phobic. To counteract this, algebra of images and the Bootstrap

5.2. Mathematics and CS concept overlap 45

project with game design are provided as tools for engagement (Levy, 2013b; Schanzer
et al., 2018).

Contribution

To sum up, the contribution clari�es the components of CT and explicates their contents
in more detail. The CT model divides into horizontal layers of abstraction, automation,
and analysis, similarly to SW development having the phases of design, implementation,
and testing. Abstraction infers conceptual modeling, such as UML diagrams in SW design.
At elementary level, the technique is practicable as a general knowledge building tool
of concept/mind mapping, which should be imported in mathematics praxis as well to
provide a holistic overview. In the matrix view, the vertical axes are algorithmic and
logical thinking, and creativity. Furthermore, the model hypothesizes a preference for
the functional paradigm. Paradigms in�uence the semantics of a programming language
and which kinds of abstractions, design patterns, and coding conventions suit best. For
example, in imperative languages, counter-based iterations are the basic building blocks,
whereas functional languages exploit recursions extensively. PublicationVIII points out
the di�erences between paradigms and their implications in mathematics teaching. The
CT model, however, is paradigm-agnostic, even if the close conceptual linkage between
the functional paradigm and mathematics is acknowledged and implicitly supported by
FNC-2014, which integrates CS into mathematics.

Burke (2016) claims that the metaphor connected to computing is in�uential in positioning
CS in a curriculum; he enumerates the metaphors of maker mindset, digital literacy,
and grounded mathematics. The referenced literature mainly illustrates two of these
orientations: Papert and Wing belong to the maker mindset as CS laymanizers, whereas
the grounded mathematics folks of Racket highlight conceptual purity.

5.2 Mathematics and CS concept overlap

This thesis presents a hypothetical learning trajectory for CT, and the necessary CS
concepts are speci�ed in accordance. To introduce the concepts, the already-established
mathematics syllabus provides a suitable schedule and attachment points. Conceptually,
algebra is at the center of gravity, but geometry o�ers a wild card to motivate and engage
students, as demonstrated by PublicationsV and VI . In engagement, creativity seems
to be the key and low-threshold/high-ceiling types of tools, such as Scratch, succeed
in fostering it while teaching the basics; see PublicationIII . Publication VII sketches
learning trajectories further to university-level mathematics. The feedback from SW
engineers reveals useful and CS-supportive mathematics content. Instead of continuous
mathematics, they would bene�t from more discrete mathematics, especially stronger
skills in algorithms and data structures, and logic. Additionally, such areas as sets,
statistics and probability are considered useful (PublicationsIV and VII).

5.2.1 Algebraic fundamentals in the core

A few publications address the linkage between algebraic and CS fundamentals, in essence,
variable and function. Dependent on the selected paradigm, the concepts deviate more
or less from their mathematical counterparts, which can be a source of misconceptions.
Publication IV determines the features of the (imperative) variable, such as its identity
as a memory store, global versus local scope, and its type often being a non-numeric,

46 Chapter 5. Results and discussion

complex data structure instead of simple primitives (int , �oat) as in mathematics. The
variety of types concerns also the parameters and return types of functions.

Ultimately, assignment is the main complication. Publication VIII raises the peculiarity
of the assignment operation ofx � x � 1 from the mathematical viewpoint, which
reveals the variable’s true nature as a memory store and the pivotal role of assignment
in distinguishing between the imperative and functional paradigms: in pure functional,
neither assignment nor mutable variable exist, in other words, no side-e�ects are caused.
Publication VIII illustrates the control �ow of imperative code as consecutive state
changes, in contrast to the functional paradigm and its value-passing chain, where a
function equals a value. In mathematics, a function must return only one output for an
input. In computing, a function may return multiple values for one input, which implies
side-e�ects and mutable data, for example, assignment of a global variable. However,
pure functional language does not provide an assignment operation.

In addition to variable and function, the most crucial CS concepts include also type,
and the control structures of selection and iteration. Assignment has its implications for
the control structures as well: the imperative paradigm employs iterations, whereas the
functional paradigm utilizes recursions in the absence of incremental counters.

5.2.2 Basics with visual programming

With visual programming, students familiarize themselves with sequencing, grouping
commands as bigger blocks, and the control structures of selection and iteration. However,
a special emphasis is required to avoid reinforcing the most common misconceptions
in Scratch, such as ‘loops are forever’ (Armoni et al., 2015). Currently, testing and
debugging are poorly supported in Scratch. To self-assess Scratch projects, Publication
III recommends making routine checks by exploiting automatic evaluation tools, such as
Dr. Scratch. Passing the evaluation with the level of ‘developing’ or ‘mastery’ could be
used as a prerequisite for a certain grade.

On the other hand, the bene�ts of Scratch are apparent. Scratch fosters creativity and
enables self-expression by implementing projects with authentic goals. Most importantly,
visual block snapping prevents students from writing syntactic errors. Blocks function
like legos, they fend for themselves: they either �t or do not �t together, which reduces
unnecessary cognitive load and the need for debugging. In the beginning, error-free
programming is good for increasing students’ self-e�cacy. However, subroutines, which
are called blocks in Scratch, do not function optimally: parameters cannot be conveyed
and blocks do not return any value. However, the basis of subroutines is the sequencing
and grouping together of associated commands, which, in all its simplicity, constitutes
the dawn of algorithmic thinking.

5.2.3 Algorithms and discrete mathematics contents

According to SW professionals’ evaluation of useful mathematics topics, algorithms and
data structures are the most pro�table. Publications IV and VII recommend setting
clearer learning targets for algorithms, such as a binary search, and merge sort, as in the
UKNC. In computing, the most common data structures for storing numbers or other
data include arrays, lists, and vectors. Often, the structures provide various in-built
convenience functions for set operations that may come in handy, e.g., in iterations.
Publication VII highlights discrete mathematics as a necessary support for CS theory
studies. In the case of algorithms, for example, logic and sets were advantageous. For

5.2. Mathematics and CS concept overlap 47

example, naïve set theory provides tools for describing and visualizing set operations,
such as unions, intersections and cuts.

5.2.4 Discussion of related work

FNC-2014 is the primary source for sketching the learning trajectory of mathematics.
The learning trajectory embodies the learning theories of cognitive constructivism, which
state that knowledge is built on top of already acquired knowledge. The trajectory de�nes
consistent progression from simple to more complex tasks. As Clements and Sarama
(2004) put it, the learning trajectory is ‘ a conjectured route through a set of instructional
tasks designed to engender those mental processes or actions hypothesized to move children
through a developmental progression of levels of thinking’. This study complements the
trajectory with a selected subset of CS concepts, i.e., function, variable, type, selection
and iteration. Algebra is essential, and its building block, early algebra would facilitate
the introduction of principal CS fundamentals already at primary level. However, ‘early
algebra does not mean algebra early’, instead, the learning material should be aligned
with the children’s level of cognitive development (Carraher et al., 2008). In learning,
early prompting of topics provides ‘met-befores’ that enhance the readiness for easier
comprehension in later iterations (Bruner, 2009; McGowen and Tall, 2010). In regard
to the very basics of CS, algebra is at the center of gravity; the synergy is mutually
exploitable (Schanzer, 2015).

The mathematics syllabus should be reviewed in its entirety to ensure an appropriate
theoretical basis for both natural sciences and computer science in accordance with the
changes. For example, the evaluation of the most useful mathematics for SW engineers
demonstrates the imbalance between continuous and discrete mathematics. The engineers
talk of an excess of continuous mathematics (calculus, di�erential equations) at the
expense of discrete mathematics, which they desire to be emphasized more. Algorithms
and data structures are the most needed, followed by logic, sets, statistics, and probability.
These concepts are backed up by ACM/IEEE recommendations for an applicable CS
syllabus for higher education (ACM&IEEE, 2013). FNC-2014 mostly omits these contents,
but UKNC and USCC mathematics and CS provide points of reference.

A proper implementation of mathematics-CS integration would require su�cient resources
and time, which currently are inadequate. Preferably, new knowledge would be gained
through hands-on experiences and social interactions. Papert promotes learning by making,
which complies with the active learner approach of FNC-2014. However, this is time-
consuming. Fortunately, the crafts syllabus is capable of complementing it by introducing
robotics and automation. There should be an active dialog and synchronization of learning
goals between the subjects. Some prominent topics, however, are absent from both the
mathematics and crafts syllabi, e.g., safe use of the Internet, the protection of one’s
on-line identity, and responsible and respectful on-line behavior, which can be termed
as ‘new civics’ and a few of the topics are handled in environmental studies. Having CS
as a separate subject enables the UK to introduce a robust theoretical basis for CS, the
above-mentioned skills, and in addition, the infrastructure of networks and devices, and a
means to improve students’ technological �uency overall.

Contribution

The main contribution is the extraction and justi�cation of the most prominent CS
fundamentals. Moreover, their position and intended schedule are hypothesized in

48 Chapter 5. Results and discussion

accordance with their integration in the learning trajectories of mathematics. In addition,
the explication of the most useful, but under-taught mathematics contents aims to give a
proper theoretical basis to support CS teaching. Even if the territory of CT models is well
occupied, this thesis establishes the niche of transferring CT and the CS fundamentals to
elementary education and mathematics teaching, which is globally unique.

5.3 Mathematics teachers’ professional development

FNC-2014 enhances the job descriptions of practicing mathematics teachers retrospectively
by requiring them to teach CS basics. However, in-service training is not provided to the
true extent necessary, which obligates teachers to gain the required skills by themselves.
MOOCs and the ever-increasing educational resources in the Internet provide immediate
self-help. However, the education authorities cannot abrogate their responsibility of
training teachers to do their job properly.

5.3.1 In�uential in-service training via MOOC

The lack of formal training options triggered a group of volunteers to kick-start the Code
ABC MOOC studied in Publications V, VI , and VIII . The MOOC comprises the tracks
of Scratch, Python and Racket, where Scratch targets the primary level, and Python
and Racket target the secondary. The MOOC feedback comprises both quantitative and
qualitative data. After each topic, the participants rate its level of challenge, inspiration,
and suitability. Publication V reports mainly the quantitative results of the MOOC
participant surveys; Publication VI , in turn, concentrates on the qualitative data, the
essays written as the last re�ective exercise, and merges the teachers’ views into the
learning trajectories of mathematics enhanced with CS fundamentals.

Publication VIII compares the Python and Racket tracks of the MOOC by focusing on
the underlying programming paradigms. The trends in the scores are contradictory for
the Python and Racket tracks. Python is taught imperatively and its scores decrease
topic-by-topic, whereas in Racket, the scores increase, apart from for the low-scoring
recursion. Due to its complexity, recursion is not considered suitable for elementary level.
However, the results do not directly indicate the superiority of Racket over Python, but
but they show that other factors, such as teaching methods, are also in�uential. The
multiple-choice questions of Python are considered a pedagogically weaker alternative
than Racket’s hands-on exercises. The teachers are highly motivated to learn, and �lling
multi-choice questions simply does not su�ce as their anticipated programming exercise.
The low scores re�ect the teachers’ frustration.

The comparison of the Python and Racket tracks demonstrates that both the pedagogical
and contextual aspects should be taken into account: the course should improve content
knowledge (CK) as well as technological and pedagogical self-e�cacy (TPACK) (Voogt
et al., 2013). This �nding con�rms that situation awareness, especially being aware of
pedagogy and context, is a useful predictor of the successful development of a learning
solution, as suggested by PublicationI . Originally, the Python material was translated
from the American CS4All projects (Ericson et al., 2015, 2016), whereas an experienced
mathematics teacher having a strong background in SW prepared the Racket track
material, which was tailored to �t the FNC-2014 mathematics syllabus in particular. This
di�erence is clearly manifested in the suitability scores.

5.3. Mathematics teachers’ professional development 49

5.3.2 Exploitation of prior knowledge

Bridging prior mathematical knowledge for the bene�t of computing is achieved by
exploiting the mathematics teachers’ especially suitable background. The more analogous
the concept, the smoother is the transfer. Transfer can be near or far, where near transfer
implies closer conceptual connections within one domain and far transfer means applying
skills between domains (Barnett and Ceci, 2002). The grounded mathematics approach
considers CS as a sub-area of mathematics, which highlights its mathematical nature and
implies conceptual analogies, as with algebra and the functional programming paradigm.
Accordingly, Publications V, VI , and VIII refer to the pedagogical theory of transfer, and
Publication VIII ends up recommending the functional paradigm, after sketching the
smoothest path from mathematics to computing without disconcerting misconceptions.

If students are often math-o-phobic, their teachers, in turn, are tech-o-phobic, which
becomes apparent by reading their essays. PublicationVI itemizes the teachers’ fear
of technology and of ‘not learning quickly enough’ � or at all � causing feelings of
incompetence, frustration, and shame, which re�ects the disorientation dilemma of adult
learners (Mezirow, 1997). One of the MOOC track leaders speculated that an aptitude for
technology may even have set the direction of one’s studies: if strong, a career as a SW
engineer is chosen, otherwise, that of a natural scientist or a teacher. If this hypothesis is
accurate, the current situation of integrating CS into mathematics lessons is especially
worrying, ‘what goes around, comes around’.

The change in teachers’ job descriptions, languages, paradigms and other pedagogical
viewpoints are vividly discussed in social media, and following these discussions improves
a participant’s situation-awareness. For instance, language/paradigm selections, and
underlying metaphors associated with CS, cause controversies. The borderlines can be
sketched between imperative and functional paradigms, or alternatively, between the
metaphors of maker mindset and grounded mathematics. In addition to implying what
are the best-�t languages and tools, these perceptions infer the appropriate target group,
i.e., whether CS education should guarantee good computing skills for all, or exclusively
for future SW engineers.

5.3.3 Discussion of related work

Papert (1980) hypothesizes that engineer-led development leads to the alienation of
non-engineers: ‘the people who make decisions about what languages their computers will
speak, generally engineers, �nd (typical programming languages) easy to learn. Thus, a
particular subculture, one dominated by computer engineers, is in�uencing the world of
education to favor those school students who are most like that subculture. The process
is tacit, unintentional and it has never been publicly articulated, let alone evaluated.’
To counteract this, Papert and his group o�er easily approachable computing tools for
everyone, �rst LOGO, then Scratch as its successor. Furthermore, Scratch has been
designed with the principles of constructionism in mind (Maloney et al., 2010; Resnick,
2012), thus it is providing all the facilities for connecting, commenting, and co-creating in
order to become a fully-�edged professional learning network.

FNC-2014 states that primary schools should utilize visual programming and secondary
schools should move forward to textual programming. To the relief of all, Scratch is
currently a de facto standard in visual programming. However, there is no such consensus
of opinion for textual programming. The transition revives the question of a �t language
and programming paradigm. Racket is an exemplar of the functional programming

50 Chapter 5. Results and discussion

paradigm. It is the functional purists who have set the guidelines for Racket’s educational
use, e.g. a removal of an assignment and other unorthodox features of the language. For
instance, in their book ‘How to Design Programs’, Felleisen et al. (2014) introduce a
purely functional procedure to be followed. However, this approach lacks accessibility.
Even mathematics teachers struggle with the language and with the concepts, which
decreases their feelings of self-e�cacy. In their essays, they talk about shame and even
self-loathing because they are not performing up to their own expectations. Thus, it
appears that digitalization, the new curriculum requirements and the pressure to perform
may be causing a disorienting dilemma (Mezirow, 1997) or at best a mildly reorienting
one.

Despite the enthusiasm with which the functional paradigm purists promote the grounded
mathematics approach, the maker-mindset and digital-literacy brigades are equally con-
vinced of the bene�ts of their approaches. In his article, Burke (2016) has examined the
rhetoric of introducing CS in K �12 education, whether it is associated with mathematics,
technical skills, or literacy. Regarding computing as a technical skill underlines its applica-
bility, e.g., in the construction of artifacts. Educators of digital literacy emphasize critical
thinking and discerning the role of technology in society overall. For example, modern
digital technology has been used to manipulate people’s opinions, through algorithm-aided
targeted news and the communication bubbles that arise between like-minded people in
social media. Digital literacy comprises computer literacy (Hoar, 2014), digital literacy
(Scalise, 2018; Watson et al., 2014), code literacy (Dufva, 2013; Vee, 2013), and/or software
literacy (Khoo et al., 2017) as the emerging new literacies of the 21st century.

This thesis considers the dilemma of positioning CS in the school curriculum. It is
somewhat analogous to mathematics: everyone should learn the basics, yet not everyone
is going to become a mathematician. Whatever is the targeted level or ultimate content,
consistent progression and a clear conceptual base bene�t all. A wider range of students
can be reached with more accessible options, thus those approaches that appeal exclusively
to mathematically-oriented students should be complemented with other solutions. The
all-inclusive strategy is better realizable as part of a crafts syllabus (robotics, one’s own
artifacts) that complements computing integrated in mathematics, or by introducing CS
as a separate subject.

Contribution

This thesis aims at improving mathematics teachers’ content knowledge and TPACK, by
explicating CS fundamentals and situating them in the learning trajectories of mathematics.
Moreover, the underlying paradigms and their implications for mathematics teaching
are explained. To comply with the DBR method, the publications of this thesis provide
feedback from the research side to be disseminated in the next increments of curriculum
development and in-service training of mathematics teachers. Current resources for
teacher training are inadequate. In the transition phase, the scarcity of training resources
is excusable, however, the current state of a�airs should not become the new norm.
As complementary alternatives, MOOCs and other social networking sites can supply
the training that mathematics teachers need. In addition to clarifying learning targets,
the Ministry of Education ought to specify the required quali�cations for teachers to
ensure the quality of teaching. This thesis has contributed to the in-service training of
mathematics teachers by de�ning and incrementally developing the Code ABC MOOC
and FNC-2014-compliant content.

6 Conclusions

The results of this study provide clari�cations of FNC-2014, especially in regard to
mathematics, CS, and their integration. The most crucial CS concepts are extracted
and linked to form consistent continua for the learning trajectories in mathematics. The
main themes of CS in FNC-2014 are deliberately sketched out as a trajectory from legos
and logos to lambda. For example, �rst computing experiences are often gained with
a tangible construction series and unplugged exercises. Taken a step further, visual
programming enables the construction of simple animations, stories and games by simply
dragging virtual blocks to construct the code. Visual programming is currently almost
synonymous with Scratch, the online learning environment developed in the spirit of
constructionism and inspired by Papert’s LOGO. After moving to secondary education,
the accumulated concrete operations of primary school will be explained and explicitly
abstracted, which raises the procedural learning to a more conceptual level.

In addition to students, mathematics teachers as novices in computing go through similar
phases of the genetic epistemology of computational thinking. However, they have their
prior mathematical knowledge to exploit, which paves the way in particular to lambda
calculus and its computational derivatives. The computing addition to the syllabus
triggers the need to train in-service mathematics teachers. This study presents a viable
approach to in-service training based on exploiting mathematics teachers’ prior knowledge
and bridging it with the programming paradigm most analogous to mathematics, i.e., the
functional paradigm. Further studies are needed to identify which strategy works best,
that is, which language, paradigm and subject combination produces the most appropriate
know-how.

6.1 Implications for FNC-2014

RQ1: How to integrate computational thinking into the mathematics syl-
labus? The CT model of this study is divided into the layers of abstraction, automation,
and analysis, while algorithms, logical thinking and creativity embrace the whole process.
Abstraction interlaced with problem solving in mathematics necessitates modeling and
decomposition of the problem. Automation implies the implementation of abstractions
via the utilization of functions, variables, and the structures controlling the execution
�ow. The analysis phase in computing comprises testing, debugging, and optimization. In
a test-driven SW process, the analysis phase comes to the fore since the tests are written
even before the actual function body. This de�nition of CT resembles the design cycle of
the DBR method, where abstraction equates with design, automation with development
and the enactment and analysis phase is the same in both. In addition, it has similarities
with the software development process, including the design, implementation, and testing
phases. In mathematics, the analysis phase is, however, less prominent, and consists of

51

52 Chapter 6. Conclusions

evaluating the sensibleness of the result and the elegance of the intermediate phases and
the solution.

Practicing algorithmic and logical thinking should be started as early as at primary level,
even without digital devices. Children can imbibe CS basics by playing games or doing
other unplugged exercises which may include multidisciplinary approaches such as using
natural language sentences as a playground for logic. Creativity and innovation are the
prominent engagement factors in motivating both students and in-service teachers to
learn computing. CT can provide authentic opportunities for self-expression, e.g., when
implementing artifacts. Creativity and innovativeness are the buzzwords for 21st century
skills.

RQ2: Which are the computer science fundamentals that suit mathematics
education best? The most essential CS fundamentals are function and variable.
Variable implies a concept of type that can be either a simple primitive or a more complex
data structure. In addition, the most expressive control structures, i.e., selection and
iteration, should be introduced early on. Of all the mathematics syllabus areas, algebra is
the one closest to the conceptual basis of computing; it shares the same fundamentals and
also facilitates algorithm development. Algebraic fundamentals are most unambiguously
transferable to functional programming, even if the di�erences in syntax, e.g., the Scheme-
like pre�x notation and an excess of parentheses, may blur the picture. In addition, the
theoretical basis of CS should be supported with more discrete mathematics, i.e., the
basics of algorithms & data structures and logic, and, optionally, sets, statistics, and
probability. Multiple representations are helpful in modeling a problem, for example,
visualizing the data as Venn diagrams or tree-form graphs. In an attempt to close the
digital skills gap, discrete mathematics should be emphasized more at the expense of
continuous mathematics.

RQ3: How to train in-service mathematics teachers to be computing teachers?
In educating teachers, bridging their prior mathematical knowledge with computing
basics fosters transfer and complies with Papert’s continuity principle, which states that
‘mathematics must be continuous with well-established personal knowledge from which
it can inherit a sense of warmth and value as well as cognitive competence’ (Papert,
1980). In addition to conceptual learning, the a�ective domain of learning is in�uential.
The in-service mathematics teachers who took the MOOC and provided the data for
this thesis were inspired by the opportunities for creativity in implementing their own
designs, as were their students. Thus, when evaluating the most suitable mathematics
areas for integration, geometry ranked higher than its conceptual weight in the teachers’
exercise proposals; explained by the fact that the teachers recognized geometry’s value as
a motivator. When formal in-service training resources prove inadequate, they can be
complemented with more informal learning provided by professional learning sites, such
as MOOCs.

Is mathematics a good choice for computing integration, then? � Yes and no. As a
discipline, CS has its roots in mathematics, and its further development requires a robust
theoretical background in mathematics. For example, the links with algebra facilitate
the knowledge transfer (Schanzer, 2015). For its part, computing o�ers a new angle of
approach to teaching mathematics by providing attractive visualizations of data and the
power to handle elaborate calculations. However, integrating CS with mathematics has
its down-sides. Even if mathematically- or technically-oriented students might become
engaged more easily, those students who are already struggling with mathematics (its
reputation for being ‘hard’) might fail to engage with CS precisely because of their

6.2. Conclusive CT model 53

lowered mathematical self-esteem and -e�cacy and regarding CS in the same way by
association. Another downside of the mathematics-integration path is the rather one-sided
and narrow range of topics that can be exploited compared to the total range of topics
that CS embraces. If CS were to be taught as a separate subject, the syllabus would
cover a much wider and more eclectic range of topics than it does when it is integrated
with other subjects. The ‘separate-subject’ strategy would also require that the teachers
be formally quali�ed as CS teachers, which would improve the general quality of the
teaching. The UK has followed such a policy and their CS syllabus targets such topics
as overall technological �uency. It also introduces the domains of ICT infrastructure,
devices and networks, and in addition it covers socially responsible online behaviors, such
as security and ethics. Besides providing opportunities for self-expression, data searching,
and informal learning, computer skills should also include knowing how to use the Internet
responsibly and safely. In some senses, computer skills may be seen as a part of civics:
they are the basic skills needed to survive and �ourish in the modern information society.

6.2 Conclusive CT model

Fig. 6.1 divides CT into four horizontal layers: �rst, the primary education comprises
Years 1 �2 and 3 �6, and secondly, the secondary education Years 7 �9, which together
constitute the elementary education. The third layer is high school, Years 10 �12, referred
to as upper secondary education as well, and the forth one is tertiary education; these two
layers are elective. In �gure, the CT layer is positioned between secondary and high school
mathematics, and its content is tuned to correspond with the secondary mathematics
syllabus. The vertical dashed lines represent the learning trajectories of mathematics that
extend into the domain of CT.

From the mathematics syllabus, algebra is a useful sca�old for the internalization of
the conceptual basis of computing. The fundamentals of function and variable run
throughout algebra. A variable, in turn, leads to types. Types can be divided into
primitives, such as integers and decimals, and also into more complex container-type data
structures, such as arrays, lists, and vectors. In abstracting and modeling data types
and their operations, set theory, or simply ‘Sets’, provide a number of highly appropriate
mathematical analogies. For example, in Fig. 6.1 the learning trajectory of Sets starts
from number sets in mathematics and links them with types in computing, starting from
simple numeric types followed by containers. In the UKNC syllabus, Venn diagrams are
used to illustrate the basic set operations of union, intersection, and cut. Correspondingly,
the same operations can be covered by computing exercises.

The learning trajectories of algorithms and data structures are vital for CT. Currently, the
elementary mathematics curriculum does not de�ne speci�c learning targets for algorithms,
merely stating that there is a need for algorithmic thinking. However, for the sake of
constructive alignment and to enable a more detailed instructional design, the expected
learning outcomes must be explained thoroughly (Biggs, 1996). Whatever the approach,
problem-solving and decomposition are of primary importance. The simplest de�nition of
an algorithm de�nes it as a sequence of commands. Decomposition in computing implies
dividing the overall code into subroutines. Optimization of the number of steps, time, and
resources signals the dawn of algorithmic thinking. Ultimately, the simplest algorithms,
e.g. of the sort and search type, were natural learning targets.

54 Chapter 6. Conclusions

Stat.

Prob.

SETS

LOGIC

ALGORITHMICTHINKING

U
se

r-
ce

nt
er

ed
de

si
gn

,
us

e
ca

se
s,

an
d

re
qu

ire
m

en
ts

M
o

de
lin

g,
vi

su
al

iz
at

io
ns

P
ro

je
ct

m
an

ag
em

en
t

of
ev

ol
vi

ng
de

si
gn

cy
cl

es

nu
m

be
r

se
ns

e
in

te
ge

rs
sp

at
ia

l
im

ag
er

y

pr
ob

le
m

so
lv

in
g

co
or

di
na

te
s

2D
sh

ap
es

re
al

s
co

m
pa

ris
on

op
er

at
or

s

da
ta

co
lle

ct
io

n ch
ar

ts
re

l.f
q

�
m

ed
.

m
od

e

m
ul

tip
le

re
pr

.
(M

E
R

)

st
at

is
tic

s
ca

lc
.

rn
d

tru
th

va
lu

es

lo
gi

ca
l

op
er

at
or

s

co
nd

iti
on

se
le

ct
io

n
ite

ra
tio

nva
ria

bl
e

va
ria

bl
e

pr
ob

le
m

de
co

m
p.

ex
pr

es
si

on
eq

ua
tio

n

in
eq

ua
lit

y

fu
nc

tio
n

fu
nc

tio
n

ty
pe

,d
at

a
st

ru
ct

ur
e

re
cu

r-
si

on
hi

gh
er

-
or

de
r

fu
nc

.

co
nt

ai
ne

r

ar
ra

y,
ve

ct
.,

lis
t,(

tre
e)

P
yt

ha
g.

tri
g.

po
in

t,l
in

e
an

gl
e

tra
ns

fo
r-

m
at

io
ns

pl
ot

s
3D

sh
ap

es

Tu
rtl

e
co

m
pu

te
r

gr
ap

hi
cs

an
im

at
io

ns

A
lg

eb
ra

(A
)

A
rit

hm
et

ic
(N

)
G

eo
m

et
ry

(G
)

A
bs

tr
ac

tio
n

A
ut

om
at

io
n

Y
1-

2

Y
3-

6

Y
7-

9

S
ta

tis
tic

s
P

ro
ba

bi
lit

y

te
st

in
g,

de
bu

gg
in

g,
op

tim
iz

in
g

A
na

ly
si

s

Lo
gi

c(
L)

C
re

at
iv

ity
(C

)

Computationalthinking

Specif icational thinking

Elem:math HSmath Tert.math

co
ur

se
co

de
de

sc
rip

tio
n

M
A

B
5

st
at

.
an

d
pr

ob
.

(M
A

B
8)

st
at

.
an

d
pr

ob
.

II

M
A

A
10

pr
ob

.
an

d
st

at
.

co
m

bi
na

to
ric

s

co
ur

se
co

de
de

sc
rip

tio
n

M
AY

1
nu

m
b

er
s,

se
qu

en
ce

s
M

A
B

4
m

o
de

lin
g,

pa
tte

rn
s

M
A

B
6

co
m

m
er

ci
al

m
at

h
M

AY
1

nu
m

b
er

s,
se

qu
en

ce
s

M
A

A
8

ro
ot

,lo
g

fu
nc

tio
ns

(M
A

A
11

)
nu

m
b

er
th

eo
ry

,p
ro

of
s

(M
A

A
12

)
al

go
rit

hm
s

in
m

at
h

co
ur

se
co

de
de

sc
rip

tio
n

M
A

B
2

ex
pr

es
si

on
,e

qu
at

io
ns

(M
A

B
7)

m
at

h.
an

al
ys

is

M
A

A
2

p
ol

yn
om

ia
ls

M
A

A
6

de
riv

at
iv

e
M

A
A

9
in

te
gr

al
ca

lc
ul

us
(M

A
A

13
)

ad
v.

ca
lc

ul
us

co
ur

se
co

de
de

sc
rip

tio
n

M
A

B
3

ge
om

et
ry

M
A

A
3

ge
om

et
ry

M
A

A
4

ve
ct

or
s

M
A

A
5

an
al

yt
ic

g.
M

A
A

7
tr

ig
on

om
et

ry

st
at

is
tic

s,
pr

ob
.

se
t

th
eo

ry
pr

ed
ic

at
e

lo
gi

c
al

go
rit

hm
s,

da
ta

st
ru

ct
s

ca
lc

ul
us

di
�e

re
nt

ia
l

eq
ua

tio
ns

D
is

cr
et

e
M

at
h

C
on

tin
uo

us
M

at
h

tim
e,

re
so

ur
ce

s

F
ig

ur
e

6.
1.

Le
ar

ni
ng

tr
a

je
ct

or
ie

s
br

id
ge

d
fr

om
th

e
F

N
C

-2
01

4
el

em
en

ta
ry

to
hi

gh
er

-e
du

ca
tio

n
m

at
he

m
at

ic
s.

H
ig

h
sc

ho
ol

co
ur

se
co

de
s,

M
A

A
*

an
d

M
A

B
*,

re
fe

r
to

th
e

co
ur

se
co

nt
en

ts
sp

ec
i�e

d
in

20
16

F
in

ni
sh

N
at

io
na

lC
or

e
C

ur
ric

ul
um

fo
r

ge
ne

ra
lu

pp
er

se
co

nd
ar

y
ed

uc
at

io
n

(F
in

ni
sh

N
at

io
na

lB
oa

rd
of

E
du

ca
tio

n,
20

15
).

6.2. Conclusive CT model 55

According to the feedback from the SW engineers, logic is regarded as the next most useful
topic after algorithms, and thus needs to be emphasized in any CS syllabus. Algorithms
and logic are clearly the two most important skills to be taught for CS, but there are
several other signi�cant topics. For example, sets and probability are also important
skills. Despite of their partial support, Fig. 6.1 presents consistent trajectories for
these topics as well. Although FNC-2014 speci�es the goal of logical thinking, there is
precious little advice for the mathematics teacher as to how this should be taught. An
existing purpose-built logic subset could be copied from the UK, for example, as the
UKNC introduces logic as a subset including the following topics: binary and hexadecimal
notations, binary addition and shift, Boolean values and operators, and truth tables. It is
not only mathematics that provides topics in which to embed aspects of logic. Studying
one’s native language also provides opportunities to teach logic. For instance, parsing
a sentence involves considering its truth value and its ambiguities. In longer essays, a
logical chain of argument should lead naturally to the conclusions that can be drawn.
These kinds of exercises also promote logical thinking.

Leaving the CT layer until last, there are the two remaining elective mathematics layers,
high-school and tertiary mathematics, to deal with. High-school mathematics is divided
into A and B mathematics: A is mathematics as a major subject, and B is mathematics
as a minor one (Finnish National Board of Education, 2015). It is perhaps regrettable,
but the Finnish high-school curriculum is rigidly targeted at the matriculation exam.
This exam’s importance for students is immense, as it is the main selection criterion for
tertiary education. If this mathematics syllabus is to be expanded with computing topics,
it raises a lot of ancillary issues. Algorithms only appear in the descriptions of the elective
courses of number theory and proofs (the course code: MAA11), and in mathematics
(MAA12). MAA11 also introduces conjunctives and truth values, which are approaching
logic. With regard to the remaining trajectories, sets are completely missing from the
current FNC, both at the elementary and high school levels, but statistics and probability
fare better as they are already introduced at the elementary level. Tertiary mathematics
presents the required mathematics skills for modern SW engineers by presenting the two
topics they regarded the most prominent, algorithms and logic. The main dilemma is
�nding an appropriate balance between discrete and continuous mathematics.

In the CT layer, the CS fundamentals correspond to the mathematics fundamentals at
the secondary level, except for random values, selection and iteration, which are missing.
This implies that the already established mathematics schedule in Years 7 �9 would be
an appropriate order of introduction for the corresponding CS fundamentals. The CS
concepts are layered in the corresponding phases of CT, i.e., abstraction, automation, and
analysis. Providing cyclic and self-re�ective iterations of these phases, the CT design cycle
starts to resemble an incremental and iterative SW development process that gradually
re�nes a product and process. In order to ensure a �uent delivery of the product, project
management takes care of, e.g., resourcing, scheduling, and negotiating with a client.
For instance, in agile project management, the end criterion is to ful�ll the ‘de�nition
of done’. In addition to the rigorous implementation, tests and the validation of desired
functionality in the speci�cation (user story) ensure the desired quality (James, 2010).

Speci�cational thinking

The ‘speci�cational thinking’ on the right in Fig. 6.1 represents the equivalent of com-
putational thinking on the SW development side. Similarly, programming is the SW
counterpart of computing. In addition to abstraction, automation, and analysis, the

56 Chapter 6. Conclusions

threads of modeling and user-centric design are also in the mix. Modeling implies both
data modeling and visualization in order to conceptualize a system. User-centered de-
sign means that a product should respond to the user’s expectations, which begins by
specifying the needs. In this process, �rst, the use cases and requirements are de�ned
together with a customer. This requires more than just negotiation skills. In order to
capture all the essentials in a speci�cation, the SW engineer needs knowledge of the
domain and cautious observation as primary practice in user-centered design. Translating
all these in�uences and information into clearly worded speci�cations, while minimizing
the chances for misunderstandings, requires precision and a mastery of the nuances of
spoken language, i.e., the capacity to recognize sentences as implicit logical propositions.

For the SW engineer, the next stage in user-centered design is to read the speci�cation,
extract the most relevant concepts and de�ne their mutual relations. Then, a system-wide
architecture has to be sketched out as a UML diagram, for instance, class diagrams in
object-oriented programming. Class diagrams, as a means of abstraction, can be equated
to concept maps, which are already utilized in the Finnish education system in a few
academic subjects, but not in mathematics. Other means of abstraction covered by the
research include �ow charts and Design Recipe.

Computational thinking is mainly focused on the thinking skills required in CS, whereas
professional SW development demands speci�cational thinking skills. On a scale of 1
to 4, (1, not useful; 4, very useful) (Surakka, 2007), SW engineers ranked the skills of
design (3.7) and the management of user requirements (3.6) as the most useful skills
after algorithms and data structures (3.8). In another study the top ten topics include
general SW architecture and design, requirements gathering, and project management
(Lethbridge, 1998). Puhakka and Ala-Mutka (2009) conclude that the topics that are
inadequately covered during higher education include databases, and a number of SW
development skills such as planning, requirements engineering, and general topics needed
in professional life, such as presentation, negotiation and writing skills, all of which fall
into the domain of speci�cational thinking.

6.3 Further research

In order to close the digital skills gap, the position of CS in the curriculum should be
established and strengthened. There is still some dispute about what is the best approach
to introducing CS into the school curriculum. Should it be integrated into mathematics,
or should it be taught as a separate subject? The latter approach would require a system
for CS teacher certi�cation, a mammoth task but one which would improve the quality of
teaching. In the meantime, mathematics teachers will need a lot of support, in-service
training, and good training material that clari�es the conceptual basis of CS. As an
elective subject in high school, CS should be an option in the matriculation exams. These
exams would be appropriate for students applying for tertiary education, in particular
any studies including technological aspects. The shift in teaching mathematics away from
its classical origins and towards computing and discrete mathematics must be carried
out in an evidence-based manner, i.e., the learning outcomes must be carefully evaluated
in co-operation with pedagogical experts. Care should be taken that any changes in the
mathematics syllabus should not threaten Finland’s enviable position in international
comparisons and assessments of students’ performance in mathematics, such as PISA.

Bibliography

ACM&IEEE, �Computer Science Curricula 2013: Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science, December 20, 2013,� Tech. Rep.,
2013. [Online]. Available: http://www.acm.org/education/CS2013-final-report.pdf

Anderson, J. R., Cognitive psychology and its implications. WH Freeman Times Books
Henry Holt & Co, 1990.

Anderson, T. and Shattuck, J., �Design-based research: A decade of progress in education
research?� Educational researcher, vol. 41, no. 1, pp. 16 �25, 2012.

Archer, L., �Systematic Methodology for Designs,� 1965.

Armoni, M., Meerbaum-Salant, O., and Ben-Ari, M., �From Scratch to "real program-
ming",� ACM Transactions on Computing Education (TOCE) , vol. 14, no. 4, p. 25,
2015.

Artigue, M., �Learning mathematics in a CAS environment: The genesis of a re�ection
about instrumentation and the dialectics between technical and conceptual work,�
International Journal of Computers for Mathematical Learning , vol. 7, no. 3, pp.
245 �274, 2002.

Avalos, B., �Teacher professional development in teaching and teacher education over ten
years,� Teaching and teacher education, vol. 27, no. 1, pp. 10 �20, 2011.

Bal, H. E. and Grune, D., Programming language essentials. Addison-Wesley, 1994.

Balanskat, A. and Engelhart, K., �Computing our future: Computer programming and
coding � Priorities, school curricula and initiatives across Europe,� 2014.

Bandura, A., �Guide for constructing self-e�cacy scales,� Self-e�cacy beliefs of adolescents,
vol. 5, no. 307-337, 2006.

Barefoot, C., �Computational thinking,� Available: http://barefootcas. org. uk/barefoot-
primary-computing-resources/concepts/computational-thinking/[Stand: 15.01. 2017],
2014.

Barnett, S. M. and Ceci, S. J., �When and where do we apply what we learn?: A taxonomy
for far transfer.� Psychological bulletin, vol. 128, no. 4, p. 612, 2002.

Baroody, A. J., �The developmental bases for early childhood number and operations
standards,� Engaging young children in mathematics: Standards for early childhood
mathematics education, pp. 173 �219, 2004.

57

http://www.acm.org/education/CS2013-final-report.pdf

58 Bibliography

Barr, V. and Stephenson, C., �Bringing computational thinking to K-12: what is involved
and what is the role of the computer science education community?�ACM Inroads ,
vol. 2, no. 1, pp. 48 �54, 2011.

Bayman, P. and Mayer, R. E., �A diagnosis of beginning programmers’ misconceptions
of basic programming statements,� Communications of the ACM, vol. 26, no. 9, pp.
677 �679, 1983.

Bechmann, A. and Lomborg, S., �Mapping actor roles in social media: Di�erent perspec-
tives on value creation in theories of user participation,� New media & society, vol. 15,
no. 5, pp. 765 �781, 2013.

Bereiter, C. and Scardamalia, M., �Intentional learning as a goal of instruction,� Knowing,
learning, and instruction: Essays in honor of Robert Glaser, pp. 361 �392, 1989.

Bernack-Schüler, C., Erens, R., Leuders, T., and Eichler, A., Views and Beliefs in Mathe-
matics Education: Results of the 19th MAVI Conference, ser. Freiburger Empirische
Forschung in der Mathematikdidaktik. Springer Fachmedien Wiesbaden, 2015.

Biggs, J., �Enhancing teaching through constructive alignment,� Higher education, vol. 32,
no. 3, pp. 347 �364, 1996.

Billett, S., �Knowing in practice: Re-conceptualising vocational expertise,� Learning and
Instruction , vol. 11, no. 6, pp. 431 �452, 2001.

Blackwood, N., �Digital skills crisis: second report of session 2016 �17,� 2016.

Bransford, J. D., Brown, A. L., and Cocking, R. R., �How people learn,� 2000.

Brizuela, B. M., Blanton, M., Sawrey, K., Newman-Owens, A., and Gardiner, A. M.,
�Children’s use of variables and variable notation to represent their algebraic ideas,�
Mathematical Thinking and Learning, vol. 17, no. 1, pp. 34 �63, 2015.

Brownell, W. A. and Chazal, C. B., �The e�ects of premature drill in third-grade
arithmetic,� The Journal of Educational Research, vol. 29, no. 1, pp. 17 �28, 1935.

Bruner, J. S., The process of education. Harvard University Press, 2009.

Burke, Q., �Mind the metaphor: charting the rhetoric about introductory programming
in K-12 schools,� On the Horizon, vol. 24, no. 3, pp. 210 �220, 2016.

Butter�eld, E. C. and Nelson, G. D., �Promoting positive transfer of di�erent types,�
Cognition and Instruction , vol. 8, no. 1, pp. 69 �102, 1991.

Cai, J., Moyer, J. C., Wang, N., and Nie, B., �Examining students’ algebraic thinking in
a curricular context: A longitudinal study,� Early algebraization, pp. 161 �185, 2011.

Carraher, D. W., Schliemann, A. D., and Schwartz, J., �Early algebra is not the same as
algebra early,� 2008.

Chen, J.-Q. and McCray, J., �A conceptual framework for teacher professional development:
The whole teacher approach,�NHSA dialog, vol. 15, no. 1, pp. 8 �23, 2012.

Choi, J., An, S., and Lee, Y., �Computing education in Korea � current issues and
endeavors,� ACM Transactions on Computing Education (TOCE) , vol. 15, no. 2, p. 8,
2015.

Bibliography 59

Clements, D. H., �Linking research and curriculum development,� International research
in mathematics education, p. 599, 2002.

Clements, D. H. and Sarama, J., �Learning trajectories in mathematics education,�
Mathematical thinking and learning, vol. 6, no. 2, pp. 81 �89, 2004.

� � � , �E�ects of a preschool mathematics curriculum: Summative research on the
building blocks project,� Journal for Research in Mathematics Education, pp. 136 �163,
2007.

Collins, A., �Toward a design science of education,� in New directions in educational
technology. Springer, 1992, pp. 15 �22.

Core Standards Organization, �Mathematics Standards | Common Core State Standards
Initiative,� 2015. [Online]. Available: http://www.corestandards.org/wp-content/uploa
ds/Math_Standards1.pdf

� � � , �High School: Modeling,� http://www.corestandards.org/Math/Content/HSM/,
2017.

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., and Woollard,
J., �Computational thinking: A guide for teachers,� 2015.

CSTA, �Computer science standards,� https://www.csteachers.org/resource/resmgr/Doc
s/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf, 2016.

Davies, M., �Concept mapping, mind mapping and argument mapping: what are the
di�erences and do they matter?� Higher education, vol. 62, no. 3, pp. 279 �301, 2011.

Davis, E., �The Work Ahead: Europe’s Digital Imperative,� Tech. Rep., 2017. [Online].
Available: http://www.futureofwork.com/images/article/documents/the-work-ahead
-europes-digital-imperative.pdf

Denning, P. J., �Is computer science science?�Communications of the ACM, vol. 48,
no. 4, pp. 27 �31, 2005.

� � � , �The profession of it beyond computational thinking,� Communications of the
ACM , vol. 52, no. 6, pp. 28 �30, 2009.

Denscombe, M., �Communities of practice: A research paradigm for the mixed methods
approach,� Journal of mixed methods research, vol. 2, no. 3, pp. 270 �283, 2008.

Department for Education, �GCSE subject content for computer science,�
https://www.gov.uk/government/uploads/system/uploads/attachment_data/f
ile/397550/GCSE_subject_content_for_computer_science.pdf, p. 6, 2015.

Dewey, J., The child and the curriculum. University of Chicago Press, 1902, no. 5.

Dijkstra, E. W., �Programming as a discipline of mathematical nature,� The American
Mathematical Monthly, vol. 81, no. 6, pp. 608 �612, 1974.

� � � , �How do we tell truths that might hurt?� in Selected Writings on Computing: A
Personal Perspective. Springer, 1982, pp. 129 �131.

Doherty, M., Theory of mind: How children understand others' thoughts and feelings.
Psychology Press, 2008.

http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
http://www.corestandards.org/Math/Content/HSM/
https://www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf
https://www.csteachers.org/resource/resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_07222.pdf
http://www.futureofwork.com/images/article/documents/the-work-ahead-europes-digital-imperative.pdf
http://www.futureofwork.com/images/article/documents/the-work-ahead-europes-digital-imperative.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf

60 Bibliography

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., and Basnet, R. B., �Algorithmic
thinking, cooperativity, creativity, critical thinking, and problem solving: exploring
the relationship between computational thinking skills and academic performance,�
Journal of Computers in Education, vol. 4, no. 4, pp. 355 �369, 2017.

Donaldson, M., �Children’s minds,� 1978.

Dreyfus, T. and Eisenberg, T., �On di�erent facets of mathematical thinking,� The nature
of mathematical thinking, pp. 253 �284, 1996.

Drijvers, P. and Trouche, L., �From artifacts to instruments,� Research on technology
and the teaching and learning of mathematics, vol. 2, pp. 363 �391, 2008.

Dufva, T., �Code Literacy. Understanding the programmed world,� G2 Pro gradu,
diplomityö, 2013. [Online]. Available: http://urn.�/URN:NBN:�:aalto-201308107486

Elliott, B., Oty, K., McArthur, J., and Clark, B., �The e�ect of an interdisciplinary
algebra/science course on students’ problem solving skills, critical thinking skills and
attitudes towards mathematics,� International Journal of Mathematical Education in
Science and Technology, vol. 32, no. 6, pp. 811 �816, 2001.

Endsley, M. R., �Toward a theory of situation awareness in dynamic systems,�Human
factors, vol. 37, no. 1, 1995.

English Department for Education, �National Curriculum in England: Computing pro-
grammes of study,� 2013.

Ericson, B., Guzdial, M., Morrison, B., Parker, M., Moldavan, M., and Surasani, L., �An
eBook for teachers learning CS principles,�ACM Inroads , vol. 6, no. 4, pp. 84 �86,
2015.

Ericson, B., Adrion, W. R., Fall, R., and Guzdial, M., �State-Based Progress Towards
Computer Science for All,� ACM Inroads , vol. 7, no. 4, pp. 57 �60, 2016.

Ericsson, K. A. et al., �The in�uence of experience and deliberate practice on the
development of superior expert performance,�The Cambridge handbook of expertise
and expert performance, vol. 38, pp. 685 �705, 2006.

Felleisen, M., Findler, R., Flatt, M., and Krishnamurthi, S., How to Design Programs,
Second Edition. MIT-Press, 2014. [Online]. Available: http://www.ccs.neu.edu/home
/matthias/HtDP2e/

Finnish National Board of Education, �Peruskoulun opetussuunnitelman perusteet 1994,�
1994. [Online]. Available: https://www.�nna.fi/Record/jykdok.829368

� � � , �Finnish National Curriculum 2004,� http://www.oph.�/english/curricula_and_
qualif ications/basic_education/curricula_2004, 2004.

� � � , �Finnish National Curriculum 2014,� 2014. [Online]. Available: https://www.oph.
�/download/163777_perusopetuksen_opetussuunnitelman_perusteet_2014.pdf

� � � , �National core curriculum for general upper secondary education,� http://www.op
h.�/download/172124_lukion_opetussuunnitelman_perusteet_2015.pdf, 2015.

Fleury, A. E., �Programming in Java: student-constructed rules,� in ACM SIGCSE
Bulletin , vol. 32, no. 1. ACM, 2000, pp. 197 �201.

http://urn.fi/URN:NBN:fi:aalto-201308107486
http://www.ccs.neu.edu/home/matthias/HtDP2e/
http://www.ccs.neu.edu/home/matthias/HtDP2e/
https://www.finna.fi/Record/jykdok.829368
http://www.oph.fi/english/curricula_and_qualifications/basic_education/curricula_2004
http://www.oph.fi/english/curricula_and_qualifications/basic_education/curricula_2004
https://www.oph.fi/download/163777_perusopetuksen_opetussuunnitelman_perusteet_2014.pdf
https://www.oph.fi/download/163777_perusopetuksen_opetussuunnitelman_perusteet_2014.pdf
http://www.oph.fi/download/172124_lukion_opetussuunnitelman_perusteet_2015.pdf
http://www.oph.fi/download/172124_lukion_opetussuunnitelman_perusteet_2015.pdf

Bibliography 61

Fong, A. B., Jaquet, K., and Finkelstein, N., �Who Repeats Algebra I, and How Does
Initial Performance Relate to Improvement When the Course Is Repeated?�Regional
Educational Laboratory West, 2014.

Frey, C. B. and Osborne, M. A., �The future of employment: how susceptible are jobs to
computerisation?� Technological Forecasting and Social Change, vol. 114, pp. 254 �280,
2017.

Fuller, R. B., �A comprehensive anticipatory design science,� No More Secondhand God
and Other Writings , pp. 84 �117, 1957.

GagnØ, M. and Deci, E. L., �Self-determination theory and work motivation,� Journal of
Organizational Behavior, vol. 26, no. 4, pp. 331 �362, 2005.

GagnØ, R. M.,The Conditions of Learning. New York: Holt, Rinehart and Winston,
1965.

García-Peæalvo, Reimann, Tuul, Rees, and Jormanainen, �An overview of the most
relevant literature on coding and computational thinking with emphasis on the relevant
issues for teachers,� 2016.

GCSE, �GCSE subject content for computer science,� https://www.gov.uk/government/
uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_f
or_computer_science.pdf, p. 6, 2015.

Gelman, R. and Gallistel, C., �Young children’s understanding of numbers,� 1978.

Goldman, A. I. et al., �Theory of mind,� 2012.

Gray, E. M. and Tall, D. O., �Duality, ambiguity, and �exibility: A proceptual view of
simple arithmetic,� Journal for research in Mathematics Education, pp. 116 �140, 1994.

Grover, S. and Pea, R., �Computational Thinking in K �12 A Review of the State of the
Field,� Educational Researcher, vol. 42, no. 1, pp. 38 �43, 2013.

Gueudet, G. and Trouche, L., �Towards new documentation systems for mathematics
teachers?� Educational Studies in Mathematics, vol. 71, no. 3, pp. 199 �218, 2009.

Gupta, M., �Liquid workforce: The workforce of the future,� Radical Reorganization of
Existing Work Structures through Digitalization, p. 1, 2017.

Gülbahar, Y. and Kalelioglu, F., �The e�ects of teaching programming via Scratch
on problem solving skills: A discussion from learners’ perspective,�Informatics in
Education-An International Journal , vol. 13.1, no. Vol13.1, pp. 33 �50, 2014.

Halmos, P. R., �Mathematics as a creative art,� American Scientist, vol. 56, no. 4, pp.
375 �389, 1968.

Haskell, R. E., Transfer of learning: Cognition and instruction . Elsevier, 2000.

Heintz, F. and Mannila, L., �Computational Thinking for All � An Experience Report
on Scaling up Teaching Computational Thinking to All Students in a Major City in
Sweden,� in ACM Technical Symposium on Computer Science Education (SIGCSE),
2018.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397550/GCSE_subject_content_for_computer_science.pdf

62 Bibliography

Heintz, F., Mannila, L., and Färnqvist, T., �A Review of Models for Introducing Compu-
tational Thinking, Computer Science and Computing in K-12 Education,� Frontiers in
Education, vol. October, 2016.

Hemmendinger, D., �A plea for modesty,� ACM Inroads , vol. 1, no. 2, pp. 4 �7, 2010.

Hibert, J. and Lefevre, P., �Conceptual and procedural knowledge in mathematics: An
introductory analysis,� Conceptual and procedural knowledge; The case of mathematics,
pp. 1 �23, 1986.

Hiebert, J., Conceptual and Procedural Knowledge: The Case of Mathematics. Taylor &
Francis, 2013.

Hoar, R., �Generally educated in the 21st century: The importance of computer literacy
in an undergraduate curriculum,� in Proceedings of the Western Canadian Conference
on Computing Education. ACM, 2014, p. 6.

House of Commons, �Oral evidence: Digital skills gap,� 2016.

Hsieh, H.-F. and Shannon, S. E., �Three approaches to qualitative content analysis,�
Qualitative health research, vol. 15, no. 9, pp. 1277 �1288, 2005.

ISTE, �CT Leadership toolkit,� 2015. [Online]. Available: http://www.iste.org/docs/ct-d
ocuments/ct-leadershipt-toolkit.pdf?sfvrsn=4

IzsÆk, A., �Representational competence and algebraic modeling,�Early algebraization,
pp. 239 �258, 2011.

James, M., �Scrum reference card,�CollabNet Inc, 2010.

Jarvis, S. and Pavlenko, A.,Crosslinguistic in�uence in language and cognition. Routledge,
2008.

Jordan, H., Botterweck, G., Noll, J., Butter�eld, A., and Collier, R., �A feature model of
actor, agent, functional, object, and procedural programming languages,�Science of
Computer Programming, vol. 98, pp. 120 �139, 2015.

Joutsenlahti, J., �Kielentäminen matematiikan opiskelussa,� in Teoksessa A. Virta & O.
Marttila (toim.) Opettaja, asiantuntijuus ja yhteiskunta. Ainedidaktinen symposium ,
vol. 7, 2003, pp. 188 �196.

Jurdak, M. E. and Mouhayar, R. R. E., �Trends in the development of student level of
reasoning in pattern generalization tasks across grade level,�Educational Studies in
Mathematics, vol. 85, no. 1, pp. 75 �92, 2014.

Kaczmarczyk, L. C., Petrick, E. R., East, J. P., and Herman, G. L., �Identifying student
misconceptions of programming,� in Proceedings of the 41st ACM technical symposium
on Computer science education. ACM, 2010, pp. 107 �111.

Kaput, J. J., �What is algebra? What is algebraic reasoning,� Algebra in the early grades,
pp. 5 �17, 2008.

Kennedy, M., �How does professional development improve teaching?�Review of Educa-
tional Research, 2016.

http://www.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4
http://www.iste.org/docs/ct-documents/ct-leadershipt-toolkit.pdf?sfvrsn=4

Bibliography 63

Khoo, E., Hight, C., Torrens, R., and Cowie, B., �Software literacy: Education and
beyond,� in Software Literacy. Springer, 2017, pp. 91 �99.

Kieran, C., �Overall commentary on early algebraization: Perspectives for research and
teaching,� Early algebraization, pp. 579 �593, 2011.

� � � , �Algebraic thinking in the early grades: What is it,� The Mathematics Educator,
vol. 8, no. 1, pp. 139 �151, 2004.

Kimonen, E. and Nevalainen, R., �Active learning in the process of educational change,�
Teaching and Teacher Education, vol. 21, no. 6, pp. 623 �635, 2005.

Koellner, K., Jacobs, J., Borko, H., Roberts, S., and Schneider, C., �Professional develop-
ment to support students’ algebraic reasoning: An example from the problem-solving
cycle model,� Early Algebraization, pp. 429 �452, 2011.

Küchemann, D., �Children’s understanding of numerical variables,� Mathematics in school,
vol. 7, no. 4, pp. 23 �26, 1978.

Kurki-Suonio, K. and Kurki-Suonio, R., �Ajatuksia didaktisesta fysiikasta,� Teoksessa J.
Lavonen & M. Erätuuli (toim.) Tuulta purjeisiin. Matemaattisten aineiden opetus , pp.
62 �82, 2000.

Kurvinen, E., LindØn, R., Rajala, T., Kaila, E., Laakso, M.-J., and Salakoski, T., �Auto-
matic assessment and immediate feedback in �rst grade mathematics,� inProceedings
of the 14th Koli Calling International Conference on Computing Education Research.
ACM, 2014, pp. 15 �23.

Kuusisaari, H. et al., �Kehittävä kollaboraatio: Uuden tiedon tuottaminen opettajien
lähikehityksen vyöhykkeellä,� 2016.

Köhler, W., Gestalt psychology: An introduction to new concepts in modern psychology.
WW Norton & Company, 1970.

Lamagna, E. A., �Algorithmic thinking unplugged,� Journal of Computing Sciences in
Colleges, vol. 30, no. 6, pp. 45 �52, 2015.

Lavonen, J., �Learning and the use of ICT in science education,�E�ective use of ICT in
Science Education, p. 6, 2008.

Lavonen, J., Krzwacki, H., Koistinen, L., Welzel-Breuer, M., and Erb, R., �In-service
teacher education course module design focusing on usability of ICT applications in
science education,�Nordic Studies in Science Education, vol. 8, no. 2, pp. 138 �149,
2012.

Lehtinen, E., Hakkarainen, K., and Palonen, T., �Understanding learning for the pro-
fessions: How theories of learning explain coping with rapid change,� inInternational
handbook of research in professional and practice-based learning. Springer, 2014, pp.
199 �224.

Lent, R. W., Lopez, F. G., and Bieschke, K. J., �Mathematics self-e�cacy: Sources and
relation to science-based career choice.�Journal of counseling psychology, vol. 38, no. 4,
p. 424, 1991.

64 Bibliography

Lethbridge, T. C., �The relevance of software education: A survey and some recommen-
dations,� Annals of Software Engineering, vol. 6, no. 1-4, pp. 91 �110, 1998.

Levy, D., �Computer science education as part of an undergraduate program in community
information systems,� in Frontiers in Education Conference, 2013 IEEE. IEEE, 2013,
pp. 417 �422.

� � � , �Racket fun-�ctional programming to elementary mathematic teachers,� 2013.

Liu, J., �DragonBox: Algebra beats Angry Birds,� Wired, June, 2012.

LLC, M. (2017) kidsakoder.no. [Online]. Available: https://kidsakoder.no/

Maloney, J., Resnick, M., Rusk, N., Silverman, B., and Eastmond, E., �The Scratch
programming language and environment,�ACM Transactions on Computing Education
(TOCE) , vol. 10, no. 4, p. 16, 2010.

Marghitu, D., Hur, J. W., Rawaj�h, Y., Hall, J., and Stephens, C., �Promoting Computer
Science among Girls: An Auburn University Pilot Program,� in Society for Informa-
tion Technology & Teacher Education International Conference. Association for the
Advancement of Computing in Education (AACE), 2014, pp. 112 �119.

Marttala, L., �Tietotekniikan valtakunnallisten oppisisältöjen toteutuminen Keski-Suomen
peruskoulujen opetuskäytänteissä,� 2017.

McGowen, M., DeMarois, P., and Tall, D., �Using the function machine as a cognitive
root,� 2000.

McGowen, M. A. and Tall, D. O., �Metaphor or Met-Before? The e�ects of previous expe-
rience on practice and theory of learning mathematics,�The Journal of Mathematical
Behavior, vol. 29, no. 3, pp. 169 �179, 2010.

Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M., �Habits of programming in scratch,�
in Proceedings of the 16th annual joint conference on Innovation and technology in
computer science education. ACM, 2011, pp. 168 �172.

Mezirow, J., �Transformative learning: Theory to practice,� New directions for adult and
continuing education, vol. 1997, no. 74, pp. 5 �12, 1997.

Nicolaides, A. and Marsick, V. J., �Understanding adult learning in the midst of complex
social �liquid modernity�,� New Directions for Adult and Continuing Education, vol.
2016, no. 149, pp. 9 �20, 2016.

Niemelä, P., �All rosy in Scratch lessons: no bugs but guts with visual programming,� in
Frontiers In Education Conference (FIE) , 2017.

Niemelä, P. and Helevirta, M., �K-12 Curriculum Research: The Chicken and the Egg of
Math-aided ICT Teaching,� International Journal of Modern Education and Computer
Science, vol. 9, no. 1, p. 1, 2017.

Niemelä, P. and Valmari, A., �Elementary math to close the digital skills gap,� in CSEDU
2018 Conference, vol. 10, 2018.

Niemelä, P., Di Flora, C., Helevirta, M., and Isomöttönen, V., �Educating future coders
with a holistic ICT curriculum and new learning solutions,� 2016.

https://kidsakoder.no/

Bibliography 65

Niemelä, P., Isomöttönen, V., and Lipponen, L., �Successful design of learning solutions
being situation aware,� Education and Information Technologies, vol. 21, no. 1, pp.
105 �122, 2016.

Niemelä, P., Partanen, T., Harsu, M., Leppänen, L., and Ihantola, P., �Computational
Thinking as an Emergent Learning Trajectory of Mathematics,� in Koli Calling Inter-
national Conference on Computing Education Research, vol. 17, no. 1, 2017.

Niemelä, P., Partanen, T., Mannila, L., Poranen, T., and Järvinen, H.-M., �Code abc mooc
for math teachers,� in International Conference on Computer Supported Education.
Springer, 2017, pp. 66 �96.

Norwegian Ministry of Education and Research, �Science for the Future,� Tech. Rep.,
2010. [Online]. Available: https://www.regjeringen.no/globalassets/upload/kd/vedleg
g/uh/rapporter_og_planer/science_for_the_future.pdf

OECD, �Students, computers and learning,� 2015. [Online]. Available: http:
//dx.doi.org/10.1787/9789264239555-en

Ørngreen, R., �Re�ections on design-based research,� in Human Work Interaction Design.
Work Analysis and Interaction Design Methods for Pervasive and Smart Workplaces.
Springer, 2015, pp. 20 �38.

Papert, S., Mindstorms: Children, computers, and powerful ideas, 1980.

� � � , �An exploration in the space of mathematics educations,� International Journal of
Computers for Mathematical Learning, vol. 1, no. 1, pp. 95 �123, 1996.

Pappano, L., �Learning to think like a computer,� Education Life, vol. April, 2017.
[Online]. Available: https://nyti.ms/2nS72IU

Partanen, T., Niemelä, P., Mannila, L., and Timo, P., �Educating Computer Science
Educators Online: A Racket MOOC for Elementary Math Teachers of Finland,� in
CSEDU 2017 Conference, vol. 9, 2017.

Partovi, H., �Transforming US education with computer science,� in Proceedings of the
45th ACM Technical Symposium on Computer Science Education. ACM, 2014, pp.
5 �6.

Pehkonen, E., �A hidden regulating factor in mathematics classrooms: mathematics-
related beliefs,� Document Resume, p. 15, 2001.

Perkins, D. N. and Salomon, G., �Teaching for transfer.� Educational leadership, vol. 46,
no. 1, pp. 22 �32, 1988.

Piaget, J., �Intellectual evolution from adolescence to adulthood,� Human development,
vol. 15, no. 1, pp. 1 �12, 1972.

Piaget, J. and Duckworth, E., �Genetic epistemology,� American Behavioral Scientist,
vol. 13, no. 3, pp. 459 �480, 1970.

Pinar, W. F., What is curriculum theory? Routledge, 2012.

Pólya, G., �How to solve it,� 1945.

https://www.regjeringen.no/globalassets/upload/kd/vedlegg/uh/rapporter_og_planer/science_for_the_future.pdf
https://www.regjeringen.no/globalassets/upload/kd/vedlegg/uh/rapporter_og_planer/science_for_the_future.pdf
http://dx.doi.org/10.1787/9789264239555-en
http://dx.doi.org/10.1787/9789264239555-en
https://nyti.ms/2nS72IU

66 Bibliography

Puhakka, A. and Ala-Mutka, K., �Survey on the knowledge and education needs of
Finnish software professionals,� Tampere University of Technology, Department of
Software Systems, 2009.

Resnick, M., �Reviving Papert’s dream,� Educational technology, vol. 52, no. 4, 2012.

� � � , �Ful�lling Papert’s Dream: Computational Fluency for All,� in Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM,
2017, pp. 5 �5.

Resnick, M., Maloney, J., Monroy-HernÆndez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., and Silverman, B., �Scratch: programming for
all,� Communications of the ACM, vol. 52, no. 11, pp. 60 �67, 2009.

Rich, P. J., Leatham, K. R., and Wright, G. A., �Convergent cognition,� Instructional
Science, vol. 41, no. 2, pp. 431 �453, 2013.

Rocker, I. M., �When code matters,� Architectural Design, vol. 76, no. 4, pp. 16 �25, 2006.

Rodriguez, B., Kennicutt, S., Rader, C., and Camp, T., �Assessing computational
thinking in cs unplugged activities,� in Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education. ACM, 2017, pp. 501 �506.

Rogers, E. M., �Elements of di�usion,� Di�usion of innovations , vol. 5, pp. 1 �38, 2003.

Ryan, R. and Deci, E., �Self-determination theory and the facilitation of intrinsic mo-
tivation, social development, and well-being,� American psychologist, vol. 55, no. 1,
2000.

Sarama, J. and Clements, D.,Early Childhood Mathematics Education Research: Learning
Trajectories for Young Children , ser. Studies in Mathematical Thinking and Learning
Series. Taylor & Francis, 2009.

Scalise, K., �Next wave for integration of educational technology into the classroom:
Collaborative technology integration planning practices,� in Assessment and Teaching
of 21st Century Skills. Springer, 2018, pp. 239 �255.

Schanzer, E., Krishnamurthi, S., and Fisler, K., �Creativity, Customization, and Owner-
ship: Game Design in Bootstrap: Algebra,� 2018.

Schanzer, E. T., Algebraic Functions, Computer Programming, and the Challenge of
Transfer , 2015.

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cunni�, D., Owens,
B. B., Stephenson, C., and Verno, A., �CSTA K�12 Computer Science Standards:
Revised 2011,� 2011.

Sinclair, B. B., Naizer, G., and Ledbetter, C., �Observed implementation of a science
professional development program for K �8 classrooms,�Journal of Science Teacher
Education, vol. 22, no. 7, pp. 579 �594, 2011.

Skolverket, �Läroplan för grundskolan, förskoleklassen och fritidshemmet 2011 (reviderad
2017),� https://www.skolverket.se/publikationer?id=3813, 2017.

Skolverket, �Få syn på digitaliseringen på grundskolenivå,� https://www.skolverket.se/
publikationer?id=3783, 2017.

https://www.skolverket.se/publikationer?id=3813
https://www.skolverket.se/publikationer?id=3783
https://www.skolverket.se/publikationer?id=3783

Bibliography 67

Stephan, M., Learner-centered teaching in mathematics education, ser. Encyclopedia of
Mathematics Education. Springer, 2014, pp. 338 �343.

Suhonen, J., de Villiers, M. R., and Sutinen, E., �Fodem: a multi-threaded research and
development method for educational technology,�Educational Technology Research and
Development, vol. 60, no. 2, pp. 287 �305, 2012.

Surakka, S., �What subjects and skills are important for software developers?�Commu-
nications of the ACM, vol. 50, no. 1, pp. 73 �78, 2007.

Susac, A., Bubic, A., Vrbanc, A., and Planinic, M., �Development of abstract mathematical
reasoning: the case of algebra,�Frontiers in human neuroscience, vol. 8, pp. 679 �679,
2014.

Tall, D., Gray, E., Ali, M. B., Crowley, L., DeMarois, P., McGowen, M., Pitta, D., Pinto,
M., Thomas, M., and Yusof, Y., �Symbols and the bifurcation between procedural and
conceptual thinking,� Canadian Journal of Math, Science & Technology Education,
vol. 1, no. 1, pp. 81 �104, 2001.

Tedre, M., The Science of Computing: Shaping a Discipline. Taylor & Francis, 2014.

Tedre, M. and Denning, P. J., �The long quest for computational thinking,� in Proceedings
of the 16th Koli Calling International Conference on Computing Education Research.
ACM, 2016, pp. 120 �129.

The Design-Based Research Collective, �Design-based research: An emerging paradigm
for educational inquiry,� Educational Researcher, pp. 5 �8, 2003.

Tikkanen, P., �"Helpompaa ja hauskempaa kuin luulin": matematiikka suomalaisten ja
unkarilaisten perusopetuksen neljäsluokkalaisten kokemana,� 2008.

Trouche, L. and Drijvers, P., �Handheld technology for mathematics education: �ashback
into the future,� ZDM , vol. 42, no. 7, pp. 667 �681, 2010.

Trust, T., Krutka, D. G., and Carpenter, J. P., �"Together we are better": Professional
learning networks for teachers,� Computers & Education, 2016.

Tulivuori, J., �Digi will not replace teachers (blog writing in Finnish,� 2018.

Van Roy, P., �Programming paradigms for dummies: What every programmer should
know,� New computational paradigms for computer music, vol. 104, 2009.

Van-Roy, P. and Haridi, S., Concepts, techniques, and models of computer programming.
MIT press, 2004.

Varga, T., �Mathematics education in Hungary today,� Educational Studies in Mathe-
matics, vol. 19, no. 3, pp. 291 �298, 1988.

Vee, A., �Understanding computer programming as a literacy,� Literacy in Composition
Studies, vol. 1, no. 2, pp. 42 �64, 2013.

Vilkka, H., �Tutki ja kehitä. 1.-2. painos,� Helsinki: Tammi , 2005.

Vogel, S., Santo, R., and Ching, D., �Visions of Computer Science Education: Unpacking
Arguments for and Projected Impacts of CS4All Initiatives,� pp. 609 �614, 2017.

68 Bibliography

Von Neuman, J., �First Draft of a Report on the EDVAC,� Pennsylvania: University of
Pennsylvania, 1945.

Voogt, J., Fisser, P., Roblin, N. P., Tondeur, J., and van Braak, J., �Technological
pedagogical content knowledge �a review of the literature,� Journal of Computer
Assisted Learning, vol. 29, no. 2, pp. 109 �121, 2013.

Vygotsky, L. S., Mind in society: The development of higher psychological processes.
Harvard University Press, 1980.

Wang, F. and Hanna�n, M. J., �Design-based research and technology-enhanced learning
environments,� Educational Technology Research and Development, vol. 53, no. 4, pp.
5 �23, 2005.

Watson, J., Pape, L., Murin, A., Gemin, B., and Vashaw, L., �Keeping pace with K-12
digital learning: An annual review of policy and practice,� Evergreen Education Group,
2014.

Wegner, P., �Guest editor’s introduction to special issue of computing surveys,�ACM
Comput. Surv, vol. 21, pp. 253 �258, 1989.

Wilkie, K., �Students’ use of variables and multiple representations in generalizing
functional relationships prior to secondary school,� Educational Studies in Mathematics,
pp. 1 �29, 2016.

� � � , �Learning to teach upper primary school algebra: changes to teachers’ mathematical
knowledge for teaching functional thinking,� Mathematics Education Research Journal,
vol. 28, no. 2, pp. 245 �275, 2016.

Wilkie, K. J. and Clarke, D. M., �Developing students’ functional thinking in alge-
bra through di�erent visualisations of a growing pattern’s structure,� Mathematics
Education Research Journal, vol. 28, no. 2, pp. 223 �243, 2016.

Wilson, C., �Hour of code � -a record year for computer science,� ACM Inroads , vol. 6,
no. 1, pp. 22 �22, 2015.

Wing, J. M., �Computational thinking and thinking about computing,� Philosophical
transactions. Series A, Mathematical, physical, and engineering sciences, vol. 366, no.
1881, pp. 3717 �3725, Oct 28 2008.

� � � , �Computational thinking,� Communications of the ACM, vol. 49, no. 3, pp. 33 �35,
2006.

� � � , �Computational Thinking: What and Why? Link Magazine,� 2010.

Yackel, E. and Cobb, P., �Sociomathematical norms, argumentation, and autonomy in
mathematics,� Journal for research in mathematics education, pp. 458 �477, 1996.

Yadav, A., Hong, H., and Stephenson, C., �Computational thinking for all: pedagogical
approaches to embedding 21st century problem solving in K-12 classrooms,�TechTrends,
vol. 60, no. 6, pp. 565 �568, 2016.

Zeldin, A. L. and Pajares, F., �Against the odds: Self-e�cacy beliefs of women in
mathematical, scienti�c, and technological careers,� American Educational Research
Journal, vol. 37, no. 1, pp. 215 �246, 2000.

Publications

Publication I

Niemelä P., Isomöttönen V. and Lipponen L., �Successful design of learning solutions
being situation aware�, Education and Information Technology, 2016

DOI: https://doi.org/10.1007/s10639-014-9311-2
Niemelä et al. (2016)

http://dx.doi.org/https://doi.org/10.1007/s10639-014-9311-2

Successful design of learning solutions being
situation aware

Pia Niemelä&Ville Isomöttönen&Lasse Lipponen

Springer Science+Business Media New York 2014

Abstract Education is increasingly enhanced by technology, and at the same time, the
rapid pace of technology innovation and growing demand of consumers introduces
challenges for providers of technological learning solutions. This paper investigates
Finnish small and medium size companies who either develop or deliver technological
solutions for education. Twelve companies were interviewed in order to capture the
entrepreneurial narratives of successful design of learning solutions. Data was analyzed
based on a conceptual framework. The framework draws on the situation awareness
concept, meaning that we seek to answer the question how the participant enterprises
examine relevant elements in their environment with regard to their development
process. The results show that all the mature companies included in the study have well
balanced situation awareness, but amongst the incubating and accelerating enterprises,
balanced profiles are rare.

Keywords Situation awareness. Entrepreneurial narrative. Learning solutions

1 Introduction

Finland has been a top-ranked country regarding education, ICT readiness, and inno-
vation (McKinsey2009; OECD2011; WEF 2010). The Fund for Peace rated Finland
in its 2012 report as the least failed state and the structure of the society to be very
sustainable. Sustainability is supported by a layer of public services that, for example,
in regard to education take care of the quality of teachers’ pedagogical training and

Educ Inf Technol
DOI 10.1007/s10639-014-9311-2

P. Niemelä (*)
CICERO Learning, University of Helsinki, Siltavuorenpenger 5 A, 00170 Helsinki, Finland
e-mail: pia.s.niemela@gmail.com

V. Isomöttönen
Department of Mathematical Information Technology, University of Jyväskylä, Agora Center,
Mattilanniemi 2, 40100 Jyväskylä, Finland

L. Lipponen
Department of Teacher Education, University of Helsinki, Siltavuorenpenger 5 A, 00170 Helsinki,
Finland

ensure equal and free education for every citizen. Education is seen as a key factor for
future success and one of the focus areas that is invested in to boost innovation as well
as good learning outcomes.

For the sustainability of education, it is necessary to study what constitute successful
aspects of education that is now increasingly based on technology. Failures of
technology-based education have been witnessed in projects that have emphasized
technology at the cost of pedagogical and contextual considerations. Furthermore,
projects facing problems are terminated, rather than being used as opportunities for
improvement and revitalizing efforts (Romiszowski2004). In this light, it is the
operations of learning solutions providers that must be put under empirical scrutiny
to improve the provision and sustainability of technological innovation in education.

This paper investigates Finnish small and medium size companies who either
develop or deliver technological solutions for education. Twelve companies were
interviewed in order to capture the entrepreneurial narratives of the successful design
of learning solutions. In what follows, we first review the related work and the
conceptual framework of our study. We then present the design of the study, the
analysis, and results. The paper ends with a discussion of the results.

2 Related work

2.1 On technology integration

Many authors hold a view that the learning gain due to technology integration relates to
such elements as increased participation, action and feedback, and access to meaningful
activities. Hence ICT contributes indirectly through pedagogical means and the exploi-
tation of new resources and modes of learning (Dalgarno and Lee2010; Mikropoulos
and Natsis2011). It is also assumed that several psychological aspects influence the
learning experience (Lee et al.2010). For instance, the study by Krentler and Willis-
Flurry (2005) indicates that the use of technology increases students’ interest and
engagement by having an equalizing effect among the students, which finally leads
to improved performance. The study by Linder et al. (2006) provides evidence how
computers can contribute to teachers’ metacognition about teaching and thereby
improve their teaching.

While plenty of evidence on at least indirect learning gains exists, cautions against
an uncritical stance towards technology integration have been noted. Bennett et al.
(2008), for instance, suggest that a discourse centered at the notion of digital natives,
whose learning is claimed to be dramatically different from preceding generations, is
being negligently constructed in the research literature. In addition, there are groups for
whom extensive use of ICT has been reported to hinder, rather than enhance, learning.
One important aspect is the user’s attitude towards technology: technophobes are not
achieving set learning goals as easily as their more confident counterparts (Stutsman
2013; Watson2001). Another issue with many learning technologies is poor self-
regulation skills; multi-tasking prevents students from focusing on the subject properly
(Daniel and Woody2013). Gender-sensitive issues may influence the attitude as well.
The masculine stereotype of gaming culture, for example, can have an alienating effect
on girls that is reflected in ICT use in general (Carr2007).

Educ Inf Technol

Regarding the present article, which focuses on the operations of learning solution
providers, of principal interest are the various aspects associated with the success of
learning solutions. An issue constantly raised is technologyintegration taking place at
the cost of pedagogical and contextual considerations (Lee et al.2013; Romiszowski
2004; Watson2001). For example, in his article Romiszowski (2004) illustrates the pitfalls
that occur when technology starts to dominate at expense of pedagogy. The failure of
many earlier technology-basededucational innovations has been that the technology is
selected first and then the content; making it functional in the educational context is
considered only after these phases. Failure was defined as student dissatisfaction, high
dropout rates, and puerile and irrelevant learning material, problems associated with
remote, computer-based courses. Earle (2002) provides a conceptualization that aptly
summarizes the challenges of technology integration into a holistic guideline: establish
appropriate conditions by converting restraining forces to support elements of the design
process. For us, this implicates the idea whether the solution providers under study here
identify crucial elements in their environment and have a strategy for transforming each of
the elements from being a constraint into being a possibility.

As a technological prerequisite it is assumed that companies are skilled enough to
implement the product. However, limitations set by school environment should be
highlighted including such elements as a restricted equipment base, dated versions of
browsers and other applications, lack of infrastructure, such as the missing network or
WIFI connections and the defects of ICT support and maintenance. Knowing techno-
logical constraints is essential in order to deliver adaptable solutions. Physical restric-
tions are one side of development, the other side is the methodological approach,
whether plan-driven or an agile approach that seeks a more organic and user friendly
and flexible design. Also cooperating with other companies is encouraged to strengthen
technological and strategic competence and benefit the product development.

2.2 The conceptual framework

The conceptual framework of this study, based on the literature discussed in this
section, is depicted in Fig.1. The concept of awareness is a particular focus. Specif-
ically, we refer to‘situation awareness’, which originates from aviation psychology and
has been extended to other complex systems (Durso et al.1999). Endsley (1995, p. 97)
paraphrases the idea as“knowing what is going on” and defines it as:“The perception
of elements in the environment within a volume of time and space, the comprehension
of their meaning, and the projection of their status in the near future.”

While classical human factors research has largely focused on human information
processing, situation awareness is a more holistic concept drawing attention to meaning
(Endsley1995; Flac1995). The meaning refers to both the interpretation of a message
and the actual significance of a message. There are thus both a cognitive agent and an
objective reality (real situations) involved and skillful performance in complex systems
depends on the correspondence between the two. In sum, it is insufficient that elements
in the environment are perceived, but an understanding about them must be developed
to take appropriate action.

Situation awareness is affected by prior experience and cognitive abilities and can be
trained, and thus is linked to the development of expertise (Durso et al.1999; Endsley
1995). Experts are able to rapidly develop an integrated understanding about a

Educ Inf Technol

situation, which is assumed to occur by matching a novel situation to models and
experiences that have been established in long-term memory. Novices, on the other
hand, may need a great amount of effort to focus and use meta-cognitive strategies to
interpret the situation. Endsley (1995) also proposes intervening factors such as a stress
and a workload affecting situation awareness.

The concept of situation awareness gives us a general lens for the data analysis
implying questions such as what elements participant enterprises (PEs) identify in their
environment and whether they develop understanding about these elements for the
benefit of their operations, and for designing learning solutions. The linkage between
situation awareness and expertise suggests that it is reasonable to consider the questions
of this kind in relation to the phase of PEs’ businesses. The potential intervening
elements in situation awareness in turn prompt the question whether these elements
distract the PEs’ examination of the environment.

As depicted in Fig.1, we observe certain aspects through the concept of situation
awareness: strategy, technology, pedagogy, and context. These dimensions emerge
from the literature and are discussed in the following sections.

2.2.1 Strategic awareness

Hannon and Atherton (1998) provide a more domain-specific treatise of the situation
awareness. The authors concentrate on the value of strategic planning processes in
small firms and associate effective planning with the strategic awareness capability.
Instead of cutting the concept into separate subcomponents, they figure out means to
enhance strategic thinking by planning activities, whether formal or informal. The
writers acknowledge the lack of resources as one obvious reason to drift in the direction
of more informal and light planning, or to engage in no planning at all. However, they
emphasize that a diligently done business plan as an essential tool of critical, objective,
and thorough review. Thus the business plan is the means to enhance strategic
awareness, whereas, an entrepreneurial narrative, for example, enhances the organiza-
tional coherence.

The general theme of Hannon and Atherton’s analysis is‘openness’. On one hand,
the effectiveness of planning is linked to the cognitive processes of those involved. This
implies the need for caution against a defensive mindset that would inhibit operators

Fig. 1 The conceptual framework for data analysis. We study how the participant enterprises (PEs) relate to
their environment in terms of awareness, whether they recognize and develop understanding about the relevant
elements in their environment that can have effect on product development. We have predefined a set of
aspects that were retrieved from literature and confirmed the set by the pre-analysis of interviews

Educ Inf Technol

from exposing their ideas to the critique within the network where they function. In
general, Hannon and Atherton refer to attitudes towards environment, the capability of
being flexible and implementing the business ideas. This is called strategic awareness
capability and attached to the development of expertise.

The above implies us that we should monitor whether PEs are engaged in critical
thinking about their product development although they would not implement this
through the production of formal plans. In describing the motives, they might use
informal language instead of an academic one. With regard to‘openness’, we could
think of PEs’ reliance on subjective common-sense pedagogy, which ignores the socio-
cognitive perspective and is not informed by learning theory.

2.2.2 Technological awareness

Technology is evolving in a rapid space and its trajectory is influenced by various
paradigm shifts. Shifts represent disruptions that offer business opportunities. In our
data, the emergence of tablet devices and to a lesser extent switching from Flash to
HTML5, exemplify such disruptions. When new technologies are introduced, innova-
tors and early adopters will benefit the most providing that the trend will be favorable
later on. Dutta and Crossan (2005) note that“the window of opportunity” is open only
for a specific period, after which the opportunities start to fade away. Regarding the hype
cycle of various phenomena, the most fruitful period is the beginning of the hype curve.

Sainio and Puumalainen (2007) and Sainio et al. (2012) divide the orientations of
successful companies into two main categories: technological and customer-
relationship oriented companies. That the technologically oriented company makes
more technically radical innovations is an obvious result. Radicalness of an innovation
means that the solution differs significantly from rivals’ solutions and is based on
superior technological knowledge. Innovativeness may be partly explained by aware-
ness of scientific breakthroughs and technological development.

However, Sainio remarks that the radical technological innovations are rare in the top-
sale category and largely risks are bigger. Uncertainty of the market moderates too radical
solutions. Brush (2008) highlights that only the technical orientation and awareness do not
suffice in making good use ofopportunities, but the company must have a clear vision,
money to pursue, and social skills to persuade. At education, the usability plays a more
important role than technical radicalness. Sainio et al. (2012) state that customer-
relationship orientation results in better business models, however, having enough tech-
nical skills and resources is still critical for successful design of learning solutions.

2.2.3 Pedagogical awareness

Too dominant technological orientation seems to threaten the pedagogical quality. The
underlying pedagogical model is left unparsed or pedagogical aspects are not consid-
ered at all. According to Romiszowski (2004) developers do not seem to be aware of
how people learn and use flawed instruction models.

In recent years, technology-enhanced-learning (TEL) and game and simulation
based learning especially have been examined extensively. Being aware of the main
research findings enables considering the most obvious pitfalls and implementing such
pedagogical models that are efficient. In studies, constructivist pedagogy is embraced

Educ Inf Technol

and traditional, instructional pedagogical style is considered inefficient (Lee et al.2013;
Romiszowski2004; Salden et al.2010). Cognitive and affective learning outcomes
have been reported, to a lesser extent also social skills (Connolly et al.2012).
Pedagogical awareness may be fostered also by developing the product with a focus
group that includes pedagogical experts. Later, interviewing teachers that have used the
product enhances awareness of its pedagogical usability.

The learning targets that are set shape the pedagogy, too. In order to deepen the
learning and providing students with the skills they will need in the future we should
look forward. For example, the Assessment and Teaching of Twenty-First Century
Skills (2012) project has envisioned the path ahead and depicted the KSAVE model that
consists of various future skills such as creative and innovative thinking, communica-
tion and collaboration skills, the literacy of information and ICT and global citizenship.
Socio-constructivism as a learning view backs this skill set. Appropriately, also social
media usage has features that foster the development of the 21st century skills.
According to Biggs’ principle of constructive alignment (2003) setting clear targets
enhances reaching them.

2.2.4 Contextual awareness

By context, we mean the situation, in which the learning solution is used, most
commonly in a classroom during lessons. According to Wenger (2000), social learning
consists of three modes of belonging: an engagement, imagination, and alignment. He
argues that the companies that dig deep to the context are capable of designing better
products for the industry and will succeed better: engagement fosters imagination and
aligning with the context and user needs improves usability. To be successful in
designing learning solutions, knowing technology is not enough but knowing the
context is essential.

We participated in a project targeting to improve the quality of software used at
schools. By organizing pilots, interviewing students, teachers, and companies our
research team worked as a link between these groups. Having company interviews as
the main source of data we started to analyze the material trying to find features that
align with the success. We anticipated that companies should be aware of several
domain and technology related dimensions.

In this study, we aimed to find out:

1. Which kind of conceptualizations describe the degree of the situation awareness of
the company?

2. Which dimensions of awareness do the entrepreneurs emphasize most when
talking freely about company’s business?

3. Can we point out recommendations by contrasting the awareness profiles and
narratives of examined companies?

We addressed our research goal by means of a qualitative study and more specifi-
cally a narrative analysis. Twelve companies, who either develop or deliver learning
solutions, were interviewed and the resultant data was analyzed based on a conceptual
framework defined based on related work and discussions among project researchers.
The framework draws on the situation awareness (SA) concept, which describes a

Educ Inf Technol

phenomenon of an operator examining its complex environment for being able to make
an appropriate decision (Endsley1995). The situation awareness concept aptly under-
pins our research interests in studying how our participant enterprises navigate in the
business environment of education.

3 Method

The participant enterprises (N=12) with anonymized names are listed in Table1,
categorized under four product families. Each company is presented with information
on the mission, the approximated business phase, size, and technologies in use. Nine of
the companies design and develop their own products (LG-1, LG-2, LG-3, MS-1, MS-
3, MS-4, AP-2, AP-3, IS-1), while the remaining three deliver solutions by selling
hardware and platforms and training in their educational use (MS-2, AP-1, IS-2). The
phase of the business is approximated with terms‘Incubating’, ‘Accelerating’, ‘Ma-
ture’, and‘Global’ . ‘ Incubating’ indicates that the company is implementing its busi-
ness idea, on its way toward having a clientele, and may still depend on external
funding.‘Mature’ indicates that the company has found a place in the market or that its
operations include externally funded educational activities that are not critical to its
business, giving it a rather stable position.‘Accelerating’ in turn indicates growth while
the ‘Global’ adds that the company has entered the international market. These
approximations were made only for research purposes, to characterize‘advancing
years’ of the companies, implying that they do not estimate business capability. In
characterizing the size of the companies, we used scales 1–10, 10–20, and 20+ for the
approximation of human resources and scales 0–500 k€, 500 k€–1 M€, and 1+ M€ for
the approximation of turnover.

3.1 Participant enterprises

3.2 Interviews

The interviews lasting 1–2.5 h each were recoded and transcribed. During the inter-
views, some prompting was done such as, how the company was started and with
which mission, and in reference to the conceptual framework given in Fig.1 different
dimensions of it were covered, while the principal method was to give interviewees as
much time as they were willing to take for voicing their entrepreneurial narrative.

3.3 Narrative approach

Riessman (1993) describes the narrative as the refraction of the past, rather than a
camera- copy of the reality. She points out two important features, imagination and
strategic interests, which also shape the narratives told. The narrative provides for a
teller a way to re-imagine not only the past, but also future steps. Gartner (2007)
highlights entrepreneurial narratives as“the science of imagination”, where the future
of business area is echo-sounded with various“what if?” hypotheses, and thus may be

Educ Inf Technol

Ta
bl

e
1

P
ar

tic
ip

an
te

nt
er

pr
is

es P
E

M
is

si
on

P
ha

se
P

er
so

nn
el

,v
ol

um
e

Te
ch

no
lo

gy

Le
ar

ni
ng

ga
m

es
LG

-1
M

at
h

ga
m

e
fo

r
6

–1
0

ye
ar

s
In

cu
b.

1–1
0,

0–
50

0
k

P
H

P,
Ja

va
S

cr
ip

t

LG
-2

B
us

in
es

s
ga

m
es

fo
r

gr
ad

ua
te

st
ud

en
ts

G
lo

ba
l

10
–2

0,
1+

M
Ja

va

LG
-3

C
ol

la
bo

ra
tio

n
sk

ill
sg

am
es

M
at

ur
e

20
+,

1+
M

-

M
ob

ile
so

lu
tio

ns
M

S
-1

G
P

S
-b

as
ed

P
O

Io
rie

nt
ee

rin
g

fo
r

le
ar

ni
ng

In
cu

b.
1

–1
0,

0–
50

0
k

C
++

/J
av

a

M
S

-2
Ta

bl
et

de
liv

er
y

an
d

su
pp

or
t

M
at

ur
e

10–2
0,

1+
M

–

M
S

-3
A

ct
iv

at
io

n
en

gi
ne

fo
r

dr
am

a
pe

da
go

gy
A

cc
el

.
1

–1
0,

50
0

k
-1

M
LA

M
P,

D
H

M
T

L,
P

H
P,

F
ac

eb
oo

k,
m

ob
is

ite
s

M
S

-4
S

ca
la

bl
e

w
id

ge
ts

fo
r

le
ar

ni
ng

In
cu

b.
1

–1
0,

0–
50

0
k

H
T

M
L5

,C
S

S
3,

no
de

.js

A
ss

es
si

ng
,p

or
tfo

lio
s

A
P

-1
In

te
gr

at
ed

e-
le

ar
ni

ng
pl

at
fo

rm
A

cc
el

.
10

–2
0,

50
0

k
C

#,
.N

E
T,

ot
he

r
M

S
to

ol
s

A
P

-2
P

or
tfo

lio
fo

r
nu

rs
er

y
an

d
pr

im
ar

y
sc

ho
ol

ch
ild

re
n

A
cc

el
.

1–
10

,0
–5

00
k

P
H

P,
Ja

va
S

cr
ip

t

A
P

-3
A

ss
es

sm
en

to
fI

C
T

sk
ill

s
M

at
ur

e
10–2

0,
1+

M
su

bc
on

tr
ac

te
d

In
fr

as
tr

uc
tu

re
IS

-1
W

eb
an

a
ly

tic
s

fo
r

ed
uc

at
io

n
In

cu
b.

1–1
0,

0–
50

0
k

br
ow

se
r

pl
ug

in
s,

an
al

yt
ic

s

IS
-2

D
is

ta
nt

le
ar

ni
ng

so
lu

tio
ns

M
at

ur
e

20
+,

1+
M

A
do

be
C

on
ne

ct

Educ Inf Technol

assigned as“the language of opportunities” (Gartner1993; Hjorth and Steyaert2004).
For example, evaluating technological disruptions with other stakeholders having
similar interest clarifies and crystallizes the road ahead.

Gartner raises reflectivity as the lowest common denominator of narrative research
approaches in various scholarships. The narratives should be told back by listeners with
their views to add perspectives and reflect the story at the teller. By bridging the past,
the present and future narratives help in creating the continuity and the permanence as a
synthesis of single episodes into unbroken intrigue. In organizations, telling stories
helps individuals to build collective with common values, beliefs, and norms. Extend-
edly, this leads to the construction of cultural models. Boje complements the rationale
for entrepreneurial narratives with the following: encouraging enchantment (2011),
flowing, and networking (2001). Riessman also emphasizes the organizing nature of
narratives and in accord Kearney (2002) states that the narratives have sovereign
significance in explaining something that is otherwise inexplicable, for example, the
values of the company.

In this study, the narratives are not claimed to capture the truth, but to convey
faithfully enough the aspirations and vicissitudes of the SysTech member companies,
so that profiling of the companies to a certain extent is possible. In profiling, we are
using the conceptual framework and defining which of the dimensions (strategy,
technology, pedagogy, and context) is the most dominant. The narratives are also tied
to the general developmental courses of technology and pedagogy. Such contextualiz-
ing is one means to enable generalizability, as the individual narratives are positioned in
the larger landscape of technological and pedagogical trends (Starr2010).

The use of the narrative approach in the present study is actually twofold. Firstly, the
data is both collected and reported in the form of entrepreneurial narratives; secondly,
the methodical choice of the study is the narrative research, which means that the
narrative is not only reporting means but used to teach a lesson. An attempt to depict a
generic metanarrative of a strategically aware and successful company characterizes
the analysis phase. In narratives, we are especially interested in noticing aspects
that led to success.

A pattern coding process where themes of the qualitative data are identified based on
regularities (Miles and Huberman1984) was conducted on the data extracts that related
to the situation awareness concept or its more specific dimensions. As a tool of the
narrative analysis, ATLAS.ti software was used for actual coding.

4 Results

4.1 Strategy & technology dominate the design of learning solutions

Strategic reflections take place, especially in cases where the company is still incubat-
ing or unsettling. In the interviews, entrepreneurs feature the variety of alternative
routes for the future in order to pull through the financial valley of death (Osawa and
Miyazaki 2006). The reflection focuses particularly on funding and customer acquisi-
tion. Sometimes strategic plans will receive up to opportunistic features: the company
has technological expertise that is transferred in developing learning solutions without
necessarily any special attention to the application area and on occasion even reluctant

Educ Inf Technol

to invest in pedagogical expertise. The big public investments and a possibility to go
global utilizing Finland’s good PISA (OECD’s Programme for International Student
Assessment) reputation have tempted companies to transfer to the area of education, as
the interviewee within one of the SysTech member companies (IS-1) described:

“ I strongly believe that technology-enhanced learning will provide excellent
business opportunities globally and we might try out to find fair deals and get
some good feedback. Success in PISA tests combined with excellent teacher
training will open a lot of doors to further opportunities.”

Most of the SysTech member companies exert from a technological basis (10/12).
Previously, for example, they have developed various marketing, analytics, and mobile
entertainment applications and the knowledge and software components have then been
reused and composed as new learning tools. Only a few applications have emerged
through a user-centered design and been developed from scratch through user need
analysis. In implementing, the developers’ own visions and experience have served as
starting point for the development (IS-1):

“We should have collected more feedback from the users, but we didn’t have this
kind of focus group service (such in SysTech) readily at hand.”

Technological activities of member companies are contextualized to the bigger
picture of technological development, where the Internet plays the most centric role.
The pioneer of the internet, Tim Berners-Lee (2010), continues promoting internet best
practices such as open standards and egalitarian principles and in his opinion net
neutrality should apply not only desktops but to mobile connections as well. The
emerging World Wide Web Consortium standards, such as HTML5, and rocketing
browser support, the ease of development and deployment attract developers to web
applications. The trend is exemplified by SysTech member companies the majority of
which (10/12) develop web applications, however not purely with standard tools, but
also using asynchronous JavaScript and XML (AJAX) and rich Internet applications
(RIA).

The support for web interaction was added to many languages, for example, parsing
the web pages for easy handling as separate elements were added. PHP, a server-side
scripting language, went furthest; it allowed the free and flexible injections of PHP
inside HTML code, resulting in an unorthodox hybrid that got native programmers and
promoters of clear design patterns on their toes. The interviewees took a stand on the
credibility of the programming language used, for example:

“The first technology choice was quite poor. I chose the PHP language, which
was considered technologically extremely bad and I could barely implement a
software with it in the early 2000s. Since then it has developed considerably and
nowadays it has become a significant programming language. Even today, it is
quite common that professionals underestimate the capabilities of PHP.”

Nevertheless things may changes rapidly, when the positive strategic examples clear
the path for others:

Educ Inf Technol

“While pondering a few years ago whether PHP is credible enough as a platform,
Facebook came and changed the whole situation. Such a big system as
Facebook has been made by using PHP.. and by a company, which is
listed in stock exchange.”

However, PHP was not the only language suffering from a bad reputation:

“The second matter was the use of JavaScript. I believed that it will be an
important tool at some point but at the end of the 90s, using JavaScript was
considered as a joke. 3–4 years ago I decided to switch the whole system to Java,
because I saw the benefit of having it as a server mainframe. It was a safe
solution. Later on, the focus has shifted from languages and frameworks to
scalable infrastructures and services such as Amazon Cloud, where the interme-
diate language is not so important.”

In addition to languages, new device categories, such as tablets, have been intro-
duced in accelerating pace and proportions of old devices have changed rapidly:

“The outlook for Symbian was very promising at that time, new technologies
were emerging.. It was clearly our main focus, Nokia had just released Xpress
Music and the product portfolio in general was strong .. Then there were the first
signs of iPhone…”

When implementing mobile solutions for all the noteworthy platforms, it is imper-
ative to follow technological development to detect whether certain thresholds
and tipping points have been reached, for example, following reflections on
decision is made:

“We cannot decide to support e.g. Windows Phone just like that, but it has to
grow.. to 10 %.”

Not only languages and devices but also digital distribution has over gone radical
revolution. In the beginning, downloading an application was more cumbersome and
done through different channels such as marketplaces provided by operators taking a
remarkable share of the profit. Easy access to applications is crucial:

“The problem was that you had to know quite a lot to be able to even search
applications. Nokia did not have any particular site for the applications that
people would have known. Along with iPhone the situation changed suddenly
when Apple started to announce that“this and this many applications in App
Store”.”

However, as appealing the web application development might be, it contains its
own challenges, such as composing relevant style sheets and media queries to enable
scaling to different display sizes, taking different nonstandard features of special
browsers into account, especially earlier versions of Internet Explorer (<8.0) seem to
cause problems.

Educ Inf Technol

4.2 Pedagogy and context, new opportunities not capitalized

Desktop applications have shifted extensively from standalone to web applications and
learning solutions naturally share the trend, thus the evolution of web is central also for
learning solutions. The certain resemblance of development of web and pedagogy may
be perceived, let us parallel evolution steps as a metaphor of different phases of
pedagogy to illustrate the progression:

Web evolution step Corresponding learning perception

Web 1.0 Behaviorism, cognitivism

Web 2.0 Socio-constructivism

Web 3.0 Learning analytics, user-tailored learning

During Web 1.0, the content was fixed and a user was not able to influence it. In
behaviorism, learning is teacher-centered, based on stimulus–response pairs and itera-
tion; solutions with drilling activities may be categorized into this genre (e.g. LG-1,
AP-2). In static HTML pages, the biggest wow was a hyperlink that linked data
forming tree-like structures. Similarly in cognitivism, concepts form schemas and the
thicker the schema, the deeper the knowledge. Yet recognized effective, this type of
linking, e.g. concept maps and alike do not appear among SysTech solutions.
Dynamicity of the web has increased even further and gradually users have taken a
role as content providers, new Web 2.0 tools, such as blogs and wikis, accelerated the
progress. Web 2.0 facilitates socio-constructivist learning, the examples of which exist
also among SysTech learning solutions, for example, making decisions as teams (LG-3)
or a short message guided drama (MS-3). Along with a more user-centric web also
evolves smarter by gathering increasingly information about users. Learning analytics
(IS-1) and user-tailored user experience demonstrate these new Web 3.0 features.

Yet these developmental trends are evident both to‘techies’ and‘teachies’ apart, rare
are the successful combinations of state of the art. The majority of SysTech companies
belong to the technology-oriented group; some of the companies have reflected their
own functions and observed the phenomenon of‘hype-from-hype’ ramping, as LG-3,
one of the learning game developers states:

“The development is driven by technology, not by the content or user needs and
for knowing the user needs examining the context is crucial. New waves of
technology follow each other quickly leaving no time to stabilize or use all the
possibilities of the new technologies. The development goes from hype to hype at
the expense of pedagogical aspects.”

Lacking pedagogical knowledge shows in inadequate curriculum considerations and
a moderate engagement of students, in case of too straightforward a functionality of
behaviorist stimulus–response pairs founded on iterations. Lessons learnt from social
media are mainly lost; interaction and common content creation are not fully exploited.
In addition to students, solutions must be agreeable to teachers and approved by the
education authorities that invest in learning technologies. Aligning the solution with the

Educ Inf Technol

curriculum and proving its efficiency are the keys to convince. A viable option of the
entrance into education would be co-operation with schoolbook publishers.

The curriculum is becoming more mobile (Mylläri2012), which means that mobile
devices are used more during lessons and informal learning is raised next to formal
learning practices. Mobility detaches a student from a predefined learning time and place.
The student has an access to information constantly and it is possible to form teams and
work remotely, everybody does not need to be online simultaneously, messaging may
also be asynchronous. Mobility is otherwise closely connected with the idea of informal
learning, where the learning is not always via formal set-up in the school context, but can
happen in a free time, while playing or surfing in the net. Tablets have made mobility as
convenient for the user as possible; there are also signs that teachers experience the
increased sense of competence, which is illustrated by MS-2 with the following excerpt:

“Here we have, for example, Erkki, 59, who is retiring soon. With iPad, Erkki
there is confident that he still can learn new and decides to come to a tutorial
course, the threshold of which could otherwise prove to be too high.”

By and large the competence aspect is important for educators. One interviewee (IS-
1) compared the lesson context to warlike conditions. An immediate response is
essential, hence easy to use, easy to access solutions function the best. Piloting early
and often enough to sanity-check the product status and functionality in real context
enables to build the product from the ground up. Paving the way for the pilots by
helping in setup and providing training is a good practice to make a smooth start. In the
real context also constraints such as old and various hardware, old browser versions,
and problems with the network infrastructure may cause surprises.

4.3 Summary

The pie diagrams in Table2 illustrate distributions of different dimensions of awareness
in interviews. Before the ATLAS.ti coding, each dimension was defined more in detail
with sub-codes, which were complemented during the coding phase if needed.

Based on the diagrams it can be seen that the more mature the company, the more
balanced is the awareness distribution (e.g. LG-2, LG-3, MS-2, IS-2. AP-3 is an
exception), whereas incubating and accelerating enterprises are very strategy-centric.
Two thirds of the time these enterprises are handling such themes as funding, gaining
customers, and internationalization. Whether a balanced profile is a cause or conse-
quence to a more mature situation, it is indistinct based on our data. If it were the cause,
two more balanced incubating/accelerating companies, MS-1 and IS-1 should survive
and succeed better in continuation. However, to be able to prove this hypothesis we
should have a longer observation span and a bigger sample.

5 Discussion

In this paper, we have studied 12 companies by exploring their entrepreneurial narra-
tives in order to illustrate the influence of being situation aware on successful learning
solution design. Transcribed interviews were interpreted using the conceptual

Educ Inf Technol

framework containing four aspects: strategy, technology, pedagogy, and context. The
former two represent the general entrepreneurial competencies of an ICT company,
whereas the latter relate to the pedagogy as the domain, to which the learning solutions
are targeted. The codes were derived from the conceptual framework and the actual
coding was done by using ATLAS.ti qualitative data analysis software.

The conceptual framework was used as the tool to define the degree and dimensions
of situation awareness of SysTech companies. The results show that business and
strategy are emphasized in expense of pedagogy and context. The phase of the
company is nominal, whether incubating, accelerating, or mature: the more established
companies are less keen on talking about funding, marketing, and gaining customers,
which are counted as strategy related things, whereas these are in the center of attention
of beginning companies:“the mouth speaks what the heart is full of” . While incubating,
the entrepreneurial narrative is also more blurred and inconsistent as there are many
alternative paths to the future (e.g. MS-1, MS-4, and AP-2).

Table 2 Situation awareness distribution

Strategy = green, technology = dark blue, pedagogy = red, context = light blue

Educ Inf Technol

Narratives told by the entrepreneurs themselves are more vivid due to first-hand
experience and often the narratives also steep in the features of tragedy, especially
periods of survival struggle through economic downtimes produce the scenes of
suffering. Employees identify themselves more as performers than executives and
R&D issues are in front in place of strategic considerations. In some cases commitment
to the product schedule is so extensive that it creates a myopic attitude towards
feedback and development initiatives (AP-3) so that keeping milestones comes before
being sensitive to client needs.

The orientation (education and contacts) defines the technological interest. When
interviewed, people who are software developers and coders themselves (i.e., LG-1,
LG-2, MS-1, MS-3, AP-2) stress both strategy and technological viewpoints; also
entrepreneurs with a technical background made perspicacious observations.
Technology-oriented interviewees link their descriptions to examples of technological
companies such as the Apple, Nokia, and Facebook, whereas the focus of business-
oriented entrepreneurs is in success and failure. In general, companies identify the need
for situation awareness regarding especially technology and follow its development e.g.
from the news and by discussing to other stakeholders.

Previous experience as an entrepreneur (LG-1, MS-2, MS-3) gave perspective also for
future thinking and scenario creation (Dutta and Crossan2005; Politis2009). The firmest
future views were set out by the people with the technological expertise combined with the
entrepreneurial experience. A profound enough grip on technological understanding and
previous background helped in evaluating disruptions and opportunities provided. The
advent of tablet computers and Apple’s ascendant market dominance were the disruptions
pondered in most interviews because of their direct influence on the device distribution
and development. MS-2 said it was clear from the beginning that the iPad has potential in
pedagogical context. Similarly, LG-1 stated that disruptive nature of iPad was obvious to
them right from the start. MS-2 has profitedfrom the tablet penetration, resulting in
expansive growth of the company. However, many successful SysTech companies such as
MS-2 diminish the share of far-reaching strategic thinking and highlight the importance of
serendipity instead. However, fortune favorsthe fit, albeit only with a bit of strategic wit.
Exploiting the opportunity, MS-2 managed to occupy the virgin territory of school
environment lacking easy-to-use, up for it devices. In the case of LG-2, sticking at web
application in 1995 was a critical decision thathas later on proven to be a fortuitous choice.

In the interviews, pedagogy and context are mentioned surprisingly infre-
quently. Few of 12 enterprises (IS-2, MS-2, LG-3) have clearly considered
pedagogy, the rest rely more or less on their own understanding and experi-
ences gained, for example, with entertainment games and web applications (LG-
1, LG-3). In some cases, the impression is that school context has been selected
almost by accident or business-wise, after deducing where best to focus invest-
ments (IS-1, MS-1, MS-3, and MS-4). User-centered design practices encom-
pass having a teacher as a pedagogical expert in the group, evaluating solutions
with the focus group, and observing the praxis in real context. Some companies
(IS-2, LG-3) did argue for putting content before technology and criticize
overhyped waves of technology innovations that repeat iteratively and prevent
from deepening the pedagogical know-how and concentrating on essentials. The
essential is manifested in the curriculum; additional demands may be gathered
from teachers.

Educ Inf Technol

6 Conclusions

Being aware of the situation and context in its entirety is essential for success in all
phases, but especially for the incubating companies. Interviews and the situation
awareness framework were used as profiling tools. Focus on business strategy and
technology is obvious among the 12 studied companies; however, pedagogy and
context are not taken into account to the true extent of the need: mature companies
were better balanced, but otherwise pedagogy-aware companies seem to be rare.
Previous entrepreneurial experiences and the company’s own R&D input increased
awareness and facilitate skills to evaluate disruptive potential of new technologies and
proper timing, i.e. improved strategic and technological awareness, whereas having
close relationships to schools, a background in teaching or pedagogy explained good
pedagogical awareness of the minority of enterprises that took such perspectives into
consideration. Furthermore, a lack of sites for piloting and proper feedback mecha-
nisms led to inadequate conceptions of user needs, preventing companies from devel-
oping learning solutions to their full potential.

Agency for Technology and Innovation (TEKES) set up SysTech project to foster
interaction between developers, teachers, and researchers. Developers are released from
arranging pilots, teacher needs are better taken into account through focus group
participation, and researchers have an opportunity to bring research findings and
curriculum awareness to companies by collecting material from real-life projects, and
analyzing it for research purposes. The ultimate goal is to develop a co-creation model
and principles with mutual benefit for all participants.

The best narrative has a happy ending. The definition may be better products, pleased
customers, deeper learning outcomes, the improved sales of participant enterprises, a thicker
value network, and finally as a bonus, the next phase of the project, piloting abroad and aid
in internationalization. As a good PISA achiever Finland has already now a good reputation
in education, with systematic development the reputation may be maintained and improved
still. Further study should include evaluating the process, improving it iteratively, and
developing a standard for good learning solutions with proven effectiveness.

Acknowledgments The research reported in this article has been funded by TEKES, SysTech programme.
Grateful acknowledgement for proofreading and contributing valuable insights goes to Jennifer von Reis Saari

References

Bennett, S., Maton, K., & Kervin, L. (2008). The‘digital natives’ debate: a critical view of the evidence.
British Journal of Technology Education, 39(5), 775–786.

Berners-Lee, T. (2010). Long Live the Web: the call for continued open standards and neutrality. Scientific
American November (22).

Biggs, J. B. (2003).Teaching for quality learning at university: What the student does(2nd ed.). Phildelphia:
Society for Research into Higher Education.

Boje, D. M. (2001).Narrative methods for organizational and communication research. London: Sage
Publications Limited.

Boje, D. M. (2011). Our organizations were never disenchanted: enchantment by design narratives vs
enchantment by emergence.Journal of Organizational Change Management, 24(4), 411–426.

Brush, C. G. (2008). Pioneering strategies for entrepreneurial success.Business Horizons, 51(1), 21–27.
Carr, D. (2007). Computer games in classrooms and the question of cultural baggage.British Journal of

Educational Technology, 38(3), 526–528.

Educ Inf Technol

Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature
review of empirical evidence on computer games and serious games.Computers & Education, 59(2),
661–686.

Dalgarno, B., & Lee, M. J. W. (2010). What are the learning affordances of 3- d virtual environments?British
Journal of Educational Technology, 41(1), 10–32.

Daniel, D. B., & Woody, W. D. (2013). E-textbooks at what cost? Performance and use of electronic v. print
texts.Computers & Education, 62(0), 18–23.

Durso, F. T., Nickerson, R. S., Schvaneveldt, R. W., Dumais, S. T., Lindsay, D. S., Chi, M. T. H. (Eds.).
(1999).Situation awareness(Ch. 10, pp. 283–314). West Sussex, England: John Wiley & Sons.

Dutta, D. K., & Crossan, M. (2005). The nature of entrepreneurial opportunities: understanding the process
using the 4I organizational learning framework.Entrepreneurship: Theory and Practice, 29(4), 425–449.

Earle, R. S. (2002). The integration of instructional technology into public education: promises and challenges.
ET Magazine, 1, 5–13.

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems.Human Factors, 37(1), 32–64.
Flac, J. M. (1995). Situation awareness: proceed with caution.Human Factors, 37(1), 149–157.
Gartner, W. B. (1993). Words lead to deeds: towards an organizational emergence vocabulary.Journal of

Business Venturing, 8(3), 231–239.
Gartner, W. B. (2007). Entrepreneurial narrative and a science of the imagination.Journal of Business

Venturing, 22(5), 613–627.
Hannon, P. D., & Atherton, A. (1998). Small firm success and the art of orienteering: the value of plans,

planning, and strategic awareness in the competitive small firm.Journal of Small Business and Enterprise
Development, 5(2), 102–119.

Hjorth, D., & Steyaert, C. (2004).Narrative and discursive approaches in entrepreneurship: A second
movements in entrepreneurship book. University of Illinois at Urbana-Champaign’s Academy for
Entrepreneurial Leadership Historical Research Reference in Entrepreneurship.

Kearney, R. (2002).On stories. London: Routledge.
Krentler, K. A., & Willis-Flurry, L. A. (2005). Does technology enhance actual student learning? The case of

online discussion boards.Journal of Education for Business, 80(6), 316–321.
Lee, E. A.-L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning

outcomes? A structural equation modeling approach.Computers & Education, 55(4), 1424–1442.
Lee, Y.-H., Waxman, H., Wu, J.-Y., & Lin, G. (2013). Revisit the effect of teaching and learning with

technology.Educational Technology & Society, 16(1), 133–146.
Linder, S. P., Abbott, D., & Fromberger, M. J. (2006). An instructional scaffolding approach to teaching

software design.Journal of Computing Sciences in Colleges, 21(6), 238–250.
McKinsey. (2009).Shaping the future: How good education systems can become great in the decade ahead.

Singapore: McKinsey & Company.
Mikropoulos, T. A., & Natsis, A. (2011). Educational virtual environments: a ten- year review of empirical

research.Computers & Education, 56, 769–780.
Miles, M. B., & Huberman, A. M. (1984).Qualitative data analysis: A sourcebook of new methods. Beverly Hills: Sage.
Mylläri, J. (2012). Towards mobile curriculum with systemic learning solutions. In M. Specht, J. Multisilta, &

M. Sharples (Eds.),mLearn 2012 Conference Proceedings: 11th World Conference on Mobile and
Contextual Learning(pp. 280–283). Helsinki: University of Helsinki.

OECD (2011).PISA 2009 at a Glance. OECD Publishing.http://www.oecd-ilibrary.org/education/pisa-at-a-
glance-2010_9789264095298-en. Accessed 25 Aug 2011.

Osawa, Y., & Miyazaki, K. (2006). An empirical analysis of the valley of death: large scale R&D project
performance in a Japanese diversified company.Asian Journal of Technology Innovation, 14(2), 93–116.

Politis, D. (2009). Entrepreneurs’ attitudes towards failure: an experiential learning approach.International
Journal of Entrepreneurial Behaviour & Research, 15(4), 364–383.

Riessman, C. K. (1993).Narrative analysis(Vol. 30). Newbury Park: Sage Publications, Incorporated.
Romiszowski, A. J. (2004). How’s the e-learning baby? Factors leading to success of failure of an educational

technology innovation.Educational Technology-Saddle Brook Then Englewood Cliffs NJ, 44(1), 5–27.
Sainio, L.-M., & Puumalainen, K. (2007). Evaluating technology disruptiveness in a strategic corporate

context: a case study.Technological Forecasting and Social Change, 74(8), 1315–1333.
Sainio, L. M., Ritala, P., & Hurmelinna-Laukkanen, P. (2012). Constituents of radical innovation—exploring

the role of strategic orientations and market uncertainty.Technovation, 32(11), 591.
Salden, R. J., Koedinger, K. R., Renkl, A., Aleven, V., & McLaren, B. M. (2010). Accounting for beneficial

effects of worked examples in tutored problem solving.Educational Psychology Review, 22(4), 379–392.
Starr, L. (2010). The use of auto-ethnography in educational research: locating who we are in what we do.

Canadian Journal for New Scholars in Education, 3(1), 1–9.

Educ Inf Technol

Stutsman, N. (2013). BYOD: one year later.Technology & Learning, 33(7), 36–39.
Watson, D. M. (2001). Pedagogy before technology: re-thinking the relationship between ICT and teaching.

Education and Information Technologies, 6(4), 251–266.
WEF. (2010).The global competitiveness report 2010–2011. Geneva: World Economic Forum.
Wenger, E. (2000). Communities of practice and social learning systems.Organization, 7(2), 225–246.

Educ Inf Technol

Publication II

Niemelä P., Di Flora C., Helevirta M. and Isomöttönen V., �Educating future coders with
a holistic ICT curriculum and new learning solutions�, Journal of Systemics, 2016

DOAJ: http://www.ingentaconnect.com/content/doaj/16904532/2016/00000014/00000002/art00004
Niemelä et al. (2016)

http://www.ingentaconnect.com/content/doaj/16904532/2016/00000014/00000002/art00004

 Educating future coders with a holistic ICT curricu lum and new learni ng solutions

Pia NIEMELÄ
Computer Science, Tampere University of Technology

Tampere, Finland

Cristiano DI FLORA
Rovio

Helsinki, Finland

Martti HELEV IRTA
Tampere, Finland

and

Vil le ISOMÖTTÖNEN

Mathematical Information Technology, University of Jyväskylä
Jyväskylä, Finland

ABSTRACT

Technology-orientation and coding are gaining momentum in
Finnish curriculum planning for primary and secondary school.
However, according to the existing plans, the scope of ICT
teaching is limited to practical topics, e.g., how to dril l basic
control structures (if -then-else, for, while) without focusing on
the high level epistemological view of ICT. This paper proposes
some key extensions to such plans, targeted to highlight rather
the epistemological factors of teaching than talk about concrete
means of strengthening the craftsmanship of coding. The
proposed approach stems from the quali tative data collected by
interviewing ICT professionals (N=7, 4 males, 3 females), who
have gained experience of the industry needs while working as
ICT professionals (avg=11.3 y, s=3.9 y). This work il lustrates a
holistic model of ICT teaching as well as suggests a set of new
methods and tools.

Keywords: ICT curriculum, teaching ICT in primary and
secondary school, concept maps, UML, holistic ICT model

1. INTRODUCTI ON

The new curriculum with information and communication
technology (ICT) as its focus is currently being reviewed and
prepared for publication. The need of more ICT experts in
industry has been recognized in decision-making by governing
bodies. Not only are various domestic directions promoting ICT
education but also the EU and multinational corporations have
been actively pursuing new instructions and assessment of e-
skil ls. For example, the EU has outlined a strategy for
improving e-skil ls for the 21st century to foster competitiveness,
growth, and jobs.

Moreover, in Finland distinguished pedagogues of especially the
University of Helsinki [1, 2] are promoting more student-
centered, informal learning: tablets for all students, using online
material and social media to co-create in order to gain better
ICT and multi-li teracy skil ls. Future needs have guided the
planning of the becoming 2016 curriculum. The way of working

and living is rapidly changing, and the need for curriculum
change is acknowledged. Famil iarizing students with technology
and learning the basics of coding wil l be started already in
primary school and the skil ls gained are further strengthened at
the secondary level.

In the ICT curriculum, digital literacy and ICT skil ls are meant
to be buil t gradually, starting from visual coding and tactile
learning followed by a more formal approach at the secondary
level, where ICT is integrated into math teaching. Hence,
programmable calculators and other computational features are
well represented in the curriculum plans. The introduction of
�Q�H�Z���,�&�7���F�R�Q�F�H�S�W�V���E�\���H�[�S�H�U�L�P�H�Q�W�L�Q�J���U�H�O�L�H�V���R�Q���³�/�H�D�U�Q�L�Q�J���E�\��
�G�R�L�Q�J� �́��P�H�W�K�R�G�R�O�R�J�\�����*�U�D�S�K�L�F�D�O���D�Qd other high-level languages
with additional libraries meant for education are utili zed.

Learning goals are divided as learning packages that
consistently build up the basics of computer science a grade by
grade at the secondary level. For example, the 7th grade aims at
acquainting pupils with such computing fundamentals as
statements, data types, the sequential execution of the program,
�µ�L�I-then-�H�O�V�H�¶���I�O�R�Z�� �F�R�Q�W�U�R�O���V�W�U�X�F�W�X�U�H�V�����D�Q�G�� �I�L�Q�G�L�Q�J�� �H�U�U�R�U�V���L�Q��
syntax and correcting them. Basics of logic are introduced,
starting from a truth value of a sentence. In the 8th grade,
variables and functions are introduced. State machines are used
and visualized concretely by playing with the construction kits
(e.g. the switch states ON/OFF). Logic continues with deduction
and reasoning. In the 9th grade, new variable classes such as
collections, conditional iteration (while, do, for), and recursion
are introduced. At a more general level, the learning goal is to
model a problem and divide it into smaller executables. For
gaining the craftsmanship of coding the planned approach
sounds viable, but regarding of the whole palette of needed ICT
skil ls the view is regrettably narrow.

2. RESEARCH QUESTIONS

The current proposal for ICT curriculum emphasizes gaining the
craftsmanship of coding with small and valid incremental steps.
The order of propagation is well -justified, but still arguable.
Instead of addressing all the possible aspects of coding and
computer science learning primitives in detail, the epistemology

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 19

of the ICT teaching as a whole should be discussed to consider
all essential higher level needs. It is important to ensure that
these findings are sanity checked and that the discussion is not
lead by pedagogues only, but validated and augmented by ICT
professionals, who know the industry needs. The research
questions to be replied are:

1. Which kind of model would give a more holistic view
of ICT epistemology?

2. How to support the learners in their becoming not
only good coders but also good software architects
and designers?

3. Which kind of learning solutions would support the
ICT teaching model proposed?

3. INDUSTRY NEEDS RULED IN

To get a better grasp of the current ICT landscape we
interviewed seven ICT professionals by email , six of whom are
software developers and one a program manager. The email
questionnaire contained the following questions: What are the
ICT skil ls needed today/in the future? Which are your best ICT
courses/informal learning experiences? How should ICT be
taught in the primary school? With seven replies, we are far
from scientific signif icance and based on the data only rough
recommendations can be given. However, the anticipated
holistic model can be verif ied by referring to the answers. Based
on the replies, we classified ICT related capabil ities to four
categories: the craftsmanship of coding, modeling, user-centered
design, and project management. More generic skil ls such as
critical thinking, future working quali fications, and global
citizenship were also mentioned, however, not taken into
account here as they were regarded more as all -encompassing,
general capabil ities to be taught in other subjects as well .

Since the majority of the interviewees represented the
implementation side, the craftsmanship of coding perspective
was well pronounced. In a li st of needed skil ls, web computing
was mentioned six times, followed by data structure &
algorithms (3), testing (2), and mobile coding(1). Among the
most common computer languages Java (2), JavaScript (2) and
C++ (1) were li sted, but also specialties such as Rust (1),
Clojure (1) and Go (1) received votes. High-availabil ity
engineering (1) and the abil ity to develop games (1) were seen
as useful system level capabil ities. Modeling was mentioned
four times: design, UML, architecture, and being able to
recognize meaningful entities were li sted. User-centered design
occurred once in the form of �³understanding the needs of the
customer and managing them� ́emphasized by the only project
manager involved, who considered also project management
and sell ing as important skil ls.

Our interviewees regarded hands-on experience as the main
building block in learning. They would include in the ICT
lessons of primary school e.g. team work and pair-programming
exercises, increase motivation and inspiration by providing good
examples, combine ICT with sports, and have students build
their own e-portfolios. Working in teams or in pairs kids would
learn informall y scaffolding each other in the zone of proximal
development [3]. Regarding good learning experiences the
importance of teamwork was emphasized (3), especially pair
programming with friends having a similar level was considered
rewarding.

 From the formal side the basic courses in the beginning were
found the most meaningful (2), and those teaching techniques
that remain the same regardless of the language such as data
structures and algorithms (3) were valued high. Nevertheless,
we also received critical views regarding ICT teaching, for
example: �³At high school I never attended any good ICT
courses. But all the math and physics at school helped me to
learn problem solving and how to break down a problem in
multiple pieces.� ́ According to the interviews, the future is
drif ting in the direction of HTML5 (2), robots (1), internet of
things (1), and visualizations (1). These findings were classified
into four main categories.

The craftsmanship of coding

In the discipline of handicrafts and craftsmanship, learning
happens through doing by hand, which is seen as a way of
leveraging innovation and the creativity. Theories such as
intelligent hands [4] and learning by doing, are the basis for the
tactile learning language. In maths, the tactile exercises such as
fraction pieces and decimal system learning tools are used while
approaching the symbol language more in-depth. In ICT,
bridging the connection between electronics and coding may be
achieved with the help of dif ferent assembly kits (e.g. LEGO
MindStorm and Robots, Arduino, Lilypad, li ttleBits). Electronic
components, such as light emitting diodes, buzzers, and couplers
can be controlled by coding and give a more concrete and clear
response than visible feedback on a computer screen. As one of
our interviewees puts it, �³Learning by doing simply cannot be
beaten in efficiency.�´

In addition to construction kits, visual programming languages
may be used as primers. Scratch, for example, provides
graphical support for a user preventing the faulty code or the
connecting of incompatible code sequences. Control structures
(such as if -then, for, while) are ready-buil t, a user only has to
adjust parameters, such as counters in iteration loops. Visual
programming languages are limited in freedom of degrees,
which at the initial learning stage wil l be good to minimize the
cognitive load: time is not wasted hunting syntactic errors. In
the long run, the conciseness of such languages starts to restrict
freedom and creativity indicating the due date to expand to more
expressive programming languages.

Conceptual modeling as a software architect

On the authority of our interviewees, the development of ICT
talent requires strong modeling and conceptualization skil ls. The
highlighted modeling skil ls were designing, mastering UML
modeling language, being able to separate relevant entities and
build an architecture of systems. Regarding thinking skil ls
�P�H�Q�W�L�R�Q�H�G���µ�O�R�J�L�F�D�O���D�Q�G���F�U�L�W�L�F�D�O���W�K�L�Q�N�L�Q�J�¶���R�Y�H�U�O�D�S���S�D�U�W�O�\���Z�L�W�K���W�K�H��
conceptualizing skil ls, too. Therefore, we propose conceptual
modeling as one of the key expertises and concept and mind
mapping as its preceding preparatory skil l. However, having
good conceptualizing and modeling skil ls is not useful only in
ICT, but in deep learning in general, the biggest difference
between expert and novice thinking being the consistency and
density of underlying concept schemes. Deeper learning implies
linking atomic details as bigger and more robust constructions.
Tying new knowledge to relevant concepts and previous
propositions makes learning more meaningful.

20 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

User-centered design to take into account real user needs

The domain of user-centered design was duly emphasized by the
�R�Q�O�\���S�U�R�M�H�F�W���P�D�Q�D�J�H�U���L�Q�W�H�U�Y�L�H�Z�H�G�����³�X�Q�G�H�U�V�W�D�Q�G�L�Q�J���F�X�V�W�R�P�H�U�¶s
needs and use� �́����³sell ing� �́������$���U�H�D�O���L�Q�Q�R�Y�D�W�L�R�Q���W�D�N�H�V���W�K�H���X�V�H�U�¶�V��
needs into account, it focuses on the user and his context and
incorporates his perspectives during the whole design process
and new applications may be seen as innovations. Future coders
need user-centered design tools to be able to innovate apposite
applications. When the design is to be more user-centered, an
essential prerequisite is to know how a customer acts by
perceiving the typical work sequence and processes. This can be
done by observing the environment and interviewing users i.e.
becoming more aware of user needs.

In software projects, when the snapshot of the situation in its
entirety has been obtained and user needs are detected as
detailed manner as possible, the needs are dressed as formal use
cases and requirements, which are a starting point to the
following implementation. Ultimately, the final project
achievements are checked against the use cases. When
successful, the intended new solution provides added value and
more eff iciency by going beyond current practices.

Project management

The golden rule of project management consists of planning,
organizing and controll ing, efficiency being the ruling principle
both time and money-wise, as our project manager states: - Line
out, what is needed and how to get the most efficient (both
workload and budget) solution. Less is needed in direct
implementation, more having the whole picture with technical
knowledge about possibil ities.

Project management is also seen as an interface between the
customer and the team and good communication between
dif ferent stakeholders is his responsibil ity. In addition to taking
care of the good communication within the team it is also
crucial to involve the customer in the communication loop to
ensure that the user needs are fulf il led. Often the needs get more
detailed - or even changed - during the process. The current de
facto standard in project management is an agile methodology
that embraces self-organizing teams that are capable of
managing themselves. More and more, in agile projects people
are working in remote teams that are self-directed.

Agile methodologies target flexibil ity in taking into account the
moving target. A customer may change his mind during the
implementation that is called requirement volatility. By
iteratively ensuring that the direction is right and the product
wil l better respond to the need, the project management is linked
with the user-centered design, too. Albeit of the biased sample
(only one project manager interviewed) the interview data
confirmed what was expected i.e. that the project management is
more concerned about the user needs and communication with
the user than developers. Interviews also suggest that the project
management level is more situation aware and concerned about
retrieving the big picture, whereas developers think more in
terms of technical solutions.

4. THE HOLISTIC ICT TEACHING MODEL AND NEW

LEAR NING SOLUTI ONS

The proposed teaching model is depicted in Figure 1. The most
elementary building block, the craftsmanship of coding, starts

with elementary exercises that combine both the visual coding
and tactile learning objectives in order to provide a robust
hands-on experience to build the base. When targets gradually
grow more complicated or a bigger team is involved in coding,
students wil l have to learn how to model and easily
communicate the system structure. To this aim we propose the
building block of conceptual modeling. The third thread
il lustrates the need for user-centered innovations. To be able to
innovate, the student has to make observations in order to
become acquainted with the customer needs, and to depict the
underlying processes. After that optimizing and improving them
is enabled, and ultimately, students come up with new, more
eff icient approaches to the problems and challenges.

Figure 1: The proposed holistic model for ICT curriculum in
primary and secondary school.

Together the threads form the cord of an ICT professional more
capable of handling ICT projects successfull y. The entwined
threads are woven together by project management which
includes controlling the process (e.g. using agile methods),
being able to divide the project in smaller tasks, scheduling and
staying within the deadlines. Next we wil l examine how these
missing threads of current ICT curriculum of modell ing, user-
centered design and project management may be introduced in
the school environment.

Var ious concept map techniques as knowledge buil ding tools

In computing good software architects are good modelers,
whereas in school excellent students are good conceptualizers.
In recent years, concept maps have been recognized as an
effective visual learning tool that helps learners memorize and
organize knowledge. Åhlberg [5] recommends maps in
situations requiring data parsing and argues that they il lustrate
the conceptual and propositional structure of written text. He
also considers conversions to both directions, from text to a map
and vice versa, as a good way to work on and elaborate
meanings. In addition to visually appealing and easy to use
concept map applications (bubbl.us, MindMup, CMapTools),
the tools of ICT professionals such as the Unif ied Modell ing
Language (UML) may be introduced to students as a modell ing
tool that is applicable in ICT teaching in particular.

Modeling skil ls are important for communication purposes, too,
both between developers and other stakeholders. Nowadays, as
the development is often geographicall y distributed,
communications skil ls are extremely necessary. Even if one is
not going to be a developer himself, a better understanding

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 21

about the overall structure with a map representation gives a
quick generic overview and more means to communicate with
developers.

In education, we also promote the use of concept mapping as an
�D�V�V�H�V�V�P�H�Q�W���W�R�R�O�����&�X�U�U�H�Q�W�O�\�����D�V�V�H�V�V�P�H�Q�W���L�V���E�D�V�H�G���R�Q���W�K�H���V�W�X�G�H�Q�W�¶�V��
test results and activity during lessons. This method is good at
measuring whether smaller learning objectives have been
reached. However, a more detailed development of conceptual
understanding and getting a bigger picture is less frequently
examined. Meaningful learning results are achieved when a
person consciously and explicitly ties new knowledge to
relevant concepts and previous propositions they already
possess. Deeper learning implies linking atomic details as bigger
and more robust constructions. A concept map can be
understood as a visualization of a mental concept construction.

Authentic tasks facil itating user -centered design

Often real world problems are open ended, complex, require
extended knowledge and emergent solutions. According to the
Engagement Learning Theory by Kearsley and Shneiderman [6],
a valid way of getting students committed is to provide
meaningful, creative, and authentic tasks, which reflect the
interests of students themselves, as much as possible. Finding an
achievable yet interesting project target can prove to be the
hardest part of the whole project, but once the goal is set, the
group may start working backward from it [7], e.g. planning,
sharing the goal into smaller executables, scheduling these parts,
and finally moving to implementation.

User-centered design implies the participatory methods of
inquiry of real - not self -determined - customer needs, modeling
the situation, and means of improving current practices. For
younger students, gaining the required level of situation
awareness is a meta-cognitively demanding task and requires
such future working skil ls as communication and collaboration.
In software projects, when the snapshot of the situation has been
obtained, the demands are dressed as formal use cases or lighter
user stories and requirements, which are a starting point to the
following implementation.

The authenticity of the project is increased with a real customer,
who is interested in getting the thing done, is waiting for the end
product and giving feedback. A real and useful innovation takes
�X�V�H�U�¶�V���Q�H�H�G�V���L�Q�W�R���D�F�F�R�X�Q�W�����L�W���I�R�F�X�V�H�V���R�Q���W�K�H���X�V�H�U���D�Q�G���K�L�V���F�R�Q�W�H�[�W��
and incorporates his perspectives during the whole design
process, hence providing an opportunity of producing what
Scardamalia et al. [7] call emergent outcomes, i.e. through new
considerations, creativity and sustained work something bril liant
might emerge. However, the emphasis here is not on the
outcome but rather to famil iarize with project work practices,
learn how to co-operate, communicate, and take responsibil ity.

Nousiainen [8] emphasizes that the continuous involvement of
users is a goal as such but also a way to empower users and
promote workplace democracy and the means to practice the
working li fe skil ls of participation, collaboration, and
communication. In some schools, students have already started
to innovate e.g. new means to recycle [9]. If no customers are
available, suitable activities such as school projects could be e.g.
doing your own online textbook or encyclopedia or pilot tests of
innovative new technologies and rating them. Often the
publicity of putting the end result on the web provides a
suff icient incentive for the students to do their best. Strategicall y

oriented students might see this also as a sweet spot of exposing
their skil ls for potential employers and polish their CV.

Engaged students as self -directed project managers

Several educators agree along with industry representatives that
there is a gap between current education and future work skil ls.
�0�R�\�O�D�Q���>�����@���L�G�H�Q�W�L�I�L�H�V���³�3�U�R�M�H�F�W���/�H�D�U�Q�L�Q�J�����D�V���D���N�H�\���P�H�W�K�R�G�R�O�R�J�\��
for closing this gap between current curriculum and developing
their necessary knowledge and skil ls essential for success in the
21st century. Among other forces, President Obama also
instructs schools to transfer from trivial bubble fil ling exercises
to such 21st century skil ls li ke problem-solving, critical thinking,
entrepreneurship and creativity: the school has to train children
for future challenges and work [11].

Project management may be practiced by open assignments i.e.
with school projects that have to be scheduled and delivered in a
timely fashion. In such projects, students should be responsible
for the acquisition of information needed, for example, by
interviewing their intended customer or searching data from the
net. It would be good to attempt to raise the abstraction level by
modeling. For schools to adopt agile project working style,
students would come together to work on an ICT project that
they have selected by themselves, plan and share the work, take
on roles that play to their strengths and interests and then
implement and solve problems together till the project is done.

Being ultimately learner-centered this type of learning
assignment requires a very different approach of the teacher
compared to traditional classroom instructions. The teacher is no
longer the lecturer and the decider, but rather a facil itator or
coach learning alongside students; sometimes to give up the
control may feel li ke a farmer that is sell ing his farm. However,
the effectiveness of instructor-led lessons and lecturing has long
been questioned and as a subject ICT is one of the best suited
for applying project oriented learning style. However, we note
that often transferring to an open-ended working mode requires
some practicing and external pressure to get things done,
whether the agent generating the pressure is a teacher or
preferably an external customer.

5. CONCLUSIONS

Finland is planning to enrich its primary and secondary school
curriculum with coding in order to prepare students for the
future working li fe. Instead of settling on only the basics of
coding, e.g. code flow and control structures, we claim that the
abil ity to innovate and design software systems is at the very
heart of software engineering. By adding the key areas of
modeling and user-centered design to instruction schemes, we
create a more holistic ICT curriculum. The conception and
modeling abil ity is needed not only in ICT but in knowledge
building and conceptual thinking in general. User-centered
�G�H�V�L�J�Q���L�P�S�U�R�Y�L�Q�J���W�K�H���S�U�D�F�W�L�F�H�V���R�I���R�Q�H�¶�V���R�Z�Q���H�Q�Y�L�U�R�Q�P�H�Q�W���P�D�\��
also be seen as a tool of empowerment. An empowered member
of the society, who is aware of user needs, wil l also become
more innovative.

Hands-on experimentation was also considered beneficial
among our interviewees: games, pair-programming, and
learning from others informall y were seen as ways to foster
learning and engagement. Innovativeness and creativity are
buzzwords used in curriculum planning, often in accordance
with arts and crafts, which are assumed to enhance them. With

22 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 ISSN: 1690-4524

new methods and learning solutions, creativity may be fostered
with STEM subjects as well: building robots, making
animations, and playing and even developing games (e.g. Angry
Birds Space to assimilate gravity basics) are new, engaging and
motivating ways of learning.

Since many students are passionate about playing, games as new
learning solutions have proven to be very powerful. High
�P�R�W�L�Y�D�W�L�R�Q���D�Q�G���H�Q�J�D�J�H�P�H�Q�W���D�S�S�H�D�U���D�V���D���³�I�O�R�Z� �́��Z�K�L�O�H���S�O�D�\�L�Q�J����
Fu et al. [12] examined engaging games and listed properties
such as immersion, the clarity of the goal, autonomy, feedback,
challenge, and social interaction as the ingredients of flow.
Moreover, it has been reported that games can have a positive
�L�P�S�D�F�W���R�Q���S�X�S�L�O�V�¶���S�H�U�F�H�S�W�X�D�O���W�H�P�S�O�D�W�H�V�����N�Q�R�Z�O�H�G�J�H���D�F�T�X�L�V�L�W�L�R�Q��
and affective outcomes [13]. By including the suitable features
of games in learning environments, serious education may
transform to edutainment. The level of shared fun increases
interest in ICT in general and ICT learning objects may be
gamified, too.

Coding starts in Finnish schools in the autumn of 2016. ICT
classes become a laboratory of new learning tools and
methodology. By documenting experiments and applying
continuous development cycles, we may iteratively improve the
learning results. In addition to teaching to code, it is necessary
to introduce new tools for modeling and user-centered design.

6. REFERENCES

[1] K. Hakkarainen, L. Hietajärvi, K. Alho, K. Lonka, K.
Salmela-Aro, "A Paradigmatic Analysis of Contemporary
Schools of IS Development", International Encyclopedia of
the Social & Behavioral Sciences, pp. 918-923. 2015.
[2] L. Krokfors, "Learning. Creatively. Together", Educational
Change Report 2016. 2015.
[3] L.Vygotsky, "Interaction between learning and
development", Readings on the development of chil dren, 23.3:
pp. 34-41. 1978.
[4] L. Hyde, Making it , New York Times, 6. 2008
[5] M. Åhlberg, Concept maps as a research method. 2002.
[6] G. Kearsley and B. Shneiderman, Engagement Theory: A
Framework for Technology-Based Teaching and Learning.
1999.
[7] M. Scardamalia, J. Bransford, B. Kozma and E. Quellmalz,
"New assessments and environments for knowledge building,"
in Assessment and Teaching of 21st Century Skil ls. Springer,
pp. 231-300. 2012.
[8] T. Nousiainen, Children's involvement in the design of
game-based learning envir onments. 2009.
[9] M. Aineslahti, A Journey in the Landscape of Sustainable
School Development. 2009.
[10] W. A. Moylan, "Learning by Project: Developing Essential
21st Century Skil ls Using Student Team Projects",
International Journal of Learning, vol. 15. 2008.
[11] B. Tril ling and C. Fadel, 21st Century Skil ls: Learning
for Life i n our Times. John Wiley & Sons. 2009.
[12] F. Fu, R. Su and S. Yu, "EGameFlow: A scale to measure
learners' enjoyment of e-learning games", Computers &
Education, vol. 52, pp. 101-112. 2009.
[13] T. Connolly, E. Boyle, E. MacArthur, T. Hainey, & J.
Boyle, "A systematic li terature review of empirical evidence on
computer games and serious games", Computers & Education,
59(2), 661-686. 2012.

ISSN: 1690-4524 SYSTEMICS, CYBERNETICS AND INFORMATICS VOLUME 14 - NUMBER 2 - YEAR 2016 23

Publication III

Niemelä P., �All Rosy in Scratch Lessons: No Bugs but Guts with Visual Programming�,
Frontiers In Education Conference Proceedings, 2017

DOI: 10.1109/FIE.2017.8190612
Niemelä (2017)

http://dx.doi.org/10.1109/FIE.2017.8190612

All Rosy in Scratch Lessons: No Bugs but Guts with Visual Programming

Pia Niemel̈a, Pervasive Computing, Tampere University of Technology

Abstract—This case study addresses motivational issues in the
elementary computing that follows UK National Curriculum
of Computing (UKNC) at one of the international schools
in Asia. The study examines different motivations and their
impact on learning outcomes. Started in Year 8, Scratch was
used as a computing primer, followed by the Khan Academy's
JavaScript, and Python basics. In order to study the learning
process, surveys, interviews, and the analysis of the Scratch
coursework were employed. Based on the results, Scratch
provides a useful tool for scaffold programming basics and
for fostering motivation in all student groups. The disconti-
nuity point from visual to textual programming appears to
be problematic: textual programming with JavaScript and
Python seems to engage mathematically talented students who
developed intrinsic motivation, and disengage several others,
mainly because of felt incompetence. A few students with
authentic interest areas, such as design, animation, or social
media, engage inadequately after transition. In planning the
syllabus, it is crucial to address motivational aspects as well.

Keywords—K-12 computing syllabus; visual programming;
Scratch; JavaScript; Python; SDT theory; intrinsic motivation

1. Introduction

Our way of working and living is rapidly changing
and school curriculum must adapt accordingly. Familiarizing
students with computing basics should begin already in
primary school. The secondary level then strengthens the
gained skills further and enables differentiation. In learning,
the attitude toward the subject and the perceived sense of
self-ef�cacy are crucial in terms of good learning outcomes.
In contrast, students' attitudes towards computing tend to
become adverse in many early adapter countries, which re-
�ects in the learning motivation. After including the subject
in the elementary school curriculum, the enrollments of
computing courses decreased alongside the attenuation of
attitudes; examples include South Korea [1], the UK [2] and
U.S. [3]. Although, U.S. has recently managed to switch the
declining trend with determined actions, such as initiatives
of Hour of Code, CS4All, and Hack Clubs [4]. In addition,
an appealing tool selection, such as visual programming,
seems to lure more students into CS classes, and to increase
motivation and self-ef�cacy [5].

Negative attitudes are common not only among students,
but also among teachers [6]. Rapid changes in society and
new requirements induce resistance to change. Were the at-
titudes favorable, low computing competence would prevent

from progressing [7]. Well-designed tools for novices lower
the learning threshold by hiding complex syntax of pro-
gramming languages. Brown (2013) lists the need for more
substantial support for computing teachers at school context,
and the shared vision with clear subject goals among school
personnel [8]. In the United Kingdom, computing teachers
have founded a Computing-At-School (CAS) community,
where they can share their concerns and get advice [9].

As an active member and contributor of the CAS com-
munity, Crick (2011) noted that the increasing amount of
disengaged students calls for more excitement and wider
perception in the whole science-technology-engineering-
math (STEM) domain [10]. Implementing visually reward-
ing projects in other STEM subjects, demonstrates applica-
bility of programming skills also outside computing classes.
The CAS guide for secondary school (2014) states that cre-
ating presentations, websites or videos, are a viable way to
add excitement providing public access [11]. Demonstrating
the utility of skills in concrete applications feeds motivation.
[12]. Since being motivated and engaged correlates with
good learning outcomes [13], attempts to construct a good
intrinsic motivation are essential for education.

Visual programming circumvents many disadvantages of
traditional textual programming languages, such as suscep-
tibility to errors. Fewer errors and a robust environment
increase productivity, which in turn adds the self-ef�cacy
of students. However, after the students have tasted the
convenience of visual programming, they might need some
extraneous assistance in moving to textual programming
[14], [15], [16]. The present study examines the develop-
ment of motivation and focuses on transition from visual to
textual programming.

1.1. Research questions

In this study, I focus on the motivational factors behind
the differences of learning outcomes in computing. By an-
alyzing the surveys, interviews and coursework, the study
answers the following questions:

1) What motivation categories can be found?
2) What is the role of visual programming in engaging

students?
3) What are the means to maintain motivation with

textual programming?

First, I review the motivation theories and correlation
between motivation and learning outcomes. The Research
Methods section opens up the context of this study and
application of mixed methods. The Results section describes

the motivation categories based on the content analysis
and the interview results. Analysis of Scratch coursework
completes the Results. To conclude, the motivational aspects
of learning are emphasized.

2. Development of Intrinsic Motivation

This study examines the development and manifestation
of the motivation and early computing craftsmanship among
school students. Differences in performance tend to grow
during school years. The Self-Determination Theory (SDT,
[17]) justi�es this tendency by explaining the mechanisms
of the development of the intrinsic motivation and partly by
referring to the Intentional Learner Theory [18].

The innate psychological needs and structure of the per-
son's psyche affect the development of intrinsic motivation,
whereas external factors affect extrinsic motivation. External
factors consist of environmental pressures, such as control
and expectations, and after completing a task its rating
and other anticipated feedback. Alternatively, the reward
may also be more abstract or remote, for example, the
appreciation of the community or a study place in the desired
�eld. The Intentional Learning Theory [18] considers the
long-term objective of gradual knowledge building more
comprehensive than the intrinsic motivation, and denotes a
“serious student” that sets subject-speci�c lifelong learning
objectives. Regardless of motivation type, long-term goals
sharpen the learning.

Extrinsic and intrinsic motivations are not mutually ex-
clusive but complementary. Motivation type varies on each
stage of learning. For example, in the beginning and at
junction points, the extrinsic motivation is a trigger for the
development of an intrinsic motivation so that a successful
intrinsic learning process gradually takes over from the
extrinsic one. Counter-intuitively, a number of studies [19],
[20] claim that external rewards may even slow down the
development of intrinsic motivation. For example, a student
may start to think that a subject itself is not worth studying,
if a teacher must reward the effort. In addition, rewards are
seldom open-handedly distributed throughout the process.
Was the motivation dependent on rewards, it would start to
decline when rewards tail away.

According to the SDT theory, motivation is at its
strongest in the overlap of three main components, com-
petence, autonomy and relatedness. A motivated student
feels more knowledgeable, being in control of his learning,
and connected to other students. Competence is understood
holistically to entail not only computing basics and speci�c
tools, but being able to solve problems by decomposing
them into smaller subproblems, identifying patterns, mod-
eling systems and then gracefully implementing a desired
artifact as a well-managed and timely delivered project [21].

Being able to set authentic goals supports autonomy, i.e.,
authenticity relates to autonomy. Authentic goals enhance
engagement and empowerment. However, the goal must be
achievable, so that a student either possesses or can acquire
necessary skills to succeed on schedule.

Lastly, relatedness helps in transforming from extrin-
sic to intrinsic motivation. While intrinsic motivation is
yet in its infancy, a student's relations to the signi�cant
others (i.e. friends, classmates, parents) may trigger and
uphold motivation. Additionally, peers with the same level of
competence scaffold the student. Relatedness is especially
helpful in the beginning when the intrinsic motivation is
still weak. For example, Haarala-Muhonen et al. (2011)
recommended investing in the students' preparedness from
the very beginning by using both student and teacher tutors
[22]. Haatainen et al. (2013) decreased computer science
dropouts by scaffolds, tailored for the �rst computer science
course (CS1) at university [23]. The components of intrinsic
motivation function in co-operation and in�uence each other
in a spiral manner: competent students show more initiative
and are eager to take on tasks, which again increases au-
tonomy – autonomous learners take more responsibility for
their own learning – which develops competency.

3. Research methods

The research questions are answered by surveying and
interviewing Year 10 students of Hope International School
in Cambodia in year 2016, and by analyzing their Scratch
coursework. The students had followed National Curricu-
lum computing syllabus [24] for two years by the time
of conducting this research. They started with Scratch and
continued with textual programming languages of JavaScript
and Python. To get a grasp of the executed syllabus, the com-
puting teacher was informally interviewed. His approach to
teaching resembled genetic epistemology that necessitates
progressions from concrete to abstract exercises (e.g. from
Legos to Minecraft then to exploiting Python APIs that
enable a programmatic construction of Minecraft artifacts)
[25].

The UKNC syllabus de�nes the overarching learning
targets, such as 'think creatively, innovatively, analytically,
logically and critically' and 'analyse problems in compu-
tational terms through practical problem solving, including
designing, writing and debugging programs' [26]. The syl-
labus does not dictate the use of any speci�c languages.
Nevertheless, the selected programming languages hold an
established position supported by Computing-at-School UK,
as a course organizer and certi�er. The author of this study
did not in�uence teaching instructions, but carried out the
interviews and examined the coursework retrospectively.

3.1. Qualitative analysis of surveys and interviews

The survey consisted of two parts: in the �rst part, the
students answered open-ended questions regarding language
preferences and the most useful computing skills. In the
second part, they completed sentences to reveal the atti-
tudes towards computing: ”Coding is like...”, ”Scratch is...”,
”Scratch works best in...”, ”I like to code because...”, ”I do
not like to code because...”, and ”Anybody needs ICT skills
because...” The selection of survey informants was made by
simply exploiting the group which was the easiest available,

i.e., the Extended Math class (N=16) that the author was
teaching.

The content analysis of survey data aimed at identi-
fying the underlying motivations. Similar arguments were
grouped and the most descriptive words were selected as
identi�ers of each motivation category. The analysis led
to the appropriate theoretical framework: the SDT theory
and its intrinsic motivation part appeared to best explain
the suggested categorization. Because of the content-rooted
attachment of the theory, the analysis had a �avor of a
grounded theory.

After these preparatory phases, the focus group (N=6) of
the most skilled computing students were interviewed. The
selection applied the snowball method: the teacher selected
only the �rst student in the chain, and each student in turn
named the next student of the opposite gender until a group
of six was in size. During the interview, one of the students
acted as a moderator and ensured everyone's contribution;
no other people but the group were present. The questions
were distributed beforehand, the �rst task being the review
of initial motivation categorization. The review feedback
shaped the �nal motivation categories.

The focus group interview was recorded and transcribed.
The moderator proofread the transcription and completed
the parts not caught by the audio typist. Consisting of the
most prominent and intrinsically motivated programmers of
Y10, the focus group and its interview could shed light
on the genesis of intrinsic motivation. The most illustrative
comments were quoted.

3.2. Quantitative analysis of Scratch coursework

Furthermore, the Scratch coursework provided means for
triangulation in order to test the accuracy of intrinsic mo-
tivation predicting good performance. In this study, activity
in Scratch is thought to re�ect intrinsic motivation pursuant
to the Free-Choice Paradigm [27]. The paradigm measures
a student's intrinsic motivation based on his behavior when
he considers not being observed. In this context, free-choice
activities comprise extra projects, sent messages, comments,
favorites, and followers/followees as a demonstration of
intrinsic motivation. Similarly to the grading system with A-
E that assumes the Gaussian distribution of human qualities,
only one-�fth of the students are anticipated to have an 'A-
level' intrinsic motivation. The activity score was reduced
as intrinsic motivation simply by de�ning a threshold to
result in one-�fth of the students. Activity that exceeded
the threshold was regarded as an intrinsic motivation of
value one; other users were marked as not intrinsically
motivated, the value of zero. In comparison, the binomial
data of intrinsic motivation correlated with Scratch scores
illustrated with logistic regression. Logistic regression is
apt for classi�cations, de�ning a student as intrinsically
motivated or not.

In addition to the activity level, coursework is analyzed
based on quality of the code. Initially, Dr.Scratch was the
choice for scoring. Handily enough, the http://drscratch.org/
website requires only the project id as an input. The output

comprises seven separate modules scored 0-3, resulting in
the total of 21 points that divides into three levels: 'basic',
'developing', and 'mastery'. Nonetheless, Dr.Scratch did
not provide a batch-processing mode necessitated by the
number of projects. To execute analysis in larger quantities,
an underlying Python plug-in, on which Dr.Scratch was built
on, was exploited directly. This plug-in, called Hairball,
claims to be lint-inspired [28]. Instead of a single indicator,
it provides detailed information about the code. To reduce
the amount, de�ning rubrics was indispensable, see Table 1.

Table 1. SCRATCH COURSEWORK RUBRICS

Max
score Block De�nition

Divided to basic and advanced:
Basic: Max score 2.

3 BlockCounts Advanced blocks consist of
broadcast-message, clone and touch

Max score 1.
Totals 3

1 DeadCode 1 � lines of dead code
total lines

Max 0.5 from sprites as variables
1 Variables Max 0.5 from other

Totals 1.

Scoring should favor the utilization of desired and more
advanced code structures, such as broadcast-receive message
passing that enables concurrency combined with loops, e.g.,
a forever loop [29]. In concurrent programming, several
agents are functional and may access the same resources
simultaneously, which adds complexity. Agents and their
interplay are central practices in agent-based programming,
where Scratch categorizes in [30]. Scratch provides a clone
operation for copying sprites. By cloning and setting rules
for interactions, by sensing other agents (e.g. if touched),
a student can implement simulations or games. Mastering
advanced computing practices, such as concurrency and
cloning, demonstrates progress in computational thinking
skills of automation and algorithmic thinking, and prepares
for multi-agent, event-driven programming with textual pro-
gramming languages as well.

4. Results

The results are introduced chronologically, in the order
of the survey (N=16), the focus group interview (N=6), and
the Scratch coursework (N=54). In compliance with Scratch
scores, other grades are re�ected to widen the perspective.
Based on the content analysis of the surveys and interviews,
motivation categories are represented in the form of a dia-
gram. From the categories, intrinsic motivation, a linchpin
in developing expertise, is studied more closely by inter-
viewing a focus group and analyzing Scratch coursework.

4.1. The survey and initial motivation categoriza-
tion

The survey consisted of sixteen Year 10 students. The
content analysis of the survey data divided motivations
inherently into four categories characterized with following
descriptions:

1) Intrinsically motivated students �nd coding reward-
ing per se, enjoy challenges, and problem solving

2) Intentionally motivated students are willing to in-
vest in skills needed for further studies, jobs, and
career. Good grades, positive feedback, and merits
to show in a CV are highly valued

3) Design/art students pursue self-expression. The stu-
dents aim at achieving something amusing or visu-
ally attractive that might be used as a design for
industrial products, e.g. T-shirt, ads, and architec-
ture

4) Internet/social media users are eager to connect,
browse, and share ideas with their peers

The intrinsic motivation correlates most with the
computing preference. Intrinsically motivated students enjoy
programming, whereas students with other motivations
need external triggers to ignite interest. A number of
intrinsically motivated students are also keen on math.
In sentence completions, these students often expressed
their enthusiasm in compliance with highlighting the
applicability of new skills, such asC̀omputing. . .':
Girl, intrinsic/intentional: . . . opens doors for me and
enables me to make my way out of problems.
Boy, intentional/intrinsic: . . . you can better understand
what makes computers work and its logic.
Boy, intrinsic:I get the knowledge of how a computer works.

In the interviews, disjoint categories of intrinsic
and intentional motivations were clearly visible, but
frequently manifested in the same students. Yet intrinsic
motivation is more desirable from the subject's point of
view, motivations are complementary: bene�ting the skills
excludes no genuine interest. However, a few intentionally
(and not intrinsically) motivated students were capable
of overlooking their dismay and frustration because of
foreseen bene�ts, exempli�ed with the following comments
that demonstrate this ambivalence:
Girl, intentional: It is complicated to learn and has many
different functions, but on the other hand:I know it will
be an important skill to have in the future. ICT skills are
important to have in your career.
Girl, intentional: Coding is very dif�cult and annoying
when you are writing it but it is very relieving once you
succeed. It is hard, you need to type a lot. But it is the
trend nowadays and needed in society jobs, colleges, ..helps
users think. People who use ICT skills have very developed
thinking.

The design and social media oriented students found
their own territory of asserting themselves through

Photoshop exercises, tuning images and animations, albeit
sometimes these students indicate lower intrinsic motivation.
This group with the negative computing attitudes gave the
following statements:
Girl, design: It is too hard and I do not understand
computing.
Boy, design: It is a separate language that I do not
understand. I �nd it to be boring, and it doesn't interest
me.

The teacher checked the identi�ed categories and acknowl-
edged them withǸail on the head!'

4.2. A focus group interview and �nal categoriza-
tion

Our focus group consisted of �ve intrinsically motivated
and one design-oriented student. The group got the initial
diagram for review; see Fig. 1. The globe with speech
bubbles intended to illustrate the internet category, i.e. being
connected and sharing ideas. However, the focus group
struggled the most with this category. They associated in-
ternet with browsing, considered a no-brainer, which raised
the question of a role of computing in it, `Personally, I
don't think number four (internet) applies very well if you
know how to program, because if you know how to program,
internet browsing shouldn't be a problem.' The group was
also slightly puzzled with 'design', d̀esign goes with the
internet, cause the internet is in the end, and everything in
the internet has been designed'.

Due to no saturation, the categories of 'Design/art' and
'Internet/social media' do not cover all the variety of po-
tential interest areas. Were the students keen on audio/video
editing or robots, the survey topics might contain 'Audac-
ity', 'iMovie' or 'Arduino', which �t poorly in the current
categories. By combining design and internet, and label-
ing the new category more generically as 'authentic self-
expression' enables tackling the whole range of interests;
the revised diagram below.

Intrinsically motivated students found coding (or the
�nal product) so rewarding that an effort was made even
if extrinsic motivation factors (support, feedback, rewards)
were minor or squeezing. A remarkable part of the moti-
vation was the foreseen applicability of computing skills in
further studies and career, which complies with the inten-
tional motivation. In accordance, external motivation factors
played a role in shaping the motivation such as family
pressure, good grades and the pressure of being tested. The
next excerpt illustrates this:I probably wouldn't stick with
computing if I wasn't being tested and pushed by the fact
that I'm doing it for the school as well.

The focus group did not believe that becoming intrinsi-
cally motivated happens by accident. A computing course,
an enthusiastic peer, or a tutor that paves the way was
anticipated to trigger it. Even if the interview did not pro-
nounce any submissive reasons for developing an intrinsic
motivation, personal qualities seem to play a signi�cant

Figure 1. Motivation categories: the initial and revised versions

role. Math competence appears to correlate strongly and
imply computing interest, which hypothesis is supported
by grade correlations, the section 4.4, in particular between
Additional Math and computing, as well as with intrinsic
motivation indicators, such as activity.

In regard to motivation, the focus group was happy
with moving from Scratch through JavaScript to Python, as
addressed by a memberI would recommend using Scratch
�rst, to show people how to think logically in an easy to
learn environment. Then they should learn JS, as that's
more like real coding, and can free people up from the
limits of Scratch, while still being visual. Finally they should
learn Python as that is more powerful than JS, but is easier
to write without syntax errors.Scratch prepares for textual
programming without `overwhelming' them. In contrast, the
survey group preferred Scratch to JavaScript and Python
' de�nitely more exciting/fun than Python or Khan Academy'.

4.3. Scratch activity predicts good performance

The quantitative part focuses on the effect of intrinsic
motivation on learning outcomes by comparing Scratch
activity and scores (N=54), where high Scratch activity is
considered to re�ect high intrinsic motivation. In addition
to the number of projects, factors such as sent messages,
comments, followers, and followees, increment the activity
score. In determining intrinsically motivated students, the
activity threshold was tuned to include approximately one
�fth of the students. This threshold was raised three times

higher with random MIT Scratchers revealing higher social
activity of a typical user. Rather than for socializing, the
Y10 students exploited Scratch for learning: they seldom
contacted anyone else but their classmates or the teacher,
and for any other reasons but advice. Compared with his
students, the teacher was exceedingly active in giving them
advice and preparing examples. In addition, he followed
prominent Scratch contributors, thus scoring the highest in
an activity-based evaluation.

One target of the Scratch coursework was to contribute
and share projects publicly in the MIT database, where the
visibility can be selected either public or private. Publicly
shared projects expand the ever-increasing remix resources.
Examining expert examples is an apt way of adapting
new coding tricks. Demo selection provides opportunities
of vocational growth for teachers as well. In addition to
the Scratch community, the coursework provided cross-
curricular contribution as well. It had agreed clients, who
were, in essence, the STEM teachers of the school. They
used projects to enliven their lessons, for instance, by show-
ing simulations of laws of physics and chemistry.

The correlation between the intrinsic motivation and
Scratch score was clear (see Figure 2). In the �gure,x-axis

Figure 2. Intrinsic motivation (0,1), inx-axis the Scratch scores, p = 0.0019

shows Scratch scores within range 0-5. The distribution of
scores was Gaussian, checked graphically with a histogram
4. The students' coursework was assessed by utilizing the
Hairball plugin with the criteria de�ned in Table 1. The
correlation between intrinsic motivation and Scratch scores
was statistically signi�cant (p=0.0019).

The Scratch projects in the MIT database can be em-
ployed as a reference point and a means to review the
validity. In excess of projects (currently over 20 mill.) a
random sample of N=1000 was considered adequate.

In contrast with the Y10 students, random data indicated
no correlation between activity and Scratch score; see Figure
3. The typical S-curve straightened, and the signi�cance
of p-value = 0.1 was less than the limit of 5 %, thus the
correlation was lost.

Unlike the examined Y10 students, a typical MIT
Scratcher focuses more on his social connections. In ad-

Figure 3. Random sample from MIT database revealed a different behavior,
p = 0.1

dition to a number of messages, comments and ratings, the
followship of prominent contributors increases the activity
score. The follower pattern of Scratch complies with pref-
erential attachment theory [31], where followers distribute
unevenly and cumulate in large quantities to few popular
contributors. Including these experts, the Scratch user base is
intensely heterogeneous, from kids to adults, many of whom
just try out the tool. Evidently, a random Scratcher abandons
a project easier without external pressure, that is, a teacher
demanding the completion, getting a score, having a client,
or sharing publicly. The amount of trash projects is high,
thus selecting randomly results in a large amount of low
scores. In this sample, the number of trash was remarkable.

In order to prove the signi�cance of the quality dif-
ference, vertical lines illustrate the means of the samples.
Moreover, a two-sample t-test determines the p-value. In
the t-test, the null hypothesis states that the means are not
signi�cantly different, whereas the alternative hypothesis
argues the opposite. The t-test gave p-value of 7.1E-11, i.e.,
indisputably signi�cant. Fig. 4 reveals the bimodal nature of
the random sample illustrated by the pink histogram, where
the �rst peak resides between scores 1 and 2. This peak
consists of trash projects that are not necessarily meant to
be shared; the latter peak represents the decent projects. To
improve comparability, the private projects should have been
omitted, even if the web store allowed the download.

4.4. Other grades checked

For a validation of activity-predicted performance, the
Scratch scores were contrasted with grades of other aca-
demic subjects. Letter grades of A-F were digitized in order
to calculate the correlations: A+ equals to 4.33, A to 4, and
F as “failed” equals to 0. Other grades linearly distribute in
between. Being a member of the focus group was coded with
the value of one, for non-members the value was 0. These
substitutions enabled converting from nominal to interval
data to calculate correlations.

Figure 4. Histograms of Scratch scores; light blue bars describe the Hope
School, whereas pink bars the random MIT sample

The correlation between formal computing grades and
global perspectives grades was the strongest (r=0.52), fol-
lowed by geography(r=0.50). These two non-STEM sub-
jects preceded correlations of science (r=0.495) and math
(r=0.40). However, an essential aspect lost in calculations
was the exclusiveness of Additional Math, selected only by
�ve Y10 students, of whom four were in the focus group.
The school provided three math levels in ascending order
of complexity: Core, Extended, and Additional Math. To
choose Additional Math, a student had to be an A-level
student, thus the grades given in the Additional Math are
not commensurate with the Core or Extended. Consequently,
Additional Math participation was encoded as a dichotomy
of on=1, off=0 to calculate the correlation, r=0.54, which
was the strongest correlation with formal grades. After these
correlation, activity, Scratch score, and focus group mem-
bership were checked. Activity and Scratch score correlated
with computing grades poorly, activity r=0.05, Scratch score
r=0.23; whereas with AddMath excellently, activity r=0.60,
Scratch score r=0.56; and moderately with other math,
r=0.31 and r=0.29. Being part of the focus group correlated
with AddMath (r=0.66) the strongest, with other math strong
as well (r=0.64), and quite strong with computing (r=0.54).
Thus, correlations suggest a close linkage between intrinsic
motivation and math as a subject.

5. Conclusion

Which motivation categories can be found?Cate-
gories include 1) intrinsic 2) intentional and 3) motivation
based on authentic self-expression goals, often related to so-
cial media or design. Intrinsically motivated engage comput-
ing without special entertainments such as gami�cation or
external rewards. Signi�cantly, challenges that may hinder
others have an opposite effect concerning intrinsically mo-

tivated students: hard as they struggle, the more motivated
they become. As the teacher puts, `Once they are engaged,
you can get them to follow you through broken glass'.

Intentional motivation comprises a �avor of strategic
thinking and opportunism mixed in, pronounced by such
excerpts in interviews as: `An easy A for my paper', `Pushed
by the tests', `Computing is applicable to the future', and
`It's good for my CV'. The group with authentic goals
have special interest areas and distinct requisites for which
they needed computing skills. In this sample, these in-
terests varied from Photoshop, animation and architecture
to social media and connectedness. By providing sharing,
remixing, rating, and searching options, Scratch increases
the anticipated community feel and adds social aspects to
engage its users. These features induce a �avor of social
media to Scratch. Besides socializing, however, the database
of existing Scratch work offers means for learning from
experts, when intentionally used in this manner. In addition
to the Scratch on-line community, various APIs (such as
api.scratch.mit.edu) proffer programmatic ways of handling
Scratch data and tailoring new kind of applications.

Lack of any afore mentioned motivations appears as dis-
engagement, which was not common among the examined
students.

What is the role of visual programming in engaging
students?The students appreciate Scratch as a tool. They
value it high, because of no bugs and thus feeling more com-
petent. The following snippet of the focus group interview
demonstrates this:Alpha: If you do Python or JavaScript,
right, you have more chances of failing. When you have
Scratch, you can have later that... super-multiple layers,
you know what I mean? And when you �nish it, it works, it
is like (*a remarkable sigh*). Yeah, I'm the best! (pause).
You know that feeling...?Drakvor : We get that feeling with
Python, not with Scratch.Alpha: It is like if you have a
wrong indent in Python everything goes wrong.

As robust as it is, Scratch has its pitfalls. Meerbaum-
Salant et al. (2011) discovered that Scratch might
lead to bad programming habits, such as a bottom-up
development and �ne-grained programming [32]. The
authors emphasized that Scratch requires appropriate
teaching methods and materials to reach its full potential.
Nonetheless, programming with Scratch appears to
be a success story, whereas further steps with JavaScript
and Python need adjustments to avoid decline in motivation.

What are the means to maintain motivation with
textual programming?

In this study, the focus group (excluding the 'design'
student) was eager to get grasp of more powerful and
unconditional textual programming, whereas the motivation-
ally heterogeneous survey group desired to keep Scratch,
quali�ed as 'one of the fun things in your life', 'easy and
visual', and 'the lego of coding'. To boost motivation, the
focus group advised to highlight the bene�ts, for instance,
inspiring outcomes,Alpha: If he (the teacher) shows what
the �nal outcome, if we do it in that class, could end up like..
it increases the motivation.ActiveInFantasy: But you need

show people achievable things.Alpha: Yeah, what they can
achieve when they learn at that point..ActiveInFantasy: So
if you start people on Python by saying 'Look at the Google
Search Engine,' then they might be a bit overwhelmed.

Applicability of the skills demonstrates in other school
subjects as well,Òur chemistry teacher had us make simu-
lations of scienti�c experiments, which I think helped people
see how their programming knowledge can be made useful
in real life situations.' In addition, higher employability
demonstrates applicability, as the computing teacher empha-
sized, M̀ore and more in the world today, you can get jobs
easier, if you have these sorts of skills.'

Scratch may raise the threshold to transfer to textual pro-
gramming: achievements may remain frustratingly modest
due to frequent errors. To smooth the transfer, peer tutors are
advantageous, and in addition to human help, tools and IDEs
could provide extra scaffolding. Currently, active research
focuses on tools bridging visual and textual programming
with various angles of approach. In bridging, the mediated
transfer between modalities of blocks and text can be either
unidirectional or bidirectional. In a unidirectional tool, only
the visual code, e.g. blocks, is editable (e.g. Blockly [33]);
changes re�ect automatically in the textual representation. A
bidirectional tool modi�es one representation based on the
modi�cation in another; examples include Droplet editor for
Blockly [34], Pencil Code, and Code.org's App Lab [35].

In addition to textual code, illustrative visualizations
scaffold gaining understanding of dif�cult concepts, such
as lists and their indexing; difference of class and object;
and control structures or the whole control �ow of a pro-
gram: Patch as a successor of Scratch provides such list
visualization [36]. Frame-based coding offers an interme-
diate stepping stone in proceeding from visual to textual
by structuring the code into blocks and by providing im-
plementation hints [16], [37]. Greenfoot makes also such
visualizations by elucidating e.g. the difference between an
editable class and an instantiable objects [37]. Furthermore,
visualizations need not restrict to code only, but block design
can expand to cover electronic design as well, e.g. Scratch
provides an Arduino expansion, Blockly goes with Picaxe
that offers input/output simulations of circuits and �owcharts
to visualize the control �ow [38], and Microsoft MakeCode
serves as a web-based programming platform similar to
Scratch enabling the control of micro:bit components, which
are embeddable and affordable microcontroller devices [39].
With the syntax guidance only, a student remains on the
�rst steps of semiotic ladders, from where one should climb
higher, to semantics and pragmatics. In climbing, the textual
representation ought to be exploited to its full potential
by bidirectionally connecting the block-based and textual
representations and by explicitly transferring the gained
programming experience, lest left untapped as a learning
resource.

Climbing higher and striving for bigger and error-free
systems necessitates design and testing. However, current
Scratch supports poorly these attempts. In analysis phase,
debugging tools should be as informative as possible: cur-
rent state of variables and visualization of the control �ow

enables �nding errors effortlessly. Error messages should be
descriptive and help in �xing. From new emerging transition
tools, e.g. Patch addresses these issues by providing inte-
grated tracing/debugging to assist algorithm development
and implementation [36]. In preventing errors, test-driven
development targets error-free code by mandating tests �rst,
that students may �rst regard as work in vain. Hence, estab-
lishing the practice may require a disciplined approach from
the teacher. The teacher should also focus on the most com-
mon misconceptions caused by block programming, such as
' loops are forever' [5]. Misconceptions include indentation-
related issues that seem to cause problems in moving to
Python. In assessing the visual programming outcomes,
automatic analysis could be exploited, e.g., Dr.Scratch to
be passed with the level of `developing' or `mastery' before
getting a grade. In addition, cross-debugging is worth trying.

Future directions Tailoring and differentiating the com-
puting syllabus based on the skill level and authentic inter-
est areas would provide meaningful learning goals for all
student groups. The syllabus could have a separate and con-
cise core part common to all computing students. Optional
modules would comprise e.g. in-depth computing for intrin-
sically motivated students. Intentional learners would ap-
preciate modules for study and future work skills including
e.g. ef�cient data search and visualizations, whereas students
with authentic interests would bene�t from more autonomy
and space to demonstrate their creativity by implementing
assessable digital artifacts. With more �ne-grained offerings,
computing frustration was partly preventable.

Intrinsic motivation seems to be a remarkable asset in
developing expertise in computing. The computing syllabus
should take into account motivational aspects and attempt to
foster intrinsic motivation in particular. The emerging trends
(such as Internet of things, cloud services, coauthoring tools)
expose the ubiquitous and pervasive nature of computing;
in the future jobs will be more and more digitized. Every-
body needs technological skills that are emerging as new
citizenship skills, society should allow no digital dropouts.
It is essential to take into account different motivations
and engage students with authentic interests that may trail
computing enthusiasm. This is important to note: clever
engagement exploits students' authentic interests to increase
their motivation.

Curriculum planners should pay more attention to moti-
vational aspects also here in Finland, where the new curricu-
lum including computing has been in effect since autumn
2016.

Acknowledgments

I thank Hope International School, both the personnel
and students, for opting me the interviews and Scratch
coursework, and Pervasive Computing Department and my
supervisors for their support of interdisciplinary research
topics. In addition, special thanks to the Academy of Finland
(grant number 303694;Skills, education and the future of
work) for their �nancial support.

References

[1] Jeongwon Choi and Sangjin An and Youngjun Lee, “Computing edu-
cation in Korea — current issues and endeavors,”ACM Transactions
on Computing Education (TOCE), vol. 15, no. 2, p. 8, 2015.

[2] Gillian M. Bain and Graham Wilson, “Convergent pathways in ter-
tiary education. What makes our students succeed?”ACM Inroads,
vol. 8, no. 2, pp. 37–40, 2017.

[3] Azad Ali and Charles Shubra, “Efforts to reverse the trend of enroll-
ment decline in computer science programs,”The Journal of Issues in
Informing Science and Information Technology, vol. 7, pp. 209–225,
2010.

[4] Greg Thompson, “Coding Comes of Age: Coding Is Gradually
Making Its Way from Club to Curriculum, Thanks Largely to the
Nationwide Science, Technology, Engineering and Mathematics Phe-
nomenon Embraced by So Many American Schools,”THE Journal
(Technological Horizons In Education), vol. 44, no. 1, p. 28, 2017.

[5] Armoni, Michal and Meerbaum-Salant, Orni and Ben-Ari, Mordechai,
“From Scratch to “real” programming,”ACM Transactions on Com-
puting Education (TOCE), vol. 14, no. 4, p. 25, 2015.

[6] Balanskat, Anja and Blamire, Roger and Kefala, Stella, “The ICT
impact report,”European Schoolnet, vol. 1, pp. 1–71, 2006.

[7] Bingimlas, Khalid Abdullah, “Barriers to the successful integration
of ICT in teaching and learning environments: A review of the
literature,” Eurasia Journal of Mathematics, Science & Technology
Education, vol. 5, no. 3, pp. 235–245, 2009.

[8] Neil Christopher Charles Brown and Michael Kölling and Tom Crick
and Simon Peyton Jones and Simon Humphreys and Sue Sentance,
“Bringing computer science back into schools: lessons from the UK,”
in Proceeding of the 44th ACM technical symposium on Computer
science education. ACM, 2013.

[9] S. Krpan, Divna and Mladenović and G. Zaharija, “Mediated Transfer
from Visual to High-level Programming Language.”

[10] Tom Crick and Sue Sentance, “Computing at school: stimulating
computing education in the UK,” inProceedings of the 11th Koli
Calling International Conference on Computing Education Research.
ACM, 2011, pp. 122–123.

[11] P. Kemp, Ed.,Computing in the national curriculum. A guide for
secondary teachers, 2014.

[12] Inkpen, Kori and Upitis, Rena and Klawe, Maria and Lawry, Joan
and Anderson, Ann and Ndunda, Mutindi and Sedighian, Kamran and
Leroux, Steve and Hsu, David, “” We Have Never-Forgetful Flowers
In Our Garden”: Girl's Responses To Electronic Games,”Journal of
Computers in Mathematics and Science Teaching, vol. 13, pp. 383–
383, 1994.

[13] Maarten Vansteenkiste and Joke Simons and Willy Lens and Kennon
M. Sheldon and Edward L. Deci, “Motivating learning, performance,
and persistence: the synergistic effects of intrinsic goal contents and
autonomy-supportive contexts,”Journal of personality and social
psychology, vol. 87, no. 2, p. 246, 2004.

[14] Weintrop, David and Wilensky, Uri, “Between a Block and a Type-
face: Designing and Evaluating Hybrid Programming Environments,”
in Proceedings of the 2017 Conference on Interaction Design and
Children. ACM, 2017, pp. 183–192.

[15] D. Weintrop, “Minding the gap between blocks-based and text-based
programming,” inProceedings of the 46th ACM Technical Symposium
on Computer Science Education. ACM, 2015, pp. 720–720.

[16] Brown, Neil CC and Altadmri, Amjad and K̈olling, Michael, “Frame-
Based Editing: Combining the Best of Blocks and Text Program-
ming,” in Learning and Teaching in Computing and Engineering
(LaTICE), 2016 International Conference on. IEEE, 2016, pp. 47–
53.

[17] Richard M. Ryan and Edward L. Deci, “Self-determination theory
and the facilitation of intrinsic motivation, social development, and
well-being,” American psychologist, vol. 55, no. 1, p. 68, 2000.

[18] Carl Bereiter and Marlene Scardamalia, “Intentional learning as a
goal of instruction,”Knowing, learning, and instruction: Essays in
honor of Robert Glaser, pp. 361–392, 1989.

[19] Martin V. Covington, “Rewards and intrinsic motivation,”Academic
motivation of adolescents, pp. 169–192, 2002.

[20] Edward L. Deci, “Effects of externally mediated rewards on intrinsic
motivation,” Journal of personality and social psychology, vol. 18,
no. 1, p. 105, 1971.

[21] P. Niemel̈a, C. Di Flora, M. Helevirta, and V. Isom̈ottönen, “Educat-
ing future coders with a holistic ICT curriculum and new learning
solutions,” 2016.

[22] Anne Haarala-Muhonen and Mirja Ruohoniemi and Sari Lindblom-
Yl änne, “Factors affecting the study pace of �rst-year law students:
In search of study counselling tools,”Studies in Higher Education,
vol. 36, no. 8, pp. 911–922, 2011.

[23] Haatainen, Simo and Lakanen, Antti-Jussi and Isomöttönen, Ville
and Lappalainen, Vesa, “A practice for providing additional support
in CS1,” in Learning and Teaching in Computing and Engineering
(LaTiCE), 2013. IEEE, 2013, pp. 178–183.

[24] English Department for Education, “National Curriculum in England:
Computing programmes of study,” 2013.

[25] J. Piaget and E. Duckworth, “Genetic epistemology,”American Be-
havioral Scientist, vol. 13, no. 3, pp. 459–480, 1970.

[26] Department for Education, “GCSE subject content for
computer science,” p. 6, 2015. [Online]. Available:
https://www.gov.uk/government/uploads/system/uploads/attachment
data/�le/397550/GCSEsubject content for computerscience.pdf

[27] Deci, Edward L, “8: Ryan, RM (1985). Intrinsic motivation and self-
determination in human behavior,”New York and London: Plenum.

[28] Bryce Boe and Charlotte Hill and Michelle Len and Greg Dreschler
and Phillip Conrad and Diana Franklin, “Hairball: Lint-inspired static
analysis of Scratch projects,” inProceeding of the 44th ACM Tech-
nical Symposium on Computer Science Education. ACM, 2013.

[29] John Maloney and Mitchel Resnick and Natalie Rusk and Brian
Silverman and Evelyn Eastmond, “The scratch programming lan-
guage and environment,”ACM Transactions on Computing Education
(TOCE), vol. 10, no. 4, 2010.

[30] van Krevelen, D, “Intelligent agent modeling as serious game,”Agents
for Games and Simulations, pp. 221–236, 2009.

[31] D. J. Price, “Networks of scienti�c papers,”Science (New York, N.Y.),
vol. 149, no. 3683, pp. 510–515, Jul 30 1965.

[32] Orni Meerbaum-Salant and Michal Armoni and Mordechai Ben-Ari,
“Habits of programming in scratch,” inProceedings of the 16th
annual joint conference on Innovation and technology in computer
science education. ACM, 2011, pp. 168–172.

[33] Code.org, “Learn to Code Javascript and Blockly.”

[34] Bau, David, “Droplet, a blocks-based editor for text code,”Journal of
Computing Sciences in Colleges, vol. 30, no. 6, pp. 138–144, 2015.

[35] Bau, David and Gray, Jeff and Kelleher, Caitlin and Sheldon, Josh
and Turbak, Franklyn, “Learnable programming: blocks and beyond,”
Communications of the ACM, vol. 60, no. 6, pp. 72–80, 2017.

[36] Robinson, William, “From Scratch to Patch: Easing the Blocks-Text
Transition,” in Proceedings of the 11th Workshop in Primary and
Secondary Computing Education. ACM, 2016, pp. 96–99.

[37] M. Kölling, N. C. Brown, and A. Altadmri, “Frame-based editing:
Easing the transition from blocks to text-based programming,” in
Proceedings of the Workshop in Primary and Secondary Computing
Education. ACM, 2015, pp. 29–38.

[38] Alimisis, D. and Moro, M. and Menegatti, E.,Educational Robotics in
the Makers Era, ser. Advances in Intelligent Systems and Computing.
Springer International Publishing, 2017.

[39] T. T. Ball, “Physical computing for everyone,” inProceedings of
the 39th International Conference on Software Engineering: Software
Engineering and Education Track. IEEE Press, 2017, pp. 3–3.

Publication IV

Niemelä P., Helevirta M. �K �12 curriculum research: The chicken and the egg of math-
aided ICT teaching�, International Journal of Modern Education and Computer Science,
2017

DOI: 10.5815/ijmecs.2017.01.01
Niemelä and Helevirta (2017) © MECS Publisher

http://dx.doi.org/10.5815/ijmecs.2017.01.01

I.J. Modern Education and Computer Science, 2017, 1, 1-3
Published Online January 2017 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2017.01.01

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

K-12 Curriculum Research: The Chicken and the
Egg of Math-aided ICT Teaching

Pia S. Niemelä
Tampere University of Technology/Pervasive Computing, Tampere, Finland

Email: pia.niemela@tut.fi

Martti Helevirta
Tampere, Finland

Abstract�² In this article, we examine the relationship in
K-12 education between Mathematics and Information
and Communication Technology (ICT). The topic is
reviewed from various angles, based on both a literature
study and by directly contrasting the Finnish National
Curriculum (FNC) of 2014 (effective since autumn 2016)
with the National Curriculums of the UK (UKNC)[3] and
the US (USCC)[2].

Finland has chosen a cross-curricular approach to
developing the new curriculum for teaching ICT, which
involves integrating it mainly with math, but also with
handicraft, and various other subjects. This is in direct
contrast to the UKNC, for example, which teaches ICT as
its own field, to be taught through the Computing and
Design/Technology syllabi. This poses a question for this
research study, namely, how well do teaching math and
ICT fit together? The first step towards answering this
question is to establish which ICT concepts and domains
are directly supported by math and which are left
uncovered. As a theoretical research paper, the rationale
for the inter-connectedness of math and ICT is based on
the work of many researchers. To illustrate our
comparison of the two subjects, in this article we
concentrate on clarifying m�D�W�K�¶�V�� �D�Q�G�� �,�&�7�¶�V�� �V�K�D�U�H�G��
concepts of variable and function.

The results of this study indicate that transfer between
the subjects happens bi-directionally, which might
suggest that teaching ICT in combination with particular
branches of math, notably algebra would be of benefit to
our students. In order to pursue this approach, extra
modules for logic, basic linear algebra and set theory
would also be required. The fundamentals of basic
algebra, the function and the variable, and their
significance as synthesizers in both algebra and ICT are
highlighted. In addition, the use of calculators as function
tutors is explored in an instructional classroom setting.
The conclusion of this study is that although there are
certain benefits to the currently chosen approach of
teaching ICT in combination with mathematics, these are
not enough to outweigh the advantages of adopting a
more versatile dedicated ICT syllabus, such as that
provided by the UKNC.

Index Terms�² ICT curriculum comparison, computing
fundamentals, variable, function, math-aided ICT, transfer,
computational thinking

I. INTRODUCTION

Being able to handle a computer and the internet is not
only the new norm, but nowadays it is a new necessity.
Nearly all social and commercial enterprises now conduct
their business on-line, and the face-to-face meetings
which our parents went through in order to, for example,
pay a utility bill or even take out a bank loan are now
rare. Our society expects and needs every independent
citizen to be able to function on the internet. ICT has
become a basic life-skill, and as such it is essential that
we incorporate ICT skills into our education system at an
early a stage as is practicably possible.

All of this necessitates that our schoolchildren have to
be able to use the net with confidence. In order to be able
to follow any kind of further education (FE) our school-
leavers have to be able to search for information on the
net instead of an encyclopedia. Nearly all students have
to consult e-books and e-articles, which can be ordered at
�O�R�Z���F�R�V�W�����R�U���D�U�H���H�Y�H�Q���I�U�H�H���W�R���U�H�D�G���R�Q�O�L�Q�H�����X�Q�O�L�N�H���L�Q���W�K�H���µ�R�O�G��
�G�D�\�V�¶�� �Z�K�H�Q�� �D�� �V�W�X�G�H�Q�W�¶�V�� �E�X�G�J�H�W�� �I�R�U�� �E�X�\�L�Q�J�� �V�W�X�G�\�� �E�R�R�N�V��
often exceeded their budget for food.

Much has been made of the negative social effects of
the net, but encouraging our future citizens to utilize the
net, and giving them all the skills to do so could actually
have significant social benefits, let alone the economic
ones. People who can use Instagram or Pinterest to store
their favorite pictures can meet like-minded people (albeit
virtually), which can encourage them to expand their
interests and form bonds with others. The same is true
for researchers, i.e. Google Scholar, Mendeley and
RefWorks are not only used to search for and store
interesting articles for further reading, but they can also
lead researchers to establish contact with other
researchers, which gives another facet to the concept of
networking.

The demand for an expansion of ICT education at all
levels of the FNC is clear [1]. The gradual immersion of
ICT in all areas of society and the need to facilitate new
innovation and productivity require this [7]. We currently
have a shortage of skilled manpower to fill the
employment needs of our burgeoning ICT industry, so we
need to immerse ICT into all areas of society in order
bring about a new era of innovation and productivity.
Two recentl�\���S�X�E�O�L�V�K�H�G���8�.���+�R�X�V�H���R�I���&�R�P�P�R�Q�V�¶���U�H�S�R�U�W�V����
The Digital Skills Crisis [8] and The Digital Skills Gap
[18] in fact quantified the cost of the shortage of skilled

2 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

ICT personnel by stating that the digital skills gap costs
the British economy £63 billion a year in lost GDP.

�,�Q�� �W�K�H�� �8���6������ �W�K�H�� �D�F�W�� �µ�1�R�� �&�K�L�O�G�� �/�H�I�W�� �%�H�K�L�Q�G�¶�� ���1�&�/�%����
was continued in 2015 by the renewed congress bill
�µ�(�Y�H�U�\�� �6�W�X�G�H�Q�W�� �6�X�F�F�H�H�G�V�� �$�F�W�¶�� ���(�6�6�$������ �,�W�V�� �J�R�D�O�� �L�V�� �W�R��
leverage the affordability and quality of education,
especially in STEM subjects. The acts stipulate the
necessity of improving access to the wealth of freely
available information which the net has given us by
equipping schools with up-to-date ICT devices, high-
speed connections and with 100,000 highly-trained new
STEM teachers. In accordance, the STEM education
coalition is advocating STEM education as a national
priority. The economic justification for this is
summarized in its one-pager [37] that states, for instance,
�W�K�D�W�� �³60 percent of U.S. employers have difficulties
finding qualified workers to fill vacancies in their
companies�´���� �D�Q�G�� �´Jobs in computer systems design and
related services �± a field dependent on high-level math
and problem-solving skills �± are projected to grow 45
percent between 2008 and 2018�´����

In Finland, the strategy for the development of the
information society 2007-2015 emphasizes good ICT-
skills for accessing services, for increasing overall
productivity and for renewal. However, our industrial
base is currently going through a period of upheaval as it
adapts to the stagnation of economy caused by the fall in
Nokia�¶�V�� �P�D�U�N�H�W�� �V�K�D�U�H�� and turmoil in the paper industry.
This has led to structural changes in the nature of our
economy, and in some cases, to massive layoffs of skilled
ICT personnel as well. Because we currently have this
pool of unemployed ICT-trained personnel there is
certain reluctance on the part of our economic planners to
increase the provision of ICT. Rather, the National
Digital Agenda of 2011-2020 emphasizes of the societal
impact of ICT, such as organizing public services for
improving sustainability, transparency and civic
participation, where social networking contributes to
strengthening the dialogue between the public and private
sector. According to this agenda, ICT should be an
integral part of education. From the earliest age, well-
designed digital services and learning materials (e.g.
games and simulations) should be developed and
deployed, and distance learning options should be
provided for students living in remote areas.

In addition to individual countries setting out their own
policies for the promulgation of ICT, several international
coalitions and organizations, such as the EU and the
OECD, have stressed the importance of ICT education.
The EU states that shortages of e-skills in the European
workforce will result in an excess demand for ICT
practitioners. In their recent visionary reports in 2016,
European Committee foresaw the Digital Single Market
(DSM) growing to its full potential. This would be based
on common ICT standards and initiatives, such as the
eGovernment Action Plan, the European Cloud Initiative,
Public Private Partnerships and the Fourth Industrial
Revolution. This revolution will utilize the potential of
integrated cyber-physical systems and technologies in
which Finnish research and industry is already leading

the way. We must equip our future workforce with the
skills and confidence to operate in the world of big data
and the Internet of Things. Although the EU has
facilitated the growth of ICT education by funding
research with its Horizon 2020 programs, many EU
countries lag behind these initiatives and increasing
differences in ICT skills are slowing down the
development of EU-wide standards and procedures. For
example, as the administrator of the EU-wide PISA tests,
the OECD is in a unique vantage point for reviewing the
education systems of various countries. In this context, it
�L�V���Z�R�U�W�K���Q�R�W�L�Q�J���W�K�D�W���W�K�H���2�(�&�'�¶�V���U�H�F�H�Q�W���U�H�S�R�U�W���>�����@���P�D�N�H�V��
it abundantly clear that all students first need to be
equipped with basic literacy and numeracy skills in order
to be able to participate fully in the hyper-connected,
digitized societies of the 21st century.

This article is not only concerned with showing the
importance of teaching ICT in schools, but also aims to
show the importance of ICT for all members of society.
Therefore, we first examine the relevant pedagogical
literature aimed at justifying combining ICT with math,
as this is the approach currently favored by the Finnish
education authorities for the (new) Finnish curriculum.
The idea is to teach ICT as a cross-curricular subject,
starting with building hands-on assembly kits and
electronic experiments in craft subjects at the primary
school level. However, the bulk of the ICT syllabus will
be integrated with math. Therefore, the initial and
primary ICT learning goals, i.e. the generic requirements
for algorithmic thinking and the ability to write simple
command sequences, are inserted into the math syllabus.

In the following chapters we will go through the ICT
and math syllabi in more detail, viewing their potential as
a combined syllabus, and as separate ones. In the Results
chapter, we will evaluate and compare the two
approaches, either math-aided ICT or ICT as a separate
�V�X�E�M�H�F�W���� �7�K�L�V�� �S�D�S�H�U�¶�V�� �F�R�Q�W�U�L�E�X�W�L�R�Q�� �W�R�� �W�K�H�� �I�L�H�O�G�� �R�I��
curriculum research is its focus on the differences
between the reviewed math and ICT syllabi. The paper
highlights the expected benefits of each approach to
teaching ICT, taking into account not only the knowledge
gained from academic research, but also ICT curriculums
of other countries. The paper concludes with a summary
of our findings and some recommendations for the future.

A. Research Question

This study asks:
�x How does ICT fit in with the mathematics

curriculum?
�x What are the fundamental concepts of computer

science, and how do they interact with the
corresponding concepts of math?

�x What ICT topics are left uncovered in the
current FNC, when compared with the discrete
computing curriculum of the UKNC?

3 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

II. RELATED WORK: PEDAGOGICAL CONSIDERATIONS

From the pedagogical standpoint, combining math and
ICT is well justified and can be expected to have a
positive effect on the learning of both subjects. The
following sections will describe the links between ICT
and math in terms of transfer, explicit abstraction, and the
areas in which ICT can be used as a scaffold for learning
math skills, and vice versa.

A. Transfer of Learning

Transfer of learning is based on the principle of
transferring a skill from one domain to another [36], in
our case from math to ICT and vice versa. Learning
Transfer explains why learning by analogy is easy. For
example, the driver of a car has many of the skills needed
to drive a truck, although jumping into the cockpit of an
airplane would still be quite a challenge. Successful
transfer correlates closely with the current level of
acquired expertise: the greater the expertise, the more
flexible are �R�Q�H�¶�V mental models for adopting new
knowledge. An expert finds correspondences and
analogies by exploiting previously constructed schemas,
identifies without extraneous effort the significant
features of new material and hence learns easily in new
situations, whereas a novice is stuck with the amount of
data and concentrates on irrelevancies. According to
venerated model building theories, such as �3�L�D�J�H�W�¶�V��
genetic epistemology [31], learning is perceived as
modifications to the existing schemata; termed as
assimilations, if little or no reorganizing is needed, and as
accommodations, if the existing schema needs re-
construction. In defining the concept of expertise, Gestalt
psychologists (e.g. [21]) refer to the insight experience
that helps one find the right solutions intuitively and
enables the subject to predict outcomes in new situations.

Transfer may occur either laterally or vertically [17],
implying hierarchical learning steps. Transfer can also be
near or far [30] within one nearest domain or extended to
other further domains. Lateral transfer is more likely to
occur and quicker to perform than vertical. Transfer
which occurs at only one level is lateral. For example, in
math, stepping from addition to subtraction only involves
a small cognitive gap, whereas jumping to reordering the
equation is a significant step. In pedagogic terms, one
�O�H�Y�H�O�� �L�V�� �F�D�O�O�H�G�� �D�� �³�O�H�D�U�Q�L�Q�J�� �V�H�W�´���� �D�Q�G�� �S�U�R�S�H�U�� �D�Q�G�� �U�R�E�X�V�W
learning means progressing consistently from one level to
another. Stepping to the next level requires complete
mastery of the previous level, in which case, the
subsequent vertical transfer can be made without too
much difficulty. If sudden vertical jumps are made in
learning, however, the variation in learning outcomes
among the students grows, and poorer students will
suffer.

There are two options for fostering successful learning
transfer, and they have been described as the low road
and the high road of education. The low road prescribes
strengthening routines by iteration, as a result of which
responses develop to become more reflexive and
automatic. The high road means mindful and explicit
abstraction and an active search for connections [30]. In

teaching and learning, this requires that teachers should
explicate the underlying principles and point out
connections to prior knowledge. As for the learners, they
should become more aware of concepts, their relations,
and ultimately, they should metacognitively recognize the
necessity of making associations in order to enable
deeper learning. Nowadays, in Finland at least, explicit
abstraction is the accepted approach to mindful,
conceptual elaboration which fosters learning transfer.

Transfer has been studied in the context of learning
new languages. As a base language, the usefulness of
teaching Latin is recognized. In addition to the positive
correlation between knowing Latin and learning
Romance languages [19][35], the favorable effect also
applies to learning other, linguistically unconnected
languages. This shows that if learning transfer is
successful, a student is capable of finding the common
underlying conceptual basis of different topics [17].
Finding such analogies requires a certain level of
intellectual maturity at which the student is able to
elaborate the material conceptually in order to reach a
deeper understanding. In this respect, a positive
correlation between ICT and mathematics does appear to
exist, so learning transfer is a central theoretical concept
of this study.

1) Transfer between ICT and Math
The transfer of learning between languages is

analogous to that of math and ICT. As Dijkstra [10]
claims, �µ�3�U�R�J�U�D�P�P�L�Q�J�� �L�V�� �R�Q�H�� �R�I�� �W�K�H�� �P�R�V�W�� �G�L�I�I�L�F�X�O�W��
�E�U�D�Q�F�K�H�V�� �R�I�� �D�S�S�O�L�H�G�� �P�D�W�K�H�P�D�W�L�F�V�¶. Syslo and
Kwiatkowska [38] argue that discrete mathematics is
central in developing algorithmic thinking, which is one
of the key skills in ICT, whereas Flatt in the panel
discussion [42] states that, in fact, programming is an
extension of algebra. It has long been recognized that
good math skills are helpful in learning ICT. Conversely,
ICT is known to benefit algebraic, logic and problem-
solving skills needed in math. The transfer from ICT to
math is straightforward. For example, a student trying to
master the basic concepts of function and variable in
algebra, would be helped if he can practice with an
�L�Q�W�H�U�D�F�W�L�Y�H�� �µ�V�K�H�O�O�¶�� �R�U�� �S�U�R�J�U�D�P�P�L�Q�J�� �H�Q�Y�L�U�R�Q�P�H�Q�W�� �D�Q�G��
writing small programs. On a larger scale, programming
means solving problems by dividing them into smaller
solvable elements, often implemented as functions, which
is similar to problem-solving in math.

Hello World! Usually, becoming acquainted with a
programming language is begun with this brisk greeting:
a programmer calls the simple print function and the
computer shows the greeting on the screen. One can still
obtain a lot of information from this short first meeting,
such as, whether the main() function was needed, how
parameters were given, how commands were finished,
whether indents were needed, how errors were
�F�R�P�P�X�Q�L�F�D�W�H�G�� �W�R�� �W�K�H�� �F�R�G�H�U�� �H�W�F���� �³�+�H�O�O�R�� �:�R�U�O�G���´�� �L�V�� �D�O�V�R��
representative in illustrating the very fundamentals of
coding. In most languages, the command drawing the text
on the screen, i.e. print(), is a built-in function that is
called with a text string as a parameter. The parameter is

4 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

handled as an anonymous variable instantiated for the
duration of the function call, after which it is passed to
the function and then destroyed. Even if it is not apparent,
passing a string parameter gives the first glimpse of a
variable. Meeting the profoundest programming
fundamentals, the function and the variable, even in the
simplest test program, is an achievement that underlines
the importance of these two concepts. Coincidentally,
they happen to be the basic concepts of algebra as well.
In the section Variables and functions as common
fundamentals, we analyze their importance in more detail.

Hello Algebra! Among the syllabus areas, students
struggle most with algebra and functions [23]. Instead of
plainly giving an answer to a problem, a student should
examine the properties of a function, such as gradients,
maxima and minima. Progressing gracefully anticipates a
shift of paradigms from the arithmetic to algebraic. In
algebra, not only is the concept of a function causing
problems, but also getting the variable is difficult. As a
surrogate concept, the unknown is used as a bridge in
order to learn the concept of the variable. At primary
level, the unknown, often represented as a gray box,
question mark or an empty space in a calculation, is at
�V�H�F�R�Q�G�D�U�\���O�H�Y�H�O���U�H�S�O�D�F�H�G���Z�L�W�K���µx�¶����However, the unknown
unlike the variable, is understood as a static value, which
does not change after it has been figured out. The relation
of x and y, i.e., a function y = f(x), and analyzing its
properties both algebraically and graphically, is the new
�F�R�U�H���� �:�L�W�K�� �D�� �I�X�Q�F�W�L�R�Q�� �³�P�D�F�K�L�Q�H�´�� �H�D�F�K�� �L�Q�S�X�W�� �R�I�� �D�� �Q�H�Z��x
value will produce one (and only one) output value of y.

Multiple representations serve as a cognitive aid to
learning by providing a means to switch the point of
view. Functional thinking can be defined as a type of
finding a relation between two varying quantities; hence
it has its applications in science, especially physics, the
core of which is to depict the laws of nature. Rakes et al
[33] have studied the challenges of developing the
algebraic thinking, and they have found that especially
symbolic notations and abstract reasoning are causing
problems, and that students think that they are not
properly prepared for making the headway in abstract
thinking and generalizations. Rakes recommends
conceptual instead of procedural learning for the sake of
better transferability that would result in more flexible
learning.

Wilkie [44][45][46] discusses the challenges of
functional thinking and promotes gradual development by
using multiple presentations and bridging arithmetic and
procedural knowledge more cautiously. For the primary
school, Wilkie has illustrated a pathway of
generalizations of sequences as a preparation for algebra;
these exercises are labelled pre-algebraic. Development
steps include figuring out patterns out of geometric
sequences, growing these patterns by defining next items,
and visualizing the increase of amounts. In
generalizations, it is important to gradually grow
recursively step-by-step to defining the nth term that
determines the relation and general solution. In sequences
n implicitly represents a variable. In addition, Wilkie
emphasizes the linguistic means of describing problems

by using pronumerals. By a pronumeral she means the
verbose name of a variable in contrast to one letter
notation allowed in math. The pronumeral may be called,
for instance, number_of_tiles. This kind of naming
complies with ICT coding conventions. In addition to
textual representation, also the visual representation
provides a beneficial view of the function. The graph
gives lots of information for finding the solutions and
about the behavior of the function, e.g., the maxima and
minima. In addition, the general knowledge of
polynomials (continuity, the dominance of the greatest
degree) and rational functions (optional discontinuities
and asymptotes) helps in depicting the nature of the
function.

2) Transfer between ICT and other subjects
Deep as the linkage between math and ICT might be,

the rig�R�U�R�X�V�� �P�D�V�W�H�U�\�� �R�I�� �R�Q�H�¶�V�� �P�R�W�K�H�U�� �W�R�Q�J�X�H�� �L�V�� �D��
prerequisite for graceful performance in academics
overall. Similarly, reading disability predicts disabilities
in other subjects and in math, and in the light of this
comorbidity, poor performance in ICT is to be expected
�>�����@���� �,�Q�� �D�G�G�L�W�L�R�Q�� �W�R�� �W�K�H�� �R�Q�H�¶�V�� �P�R�W�K�H�U�� �W�R�Q�J�X�H���� �N�Q�R�Z�O�H�G�J�H��
of the English that constitutes the base for computer
languages is an advantage.

The logic of a sentence in verse is to be parsed before
understanding algebraic notations in symbols.
Philosophers dating back to Aristotle have regarded
language as the source of logic and creativity. The task of
education would thus be to stimulate all the faculties and
nourish young minds. In addition to logic contained in
one sentence, constructing a plot or chain of arguments in
factual writings should form a logical path. At some
point, logic has been taught as part of the optional subject
of philosophy - however, logic overlaps also with
language and math. As a scaffold of improving logic, a
teacher could introduce new tools, such as argument
mapping [9], which belongs to the same mapping family
together with mind maps and concept maps.

Modeling and abstraction skills are beneficial for
�µ�O�H�D�U�Q�L�Q�J�� �W�R�� �O�H�D�U�Q�¶�� �S�X�U�S�R�V�H�V���� �,�Q�� �V�W�X�G�\�L�Q�J�� �D�F�D�G�H�P�L�F��
subjects, concept mapping might become a handy tool.
Strengthening conceptual learning is never a waste of
time. In general, study skills are worth investing in:
knowledge can change and things tend to be easily
forgotten, but study skills remain. Metacognitive skills
refer to a student's awareness of his means of learning
and allow him to plan good strategies for learning, which
implies that a student possesses strategies to choose from,
such as concept mapping. However, learning to learn
should be a cross-curricular goal involving all academic
subjects.

In terms of ICT suitability, other STEM subjects
besides math are also fit for ICT applications, such as the
simulations and videos of science experiments. For
example, science demonstrations are sometimes high risk,
require expensive ingredients, or happen too quickly to be
clearly perceived. With simulations and videos, more
cognitive capacity is available to the student to make
observations, and an experiment may be repeated as

5 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

many times as feasible. STEM has been recently
enhanced as STEAM, art included. In the discipline of
handicrafts and craftsmanship, learning happens through
doing by hand, which is seen as a way of leveraging
innovation and creativity. In visual and musical arts, ICT
provides fancy tools that facilitate and increase
productivity. Theories, such as intelligent hands and
learning by doing, are the basis for tactile learning
language. In ICT, bridging the connection between
electronics and programming may be achieved with the
help of different assembly kits (e.g. LEGO MindStorm
and Robots, Arduino, Lilypad, littleBits). Electronic
components, such as light emitting diodes, buzzers, and
couplers can be controlled by executing code commands,
and they also give a more concrete and clear response
than visible feedback on a computer screen.

B. The fittest programming paradigm

From the three most prominent paradigms of
imperative, functional, and object-oriented, the
imperative paradigm is often considered the simplest,
based on easy-to-explain concepts and a low level of
abstraction. Also, it is easy to visualize with the help of
control flow diagrams. Some traditional programming
languages, such as Basic, FORTRAN and C, are
examples of an imperative paradigm, and command shell
scripts employ this paradigm, too. C is by far the most
popular imperative language today. However, because it
is a low-level language, it allows direct access to HW
resources, such as memory and sensors, which forces the
programmer to pay a lot of attention to memory
management. This raises the pitfalls of handling memory,
which is why low-level languages are far from simple for
beginners.

Especially in the early history of ICT, imperative
paradigm was appropriate, since program instructions
were executed in a sequence and the end result was
predictable. Functional paradigm and languages were
being developed in parallel, however. With the advent of
graphical user interfaces (Mac, Windows), the event-
driven model started to change mainstream programming.
The imperative programming paradigm was enhanced
with classes and objects resulting in object-oriented
paradigm (OOP) that was especially fit for bigger
systems. Then the web took over the world and
programming paradigms had to adapt to that. The event-
driven model of programming was extended to web
applications. Well-defined and often strict programming
languages were gradually substituted by the looseness of
internet languages, such as HTML, JavaScript and PHP,
and finally with all sorts of tag-based extensions (such as
JSP and ASP) mixing static and dynamic web content at
will. The latest developments are transferring JavaScript-
based technologies also to the server (Node.js). Thus, the
worst nightmares of programming purists have become
true.

The programming paradigm should support the desired
style of writing code. While advancing in skills, a student
is expected to internalize good coding conventions, such
as modularity, documenting, testing, and, in the later
stages of studies, also saving HW resources or speeding

up response times. Modularity is achieved by splitting the
system into suitable structural components, which can be
done at different levels in different programming
paradigms. In the OOP, the system is constructed by
interfaces and classes, the relations of which may comply
with design patterns (such as Visitor, Strategy). In
modelling such a system, UML class diagrams are often
used. Classes define member variables and methods
(functions) and hence encapsulate that class related data.

In regards to transfer between math and ICT, i.e., in
bridging algebra and programming, lambda calculus is
the missing link [36]. In its conciseness and execution of
algebraic operations, such as reductions, lambda calculus
conforms to the symbolic expression characteristic of
math. It is also categorized as a functional language.

Since it possesses the highest purity and hence a
special added value in pedagogy, it appeals to ICT
teachers and theoreticians. In addition, being applicable
in proving and other theoretical studies in ICT, the
lambda calculus and its pure derivatives are willingly
used as an introductory university course for functional
languages. As the first language in the primary and
secondary school, lambda calculus is definitely overkill.

Regarding the functional programming paradigm, the
complexity issues have been addressed in educational
initiatives targeting at primary and secondary levels. The
functional programming camp has tried to satisfy the
wishes of ICT educators and provided suitable courses
and material: WeScheme, TeachScheme!, Logo Turtles to
practice algorithms [16] for example, and DrRacket and
also Bootstrap which uses the Racket programming
language (prev. PLT Scheme) [23][24][36]. The
Bootstrap course targets ultimately at game design. In
using Bootstrap, promising results among K-12 students
have been reached, Felleisen and Krishnamurthi [13]
state boldly that �³Bootstrap provides the strongest
evidence yet that teaching functional programming
directly affects the mathematics skills and interests of K-
12 students�´���� �D�Q�G���D�Oong with them researchers have long
regarded programming as a mightifier in learning
mathematical concepts (e.g. [35]). Moreover, Schanzer
[36�@�� �K�L�J�K�O�L�J�K�W�V�� �W�K�H�� �O�R�Z�� �W�K�U�H�V�K�R�O�G�� �R�I�� �W�U�D�Q�V�I�H�U���� �³Bootstrap
uses algebra as the vehicle for creating images and
animations. That means that concepts students encounter
in Bootstrap behave exactly the same way that they do in
math class. This lets students experiment with algebraic
concepts by writing functions.�´��

Levy [24] implemented the Racket course for
elementary mathematics teachers by adding the
consecutive principles of algebra of images and targeting
good coding conventions and discipline through using
test-first design and documentation. Algebra of images
uses images as variables in function calls and prepares for
mathematical variables and functions in an entertaining
and creative way.

Complexity-wise OOP sets a certain threshold for
learning as well. Inheritance, polymorphism and virtual
functions, for example, are regarded to belong to the Top-
10 most difficult items [27]. Object oriented paradigm is
an extension of the type concept found in procedural

6 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

programming languages. Furthermore, it is hard to
understand methods without first understanding
functions. Therefore, OO-paradigm is not appropriate as a
first programming paradigm. However, some visual
programming tools, for example Scratch may be
interpreted as object-oriented, after which the paradigm is
not complex at all. Got this way, sprites are objects,
whose methods and events are defined, as well as
variables set by dragging and dropping.

C. BYOD (Bring-Your-Own-Device) and forget not to
BYOB (Bring-Your-Own-Brains)

Teaching mathematics in Finland is in a transitional
stage due to the use of symbolic calculators (allowed
since 2012), and shortly also computers, in the
matriculation examination. Symbolic calculators bring an
excessive competitive advantage to their users. In the
spring of 2016, the exam was split in two parts: run with
and without a calculator, and the gain of having a
symbolic calculator was compensated by making some
problems more difficult. In the spring of 2019, the math
exam will become electronic as last of the exams. The
applications allowed at the work station are the
following: LibreOffice for text editing, spreadsheets,
vector graphic, GIMP, Pinta, InkScape, Dia, wxMaxima,
Texas Instruments N-spire, Casio ClassPad Manager,
Geogebra and LoggerPro [49]. Especially scriptable tools
are interesting in regard to ICT teaching.

According to the Finnish curriculum 2016, calculators
and computers are first to be familiarized with during Y3-
Y6. In Y7-Y9, they are applied as learning, assessment
and creativity tools. Regarding function keys, the first
math concepts are squaring operation x2 and powers of 10
(e.g. when typing a standard format), since powers and
indexes are taught in Year 7. If we consider the squaring
operation x2 as a function, x is a variable or a function
parameter. The user enters the value of x, after which the
calculator prints the value of the function (f(x) = x2) on
the screen. Does the student understand that he is using a
function? It is unlikely, if this is not especially
emphasized, otherwise its meaning is simply reduced as
an action button. By pressing it a student gets the desired
result, a number squared, as a procedural outcome.

The affordances provided by calculators could be
exposed and the function behavior explicated, e.g., the
teacher could point out the existing function key f(x), and
as a concrete example demonstrate the use of the simple
function of x2, first assign the x value and retrieve the
value of y as the end result of squaring. As a visual hint,
the point (x, y) could be positioned to the coordinate
�S�O�D�Q�H���� �%�\�� �L�Q�S�X�W�W�L�Q�J�� �V�H�T�X�H�Q�W�L�D�O�� �L�Q�W�H�J�H�U�V�� �������� ������ ���� �«���� �D�Q�G��
plotting points to the plane, the quadratic curve starts to
be recognizable. The same exercise may be reused to
deduct next numbers of the quadratic sequence.
Visualizations of functions with the calculator are
beneficial as multiple representations without additional
computational overhead. For instance, Desmos as an on-
line tool and Mathematica, Maxima and Maple as
installable ones are handy in building and exploring
functions. However, neither calculators, nor tools nor

games are necessary in teaching mathematics. Actually,
adapting to the use of a certain device implies a risk of
conceptual welding [35], after which a user is not capable
of fully functioning without the device. Expediently, a
calculator should remain an optional tool and not a
necessity.

Not even learning ICT requires using computers. Many
complementing skills necessary in ICT may be practiced
well without them, such as computational thinking (CT).
�$�E�V�W�U�D�F�W�L�R�Q�� �L�V�� �R�Q�H�� �R�I�� �W�K�H�� �W�K�U�H�H�� �µ�D�¶�V�� �R�I�� �F�R�P�S�X�W�D�W�L�R�Q�D�O��
thinking according to Jeannette Wing [48], who launched
�W�K�H���W�H�U�P�����7�K�H���U�H�P�D�L�Q�L�Q�J���µ�D�¶�V���D�U�H���D�X�W�R�P�D�W�L�R�Q���D�Q�G���D�Q�D�O�\�V�L�V����
As Wing puts it, �³Computer science is not only computer
programming. Thinking like a computer scientist means
more than being able to program a computer. It requires
thinking at multiple levels of abstraction.� ́ Abstracting
systems may be sharpened with mind mapping / concept
mapping exercises; in particular, tighter-syntax concept
mapping approaches the UML class diagrams used
extensively in OOP system design in the industry.
Automation, in turn, merges mastering control structures,
divide-and-conquer of the problem domain and finding
the right algorithms [22].

III. RESULTS

In order to facilitate comparisons, the ICT syllabi of
FNC and UKNC are illustrated as concept maps. As
maps, the approaches of math-aided ICT versus ICT as a
separate subject are more easily comparable. We first
focus on the computational thinking that is common for
both syllabi, and after that evaluate the importance of
areas that are omitted from math-aided ICT compared to
the dedicated ICT syllabus.

A. Math-aided ICT teaching

Mathematics as a subject is constructed based on spiral
progress to more advanced topics. The iterative visits at
each math topic at different levels will deepen the
knowledge and add details. In merging ICT with math, it
is justified to follow the well-established order of math
and include corresponding ICT topics where feasible. We
took the Finnish math syllabus as the basis, and Figure 1
demonstrates how mathematics as a subject is constructed
chronologically and how it expands in a cyclic manner.
The concentric gray circles demonstrate different school
levels from primary to high school. The further away the
subject is located from the center, the later it will be
introduced. The figure appears to divide the math
syllabus into four major subject areas: arithmetic,
geometry, algebra, and the newest addition,
computational thinking (CT). CT will lead students to
learn how to decompose and solve problems by dividing
them into smaller sub-problems, as well as algorithms
and modelling.

The Red parts represent topics that are considered
especially opportune for ICT teaching: the darker the
color, the stronger the emphasis. In addition to CT
(algorithms, logic, modelling), the variables and functions
of algebra are marked in deep red. Topics marked with
lighter red are optional, and proposed as nice-to-have
features. For instance, statistics and probability could

7 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

lead students towards the fields of data visualizations and
data science. In addition to these red-scale areas, the
reader should note the UK and US flags. The Flags
represent those math additions that are missing from FNC
but present in UKNC or USCC, and are anticipated to
prepare the students for ICT. Such key areas include sets
and matrices. Interestingly, USCC explicitly also defines
modeling as one syllabus area that is helpful for both
math and ICT.

1) Logic, sets and matrices
The initial �³�K�H�O�O�R�� �Z�R�U�O�G�V�´���� �S�U�R�J�U�D�P�P�L�Q�J�� �H�Y�R�O�Y�H�V�� �L�Q�W�R��

writing control structures such as if -then-else sentences
and loops. An if-sentence requires the truth value of its
condition to be evaluated, thus presuming skills such as
propositional and Boolean logic. The same skill applies in
handling iterations when reaching the loop termination
condition �± typically an equivalence or end of an
inequality. These are just the simplest cases where logic
in programming is needed. Logic primitives, including
truth values as computational entities, seem to be missing
in every math syllabus. However, in the UKNC, Boolean
logic is currently included in the computing curriculum
[3]. Considering the importance of logic to all computer
science, this is a distinct lack. The basics of logic,
including Boolean logic (true, false, AND, OR, NOT)
could very well be included in the math syllabus.

When the amount of data increases, bigger data stores
are needed as instead of single variables arrays and other
collection types will be introduced. The set is the basic
mathematical construct for containment. Sets are highly
relevant for programming, as they are the basis for
abstract data types called collections and the relational
database, among other things. An array may be
introduced as a set, a vector or a matrix, and the same
operations apply. Therefore, set theory would be useful in
any mathematics curriculum designed to support ICT and
programming. Currently, set theory is part of UKNC, but
is absent from USCC and FNC.

Linear algebra is included in the USCC as matrices and
as the syllabus domain of vectors and transformations in
UKNC, but matrices and transformations are missing
from the FNC. We consider it important for computer
science, as matrices enable easy manipulation of data and
often simplify computational logic. Matrices are
extensively exploited, e.g. for 2D- and 3D-
transformations in game development and in data analysis
and pattern recognition.

All suggested new math syllabus areas remain at the
preliminary level in UKNC and USCC and we propose
the same: in logic truth tables and Boolean logic in order
to simplify several simultaneous conditions; in sets, Venn
diagrams and basic operations of union, intersection and
cut with at most three sets; and in matrices,
transformations of translation, reflection, rotation and
enlargement and finding an inverse matrix. This new
math knowledge should be carefully bridged with the
prior knowledge with lots of visual exercises and by
starting early enough.

Table 1 illustrates in which order these topics, logic,
sets and matrices are handled in the UKNC and the
USCC.

Table 1. MATH SYLLABI OF UKNC AND USCC
 UKNC USCC

Logic (in Computing Syllabus)
KS2: logical reasoning to explain how
simple algorithms work
KS3: simple Boolean logic
(AND/OR/NOT) and its applications
in circuits and programming

-

Sets KS3: enumerate sets,
unions/intersections, tables, grids and
Venn diagrams
KS4: data sets from empirical
distributions, identifying clusters,
peaks, gaps and symmetry,
expected frequencies with two-way
tables, tree diagrams and Venn
diagrams

G6: data sets,
identifying clusters,
peaks, gaps, symmetry
G7: random sampling to
generate data sets
HS: interpret differences
in shape, center and
spread of distribution

Matrices KS4: (in Geometry) translations as 2D
vectors, addition and subtraction of
vectors, multiplying with a scalar,
diagrammatic and column
representations
GCSE: Transformations & Vectors

HS: add, subtract,
multiply matrices,
multiply with a scalar,
identity matrix,
transformations as
2x2 matrices

B. ICT as a separate subject

Instead of teaching ICT together with math, it can be
taught as a separate subject, as has been shown by the
way computing is taught in the UKNC. The computing
syllabus was reviewed to discover uncovered topics of
the math-aided approach to FNC, see the blue nodes in
Figure 2. The Red nodes illustrate overlapping topics
found both in UKNC and FNC, where the all-
encompassing skill of computational thinking that
consists of such sub-domains as algorithms, logic,
problem-solving and abstraction is well represented.
Algorithms and problem-solving start from the very
beginning, whereas abstraction and modelling is from
Key Stage 3 upwards in the form of pseudo-coding and
flow charts, for instance. Modularity as a good coding
practice is highlighted.

In addition to computational thinking, the thread of
security and safety starts already from Key Stage 1 and
deepens throughout the different stages. In UKNC
Computing, safety and security areas culminate as cyber
security e.g. identifying possible attack types and system
vulnerabilities. The safety and security domain includes
the ethics aspect covering �D�� �S�H�U�V�R�Q�¶�V�� �R�Z�Q�� �E�H�K�D�Y�L�R�U��
�U�H�J�D�U�G�L�Q�J�� �K�L�V�� �R�Z�Q�� �D�Q�G�� �R�W�K�H�U�V�¶�� �S�U�L�Y�D�F�\�� �D�Q�G�� �F�R�Y�H�U�L�Q�J��
respect issues as well.

In Key Stages 1 and 2 of the UKNC Computing, the
subject content is divided into two parts, first ICT from
the perspective of a user and secondly of a programmer.
In the user part, the fluent use of technology aims at
storing and manipulating digital content. The goal is to
understand the digital nature of stored media, text, music,
videos. In Key Stage 2, networks are included and their
properties, e.g. types and connectivity, are studied. From
the perspective of programming, new control structures,
sequences and repetition are introduced, as well as such
fundamentals as variables and I/O.

8 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

Fig. 1. Combined Math syllabus, based on FNC with additions, computing related items in shades of red,

additions from UKNC marked with and from USCC with

9 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

Fig. 2. ICT as a separate subject based on UKNC. The parts that are overlapping with the UKNC and FNC syllabi are

marked in red, uncovered items in blue.

10 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

From Key Stage 3 onwards, new data structures such
as lists, tables and arrays will strengthen the
programming skills. Boolean logic (AND, OR, NOT) is
brought in and students are familiarized with the binary
presentation. Computer systems are reviewed more in
depth by introducing HW and SW components and
various storages, and the way in which data is stored in
memory. In Key Stage 4, the skills are strengthened and
analytic thinking and creativity are fostered and applied
�W�R�� �R�Q�H�¶�V�� �R�Z�Q��interests [4][5]. Students may implement
e.g. small applications, portfolios or hypermedia e-books
[32] and hence provide material for assessment.

Learning algorithmic and computational thinking is
considered as part of mathematics education in FNC as
well. On the other hand, issues such as computer and
internet architecture, internet of things, robots, big data,
cloud computing, artificial intelligence, augmented
reality, social media and data privacy and security, are
currently omitted. In addition to possible mathematical
aspects, these issues involve technical, psychological,
societal and legal viewpoints, among others. As
Facebook, Twitter, Angry Birds and Pokémon Go
phenomena have demonstrated, we live in a world where
new ICT inventions can very rapidly take over the whole
world - and it would be irresponsible not to give our
pupils and students necessary skills to survive in this
technological era of wonders. Fluck et al. [14] argue,
"Computer science is rapidly becoming critical for
generating new knowledge, and should be taught as a
distinct subject or content area, especially in secondary
schools".

C. Variables and functions as common fundamentals

In this section, we analyze the variable and function
concepts in more detail. Variables and functions are the
very heart of modern mathematics and science.
According to Menger [26], in the development of
mathematics and natural science, perhaps the most
characteristic concept is that of a variable. Tarski [39]
states that the invention of variables constitutes a turning
point in the history of mathematics. Kleiner [20] sees the
function concept as a distinguishing feature of modern
mathematics. In computer science, variables and
functions have been an essential part of programming
from the very beginning. As computing necessarily
involves computer memory, a symbolic reference to a
memory location, i.e. variable, is a necessity. Functions
were also introduced very early: the second FORTRAN
implementation (Fortran II, 1958) already included them.
Since then, functions have been part of all major
programming languages and have had a major role in
various programming paradigms, such as structured
programming, procedural programming, and functional
programming. Function is the basic means of software
decomposition [29], a generally accepted software
engineering practice. It directly supports the principles of
separation of concerns [11], information hiding,
encapsulation and software reuse.

Variables are usually introduced in school mathematics
long before functions, e.g. according to the Common
Core standard, variables are presented at grade 6 and

functions at grade 8. Table 2 summarizes the differences
of variable in school mathematics and in programming.
To link variable in math and ICT, Epp [12] advises
instructors to draw analogies.

Table 2. VARIABLE IN MATH VS. ICT

 Math ICT

use case unknown in equation, a general
number, assignment

�³�E�X�F�N�H�W�´�� memory store,
assignment,
scope: global/local

alt. use
case

function parameter function parameter passed
by value or reference

type of
variable

typically numeric (integer,
fraction, real number)

numeric or more complex
type

Tables 2 and 3 illustrate the interconnectedness of the

function and the variable in mathematics and ICT.
Especially in ICT, functions and variables are hard to
separate from each other - you need both at the very early
stage. If functions in mathematics were introduced
earlier, together with variables, the mathematical function
concept could be used as a starting point for introducing
functions in programming languages. Furthermore, the
student probably uses some form of calculators, which
typically exhibit quite strongly the concept of function in
their interface.

Table 3. FUNCTION IN MATH VS. ICT

 Math ICT

description relationship between two
quantities (usually x and y) or
between elements of two sets

a subroutine that
calculates a return value
based on input parameters
or accomplishes a specific
task

number of
parameters

typically 1 in elementary math
and increasing in advanced
math

0 ... n

type of
parameters

typically real numbers numeric or more complex
types

number of
return values

1 typically 1 (0 ... n
depending on language)

return type typically real number numeric or more complex
type

In analyzing the concepts of variable and function,

different meanings were discovered. For example, the
model of three uses of variable [41] lists variable as an
unknown, a general number, and mutable value of x in a
functional relationship. As unknown, once the value is
solved, no reassignment is usually done, so variable is
understood as a constant. When the process of
generalizing begins, a student starts to transfer from
arithmetic towards algebra by identifying patterns [40],
e.g. Wilkie [44] uses sequences to facilitate using
variables as a pattern generalizer in identifying functional
relations. The general number is a midway to actual
variables, which are full-blown in functions illustrating
the interplay as a relation of the two, x and y.

Furthermore, in formulae, the location and naming of
the variables define the identity either parametric as a
coefficient (constants) or variable as an unknown, for
example:

11 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

 (1)

a, b and c are understood as parameters or general
numbers, whereas x, y and z are actual variables.

By the mathematical definition of a function, the
ambiguity of output values is not allowed i.e. a function
results only one output value per each input. In addition,
a domain must include only such input values that
produce an output. In programming, the ambiguity of a
variable creates confusion. The variable is not its value
only, but also comprises a physical location. The address
of the variable in a memory is called a pointer in ICT
vocabulary. Variable x is referenced by a pointer p, see
Figure 3, and these two representations are
interchangeable by using certain operations. In the
following, we use the C-language notations.

Fig. 3. The duality of variable x and pointer of p

 Note the operators &, which is the address-of, and *,

which is the dereferencing operator. Even if you are using
variable x���� �E�\�� �D�G�G�L�Q�J�� �µ�	�¶�� �L�Q�� �I�U�R�Q�W���� �W�K�H�� �D�G�G�U�H�V�V�� �R�I�� �W�K�H��
variable will be exposed. Analogically, the reference p
may be de-referenced to get hold of the value of x.
Related memory aspect is the data type of the variable
influencing the space reserved. For an unsigned integer
the space requirement is much less than for a decimal
number (float, long). When declared, variable and pointer
are not necessarily assigned a value. In lower level
languages, for example in strongly-typed C language, the
user is responsible for allocating the memory (malloc) of
the required data type for the pointer p, for example:

int *p;
 p = (int *)malloc (sizeof(int));
an operation, which is often forgotten. Both the value

and the address may be changed later: a value may be
reassigned and the pointer may be redirected to another
location. Without special caution, these changes and their
side effects may be subtle, go unnoticed and cause nasty
and hard-to-trace error situations. Pointers and dynamic
memory allocations are among of the hardest ICT topics
[27]. In order to fully grasp the concept of variable,
unveiling underneath HW structures, i.e., a memory
stack, is necessary. Figure 4 demonstrates that in UKNC
at the GCSE level, book publishers do not hesitate.

Fig. 5. The GCSE book illustrating variable and its

address [15]

Similarly, the concept of function is multifaceted and
depends on the used programming paradigm; see the
summary of both fundamentals below, in Table 4.

Table 4. VARIABLES AND FUNCTIONS IN SELECTED PROGRAMMING

PARADIGMS
 Variable Function

Imperative Global and local variables.
Pointers exploited in code
 (in some languages)

Function (returns a value)
Procedure (no return
value)
both may cause side
effects

Functional Variables as constants or
unknowns. Once assigned a
value is not meant to be
changed

Both pure and impure
implementations that rely
heavily on recursion,
sequences and algebraic
manipulation

OOP Member variables
encapsulate data inside the
object, visibility controlled
by access modifiers (private,
protected, public)

Object methods that need
an instance vs. static
methods that need not.
Parameters may be passed
by value (no changes) or
by reference (changes)

Math rules may be violated in all other paradigms but

pure functional, which has inspired functional
programming advocates to promote its use for teaching
algebra as well.

 In the adjacent Figure 5, the first
function illustrates a valid function
in the mathematical sense that
takes an input and produces a
single output. The next two
functions do not follow the rules,
e.g. the middle case forks in two
different result options based on
the inner state of the program. The
bottommost case illustrates a
procedure: in an imperative
paradigm subroutines are split into
functions and procedures based on
whether they return of value or
not.

Fig. 4. A pure and an impure function and a procedure

12 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

IV. CONCLUSIONS

How does ICT fit in with the mathematics

curriculum?
Programming is heavily based on mathematical

concepts. It may be seen as problem solving that requires
dividing a problem into smaller solvable sub-problems,
modelling a solution and applying algorithmic thinking
and logic, as in math. Orientation of problem solving and
automation is called computational thinking (CT), which
is the most recent addition to the Finnish math syllabus in
the 2014 edition. In addition to CT, we recognize algebra,
linear algebra and set theory as prerequisites for ICT.
From different programming paradigms, functional
programming has been found to scaffold learning algebra
in particular. Thus using e.g. Racket exercises with image
algebra will benefit students, as the move from algebraic
function and variable to their computational counterparts
complies with the near transfer of learning.

As algebra tutors, calculators and other mobile devices
should be exploited to their full potential. Moreover in
Finland, transferring into electronic matriculation exams
in the spring of 2019 mandates using ICT at earlier
school levels. A bunch of ICT tools, such as the computer
algebra system wxMaxima, will be available [49].
Practicing with these tools should be started as early as
feasible. Math could, for example, be split into normal
and laboratory lessons, which would be held in the ICT
lab.

What are the fundamental concepts of computer

science, and how do they interact with the
corresponding concepts of math?

The basic computing fundamentals are function and
variable, which a novice programmer will meet even in
�W�K�H�� �V�L�P�S�O�H�V�W�� �³�+�H�O�O�R�� �:�R�U�O�G�´�� �H�[�D�P�S�O�H���� �,�Q�� �P�D�W�K���� �D�O�J�H�E�U�D��
and particularly functions are the areas that students find
most challenging. Functions should be introduced
gradually and by bridging them more closely with prior
knowledge. For bridging purposes, Wilkie uses multiple
presentations, for example, sequences and visual graphs
[44].

By proceeding towards functions and variables in the
zone of proximal learning [43], calculators may be used
as variable/function tutors by explicitly highlighting the
connection between variable x as an input and function
keys as functions producing an output of y. Probably a
student encounters an explicit variable the first time when
�K�H�� �L�V�� �O�R�R�N�L�Q�J�� �D�W�� �µx�¶ in a calculator keyboard. To deepen
the understanding of variables, one needs information
about the memory architecture of a computer. ICT
education should contain the basics of computer
architecture including data storage and memory. In this
context storing variables in memory should be evoked.

Even if syntactic nuances exist, a variable in math is a
straightforward concept compared with a variable in ICT,
where the dual nature (a value - an address) complicates
it. Furthermore, a variable in programming may be of the
non-numeric type, such as a string. In mathematical
functions, one input value that is typically a real value

results in one and only one output value, also a real value.
On the other hand, functions in programming have a
wider variety. First, they inherit the ambiguity due to
variables as parameters that may be passed by value or by
reference, or are of a non-numeric type. Secondly,
functions may return a different value with the same input
based on the internal state. Thirdly, they may return no
value at all.

What ICT topics are left uncovered in the current
FNC, when compared with the discrete computing

curriculum of the UKNC?
Compared with UKNC computing syllabus there is a

multitude of computer-related skills that are left
uncovered without a dedicated subject and teacher. For
example, security issues, the basics of computer and
network architecture and overall fluency with technology
are nowadays comparable with civic competences. In
addition, computers may also be used as creativity tools,
e.g. design and web-based authoring (blogs, vlogs), and
they provide lots of options for developing multi-literacy,
for example, content creation, media editing and digital
literacy skills. Overall, preparedness for further studies
may be strengthened by intelligent searches, source
criticism, data analysis and data visualization skills.
Explicit knowledge building might be done with mapping
tools. Lonka [25] petitions, "Besides fun and practical
activities, it is crucial to facilitate deep learning through
guided engagement in scientific inquiry, expert-like
�G�H�V�L�J�Q�L�Q�J���� �L�Q�� �V�K�R�U�W���� �V�W�X�G�H�Q�W�V�¶�� �G�H�O�L�E�H�U�D�W�H�� �H�I�I�R�U�W�V�� �W�R�� �E�X�L�O�G����
create, and synthesize knowledge."

Computer science needs skills taught in other subjects
as well; mathematics alone is not enough. Still, many
areas and new developments in ICT do not fit in to
traditional school subjects. It is to be expected that the
pace of innovation will continue to speed up in the future
�± for example, cloud based artificial intelligence is
rapidly emerging as a production quality provider of
applications of a totally new kind. Since the world is
rapidly being digitized, including ICT as a separate
subject should be seriously considered. Furthermore, it
would also serve as a placeholder for future needs and
new developments in technology education.

Future considerations

Whether ICT should be taught alongside extended

math, as a separate subject, or as a combination, it should
be studied in practice with various learning experiments.
�$�V�� �/�R�Q�N�D�� �>�����@�� �S�R�L�Q�W�V�� �R�X�W���� �³In Finland and many other
countries the availability of technology is adequate, but
the primary challenge to overcome is the readiness
deficiency for the pedagogically meaningful use of ICT. It
is imperative to develop innovative pedagogies that
simultaneously support the acquisition of a deep
knowledge base, understanding, and 21st Century skills.� ́

In addition, different programming paradigms and
languages should be compared with novice students in
order to find the pedagogically sound and working
alternative. For instance, the UKNC curriculum leaves
�W�K�H�V�H�� �R�S�H�Q�� �D�Q�G�� �M�X�V�W�� �W�D�O�N�V�� �D�E�R�X�W�� �³�O�R�Z-�O�H�Y�H�O�´�� �D�Q�G�� �³�K�L�J�K-

13 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

�O�H�Y�H�O�´���O�D�Q�J�X�D�J�H�V���D�Q�G���O�H�D�U�Q�L�Q�J���D�W���O�H�D�V�W���W�Z�R���R�I���W�K�H�P���>���@�����,�Q��
addition, the short-term hypes of certain programming
languages and applications should not influence
curriculum planning. Instead, it ought to rest on the
fundamentals common to all programming paradigms,
whether imperative, functional, or object-oriented.

To lessen the cognitive load in the beginning, visual
programming languages such as Scratch, and interactive
environments using interpretive languages, should be
favored [34]. We advocate progressing from a more
disciplined to a looser direction only after orthodox
coding conventions, such as modularity, have been
internalized. Functional languages are highly disciplined
and hence promoted by a few of the ICT establishment.
However, the Racket coding school (2016 spring) held in
Finland received contradictory feedback from the
participating teachers as it was regarded as being too
complex [28]. In the UK, the CAS community
recommends the path of Scratch-JavaScript-Python,
which, for the sake of coding discipline, should
preferably be Scratch-Python-Racket. Even if JavaScript
were removed to prevent students from developing
inappropriate coding conventions, web programming
would mandate it. However, if the object-oriented nature
of Scratch were recognized and used as a bridge to the
most popular object-oriented language to maximize the
benefit, then this sequence would stand as Scratch-
Python-Java. �,�I���L�W���D�L�Q�¶�W �F�K�L�F�N�H�Q�V�����L�W�¶�V���I�H�D�W�K�H�U�V - the golden
egg of ICT teaching is yet to be determined.

REFERENCES

[1] Finnish National Board of Education. 2014. �³Finnish

national curriculum 2014�´�� [Online].Available:
http://www.oph.fi/download/163777_perusopetuksen_opet
ussuunnitelman_perusteet_2014.pdf [Accessed: 01- Aug-
2016].

[2] �³Mathematics Standards | Common Core State Standards
Initiative� ,́ Corestandards.org, 2016. [Online]. Available:
http://www.corestandards.org/Math/. [Accessed: 02- Aug-
2016].

[3] �³National Curriculum in England: Secondary Curriculum -
Publications - GOV.UK� ,́ Gov.uk, 2013. [Online].
Available:
https://www.gov.uk/government/publications/national-
curriculum-in-england-secondary-curriculum. [Accessed:
02- Aug- 2016].

[4] �³Department for Education Computing Programmes of
study: Key Stages 1 and 2�´�� [Online]. Available:
https://www.gov.uk/government/uploads/system/uploads/at
tachment_data/file/239033/PRIMARY_national_curriculu
m_-_Computing.pdf. . [Accessed: 02- Aug- 2016].

[5] �³Department for Education Computing Programmes of
study: Key Stages 3 and 4�´�� [Online]. Available:
https://www.gov.uk/government/uploads/system/uploads/at
tachment_data/file/239067/SECONDARY_national_curric
ulum_-_Computing.pdf. [Accessed: 02- Aug- 2016].

[6] Department for Education of the United Kingdom. 2014.
�³Computer science GCSE subject content�´����[Online].
Available:
https://www.gov.uk/government/uploads/system/uploads/at

tachment_data/file/397550/GCSE_subject_content_for_co
mputer_science.pdf [Accessed: 02- Aug- 2016].

[7] Berger, T.,Frey, C. 2016. �³Digitalization, Jobs, and
Convergence in Europe: strategies for closing the skills
�J�D�S�´���� �>�2�Q�O�L�Q�H�@�� Available:
http://www.oxfordmartin.ox.ac.uk/downloads/reports/SCA
LE_Digitalisation_Final.pdf.

[8] Blackwood, N. 2016. �³Digital skills crisis: second report of
Session 2016�±����� ,́ House of Commons.

[9] Billings, D. 2008. �³�$�U�J�X�P�H�Q�W�� �P�D�S�S�L�Q�J�´�� The Journal of
continuing education in nursing. 39(6), 246-247.

[10] Dijkstra, E.W. 1982. �³How do we tell truths that might
hurt?� ,́ in Selected Writings on Computing: A Personal
Perspective. Springer. pp. 129-131.

[11] Dijkstra, E.W. 1982. �³On �W�K�H���U�R�O�H���R�I���V�F�L�H�Q�W�L�I�L�F���W�K�R�X�J�K�W�´�����L�Q
Selected writings on computing: a personal perspective.
Springer. pp. 60-66.

[12] Epp, S. 2011. �³Variables in math�H�P�D�W�L�F�V�� �H�G�X�F�D�W�L�R�Q�´���� �Ln:
Tools in teaching logic (ed.). Springer. pp. 54-61.

[13] Felleisen, M. & Krishnamurthi, S. 2009. �³Viewpoint Why
�F�R�P�S�X�W�H�U�� �V�F�L�H�Q�F�H�� �G�R�H�V�Q�
�W�� �P�D�W�W�H�U�´�� Communications of the
ACM 52, 7, pp. 37-40.

[14] Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith,
J., Voogt, J. & Zagami, J. 2016. �³Arguing for computer
s�F�L�H�Q�F�H���L�Q���W�K�H���V�F�K�R�R�O���F�X�U�U�L�F�X�O�X�P�´�� Educational Technology
and Society 19, 3, pp. 38-46.

[15] Frankin, J. (ed.). 2015. �³OCR GCSE Computer Science
���U�G���(�G�L�W�L�R�Q�´�� 3rd ed. Axsied.

[16] Futschek, G. 2006. �³Algorithmic thinking: the key for
�X�Q�G�H�U�V�W�D�Q�G�L�Q�J�� �F�R�P�S�X�W�H�U�� �V�F�L�H�Q�F�H�´�� International
Conference on Informatics in Secondary Schools-Evolution
and Perspectives, Springer. pp. 159-168.

[17] Gagne, R.M. 1965. The Conditions of Learning. New
York: Holt, Rinehart and Winston. Inc., l970

[18] House of Commons. 2016. �³Oral evidence: Digital skills
gap�´����[Online]. Available:

http://data.parliament.uk/writtenevidence/committeeeviden
ce.svc/evidencedocument/science-and-technology-
committee/digital-skills/oral/27865.html

[19] Jarvis, S., & Pavlenko, A. 2008. Crosslinguistic influence
in language and cognition. Routledge.

[20] Kleiner, I. 1989. �³Evolution of the function concept: A
�E�U�L�H�I���V�X�U�Y�H�\�´�� The College Mathematics Journal 20, 4, pp.
282-300.

[21] Köhler, W. 1970. Gestalt psychology: An introduction to
new concepts in modern psychology. WW Norton &
Company.

[22] Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,
Erickson, J., Malyn-Smith, J. & Werner, L. 2011.
�³Computational thi�Q�N�L�Q�J�� �I�R�U�� �\�R�X�W�K�� �L�Q�� �S�U�D�F�W�L�F�H�´�� ACM
Inroads 2, 1, pp. 32-37.

[23] Lee, R. 2013. �³Teaching Algebra through Functional
Programming: An Analysis of the Boo�W�V�W�U�D�S���&�X�U�U�L�F�X�O�X�P�´��

[24] Levy, D. 2013. �³Racket Fun-fictional Programming to
�(�O�H�P�H�Q�W�D�U�\���0�D�W�K�H�P�D�W�L�F���7�H�D�F�K�H�U�V�´��

[25] Lonka, K. & Cho, V. (ed.). 2015. Report for EU
Parliament 2015: Innovative Schools: Teaching &
Learning in the Digital Era: Workshop Documentation.

14 K-12 Curriculum Research: The Chicken and the Egg of Math-aided ICT Teaching

Copyright © 2017 MECS I.J. Modern Education and Computer Science, 2017, 1, 1-3

[26] Menger, K. 1954. �³On variables in mathematics and in
�Q�D�W�X�U�D�O���V�F�L�H�Q�F�H�´�� The British Journal for the Philosophy of
Science 5, 18, pp. 134-142.

[27] Milne, I. & Rowe, G. 2002. �³Difficulties in learning and
teaching programming�² views of students and tutors�´��
Education and Information technologies 7, 1, pp. 55-66.

[28] Organisation for Economic Co-operation and
Development. 2016. �³Skills for a Digital World� .́

[29] Parnas, D.L. 1972. �³On the criteria to be used in
d�H�F�R�P�S�R�V�L�Q�J�� �V�\�V�W�H�P�V�� �L�Q�W�R�� �P�R�G�X�O�H�V�´�� Communications of
the ACM 15, 12, pp. 1053-1058.

[30] Perkins, D. & Salomon, G. 1988. �³�7�H�D�F�K�L�Q�J�� �I�R�U�� �W�U�D�Q�V�I�H�U�´��
Educational leadership 46, 1, pp. 22-32.

[31] Piaget, J. & Duckworth, E. 1970. Genetic epistemology.
American Behavioral Scientist 13, 3, pp. 459-480.

[32] Portugal, C. 2014. �³Hypermedia E-book as a Pedagogical
Tool in a Graduation Course� ,́ International Journal of
Modern Education and Computer Science, Vol. 6(9), pp. 8.

[33] Rakes, C.R., Valentine, J.C., McGatha, M.B. & Ronau,
R.N. 2010. �³Methods of Instructional Improvement in
Algebra A Systematic Review and Meta-�$�Q�D�O�\�V�L�V�´�� Review
of Educational Research 80, 3, pp. 372-400.

[34] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J. & Silverman, B. 2009. �³Scratch:
programming for �D�O�O�´�� Communications of the ACM 52, 11,
pp. 60-67.

[35] Rich, P.J., Leatham, K.R. & Wright, G.A. 2013.
�³�&�R�Q�Y�H�U�J�H�Q�W�� �F�R�J�Q�L�W�L�R�Q�´�� Instructional Science 41, 2, pp.
431-453.

[36] Schanzer, E.T. 2015. �³Algebraic Functions, Computer
Programming, and the Challenge of Transfer� .́

[37] STEM education coalition One-Pager. 2016. �³STEM
Education, Good Jobs, and U.S. Competitiveness�´����
[Online]. Available: http://www.stemedcoalition.org/wp-
content/uploads/2016/01/STEM-Factsheet-Updated2.pdf.

[38] Syslo, M.M. & Kwiatkowska, A.B. 2006. �³Contribution of
informatics education to mathematics education in
�V�F�K�R�R�O�V�´�� International Conference on Informatics in
Secondary Schools-Evolution and Perspectives, Springer.
pp. 209-219.

[39] Tarski, A. 1994. Introduction to Logic and to the
Methodology of the Deductive Sciences. Oxford university
press.

[40] Usiskin, Z. 1988. �³Conceptions of school algebra and uses
�R�I���Y�D�U�L�D�E�O�H�V�´�� The ideas of algebra, K-12 8, pp. 19.

[41] Ursini, S. & Trigueros, M. 2001. �³A model for the uses of
�Y�D�U�L�D�E�O�H���L�Q���H�O�H�P�H�Q�W�D�U�\���D�O�J�H�E�U�D�´�� PME CONFERENCE, pp.
4-327.

[42] Van Roy, P., Armstrong, J., Flatt, M. & Magnusson, B.
(2003). �³The Role of Language Paradigms in Teaching
Programming� ,́ Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, ACM, New
York, NY, USA, pp. 269-270.

[43] Vygotskij, L.S. 1978. Mind in society the development of
higher psychological processes. Cambridge, Harvard
University Press.

[44] Wilkie, K.J. & Clarke, D.M. 2016. �³�'�H�Y�H�O�R�S�L�Q�J�� �V�W�X�G�H�Q�W�V�¶��
functional thinking in algebra through different
visualizations o�I�� �D�� �J�U�R�Z�L�Q�J�� �S�D�W�W�H�U�Q�¶�V�� �V�W�U�X�F�W�X�U�H�´��

Mathematics Education Research Journal 28, 2, pp. 223-
243.

[45] Wilkie, K.J. 2016. �³Learning to teach upper primary school
�D�O�J�H�E�U�D���� �F�K�D�Q�J�H�V�� �W�R�� �W�H�D�F�K�H�U�V�¶�� �P�D�W�K�H�P�D�W�L�F�D�O�� �N�Q�R�Z�O�H�G�J�H�� �Ior
�W�H�D�F�K�L�Q�J�� �I�X�Q�F�W�L�R�Q�D�O�� �W�K�L�Q�N�L�Q�J�´�� Mathematics Education
Research Journal 28, 2, pp. 245-275.

[46] Wilkie, K.J. 2016. �³�6�W�X�G�H�Q�W�V�¶���X�V�H���R�I���Y�D�U�L�D�E�O�H�V���D�Q�G���P�X�O�W�L�S�O�H��
representations in generalizing functional relationships
prior to secondary sch�R�R�O�´�� Educational Studies in
Mathematics pp. 1-29.

[47] Willcutt, E.G., Petrill, S.A., Wu, S., Boada, R., Defries,
J.C., Olson, R.K. & Pennington, B.F. 2013. �³Comorbidity
between reading disability and math disability: concurrent
psychopathology, functional impairment, and
�Q�H�X�U�R�S�V�\�F�K�R�O�R�J�L�F�D�O�� �I�X�Q�F�W�L�R�Q�L�Q�J�´�� Journal of learning
disabilities 46, 6, pp. 500-516.

[48] Wing, J.M. 2006. Computational thinking.
Communications of the ACM 49, 3, pp. 33-35

[49] Ylioppilastutkintolautakunta, � ŚÄHKÖINEN
YLIOPPILASTUTKINTO �± MATEMATIIKKA �´��
[Online]. Available:

https://www.ylioppilastutkinto.fi/images/sivuston_tiedostot
/Sahkoinen_tutkinto/fi_sahkoinen_matematiikka.pdf

�$�X�W�K�R�U�V�¶���3�U�R�I�L�O�H�V

 Pia Niemelä works currently as a
project researcher in the Finnish
�$�F�D�G�H�P�L�D�� �I�X�Q�G�H�G�� �S�U�R�M�H�F�W�� �³�6�R�F�L�D�O�� �P�H�G�L�D��
�V�X�S�S�R�U�W�L�Q�J�� �9�R�F�D�W�L�R�Q�D�O�� �*�U�R�Z�W�K�´, being a
doctorate student in Pervasive
Computing Dept. Previously, she
participated Helsinki University research
projects, Systemic Learning Solutions
(SYSTECH) and (TUTLI), which

developed educational learning solutions and commercialized
them. Her background is in the industrial software development,
the longest with Nokia, e.g. as a Java spec lead of Sensor API,
JSR-256, and ServiceConnection API, JSR-279, which specifies
RESTful web services for the mobile edition. She graduated
from the Helsinki University of Technology in 1995, from the
department of technical physics, completed pedagogical studies
in Tampere University in 2015 and has worked as a STEM
teacher both in Finland and Cambodia.

 Martti Helevirta received his M.Sc.
degree in Software Engineering from
Tampere University of Technology,
Finland in 1986. He has an extensive
career of over 25 years in ICT industry
as a software developer in the private
sector and as a systems analyst/project
manager in the public sector.

Manuscript received October the 1st, 2016, revised November
the 9th, 2016; accepted December the 7th, 2016.

Publication V

Partanen T., Niemelä P., Mannila L. and Poranen T. �Educating Computer Science Edu-
cators Online: A Racket MOOC for Elementary Math Teachers of Finland�, Proceedings
of the 9th International Conference of Computer Supported Education, 2017

DOI: 10.5220/0006257800470058
Partanen et al. (2017)

http://dx.doi.org/10.5220/0006257800470058

Educating Computer Science Educators Online
A Racket MOOC for Elementary Math Teachers of Finland

Tiina Partanen1, Pia Niemel̈a2, Linda Mannila3 and Timo Poranen4
1Tampere City, Tampere, Finland

2Pervasive Computing, Tampere University of Technology, Tampere, Finland
3 	Abo Academi University, Turku, Finland

4Computer Sciences, University of Tampere, Kalevantie 4, 33100 Tampere, Finland
tiina.s.partanen@tampere.�, pia.niemela@tut.�, linda.mannila@abo.�, timo.t.poranen@uta.�

Keywords: Computer Science Education, K-12 Education, Teacher Training, MOOC, Racket, Teacher Professional
Development (TPD), Math-integrated Computer Science

Abstract: Many countries all over the world are in the process of introducing programming into their K-12 curricula.
New Finnish Curriculum includes programming mentioned especially in accordance with mathematics and
crafts. Consequently, Finland needs to train teachers to teach programming at elementary school level. In
this paper, we describe how elementary math teachers were educated online to teach programming using the
Racket programming language. The aim of the course was to increase both content knowledge (CK) and
technological pedagogical content knowledge (TPACK). By analyzing the course feedback, questionnaires
and exercise data, we present the teachers' views on the course and effects on their professional development
(TPD). Finally, we describe development ideas for future online courses.

1 INTRODUCTION

Our society is becoming increasingly digitalized,
which has also given rise to a global discussion on the
role of computer science in education. As a conse-
quence, a number of countries all over the world have
introduced computational thinking, programming or
computer science in their K-9 curricula. Since 2014,
for instance students in England have learned to com-
pute starting at the age of �ve. In Finland, program-
ming has been part of the national curriculum ef-
fective since autumn 2016. It was introduced as a
cross-curricular addition, but integrated in particular
into the syllabi of crafts (grades 3-9) and mathemat-
ics (grades 1-9).

Integrating programming into the basic education
was a remarkable change, to which Finnish teacher
training departments have not yet fully adapted.
Henceforth, both pre- and in-service teachers need
to learn to program and obtain an understanding of
the core elements of computational thinking. Adding
curriculum requirements of this kind retrospectively
changes the job description of a teacher signi�cantly.
The employer is responsible for taking care of the
teachers' training and providing time for suf�cient
professional development. In addition to new require-

ments, rapid technological disruptions – especially
within information and communication technology
(ICT) – necessitate the continuous professional devel-
opment of teachers in order to ensure frictionless ca-
reer moves in future. By choosing courses that enable
them to ful�ll curriculum requirements, thus enhanc-
ing employability, teachers aim at maximizing their
market value. Hence, they are willing to put their own
effort into studying.

Although the government recognizes this training
need, in-service training resources are still insuf�-
cient. Against this background, all voluntary train-
ing initiatives are warmly welcome. In this paper,
we present the Racket track of Koodiaapinen MOOC,
a project initiated informally by a group of volun-
teer teachers to respond to the gap in formal train-
ing. After the voluntary start, the Ministry of Edu-
cation is currently sponsoring the MOOC by offering
the organizers funding according to the number of in-
service teachers completing the course. The goals of
the course are two-fold: to educate math teachers to
learn programming in the �rst instance, and secondly,
to function as a tool in the search for best practices to
teach programming.

1.1 Theoretical background

Teachers now �nd themselves in a situation where
they need to upgrade their skills and knowledge re-
lated to technology, programming and digital com-
petence. This can be seen as a type of transforma-
tion, although, it does not fully match 'transforma-
tive learning' as de�ned by Mezirow (1997). As an
initiator, Mezirow depicts a 'disorienting dilemma',
but the way in which he describes the process can be
seen as too intimidating: during disorientation, fear,
anger and shame are listed as the driving forces. Con-
sequently, we chose to speak about the 'reorienting
dilemma' of teachers instead. In the current reorien-
tation, the most dominant motivation is the external
pressure caused by changes in the curriculum and the
consequent demands to educate students accordingly.
Emotionally, reorientation is also less engaging than
disorientation.

Fortunately in Finland, teachers commonly ex-
hibit several types of internal motivation, e.g., their
own personal willingness to develop. Teachers con-
sciously build and develop their technological knowl-
edge and expertise as agents of their professional de-
velopment. In order to attain a better view on mo-
tivational factors, we refer to the self-reinforcement
and self-ef�cacy theories of Bandura (2006), where
self-ef�cacy is an important predictor in successful
professional development, even more than the actual
achievements. On a global scale, the self-ef�cacy of
Finnish teachers is considered high and boosted by
excellent PISA results, which teachers strive to main-
tain. In addition, they are aware of the new standards
set by the education authorities as a response to the
rapid technological development.

The change in perceived self-ef�cacy is one metric
for assessing the MOOC course learning outcomes.
Kennedy (2016) talks about enactment problems in
bringing new programming skills into the classroom
context after attending a professional development
course. She highlights the gap between the course set-
up and the actual teaching context of the real class-
room. Good self-ef�cacy in math is anticipated to
lower this threshold and foster the transfer. In this
study, we wish to focus in particular on teaching math
and programming together, and examine how math
teachers adapt to the change.

1.2 Research Questions

� What has been learned about organizing a pro-
gramming MOOC for teachers?

� How did the teachers evaluate the Racket course?

� How did the teachers describe the effect of the
course on their professional development and self-
ef�cacy in teaching programming?

2 RELATED WORK

2.1 Digital competence in the Finnish
curriculum

In December 2014, a new curriculum for Finnish
basic education (grades 1-9) was accepted by the
Finnish National Board of Education. This curricu-
lum has been in effect since August 2016 and empha-
sizes digital competence as an interdisciplinary skill
throughout all grades. The curriculum excerpts below
mention programming explicitly in the objectives of
two subjects, mathematics and crafts:
Grades 1-2
Digital competence:”Students get and share expe-
riences about digital media and programming in an
age-appropriate manner.”
Mathematics:”Students get acquainted with the pro-
gramming basics by creating step-by-step instruc-
tions, which are also tested.”
Grades 3-6
Digital competence:”Students learn to program and
become aware of how technology depends on deci-
sions made by humans.”
Mathematics: ”Students plan and implement pro-
grams using a visual programming language.”
Crafts: ”Students practice programming robots
and/or automation.”
Grades 7-9
Digital competence:”Programming is practised as
part of various other subjects.”
Mathematics:”Students should develop their algo-
rithmic thinking and learn to solve problems using
math and programming. In programming, students
should practise good coding conventions.”
Crafts: ”Students use embedded systems, plan, and
apply programming skills in order to create prod-
ucts.”
As the curriculum stipulates that programming is to
be taught integrated with math, we start by examin-
ing how best to exploit the expected synergy bene-
�ts. Compared with programming, math has a well-
established syllabus that has evolved into its current
state since the very dawn of the educational system.
Despite certain minor syllabus areas being dropped
from, or reintroduced to, the curriculum, the core con-
tent of the math syllabus has remained much the same
for decades. In order to ensure smooth transition, the

strong math core should be exploited in order to intro-
duce the analogous and logically progressive steps for
programming. It is tentatively assumed that integrat-
ing programming into math will move the center of
gravity of the syllabus towards computational think-
ing.

Computational thinking has gained traction since
the seminal article by Wing (2006) on the topic.
There is no absolute consensus on the de�nition
of the term computational thinking, but many start
from Wing's (2011) observation, “[t]he thought pro-
cesses involved in formulating problems and their so-
lutions so that the solutions are represented in a form
that can be carried out by an information-processing
agent.” Several operational de�nitions have been sug-
gested, for instance one presenting a set of corner-
stones of computational thinking including data col-
lection, analysis and representation, problem decom-
position, abstraction, algorithms, automation, parallel
code and simulation (Barr and Stephenson, 2011). Pa-
pert (1996) has stated,”Computer science develops
students' computational and critical thinking skills
and shows them how to create, not simply use, new
technologies. This fundamental knowledge is needed
to prepare students for the 21st century, regardless of
their ultimate �eld of study or occupation”.

Math is at the very core of programming that re-
quires algebraic, logic and problem solving skills.
Synergy implies mutual bene�t between two entities,
and although the bene�ts that a good understanding
about math and perceived self-ef�cacy confer on the
learning of computational skills are clear (Lent et al.,
1991; Zeldin and Pajares, 2000), the transfer in the
other direction, from programming to math, may not
be that obvious. In a successful transfer, however, a
student should be capable of �nding the common un-
derlying conceptual bases of different topics (Jarvis
and Pavlenko, 2008). Finding such analogies requires
a certain level of intellectual maturity and that a stu-
dent has elaborated on the learning material concep-
tually in order to reach a deeper understanding.

In general, successful transfer correlates with al-
ready acquired expertise: the greater the expertise,
the more well-rounded one is skill-wise and the more
�exible one's mental models are for adopting new
knowledge (Bransford et al., 2000). An expert �nds
correspondences and analogies by exploiting the pre-
viously constructed knowledge. The expert can easily
and without extraneous effort identify the signi�cant
features of the new material and is hence able to eas-
ily learn in new situations. A novice, on the other
hand, can become bogged down by the amount of
data and may concentrate on irrelevancies. In de�n-
ing the concept of expertise, the Gestalt psychologists

(e.g. Köhler, 1970) refer to the insight experience that
helps learners �nd the right solutions intuitively and
enables them to predict the outcomes in new situa-
tions.

Transfer may happen either laterally or vertically
(Gagńe, 1965), near or far or by the low road or
the high road (Perkins and Salomon, 1988) imply-
ing a certain hierarchy of learning. In addition, Rich
et al. (2013) state that one of the two complemen-
tary subjects tends to be interpreted in learners' minds
in a more abstract manner while the other encour-
ages to focus on application. In the case of math
and programming, math is more abstract, while pro-
gramming is understood as applied math (Dijkstra,
1982). In math, educators have long talked about
conceptual and procedural knowledge (Gray and Tall,
1994): conceptual knowledge comprises a full pos-
session of the appropriate concepts and the ability
to link them together, i.e., the high road to knowl-
edge transfer, while procedural knowledge consists of
well-internalized mathematical routines on the low-
road. Practicing math routines is anticipated to pro-
vide one appropriate affordance for programming in-
terventions.

Transfer between math and programming will be
streamlined by bridging the current math syllabus
with corresponding programming topics. In addition
to students, we note the value of transfer to in-service
teachers: the similarity between math and program-
ming of the Racket MOOC is expected to motivate
math teachers to learn programming.

2.2 Examples of K-12 Computer
Science elsewhere

To get a better grasp of the current situation of pro-
gramming or computer science education EU-wide,
European Schoolnet carried out a review of the state
of computer science education in 2015 (Heintz et al.,
2016). The majority of European countries (17 out of
21) had already introduced or were in the process of
introducing computer science concepts in their K-12
curriculum (Balanskat and Engelhart, 2014). Some
countries, such as the UK, introduced computer sci-
ence as a separate subject (English Department for
Education, 2013), while others decided to integrate it
with other subjects, for instance, Finland (Finnish Na-
tional Board of Education, 2014). The length of the
syllabi varies from K-9 to K-12, and a few countries
only include computer science in the upper grades
(10-12). However, integrating computer science with
math seems risky. For instance, an OECD report has
suggested that the higher the degree of computer us-
age in math lessons, the poorer are the results (OECD,

2015). Thus the need for developing and evaluating a
suitable pedagogy for the integration is palpable.

In determining the role of computer science in
education, there are various metaphors used, e.g.
computer science as literacy, a maker mind-set, or
grounded math (Burke and Burke, 2016). If the lit-
eracy metaphor is used, then programming as digital
literacy emphasizes the same logical skills as are ap-
plied in constructing linguistically correct sentences,
that is, using e.g. and/or/not in order to get the internal
logic of the sentence expressed. From a 'maker mind-
set' perspective, the programming language should be
as productive as possible, with a low learning curve,
which suggests visual programming languages, such
as Scratch. Some studies have, however, questioned
the bene�ts of Scratch in enhancing problem solving
skills and good programming practices (Gülbahar and
Kalelioglu, 2014; Meerbaum-Salant et al., 2011). The
grounded math approach highlights the links between
programming and math: the transfer between math
and programming seems closest to the functional pro-
gramming paradigm. For example, learning functions
in algebra can be practised using functional program-
ming languages.

Combining functional programming with math is
not new. Historically, attempts range from the early
use of LOGO (Futschek, 2006; Kulik, 1994) to re-
cent experiments employing Racket and Haskell (Ale-
gre and Moreno, 2015). While results from the
LOGO initiatives varied (Kulik, 1994), Racket eval-
uations have consistently been positive and stable
(Felleisen et al., 2014; Felleisen and Krishnamurthi,
2009; Schanzer et al., 2015; Schanzer, 2015). The
amount of research and the positive results reported
convinced our course organizers to choose Racket for
the teacher training MOOC.

2.3 Teaching Programming Using
Racket

The Racket programming language (http:
//racket-lang.org) is a multi-paradigm lan-
guage, which also supports functional programming.
Being a Scheme dialect previously known as PLT
Scheme, it has been developed further as an open
source project (Flatt and Findler, 2012). Racket
includes a programming IDE, DrRacket, designed
especially for teaching purposes (Felleisen and
Krishnamurthi, 2009). In contexts where DrRacket
cannot be installed, a web-based environment
called WeScheme (Yoo et al., 2011) can be used.
WeScheme also enables online sharing and remixing
of programs.

DrRacket has built-in support for the so-called stu-

dent languages starting with Beginning Student and
ending up with Advanced Student Language. Each
of these Student Languages gradually introduces new
programming primitives and concepts. Simpli�ed
syntax and semantics help beginners grasp the core
concepts of function design, such as composition and
calling. Tool creators have also de�ned more precise
error messages in order to assist novices in debugging
and analyzing code (Marceau et al., 2011).

DrRacket comes with graphics and animation li-
braries (2htdp/image, 2htdp/universe) that are espe-
cially apt for beginner level programming. These
libraries were developed for more than a decade
in the Program by Design project (http://www.
programbydesign.org/). Along with these li-
braries, the guide book ”How to Design Programs”
was written by Felleisen et al. (2014) for high school
and college level programming courses. The book
emphasizes the advantages of functional program-
ming and introduces Design Recipe to systematize
problem solving by dividing it into a chain of smaller
decisions. The Recipe also instructs how to construct
a program by composing functions and encourages
writing tests before an actual function implementation
(Felleisen et al., 2014).

To preserve the purity of the functional paradigm,
the imperative features of Racket are pushed back.
For instance, an assignment operation (set!) and other
functions causing side effects (display, read) are not
introduced until the student reaches Advanced Stu-
dent Language level. In the most recent version of
”How to Design Programs”, these imperative features
were removed altogether (Felleisen et al., 2014).

The Program by Design project provides a sepa-
rate program for middle school called Bootstrap. Its
mission is to introduce computer science by teaching
algebra by programming a video game using Racket.
This algebraic approach has been proved to improve
understanding about math concepts, such as variables
and functions (Wright et al., 2013). Racket also en-
ables passing numbers, strings and images as pa-
rameters. Using images in calculations justi�es the
description of Racket as ”arithmetic with images”
(Felleisen and Krishnamurthi, 2009).

A number of articles promote DrRacket as a
prominent way of learning algebra (Lee et al., 2011;
Schanzer, 2015), especially when special care is taken
of the valid instructions and purposefully planned ex-
ercises and pedagogical models, such as the Cycle
of Evaluation (Schanzer, 2015). The use of design
recipes turned out to foster the right order of opera-
tions and composition of nested functions. Felleisen
and Krishnamurthi (2009) boldly suggests that Boot-
strap (functional programming) provides the strongest

evidence of the favorable effects of programming
on math skills, along with the fact that researchers
have long viewed programming as a promising do-
main where to practise math concepts (Papert, 1996;
Resnick et al., 2009). Bootstrap arranges professional
training workshops for middle school math teachers
in the USA. In addition, Racket was utilized in the
professional training of math teachers in Israel (Levy,
2013). This training was based on the principles of
Program by Design, emphasizing test-�rst develop-
ment and the featured “algebra of images”.

3 Method

The idea for Koodiaapinen MOOC was introduced in
2015 by Tarmo Toikkanen and Tero Toivanen during
the annual Interactive Technology in Education con-
ference in Ḧameenlinna, Finland. The initial idea was
to help teachers learn programming with material that
has been prepared especially for them by their peers,
for instance, more experienced teachers.

Design based research aims at linking theory and
practice in the discipline of education (Reimann,
2011). It stipulates the use of several iterations and re-
designs of an educational artifact based on feedback
and experience. The beta version of the course was
developed and executed without funding, and four
voluntary MOOC administration members worked in
their spare time. According to the principles of DBR,
the course and its content would then be improved
course-by-course based on the feedback received.
Figure 1 illustrates the process of two nested design
cycles: the outer cycle is the process of curricu-
lum planning that takes place once a decade, while
the inner one is the iterative process of developing
the 'Coding at School' Racket material (http://
racket.koodiaapinen.fi). Development proceeds
in cycles, where different stakeholders give feedback.
Based on the customers, in-service teachers in the
present study, the artifact is redesigned together with
researchers, whose research interests lie in integrating
computational thinking with math education.

First three tracks of the Koodiaapinen course
(ScratchJr, Scratch, Racket) targeted at a number of
general goals: promoting creativity; presenting pro-
gramming as a tool for creating something new and
inspiring; sharing pedagogical ideas and artifacts dur-
ing the course; using exercises directly applicable in
a classroom context in order to make it easier for
teachers to get started; offering course participants
suf�cient content knowledge so that they would not
limit themselves to applying ready-made program-
ming materials but also be able to create their own

Figure 1: Nested DBR cycles of curriculum updates (up-
date/10yrs) and Coding at School courses (2 updates/yr)

programming exercises; and enabling peer-support by
urging participants to help each other on discussion
forums. The use of these peer-support channels was
crucial, given the lack of resources.

The very core of the 'Coding at School' Racket
material is to reveal the nature of programming as
a sort of applied mathematics and show how math-
ematics can be taught through programming. The ap-
proach is designed to motivate math teachers to adopt
programming in their teaching, and to show that pro-
gramming lessons are not time wasted.

After the course, its potential effects on the partic-
ipating teachers' content knowledge (CK) and tech-
nological pedagogical content knowledge (TPACK)
were evaluated (Voogt et al., 2013). TPACK measures
the ef�ciency of teachers in exploiting technology in
their teaching, and this evaluation required suitable
rubrics. However, the �uent use of technology dur-
ing math lessons is not the core goal of the MOOC.
Instead, the study aims at building on the existing
math foundation and fully exploiting and transfering
this knowledge as programming skills in order to cre-
ate the positive feelings of self-ef�cacy from the very
beginning. Consequently, in this study, the TPACK
model has been exploited in an attempt to �ll the
newly-created space between math and computer sci-
ence, by focusing in particular on a smooth transfer
between these two disciplines.

3.1 MOOC Platform Selection

Eliademy, the free Finnish platform, was selected for
the autumn 2015 MOOC (https://eliademy.com/
catalog/koodiaapinen.html). Eliademy com-
prises such basic features as course editing and man-
agement tools, a discussion forum, assignment sys-
tems for returning �les and support for quizzes. At
that time, the platform did not include peer-review.
In addition, sharing artifacts and ideas was not func-
tional in Eliademy, and as a result the course was
transferred to Padlet (http://padlet.com), an on-
line notice board system instead.

While Padlet worked nicely for sharing images
and code via WeScheme links and essays via Google
Drive or OneDrive, an integrated grading system was
missing. This lack caused manual work for the in-
structor. In addition, Padlet did not allow the in-
structor to contact participants, which prevented her
from giving personal feedback on, for instance, their
programming style and essays. Hence, an integrated
learning environment would have been preferable.

For the spring 2016 MOOC (https://plus.cs.
hut.fi/aapinen-racket/K2016/), the course plat-
form was switched to A+ (https://plus.cs.hut.
fi/) developed by Aalto University and used in the
university's own programming courses. In the begin-
ning, A+ did not support showcasing of returned arti-
facts. As this was found crucial for the Koodiaapinen
MOOC, the Rubyric team added the feature.

After this change, Rubyric's peer-review function-
ality was used to minimize the workload of the course
personnel. The new system enabled the instructor to
de�ne grading rubrics and points, so the peer-review
was as easy as selecting an appropriate description
for the code quality among given options. Peer-
reviews were conducted anonymously without using
the Padlet-style review wall. Code to be reviewed
was allocated randomly to reviewers. Exercises that
were not peer-reviewed were put on the Padlet-style
wall with the participants' names so that peers could
comment on their work, as shown in Figure 2. Pi-
azza (http://piazza.com) was used as the discus-
sion platform. These services were integrated using
IMS-LTI protocol.

3.2 Course Design Principles

The implementation of the Racket track was inspired
by the Systematic Program Design online course of-
fered by edx.org (Kiczales, 2015). Similarly to that
course, the Racket MOOC contained weekly exer-
cises with the following introductory material:

1. Short motivational video, in which the lecturer in-

Figure 2: Topic 1 artifacts on the Padlet-style wall (Spring-
2016)

troduced the contents and the purpose of the ex-
ercise. Some videos also responded to feedback
received during the previous week.

2. Tutorial screen capture videos introduced the core
concepts. The lecturer used DrRacket for show-
ing programming examples that demonstrated the
concepts to be learned during that week. The step-
per tool was used extensively in order to explain
the evaluation rules. Some written notes were
added online, but the course content was mainly
delivered in video format. The idea was that the
course participants could test the programming
examples themselves while watching the videos.

3. The Design Recipe was used to demonstrate the
principles of function design, see Figure 3. By
using the recipe, a user can solve one detail at a
time and proceed step-by-step until the function is
ready. One of its noteworthy features is the de�ni-
tion of test cases before implementing the actual
function body.

Figure 3: Design recipe presented as a staircase that helps
to design a function step-by-step

4. Exercises and their solutions were delivered as
both DrRacket and WeScheme �les and used as
self-tests of the course content presented in the
video tutorials.

5. Hands-on exercises differed from the System-
atic Program Design exercises as neither peer-
review nor multiple choice quizzes were used to
check how well the material had been understood.

Lastly, Koodiaapinen had an essay about the ped-
agogical aspects instead of a programming project
as in Systematic Program Design.

The programming exercises and their so-
lutions were taken from the Coding at
School material and the Coder's handbook
(http://racket.koodiaapinen.fi/manuaali/),
which contains documentation for the graphics and
animation libraries (2htdp/image and 2htdp/universe),
Beginning Student Language primitives, and new
library additions of Racket Turtle and display-read.

4 Results

The �rst Racket track was carried out on a weekly
basis. At the end of each week, feedback was col-
lected �rst using Google Forms and later Grader, an
online survey tool developed at Aalto University. The
feedback was saved and analyzed in order to improve
the next course. Open-ended textual feedback for the-
ory and exercises was solicited, as well as a time es-
timate about the workload of a week. In this chapter,
we introduce our results in chronological order, �rst
the Autumn-2015 results and corresponding lessons
learned, followed by the Spring-2016 results.

4.1 Autumn-2015

Promisingly, up to 369 teachers attended the beta ver-
sion of the Racket track of Koodiaapinen MOOC. The
Racket track turned out to be signi�cantly more dif-
�cult in comparison with the other tracks (ScratchJr,
Scratch), thus preventing participants from maintain-
ing the same pace. Based on the feedback, the
course had too much weekly content: the target was 2
h/week, but the actual workload was notably higher,
3-4 h/week. As a result, the MOOC team decided to
slow down the Racket track. To complete the course,
80% of the coursework had to be returned, as 140 out
of the 369 participants did (completion rate 38%).

The autumn course proceeded in the order of
functions-logic-loops. All in all, too many concepts
were introduced simultaneously and teachers started
to struggle with learning, which in turn resulted in an
excessive amount of questions in the discussion area.
On the other hand, experienced programmers still
lacked a few crucial tools needed in the exercises,
e.g., a conditional structure.Lesson learned:Topics
need to be organized based on their dif�culty: simple
things �rst and then proceeding to more advanced
techniques in a widening spiral. Exercises must be
synced with the introduced topics.

Coupling a function with the design recipe caused
confusion: participants did not see the need for test
cases and stubs.Lesson learned:These topics need
to be introduced separately, �rst functions and man-
ual testing in an interactive window. After this, tests
may be automated with check-expect and re-used in
designing new functions. Automatic tests will help in
understanding how functions should be implemented
and in checking that functions behave as expected. A
similar order is also used in the guide 'How to Design
Programs' (Felleisen et al., 2014).

No major problems due to DrRacket and
WeScheme were reported. However, check-
expect supported images in DrRacket but not in
WeScheme, thus examples worked differently, which
left WeScheme users puzzled. In addition, some in-
teroperability issues arose due to a few functions in-
troduced in Racket-lang documents, yet the Finnish
Coder's handbook was restricted only to primitives
functional in both.

Due to time constraints, some important concepts
were left out from the autumn course, e.g., recur-
sion, local variables and more advanced usage of lists.
However, these skills were needed when implement-
ing the quiz application in a good programming style
without repetition. Lesson learned: The quiz was
found highly motivating and applicable for school,
however, the corresponding lesson is to be comple-
mented with the needed advanced topics.

The �nal essay worked as expected: teachers
found it both motivating and useful. Postponing ped-
agogical and curriculum considerations to the end of
the course was a deliberate design decision: one needs
to understand relevant programming and computa-
tional thinking ideas as well as challenges involved
in teaching before adjusting the curriculum. The es-
say aimed at highlighting TPACK issues and summa-
rizing the ideas evolved during the course. The main
TPACK threads of this MOOC were to ponder how
to apply the course exercises to STEM subjects, es-
pecially math, and foster creativity, culminating with
the �nal essay. In addition, the accomplished self-
designed artifacts were one step towards advancing
self-ef�cacy and enactment.

The course material for Spring-2016 was revised
and rearranged and new material was developed based
on the lessons learned from Autumn-2015. The style
of the beta version was retained: introductory and tu-
torial videos, PowerPoint slides, exercises with solu-
tions and the programming artifacts to be returned
and reviewed. Three returned artifacts were peer-
reviewed, and therefore they had �xed return and re-
view deadlines. For all other artifacts, the deadline
was the end of the course.

Table 1: Two iterative Racket track development cycles based on the feedback (Autumn-2015/Spring-2016)

w Autumn-2015 Lessons Learned Spring-2016
1 Introduction to Racket programming using

images (2htdp/image library), problem de-
composition, variables as global constants.
Artifact: An image shared by participants

The image created
positive feelings
of achievement:
using simple
geometric shapes
familiarized the
teachers with the
tool and enabled
creativity.

t1: The same exercise as in autumn

2 Using functions and parameters to solve
problems (abstraction), the design recipe
as a scaffold.
Artifact: De�nition of a function (screen
capture images). The 1st exercise focused
on purpose of the function, its signature,
a stub and test cases, i.e. on demonstrating
the design recipe process. The 2nd exercise
was to implement the actual function body
and the minimum of two function calls.

Contents from
weeks 2-4 from
autumn 2015 were
divided into topics
2-5 and new con-
tent on recursion
and broader usage
of lists was added.

t2: Earlier introduction: how to use
true/false, comparison operators, predi-
cates and conditional structure (if) to con-
trol code execution, how to test functions
in an interaction window and by writing
unit tests (check-expect)
Artifact: De�nition of a function, which
uses if-expression, including the purpose,
signature and test cases for all code
branches. Peer-reviewed by 3 participants

3-
4
*)

Boolean operators (and, or, not), compar-
isons, predicates, and conditional struc-
tures (if, else) to control code execution.
The animation engine (2htdp/universe),
reading a user input (display-read library)
familiarizing with WeScheme.
Artifact: WeScheme code with condi-
tional structures, the result could be an
animation, a simple quiz or an automated
calculator for some math formulas. Shared
with the group

*) Time for the autumn material of
week 3 was doubled (week 3 became
weeks 3 - 4)

More code skele-
tons provided for
t3-5, so the course
participants did
not need to create
applications from
scratch.

t3: The design recipe for functions. Writ-
ing tests �rst, Boolean operators and
conditional structure for more complex
logic, animation engine (2htdp/universe),
WeScheme to share code
Artifact: No changes to the animation and
the simple mouse app. The quiz and the
calculator postponed.
t4: Helper and recursive functions, reading
user input (display-read library), blocks
with side-effects (user interaction), local
variables for storing the input
Artifact: De�ning multiple functions (at
least one recursive) i.e. a purpose, a sig-
nature and test cases. The end result could
be an image, recursive calculation or a sim-
ple calculator that asks an input in a loop.
Peer-reviews by 3 course participants

5 Looping using higher order functions
(map, foldl, foldr) and lists, usage of
Racket Turtle library to draw geometric
shapes.
Artifact: Shared image, which uses a
looping structure and either:

1. higher order functions + 2htdp/image
2. higher order functions/loops with re-

peat + Racket Turtle

As similar ex-
ercises were
already done in
accordance with
the recursion,
only Racket Tur-
tle option was
maintained and
foldl/foldr were
left out.

t5: Lists to store a set of values, iterating a
list recursively and producing new lists or
one result value, how to use image �les in
DrRacket and WeScheme applications
Artifact: WeScheme code, which imple-
ments a simple list based quiz using a re-
cursive list-eater function, shared with oth-
ers.
t6: Looping using lists and higher order
functions (map), usage of Racket Turtle li-
brary to draw geometric shapes
Artifact: Shared image, drawn using
Racket Turtle library

6 Requirements of the Finnish curriculum
for the programming, algorithmic think-
ing/computational thinking, and how to
teach and integrate it with other subjects.
Artifact: Either a.) an essay (1-2 pages)
re�ecting the challenges of teaching pro-
gramming b.) design of a new exercise
c.) a syllabus for integrating programming
into one's own subject

Participants felt
that this exercise
was particularly
applicable for
their work and
hence found it
motivating.

t7: The same exercise as in autumn, except
peer-reviews were added

Some participants complained that it was dif�cult
to create programs from scratch and preferred exer-
cises with given code skeletons. Thus, such skele-
tons were provided as a scaffold for writing a program
in order to support a learning path with distinct use-
modify-create steps (Lee et al., 2011).

4.2 Spring-2016

The course syllabus for Spring-2016 was designed
so that different aspects of algorithmic thinking (ab-
straction, logic, repetition) were introduced side by
side starting from the easier ideas and progressing to
more advanced ideas. The course content was di-
vided into seven topics, each scheduled to take 10-
14 days. Three topics were almost identical to those
in Autumn-2015: topic 1, topic 6 (previously 5) and
topic 7 (previously 6), i.e., the �nal essay was left un-
changed. Table 1 illustrates an overview of the course
content and exercises, and how the course developed
according to the feedback.

The Spring-2016 version of the Racket track had
fewer participants (171) than the beta version, as it
was competing for the same target group with a newly
introduced Python track. Of these 171 participants
who started the Racket track, 100 �nished, resulting
in a 58% completion rate (80% of the coursework was
required to pass). The completion rate was 31%, tak-
ing into account all teachers (325) who had enrolled
on the MOOC. The number of teachers, whose re-
turned coursework was accepted for topics t1 - t7, is
illustrated in Figure 4.

Figure 4: Number of accepted coursework for topics 1-7

4.2.1 Pre-course survey

We conducted a pre-course survey to get background
information about the participants (N=137) using
Grader, which was also used for lesson feedback.
Based on the survey, most participants had some pre-
vious experience in programming: only 26% had
none, and as many as 45% had used more than one
programming language/environment. In the order of
popularity, the languages mentioned were Scratch,

34%, C/C++ 30 %, Java 26 %, Pascal 22 % , Basic
20 %, Python 15 %, Visual Basic 14 %, JavaScript 10
%, FORTRAN 9 %, LOGO 8 % and C# 3 %. The
greatest number of participants were among the 25-
to-35 age group (42%) and the majority of them were
female (78%). Almost 90% of the course participants
were math teachers and a similar proportion (91%)
taught in grades 7-9. Almost two thirds (61%) re-
ported that they had never used programming in their
teaching.

Compared to Autumn-2015, notably fewer pro-
gramming questions were asked on the discussion
forum. Consequently, the peer support that proved
so important during Autumn-2015, was almost non-
existent during Spring-2016. The same phenomenon
was noted in all four tracks of Koodiaapinen. One
possible reason is that the Piazza was too dif�cult to
use, another might be that the joint discussion area of
all tracks was laborious to follow and hence distanc-
ing. In addition, discussions generated email noti�-
cations to all participants, which was found annoy-
ing. Moreover, while Autumn-2015 was advertised to
everyone, Spring-2016 was marketed mainly to math
teachers, who are anticipated to be more �uent with
technology by default, thus asking less questions.

4.2.2 Course feedback

The teachers' feedback on their level of experienced
enthusiasm, suitability and usefulness of the seven
topics covered was above average on a scale of 1-
5 (1: not at all, 2: a bit, 3: reasonably, 4: a lot, 5:
very much). The highest enthusiasm was created by
programming images (t1,6) and animations (t3). The
�nal essay (t7) scored the highest on the suitability
and usefulness due to its pedagogical and curriculum
re�ections, whereas recursion (t4) scored the lowest.
Overall, however, the scores did not differ remark-
ably, see Figure 5:

Figure 5: Spring-2016 feedback for topics 1-7

The course feedback indicated a medium dif�-
culty level for most lessons, but recursion was consid-
ered the most dif�cult in all aspects. In similar vain,
the workload of most topics scored in the middle,
where the exercises using more complex logic and

the animation library resulted in the highest workload
scores. The actual hours used per topic are shown in
Figure 6. The target for Spring-2016 was 3-4 hours of
work per topic, and in fact most participants used 2-6
hours. Hence, the target was reasonably close to the
realization.

Figure 6: Amount of participants as a function of workload
grouped by topics

4.2.3 Post-course surveys for the course
development

At the end of the course, the course setup was evalu-
ated by the participants, but the survey gain was no-
tably low at that iteration: only 12 participants an-
swered, out of which 11 completed the course. The
teachers were asked, for example, to list aspects that
helped in completing the course, the top three reasons
being:

1. the tutorial videos of the course

2. the importance of the subject

3. concrete programming exercises

Table 2 and 3 illustrate the claims that the par-
ticipants agreed on either 'strongly' or 'to a certain
extent'. The rejected claims were 'The course did
not support my development in becoming a teacher
of programming' (1.75) and 'The course did not of-
fer suf�cient knowledge of teaching programming'
(2.25). Most improvement ideas related to the course
schedule and the dif�culty of the exercises:

1. Only peer-reviewed exercises had deadlines while
the rest had to be completed before the course
end. This made it possible to complete tasks in
the wrong order, causing dif�culties. Setting ped-
agogically adjusted deadlines would improve this.

2. For some topics, the video examples were simpler
than the real exercises. This can be remedied ei-
ther by having the material cover more complex
examples, or making the exercises easier to match
the dif�culty level of the videos.

3. Although the video tutorials were considered
helpful and clear, a few teachers would preferred
written material: after watching a video, �nding
speci�c information caused problems.

Table 2: Claims that participants agreed on

Feature Score
[1..5]

MOOC-style courses are well suited for
professional development

4.5

The course provided skills needed for
teaching programming

4.4

The course increased my knowledge on
how to teach programming

4.3

The course provided methods for teaching
programming

4.3

The course worked well for as a MOOC 4.3
The course gave me concrete ideas (tips)
for my work as a teacher

4.3

The teaching methods applied enhanced
my learning

4.1

The course increased my con�dence in
programming as a teacher

3.9

I was committed to learning actively by
myself during this course

3.9

I will promote the contents that I learned
during this course to the other teachers in
my school district and my own school

3.6

The course made me excited about pro-
gramming

3.6

The course increased my interest in learn-
ing more about teaching programming

3.6

I received suf�cient support during the
course

3.6

4. To complete the course, 6 out of 7 topics were
required, thus a few participants did not return the
�nal essay. It, however, was considered the most
important topic, in particular more important than
those covered in topics 5 and 6. Consequently,
the teachers suggested that the �nal topic should
be compulsory and either 5 or 6 elective.

The course material and exercises were spread on
multiple platforms, such as A+, Eliademy, Rubyric
and Piazza, which was found confusing. Moreover,
A+ and Eliademy required separate accounts, which
led into problems e.g. when opening solution �les
in Eliademy. In order to �nd the exercises more
easily, the teachers suggested direct links to be at-
tached to the material. Due to the variety of plat-
forms, following the course execution was also prob-
lematic. The status of a delivery was shown in several
places, thus getting an overview of each assignment
was cumbersome, which hampered the recognition of
pending peer-reviews. Only a suf�cient number of
peer-reviews granted a credit and because of pending
reviews a number of credits were missing. Credits
were delayed also because the course set-up required

the instructor to accept each return separately. Yet
another source of annoyance was Piazza by sending
participants an excessive amount of email noti�ca-
tions. Consequently, the teachers proposed a daily or
weekly digest instead.

These improvement ideas were taken into account
in the later versions of the Racket course; the devel-
opment of the course is meant to be continuous. Af-
ter implementing a few of these improvements, mul-
tiple bene�ts could already be listed regarding the
new platform and course syllabus. First, reviewing
and grading of returned artifacts was much easier us-
ing the new Padlet-style wall. Also peer-reviewing
decreased the amount of work, since the instructor
needed to manually review only the cases that were
unclear. Secondly, code reviews provided a new
learning opportunity and clari�ed the requirements of
good programming style, for instance, why appropri-
ate naming and written purpose statements for func-
tions are important and why code needs to be tested.
Thirdly, the new course syllabus and schedule seemed
to work better and the workload for the course partic-
ipants and the instructor was more balanced.

5 CONCLUSIONS

We have developed an online programming course
for elementary school teachers, emphasizing the link-
age between mathematics and programming, and fa-
cilitating creativity and sharing. As the �rst result,
we found that teachers were willing to learn program-
ming and appreciated the pedagogical considerations
in particular: the �nal exercise of writing the es-
say scored highest of all exercises on both suitabil-
ity and usefulness. The previous programming exer-
cises aimed at enhancing the content knowledge. As
such, the programming exercises were tailored to be
�t for teaching in authentic classroom settings, but in
conjuncture with learning to program teachers were
called to re�ect on the exercises and come up with
new aspects and brand new tasks as well.

Secondly, the teachers' feedback from the Spring-
2016 course iteration was more positive than from the
�rst beta trial, which indicated that the level of dif�-
culty and workload were becoming reasonable. The
contents of the course were perceived both suitable
and useful. In addition, the course seemed to cre-
ate a fair amount of enthusiasm, making this type
of programming MOOC a motivating and interest-
ing form of professional development for in-service
teachers. In the effort to provide effective in-service
training, the improvement of the learning platform
and �ne-tuning the course material should be contin-

uous. Consequently, the course will be incrementally
improved based on the participants' feedback: these
two subsequent Racket courses prove that this type of
agile course development is feasible.

Thirdly, the positive course feedback and re�ec-
tions in essays seem to suggest that professional de-
velopment and self-ef�cacy of the participants in-
creased. However, future research should observe the
long-term effects of the course, e.g., how many partic-
ipants actually started using the learned material and
skills in their work. As Kennedy (2016) points out,
real enactment in the school context is the �nal test.

Further studies should also examine more thor-
oughly the suitability of the material for elementary
math and the question whether the course gave a sat-
isfactory enough insight into computational thinking.
For the purpose, the �nal essays provide a plethora of
data to review. Systematic research and executing var-
ious learning experiments will enable determining the
best practices for developing computational thinking
and enhancing math syllabus, thus ful�lling the new
requirements of the Finnish Curriculum 2014.

6 ACKNOWLEDGMENTS

We thank the Aalto University A+ and Rubyric teams
for their efforts for the Koodiaapinen MOOC. We ex-
press our gratitude to Emmanuel Schanzer for modi-
fying WeScheme to suit our material and to Technol-
ogy Industries of Finland Centennial Foundation for
funding the development of the Koodiaapinen MOOC
in Spring 2016. Last but not least, thanks to Tarmo
Toikkanen for coordination.

REFERENCES

Alegre, F. and Moreno, J. (2015). Haskell in Middle and
High School Mathematics. In TFPIE vol. 1,.

Balanskat, A. and Engelhart, K. (2014). Computing our
future: Computer programming and coding-Priorities,
school curricula and initiatives across Europe. European
Schoolnet.

Bandura, A. (2006). Guide for constructing self-ef�cacy
scales. Self-ef�cacy beliefs of adolescents5.

Barr, V. and Stephenson, C. (2011). Bringing computational
thinking to K-12: what is Involved and what is the role
of the computer science education community? ACM
Inroads 2, 48–54.

Bransford, J. D., Brown, A. L. and Cocking, R. R. (2000).
How people learn.

Burke, Q. and Burke, Q. (2016). Mind the metaphor: chart-
ing the rhetoric about introductory programming in K-12
schools. On the Horizon24, 210–220.

Dijkstra, E. W. (1982). How do we tell truths that might
hurt? In Selected Writings on Computing: A Personal
Perspective pp. 129–131. Springer.

English Department for Education (2013). National Cur-
riculum in England Computing programmes of study.

Felleisen, M., Findler, R., Flatt, M. and Krishnamurthi, S.
(2014). How to Design Programs, Second Edition. MIT-
Press.

Felleisen, M. and Krishnamurthi, S. (2009). Viewpoint
Why computer science doesn't matter. Communications
of the ACM 52, 37–40.

Finnish National Board of Education (2014). Finnish Na-
tional Curriculum 2014.

Flatt, M. and Findler, R. (2012). PLT - The Racket guide1.
Futschek, G. (2006). Algorithmic thinking: the key for un-

derstanding computer science. In International Confer-
ence on Informatics in Secondary Schools-Evolution and
Perspectives pp. 159–168, Springer.

Gagńe, R. M. (1965). The Conditions of Learning. New
York: Holt, Rinehart and Winston.

Gray, E. M. and Tall, D. O. (1994). Duality, ambiguity,
and �exibility: A proceptual view of simple arithmetic.
Journal for research in Mathematics Education , 116–
140.

Gülbahar, Y. and Kalelioglu, F. (2014). The effects of teach-
ing programming via Scratch on problem solving skills:
A discussion from learners' perspective. Informatics in
Education-An International Journal13.1, 33–50.

Heintz, F., Mannila, L. and F̈arnqvist, T. (2016). A Re-
view of Models for Introducing Computational Think-
ing, Computer Science and Computing in K-12 Educa-
tion. Frontiers in EducationOctober.

Jarvis, S. and Pavlenko, A. (2008). Crosslinguistic in�uence
in language and cognition. Routledge.

Kennedy, M. (2016). How does professional development
improve teaching? Review of Educational Research .

Kiczales, G. (2015). UBCx: SPD1x Systematic Program
Design - Part 1 (version 1, summer 2015).

Kulik, J. A. (1994). Meta-analytic studies of �ndings on
computer-based instruction vol. 1, of Technology assess-
ment in education and training pp. 9–34. : Psychology
Press.

Köhler, W. (1970). Gestalt psychology: An introduction
to new concepts in modern psychology. WW Norton &
Company.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erick-
son, J., Malyn-Smith, J. and Werner, L. (2011). Compu-
tational thinking for youth in practice. ACM Inroads2,
32–37.

Lent, R. W., Lopez, F. G. and Bieschke, K. J. (1991). Math-
ematics self-ef�cacy: Sources and relation to science-
based career choice. Journal of counseling psychology
38, 424.

Levy, D. (2013). Racket Fun-�ctional Programming to
Elementary Mathematics Teachers. In TFPIE2013 TF-
PIE2013.

Marceau, G., Fisler, K. and Krishnamurthi, S. (2011). Mea-
suring the effectiveness of error messages designed for
novice programmers. In Proceedings of the 42nd ACM

technical symposium on Computer science education pp.
499–504, ACM.

Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M. (2011).
Habits of programming in scratch. In Proceedings of the
16th annual joint conference on Innovation and technol-
ogy in computer science education pp. 168–172, ACM.

Mezirow, J. (1997). Transformative learning: Theory to
practice. New directions for adult and continuing educa-
tion 1997, 5–12.

OECD (2015). Students, Computers and Learning.
Papert, S. (1996). An exploration in the space of mathemat-

ics educations. International Journal of Computers for
Mathematical Learning1, 95–123.

Perkins, D. N. and Salomon, G. (1988). Teaching for trans-
fer. Educational leadership46, 22–32.

Reimann, P. (2011). Design-based research pp. 37–50.
Methodological choice and design. : Springer.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J. and Silverman, B. (2009). Scratch: pro-
gramming for all. Communications of the ACM ,52,
60–67.

Rich, P. J., Leatham, K. R. and Wright, G. A. (2013). Con-
vergent cognition. Instructional Science ,41, 431–453.

Schanzer, E., Fisler, K., Krishnamurthi, S. and Felleisen,
M. (2015). Transferring skills at solving word prob-
lems from computing to algebra through Bootstrap. In
Proceedings of the 46th ACM Technical symposium on
computer science education, pp. 616–621, ACM.

Schanzer, E. T. (2015). Algebraic Functions, Computer Pro-
gramming, and the Challenge of Transfer .

Voogt, J., Fisser, P., Roblin, N. P., Tondeur, J. and van
Braak, J. (2013). Technological pedagogical content
knowledge–a review of the literature. Journal of Com-
puter Assisted Learning29, 109–121.

Wing, J. M. (2006). Computational thinking. Communica-
tions of the ACM 49, 33–35.

Wing, J. M. (2011). Computational thinking. In VL/HCC
p. 3, csta.acm.org.

Wright, G., Rich, P. and Lee, R. (2013). The in�uence of
teaching programming on learning mathematics. In So-
ciety for Information Technology & Teacher Education
International Conference vol. 2013, pp. 4612–4615, ed-
itlib.org.

Yoo, D., Schanzer, E., Krishnamurthi, S. and Fisler, K.
(2011). WeScheme: the browser is your programming
environment. In Proceedings of the 16th annual joint
conference on Innovation and technology in computer
science education pp. 163–167, ACM.

Zeldin, A. L. and Pajares, F. (2000). Against the odds:
Self-ef�cacy beliefs of women in mathematical, scien-
ti�c, and technological careers. American Educational
Research Journal37, 215–246.

Publication VI

Niemelä P., Partanen T., Harsu M., Leppänen L., and Ihantola P. �Computational
thinking as an emergent learning trajectory of mathematics�, Proceedings of Koli Calling
International Conference on Computing Education Research, 2017

DOI: 10.1145/3141880.3141885
Niemelä et al. (2017a)

http://dx.doi.org/10.1145/3141880.3141885

Computational Thinking as an Emergent Learning Trajectory of
Mathematics

Pia Niemelä
Pervasive Computing

Tampere University of Technology
Finland

Tiina Partanen
City of Tampere

Finland

Maarit Harsu
Pervasive Computing

Tampere University of Technology
Finland

Leo Leppänen
Computer Science

University of Helsinki
Finland

Petri Ihantola
Pervasive Computing

Tampere University of Technology
Finland

ABSTRACT
In the 21st century, the skills of computational thinking complement
those of traditional math teaching. In order to gain the knowledge
required to teach these skills, a cohort of math teachers participated
in an in-service training scheme conducted as a massive open online
course (MOOC). This paper analyses the success of this training
scheme and uses the results of the study to focus on the skills of
computational thinking, and to explore how math teachers expect to
integrate computing into the K-12 math syllabus. The coursework
and feedback from the MOOC course indicate that they readily
associate computational thinking with problem solving in math. In
addition, some of the teachers are inspired by the new opportunities
to be creative in their teaching. However, the set of programming
concepts they refer to in their essays is insubstantial and unfocused,
so these concepts are consolidated here to form a hypothetical
learning trajectory for computational thinking.

CCS CONCEPTS
ˆ Social and professional topics � Computational thinking ;
Computing education; Employment issues;

KEYWORDS
Computational Thinking, Learning Trajectory, K-12 Computer Sci-
ence Curriculum, Math-integrated Computing, In-Service Teacher
Training

ACM Reference Format:
Pia Niemelä, Tiina Partanen, Maarit Harsu, Leo Leppänen, and Petri Ihan-
tola. 2017. Computational Thinking as an Emergent Learning Trajectory of
Mathematics. InProceedings of Koli Calling 2017, Koli, Finland, November
16�19, 2017,10 pages.
https://doi.org/10.1145/3141880.3141885

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Koli Calling 2017, November 16�19, 2017, Koli, Finland
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5301-4/17/11. . .$15.00
https://doi.org/10.1145/3141880.3141885

1 INTRODUCTION
The rapid digitalization of society and the demand for a technologi-
cally �uent workforce for the 21st century means that our education
system has had to adapt. Computational thinking (CT) skills com-
prise a signi�cant portion of the new qualities that make up the
resulting updated K-12 curriculum. Curricula, syllabi and learning
trajectories are the essential components in making computational
thinking accessible. The Finnish National Curriculum was modi�ed
in 2014 to include algorithmic thinking (a subset of computational
thinking) and computing as the emergent parts of the math syl-
labus [13]. These changes were �rst introduced at the primary
level and have been in e�ect since autumn 2016. However, exactly
how computational thinking should be taught has still not been
clearly de�ned, which has created an arena for various learning
experiments, further research and speculation.

Educators need to agree on a clear theoretical perspective in
order to establish the evaluation criteria for computational thinking.
In addition, math teachers need to review the computing skills that
they now require in order to implement CT in their courses. In
order to respond to this need, in the autumn of 2015, a group of
volunteer teachers informally launched the Code ABC MOOC with
several tracks, one of which is the Racket track examined here.
The Code ABC MOOC is aimed at providing teachers with the CT
skills required by the new curriculum. In addition to introducing
the basics of computing, it emphasizes creativity and the ability
of teachers to integrate computing into their math lessons in a
pedagogically justi�ed manner.

The additions to the curriculum can be divided into two comple-
mentary parts: the basics of computing and computational thinking.
In this article, we examine the views of the Racket MOOC partici-
pants by analyzing their essays (N=206). In this analysis, we focus
on computational thinking and how the teachers expect to apply
it in their teaching. The ideas and proposals in their essays are
combined to form a learning trajectory for math that extends into
the area of computational thinking. The main emphasis in this
work is not on the basics of computing, but on how computational
thinking is interwoven into teaching math. In the analysis, we focus
on computational thinking and how the teachers expect to apply
it in their teaching. The aim is to sketch out as smooth a learning
trajectory as possible by streamlining the transfer between math
and computing. More precisely, we seek to answer the following
research questions:

� How do the teachers de�ne computational thinking?
� How do they integrate computing with math?
� What kind of a learning trajectory for computational think-

ing can be constructed from the teachers' essays?

This article proceeds as follows. Section 2 reviews published
work on computational thinking (CT) and learning trajectories
(LT). Section 3 describes the research method. Section 4 provides
the results: the teachers' views on both CT and computing are
represented and generalized as a new enhanced LT of math that
expands into the area of CT. Section 5 gives conclusions.

2 RELATED WORK
2.1 De�nitions and models of CT
CT has emerged as a consequence of the increased prominence
of computing as a new school subject. In particular, it refers to
the skills that programmers need in their work. Wing introduced
the term CT in 2006 in her seminal article [38]. Although there is
still no absolute consensus on the de�nition of CT, most experts
accept Wing's later description from 2010, that CT is, �The thought
processes involved in formulating problems and their solutions so
that the solutions are represented in a form that can be carried out
by an information-processing agent� [40]. Attempts to de�ne what
exactly constitutes CT can be traced back to 1996, when Papert
stated that, "Computer science develops students' computational and
critical thinking skills and shows them how to create, not simply use,
new technologies. This fundamental knowledge is needed to prepare
students for the 21st century, regardless of their ultimate �eld of study
or occupation"[29]. Papert's observation that CT is a creative skill
underpins much of the now accepted de�nition of the discipline.

The commonly accepted cornerstones of computational think-
ing include: data collection, data analysis and data representation,
problem decomposition, abstraction, algorithms, automation, par-
allel code and simulation, as de�ned by Barr and Stephenson[5].
This model de�nes three classes for data, thus emphasizing its im-
portance. In addition, it should be noted that parallel code and
simulation are not commensurate with abstraction and automation,
as the former tend to be more concerned with the implementation
speci�cs.

Although a number of models enumerating the contents of CT
have been proposed, see e.g. [5, 9, 36], in our opinion, the models
and ideas introduced by Wing [39] and Cuny, Snyder and Wing
[10] encompass all the essential components of CT and nothing
super�uous, and they still have enough resolution power to catego-
rize the Racket MOOC participants' views. The combined model
is capable of covering most of the teachers' CT characterizations
under the following three categories:

� abstractions (e.g. pattern generalizations, symbol systems
and representations, and structured problem decomposition
e.g. as functions) that indicate the design-orientedness of a
participant;

� automation (the control �ow realized with the help of control
structures and information processing); and,

� analysis (e.g. debugging and systematic error detection, op-
timizing performance and e�ciency)

2.2 Integrating computing into K-12 curricula
A signi�cant number of European countries have recently intro-
duced computing as a new addition to their K-12 curricula [3, 16].
Although most of these countries have introduced computing as
a separate subject, Finland has chosen to integrate CT into the
curriculum mainly with math and crafts, see Table 1. Math provides
a theoretical basis for the concept, while crafts gives the pupils an
opportunity to apply their newly-learned skills by creating digital
artifacts, such as robots. Compared with computing, math has a
well-established learning trajectory that has endured the test of
time, and has survived a number of regenerations, such as that
inspired by the New Math movement [21]. In Finland, the teaching
of Craft has developed along with changes in technology, and has
long included computing as one of its components.Here, we aim to
examine how best to exploit this synergy between the two topics.

Integrating computing with math is not risk-free. A recent OECD
study [26] concluded that the more technology was merged with
the math syllabus, the poorer were the results. Nevertheless, Hem-
mendinger[17] reminds us that algorithmic thinking is not any-
thing new: the origin of the term "algorithm" lies in 12th-century
Persia. Similarly, Tedre and Denning[37] states that the history of
CT can easily be traced back to the 1950s. However, rather than
enumerating the many advantages of CT, these authors prefer to
explore the results of previous learning experiments with the sub-
ject, in order to avoid repeating the same mistakes again and again.
Indeed, they question the transferability of algorithmic thinking,
which has hardly ever been integrated successfully into other sub-
jects, despite high expectations.

We proceed under the assumption that integrating computing
into math will inevitably move the center of gravity of the math
syllabus towards CT, but that this will merely strengthen the ex-
isting link between math and computing. Along with adapting
appropriate thinking patterns, CT also requires a student to learn
the necessary computing skills. Conceptually, the transfer between
math and computing �ts best with with the functional programming
paradigm. In particular, it is claimed that learning the functions of
algebra is easiest with functional languages [24, 35].

Math-integrated computing has a remarkably long history with
the functional programming paradigm, starting with the LOGO
learning environment [14, 23, 28], and continuing with the recent
Racket and Haskell experiments [2]. Although it has been argued
that Haskell has some pedagogical advantages over Racket, such
as strong typing and symbolic notation closer to math, the Racket
camp in the USA has consistently reported good, stable results [11,
12, 34, 35]. The successful experiments with Racket have focused on
the transfer between computing and algebra, whereas the results
with the LOGO experiments are harder to pin down [23].

Felleisen and Krishnamurthi[12] propose the paradigm of imagi-
native programming, by which they mean inventive exploitation of
the media (image) rich Racket programming language. In contrast
to other popular functional languages, Racket supports images as
�rst-class values, which means that they can be inserted into text
and manipulated in a similar fashion as numbers, e.g. in DrRacket
editor. The authors note, however, that integrating computing into
other subjects is fraught with di�culties, and they emphasise that
the programming language should be as close to the language and

Years 1�2 Years 3�6 Years 7�9
Digital competence using digital media, technological �uency impact of technology, tech-integration
Math step-by-step instructions visual programming algorithmic thinking,

good computing conventions
Crafts robots, automation embedded systems,

own artifacts
Table 1: Computing-related additions to the Finnish Curriculum, 2014. (Typically a student is 6�7 years old, when starting
Year 1.)

concepts of the school math syllabus as possible. This complies
with the near transfer principle, which states that the more similar
the topics are, the easier is the learning [32].

2.3 Co-constructing LT
Learning trajectories (LT) have made an important contribution to
curriculum development and research. They are a part of a larger
theoretical framework referred to as hierarchic interactionalism
[33] , which synthesizes aspects of both Piagetian constructivism
and Vygotsky's Zone of Proximal Development. The theory states
that children actively and iteratively construct knowledge that is
ordered as "hierarchic constructs", or mental structures. Although
originally concerned with early education, hierarchic learning can
also be applied to adult education, especially in such cases where
any previous learning experiences are missing. For such adult learn-
ing developments, hierarchic interactionalism introduces the con-
cept of non-genetic levels of cognitive development, in contrast to
the traditional genetic levels of cognitive development ascribed to
infants [8].

To ensure the smooth integration of CT, a well-grounded LT
should determine consistent progress in the same way that the
more established math syllabus does. In the context of comput-
ing and CT, the cohort of teachers in this Racket MOOC study
have enough computing experience and understanding to re�ect
on what they have learned. It is their re�ections on their experience
of Racket MOOC that are elaborated on here in order to construct a
hypothetical Learning Trajectory for the development of CT in the
Finnish school curriculum. In this study, the test subjects (profes-
sional math teachers) are, on the whole, older than the participants
in many other LT studies. According to Piagetian genetic epistemol-
ogy, they are well above the age at which children begin handling
formal operations, i.e. twelve and above [31].

Although adults can think more abstractly than children, the
Piagetian cycles still apply to adult learning, even though some
sensory-motoric cycles may be quicker, while others may have
ceased to exist. In this particular study, it is also anticipated that
the transfer will in�uence the learning: the closer the subjects,
the easier is the transfer, and this seems to be true of the transfer
between math and computing. However, there is little doubt that
adult learners face di�erent challenges than elementary school stu-
dents. For instance, the brain's plasticity slows down in adulthood,
which a�ects learning. In addition, although it may sound counter-
intuitive, an adult learner's gained expertise may not always be an
advantage, as a way of thinking that has become too entrenched
can pose problems for the adult. As [4] points out, entrenched and

therefore less sensitive mental structures may result in possible
error signals failing to induce direct changes in the mental system.

On the other hand, as experts in both the pedagogy and substance
of teaching math, math teachers are able to utilise a variety of
strategies for e�cient learning. A meaningful instructional set-
up and well-justi�ed LT facilitate explicit abstraction and transfer
between prior knowledge and new concepts [32]. Given the various
advantages and constraints, the math teachers who are the subject
of this research can be regarded as valid representatives for the
ultimate target group, elementary school students.

3 METHOD
3.1 Context of the Study
Up to 540 teachers participated in the Code ABC MOOC during
the research period of autumn 2015 and spring 2016 [30]. One of
the authors of this article was the instructor of the Racket track.
The �rst design principle of the MOOC was to use multiple visually
interesting image/Turtle/animation exercises to enable creativity
in order to appeal to elementary school students. The second de-
sign principle was to prove the applicability of computing in the
context of elementary school mathematics. Math teachers need to
be convinced of the bene�ts of adopting CT and computing into
their classes without feeling that time is diverted from math studies.
Therefore, the programming exercises had a multitude of mathe-
matical concepts woven in, such as geometrical shapes, angles and
measures, the coordinate system, rounding decimals, and functions
to calculate percentage/price/area/volume and to solve triangle
problems, for instance, by utilizing Pythagoras' theorem.

The Code ABC MOOC consisted of six programming exercises
and a pedagogical essay as the last item. The details of the course
content and how it was organized can be found in [30]. To complete
the course, 80 % of the coursework had to be accomplished, thus
only a part (38 %) of the participants (N=130 in autumn 2015, N=76
in spring 2016, total of N=206) returned the �nal re�ective essay. In
the essays, the participants re�ected on the curriculum, sketched
out appropriate LTs for CT, and provided many instructive ideas
and lesson plans. This study applies mixed methods: the essays
written by the course participants are analyzed both qualitatively
and quantitatively. In the qualitative analysis, the de�nition of CT
and linking computing with math are extracted, and the most de-
scriptive quotations are selected to give a voice to the teachers. The
quantitative analysis synthesizes the teachers' views as statistical
charts and �nally as the crowd-sourced LTs of CT.

The teachers' CT views were categorized into three super-classes
based on the model by Cuny et al. [10]: abstraction, automation, and

analysis. In order to examine the teachers' views about abstraction,
the design-orientation (measured as the amount and level of detail
related to the abstractions) of each teacher was estimated on a Likert
scale (1-5). The score illustrates the structuredness of the comput-
ing process as a whole. The phases of planning, documenting and
testing are counted as indications of design-orientation.

The Racket MOOC applied the staircase Design Recipe for Func-
tions model [11] , which divides programming into the following
steps:

(1) think what a function is supposed to do, specify the purpose
(2) name the function descriptively, �gure out needed and re-

turned info, specify the signature
(3) write the function stub, use descriptive parameter names

and set a placeholder for a return value
(4) implement and run tests (check-expect) with concrete values
(5) lastly, implement the function body

It was mandatory to successfully complete the MOOC exercises
and writing unit tests with check-expect (item four above).

The teachers' compliance with this recipe was one criterion used
to arrive at the Likert-scale score of design-orientedness. The oc-
currence frequencies of computing concepts were recorded from
the content, whereas the CT related topics found in essays were
grouped to �t their respective category in the CT model. The most
frequent topics are visible in the dendrogram (1b), such as decom-
position, problem solving and functions as identi�ers of abstraction.
Even if the data itself is qualitative, it is quantitatively analyzed.
Mixing qualitative and quantitative approaches within or across
the stages of the research process is referred to as the mixed model
[20].

4 RESULTS AND DISCUSSION
This section introduces the results based on the pedagogical essays
written by the teachers. In trying to integrate CT with math, the
teachers were particularly concerned with the pedagogical view-
points. We will examine how they perceive CT and decompose it as
the general capability needed in programming. After the CT results,
the a�ordances of those parts of the math syllabus which are most
conducive to computing are investigated in more detail, as the math
teachers describe which math areas, in their opinion, best suited
for computational interventions. To make the results more general-
isable, the teachers' views are combined into one crowd-sourced,
math-integrated LT for CT.

4.1 Components of the CT model
Overwhelmingly, the teachers showed that they had internalized
the concept of CT, see Figure 1. All the needed components, ab-
stractions (41,9 %), automation (34,9 %), and analysis (7,0 %), were
present in proportion to their share in the MOOC content. In addi-
tion to the main components of the CT model, teachers emphasized
such qualities as logic and creativity. Figure 1a lists the sub-items
of each CT area with their percentages. The following subsections
will illustrate the teachers' views with selected quotes.

4.1.1 Abstraction.The teachers described abstraction as: mak-
ing generalizations and �nding regularities; being able to make
abstractions, design and model systems; writing documentation,

(a) CT categories decomposed

(b) Percentages of categories

Figure 1: CT key areas by math teachers as a decomposed
dendrogram (a), and a pie chart (b). Percentages illustrate the
relative frequencies of the concepts in the essays; however,
values less than 1 % are omitted.

Figure 2: Computing should be taught by concentrating
more on theory, concepts and design than creative hands-on
experiments (N=206)

and following good coding conventions. While contemplating var-
ious aspects of CT, teachers re�ected on the advantages of good
problem solving skills in general, as the following response shows:
Highlighting problem solving skills is a welcome addition in any
subject. Everybody bene�ts from decomposing problems into sub-
problems and solving them step-by-step.In computing, like in math,
problem-solving starts with decomposing the problem into smaller
tasks, i.e., functions.

4.1.2 Automation.In Wing's words [39], computing is automat-
ing abstractions, i.e., an implementation. Within the automation
category, the teachers regarded algorithms as the most important
skill. Furthermore, designed functions need to be sequenced into
separate commands.

During function implementation, a student must employ itera-
tions, conditional logic, and all the other syntactic means in order
to accomplish the task. So, in addition to basic syntax, the control
structures must have been internalized as well.Algorithmic think-
ing produces such routines that facilitate and speed up our everyday
actions.Natural language provides an e�cient tool in problem de-
composition and deeper understanding:In my teaching, I emphasize
the path to the solution; the plain answer is nothing in lieu of interme-
diate steps to the solution and assessing the soundness of the answer.
Computing supports the development of algorithmic thinking, which
justi�es its inclusion in the curriculum of the elementary school.

4.1.3 Analysis.After the design and implementation, it is time
to evaluate achievements. In math, the evaluation phase means e.g.
ensuring that the result of a calculation is reasonable. In comput-
ing, the program must pass tests. If not, the functionality will be
debugged and errors �xed until the tests are passed; as one teacher
puts it: Debugging separates the wheat from the cha�.

At a more sophisticated level, the analysis covers aspects of
e�ciency and resource usage. The bottlenecks of execution may
be determined by pro�ling the code. In algorithm development,
the benchmarking of speed, for instance, enables comparisons of
di�erent solutions. From the angle of project management, this is
the phase during which the quality of the product is assessed, i.e.,
whether a client is happy and there is completion of de�nition-of-
done requirements.

4.1.4 Logic.Logic was mentioned the most frequently out of
the uncategorized responses. In this context, logic is understood
both as the skill of handling conditions and their truth values in
iterations and selections, and as logical thinking skills. These skills
comprise the clarity of abstractions, problem solving, seeing com-
mon patterns, and proceeding consistently step-by-step.

4.1.5 Creativity.Conceptions of teaching computing on the axis
of creativity-vs-design-orientation varied remarkably, although on
the whole they were more creativity-weighted, see Figure 2. The
conceptions range from one extreme of seeing creativity in all
computing phases to observing no creativity at all. For example:
I think computing is not creative at all! Not adhering strictly to the
rules will be penalized. Creativity can not be taught by program-
ming. Teaching programming may be reduced to merely teaching
the theory.Self-evidently, highlighting the design phase illustrates
design-orientation:It is crucial to learn the importance of planning.
It is important that a student will be able to think about the program

and its functionality even without knowing how to code. Thus, I con-
sider design as the most important skill. Once the design is clear, it is
easy to implement the program.

The MOOC course emphasized planning functions beforehand
and including unit tests and documentation as a part of the process.
At the beginning, the need for documentation was questioned:
While coding, documentation seemed very stupid: of course you know
what you are currently doing. Still afterwards, when writing more
code, written comments started to feel precious. In addition, the proper
naming of functions helped understanding.

Some teachers favored experimental learning, expressing them-
selves as follows:Playing and experimenting is well suited for learn-
ing programming. There is not only one correct way to solve the
problem with code. Let us try, dare to fail, tolerate uncertainty and
�nally experience the joy of success, when the code works as expected.
And: I enjoy such tasks the most that allow playing and experiment-
ing. When starting with a completely new group, I would teach this
way, not so much going through the pile of di�erent concepts.And
one comment, where Dewey's view is well internalized:Learning
by doing!, Programming is 90 % creativity, 10 % theory.In the middle
of the creativity-vs-design continuum, we encountered opinions,
such as:creativity and theory, they go hand in hand; once basis and
commands are clear and internalized, experiments / play are needed;
andthe lack of theoretical knowledge limits creativity.

Some participants noted the two-sided nature of creativity:In
computing, creativity does not manifest itself in such richness that
we are used to. On the contrary, �nding the shortest and the most
optimized way of writing code demonstrates creativity.This teacher
broadens the de�nition of creativity even further, that is, being able
to prepare for faulty input and to step out of the current situation
and anticipate easy maintenance in future:Creativity is that your
code works even if a user gives a faulty input. Moreover, creativity is
writing such easy-to-read code that a person who modi�es it gets the
idea with ease.Even though this teacher is capable of combining
creativity with design-orientedness, the majority of the teachers
echoed the opinion quoted at the start of this section, which con-
trasts creativity with design.

Another teacher became particularly inspired with the open-
ended nature of programming tasks, and the opportunity to be
creative:Here is my owl. I wanted to include it here, because while
doing it I was inspired like a child. The whole world of coding, its
opportunities and creativity opened to me. I was capable of doing
this and the result was unique!Being creative equals tinkering, the
philosophy behind which has also been referred to as having 'a
maker mindset'.

4.1.6 Complemented CT Model.Figure 3 merges the CT model
components of Cuny et al. [10] that were unambiguously present
in the teachers' replies with the new CT complements of logic and
creativity.

Figure 3: CT model enhanced with logic and creativity

In minor quantities, the teachers emphasize such personal charac-
teristics as perseverance and preciseness. A number of them worry
about their students' lack of motivation and perseverance regard-
ing science-technology-engineering-maths (STEM) subjects that
need hard work and an undaunted attitude in the face of di�culties.
Being precise is tested, for instance, when a student is struggling
with the syntax of textual programming languages, where adding a
semi-colon or right indentation may do the trick. Many teachers
proposed the students' own projects to prepare them for collabora-
tion and working life. Project work necessitates paying attention
to the schedule and the process in its entirety from the beginning
of the design-phase to the very end of testing, documenting and
�nalizing the product.

4.2 Math integration
In integrating computing into math, geometry was the most popular
subject: the red slice of the pie (54.7 %) in Figure 4. The majority of
the Racket MOOC participants sketched out geometry-oriented les-
son plans. In addition, the teachers envisioned integrative projects
with art and crafts: math-integrated computing would provide the
needed design skills, which could be exploited in practice by im-
plementing designs for posters, stencils, or 3D printing. Based on
their answers, the serendipity of the outcome due to automation
and iterations seemed to enthuse a number of teachers. In addi-
tion, Racket's capability of handling images as �rst-class values
facilitates the programming of graphs and images with ease.

The prominence of geometry is still surprising, as concept-wise
it is not central. It may rather be interpreted as an area where a
student can apply computing skills. For example: a programmer may
visualize both plane and solid geometric shapes and calculate their
areas and volumes. Even though Turtle is not part of any speci�c
math syllabus area, the teachers frequently mention it. Turtle is
a movable �gure that can be used as a drawing tool. For its part,
Turtle sca�olds forthcoming steps of visualizations in geometry
and functions of algebra, and fosters CT. It might also turn into a
precursor to computing as one teacher points out - her students
consider computing asguiding some dude along a certain route.

(a) Math categories decomposed

(b) Percentages of categories

Figure 4: Syllabus areas �t for computing (N=206). The per-
centages are based on the relative frequency of exercise pro-
posals of the teachers. Percentages illustrate the relative fre-
quencies of the math syllabus areas connected to the exer-
cises. Values less than 1 % were omitted.

Figure 4 shows the most popular syllabus areas �t for computing:
geometry, algebra, arithmetic, and logic. Algebra and arithmetic
got clearly fewer votes even though they are more fundamental
theory-wise in understanding programming basics: chronological
and consistent progressing necessitates devising basic operations
and the order of arithmetic operations before expressions and equa-
tions, followed consistently by algebraic fundamentals, variables
and functions. In computing, statements are divided into the prim-
itive assignments of variables, and function calls, which requires
familiarity with these two fundamentals.

4.3 The learning trajectory of computational
thinking

This section outlines the crowd-sourced LT as a means to generalize
the teachers' views on CT. We merge the exercise proposals and
syllabus ideas of the teachers' essays as LTs grouped under the
corresponding syllabus areas. The majority of the proposals were
highly compliant with the Finnish National Curriculum 2014, which
forms the skeletal LT that is to be determined more in detail with
exercise proposals and by linking selected computing concepts to
corresponding math concepts.

According to the teachers, computing should be started already
in primary school (Years 1�6) with a graphical environment, such as
Scratch. Turtle is regarded as a good intermediate tool for bridging
the gap between Scratch and textual programming, such as Racket.
In addition, Turtle facilitates breaking the task down into smaller
sub-tasks, for example, when constructing �gures from simpler
shapes. This is a kick-start to decomposing problems into smaller
parts, hence it is good preparation for programming.

In the school grades (Years 7�9), students should preferably con-
tinue with textual programming. In Year 7, a student must learn how
to execute basic mathematical operations. In algebra, expressions
and equations support this topic as well, and built-in functions of
the computational system demonstrate how to exploit functions.
These calculations can be executed in the prompt as simple com-
mand line commands, so it is not necessary to write an actual
program in this phase. In geometry, however, a student could start
exercises in drawing various geometrical shapes. In order to modify
and demonstrate the achievements, the results may be saved as
programs. The teachers sketched the following examples:

� Turtle for examining shapes, angles, symmetry and mirror-
ing that belong to the wider domain of transformations

� programming formulas
� quizzes for e.g. identifying geometric shapes

The teachers anticipate an easier engagement with visually appeal-
ing computer graphics than with calculations. In addition to static
geometric exercises, the MOOC rehearsed animations as a dynamic
extension. However, the animation exercises were not frequently
referred to in the essays.

In Year 8, students start with percentages. These calculations
are �t for functions, such as calculating reductions in prices. The
algebraic fundamentals, variable and function, are introduced in
this phase. In geometry, these algebraic fundamentals are exploited
by de�ning functions for area and volume. The side length of a
quadrangle implemented as a function parameter would enable easy
experimenting. After plane geometry, drawings continue with the
more advanced 3D shapes of cube, cone and cylinder. The teachers'
exercises covered the following topics:

� equations and inequalities, formulas for e.g. percentages,
areas, and other STEM subjects as well, in particular physics

� (simple) calculator application
� drawing plane and solid geometry shapes

In Year 9, percentages continue further and functions are visu-
alized as graphs, which facilitates analyzing their behavior, such
as �nding solutions, and minima and maxima. In analyzing the
data, visualization in general could be used in math and STEM. In

this phase, the teachers were willing to gradually move to more
complex tasks and to give more freedom to the students in topic
selection:

� functions and simultaneous equations, solving and analyzing
behavior

� problem solving, being able to decompose a bigger task into
smaller functions

� own projects, learning to take responsibility

The teachers had mature and instructive opinions on how to
apply CT to typical problem-solving in math. Practices such as
problem decomposition, �nding the optimal solution, analyzing the
end result and representing the solution to others by verbalizing
the phases, were categorised as CT. However, when moving on
to actual computing, the teachers' views were more rudimentary,
often being rather shallow in concept and concerned with minor
details rather than striving for the bigger picture. Although most
teachers were familiar with the computing requirements of the
Finnish National Curriculum 2014, and tried to elaborate on them
further to �ll the gaps, there were surprisingly few totally original
suggestions.

In addition to the National Curriculum requirements, the CS syl-
labus also covers the majority of computing fundamentals such as
variables, functions, and statements, although type was rarely men-
tioned in the essays. The absence of type also re�ects the MOOC
content which is based on Racket's implicit typing. A couple of the
more experienced computing teachers listed variables, function,
selection and iteration as the target concepts, which, as a proper
subset of gathered CS1 fundamentals, implies that consensus con-
cepts might be found quite e�ortlessly. Table 2 shows that each of
the syllabus areas received several exercise proposals.

The math teachers are remarkably faithful to the Finnish Na-
tional Curriculum in following its guidelines and schedule. Hence,
the curriculum sets the basis for the learning trajectories of each
syllabus area. However, theory-wise only a few of these areas are
closely linked to computing fundamentals. Figure 5 visualizes the
connections between computing concepts extracted from the es-
says and the respective areas in the math syllabus. The upper
part of Figure 5 depicts the LT of mathematics in Years 1�2, Years
3�6, and Years 7�9, where the solid arrows illustrate prerequisite
relationships of math concepts.

The lower part of Figure 5 shows the necessary computing con-
cepts and their prerequisite relationships. Computing concepts are
clearly separated to avoid confusion. The concepts extracted from
in the teachers' essays were validated against the basic comput-
ing concepts in Section 4.4. The concepts divide into abstraction,
automation, and analysis. This categorization complies with the
CT model explained in Section 4.1. We have not outlined the exact
schedule for teaching these concepts. However, the dashed lines in
Figure 5 extend LTs into the area of CT, thus implying the timing if
the corresponding concepts were introduced in sync.

Type and data structure belong to abstraction because they refer
to abstract data types. Even integers can be considered abstract,
as their implementation is hidden. Variables are abstractions of
real world items. Functions can be seen as command abstractions.
As an abstraction tool, Design Recipe by Felleisen et al. facilitates
the planning of well-designed functions [11]. Recall from the list

at the top of Page 2 that automation contains control �ow, as the
automation nodes of the Figure. Our analysis illustrates that the
re�ective part of the process complies with the test-driven emphasis
of the Racket MOOC.

Concepts of geometry do not link to fundamental computing
concepts (e.g. variable, function, and type) in the CT box below.
Thus, geometry-related exercises do not limit or constrain the CT
teaching schedule. However, various topics in geometry provide
suitable applications to practice programming and, in particular,
its automation role with Turtle and computer graphics. If a�ective
aspects of learning are emphasized, these exercises seem to inspire
a number of MOOC participants.

4.4 Validity considerations
In qualitative research, data, method and researcher triangulation
are the main means of improving validity [22]. Although this arti-
cle is based only on the data of essays, previous work which also
utilized survey data produced similar results to the �ndings here.
The mixed research model exploits both qualitative and quantita-
tive phases: qualitative information is �rst coded or occurrences
are counted, after which the data is quantitatively handled. Re-
searcher triangulation would have improved the quality of catego-
rizing of the CT components and coding of creativity vs. design-
orientedness in Chapter 4.1.5. However, due to time pressures, only
one researcher was available to read, categorize and code the essays.

Overall, the taught topics taught in the MOOC were re�ected in
the teachers' essays, which is to be expected. Thus, the extracted
concepts do not spring from a vacuum, but are an echo of the course
content. For example, algorithmic thinking was in focus instead
of computational thinking, because of the wording of the Finnish
National Curriculum. This may partly explain, why the concept of
algorithm was so central (11%), see Figure 1b.

In order to ensure the validity of the concepts in the depicted LT,
the teachers' concepts were compared with the concepts retrieved
from other sources that de�ne the central concepts at the higher
education level. In the university course "Principles of Program-
ming Languages", Harsu[15] rationalized the consistent approach
of introducing the fundamental concepts. The priority of certain
computing fundamentals was clear:

� Functions together with variables are the most essential
concepts.

� Variables and function parameters may de�ne a type. Data
structures (e.g. containers: arrays, lists), i.e. advanced types,
are elementary in e.g. search and sort algorithms, or more
generally in �ltering or accumulating the data

� Managing the control �ow with selection and iteration pro-
vides the rest of the means for successful computing

The analysis of the �rst computer science courses (CS1) of Finnish
universities and ACM computer science course requirements [1]
gives a statistically-based rationale for opting for these very same
concepts. The only exception is the prominence of the concept
"algorithm". In frequency, it is comparable with the fundamentals
of function and variable. In general, algorithms and data structures
are of a signi�cant importance [1][e.g. ACM-SDF, ACM-AL]. Here,
the central role of data structures highlights the prominence of type
concept. In contrast, type was not in focused on in the teachers'

essays. Selected language and paradigm also warrants its own nu-
ances for the concept set. E.g. if object-oriented, then object and
class are among the top ten, but in the case of functional paradigms,
recursion and higher-order functions become more important.

Software-engineering-wise, implanting a well-structured process
of design-implementation-testing (the order is not �xed, as e.g.
in test-driven development) as well as highlighting good coding
conventions, such as modularity and appropriate naming, were also
considered topical right from the beginning in Finnish CS1 courses.

5 CONCLUSIONS
How do the teachers de�ne CT? When the teachers considered
the skills and concepts that are the most important in learning com-
putational thinking in Years 7�9, they mentioned topics that �t the
categories of abstraction, automation, and analysis. In automation,
algorithms were highlighted in particular. In addition, logic and
creativity were frequently quoted; logic both as the competence of
thinking consistently, and solving the truth values of conditions.
Regarding the MOOC content, the CT part was especially well in-
ternalized, which is natural, since practices analogous to CT are
applied in problem solving throughout the elementary school math
syllabus.

How do they integrate computing with math?
The teachers regarded geometry as the syllabus area with the

most potential due to options for creativity. Geometry was favored
at the expense of the more conceptually-adjusted area of algebra
(function, variable) and arithmetic (basic operations, the right order,
condition primers). The visually educational, showy and sometimes
serendipitous outcomes in geometry are found to be appealing.
Controversially, a few teachers considered math integration to be
problematic in itself. Their reasoning was that math as a school
subject has a reputation of being a hard subject, and its reputation
for di�culty may readily taint any introduction to computing as
well. This attitude was exempli�ed by the following quotation:
Current youth have no interest in math because of too much work
(and complexity). Hence, �rst programming experiences should be as
remote to math as possible.

What kind of LT for CT can be depicted?
Our hypothetical LT, based on the MOOC participants' essays,

is well rounded and contains all the essential fundamentals. In par-
ticular, variable and function were emphasized, although it must be
recognised that type was hardly mentioned. The most common con-
trol structures, selection and iteration, were also well represented.
However, higher-order functions and recursion as an emphasized
iteration method of a functional paradigm were regarded as be-
ing signi�cantly more complex and were thus seen as candidates
for di�erentiation. The LT will give a consistent and solid base
for assessing progress in CT and computing. However, in order
to help teachers discern the similarities and di�erences between
math and computing and in order to boost their con�dence, it is
clear that they need more in-service training and reinforcement
of their knowledge of the theoretical basis of computing. Some
of the most fundamental concepts in these two disciplines di�er
quite dramatically, as is the case for the concept of variable, for
instance. A variable in computer science has a very complex nature
compared with its simplicity in math, being an entity of at least

Table 2: Computing exercises that the teachers integrated in the math syllabus

Year Area Exercises for computational thinking and basic programming concepts
Y1�6 all "unplugged" exercises, following instructions, hands-on experiments in graphical environment
Y7 N basic operations, order of calculations

A expressions, equations
G drawing 2D shapes of plane geometry (triangle, square, circle), practising angles

Y8 N percentages
A variables and functions
G calculating areas of basic shapes, Pythagoras, circle

Y9 N percentages cont.
A visualizing and analyzing function behavior
G volume calculations, trigonometry, 3D shapes of solid geometry (cube, cone, cylinder)

Y7�9 L logical thinking, Boolean values and operators, truth tables
Y6�9 C Turtle, creative exercises related mainly to geometry, computer graphics, animations

number
sense

integers
spatial

imagery

problem
solving

coordinates
2D

shapes
reals comparison

operators

truth values

logical
operators

condition

selection iteration

variable

variable

problem
decomp.

expression
equation

inequality

function

function
type, data
structure

recur-
sion

higher-
order
func.

container

array
list

Pythag.
trig.

point,line angle

transfor-
mations

graphs
3D

shapes

Turtlecomputer
graphics

animations

Design
Recipe

Algebra (A)Arithmetic (N) Geometry (G)

Abstraction

Automation

Y1-2

Y3-6

Y7-9

testing, debugging, optimizingAnalysis

Logic(L) Creativity(C)

CT

Math

Figure 5: Hypothetical learning trajectories of CT

a name, value, type, location in the memory, scope and life time.
The same applies to functions, e.g. the function in math outputs is
always the same value for the same input, but this is not necessarily
the case in computing, cf side-e�ects. If ignored, these fundamental
di�erences can easily lead to misconceptions; at present it seems
that only a few math teachers are aware of such details.

As a part of a wider range of thinking skills, CT emerges out of a
reciprocal relationship between math and computing. Correspond-
ingly, the math teachers easily transferred their problem-solving
procedures to form a basis for CT. In addition, they were capable of
sketching a number of exercise proposals even though they were
missing some fundamental CS concepts. The math teachers' prior
knowledge maps well with CT, although computing basics need
more emphasis. However functional the linkage between math and
computing might be, the curriculum should still reserve space for,
e.g., philosophy, language, and art as alternate angles of approach
to CT, and thinking skills in general.

Industry and educators have requested better CS-equipped stu-
dents to ful�ll the need of the future workforce [6, 7, 18, 19, 25, 27].
As an emergent new subject, computing provides novel opportuni-
ties to out�t future students with the required skills. In constructing
computing knowledge, the Finnish National Curriculum needs fur-
ther elaboration, since the 2014 version only gives relatively cursory
guidelines for the teaching of CT. Regardless of the programming
language or tools selected, the learned computational thinking skills
and computing concepts should be the same for all students �n-
ishing elementary school, i.e. standardized. In re�ning the most
crucial concepts, the Racket MOOC has made a valuable contribu-
tion towards this end. Raising the lower-end of the bar enables the
learning targets at the top end of the educational bar to be raised
as well, which is obviously the next step.

6 ACKNOWLEDGMENTS
Special thanks to the Finnish National Board of Education, Tech-
nology Industries of the Finland Centennial Foundation, and the
Academy of Finland (grant number 303694;Skills, education and the
future of work) for their �nancial support. In addition to the funders,
we would like to express our gratitude to the Innokas network and
Tarmo Toikkanen for co-ordinating the Code ABC MOOC, as well
as to the Aalto University A+ and Rubyric teams for their e�orts in
continuously improving the MOOC platform.

REFERENCES
[1] ACM&IEEE. 2013.Computer Science Curricula 2013: Curriculum Guidelines for

Undergraduate Degree Programs in Computer Science, December 20, 2013. Technical
Report. http://www.acm.org/education/CS2013-�nal-report.pdf

[2] Fernando Alegre and Juana Moreno. 2015. Haskell in Middle and High School
Mathematics, Vol. 1.

[3] A. Balanskat and K. Engelhart. 2014. Computing our future: Computer pro-
gramming and coding-Priorities, school curricula and initiatives across Europe.
(2014).

[4] Paul B. Baltes. 1987. Theoretical propositions of life-span developmental psychol-
ogy: On the dynamics between growth and decline.Developmental psychology
23, 5 (1987), 611.

[5] Valerie Barr and Chris Stephenson. 2011. Bringing computational thinking to
K-12: what is involved and what is the role of the computer science education
community?ACM Inroads2, 1 (2011), 48�54.

[6] Jeanne M. Baugh. 2016. Beginning programming - why teach it and how to teach
it? Issues in Information Systems17, 3 (2016).

[7] T. Berger and C. Frey. 2016. Digitalization, Jobs, and convergence in Europe:
strategies for closing the skills gap. (2016).

[8] Douglas H. Clements, Michael T. Battista, and Julie Sarama. 2001. Logo and
geometry.Journal for Research in Mathematics Education10 (2001), i�177.

[9] CSTA. 2016. Computer science standards. https://www.csteachers.org/resource/
resmgr/Docs/Standards/2016StandardsRevision/INTERIM_StandardsFINAL_
07222.pdf. (2016).

[10] J Cuny, L Snyder, and J Wing. 2010. Computational Thinking: A De�nition.(in
press). (2010).

[11] M. Felleisen, R. Findler, M. Flatt, and S. Krishnamurthi. 2014.How to Design
Programs, Second Edition. MIT-Press. http://www.ccs.neu.edu/home/matthias/
HtDP2e/

[12] Matthias Felleisen and Shriram Krishnamurthi. 2009. Viewpoint Why computer
science doesn't matter.Commun. ACM52, 7 (2009), 37�40.

[13] Finnish National Board of Education. 2014. Finnish National Curricu-
lum 2014. (2014). http://www.oph.�/download/163777_perusopetuksen_
opetussuunnitelman_perusteet_2014.pdf

[14] Gerald Futschek. 2006. Algorithmic thinking: the key for understanding computer
science. InInternational Conference on Informatics in Secondary Schools-Evolution
and Perspectives. Springer, 159�168.

[15] Maarit Harsu. 2005. Programming Languages: principles, concepts, selection cri-
teria (in Finnish). http://www.cs.tut.�/~popl/nykyinen/Ohjelmointikielet-harsu.
pdf. (2005).

[16] Fredrik Heintz, Linda Mannila, and Tommy Färnqvist. 2016. A Review of Models
for Introducing Computational Thinking, Computer Science and Computing in
K-12 Education.Frontiers in Education(2016).

[17] David Hemmendinger. 2010. A plea for modesty.ACM Inroads1, 2 (2010), 4�7.
[18] House of Commons. 2016. Oral evidence: Digital skills gap. (2016).
[19] Incheon Declaration. 2015. Education 2030: Towards inclusive and equitable

quality education and lifelong learning for all. InWorld Education Forum.
[20] R Burke Johnson and Anthony J Onwuegbuzie. 2004. Mixed methods research:

A research paradigm whose time has come.Educational researcher33, 7 (2004),
14�26.

[21] Jeremy Kilpatrick. 2012. The new math as an international phenomenon.Zdm
44, 4 (2012), 563�571.

[22] Simon C Kitto, Janice Chesters, and Carol Grbich. 2008. Quality in qualitative
research.Medical journal of Australia188, 4 (2008), 243.

[23] James A. Kulik. 1994.Meta-analytic studies of �ndings on computer-based instruc-
tion. Technology assessment in education and training, Vol. 1. Psychology Press,
9�34.

[24] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice.ACM Inroads2, 1 (2011), 32�37.

[25] Jane Margolis and Joanna Goode. 2016. Ten Lessons for Computer Science for
All. ACM Inroads7, 4 (2016), 52�56.

[26] OECD. 2015. Students, Computers and Learning. (2015).
[27] OECD. 2016. Skills for a Digital World. (Jun 02 2016).
[28] Seymour Papert. 1980.Mindstorms: Children, computers, and powerful ideas.
[29] Seymour Papert. 1996. An exploration in the space of mathematics educations.

International Journal of Computers for Mathematical Learning1, 1 (1996), 95�123.
[30] T. Partanen, P. Niemelä, L. Mannila, and T. Poranen. 2017. Educating Computer

Science Educators Online: A Racket MOOC for Elementary Math Teachers of
Finland. InProceedings of the 9th International Conference on Computer Supported
Education, Vol. 1.

[31] Jean Piaget. 2000. Piaget's theory of cognitive development.Childhood cognitive
development: The essential readings(2000), 33�47.

[32] Peter J. Rich, Keith R. Leatham, and Geo�rey A. Wright. 2013. Convergent
cognition. Instructional Science41, 2 (2013), 431�453.

[33] J. Sarama and D.H. Clements. 2009.Early Childhood Mathematics Education
Research: Learning Trajectories for Young Children. Taylor & Francis.

[34] Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, and Matthias Felleisen.
2015. Transferring skills at solving word problems from computing to alge-
bra through Bootstrap. InProceedings of the 46th ACM Technical symposium on
computer science education. ACM, 616�621.

[35] Emmanuel Tanenbaum Schanzer. 2015.Algebraic Functions, Computer Program-
ming, and the Challenge of Transfer(2015).

[36] Deborah Seehorn, Stephen Carey, Brian Fuschetto, Irene Lee, Daniel Moix, Dianne
O'Grady-Cunni�, Barbara Boucher Owens, Chris Stephenson, and Anita Verno.
2011. CSTA K�12 Computer Science Standards: Revised 2011. (2011).

[37] Matti Tedre and Peter J. Denning. 2016. The long quest for computational thinking.
In Proceedings of the 16th Koli Calling International Conference on Computing
Education Research. ACM, 120�129.

[38] Jeannette M. Wing. 2006. Computational thinking.Commun. ACM49, 3 (2006),
33�35.

[39] Jeannette M Wing. 2008. Computational thinking and thinking about computing.
Philosophical transactions of the Royal Society of London A: mathematical, physical
and engineering sciences366, 1881 (2008), 3717�3725.

[40] Jeannette M Wing. 2010. Computational Thinking: What and Why? Link Maga-
zine. (2010).

Publication VII

Niemelä P. and Valmari A. �Elementary math to close the digital skills gap�, Proceedings
of the 10th International Conference of Computer Supported Education, 2018

DOI: 10.5220/0006800201540165
Niemelä and Valmari (2018)

http://dx.doi.org/10.5220/0006800201540165

Elementary math to close the digital skills gap

Pia Niemel̈a1 and Antti Valmari2
1Tampere University of Technology, PO Box 527, FI-33101, Tampere, FINLAND

pia.niemela@tut.�

2University of Jyv̈askyl̈a, Jyv̈askyl̈a, FINLAND
antti.valmari@jyu.�

Keywords: K-12 computer science education, computing in math syllabus, digital skills gap, professional development of
software professionals, effectiveness of education, continuous vs. discrete math

Abstract: All-encompassing digitalization and the digital skills gap pressure the current school system to change. Ac-
cordingly, to 'digi-jump', the Finnish National Curriculum 2014 (FNC-2014) adds programming to K-12 math.
However, we claim that the anticipated addition remains too vague and subtle. Instead, we should take into
account education recommendations set by computer science organizations, such as ACM, and de�ne clear
learning targets for programming. Correspondingly, the whole math syllabus should be critically viewed in the
light of these changes and the feedback collected from SW professionals and educators. These �ndings reveal
an imbalance between supply and demand, i.e., what is over-taught versus under-taught, from the point of view
of professional requirements. Critics claim an unnecessary surplus of calculus and differential equations, i.e.,
continuous mathematics. In contrast, the emphasis should shift more towards algorithms and data structures,
�exibility in handling multiple data representations, logic; in summary – discrete mathematics.

1 INTRODUCTION

21st century society is digitizing rapidly and job de-
scriptions of current professions are changing accord-
ingly. Digitalization triggers pressure to change the
current education system. Both domestic and multi-
national governing bodies have recognized the skills
gap of computer science and the growing need for a
digitally �uent workforce. Consequently, the EU has
outlined a strategy for improving e-skills for the 21st
century to foster competitiveness, growth, and jobs.
Just-published technical reports provide guidance for
educators and politicians at the European level (Re-
decker and Punie, 2017; Bocconi et al., 2016), high-
lighting the pervasive and ubiquitous nature of digi-
talization. Digital literacy, responsible use of technol-
ogy, and civic participation are thus relevant to every-
body. In consolidation, digitally skillful workers are
more likely to keep their positions and, if displaced,
are reemployed more quickly than employees without
digital skills (Peng, 2017).

The skills gap concerns not only the number of
SW professionals but also the quality of their skills.
The STEM shortage paradox highlights the peculiar-
ity of having hard-to-�ll open positions and at the

same time an excess of graduates who cannot �nd a
job (Harris, 2014; Smith and White, 2017). One ex-
planation is the skills mismatch, and in compliance
with this, employers point out the candidates' inca-
pability of breaking down problems into manageable
chunks and solving them, and the gaps in technical,
data modeling, and analytical skills. Accordingly,
data base, data management, data analysis and statis-
tics skills outnumber other requested digital skills of
job advertisements in the US (Beblav�y et al., 2016).

The discussion of the role of computer science
(CS) in education is global. A number of countries
all over the world have introduced CS into their K-12
curricula. In line with others, the FNC-2014 com-
prises algorithmic thinking and programming as parts
of the mathematics syllabus (Finnish National Board
of Education, 2014). In pursuit of consistent CS
support, the entire math syllabus should be reviewed
along with these newly introduced additions. This
study then asks:

� RQ1: What elementary math syllabus areas
should be strengthened for the anticipated CS em-
phasis?

� RQ2: Are there math syllabus areas that are cur-
rently overemphasized from this viewpoint?

First, this study reviews the discourse of CS as a sci-
enti�c discipline and the learning targets of mathe-
matics in anticipation of supporting CS. In the Re-
lated Work section, we list already-existing directives
and recommendations of institutions that aim at build-
ing a �exible future work force, such as ACM. There,
we focus on suggested math courses in particular. For
comparison, we check the elementary-level math and
computing syllabi of current strong performers in CS,
i.e., the UK and US. The Results and Discussion sec-
tion cross-exposes these recommendations with feed-
back from in-service software engineers by focusing
on the evaluated pro�tability of the curriculum topics.
To conclude, we propose hypothetical math learning
trajectories for a CS support.

2 CS&SWE VS. ICT

Most natural sciences and engineering disciplines rely
on calculus, differential equations, and linear algebra
as a mathematical foundation appropriate for continu-
ous phenomena. Systems relying on such phenomena
can be adequately tested. For instance, a bridge does
not need tests for all possible loads between zero and
a maximum value. Testing the maximum load under
typical and extreme weather conditions suf�ces.

In contrast, Parnas highlights the different nature
of software (Parnas, 1985). Unlike bridge load tests,
testing a piece of software with typical and extreme
values does not guarantee expected behavior with
untested values. Furthermore, software is rarely con-
cise enough to be tested inside out, and unlike math-
ematical theorems, it is not comprehensively checked
by other experts in the �eld. Thus, frequent errors and
failures are common (Charette, 2005).

As we will discuss later, computer scientists have
suggested topics such as logic, formal grammar, and
set theory as an appropriate mathematical basis for
mastering software and improving its quality. In addi-
tion, the importance of algorithmic thinking has been
discussed extensively. In traditional engineering de-
gree programs, classic mathematics and physics are
included early on. The rationale is to develop a suit-
able mindset, that is, a way of thinking that facilitates
a more profound learning of engineering topics. The
basis is laid already in elementary school physics and
mathematics. Similarly, professional computer sci-
ence and software development need a suitable mind-
set that should be developed before studying the bulk
of the software topics. However, because software
cannot be appropriately mastered with tools suited for
continuous phenomena, this mindset is not the same
as that of, say, an electrical engineer.

The discussion of the educational needs in Finland
suffers from a poor distinction between Information
and Communication Technology (ICT), Computer
Science (CS), and Software Engineering (SWE). For
more than a decade, the Finnish mobile phone com-
pany Nokia was very successful and its educational
needs had a remarkable impact on the Finnish ed-
ucational discourse. In addition to SW engineers,
Nokia needed expertise in the �elds of hardware, ra-
dio technology, and signal processing. Therefore,
ICT and SWE were emphasized instead of CS, with
SWE largely perceived via analogy to traditional en-
gineering, less through its relation to CS. As a conse-
quence, Finnish scholars and educators have only par-
tially conceived the special character of CS and SWE
as disciplines distinct from ICT, thus requiring a dif-
ferent educational foundation, which implies changes
in the math syllabus as well.

To clarify the conceptual difference, we de�ne the
relation of CS to SWE more closely. Parnas equates
it to the relationship between physics and electrical
engineering (Parnas, 1999, p. 21): physics belongs
to the natural sciences, which target an understand-
ing of a wide variety of phenomena; electrical engi-
neering is an engineering discipline striving to cre-
ate useful artefacts. Although electrical engineering
is based on physics, it is neither a sub�eld nor an ex-
tension of it. Analogously, CS is a science, and SWE
is an engineering discipline based on CS. Therefore,
CS degrees must focus on the underlying computa-
tional phenomena and the acquisition of new knowl-
edge of these, while SWE degrees concentrate on
implementing trustworthy, human-friendly software
cost-effectively.

In regard to math, the latest speci�cations of
ACM&IEEE explicate the similarity of required skills
both in CS and SWE (ACM&IEEE, 2013; Ardis et al.,
2014). Even if CS is more scienti�c as a discipline
and more deeply grounded in math, SW engineers
bene�t from more theoretically-oriented CS educa-
tion and discrete math to be able to implement quality
software. Hence, the conceptual difference does not
diverge the required math and computing fundamen-
tals. Consequently, Meziane and Vadera concluded,
' There is very little difference between the SE and CS
programs currently offered in English Universities'
(Meziane and Vadera, 2004).

3 RELATED WORK

3.1 ACM recommendations

The standards developed by the Association for Com-
puting Machinery (ACM) are used as a premise in
curriculum planning in a number of Finnish univer-
sities. The CS concepts introduced in the �rst courses
are important either for their own sake or for further
topics. Obviously, the �rst fundamental concepts are
also the most evident candidates when considering to
advance some basics at the elementary school level.

3.1.1 CS Knowledge Areas of ACM

ACM promotes CS as a discipline and in compliance
prepares normative recommendations for teaching CS
at the tertiary level. ACM (ACM&IEEE, 2013) intro-
duces Curriculum Guidelines for Undergraduate De-
gree Programs in Computer Science (ACM-CS2013).
The material is divided into Knowledge Areas (KA)
and further to Knowledge Units (KU) that match with
no particular course. Instead, courses may incorpo-
rate topics from multiple KAs. Topics are divided into
Core and Elective, and the Core is further subdivided
into Tier-1 (to be fully completed) and Tier-2 (at min-
imum 80% coverage). The KAs with the most Tier1
hours are:

1. Software Development Fundamentals (43 h)

2. Discrete Systems (37 h)

3. Algorithms and Complexity (19 h)

4. Systems Fundamentals (18 h)

The natural �ow of concepts is to introduce soft-
ware development fundamentals (SDF) and simulta-
neously strengthen the mathematical foundation with
Discrete Systems (DS). In descending order of allo-
cated hours, algorithms and complexity (AL) come
next, where mastering common algorithms is consid-
ered general CS knowledge. Complexity consider-
ations consist of evaluating the algorithm ef�ciency
based on execution time and consumed resources.
Systems Fundamentals (SF) give an insight into sys-
tem infrastructure and low-level computing by ac-
quainting students with computer architecture, main
HW resources and memory, and, e.g., sequential and
parallel execution.

From the list above, items 2 and 3 link closely
with math. According to ACM, DS comprises the fol-
lowing areas in descending order of emphasis (Tier-1
+ Tier-2 hours): Proof Techniques (11), Basic Logic
(9), Discrete Probability (8), Basics of Counting (5),
Sets, Relations, and Functions (4), and Graphs and
Trees (4). AL in turn consists of basic and advanced

KUs of Analysis, Strategies, Fundamental Data Struc-
tures, Automata, Computability, and Complexity.

In sum, algorithms and data structures are at the
center of gravity together with the programming ba-
sics of SDF.

3.1.2 The most relevant math to support CS

ACM-CS2013 highlights the tight and mutual inter-
dependence between math and CS. However, instead
of being prepared for every kind of career option,
ACM-CS2013 focuses on the common denominator.
Thus, only directly relevant requirements are speci-
�ed, such as elements of set theory, logic, and dis-
crete probability comprising the KA of DS. On the
other hand, ACM-CS2013 states that “while we do not
specify such requirements, we note that undergradu-
ate CS students need enough mathematical maturity
to have the basis on which to then build CS-speci�c
mathematics”. It also mentions that “some programs
use calculus . . . as a method for helping develop such
mathematical maturity” (ACM&IEEE, 2013).

The recommendations make a distinction between
such mathematics that is an important requirement for
all students in the faculty and mathematics that is rel-
evant only to speci�c areas within CS, exemplifying
this with linear algebra that “plays a critical role in
some areas of computing such as graphics and the
analysis of graph algorithms. However, linear alge-
bra would not necessarily be a requirement for all ar-
eas of computing” (ACM&IEEE, 2013).

If it were decided to emphasize discrete math in-
cluding logic in the elementary school math curricu-
lum, then an age-appropriate and tested subset of
ACM Basic Logic could be found in the National Cur-
riculum and GCSE Mathematics of the UK. The UK
has already emphasized discrete math for a longer pe-
riod, see section 3.3. Logic is deployed frequently
in programming, not only when implementing con-
ditions in selection and iteration statements. Subse-
quently, university-level logic targets more sophisti-
cated and far-reaching knowledge than this. In conse-
quence, Basic Logic of DS introduces normal forms,
validity, inference rules, and quanti�cation.

Although probability is linked more weakly to the
programming fundamentals than logic, it gives readi-
ness for various prominent topics, such as the analy-
sis of average-case running times, randomized algo-
rithms, cryptography, information theory, as well as
games. Its basics should cover conditional probabil-
ity, independent and dependent events, and multipli-
cation and addition rules.

3.2 SWEBOK recommendations

The Guide to the Software Engineering Body of
Knowledge (SWEBOK) of the IEEE breaks down the
mathematical foundations into smaller knowledge ar-
eas (Bourque et al., 2014). In the review, we focus on
both Chapters 13 and 14 of the guide, i.e., Computing
and Mathematical Foundations.

Computing Foundation in Chapter 13 is included
because it comprises algorithms and data struc-
tures. Data structures have various classi�cations,
e.g., linear–nonlinear, homogeneous–heterogeneous,
stateful–stateless. For instance, linear structures or-
ganize items in one dimension (lists, stacks), com-
pared to the two or more hierarchies (trees, heaps) of
non-linear structures. Well-designed data structures
accelerate data storage and retrieval. The ef�ciency
of algorithms depends signi�cantly on the selection
of a suitable data structure. Appropriate data struc-
tures can foster algorithm development. When the
effects are combined, performance and memory con-
sumption may range from poor to extremely ef�cient.

Chapter 14 highlights CS as an applied maths
topic. The foundational KAs concentrate on logic and
reasoning as the essences that a SW engineer in par-
ticular must internalize. The chapter describes math-
ematics as a tool of studying formal systems, widely
interpreted as abstractions on diverse application do-
mains. These abstractions are not restricted to num-
bers only, but include, e.g., symbols, images, and
videos.

The following subtopics constitute the founda-
tional KAs of math. Our assumption is that the order
implicates their importance. We divide these topics
into continuous (c) and discrete (d):

1. Sets, Relations, and Functions (c/d)

2. Basic Logic (d)

3. Proof Techniques (d)

4. Basics of Counting (d)

5. Graphs and Trees (d)

6. Discrete Probability (d)

7. Finite State Machines (d)

8. Grammars (d)

9. Numerical Precision, Accuracy, and Errors (c)

10. Number Theory (d)

11. Algebraic Structures (d)

One obvious observation is a notably smaller por-
tion of continuous math compared to traditional en-
gineering education. In particular, calculus, differen-
tial equations, and linear algebra are missing. Instead,

several topics target a better position of underlying
logic (2,3); and primers for data types, data structures
and algorithms (1,4,5,9,11). In addition, subtopics
of Basics of Counting (4), and Discrete Probability
(6) and Number Theory (10) scaffold a deeper un-
derstanding of probability and cryptography. Numeri-
cal Precision, Accuracy, and Errors (9) section reveals
underlying HW and memory speci�cs that have an ef-
fect on, e.g., the resolution of measurements and im-
possibility of expressing most real numbers precisely.

3.3 K-12 math and computing syllabi of
the UK and US

For comparison, we went through the National Cur-
riculum (UKNC) and General Certi�cate of Sec-
ondary Education (UKGCSE) of the UK (Department
of Education, 2014; GCSE, 2015), and the Core Cur-
riculum of US (USCC) (Core Standards Organization,
2015). The logic basics are present in the syllabi of
both, with a comprehensive subset. Yet Boolean logic
is currently included in the computing curriculum of
UKNC, not in math. However, Boolean logic would
�t well in the math syllabus as a consistent continuum
of inequalities.

Sets can illustrate nested number sets of natural
numbers (N), integers (Z), and reals (R) that match
with variable types (unsigned, int, �oat) in program-
ming. However, due to differences in how, e.g., reals
appear in both, we note that this juxtaposition is prone
to misconceptions. For instance, in:

i n t x =1; f l o a t y=x / 2 ;

division may produce a value of zero depending on
the used language. All the same, not everyint is a
�oat , in contradiction of the math subset relation of
Z € R. In addition to primitive types, sets are the ba-
sic mathematical abstraction of containment, and are
thus relevant for programming as a cognitive tool. A
group of numbers may be introduced as a set, a vec-
tor or a matrix, and the same group operations apply.
Therefore, set theory would be useful in any mathe-
matics curriculum designed to support programming.
Currently, sets are a part of UKNC, but absent from
USCC and FNC-2014.

Linear algebra basics are included in the USCC
as matrices and basic operations; and as vectors and
transformations in UKNC, whereas they are missing
from the FNC-2014. For example, linear algebra ba-
sics could be a bene�cial addition even if supported
by ACM-CS2013 only as an elective math topic, be-
cause matrices are extensively exploited in the �elds
of statistics, data analysis, games, and graphics, for
instance. The need for matrices is increasing, be-

Table 1: Math Syllabi (KS=key stage, G=grade, HS=high
school. Each key stage covers several grades ranging from
two to four. The GCSE exams follow KS4.

UKNC USCC
Logic (in CS)

KS2: logical reason-
ing to explain how
simple algorithms
work
KS3: Boolean logic
(AND/OR/NOT)
and its applica-
tion in circuits and
programming

Sets
Prob

KS3: enumerate sets,
unions/intersections,
tables, grids and Venn
diagrams
KS4: data sets from
empirical distribu-
tions, identifying
clusters, peaks, gaps
and symmetry, ex-
pected frequencies
with two-way ta-
bles, tree and Venn
diagrams

G6: data sets,
identifying clus-
ters, peaks, gaps,
symmetry
G7: random sam-
pling to generate
data sets
HS: interpret-
ing differences
in shape, center
and spread of a
distribution

Vectors
Mat-
rices

KS4: (in Geometry)
translations as 2D
vectors, addition and
subtraction of vectors,
multiplication with a
scalar, diagrammatic
and column represen-
tations
GCSE: transforma-
tions & vectors

HS: addition,
subtraction, mul-
tiplication of
matrices, multi-
plication with a
scalar, identity
matrix, transfor-
mations as 2x2
matrices

cause of topicality of their application areas and be-
cause many libraries in, e.g., Python exploit them ex-
tensively. As a topic, matrices and vectors belong to-
gether, and various transformations (such as scaling,
translation, re�ection and rotation) are main opera-
tions on image manipulation and animations.

Matrices are extensively exploited, e.g., in ma-
chine learning, data analysis, pattern recognition, and
game engines for 2D/3D-transformations. All sug-
gested math syllabus areas remain at the preliminary
level in UKNC and USCC and we propose the same:
in logic truth tables and Boolean logic in order to sim-
plify several simultaneous conditions; in sets, Venn
diagrams and basic operations of union, intersection
and cut with at most three sets; and in matrices, trans-

formations of translation, re�ection, rotation and en-
largement and �nding an inverse matrix. This new
math knowledge should be carefully bridged with the
prior knowledge with lots of visual exercises and by
starting early enough. Table 1 illustrates in which or-
der these topics are handled in the UKNC and USCC.

Thus, in lieu of the ACM DS Logic subset, a read-
ily �eld-tested elementary syllabus is found in GCSE
CS (GCSE, 2015). It contains the following topics:
� binary and hexadecimal notations

� binary addition and shift

� Boolean values (true, false)

� Boolean operators (AND, OR, NOT); truth tables
Sets prompt types in programming and they can be

utilized in abstracting both primitives and collections.
UKNC speci�es the syllabus of sets followingly:
� sets visualized by Venn diagrams

� set operations: subset, proper subset, intersect,
and union, combinations of these

� sets represented as lists, and

� set and its complement
In addition, in the CS syllabus of the GCSE clear
learning targets for algorithms are set: at a minimum,
binary search and merge sort (GCSE, 2015).

4 Method

This study complies with the scope of curriculum the-
ory (Pinar, 2012), and its key question of what knowl-
edge is most valuable and how this knowledge is con-
structed as consistently as possible. Here, we are con-
cerned with the educational and sociological aspects
due to the aim of improved employability and �lling
the digital skills gap. This study is restricted to el-
ementary math and compares the FNC-2014 to the
UKNC and USCC (Department of Education, 2014;
English Department for Education, 2013; Core Stan-
dards Organization, 2015) and to the recommenda-
tions given by the ACM and IEEE (ACM&IEEE,
2013; Bourque et al., 2014). The comparison exploits
content analysis in searching for the math syllabus an-
ticipated to be the most useful for CS students.

In addition to the comparison, the effectiveness
of the university-level SWE studies re�ects back to
the curriculum design. We do not collect any new
data but reuse the data of existing studies (Lethbridge,
2000; Puhakka and Ala-Mutka, 2009; Surakka, 2007;
Kitchenham et al., 2005). The results of the previous
studies are cross-correlated to con�rm their validity
in order to draw conclusions about the most pro�table
math topics.

5 Results and Discussion

In this section, we �rst review the feedback from
the �eld: SW professionals evaluate the curriculum
topics according to their pro�tability in working life.
Having being informed of both the previous section's
recommendations and criticisms of the current real-
ization, we summarize the necessary math syllabus
content and bridge the learning trajectories from el-
ementary to higher-education math.

5.1 Feedback from SW engineers

To evaluate the effectiveness of their education, SW
engineers have scored the pro�tability of a plenty of
curriculum topics (Lethbridge, 2000). An imbalance
between supply and demand was discovered and as a
remedy, the author recommends putting less emphasis
on the topics of minor importance – or teaching them
in a way that makes them more relevant to SWE stu-
dents. The study was run in year 1997 and repeated
in 1998. The differences between outcome remained
modest. In 1998, the sample size wasN � 181, and
the survey consisted of 75 topics of CS, SWE, etc.

A few years later, in 2004, Kitchenham & al.
conducted a research focusing on the curricula and
graduates of four UK universities (Kitchenham et al.,
2005). The methodology was somewhat different
and so was the obtained list of the most under-taught
topics. The �ndings regarding mathematics were,
however, the same. Then in 2009, a decade after
Lethbridge's original research setup, Puhakka et al.
published an analogous study conducted in Tampere
University of Technology (Puhakka and Ala-Mutka,
2009, N � 212). Out of the original 75 subtopics,
three were removed because of their not being com-
mon in Finnish curricula. Both sub-�gures of Fig. 1
illustrate the differences between math-related per-
ceptions among SW professionals in the examined co-
horts of US and Finland. First, we observe that the re-
sults correlate surprisingly well, taking into account a
timespan and continent switch. The scienti�cally sig-
ni�cant values ofR2 are 0.88 in the upper, and 0.91 in
the lower �gure.

The green circles in sub-�gures designate the ar-
eas considered either useful (the upper) or in need of
more emphasis (the lower) to build work-life compe-
tences of SW professionals. The lower sub-�gure,
however, demonstrates the rarity of topics in need
of more emphasis. Negative values indicate a post-
graduate knowledge loss, whereas positive values a
knowledge gain, in other words, inadequate learning
of such topics in higher education.

The latter sub-�gure is visually telling. Only al-

Figure 1: The comparison of usefulness and adequacy of
math education evaluated by SW professionals (Lethbridge,
2000; Puhakka and Ala-Mutka, 2009,N � 181;N � 212)

gorithms and data structures are in need of more
emphasis. In addition to these, the Lethbridge top-
ten consists of no other mathematical but instead
such items as negotiation, human-computer interac-
tion, and leadership.

In comparison with both previous surveys,
Surakka separates the sample into the cohorts of SW
engineers, academics (professors, lecturers) and stu-
dents, see Fig. 2. The winner is again clear: algo-
rithms and data structures, also the prominence of dis-
crete math compared with continuous math is unchal-
lenged, yet the bias has an academic �avour. Discrete
math scores highest among professors and lecturers
(3.1).

5.2 CS-supportive math for elementary

In constructing a strong basis for CS, both ACM and
SWEBOK emphasize discrete math, con�rmed by the
feedback from the �eld. After programming basics,

Figure 2: The math areas perceptions [1(not important),
4(very important)] of Surakka's engineers, academics, and
students contrasted with Lethbridge and Puhakka et al.;
N � 11;19;24;181;212; respectively

ACM values discrete systems as the second most,
and algorithms, data structures, and complexity as the
third most prominent KAs, whereas the in-service SW
engineers value this area the highest. In SWEBOK,
nine out of eleven math KAs comprise discrete math.
UK, spearheading in CS, invests in discrete math al-
ready at the elementary level and in addition, provides
CS as a separate subject with more in-depth topics.

Algorithmic thinking

The referenced studies categorize algorithms and data
structures as part of the CS Core. In programming-
oriented math, data structures can be seen as an ap-
plication of set theory, e.g., sets conceptualize col-
lections. In programming, collections are of various
types: a set is an unordered collection of values, a list
an ordered collection, and a map a collection of val-
ues identi�ed by keys, which may also be interpreted
as a representation of a mathematical function.

Denning equates algorithmic and computational
thinking (Denning, 2009), which he in turn associates
with general problem solving (Denning, 2017). When
solving a problem, it is bene�cial to start by decom-
posing it to smaller solvables implemented in a code
as sub-routines, for instance. At its simplest, an algo-
rithm may then be understood as a sub-routine, a se-
quence of commands called repeatedly as many times
as desired, e.g., (CSTA, 2016). Computing is what
Wing refers to as automation of abstractions, algo-
rithms being the most prominent class of these ab-
stractions (Wing, 2008).

The gradual division between human-completed
calculation and computer-based computing has been
the watershed between the disciplines of math and
CS. In pondering the difference between the mind-
sets of mathematicians and computer scientists,
Knuth points out that computer scientists need to

be concerned about algorithms and their comput-
ing speci�cs, such as the notion of complexity or
economy of operations. In most programming lan-
guages, the computing process comprises a series
of sequential state changes executed assignment-by-
assignment, which is an operation absent in math.
Moreover, data structures in CS are inhomoge-
neous, which spreads the spectrum of concerns com-
pared with more convergent mathematical structures
(Knuth, 1985), excluding the data structures of ad-
vanced set theory and logic.

Algorithmic thinking has been brought within
reach of school or even pre-school children with mul-
tiple initiatives such as (Liukas, 2015). It may be
well taught even without computers, as demonstrated
by the CS-unplugged movement (Taub et al., 2012),
and algorithmic plays (Futschek and Moschitz, 2010).
Puzzles and games can be thought-provoking, thus
this approach is also exploited by a number of univer-
sities in familiarizing students with algorithms (Lam-
agna, 2015). Unplugging removes the extra cognitive
load of programming details.

Data represented and modeled in multiple ways

Multiple external representations (MERs) elucidate
the data and problem from different perspectives. For
example, a function may be represented as an expres-
sion, a curve, a map from argument set to image set, a
table with two columns, or a function machine. Flex-
ibility in moving from one representation to another
indicates a deeper understanding of the concept (Mc-
Gowen et al., 2000), which facilitates problem solv-
ing. Wilkie and Clark denote representational �exi-
bility as �uency with the order of operations; commu-
tative, associative, and distributive laws; and equiva-
lence of expressions (Wilkie and Clarke, 2015). In
programming, representational �uency is practiced,
e.g., with the syntactic diversity of operations, such
as addition:x� y, �p x; yq, or p� x yq.

Fig. 3 illustrates the use of the MathCheck learn-
ing tool (Valmari and Kaarakka, 2016) in studying
the relationship between textual and tree representa-
tions. Such exercises aim at training the precedence
and left- and right-associativity rules in particular.
The exercises help students to grasp the distinction
between semantics and syntax by differentiating be-
tween associativity as a semantic notion and left- and
right-associativity as syntactic notions. Furthermore,
the example in Fig. 3 reveals that the relation opera-
tors (� and¥ , and so on) are neither left- nor right-
associative unlike arithmetic operators (� , � , and so
on). Consequently, inx � y ¥ z, the �rst comparison
result is not passed as an argument to the second, but
instead, a Boolean AND is performed on both. Thus,

Figure 3: A tree representation of a model relation chain,
and a failed student attempt to yield a similar tree

drawing � as a child of¥ , or vice versa, would be
misleading. Being even, the relation operators must
share the root of a tree as Fig. 3 illustrates. This also
makes it explicit that althoughy occurs only once,
both comparisons use it as an argument.

In problem solving, the ability to model and ab-
stract the data is crucial. USCC speci�es Modeling as
one syllabus area of HS math (Core Standards Orga-
nization, 2017; Core Standards Organization, 2015).
Modeling links to a broader pedagogical idea of us-
ing open-ended problems of everyday life and it com-
bines skills from math, statistics and technology, and
' . . . and an ability to recognize signi�cant variables
and relationships among them. Diagrams of various
kinds, spreadsheets and other technology, and alge-
bra are powerful tools for understanding and solving
these problems.' Although modeling, say, a banking
system for implementation as software is fundamen-
tally different from modeling a physical or statistical
problem, the need to recognize and formalize the es-
sential aspects of the problem is common to all of
them. Modeling requires 'speci�cational thinking',
which is necessary for both SW engineers and their
customers in order to reach a common vision, and de-
scribe use cases and requirements pellucidly. In FNC-
2014, phenomenon-based learning approaches the an-
ticipated open-endedness in problem setting.

Logic

In CS formalization, Dijkstra described its distinc-
tiveness with a formula (Dijkstra et al., 1989):CS�
math� logic. In accordance, he called students to
learn formal math and logic to construct a well-
grounded basis for CS. UKNC points out that already

a novice programmer at the elementary level needs
simple Boolean logic, for example, the operators of
AND, OR and NOT, and combinations, see Fig. 4.
In the same context, logic gates in circuits are intro-
duced. This connection between Boolean logic and
logic gates can be used to create a link with electrical
engineering and physics.

Figure 4: Logic in UKNC

To skim other logic uses, we reviewed ACM
course descriptions. The chief applications were
proofs, correctness, combinational and sequential
logic of state machines, and in addition to these, logic
of knowledge representation and reasoning that tar-
gets translating natural language (e.g., English) sen-
tences into predicate logic statements. Such a skill
would stand out when applying speci�cational think-
ing, check page 7.

Sets, statistics, probability

Figure 5: Sets in UKNC

The syllabus areas of sets, statistics and probabil-
ity are inter-related at the elementary level, justifying
a combination of these topics. Sets are missing from

FNC-2014, whereas UKNC de�nes a functional sub-
set visualized in Fig. 5. Sets (na�̈ve set theory) in
UKNC are a gentle kick-start for the set theory, fa-
miliarizing students with different notations, e.g., the
interchangeable use of either a list or a Venn diagram
(excluding some special cases). A number of basic
concepts are introduced, such as a set and its comple-
ment, a universe, and a subset. Set operations cover
union and intersection.

Building the knowledge base and gaining expe-
rience of these topics may be initiated, for instance,
by collecting data of concrete phenomena, such as
measuring the heights of students of a class and con-
structing a histogram of the heights of the class. Stu-
dents should be capable of reading and interpreting
these charts. For instance, the shape of the height
histogram should resemble the typical bell-shape of
a normal distribution making it timely to introduce
the concepts of mean, median, and mode in this con-
text. In addition to histograms, the alternative way of

Figure 6: Statistics in UKNC

representing this information is to construct a cumu-
lative frequency chart, in the UKNC subset visualized
in Fig. 6, the left bottom corner. Ultimately, informa-
tion could be reduced to a box-and-whiskers chart.

Venn diagrams and relative frequency charts
prompt probability issues. The relative frequency of
an event, e.g., which percentage of students are 140–
150 cm tall, provides an obvious scaffold to inves-
tigate the probability of a randomly-selected student
being 140–150 cm tall. In Venn, the bin of 140–150
cm students can represent the setA, where the com-
plement set ofA represents all the students not within
this height category. In the universe of this class (or
any other), a selector will get either a student from the
setA or its complementA with 100% probability, i.e.,
PpAq � PpAq � 1. In Finnish elementary math, prob-
ability links closely with statistics in the described
manner. In contrast, UKNC progresses further by in-

cluding the multiplication and addition rules (Fig. 7).

Figure 7: Probability in UKNC

The sun either shines or not, no other options ex-
ist. However, if the sun shines, a bird will sing more
probably. A decision tree assists in constructing the
combined probabilities correctly: the multiplication
rule applies horizontally to each branch at a time, and
the products are added vertically. In a tree, all the
probability branches of one joint must sum up to one.

In preparation for CS and related math courses
of higher-education including sets, statistics, and
probability, UKNC speci�es a valid and deliberately
planned math syllabus for an elementary level that
could be emulated as such in FNC-2014.

5.3 The learning trajectories bridged
from elementary to higher-ed math

Fig. 8 divides into four horizontal layers: Elem.math,
CT, HS math, and Tert.math. Elementary school is
compulsory, the rest elective. Vertical dashed lines
represent the learning trajectories of discrete math
proposed in the previous sections. The learning tra-
jectory of algorithms and data structures is marked
with green to illustrate its prominence. Currently, el-
ementary math does not specify any other learning
targets of algorithms except the need for algorithmic
thinking. It starts with problem solving and decom-
position, which in programming implies subroutines.
Ultimately in algorithms, e.g., the simplest sort and
search algorithms were a natural learning goal. Data
structures are prompted by number sets that corre-
spond with variable types; in programming types can
be, e.g., primitives or collections, such as arrays, lists,
and vectors. Structuring data in various ways, mod-
eling and visualizing it, assists in raising the abstrac-
tion level and in problem solving. The second most
prominent trajectory is logic. Like algorithmic think-
ing, logic is included only as a requirement of

Publication VIII

Niemelä P., Partanen T., Mannila L., Poranen T. and Järvinen H.-M., �Code ABC
MOOC for Math Teachers� Revised Selected Papers. Vol. 865. Springer, 2018

DOI: 10.1007/978-3-319-94640-5_4
Niemelä et al. (2017b)

http://dx.doi.org/10.1007/978-3-319-94640-5_4

ISBN 978-952-15-4183-4

ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

