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Recurrence network analysis of EEG signals

A Geometric Approach

by Narayan Puthanmadam Subramaniyam

Understanding the neuronal dynamics of dynamical diseases like epilepsy is of funda-

mental importance. For instance, establishing the presence of deterministic chaos can

open up possibilities that can lead to potential medical applications, including timely

prevention of seizures. Additionally, understanding the dynamics of interictal activity

can greatly aid the localization of epileptic foci without the need for recording seizures.

Recurrences, a fundamental property of dynamical systems, are useful for characteriz-

ing nonlinear systems. Recurrence networks, which are obtained by reinterpreting the

recurrence matrix as an adjacency matrix of a complex network, are useful in charac-

terizing the structural or geometric properties of the underlying system. Recurrence

network analysis has established itself as a versatile tool in the field of nonlinear time

series analysis and its applicability in investigating neural dynamics remains unexplored.

Certain recurrence network measures are particularly sensitive to the presence of unsta-

ble periodic orbits (UPOs), which are important for detecting determinism and are the

backbone of chaotic attractors.

In this thesis, we introduce recurrence network analysis as a tool for nonlinear time series

analysis of epileptic electroencephalographic (EEG) signals. We present novel results

based on the application of recurrence network analysis combined with surrogate testing

to intracranial and extracranial epileptic EEG signals. In addition, using paradigmatic

examples of dynamical systems, we present theoretical results exploring the effect of

increasing noise levels on recurrence network measures.

Using paradigmatic model systems, we first demonstrate that recurrence network mea-

sures can distinguish between deterministic (chaos) and stochastic processes, even at

short data lengths (≈ 200 samples). In particular, our results from theoretical simula-

tions show that recurrence network measures, particularly transitivity, local clustering
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coefficient, assortativity, and betweenness centrality can successfully distinguish between

deterministic chaotic and stochastic processes (after additional embedding) due to their

sensitivity to the presence of UPOs. Our results also show that recurrence network

measures like transitivity and average path length are robust against noise and perform

better than the Complexity-Entropy plane method at short data lengths. Furthermore,

our results show that the effect of noise on the recurrence network measures can be

minimized by increasing the recurrence rate.

For the analysis of real-world data such as EEG signals, we combined the recurrence

network approach with surrogate data to test for the structural complexity in healthy

and epileptic EEG signals. Here our results point to an increasing complexity of EEG

recordings when moving from healthy to epileptic conditions. Furthermore, we used both

univariate network measure and bivariate cross-network measure to distinguish between

the structural properties of interictal EEG signals recorded from epileptic and non-

epileptic brain areas. Here, our results clearly demonstrated that interictal EEG signals

recorded from epileptic areas are more deterministic and interdependent compared to

interictal activity recorded from nonepileptic areas. Finally, we show that recurrence

network analysis can be applied to uncover the dynamical transitions in neural signals

using short segments of data (≈ 150 to 500 samples). To demonstrate this, we used two

kinds of neural data - epileptic EEG data and local field potential (LFP) signals recorded

during a visuomotor task. We observed that the temporal fluctuations observed in the

recurrence network measures are consistent with the dynamical transitions underlying

the epileptic and task-based LFP signals.

To conclude, recurrence network analysis analysis can capture the complexity in the

organization of EEG data in different dynamical states in a more elaborated fashion

compared to other approaches such as nonlinear prediction error or correlation dimen-

sion. By means of the recurrence network measures, this difference can be assessed

not only qualitatively (as when using as tests for nonlinearity), but also quantitatively.

Thus, coupled with its ability to operate on short-window sizes and robustness to noise,

recurrence network analysis can be a powerful tool to analyze the dynamics of multi-scale

neural signals.
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CHAPTER 1

INTRODUCTION

If our brains were simple enough for us

to understand them, we’d be so simple

that we couldn’t.

Ian Stewart (1945–)

1.1 General background

Complex systems are ubiquitous and are characterized by dynamical interactions be-

tween different subsystems, leading to emergent properties. Complex systems also dis-

play spatial and temporal patterns on a scale that is orders of magnitude bigger than the

scales at which the interactions between the subsystems occur [1]. Many complex sys-

tems are inherently nonlinear and thus, cannot be adequately described by linear models

and methods. There has been a steady increase in the application of methods derived

from nonlinear and chaos theory to understand the processes governing the interactions

in complex systems [2], that abound in the field of ecology, sociology, economics, clima-

tology, and biology, to name a few. Understanding the dynamics of complex systems

and predicting their behavior is a fascinating problem, with many practical applications,

that requires an interdisciplinary approach.

The human brain, which can probably be regarded as the most complex system, com-

prises of more than 100 billion neurons with each of them making about 1,000 connec-

tions. It is needless to say that this intricate network of 100 trillion connections renders

itself to sophisticated information processing capabilities [3] of bewildering complexity.

1
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Even at the scale of a single neuron, the associated dynamic properties are complex,

displaying bursts, bifurcations and limit cycles. A single neuron receives multiple input

signals and if the sum of the signals received exceeds a threshold, a nerve pulse known

as action potential is initiated. This threshold and saturation phenomena already gives

rise to nonlinearity at the level of a single neuron [4]. An important achievement in the

field of neurophysiology, contributed by the theory of nonlinear dynamics, is the math-

ematical model of action potential in the squid giant axon [5], which was proposed by

Hodgkin and Huxley [6] in the year 1952. The Hodgkin and Huxley model is a system

of four, nonlinear, ordinary differential equations (ODEs). Other popular models that

describe the nonlinearity of neuronal dynamics include Fitzhugh-Nagumo and the NaK

model. These models, despite their simplicity, are capable of describing variety of rich

dynamics including spikes and bursts, limit cycles, homoclinic orbits, chaos and many

more [3].

Nonlinear time series analysis of neural recordings is an important and popular the-

oretical approach to study the nonlinear dynamics of neurons. Such recordings are often

easily available across multiple spatial scales including single neuron recordings, local

field potential (LFP) recordings, intracranial electroencephalography (EEG) recordings

(also known as electrocorticography (ECoG)), and surface EEG recordings. Among these

recording modalities, surface EEG is noninvasive, readily accessible and cost-effective

recording technique that captures the summed activity of millions of neurons. Thus,

it is not surprising that nonlinear time series analysis has been extensively applied to

EEG data [7]. From the initial euphoria of finding the elusive chaotic dynamics to a

recently more subtle approach of simply characterizing the nonlinearity in EEG signals,

the nonlinear dynamical analysis of EEG time series has motivated the development and

application of numerous nonlinear measures [8] for both healthy and pathological EEG

signals.

Epilepsy, which affects roughly 1 % of the world’s population, is probably the most im-

portant application for nonlinear dynamical analysis of EEG time series [7, 9]. Epilepsy

is characterized as a dynamical disease due to the unpredictable and recurrent nature

of epileptic seizures. Generally speaking, any disease that leads to abnormal dynamics

in a physiological system operating within a range of control parameters, is defined as

a dynamical disease [10]. In case of epilepsy, the presupposition is that the neuronal

system exhibits multistable dynamics. It has been observed that epileptic seizures (ictal

state) are highly nonlinear compared to the normal, steady-state of ongoing EEG activ-

ity (known as interictal state) in epileptic patients. Additionaly, a third state known as

preictal state is presupposed to hold the key between the transition from an interictal

state to ictal state. Thus, in the case of dynamical diseases like epilepsy, the tools from

nonlinear dynamical theory are particularly attractive in studying the fingerprints of
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different dynamical states and can help us to formally understand how the occurrence

of manifestations of epilepsy takes place [11]. Measures like nonlinear prediction error,

correlation dimension, Layapunov exponent, and information theory based measures

have been used for nonlinear analysis of epileptic EEG signals (see Chapters 3 and 6 for

further reading).

Dynamical systems display two fundamental properties - determinism and recurrence

[2]. A deterministic dynamical system can be defined as a system whose future behavior

can be accurately predicted, given that sufficient knowledge for the current state of

the system exists. Recurrence is another property which can be used to characterize

the nonlinear dynamics of a system. In 1890, Henri Poincaré introduced the concept

of recurrence, while addressing the three body problem [12]. Nearly a century later,

in 1987, J.-P.Eckman introduced recurrence plots (RPs) [13], a two-dimensional

graphical plot to visualize recurrent behavior of dynamical systems. RPs have been

successfully applied to characterize the underlying dynamical properties of wide variety

of systems [2]. A further important contribution made in the field of recurrence plots

was the introduction of recurrence quantification analysis (RQA) tool to objectively

quantify the structure of recurrence plots [14]. Recently, by integrating the approach

from complex network theory and nonlinear dynamical systems theory, network-based

nonlinear time series analysis has been proposed. Such networks constructed from time

series are based on the recurrences in phase space and are known as recurrence networks

(RNs). Topological characterization of such networks using tools from graph theory

allows us to analyze the dynamically relevant structural properties of the time series

data [15–17]. In particular, RNs encode the geometric information about the underlying

system which can be characterized (for example using graph theoretical measures) to

extract information on the geometric properties of the attractor [18]. Thus, RNs provide

useful and complementary insights into phase space structures that are otherwise not

provided by other methods of nonlinear time series analysis [16]. Methods based on

RNs are particularly advantageous over some other nonlinear measures due to their

applicability to short and non-stationary data [15].

Given the advantages and potential that recurrence network analysis (RNA) has demon-

strated in characterizing the structural properties of time series, its application to the

analysis of neural dynamics has not yet been explored. In particular, it has not been

studied if RN measures which are derived from graph theory, can be combined with

surrogate analysis to study the structural properties of EEG time series, especially in

the context of epilepsy. Establishing the presence of deterministic chaos in pathologies

like epilepsy can lead to useful medical applications [19]. Many RN measures are sen-

sitive to the presence of unstable periodic orbits (UPOs), which are the backbone of

chaotic attractors and thus can be used to establish determinism. With reference to the
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preceding statement, the ability of recurrence networks to distinguish between (chaotic)

deterministic and stochastic dynamics has not been adequately demonstrated and the

effect of noise on these measures has not been hitherto investigated.

1.2 Goals of the thesis

The overarching goal of this doctoral thesis is to introduce and propose the application of

RN approach in combination with surrogate analysis, for nonlinear time series analysis

of EEG. The specific goals of this doctoral thesis are,

1. To demonstrate the applicability of RN methods to distinguish between chaotic

and stochastic dynamics [P-I].

2. To study the effect of observational noise on RN measures [[P-I],[P-III]].

3. To introduce RN measures in combination with surrogate analysis to study the

structural properties of healthy and epileptic EEG signals [[P-III],[P-IV]].

4. To demonstrate the applicability of both univariate and bivariate RN measures

in distinguishing between the structural properties focal and nonfocal epileptic

EEG signals and study which network measures are particularly useful for such an

application [P-II].

5. To apply moving window RNA to study the dynamical transitions in epileptic

EEG data and LFP data describing a visuomotor task [[P-I],[P-V]].

1.3 Structure of the thesis

This doctoral thesis is divided into four parts. Part I provides the necessary theoret-

ical background and the literature review related to methods in nonlinear time series

analysis and its application in EEG. Specifically, Chapter 2 gives a brief introduction

to the concept of dynamical systems, attractors and introduces the recurrence theorem.

Chapter 3 focuses on tools and methods that are necessary to perform nonlinear time

series analysis, including phase space reconstruction methods. We then introduce the

concept of RPs and review various RQA measures associated with it. Other popular

nonlinear measures that are used for EEG time series analysis are reviewed as well.

Finally, we review the concept of surrogate analysis and methods used to distinguish

between chaos and noise. Chapter 4 gives a brief overview of complex network theory

and presents some basic definitions in graph theory. Chapter 5 discusses and reviews RN



Chapter 1. Introduction 5

and its applications in various fields. It also describes various global and local network

measures that are derived from graph theory and used in RNA. Chapter 6 focuses on

nonlinear time series analysis of EEG and reviews the relevant literature that describes

the application of methods derived from nonlinear theory to EEG, with special attention

towards epilepsy.

Part II describes the data, methods and results of the work carried out in Publications

[P-I] - [P-V]. In Chapter 7 we demonstrate how RN measures, both local and global,

can be used to distinguish cahotic and stochastic dynamics. Chapter 8 investigates the

effect on noise on recurrence network measures. Chapters 9 - 11 describes the application

of recurrence network approach to various neural data including healthy and epileptic

surface and intracranial EEG recordings, and to LFP data acquired during a visuomotor

task.

Part III presents the overview and general discussion of the thesis including the limi-

tations (Chapter 12) and conclusions (Chapter 13). Part IV comprises of five original

publications, that the author has contributed towards the completion of this doctoral

thesis.





Part I

Theoretical background and

literature review
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CHAPTER 2

DYNAMICAL SYSTEMS

We may regard the present state of

the universe as the effect of its past

and the cause of its future. An intel-

lect which at a certain moment would

know all forces that set nature in mo-

tion, and all positions of all items of

which nature is composed, if this in-

tellect were also vast enough to sub-

mit these data to analysis, it would

embrace in a single formula the move-

ments of the greatest bodies of the uni-

verse and those of the tiniest atom; for

such an intellect nothing would be un-

certain and the future just like the past

would be present before its eyes

Pierre-Simon Laplace

(1749–1827)

In this chapter, some of the basic concepts underlying the dynamical systems theory

is given. The definition and formulation of a dynamical system is given in Section 2.1.

A brief description of attractors and their different types is given in Section 2.2. The

concept of recurrence is introduced in Section 2.3, which is followed by Poincaré sections

in Section 2.4.

9
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2.1 Continuous and discrete dynamical systems

Dynamical systems are ubiquitous in nature. They can be defined as any mathematical

model or rule that determines the future evolution of variables, which describe the

state of the system, from their initial values [20]. If the evolution rule is considered

to be purely deterministic, then such dynamical systems are known as deterministic

dynamical systems. If one considers a model that includes intrinsic or external source

of randomness, then such a model represents a random dynamical system [21]. A

deterministic dynamical system (simply referred to as dynamical system in the remainder

of the thesis, unless stated otherwise) can be mathematically represented using a set of

ODEs

ẋ1(t) = F1(x1(t), x2(t), · · · , xm(t)), (2.1)

ẋ2(t) = F2(x1(t), x2(t), · · · , xm(t)), (2.2)

... (2.3)

ẋm(t) = Fn(x1(t), x2(t), · · · , xm(t)), (2.4)

where t ∈ R is a continuous time variable. These set of equations can be given in a

compact form to represent a continuous dynamical system

ẋ = F(x). (2.5)

If the mapping F : Rm → Rm is nonlinear, then Equation 2.5 models a nonlinear

dynamical system and it is well known that nonlinear ODEs typically do not have a

closed form solution. In order to deal with such ODEs, a geometric approach is adopted

instead of an analytic one. Since the solution of an ODE can be represented as curves

in some abstract phase X [22], a dynamical system can be thought of as a way to

represent the motion in time, of all the points in X [23]. These set of points, x(t) ∈ Rm,

that completely describe the system at time t is known as the state, with m being the

dimension of the system. The space X, is known as the phase space (also called state

space) of the system, which is a set of all possible states of the system at any moment

of time. Given an initial point in X, one can determine the future states and the

solution curve traced out joining these states is known as a trajectory. Accordingly,

in a dynamical system, the trajectories cannot intersect. The direction in which one

state evolves into another is given by the mapping φt : X → X, which is also known

as the flow, where φt(x0) is the solution to Equation 2.5, which depends on the initial

condition x0. Thus, the set {φt(x0) : −∞ < t <∞}, is the trajectory through x0 in

the phase space. If the time variable t takes on discrete values, then the system is a

discrete dynamical system. Such systems result from an iterative process, described
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by a difference equation (instead of a differential equation, as in the continuous case)

xt+1 = f(xt) (2.6)

where t ∈ Z and x ∈ Rm. Instead of a continuous flow that describes how one state

evolves into another, in case of discrete dynamical system, one speaks of a map, that

maps a state at a time index t to another state at time index t + 1. Such dynamical

systems are sometimes simply referred to as maps.

Dynamical systems can be further categorized into conservative and dissipative dy-

namical systems. In conservative dynamical systems (also known as Hamiltonian sys-

tems), the phase space volume is preserved and it does not vary with time. In case of

dissipative systems, the phase space volume decreases with increasing time. In other

words, the phase space volume is contracting, i.e., ∇·F < 0. Assuming the system to be

bounded, as t→∞, the motion becomes confined to a set A with zero phase space vol-

ume and dimension less than the phase space dimension [24]. This set A is known as the

attractor of the system and is formally defined in Section 2.2. It is important to note

that a conservative system does not have an attractor. The dynamical system modeled

by Equation 2.5 is also known as an autonomous dynamical system as the vector field

F does not explicitly depend on the time variable t. If the vector field changes with

time, then the dynamical system is known as non-autonomous dynamical system and

the rule that the trajectories cannot cross each other, does not hold anymore in such

systems.

Definition 2.1. Formally, a dynamical system is given by the triple (X,T, φt), where

X ⊆ Rm is a compact or smooth manifold and φt is a continuously differentiable function,

parameterized by t ∈ T and is given by

φt : T ×X → X, (2.7)

where T ∈ R (or ∈ Z) and φ(t,x) = φt(x) satisfies the following two properties

1. φ0(x) = x for all x ∈ X.

2. φt ◦ φs(x) = φt+s(x) for all x ∈ X and each s, t ∈ R.

The property (1) is known as the identity property and it states that when a state

evolves at t = 0, the state remains unchanged [23, 25]. Property (2) is known as the

group property and it implies that under the operation of composition, the set {φt} is

a commutative group [26], i.e., solving the differential equation at time t+ s is same as

solving it first for time t and then for time s.
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2.2 Attractor

Attractor of a dynamical system can be defined as a subset of the phase space to which

the trajectories emerging from typical initial conditions accumulate to, as time increases.

Definition 2.2. A set A ⊂ Rm, is known as an attractor of a dynamical system if the

following conditions are met [27],

1. A is forward invariant.

2. The basin of attraction B(A) has a strictly positive measure.

3. A cannot be decomposed further into nontrivial sets.

The basin of attraction is defined as the neighborhood of the attractor where the initial

conditions starting in the neighborhood remain in the neighborhood and approach the

attractor as t→∞. Formally, basin of attraction can be defined as

Definition 2.3. For a dynamical system described by ẋ = F (x), let x be an asymptot-

ically stable stationary point. Then for all γ > 0 there exists δ > 0 such that [22]

|y − x| < δ =⇒ |φt(y)− x| < γ ∀t ≥ 0 (2.8)

and

∃ δ > 0 such that |y − x| < δ =⇒ |φt(y)− x| → 0 as t→∞ (2.9)

then

B(A) =

{
y ∈ Rm| lim

t→inf
|φt(y)− x| = 0

}
(2.10)

is known as the basin of attraction of the point x.

There are different types of attractors. The simplest kind of attractor is a fixed point

attractor, which is represented by a single point in phase space. It describes the equi-

librium state of a system. A slightly more complicated type of attractor is the limit

cycle attractor, which forms a closed loop in phase space. Such attractors represent

stable oscillatory behavior. Chaotic attractors, also known as strange attractors, have

self-similar, fractal properties. There are non-chaotic strange attractors as well, that do

not emerge from a chaotic dynamical system. A chaotic dynamical system, although de-

terministic, is sensitive to initial conditions. Due to this sensitivity to initial conditions,

two nearby trajectories emerging from two arbitrarily close initial conditions tend to

diverge away from each other as time increases. However, since the system is bounded,

the separation between the trajectories cannot tend to infinity and hence the trajecto-

ries start to converge. This repeated divergence and convergence (i.e., stretching and
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Figure 2.1: Lorenz attractor,
ρ = 28, σ = 10, β = 8/3.

−20

−10

0

10

20

−20

−10

0

10

20

10

20

30

40

50

x1

x2

x
3

Figure 2.2: Rössler attractor,
a = b = 0.1, c = 18.

folding) of trajectories on the attractor, produces very complicated structures in phase

space and gives the attractor its strange and fractal nature. Some of the common exam-

ples of such chaotic attractors are given by the Lorenz system and the chaotic Rössler

system, given by the following equations

ẋ = σ(y − x), ẏ = x(ρ− z), ż = xy − βz, (2.11)

and

ẋ = −y − z, ẏ = x+ ay, ż = b+ z(x− c), (2.12)

respectively. The attractors of these systems and the corresponding parameter values

are shown in Figures 2.1 and 2.2.

2.3 Poincaré recurrences

The metatheorem of dynamical systems theory states that, for an appropriately bounded

phase space X, the trajectories of the motion will exhibit some form of recurrence, i.e.,

they will return close to their initial position [28]. In 1890, Poincaré formulated the first

precise result and proved that whenever a dynamical system preserves volume, almost

all the trajectories return arbitrarily close to their initial position, infinite number of

times [12].
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Formally, let (X,N , µ, f) be a measure space where N is a σ-algebra, i.e., N ⊂ 2X , µ

is a probability measure. Let f : X → X be a measure preserving transformation. Thus,

µ(f−1(A)) = µ(A) for any measurable set A ⊆ X. Now, Poincaré recurrence theorem

can be stated as follows [29]

Theorem 2.4. For any measurable set A ⊆ X, almost every point x ∈ A returns infinte

times in A

µ({x ∈ A : there exists infinite positive integers n ∈ N such that fn(x) ∈ A}) = µ(A).

Although, the Poincaré’s recurrence theorem talks about the existence of recurrence in a

dynamical system, but does not explicitly address how long does it take for a dynamical

system to recur [2]. The first return time for the attractor set A can be defined as

τA(x) = min {n ∈ N : fn(x ∈ A)} , (2.13)

which simply is the minimum number of transformations needed on x, before it returns

back to the set A. The mean recurrence time is then given as

〈τA〉 =

∫
A

τA(x)dµA. (2.14)

2.4 Poincaré sections

Consider an attractor and an arbitrary plane that cuts through an attractor. A Poincaré

section can then be defined as an one-dimensional map consisting of a sequence of data

points formed due to the intersection of the attractor trajectories with the plane. Such

maps are useful in detecting some sort of structure in an attractor. For instance, if a

plane is cut through a three dimensional chaotic attractor, one can see stretching and

folding of the map as the plane is rotated through the attractor. Similarly, if the plane

cuts through a stable periodic orbit, then starting from a random initial condition, one

can observe a sequence of points converging on to an equilibrium point. Thus, Poincaré

sections can be thought of as an interesting way of dimensionality reduction, i.e., a

continuous system of dimension m is reduced to a discrete system of dimension m− 1.



CHAPTER 3

NONLINEAR TIME SERIES ANALYSIS

The whole is greater than the sum of

its parts

Aristotle

In this chapter, the tools needed to perform nonlinear time series analysis are reviewed.

The techniques for reconstructing the phase space from time series are discussed in

Section 3.1. RPs, which are commonly used in nonlinear time series analysis and from

which RNs are derived, are described in Section 3.2. Fractal dimensions, which are

closely related to nonlinear dynamics arising from chaos, are discussed in Section 3.3.

Self-similarity, which is a property of fractals, is observed in the geometry of chaotic

(and even non-chaotic) strange attractors. In Section 3.4, we give a brief description of

other commonly used measures in nonlinear time series analysis. We then discuss the

issue of distinguishing chaos from noise in Section 3.5. An overview of different surrogate

methods is provided in Section 3.6.

3.1 Phase space reconstruction

Signals of interest are often recorded by sensors in the time domain. Thus, there is no

direct access to the hidden states of the underlying dynamical system. Many methods

from nonlinear dynamical theory [8] operate on the phase space and require the attractors

underlying the dynamical system. The phase space attractor can be reconstructed from

a scalar time series following what is known as the embedding theorem [30], given

below.

15
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xn ∈ A ⊂M xn+1 ∈ A ⊂M

xn ∈ R xn+1 ∈ R

x̃n ∈ Ã ⊂ R2m+1 x̃n+1 ∈ Ã ⊂ R2m+1

g

F

g

e

G

e

Figure 3.1: Commutative diagram illustrating the embedding theorem.

3.1.1 Taken’s embedding theorem

Theorem 3.1. Consider a compact, m-dimensional manifold M, with F :M→M, a

smooth diffeomorphism (at least in the sense of C2). Consider a smooth (again in the

sense of C2) observation function, g :M→ R. It is a generic property that,

Φ(F,g) :M→ R2m+1, (3.1)

defined by,

Φ(F,g)(x) = (g(x), g(φ1(x)), g(φ2(x)), · · · , g(φ2m(x)) (3.2)

is an embedding, where φt is a flow of F. Here Φ(F,g) is a 2m+ 1-fold observational map

and is one-to-one between M and its image, with both Φ and Φ−1 differentiable [31].

The components of Φ(F,g) correspond to the time lagged observations of the dynamics

on M, as defined by the smooth observation function g.

The embedding theorem can be visualized using a commutative diagram as shown in

Figure 3.1. Here xn represents the original state vector at time instant n and xn repre-

sents the scalar measurement made at time n through an observation function g. The

evolution of the state vector to time instant n + 1 is given by the dynamics F. Em-

bedding theorem states that, an embedding procedure e can be written as a map on

xn by introducing a backward shift operator (also see Equation 3.3) [8]. The vector

x̃n denotes the reconstructed state vector at time instant n, following the embedding

procedure. The dynamics G in the embedding space is uniquely determined by F and

g. Figure 3.2 shows an example, where the Lorenz attractor is reconstructed by appling

the embedding theorem on the scalar x1 component of the original Lorenz system.
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Figure 3.2: (A) The original Lorenz attractor. (B) The x1-component of the Lorenz
attractor. (C) The Lorenz attractor in the reconstructed space after applying embed-
ding theorem using the x-component. The reconstructed space (C) is diffeomorphic

with the 3-dimensional manifold which contains the original Lorenz attractor (A).

3.1.2 Estimation of the embedding lag

The embedding theorem does not explicitly specify what should be the embedding lag (τ)

between the successive observations to reconstruct the dynamics. In theory, the theorem

will work for any arbitrary value of τ ∈ R+ and the embedding theorem described above

considers τ = 1. The reconstructed embedding vector x̃n, for an arbitrary τ can be

given as [8]

x̃n ∈M⇐⇒ (xn, xn−τ , xn−2τ , . . . xn−(m−1)τ ). (3.3)

However, in practical situations the selection of τ may necessitate some caution. For

instance, if τ is too small, then there is almost no new information between the successive

observations and the coordinates in the phase space will be too close to each other. It

is beneficial to select a value of τ such that it leads to maximal separation of the data,

as this ensures that the vector field is also maximally smooth, with no sharp changes

in the direction [32]. In contrast, a very large τ can make the successive observations

completely disconnected, relating each other in a random fashion. The situation arising

due to the selection of very small and very large value for τ is known as redundance and

irrelevance respectively [33]. Many methods have been proposed to choose the optimal

value for τ . However, two methods based on autocorrelation [34] and mutual information

[35] have gained considerable popularity and are discussed in some detail below.
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3.1.2.1 Autocorrelation

Given a scalar time series {xt} with N samples, where t = 0, 1, 2, · · · , (N −1), the linear

autocorrelation function is given as

ρ(τ) =

∑N−τ−1
t=0 [xt+τ − x̄][xt − x̄]∑N−1

t=0 [xt − x̄]2
, (3.4)

where x̄ is the sample mean. Qualitatively speaking, an autocorrelation function tells

how similar is the shape of a signal at time t + τ to that at time t, i.e., it denotes how

the signal shape changes from time to time. The above equation can be simplified by

normalizing the time series to zero mean and unit variance

ρ(τ) =
1

N − τ − 1

N−τ∑
t=1

xt+τxt, (3.5)

for τ ≥ 0. Note that ρ(τ) = ρ(−τ) for τ < 0, i.e., the aurocorrelation function is an

even function of τ . In order to select an optimal embedding lag, one can choose τ such

that ρ(τ) ≤ 0. It has been observed that many simple systems give poor results for this

criteria and a reasonable choice for the embedding lag can be given as the decorrelation

time [8, 32], which is defined as

τdec = min

{
τ : ρ(τ) <

1

e

}
. (3.6)

Although autocorrelation function is closely related to the shape of the attractor [8] and

gives good hint about the independence of the coordinates, it does not address the issue

of nonlinear dependence [36].

3.1.2.2 Mutual information

Information theory plays an important role in the field of dynamical systems. Despite

the deterministic character of the temporal trajectory, chaotic systems exhibit long-

term unpredictability [37]. In a chaotic system, the distance between two near-by points

typically increases in an exponential fashion, i.e., |x1(t′)−x2(t)| ≈ |x1(t)−x2(t)|e(λ|t′−t|),

where λ is the largest Lyapunov exponent (See Section 3.4). Due to this separation, these

two near-by points that were experimentally indistinguishable, can now be resolved.

Thus, instability and the resulting chaos can be thought of as an information source

[36]. The Kolmogorov-Sinai entropy, which is a generalization of Shannon entropy from

information theory, first introduced by Kolmogorov [38] and later refined by Sinai [39],

can be used to precisely formulate the rate of the generated information and to quantify
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Figure 3.3: x1 component of the Lorenz system.

the complexity of a dynamical system [40]. In information theory, a message can be

considered as a sequence of symbols, which corresponds to a state in a dynamical system.

The dynamics of the system can be given by the shift operator, which switches the

message sequence one step. Using such entropy measures, one can measure how well

can the next sequence be predicted. Extending this idea, given a time series, one can

learn how much information can be gained from the measurement at one time, from

the measurement acquired at another time [36]. In general, given two discrete random

variables X and Y , with marginal probability mass functions p(x) = Pr(X = x), x ∈ X
and p(y) = Pr(Y = y), y ∈ Y and a joint probability mass function p(x, y), the mutual

information I(X;Y ) can be defined as [41, 42]

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x) p(y)

)
(3.7)

If X and Y are independent, then p(x, y) = p(x)p(y) and thus I(X;Y ) = 0. In the

context of a scalar time series, {xn} with N samples, where n = 0, 1, 2, · · · , (N −1), one

can define the auto mutual information function as follows [35]

I(τ) =

N−1∑
n=0

p(xn, xn+τ ) log

(
p(xn, xn+τ )

p(xn)p(xn+τ )

)
. (3.8)

It has been suggested that the optimal value for the embedding delay is the value of

τ at which I(τ) reaches the first local minimum [8, 35, 43]. This method has an obvi-

ous advantage over the autocorrelation method as it takes into account the nonlinear

interrelations as well. As an example, Figure 3.3 shows the x1-component of the Lorenz

system (Equation 2.11) and Figure 3.4 the optimal embedding lag (τopt = 43) estimated

using the mutual-information criterion.
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Figure 3.4: Estimation of the optimal lag τ (red circle) using auto mutual information
for the x1 component of the Lorenz system.

3.1.3 Estimation of the embedding dimension

In order to perform phase space reconstruction from a time series, apart from τ , another

important parameter to be estimated is the embedding dimension (m). Again, there

are various methods in the literature on the selection of m and many of these methods

are based on false-nearest neighbor principle [32, 44, 45]. The most common method

used in determining m is the false nearest neighborhood (FNN) method [46]. The

rationale behind the FNN method is to examine if the points along a trajectory in

dimension m are also neighbors in dimension m + 1. Since in dimensions lower than

the actual dimension, many points on the trajectory will be close to each other (false

neighbors) due to projection. Starting with an initial dimension of m = 1, one keeps

incrementing m by one and for each state vector xn, the nearest neighbor is computed.

For every increase in m, the percentage of false neighbors is also computed. The value

of m at which the percentage of false neighbors becomes zero (or arbitrarily small due

to the effect of noise) is considered as an appropriate choice for m. Given a scalar time

series {x(n)} with N samples, where n = 0, 1, 2, · · · , (N − 1) and τ , one reconstructs

the phase space vector at an initial dimension m. Thus we have a state vector at time

sample n

xmn = (x(n), x(n− τ), · · · , x(n− (m− 1)τ), (3.9)

which has a nearest neighbor

xmk(n) = (x(k(n), x(k(n)− τ), · · · , x(k(n)− (m− 1)τ). (3.10)



Chapter 3. Nonlinear time series analysis 21

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

ξ m
o
d
(m

)

Figure 3.5: Estimation of the minimum embedding dimension using modified FNN
method for the x1 component of the Lorenz system.

If the above reconstruction occurred in an insufficient dimension m, then this closeness

could be a result of trajectories crossing [32]. So one increases the dimension to m + 1

and reconstructs the phase space vector and computes the nearest neighbor for each

state vector. Now let us denote a state vector point in dimension m+ 1 as xm+1
n and its

nearest neighbor xm+1
k(n) . The increase in distance from m to m+ 1 can be given as

Dn = ||xm+1
n − xm+1

k(n) || − ||x
m
n − xmk(n)||, (3.11)

which can be normalized and computed for all the points as

ξ =
N−m−1∑
n=1

Θ

(
Dn

||xmn − xmk(n)||
− r
)
. (3.12)

One can set a suitable threshold (r) to determine if xmn and xmk(n) are neighbors, i.e.,

if ξ is greater than r then these two points can be called false neighbors. Typical r is

chosen to be between 10 and 30 [32]. Thus ξ is the amount of false neighbors that one

would find in dimension m. The optimal embedding dimension is then defined as the

dimension for which ξ becomes zero (or very small in case of noisy time series). Hegger

and Kantz proposed a modification to the FNN method by excluding points whose initial

distance was already greater σ/r, where σ is the standard deviation of the data [47].

The modified FNN method is given by

ξmod =

∑N−m−1
n=1 Θ

(
||xm+1

n −xm+1
k(n)
||

||xmn −xmk(n)||
− r
)

Θ(σr − ||xmn − xmk(n)||)∑N−m−1
n=1 Θ(σr − ||xmn − xmk(n)||)

. (3.13)
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Figure 3.5 shows the minimum embedding dimension using the x1-component of the

Lorenz system (Equation 2.11) with the modified FNN method. It can be seen at at

m = 3, already the percentage of false nearest neighbors is very close to zero and for

m > 3, this value falls to zero.

3.2 Recurrence plots

3.2.1 Definition of a recurrence plot

Eckmann et al. [13] introduced RP as a method to visualize the recurrences of trajec-

tories in the phase space of a dynamical system. An RP can be represented using a

recurrence matrix R [2], whose elements are given as

Ri,j = Θ(ε− ||xi − xj ||), (3.14)

where Θ is the Heaviside step function, || · || is a distance norm, ε is a pre-determined

distance threshold, xi and xj are state vectors at time instant ti and tj respectively. Note

that the matrix R can be defined in many ways (see [17] and Section 5.1 for details)

and the above definition in particular refers to ε-recurrence matrix (hereinafter simply

referred as matrix R, unless specified otherwise). Thus, we can write the elements of

the matrix R as

Ri,j =

{
1 when ε < ||xi − xj ||,
0 when ε > ||xi − xj ||.

(3.15)

This simply means that, if the trajectory in the phase space returns at time instance

tj into the ε-neighborhood of where it was at time ti (j > i), then the corresponding

entry Ri,j is 1, otherwise it is 0. Thus, the matrix R is a symmetric, binary matrix.

Information about the temporal evolution of the trajectories can be obtained by looking

at the patterns in the RPs [2]. For example, the RP of periodic dynamics contain contains

non-interrupted lines, known as diagonal lines [2]. The RP of a stochastic, uncorrelated

signal contains many isolated points [8, 17]. A dynamical system displaying chaos has an

RP comprising of diagonals relatively shorter than the periodic system [17]. Exemplary

RPs derived from sinusoidal time series, Lorenz system and uncorrelated stochastic data

are shown in Figure 3.6

As evident from Equation 3.14, an RP is dependent on two parameters, ε and || · ||. A

large ε results in a large neighborhood where every point is connected to every other point

[2]. In such situations, the closeness in phase space is a consequence of temporal closeness

and this results in false recurrence points. This effect is known as tangential motion

and it causes thick and longer structures in the RP [2]. On the other hand, if ε is chosen
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Figure 3.6: RPs derived from a sinusoidal time series (A), Lorenz system (B) and
uncorrelated stochastic signal (C). The sinusoidal time series has a period of T = 0.5
seconds, which is equal to the vertical distance between diagonals in the corresponding

RP. The parameters of the Lorenz system are ρ = 28, σ = 10, β = 8/3.

to be too small, true recurrence points might get excluded and thus the resulting RP

will no longer reflect the true recurrence structure of the underlying dynamical system

[2]. In dealing with experimental signals, the influence of noise also has to be taken into

account before choosing ε. Thiel et al. [48] suggested a value of ε, that is at least five

times the standard deviation of the observed noise. It has also been suggested that the

value of ε should not exceed 10% of the mean or the maximum phase space diameter

[14]. Regarding the || · ||, one can choose either euclidean or manhattan or maximum

norm. Choosing maximum norm has one obvious advantage that the distance computed

is independent of the embedding dimension whereas with euclidean norm, the inter-point

distance increases with embedding dimension [49]. Thus, different RPs generated with

different embedding dimensions can be compared directly when using maximum norm

[49]. On the other hand, Zou et al [50] showed that euclidean norm works well for

parametrized model, while maximum norm works well for phase space models. Thus,

choice of the norm also plays an important role in deriving an RP.

3.2.2 Recurrence quantification analysis

Although, the visual interpretation of RPs can help in gaining insights into the dynamical

system, it is still a subjective method. A more convenient and objective approach is to

quantify the structures present in the RPs using RQA, introduced by Zbilut and Webber

[14, 51, 52]. In this section we will define some of the important RQA measures that

can be used to characterize the complexity of a dynamical system.
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• Recurrence rate (RR) is a measure of the density of recurrences in an RP. It is

closely related to the definition of correlation sum [53] and is given as

RR =
1

N2

N∑
i,j=1

Ri,j . (3.16)

The RR is simply the sum of black dots (ones) in an RP. When number of state

vectors (N) is large, RR is the probability that a state vector returns to its ε-

neighborhood [2].

• Percent determinism (DET ) can be defined as the ratio of recurrence points

that form the diagonal lines of at least length lmin to all the recurrence points in

an RP and it is given as

DET =

∑N
l=lmin

lPD(l)∑N
l=1 lPD(l)

, (3.17)

where PD(l) is the histogram of the lengths of the diagonal structures in an RP

[2] and is given as,

PD(l) =
N∑

i,j=1

(1−Ri−1,j−1)(1−Ri+l,j+l)
l−1∏
k=0

Ri+k,j+k. (3.18)

Since, the RP of a deterministic system exhibiting periodic dynamics contain long

diagonals whereas those depicting chaotic dynamics has short lines, the parameter

DET can be used as a measure of predictability of the system. However, this is not

to be confused with the determinism of a process [54]. Also, the parameter DET

depends on the parameter lmin, which can be set so as to exclude short diagonal

lines that may exist due to tangential motion and not system dynamics [54]. The

typical choice for lmin is 2 and this parameter becomes identical to RR if lmin = 1

[55].

• Entropy (ENTR) of an RP can be defined as the Shannon entropy of the fre-

quency distribution of diagonal line lengths [54] and is given as

ENTR = −
N∑

l=lmin

p(l) log(p(l)), (3.19)

where p(l) = PD(l)∑N
l=lmin

PD(l)
is the frequency distribution of the diagonal line lengths.

The parameter, ENTR, can be used to characterize the complexity of a deter-

ministic structure in an RP. High values of ENTR reflect increased complexity in
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the system whereas low values of ENTR indicate uncorrelated noise or stochastic

process.

• Maximum diagonal line length (Lmax) can be defined as [54]

Lmax = max ({li; i = 1, 2, · · · , Nl}) , (3.20)

where Nl is the total number of diagonal lines. A related measure known as

Divergence (DIV ) is given as the inverse of Lmax. These two measures are related

to the exponential divergence of the trajectories [2]. The faster the trajectories

diverge, shorter will be the diagonal lengths leading to a lower value of Lmax (or

conversely a higher value for DIV ).

• Average diagonal line length (Lmean) can be defined as the average time for

which two segments of the trajectories are in proximity of each other. This measure

is related to the mean prediction time and it is given as[54]

Lmean =

∑N
l=lmin

lPD(l)∑N
l=lmin

PD(l)
. (3.21)

• Ratio (RATIO) is defined as the ratio between the parameters DET and RR

[51]. It is given as

RATIO = N2

∑N
l=lmin

lPD(l)

(
∑N

l=1 PD(l))2
. (3.22)

This parameter is useful in detecting dynamic transitions [55].

• Laminarity LAM is a parameter similar to DET , except that it gives the ratio

of recurrence points that form the vertical lines to all the recurrence points. It was

proposed by Marwan et al. [56] and is given as

LAM =

∑N
l=vmin

lPV (l)∑N
l=1 lPV (l)

, (3.23)

where, PV (l), the histogram of the lengths of the vertical lines in an RP and is

given as,

PV (l) =

N∑
i,j=1

(1−Ri,j−1)(1−Ri,j+l)
l−1∏
k=0

Ri,j+k. (3.24)

In addition to these RQA measures, dynamical invariants like correlation dimension,

correlation entropy and generalized mutual information can also be estimated from RPs.

This is an useful feature since the RQA measures, although useful in quantitatively

describing the RP, still depend on embedding parameters used to reconstruct the phase

space [2].
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3.2.3 Bivariate recurrence plots

Apart from analyzing univariate time series, the concept of RPs (and their quantifica-

tion) can be extended to analyze bivariate signals. The RPs obtained from bivariate

data can be divided into two categories, 1) cross recurrence plots (CRPs) and 2) joint

recurrence plots (JRPs). Below, we discuss these two approaches in some detail.

3.2.3.1 Cross recurrence plot

The CRP [57, 58] can be used to analyze interdependencies between two different

dynamical systems and it can be considered as a generalization of the linear cross-

correlation function [2]. Given N -samples of two time series {xt} and {yt}, where

t = 0, 1, 2, · · · , (N − 1), a cross recurrence matrix (Rcross) can be defined with the

elements

Rcrossi,j = Θ(ε− ||xi − yj ||). (3.25)

Following the definition of an RP (Section 3.2 and Equation 3.14), here Θ is the Heavi-

side step function, ||·|| is a distance norm, ε is a pre-determined cross-distance threshold.

xi and yj are (reconstructed) state vectors at time instance ti and tj respectively. The

matrix Rcross is not a square matrix like R, as the two time series can be of different

lengths. Thus we can write the elements of Rcross in an analogous fashion to Equa-

tion 3.15,

Rcrossi,j =

{
1 when ε < ||xi − yj ||,
0 when ε > ||xi − yj ||.

(3.26)

This simply means that the entry in the matrix Rcross is 1 if the mutual distance between

the phase vectors xi and xj is less than ε, else it is 0. The diagonal entries of the matrix

Rcross is not necessarily 1 always, as this entry depends on the mutual distance between

state vectors from two time series. Similar to the visual interpretation of the structures

in an RP, the structures of a CRP can also be interpreted in a similar fashion. For

instance, if the lines in a CRP are diagonally oriented, it implies that the segments of

the trajectories of both the systems run parallel for some time [2]. The length of such

diagonal lines can be used to find nonlinear interdependencies between two time series

[58]. If both the time series have the same dynamics, the main diagonal entry of Rcross

will be one. Furthermore, in case of time dilation or compression of one of these similar

trajectories, this diagonal line will be distorted [59]. Since the CRP method compares

the phase space trajectories of two systems in the same phase space, it is essential to

embed both the time series with the same m. In case the minimum m for the two time

series are not the same, then the higher embedding dimension is chosen to embed both

the time series.
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Analogous to the quantification of RPs, complexity measures can be derived by quan-

tifying the CRPs. The RQA parameters DET , LAM and Lmean can be modified and

redefined for the CRPs [58]. Since, the similarity between two systems is given by the

main diagonal of a CRP, these modified RQA measures are determined for each diag-

onal line parallel to the main diagonal line and are given as a function of the distance

from the main diagonal. Let t ∈ (−T, · · · , T ) be the index of the diagonal lines with

t = 0 referring to the main diagonal, t > 0 referring to the diagonals above the main

diagonal and t < 0 referring to the diagonals below the main diagonal [58]. The modi-

fied RQA measures, known as cross recurrence quantification analysis cross recurrence

quantification analysis (CRQA) measures, RR(t), DET (t) and Lmean(t) are defined as

follows

RR(t) =
1

N − t
N−t∑
l=1

lPDt(l), (3.27)

DET (t) =

∑N−t
l=lmin

lPDt(l)∑N−t
l=1 lPDt(l)

, (3.28)

and

Lmean(t) =

∑N−t
l=lmin

lPDt(l)∑N−t
l=lmin

lPDt(l)
, (3.29)

where PDt is the histogram of the diagonal line lengths for each diagonal parallel to the

main diagonal. High values of RR indicate that the probability of the occurrence of the

same state in both the systems is high, whereas high values of DET and Lmean indicates

a long time span of the occurrence of similar dynamics in both the systems [58].

3.2.3.2 Joint recurrence plot

While CRP is based on the occurrence of similar states in two different dynamical

systems, JRP can be used to infer if the states of two systems recur simultaneously

leading to similar recurrence structures [60]. Unlike the CRP, to derive a JRP, the two

time series can be embedded in different m. The joint recurrence matrix (Rjoint) can

be given as an element-wise dot product of the individual recurrence matrices obtained

from time series x(t) and y(t) using individual distance thresholds εx and εy respectively

and the elements of the matrix Rjoint can be given as

JRjointi,j = Θ(εx − ||xi − xj ||)Θ(εy − ||yi − yj ||), (3.30)
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which can be rewritten as,

JRjointi,j =

{
1 when (εx < ||xi − xj || ∧ εy < ||yi − yj ||) ,
0 else

(3.31)

It is important to note here that, since the embedding dimensions of the two systems

considered can be different, the phase space is extended to Rm1+m2 , where m1 and m2 are

the dimensions of the considered systems [60]. This definition can also be extended for

n systems x(1),x(2), · · · ,x(n) and a multivariate joint recurrence matrix can be defined

as [2]

JRjointi,j = x(1,2,··· ,n)(εx
(1)
, εx

(2)
, · · · , εx(n)

) =
n∏
k=1

Rx(k)

i,j (εx
(k)

) (3.32)

where i, j = 1, 2, · · · , N . The JRP is invariant under the permutation of the coordinates

in one or both of the considered systems [2].

The JRP can be further used to compute the joint recurrence probabilities and con-

ditional recurrence probabilities [61]. The mean conditional recurrence (MCR) prob-

abilities can be used to infer direction of couplings. Recall the definition of the RR

(Equation 3.16), which can be thought of as the mean probability of recurrence,

〈p(xj)〉 = RR =
1

N2

N∑
i,j=1

Ri,j , (3.33)

for a time series x(t), representing a dynamical system X. Given another time series

y(t) representing a dynamical system Y , the influence of X on Y can be given as

MCR(X|Y ) =
1

N

N∑
j=1

∑N
i=1 JRi,j∑N
i=1R

Y
i,j

, (3.34)

In an analogous fashion one can define,

MCR(Y |X) =
1

N

N∑
j=1

∑N
i=1 JRi,j∑N
i=1R

X
i,j

. (3.35)

If X is driving Y , then the asymmetry in the coupling is given by the inequality

MCR(Y |X) < MCR(X|Y ), because the dimension of Y increases compared to X which

in turn results in the decrease of the recurrence probability p(yj) [61]. This procedure

has also been extended to infer indirect coupling in a truly multivariate scenario and is

known as partial MCR method. For more details regarding the partial MCR method,

the reader is directed to [61].
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3.3 Fractal dimensions

Geometry deals with objects in space and specifically, fractal geometry deals with non-

idealized, crinkly objects that are characterized by their fractional dimensions [45]. At-

tractors can be considered as conceptual objects, that arise in the state space of dissipa-

tive chaotic (and in some cases even non-chaotic) systems [45] and they have complicated

geometry, described by Lorenz [62] as infinite complex of surfaces (In describing the

Lorenz attractor). Such attractors with seemingly complicated geometry are known as

strange attractors, which are characterized by fractional dimension. Also, fractional

dimension is usually exhibited by geometrical objects that display unusual kind of self-

similarity to some degree. This means that when a tiny part of the fractal object is

magnified, it resembles the whole object. This resemblance is sometime exact, but more

often it is approximate or statistical [63].

The dimension of an attractor is an important and intensely studied invariant quantity

for dynamical systems [36]. Consider an m-dimensional phase space, comprising of N

non-empty hypercubes of length l, that is needed to fully cover the attractor embedded

in the phase space. The number of hypercubes needed to cover the attractor typically

scales as a function of the length parameter, N(l) ≈ l−D0 , where D0 can be thought of

as the dimension of attractor the hypercubes are covering. Thus the dimension D0 of

the attractor can be approximated as follows,

D0 = lim
l→0

logN(l)

log 1
l

. (3.36)

The term D0 is referred to as the box-counting dimension. Theoretically, the largest

value of D0 as l → 0, is m, the phase space dimension. If the embedding dimension is

inadequate to unfold the attractor completely, only a projection of the attractor structure

is observed and thus for low dimensional embeddings, the attractor will fill the phase

space completely and D0 becomes almost equal to m. Hence, one commonly computes

D0 for increasing embedding dimensions until a saturation in the value of D0 is observed,

indicating that the attractor has been properly unfolded [36]. Apart from D0, one can

define more notions of fractal dimensions. Suppose again that N(l) is the number of

hypercubes needed to cover an attractor set. If the number of points of the attractor

set contained in the ith hypercube is Ni, then the probability pi for a randomly chosen

point of the attractor set to be in the ith hypercube is pi = Ni/N(l). Now one can define

the dimension spectrum as

Dq = lim
l→0

1

1− q
log
∑N(l)

i=1 pqi
log 1

l

. (3.37)
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For q = 0, the Equation 3.37 reduces to Equation 3.36, which defines the box-counting

dimension. Borrowing concepts from the theory of information, the notion of dimension

can be extended by estimating how many bits of information are needed to specify a

point on the attractor set. For q = 1, the the Equation 3.37 results in the definition of

the information dimension given as,

D1 = lim
l→0

−∑N(l)
i=1 pi log pi

log 1
l

, (3.38)

where the numerator in the Equation 3.38 is related to the Shanon entropy. For q = 2,

Equation 3.37 becomes

D2 = lim
l→0

log
∑N(l)

i=1 p2
i

log 1
l

, (3.39)

which is known as the correlation dimension as the numerator comprises a two-

point correlation function describing the probability of finding a pair of points within

a hypercube [36]. Grassberger and Procaccia [53] suggested a computationalyl simple

algorithm to estimate the two-point correlation and suggested using

C(l) =
2

N(N − 1)

N∑
i 6=j

θ(l − ||xi − xj ||), (3.40)

where θ(·) is the Heaviside function and l is the distance threshold for proximity. Now,

one can compute D2 as

D2 = lim
l→0

logC(l)

log l
(3.41)

3.4 Other nonlinear measures

3.4.1 Lyapunov exponents

Chaos in a dynamical system can be characterized by the exponential separation of

nearby trajectories and the Lyapunov exponent can be used to measure this separation.

Since chaotic orbits are bounded, this separation and hence the mutual distance between

two diverging points cannot tend to infinity. Consider two neighboring points x0 and

x0 + δx0, with initial separation δx0. The divergence of these two points occurs at a

rate given by

δx(t) ≈ eλt|δx0| (3.42)

The parameter λ is known as the Lyapunov exponent. An m-dimensional system has

m Lyapunov exponents and in general the behavior of such an m-dimensional subspace

is given by the sum of m Lyapunov exponents. Evidently, positive Lyapunov exponents
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result in exponential separation of trajectories and are a hallmark of chaotic behavior.

If all the Lyapunov exponents are negative, it means that all the orbits are stable as the

separation will exponentially decrease to zero, i.e., contraction occurs. For dissipative

systems, the sum of all the Lyapunov exponents must be negative and this sum gives

the rate at which a finite volume in phase space will contract to zero. Continuous flows

have one zero exponent and this implies that for the occurrence of chaos at least three

dimensions are required [32]. Also, using positive Lyapunov exponents, Kolmogorov-

Sinai entropy can be estimated in an obvious way as [64],

K =
∑
λi>0

λi (3.43)

3.4.2 Entropy measures

The framework of information theory can be used to characterize a dynamical system

[20]. Entropy is an important and old concept, already known in the field of statistical

mechanics and thermodynamics. The concept of entropy was introduced to information

theory through the work of Shannon [65] in 1948. In order to use the tools from in-

formation theory, the trajectories of a dynamical system (continuous or discrete) have

to be encoded into discrete symbolic sequences [20]. In case of continuous dynamical

system, once can use time discretization by using a fixed sampling time T or by use of

the poincaré section. The Shannon entropy of a system can be defined in terms of

the probability, P (x), that the system is in state x [32]. It is given as [65]

H(A) =

∫
x∈A

P (x) log2(P (x))dx, (3.44)

3.4.2.1 Kolmogorov-Sinai entropy

Given a trajectory, X = {x0,x1, · · · ,xn, · · · }, the surprise associated with {xn, } can be

measured by [32] − 1
NT+1−

NT∫
n=0

P (xn) log2(P (xn))dx, where n = 0, 1, 2, · · · , NT is a finite

time window and T is the sampling time. Consider a partitioning of an attractor set

A into D boxes of size εm (here m is the phase space dimension), A1, A2, · · · , AD ⊂ A,

where Ai 6= ∅ and Ai ∩Aj = ∅ for all i,j [32]. Let PAi0 ,Ai1 ,··· ,AiN be the probability that

a trajectory is in the partition Ai0 at t = 0, Ai1 at t = T , Ai2 at t = 2T , · · · , AiN at

t = NT . Let us define KN in bits as

KN = −
∑

i0,i1,··· ,iN
PAi0 ,Ai1 ,··· ,AiN log2 PAi0 ,Ai1 ,··· ,AiN (3.45)
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Now, consider the difference Kn+1−Kn, which is the information needed to identify the

hypercubes visited by a trajectory between times nT and (n+ 1)T . Now, one can define

the Kolmogorov entropy as

K ≡ lim
T→0

lim
ε→0+

lim
N→∞

1

NT

N−1∑
n=0

(Kn+1 −Kn) (3.46)

3.4.2.2 Approximate and sample entropy

In the last two decades, the concept of entropy and its related methods have been used to

define periodicity or regularity of various biological data [66]. Two most commonly used

methods in this context are approximate and sample entropy. Approximate entropy,

introduced by Pincus et al. [67], is a regularity statistic to quantify unpredictability

of fluctuations over time-series data [68]. Consider a time series {xi} with N samples,

where i = 1, 2, · · · , N , zero mean and unit variance. The corresponding m dimensional

embedding vector for τ = 1 is given as xmi = (xi, xi−1, · · · , xi−m+1). Define B(i, r) as

B(i, r) =
1

N −m+ 1

N−m∑
j=1,j 6=i

Θ(r − ||xmi − xmj ||) (3.47)

where Θ(·) is the Heaviside function and r is the distance threshold. Now define B(r) =
1

N−m+1

∑N−m+1
i=1 log(B(i, r)). Basically, B(i, r) represents for a given threshold r, how

many m-dimensional vectors are close to xmi and B(r) represents the sum taken over all

time instances of Xm =
(
xm1 ,x

m
2 , · · · ,xmN−m+1

)
. In a similar vein, A(r) and A(i, r) are

defined for the dimension m+ 1. Now, one can define the approximate entropy as

ApEn(m, r,N) = A(r)−B(r) (3.48)

Approximate entropy gives the likelihood that similar patterns of observations will not

be followed by additional similar observations and thus a time series containing many

repetitive patterns will have small values of approximate entropy while an unpredictable

and complex process will have a higher value [68]. However, approximate entropy mea-

sure introduces bias, particularly due to the length of the data and may suggest more

similarity in a time series than is actually present [69]. To overcome this bias, sample

entropy was introduced, which is a modification of the approximate entropy and is a

measure of complexity [69]. It is defined as

SampEn(m, r,N) = − log
A(r)

B(r)
(3.49)
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Thus, sample entropy is the negative logarithm of the conditional probability that if

two sequences of m points are within a distance r, then two sequences of m + 1 points

are also within a distance r. Compared to approximate entropy, sample entropy is less

dependent on the data size [69] and thus converges to consistent values for smaller values

of both N and r.

3.4.3 Nonlinear prediction error

Nonlinear prediction error can be used to quantify the degree to which similar present

states are mapped to similar future states and this similarity can be estimated using

the spatial proximity of the reconstructed state vectors [70]. For a given embedding

lag τ , consider an m-dimensional embedding vector of a time series {xn} with N sam-

ples, where n = 1, 2, · · · , N , at time instant i given as xi = (xi, xi−τ , · · · , xi−(m−1)τ ) =

(xi,1, xi,2, · · · , xi,m). Consider an Euclidean distance (In principle, this can be any dis-

tance metric) matrix defined as

Di,j = d(xi,xj) =

√√√√ 1

m

m∑
dim=1

(xi,dim − xj,dim)2 (3.50)

Following Andrzejak et al. [4], for a given horizon H, the nonlinear prediction error can

be computed as follows for iref = (1, 2, · · · , N −H),

1. Choose a reference point xiref

2. Find k-nearest neighbors in sense of Euclidean (or any distance metric) distance.

Let us denote this set as
{
xiref ,1,xiref ,2, · · · ,xiref ,k

}
3. Define local prediction error for a given horizon as

εiref ,H = ||xiref+H −
1

k

k∑
n=1

xiref ,n+H || (3.51)

where || · || is an Euclidean distance norm.

4. Define the local prediction error for the mean of the time series as

εiref ,x̄ = ||xiref+H − x̄|| (3.52)

where x̄ carries the mean along each of its m-dimensions.
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5. The nonlinear prediction error is given as

P =

√√√√∑N−H
iref=1 ε

2
iref ,H∑N−H

iref=1 ε
2
iref ,x̄

(3.53)

Normally while computing nonlinear prediction error, a Thieler correction with window

length W is applied to exclude neighbors that are in the temporal vicinity to avoid

causality conflicts [8], i.e., ||iref , r − iref || > W, ∀r = 1, 2, · · · , k.

3.5 Distinguishing chaos and noise

Distinguishing chaotic from stochastic processes is an important problem arising in many

fields ranging from biology and physics to ecology and finance. Numerous approaches

have been proposed to solve this critical issue of distinguishing between stochastic and

chaotic dynamics, which is laced with several challenges since both chaotic and stochas-

tic processes share some common properties, e.g., a broadband power spectra, delta-like

autocorrelation function and long-term irregular behavior. It may even be practically

impossible to distinguish high-dimensional chaos from a stochastic process. Since in a

chaotic system, the time evolution of two nearby trajectories will diverge exponentially

fast compared to a stochastic system where the separation is randomly distributed [71],

methods based on short-term predictability have been applied to distinguish chaos from

noise [72, 73]. Thus for a chaotic time series, the accuracy of forecast should decrease

with increasing prediction-time interval and for a stochastic time series this accuracy

should be independent of the prediction-time interval [73]. Kaplan and Glass [74, 75]

proposed a test for determinism based on the measurement of average directional vectors

in a coarse-grained phase space. This test is based on the observation that the tangents

to the trajectories of a deterministic system, passing through a small region in phase

space, will be well aligned, i.e., oriented in the same direction, a behavior not observed

in stochastic dynamics [74, 75]. Another line of approach borrows from the concept

that a chaotic attractor should have finite, non-integer values for fractal dimensions,

while stochastic processes must theoretically exhibit infinite dimensions. This tradi-

tional view was challenged by Osborne and Provenzale [76], when they demonstrated

that finite correlation dimension could be obtained from a simple class of colored ran-

dom noise characterized by power-law spectrum. Recently, quantifiers from informa-

tion theory have been used to address the issue of distinguishing between chaotic and

stochastic dynamics, leading to some interesting results [37]. Rosso et al. [77] intro-

duced complexity-entropy causality plane, a two-dimensional representation space that



Chapter 3. Nonlinear time series analysis 35

relates two information theoretic quantities namely entropy and complexity, to distin-

guish between stochastic and chaotic dynamics. By explicitly including the time scale

notion, Zunino et al. [78] proposed multiscale complexity-entropy plane to identify the

time scales where stochastic and chaotic components govern the system’s dynamics. The

classification of stochastic or chaotic character of a given time series at different reso-

lution scale using entropic analysis was first proposed by Cencini et al. [79]. Olivares

et al. [80, 81] also proposed a combination of two information theoretic quantities, the

Shannon entropy and the Fisher information, to obtain the Shannon-Fisher causality

(S × F) plane and showed that the stochastic and chaotic dynamics map to different

locations in this two-dimensional plane.

By bridging the gap between nonlinear time series analysis and complex network theory,

methods to transform a time series into a complex network comprising of nodes which

represent the state vectors in phase space and edges that are defined based on some crite-

ria such as mutual closeness or transition probabilities, have emerged [16, 17]. Different

classes of such time-series based complex networks exist like the proximity networks

[15, 16, 82–84], transition networks [85] or visibility graphs [86, 87]. A comprehensive

review on these network-types is given elsewhere [16]. The underlying principle in this

approach is to characterize the topology of the resultant network using tools from graph

theory to gain insights into the dynamics underlying the time series. Lacasa and Toral

[71] used horizontal visibility graphs (HVGs) [88], a geometrically simpler version of the

visibility graph algorithm, to distinguish between chaotic and stochastic (correlated and

uncorrelated) dynamics based on the node degree distribution (specifically the slope of

the logarithm of the degree distribution) of the resultant networks. Recently, Ravetti

et al. showed that the HVG approach is sensitive to the scaling zone and combined the

HVG approach with information theory quantifiers (the S × F plane) that leads to a

better characterization of deterministic and stochastic dynamics.

3.6 Surrogates

It has been previously demonstrated that nonlinear methods for time series analysis can

mistake linear correlations for determinism [76] or filtered noise for chaos [89]. The idea

behind surrogate data testing [90–92] is to find a simple explanation that cannot be

ignored based on the data [93]. It tests against the null hypothesis (H0) , that the data

under consideration belongs to a particular class of linear random process.In this section

we will briefly review some of the most widely used algorithms to generate surrogates

from the data
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• Random shuffling (Algorithm 0) : The simplest method of producing surro-

gate data involves random shuffling (RS), where random permutations of the origi-

nal data is performed and was originally proposed in [94]. The surrogates generated

have the same amplitude distribution but different power spectrum (equivalently

the autocorrelation). Such surrogates can be only used to test the H0 that the

original data is independent and identically distributed observation.

• Random phases or Fourier transform method (Algorithm 1) : This method

preserves autocorrelation function of the original data while generating surrogates.

The method was originally proposed in [95]. The H0 is of a Gaussian linear stochas-

tic process and the randomized sample is generated by creating surrogates contain-

ing the same second order properties as the original data, but which are otherwise

random [93]. Algorithmically, one computes the fast Fourier transform (FFT) of

the data and multiplies it with random phases. Transforming the data back in time

domain with inverse Fourier transform results in surrogate time series sn(t) having

same linear properties as the original data, but destroys any nonlinear structure.

sn(t) =
1√
N

N−1∑
k=0

eiαk |Sk|exp
(−i2πkn

N

)
(3.54)

where αk are independent uniform random numbers (0 ≤ αk ≤ 2π) and Sk is the

Fourier transform of the original data.

• Amplitude adjusted Fourier transform method (Algorithm 2) : The am-

plitude adjusted Fourier transform (AAFT) algorithm generates surrogates that

can be used to test the H0 of a Gaussian linear stochastic process possibly trans-

formed by a nonlinear static function [90]. The two H0’s discussed above do not

arise in realistic situations and simple explanation for the deviation from H0 could

be due to measurement function that is static and nonlinear, but assumed to be

invertible [93]. The procedure involves inverting the measurement function by

rescaling the original data to follow a Gaussian distribution. The Algorithm 1 is

applied to the rescale data to create phase randomized surrogate and the surro-

gate is rescaled again to match the distribution of the original data. Although the

surrogates created by this procedure have the same amplitude distribution, there

are deviations in the power spectrum compared to the original data. Particularly,

in case of short and strongly correlated sequence, the AAFT method introduces a

bias towards slightly flatter spectrum which can lead to an incorrect test [96].

• iterative AAFT method (Iterative algorithm 2) : The flatness bias intro-

duced by the AAFT method can be corrected by making a iterative version of

the AAFT algorithm, known as iterative amplitude adjusted Fourier transform
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(iAAFT) algorithm [96]. In this method, the surrogate is filtered in an alternat-

ing fashion towards correct Fourier amplitudes and rank-orderd to obtain correct

distributions. This way both amplitude distribution and as well as autocorrela-

tion(or power spectrum) are preserved. The algorithm starts with first storing a

sorted version of the data and its corresponding Fourier amplitudes. A surrogate

is generated by an AAFT or RS or a random phases procedure as a starting point

for the iterative procedure. Now, a FFT is performed on this randomized data

and an the inverse FFT is applied , with the amplitudes replaced by the original

Fourier amplitudes. Rescaling is performed using the ranks of the resulting series

and the sorted copy of the original data [8].

• Truncated Fourier transform method The surrogates generated by the pro-

cedures described above are stationary by construction and this can cause the

rejection of the H0 if the data is nonstationary. The truncated Fourier transform

(TFT) method was proposed by Nakamura et al. [97] to construct surrogates that

preserve nonstationarity in the surrogates. In this method, the Fourier phases cor-

responding to the first few frequencies are preserved and the rest are randomized

using AAFT or iAAFT or RS scheme. Thus, first one defines a cut-off frequency

(fc) for which the phases of the original data is preserved in the surrogates. The

value of fc can range from 0(0 Hz) to 0.5(0.5 × Fs, where Fs is the sampling

frequency). Thus fc represents the normalized frequency corresponding to the in-

teger index (0, 1, · · · , N/2) of the N -point Fourier transformed data. Using the

TFT method, local nonstationarity can be preserved and for large values of fc,

even global nonstationarity can be preserved. Thus the H0 addressed by the TFT

method is that the irregular fluctuations in the data arise from a stationary linear

system. A crucial parameter in the TFT method is the fc which determines how

much phase should be preserved. If the choice is too small, then the TFT method

becomes similar to the AAFT or iAAFT approach. On the other hand, if this

value is large then the surrogates contain too much of the nonlinearity present in

the data.

• Other methods : In addition to the above mentioned methods, host of other

methods have been proposed to generate surrogate data. The AAFT and the

iAAFT method has been expanded to multivariate time series by Prichard and

Thieler [98] and Schreiber and Schmitz [93] respectively. Ortega and Louis [99]

proposed a partial surrogation scheme which is a modification of the Algorithm

1, where the degree of randomization of the phases is varied from 0% to 100% by

replacing eiαk with eiMαk , where M ∈ [0, 1]. Small et al. [100] proposed a surro-

gate test for pseudoperiodic time series, based on local-linear modeling methods
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[73, 101] and involves reconstructing a scalar surrogate time series from a vec-

tor time series that represents a stochastic trajectory on the attractor estimated

from the original data. Breakspear et al. [102] proposed a wavelet-based approach

involving random permutations of the detail wavelet coefficents. However, the in-

herent periodicity of wavelet coefficients at a selected scale is not preserved when

simple randomization is done. To overcome this problem an approach was proposed

by Keylock [103] where iAAFT scheme is utilized to randomize the wavelet coeffi-

cients so as to preserve the periodicities of the coefficients. In order to minimize the

error between the original time series and the wavelet-based surrogates, an optimal

matching procedure was used in [103]. Instead of using optimal matching criteria,

Keylock [104] also introduced a method that uses a threshold to retain particular

wavelet coefficients in place while randomizing the rest to generate constrained

surrogates. Such surrogates were shown to avoid the problems of nonstationarity

in pseudo-periodic signals [104]. Nakamura and Small proposed the small shuffle

surrogate (SSS) method [105] that can be used to identify dynamics of irregular

time series.



CHAPTER 4

COMPLEX NETWORK THEORY

A theory is a supposition which we

hope to be true, a hypothesis is a suppo-

sition which we expect to be useful; fic-

tions belong to the realm of art; if made

to intrude elsewhere, they become ei-

ther make-believes or mistakes

George Johnstone Stoney

(1826-1911)

4.1 Complex networks

We are surrounded by networks that represent complex systems comprising of many in-

teracting components. Such networks are known as complex networks and they have

irregular and complex structure, which dynamically evolves with time [106]. Complex

networks serve as an important tool to not only understand the structural connectiv-

ity between mutually interacting components of a complex system [106–108], but also to

study the statistical dependencies and causal interactions between different components,

where the connectivity is not necessarily physical. For examples, complex networks have

been used extensively in understanding the statistical dependencies and causal interac-

tions between different areas of the brain [109, 110, 110, 111] using functional magnetic

resonance imaging (fMRI) or multivariate EEG data, which is referred to as functional

and effective connectivity respectively. Similar applications have emerged with multi-

variate climate data [112–114] as well. Over the last two decades or so, several important

39
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results have emerged from the study and application of complex networks, few examples

of which include neural networks [115–117], food webs [118, 119], metabolic networks

[120–122] social networks [123–126] the Internet and World-Wide Web [127, 128], power

grids [129, 130] and transportation networks [131, 132]. Although the study and research

on complex networks has emerged only under two decades ago, graph theory which

is used in the mathematical treatment of networks, in order to study and characterize

the network topology, is an old field of study, with its origins in 1736. It was the Swiss

mathematician Leonhard Euler, who first gave the solution to the Königsberg bridge

problem [133] and the field of graph theory was born [106].

Regular and random networks can be considered as two ends of the spectrum of

complex network architecture. A regular network is a network in which every vertex

has exactly the same number of links or edges. Such networks are highly ordered.

Examples of such networks include, chains, grids, lattices and fully connected graphs

[134]. The simplest type of random network was proposed by Erdös and Reyni [135],

where every edge is formed independently of every other edge, with a probability p. Two

important properties of these two types of networks are high clustering (i.e., high number

of triangles) for regular networks and low average path length (i.e.,average shortest path

between two vertices) respectively. However, most real-life networks lie between these

two extremes of regular and random networks and are characterized high clustering

and low average path length. Such networks are known as small-world networks.

Watts and Strogatz [136] proposed a model to generate such networks and in a bid

to explain the transition from regular to random networks, this small-world effect was

discovered. Starting from a regular lattice and replacing original edges by random ones,

according to some probability 0 ≤ p ≤ 1, one can generate a small-world network with

slight rewiring of the edges [134]. For high values of p, the network transforms into a

completely random network. Another important characteristic of a complex network

is its degree distribution pk, which refers to the fraction of vertices pk that have a k

edges. A random network exhibits bell-shaped Poisson distribution, but for many real

networks, the degree distribution is skewed and decays as power law [134], pk ≈ k−γ ,

with the exponent γ between 2 and 3. Such networks are known as scale-free networks

[137, 138] as no single characteristic scale can be described for these networks, analogous

to fractals [134].

4.2 Graph theory

Definition 4.1. A graphG is composed of a set of vertices (or nodes) V = {1, 2, · · · , N}
and edges (or links) E ⊆ V × V , satisfying E ⊆ [V ]2 and is represented as G = (V,E).
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Figure 4.1: A ring lattice with
N = 30.

Figure 4.2: A WS small world
network with N = 30 and p = 0.1.

Figure 4.3: An Erdös and Reyni ran-
dom graph with N = 100 and p = 0.15.

Figure 4.4: A scale-free Barabási-
Albert network with N = 100.

The number of vertices and edges in a graph are denoted as N(= |V |) and K(= |E|)
respectively. An edge e in a graph connects a pair of vertices (i, j), where i, j ∈ V and

this connection is denoted as ei,j . A graph is undirected or directed if the set E is

unordered or ordered respectively. Thus, for an undirected graph, ei,j = ej,i, where as in

case of a directed graph the order of vertices is important and hence ei,j 6= ej,i. Below,

some common terminologies associated with graphs are described [106].

1. The edge e which connects two vertices i and j is said to be incident with ver-

tices i and j. These two vertices are said to be adjacent and are also known as

end vertices of the edge e.

2. A graph G with no self-loops and multiple edges is known as a simple graph. A

simple graph with N vertices and K edges can have at most N(N − 1)/2 edges

and a graph with K = N(N − 1)/2 is known as a complete N -graph. A sparse

graph has K � N2 and a dense graph has K = O(N2).

3. A graph with no vertices is known as an empty graph and with one vertex is

known as a trivial graph.
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Figure 4.5: An undirected graph G consisting of 6 vertices and 7 edges.

Figure 4.6: A subgraph of G consist-
ing of 6 vertices and 4 edges.

Figure 4.7: An induced subgraph of
G consisting of 3 vertices and 3 edges.

4. The order of a graph is given by the number of vertices of the graph and is

represented as |G|. The number of edges is represented as ||G||. Finite graphs

have finite order and infinite graphs have an infinite order.

Definition 4.2. A subgraph Ǵ of a graph G is composed of the set É ⊆ E and set

V́ ⊆ V . The subgraph Ǵ of G induced by the set V́ contains all the edges of G that

join two vertices in V́ , i.e., for i, j ∈ V́ , (i, j) ∈ É if and only if (i, j) ∈ E. Below are

some examples of graphs and their corresponding subgraphs.

Definition 4.3. A walk in the graph G consists of alternating vertices and edges. A

walk starts at the initial vertex vi0 and ends at the terminal vertex vik . If vi0 = vik ,

a walk is considered closed, else it is considered open. A walk is a trail if an edge

is visited not more than once. A trail can be considered as a path if any vertex is

visited at most once (except in the case of closed walk, where initial and terminal vertex

is the same and such a closed path is known as a circuit). Given a graph, one can
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compute the shortest path between two vertices i and j using Djikstra’s algorithm (for

directed and undirected graph), Bellman-Ford algorithm (directed graphs with negative

edge weights) and Floyd-Warshall algorithm (weighted directed graphs).

Definition 4.4. A cycle is a closed path on a graph G.

Definition 4.5. A graph G is connected if each pair of vertices belong to a path.

Hence in a connected graph, starting from a vertex, one can reach any other vertex

using a path. A maximal connected subgraph of G is called a component of G. Thus

a subgraph Ǵ of G is a component if Ǵ is connected and Ǵ is the subgraph induced by

those edges in G that have one end vertex in Ǵ.

Definition 4.6. [139] For a vertex i ∈ V in a graph G, the neighbor set of i, N (i), is

defined as the set of vertices that are adjacent to i. Formally,

N (i)
def
= {k ∈ V |i 6= k, ∃ e ∈ E : ei,k} (4.1)

Definition 4.7. The adjacency matrix of a graph G is an N ×N matrix and is given

as

Ai,j =

{
1 when (i, j) ∈ E,
0 otherwise.

(4.2)

The adjacency matrix A completely defines a graph up to an isomorphism. For an

undirected graph, the adjacency matrix is symmetric. Further, for a simple graph the

elements of an adjacency matrix Ai,j ≤ 1 and Ai,i = 0.

Definition 4.8. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there

exists a bijection f : G1 → G2 with (i, j) ∈ E1 ⇐⇒ (f(i), f(j)) ∈ E2 for all i, j ∈ V ,

where E1 and E2 are the edge sets of the graphs G1 and G2 respectively.

4.3 Random geometric graphs

In the four types of networks discussed above - regular networks, random networks,

small-world networks and scale free networks, the spatial arrangement of vertices and the

space in which the network exists is not considered important. The spatial arrangement

of the network vertices can impose constraints on the network structure [106] , with

connectivity being related to spatial embedding [140]. In such cases where the spatial

arrangements play an important role, the mean field theory can no longer be valid [141].

Such networks where vertices are located in a metric space are known as spatial networks.

Generally speaking, a spatial network G = (V,E) is a mapping V → S : i→ xi assigning

each vertex i ∈ V to an element xi ∈ S of a set S and metric l : S×S → R : (xi, xj)→ lij

[142].
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A random geometric graph (RGG) [143] is the mathematically simplest spatial network,

which can be constructed by placing N points (vertices) on [0, 1]d with d ∈ N+, uniformly

at random, according to some probability density function p(x) with x ∈ Rd [143]

. RGGs have been used in the study of continuum percolation [144–146] along with

modeling of wireless ad hoc networks [147, 148]. In such graphs, an edge is formed

between vertices close to each other, as defined by some proximity criterion (for example,

smaller that a certain neighborhood radius). Thus, the probability of being connected

For any two vertices i and j in an RGG has the form P (Aij) = f(||xi − xj ||), where

f is a monotonically decreasing function. As a consequence, in RGGs, vertices that

are spatially close to each other have a higher probability of being connected than the

distance ones. For example, one can define the function as f(||xi−xj ||) = Θ(ε−||xi−xj ||)
leading to an RGG whose adjacency matrix can represent a RN where the probability

density function p(x) is the invariant density of the dynamically invariant object, i.e., the

attractor set A [55]. Also, since the metric space for instance, can be an abstract space

like the phase space of a dynamical system [142] and the vertices can be represented

by the state vectors, ε-RN also constitute an RGG, where edges are formed between

vertices within a certain distance threshold, ε.



CHAPTER 5

RECURRENCE NETWORKS

Geometry is not true, it is advanta-

geous.

Henri Poincare (1854 - 1912)

In this chapter, we describe the transformation of time series into complex networks using

various approaches and then focus on one such approach that is central to this thesis, the

RNs (Section 5.1). By borrowing from the rich toolbox of graph theory, various vertex-

based, edge-based and global network measures can be defined for networks derived

from time series. We briefly review some of these network measures important for

the thesis and their interpretation in the context of RNs (Section 5.2). The notion

of attractor dimension in terms of network transitivity and local clustering coefficient

is also briefly discussed (Section 5.3) For a detailed overview on these measures, the

reader is further directed to [16, 149]. Apart from the graph-theoretical measures, other

novel (cross)-network measures introduced by Donges et al. [149] to characterize mutual

interconnectivity between complex networks are also discussed (Section 5.4). Finally,

some of the key properties and applications of RNs are discussed (Section 5.5).

5.1 Time series to complex networks

Nonlinear time series analysis (Chapter 3) and complex network theory (Chapter 4)

are two fundamental and important tools to analyze complex systems. Particularly,

due to the success of network theory in a variety of fields, transforming a time series

into a complex network for nonlinear time series analysis has garnered much attention

45
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recently and a number of different approaches have been proposed [15, 16, 82–84, 87, 150–

152]. These approaches can be broadly divided into three classes - proximity networks,

visibility graphs and transition networks [16]. The underlying idea is to transform a time

series into a complex network and quantify their topology using tools from graph theory

to gain insights into the dynamics of the underlying system. Such complex networks

can be directed or undirected and the vertices are represented by state vectors or cycles

and the edges between the vertices are defined based on some criteria such as mutual

closeness or transition probabilities. For instance, proximity networks are derived based

on the mutual closeness between different state vectors in the phase space [16, 17],

where as transition networks are constructed by defining transition probabilities after

coarse-graining the phase-space [85]. Visibility graphs (VGs) are based on the convexity

relation between different observations in a time series [87, 153].

The proximity networks can be further divided into cycle networks, correlation net-

works, k-nearest neighbor recurrence network (k-NN) RNs, adaptive nearest neighbor

recurrence network (A-NN) RNs and ε-RNs [16, 17]. A cycle network can be constructed

by dividing a time series (pseudo-periodic) into cycles, with each cycle representing a

vertex in the network. In such a network, an edge is formed between the nodes if the

phase space distance between the corresponding cycles is lesser than a predetermined

threshold [82]. In correlation networks, the Pearson correlation coefficient between two

state vectors is used as a closeness measure to define the existence of an edge between

two nodes (i.e., state vectors) [83]. k-NN RNs, A-NN RNs, and ε-RNs are particularly

known as RNs as they are based on the recurrences in phase space and are obtained by

reinterpreting the recurrence matrix as the adjacency matrix of a complex network [15].

A k-NN RN is formed by simply linking every vertex i to its k nearest neighbors using

some distance metric (euclidean or manhattan or maximum norm) and such a network

is related to the original definition of an RP by Eckmann et al. [13]. Such a network is

asymmetric and directed because i ∈ N (j) does not imply j ∈ N (i) [17]. One simplistic

approach suggested by Shimada et al. [84] is to convert k-nearest neighbor recurrence

network into an undirected and symmetric network by artificially setting the elements

of the recurrence matrix R(j, i) = 1 whenever R(i, j) = 1. Xu et al. first proposed the

concept of transforming a time series into an undirected complex network [151], known

as A-NN RNs. In this approach, if vertex j ∈ N (i), then vertex i is removed from N (j)

to avoid the possibility of double-counting [17]. This results in a symmetric adjacency

matrix with an average degree of 2K0, where K0 is the fixed number of neighbors ini-

tially assigned. In case of an ε-RN, one defines a fixed phase space distance ε centered

around a vertex i (i.e., a state vector in phase space) [15, 16] . All the vertices that fall

within this volume are connected to the vertex i by forming an edge. Such a network

is both undirected and symmetric. The k-NN RNs, A-NN RNs and ε-RNs are directly
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related with the concept of Poincaré recurrence in phase space and can be used to deter-

mine the dynamical invariants of the underlying system [153] and provide an alternative

framework for studying recurrences from a geometric point of view [18].

5.1.1 ε-recurrence network

Given an univariate time series {xi} with N samples, where i = 0, 1, 2, · · · , (N − 1), one

can obtain an RP (See Section 3.2) after performing the attractor reconstruction using

time-delay embedding method [8, 30, 35, 46]. The (reconstructed) state vectors xi =(
xi, xi+τ , · · · , xi+(m−1)τ

)
, can be transformed into a complex network by re-interpreting

the matrix R (Equation 3.14) as the adjacency matrix (A) of an adjoint complex network

embedded in a phase space,

A = R− I, (5.1)

where I is the identity matrix, that eliminates the self-loops. Such a complex network is

referred to as an ε-RN (In the remainder of the thesis, we will refer to ε-RNs simply as

RNs, unless stated otherwise) as the corresponding RP is defined based on the definition

of ε-neighborhood, i.e., for states xi and xj within an ε-neighborhood, the corresponding

entry in the matrix Ri,j = 1. The matrix A given by the Equation 5.1 retains the

symmetry properties of the matrix R. Thus, the RN represents a simple graph (see

Section 4.2), where there are no multiple edges and Ai,i = 0. Selecting the threshold

ε is crucial in constructing RNs. As mentioned earlier in Section 3.2 in case of RPs

and discussed in detail elsewhere in case of RNs [15, 154], selecting a low value of

ε can result in very few recurrence recurrence points than there are, resulting in an

incorrect representation of the true recurrence structure of the underlying system. In

such cases, the information obtained from RNs can be very limited [17]. If ε is set

to a high value, it can result in too many recurrence points (false recurrences), i.e., the

neighbors of a vertex in an RN can be due to temporal proximity and not true proximity

in phase space. Although, there is no universal threshold selection criteria, based on

some general considerations it has been suggested that selecting a threshold such that

the corresponding RR ≤ 0.05 is a reasonable choice to represent attractor topology

faithfully in phase space [15, 16]. Additionally, it is advantageous to fix RR and then

to choose ε adaptively as this approach makes sure that obtained RNs from different

systems have approximately the same number of edges and hence the network measures

can be compared objectively [17]. An exemplary RN for the Lorenz system is shown in

Figure ??.
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Figure 5.1: RN derived from the
Lorenz system. The nodes (filled red
circles) represent the state vectors and
the existence of a link (solid black line)
between two nodes depends on the dis-
tance threshold ε, which in this exam-

ple is fixed by setting RR = 0.02.
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Figure 5.2: RN derived from the
Rössler system. The nodes (filled red
circles) represent the state vectors and
the existence of a link (solid black line)
between two nodes depends on the dis-
tance threshold ε, which in this exam-

ple is fixed by setting RR = 0.02.

5.2 Network measures

5.2.1 Vertex-based local measures

5.2.1.1 Degree centrality

Degree centrality is a simple measure used to characterize the connectivity properties

of a single vertex [18]. For a vertex i in a complex network, it can be defined as the

number of vertices directly connected to i. It is given as

ki =
N∑
j=1

A(i, j). (5.2)

ki can be normalized to describe the local phase space density, which gives the probability

that a randomly chosen state vector in the phase space is within the ε-neighborhood of

the state vector xi represented by the vertex i in the complex network. It is given as

ρi =
ki

N − 1
, (5.3)

which also corresponds to the definition of the local RR [16].

5.2.1.2 Closeness centrality

Closeness centrality can be defined as the inverse of the length of the shortest path (i.e.,

the geodesic distance) between a vertex i and all other vertices in a network. Given
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the geodesic distance d(i, j) between two vertices i and j in a network, the closeness

centrality of the vertex i can be then defined as [155]

ci =
N − 1∑N
j=1 d(i, j)

(5.4)

Apart from Equation 5.4 , other definitions for the ci exist. The network measure ci

can also be defined as the inverse of
∑N

j=1 d(i, j), without the factor N − 1 [156] and

sometimes it is also defined as the mean geodesic distance between a vertex i and all

other vertices in a network. We will use the definition given in Equation 5.4 throughout

the thesis. For RN, ci gives the local centeredness of a state in the phase space and

characterizes its geometric centrality [18]. High values of ci for a vertex i imply that

with smaller number of ε-jumps, most of the other vertices are reachable from the vertex

i [16].

5.2.1.3 Betweenness centrality

Betweenness centrality [157, 158] also describes the importance of a vertex in a network,

like the other centrality measures. The betweenness centrality of a vertex i is defined as

the fraction of shortest paths in a network traversing the vertex i [16, 18]. Let σjk be the

total number of shortest paths between the vertices j to k and σjk(i) be the cardinality

of the subset of the total number of shortest paths σjk that pass through the vertex i

[16, 18]. The betweenness centrality for a vertex i can then be defined as [159]

bi =
∑
j 6=i 6=k

σjk(i)

σjk
. (5.5)

In the context of an ε-recurrence network, bi can be interpreted as a measure of local

degree of attractor fragmentation [16]. Thus, the vertices belonging to a sparsely popu-

lated region in a phase space, that separates two densely populated regions, will acquire

high values of bi by bundling [18] the shortest paths between the vertices of densely

populated regions to pass through them, creating geometric bottlenecks [16].

5.2.1.4 Local clustering coefficient

The local clustering coefficient of a vertex can be used to characterize the density

of connections among its neighbors [18]. It gives the probability that two randomly

drawn neighbors j and q of vertex i, are themselves neighbors. A triangle ∆ can

be considered as a subgraph of three vertices of undirected graph G representing a

complex network and the number of triangles on vertex i can be defined as δ(i) =
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| {{j, q} ∈ E : {i, j} ∈ E : {i, q} ∈ E} | [160]. A triple at a vertex i can be defined as a

path of length two, for which i is the central vertex and for an undirected network, the

number of triples for a vertex i is given as Ti =
(
ki
2

)
[160], where ki is the node degree

or degree centrality (Equation 5.2). Now, the local clustering coefficient can be given as

the ratio

Ci =
δ(i)

Ti
(5.6)

The above expression can be given in terms of the adjacency matrix as

Ci =

∑
j,q A(i, j)A(j, q)A(q, i)

2Ti
(5.7)

For vertices with a degree less than 2, Ci = 0. In the context of RNs, Ci measures the

fraction of pairs of vertices in the ε-neighborhood (i.e., the ε-ball) of vertex i (i.e., the

state vector xi) that are themselves mutually ε-close [18]. Low dimensional dynamical

systems are typically characterized by UPOs of low period, locally enhancing the fraction

of triangles in the associated complex network and such systems display high values of

Ci near regions of UPO [16, 18]. Thus, Ci is related to the geometric alignment of the

state vectors in the phase space [18]. Since RNs are essentially RGGs [153], the higher

the dimension in which the network is embedded, the lower will be the value of the

clustering coefficient [17, 143].

5.2.2 Global network measures

5.2.2.1 Global clustering coefficient

The global clustering coefficient [136] can be defined as the average of Ci for all the

vertices in a network.

C =
1

N

N∑
i=1

Ci (5.8)

Thus, C measures the average fraction of triangles in a network. It is important to note

that in case of a heterogeneous degree distribution, this measure emphasizes weights of

the low degree vertices [18].

5.2.2.2 Transitivity

Barrat and Weigt [161] introduced the concept of network transitivity, based on the

redefinition of C. Let T (G) and δ(G) be the total number of triples and triangles in a
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graph G. The transitivity of a graph G can then be given as [162]

T =
3δ(G)

T (G)
(5.9)

In terms of the matrix A, T can be given as [18]

T =

∑N
i,j,q=1A(i, j)A(j, q)A(q, i)∑N

i,j,q=1A(i, j)A(q, i)
. (5.10)

While the C is the mean, computed over all vertices, of the ratio given in Equation 5.6,

T is the ratio of the mean number of edges between the neighbors of a vertex and the

mean number of possible links between the neighbors of a vertex [161]. Also, T gives

equal weight to all triangles in a network, where as the clustering coefficient is biased to

vertices with low-degree and weights their contributions more heavily [163].

5.2.2.3 Assortativity

If vertices of similar degrees tend to link up with each other, then the network is said

to exhibit assortative mixing. The measure assortativity can be defined as the Pearson

product-moment correlation of the vertex degrees on either ends of all the edges [16,

107, 164]. It is given as

R =
1
N

∑
j>i kikjA(i, j)− [ 1

N

∑
j>i

1
2(ki + kj)A(i, j)]2

1
N

∑
j>i

1
2(k2

i + k2
j )A(i, j)− [ 1

N

∑
j>i

1
2(ki + kj)A(i, j)]2

. (5.11)

If an RN shows assortative mixing, it implies that the density of states within an ε-ball

change more slowly and continuously. Thus, R can be considered as a measure of the

smoothness of phase space density [16].

5.2.2.4 Average path length

The average path length for a graph can be defined as the arithmetic mean of geodesic

lengths between all pairs of vertices. It is given as

L =
1

N(N − 1)

∑
i 6=j

d(i, j) (5.12)

The disconnected pairs of vertices are not included in computing L [15, 106]. It has been

demonstrated that a continuous dynamical system with periodic trajectory has a higher
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L compared to a system exhibiting chaotic dynamics for comparable ε [165]. Also, L
varies inversely as the recurrence threshold ε (or equivalently RR), since L approximates

distances in phase space in the units of ε [16, 18].

5.3 Local and global measures of dimensions

Related to the network measures, the local clustering coefficient Ci and transitivity T ,

new definitions of local and global measures of dimension have been proposed respec-

tively [163]. Hence these network measures can be used to define an alternative notion

for the effective dimensionality of the system. Donner et al. [163] showed that the ex-

pectation value of Ci and T scales as = (3/4)d, for RGGs in integer dimensions d, at

least when using the maximum norm. The theoretical value of T for periodic dynamics

is 0.75 (since the effective dimensionality for such a system is 1) [18].

The local dimension measure, clustering dimension at a single-scale ε can be given

as [163]

DCi,ε =
log Ci,ε

log(3/4)
(5.13)

and the global dimension measure, the transitivity dimension at a single-scale ε can

be given as [163]

DTε =
log Tε

log(3/4)
(5.14)

However, it should be noted that as ε is varied, both DCi and DT oscillates between

two asymptotic values [163]. In order to account for this, one can define upper and

lower bounds for these local and global dimension measures as ε is varied (For a detailed

discussion see Donner et al. [18, 163]).

5.4 Bivariate ε-recurrence networks

Analogous to the bi-variate extensions extension of RPs into CRPs and JRPs [57, 58],

cross recurrence networks (CRNs) and joint recurrence networks (JRNs) have been pro-

posed [166, 167] for bi-variate (and possibly multivariate) time series. In this section we

will focus mainly on the construction of CRNs their associated measures due to their

application in the thesis and briefly discuss JRNs, which are discussed in detail elsewhere

[18, 167].
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5.4.1 Cross recurrence networks

If there are two observational time series {xt} and {yt} comprising of N samples, where

t = 0, 1, 2, · · · , (N − 1), one can define a matrix Rcross [58] (See also Section 3.2.3,

Equation 3.25). Combining the definitions of matrix R derived from an univariate time

series (Equation 3.14) and Rcross derived from a bivariate time series, one can define a

2× 2 inter-systems recurrence matrix [166] RIS, given as

RIS(ε) =

(
Rx(εx) Rcross

xy (εxy)

Rcross
yx (εyx) Ry(εy)

)
(5.15)

where εx and εy are single-system recurrence thresholds concerning the time series x(t)

and y(t) respectively, and εxy and εyx are cross recurrence distance thresholds. The

inter-system recurrence matrix can be transformed into an adjacency matrix using the

following transformation [166]

AIS(ε) = RIS(ε)− I, (5.16)

where I is an identity matrix of size 2N (given that the length of the phase space vectors

reconstructed from x(t) and y(t) is N each). The adjacency matrix of a CRN can be

described as [166]

AIS(ε) =

(
A

self
x (εx) A

cross
xy (εxy)

A
cross
yx (εyx) A

self
y (εy)

)
(5.17)

The adjacency matrices A
self
x and A

self
y represent the symmetric and undirected complex

network derived from time series x(t) and y(t) individually, which is simply known as the

ε-recurrence network [15, 16], as also described in Section 5.1.1. The adjacency matrices

A
cross
xy (εxy) and A

cross
yx (εyx) represent the CRN derived from the time series x(t) and y(t).

One can extend this definition of include K > 2 multivariate time series, resulting in a

K ×K inter-system recurrence matrix [18, 166].

It has to be noted here that, the CRN represents a bipartite graph [108] as it provides

the information about the presence of edges between vertices belonging to different

RNs representing individual time series [166]. Also, the matrices Rcross
xy and Rcross

yx are
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asymmetric matrices, unlike the matrix R as ||xi − yj || 6= ||xj − yi||. They can be non-

square matrices as well if the length of the time series x(t) is not equal to that of y(t).

To characterize a CRN and thus analyze the interaction between two or more complex

networks, Donges et al. [149] proposed general framework and introduced several cross

network measures. Below, we briefly describe the framework and some of the important

cross network measures important to this thesis. The general framework for analyzing

the interaction between complex networks and the associated measures are thoroughly

discussed elsewhere [142, 149, 168].

To analyze the interaction between two sub-networks representing a bivariate time series

x(t) and y(t), consider a graph G = (V,E) where the set of vertices V is decomposed

into two disjoint sets Vx and Vy representing the vertices of an RN derived from the time

series x(t) and y(t) respectively [149]. Also, Vx ∩ Vy = ∅, Vx ∪ Vy = V and Nx = |Vx|
and Ny = |Vy| with N = Nx + Ny. The set of edges Exx and Eyy represent the edges

between the vertices of an RN derived from x(t) and y(t) respectively. The sets Exy

represents the (cross)-edges, that gives the mutual interaction between sub-networks

represented by Gx and Gy. Also, Exx∪Eyy∪Exy = E. Now, one can define local as well

as global measures to characterize the interaction between the sub-networks represented

by Gx and Gy. Below we give an example of one such measure, the cross-clustering

coefficient,introduced by Donges et al. [149] to quantify the interconnectivity structure.

5.4.1.1 cross-clustering coefficient

Let Ax and Ay be the adjacency matrices representing the sub-graphs Gx and Gy

respectively. The local cross-clustering coefficient for vertex i in Ax can be given as

[149]

Cxyi =

∑
Axy(i, j)Axy(i, k)Ay(j, k)

ki,xy(ki,xy − 1)
, (5.18)

where ki,xy is the cross-degree centrality (analogous to degree centrality), which gives

the number of neighbors of vertex i Vx, but in the sub-network represented by Gy [149].

Cxyi simply gives the probability that two randomly drawn neighbors, {j, k} ∈ Vy of

vertex i ∈ Vx are also neighbors [149]. For the vertices that have ki,xy < 2, Cxyi is set to

zero [166]. By averaging Cxyi over all the vertices, we can define the global or average

cross-clustering coefficient Cxy. In an analogous fashion one can define Cyxi using Ayx and

Ax. It has to be noted that the cross-clustering coefficient is an asymmetric measure,

i.e., Cxyi 6= C
yx
i . If Cxyi > Cyxi , the direction of the coupling is from y to x, y → x. On

the other hand, if Cxyi < Cyxi , the direction of the coupling is from x to y, x→ y. Also,
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in case of no coupling or complete synchronization, Cxyi ≈ Cyxi . In a similar fashion,

another closely related quantity, cross-transitivity can also be defined [166].

5.4.2 Joint recurrence networks

Given two time series {xt} and {yt} comprising of N samples, where t = 0, 1, 2, · · · , (N−
1), one can define a joint recurrence matrix Rjoint by obtaining the element-wise dot

product of the individual recurrence matrices [60]. Analogous to the general definition

of a recurrence network, an adjacency matrix representing a JRN can be be given as

Ajoint = Rjoint − I = Ax(εx) ·Ay(εy), (5.19)

where I is an N × N identity matrix. A JRN can also be given as the dot product of

the individual adjacency matrices Ax and Ay representing the RNs derived from x(t)

and y(t) , using the thresholds εx and εy respectively . The above definitions can be

extended in a straightforward manner for multivariate (K < 2) time series [18]. It should

be noted that, unlike in the case of CRN, to obtain a JRN the K time series involved

should have identical length and sampling, but need not represent the same physical

quantity or reside in the same phase space [167]. Another difference is that, unlike the

RNs or CRNs, in the case of JRNs , the vertices are explicitly associated with points in

time and are thus not invariant under relabeling of vertices. Graph theoretical measures

can be used to quantify JRNs to reveal synchronization between different time series.

One such measure, the transitivity of the JRN, known as the joint transitivity TJ can

be used to define the notion joint dimensionality of the composed dynamical system

[167]. Since, JRN can be regarded as simple RNs for the combined dynamical system

(represented by K time series) in its higher-dimensional phase space, in the absence of

any synchronization one can expect the network transitivity of individual systems to

be much greater than TJ . In contrast, during generalized synchronization, one would

expect TJ to be approximately equal to network transitivity of individual systems due

to mutual locking of the effective degrees of freedom [167].

5.5 Properties and applications of ε and bivariate recur-

rence networks

Since the seminal work of Marwan et al. [15], RNs have been studied and analyzed thor-

oughly using different paradigmatic models [16, 153, 154, 165]. Using low-dimensional
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model systems, Donner et al. [16] provided a thorough reinterpretation of network mea-

sures in the context of phase space properties and studied the ε-dependence of global and

vertex-based network measures and spatial distribution of vertex and edge-based mea-

sures. The network measure Ci was shown to be useful in detecting dynamically invariant

objects like the UPOs and thus related to the effective dimensionality in the vicinity of

a vertex, while the centrality measures were shown to be useful in characterizing higher-

order properties of phase space density [16]. The network measure bi gives information

about the local fragmentation of the attractor [16, 154]. Zou et al. [165] studied the

performance of C and L in identifying the shrimp structures in parameter space of the

Rössler system and demonstrated that the periodic windows are characterized by higher

values of C and L compared to their chaotic counter-parts. Using data from both model

systems as well as experiments, emergence of power-laws in degree distributions (derived

from ki) was demonstrated for RNs and it was shown that the scaling is simply not nec-

essarily related to fractal dimensions, but is determined by singularities of the invariant

densities[169]. However, as shown by Donner et al. [163], global network measures like

the T can be considered as an alternative measure of dimension and are directly related

to the dimensionality of the attractor. Also, high values of R indicate smooth and con-

tinuous nature of the invariant density [16, 170]. Donges et al. [153] provided thorough

definitions of continuous geometric measures for describing continuous RNs, which con-

stitute RGGs. Thus, these continuous measures are in general feasible for describing

RGGs [153]. In general, RNs allow us to study and quantify the geometric properties of

the attractors in phase space and is thus complementary to other tools of nonlinear time

series analysis based on RPs [18]. Especially in the case of chaotic attractors, where

geometry and dynamics are linked, RNA can be used to characterize dynamical com-

plexity. Also, since RNs, discards all the temporal information, the RN measures can

be considered invariant under vertex relabeling [16, 18, 142]. In this spirit, RNs cannot

be used to distinguish between deterministic and stochastic dynamics as they have the

same density in one-dimensional phase space and might generally require an additional

embedding to make the distinction in the dynamics [16]. Another important property of

RNs is that they do not display small-world characteristics [15, 18]. Although, systems

with deterministic dynamics display high values for C and T , L for an RN can take only

specific values for a given choice of ε and are hence independent of the number of nodes

in a network [18]. In case of small-world networks that display high clustering and short

path lengths, L depends of the network size (L ≈ logN as N → ∞) [136]. However,

k-NNs have been reported to display small-world characteristics, particularly in case of

chaotic attractors [84].

Apart from the selected mention of the study of RNs using data from paradigmatic

model systems, numerous applications using real-world data has emerged, particularly
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in the field of climatology [15, 17, 142, 170–172]. Apart from climatology, applications

in the field of fluid dynamics [173], electrochemistry [174], finance [16] and biomedical

engineering [175–177] have been recently reported. Also, applications of inter-system

RNs have been reported in the fields of climatology and fluid dynamics used to study

the interdependencies between two main branches of Asian summer monsoon [166] and

to characterize horizontal oil-water flows [178] respectively.
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CHAPTER 6

NONLINEAR TIME SERIES ANALYSIS OF EEG

There is a joke that your hammer will

always find nails to hit. I find that per-

fectly acceptable.

Benoit Mandelbrot

(1924 - 2010)

In this chapter, a brief introduction to the technique of EEG is given (Section 6.1),

which is followed by the role of methods derived from nonlinear theory in EEG time

series analysis in general and epileptic EEG analysis in particular (Section 6.2).

6.1 An overview of history and generation of EEG

The EEG is a recording of the oscillations of electrical activity in the brain. In 1875,

by placing an electrode on the exposed cerebral cortex of non-human animals, Richard

Caton [179] demonstrated that the brain responded electrically to a light stimulus [180].

In 1924, Hans Berger [181] showed, for the first time, that EEG can be recorded from

the human scalp, without the need of opening the skull. Also, it was Hans Berger

who coined the term electroencephalogram. Since the work of Hans Berger, EEG has

been considered as a window to the brain function in health and disease. This concept

gathered further momentum, when in 1934, Adrian and Matthews [182] demonstrated

that the electrical oscillations around 10-12 Hz, namely the alpha wave was likely

generated in the occipital lobes in humans [183]. Today, the clinical applications of

EEG include epilepsy, sleep disorder, coma, head trauma, encephalopathies to name a
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few [184]. Apart from clinical applications, EEG is also used in cognitive science and

psychology. When the electrical activity is recorded by the electrodes that are placed in

the brain, close to the neuronal sources, it is known as LFP, when recorded by subdural

electrodes placed on the cortex, it is referred to as ECoG.

The EEG reflects the superposition of electrical activities of the neuronal population,

particularly within the cerebral cortex and is typically recorded by placing the electrodes

on the scalp. The cerebral cortex of the human brain contains about 1010 neurons that

are strongly interconnected. Nonlinearity is introduced at the level of single neurons

as their dynamical behavior is governed by the time-delay, threshold and saturation

phenomena [185–187]. Nonlinear time series analysis has emerged as an interesting and

complementary approach towards the analysis of EEG signals.

6.2 Nonlinear EEG analysis and its role in epilepsy

Epilepsy is a common neurological disorder that affects roughly 3 % of the world pop-

ulation. It is defined as a dynamical disorder of the brain [188], where the normal

functioning brain is interrupted in a recurrent and unpredictable fashion [189]. These

interruptions are called epileptic seizures and the definition of epilepsy requires the occur-

rence of at least one epileptic seizure [189]. It is this unpredictability, that makes epilepsy

a debilitating disease and also is a major reason for psychosocial issues in patients with

epilepsy. Although there are many forms of epilepsy, but they can be classified into two

broad groups - generalized and focal epilepsy. In generalized epilepsy, seizures begin

bilaterally and simultaneously on both sides of the brain, where as in focal epilepsy,

it originates in one particular part of the brain, for example, the temporal lobe or the

frontal lobe (the epileptogenic focus). EEG is an affordable and most useful tool used

to aid the diagnosis epilepsy, providing temporal resolution in the millisecond range.

In fact, today epilepsy is one of the few common clinical problems that still routinely

demand an EEG evaluation [190]. The different states associated with epilepsy are - the

interictal state (occurring between the seizures), the preictal state (occurring before the

seizure), the ictal state (occurring during the seizure) and the postictal state (occurring

after the seizure). Previous studies have shown that, in contrast to normal background

EEG activity, ictal EEG activity shows increased nonlinearity. Thus, ictal / video EEG

recordings are considered critical in localizing the epileptogenic focus [191]. Even during

the interictal period, the epileptic brain is different from normal as demonstrated by

several human as well as non-human animal studies. Thus, it has been hypothesized

that the interictal EEG recordings also exhibit increased nonlinearity, probably due to

the deterministic dynamics that is associated with the epileptic process [9]. Thus, the
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analysis of the interictal EEG signals can also play a crucial role in the localization

of epileptogenic areas. Besides the obvious clinical benefit, localization using interictal

EEG recordings is extremely beneficial to the patient, as it minimizes the need to record

seizures for the sake of localization [70]. Localization of the epileptic focus from interic-

tal EEG recordings has been addressed using approaches from both linear and nonlinear

time series analysis [185, 192–196]. In this section some of the nonlinear measures used

in EEG and particularly their application to epilepsy is discussed.

Rapp et al. [197, 198] and Babloyantz et al. [199] were the first to apply nonlinear

approaches to EEG time series analysis. The spontaneous neural activity in the mo-

tor cortex of a monkey was analyzed by means of ’chaos analysis’ in [197], while the

correlation dimension D2 of the sleep EEG time series was estimated in [199]. Also, in

[198], where the EEG data from both monkeys and humans were analyzed, a presence

of low-dimensional chaotic attractor underlying these systems. Additionally, there were

also both experimental and model based studies reporting the presence of an underlying

chaotic attractor in the phase space for invertebrate bursting neurons [200–203]. Partic-

ularly, after Grassber and Proccaccia [53] developed an efficient algorithm to compute

correlation dimension, many studies were published in an effort to find chaos in EEG data

[197–199, 204–210]. Evidently, much of the nonlinear analysis of EEG between 1985 and

early 1990s were concentrated on finding an evidence for low-dimensional chaotic attrac-

tors. With the introduction of surrogate data testing [76, 211, 212] much of the claims

of an underlying, low-dimensional, chaotic dynamics for EEG signals were rejected, how-

ever the evidence for an underlying nonlinear structure, especially for epileptic EEG data

was confirmed [91, 213–216]. Apart from correlation dimension, Lyapunov exponents

[217–221], and various entropy measures [67, 222–224] have been estimated from EEG

time series [7]. For example, permutation and approximate entropy has been used in

detection of epileptic seizures [225–228] as well as in the analysis of absence seizures

[229, 230]. However, the application of these classic measures (correlation dimension,

Lyapunov exponents and some of the entropy-related measures), to filtered, noisy and

nonstationary time series of finite length and precision (like EEG data), can falsely point

towards a low-dimensional (possibly chaotic) structure [7, 89]. This has lead to the de-

velopment of new nonlinear measures , where the focus is clearly on characterizing the

structure of reconstructed trajectories without making strong assumptions about the

nature of the underlying dynamics [7]. Particularly, nonlinear methods were introduced

to distinguish between deterministic and stochastic dynamics [4, 74, 185, 231]. For in-

stance, in [4], nonlinear prediction error was used in combination with surrogates, to

compare dynamical properties of healthy (scalp) and epileptic (intracranial) EEG and

strongest indications for nonlinearity in ictal EEG was reported. Gautama et al. [231]

used the method delay vector variance (DVV) on the same dataset reported in [4], and
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found an evidence for nonlinear structure in scalp EEG as well, but to a lesser degree

compared to epileptic EEG (intracranial). Furthermore, Andrzejak et al [232] showed

that a combination of nonlinear time series analysis with surrogate data provides im-

proved performance for localization of epileptic foci compared to linear (or nonlinear)

time series analysis. Additionally, various RQA [14, 51, 52] measures have also been

used in the characterization of interictal, preictal and ictal signals in rats [233] as well

as to distinguish preictal activity from backround activity in epileptic patients [234] and

in automatic detection of epileptic seizures [235, 236].

Using recordings from the cat cerebral cortex and theoretical models (integrate-and-

fire neurons), and quantities such as scale dependent Layapunov exponent and en-

tropy measures, Boustani and Destexhe [237] showed that high-dimensional behavior

(stochastic dynamics) is displayed at microscopic scales and more coherent behavior

(high-dimensional chaos) is displayed at large scales. These scale-dependent results are

in contrast with the findings of more stochastic behavior in large-scale EEG recordings

in attentive and awake subjects and evidence of low dimensionality in epileptic EEG,

for example, as shown in [4].

Apart from univariate measures, where single-channel EEG recordings are utilized, bi-

variate and multivariate measures have been introduced to quantify dynamical inter-

dependencies between two or more EEG time series. Le van Quyen et al. [238] used

nonlinear mutual predictability in combination with multivariate surrogates to quan-

tify the degree of interdependence between intracranial EEG recordings in four patients

with focal epilepsy . They found low degree of interdependence during the interictal

period, but the ictal period displayed intermittent patterns of nonlinear interactions,

especially during the beginning and end of the seizure. Mormann et al. applied the

concept of phase synchronization for coupled chaotic systems [239] and found a decrease

in synchronization preceding the seizures while the synchronization during the seizures

increased [240]. More recently, Andrezejak et al. [70] used nonlinear interdependence

measure on intracranial EEG recordings obtained during interictal period and found an

increased degree of nonlinear interaction between electrodes located in the epileptogenic

zones compared to the ones in non-epileptogenic zones. Apart from these, methods to

identify the strength and correct coupling direction have also been developed [241–249],

some of which have been applied to epileptic EEG data. Table 6.1 gives a summary of

commonly used nonlinear methods in EEG analysis.
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CHAPTER 7

DISTINGUISHING STOCHASTIC AND CHAOTIC

PROCESSES [P-I]

7.1 Introduction

Distinguishing between chaotic and stochastic processes is a challenging problem in

nonlinear time series analysis and several methods have been proposed to address this

problem (Refer Section 3.5). In this chapter, we propose the application of local and

global RN measures to distinguish between chaotic and stochastic dynamics [P-I]. The

relationship between the geometric properties of a dynamical system and transitivity

properties (Ci and T ) of the associated RN has been recently demonstrated by Donner

et al. [163], where it was shown that these transitivity measures can be considered

as alternative measures of local and global dimensions of the dynamical system under

study. Furthermore, it has also been demonstrated that the UPOs in model systems can

be reliably detected using such transitivity measures [16]. Since UPOs are the backbone

of chaotic attractors, we hypothesize that these transitivity properties can be used to

distinguish between chaotic and stochastic dynamics.

Recently Donges et al. [153] computed continuous RN measures - transitivity, cluster-

ing coefficient, average path length and betweenness for the one-dimensional Bernoulli

map and uniform noise, and showed that these measures cannot distinguish between

stochastic (uniform noise) and chaotic deterministic process. This is due to the iden-

tical invariant density distribution of both the processes in the phase space and it has

been proposed that an additional embedding can overcome this shortcoming [16]. How-

ever, a rigorous evaluation of the ability of RN measures to distinguish between chaotic
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deterministic and stochastic dynamics and of how embedding alters the phase space dis-

tribution of these processes has hitherto not been addressed. In this study, our aim is to

explore the applicability of transitivity measures such as DT (global dimension measure)

and Ci as well as other local and global network measures such as L, R, ci, bi, and ki

in distinguishing between (hyper)chaotic and stochastic dynamics using paradigmatic

model systems.

7.2 Data and methods

The following three paradigmatic systems, namely the Lorenz system [62],

ẋ = 10(y − x), ẏ = x(28− z), ż = xy − 8

3
z, (7.1)

the chaotic Rössler system [250],

ẋ = −y − z, ẏ = x+ 0.1y, ż = 0.1 + z(x− 18), (7.2)

and the hyper-chaotic Rössler system [251]

ẋ = −y − z, ẏ = x+ 0.25y + w, ż = 3 + xz, ẇ = −0.5z + 0.05w. (7.3)

were used to generate (hyper) chaotic dynamics in [P-I]. In each case, the x-component

of the paradigmatic system was used to reconstruct the dynamics using the method of

delays [8]. Additionally, in order to generate stochastic dynamics, we derived the iAAFT

surrogates [96] (also see Section 3.6) from the original x-component and reconstructed

the stochastic dynamics, again using the method of delays [P-I]. The associated RNs

were derived from the reconstructed state vectors. Both local and global RN measures

were computed and compared for the (hyper) chaotic and stochastic dynamics. For

the estimation of RNs and the computation of the associated measures, the software

pyunicorn [252] was used.

7.3 Results and discussion

7.3.1 Global measures

Tables 7.1 and 7.2 show the comparison between the global measures obtained for the

chaotic dynamics (reconstructed from the x-component, see equations 7.1 and 7.2 )

for the Lorenz and chaotic Rössler system, respectively. The mean and the standard
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deviation of the ensemble of 99 iAAFT surrogates derived from the original x-component

is also shown. It is clear from the table that at embedding dimension m = 1, the

global measures cannot distinguish between chaotic and stochastic dynamics. As m is

increased, we observe that the DT varies between 1.65 and 1.73 (< 2) for m > 2 in

case of Lorenz system (chaotic dynamics), where as in case of the corresponding iAAFT

surrogates (stochastic dynamics), the transitivity dimension increases with respect to m.

Similar observation can be made for the Rössler system (Table 7.2), where DT varies

approximately between 1.74 and 1.78, where as the DT for the corresponding iAAFT

surrogates continues to increase more rapidly with increasing m. As mentioned earlier,

UPOs are the skeleton of chaotic dynamics and there are infinitely many densely packed

UPOs in such a system [174], while stochastic dynamics are not characterized by the

presence of UPOs. Since DT is essentially a measure of the global dimension of the

system [163], presence of UPOs (especially low-periodic ones) should result in values of

DT < m for increasing values of m while in case of stochastic dynamics, the DT should

continue to increase with m. Our results reflects this behavior demonstrating how DT

can be used to distinguish between chaotic and stochastic dynamics.

The network measure L for the RNs derived from iAAFT surrogates (stochastic dynam-

ics) is lower than that of chaotic (deterministic) dynamics (Lorenz and Rössler system)

for m > 1. This is an expected behavior for L as more short-cuts are introduced in phase

space in case of stochastic dynamics due to homogeneous filling of the phase space. Re-

garding the behavior of R, it is clear that the RNs derived from chaotic dynamics

are more assortative compared to their stochastic counterparts, especially at values of

m > 3. As m increases, the RNs associated with chaotic dynamics display relatively

more assortative behavior compared to RNs derived from stochastic dynamics.

Table 7.1: Global measures for RNs derived from chaotic (Lorenz system, N=10,000)
and stochastic systems (derived from iAAFT surrogates) for varying embedding dimen-

sion and RR = 0.02

Global measures m = 1 m = 2 m = 3 m = 4 m = 5

DT (original) 0.99 1.51 1.65 1.67 1.73
DT (surrogates) 0.99± 1.22× 10−15 1.92± 0.04 2.55± 0.01 2.96± 0.03 3.28± 0.04

L (original) 32.75 9.98 8.84 9.06 9.44
L (surrogates) 32.75± 1.42× 10−14 7.74± 0.01 5.15± 0.01 4.22± 0.01 3.73± 0.01

R (original) 0.98 0.90 0.74 0.76 0.81
R (surrogates) 0.98± 2.00× 10−15 0.92± 0.002 0.79± 0.005 0.72± 0.008 0.67± 0.01

Tables 7.3 and 7.4 shows the comparison between the global measures obtained for the

hyperchaotic dynamics (reconstructed from the x-component of the 4D Rössler system,

Equation 7.3) for N = 10, 000 and 20, 000, respectively. The mean and the standard

deviation of the ensemble of 99 iAAFT surrogates derived from the original x-component

is also shown. In case of hyperchaotic Rössler system, we observe that as the number of
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Table 7.2: Global measures for RNs derived from chaotic (Rössler system, N=10,000)
and stochastic systems (derived from iAAFT surrogates) for varying embedding dimen-

sion and RR = 0.02

Global measures m = 1 m = 2 m = 3 m = 4 m = 5

DT (original) 0.99 1.66 1.74 1.76 1.78
DT (surrogates) 0.99± 2.34× 10−15 1.84± 0.01 2.23± 0.04 2.45± 0.07 2.61± 0.09

L (original) 33.84 8.84 8.27 8.05 7.88
L (surrogates) 33.84± 2.85× 10−14 7.67± 0.29 6.29± 0.20 5.72± 0.17 5.39± 0.15

R (original) 0.95 0.76 0.68 0.72 0.72
R (surrogates) 0.95± 1.11× 10−16 0.77± 0.01 0.51± 0.04 0.39± 0.05 0.35± 0.05

data points N is increased, the difference between hyperchaotic and stochastic dynamics

improves in case of all the global measures. This is specifically true in case of DT and

R. In case of L, as N increases, the spread of the hyperchaotic system also increases

in the phase space resulting in more short-cuts between distant attractor points and

thus smaller values for L [174] as reflected in our results. However, RNs associated with

stochastic dynamics contain relatively more short-cuts and are characterized by much

lower values of L compared to the hyperchaotic dynamics. The impact of the number

of data points N (N = 10, 000, 15, 000 and 20, 000) on the global measures for the

hyperchaotic system for varying m (2 to 5) is further depicted in Figure 5 of [P-I].

Table 7.3: Global measures for RNs derived from hyperchaotic (4D Rössler system,
N=10,000) and stochastic systems (derived from iAAFT surrogates) for varying em-

bedding dimension and RR = 0.02

Global measures m = 1 m = 2 m = 3 m = 4 m = 5

DT (original) 0.97 1.63 2.03 1.99 1.97
DT (surrogates) 0.97± 2.34× 10−15 1.58± 0.06 1.96± 0.10 2.12± 0.12 2.22± 0.15

L (original) 37.77 9.94 7.95 8.00 8.71
L (surrogates) 37.77± 3.57× 10−14 8.54± 0.2 6.12± 0.25 5.38± 0.34 5.18± 0.44

R (original) 0.97 0.90 0.79 0.79 0.78
R (surrogates) 0.97± 3.34× 10−16 0.87± 0.01 0.77± 0.02 0.70± 0.04 0.68± 0.05

Table 7.4: Global measures for RNs derived from hyperchaotic (4D Rössler system,
N=20,000) and stochastic systems (derived from iAAFT surrogates) for varying em-

bedding dimension and RR = 0.02

Global measures m = 1 m = 2 m = 3 m = 4 m = 5

DT (original) 0.98 1.62 2.01 2.01 1.99
DT (surrogates) 0.98± 1.56× 10−15 1.67± 0.04 2.20± 0.08 2.49± 0.13 2.67± 0.15

L (original) 37.56 9.03 6.17 5.69 5.56
L (surrogates) 37.56± 7.14× 10−15 8.08± 0.10 5.51± 0.11 4.67± 0.13 4.35± 0.14

R (original) 0.98 0.91 0.84 0.86 0.84
R (surrogates) 0.98± 1.00× 10−15 0.90± 0.007 0.78± 0.02 0.69± 0.04 0.65± 0.04

The results we obtained for the global RN measures are consistent with varying re-

currence rates RR (from 0.01 to 0.05) as shown in Figures 1-4 and Figures S1-S3

(supplementary data) of [P-I].
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7.3.2 Vertex-based measures

Figures 7.1 and 7.2 show the histogram for the vertex-based measures Ci, ci, bi (for

convenience we plot log10(bi + 1)), and ki for the Lorenz system (and its corresponding

iAAFT surrogate) and chaotic Rössler system (and its corresponding iAAFT surrogate)

respectively. It is evident from these figures that the distribution of the vertex-based

measures for the RNs associated with chaotic and stochastic dynamics are quite different.

In case of chaotic dynamics, we can see that higher number of vertices acquire high

values for Ci and bi compared to stochastic dynamics, due to presence of UPOs in

chaotic attractors. In case of ki, we can observe multiple peaks for chaotic dynamics

compared to stochastic dynamics, again due to many UPOs embedded in the chaotic

attractors [150]. Furthermore, in case of chaotic dynamics, higher number of vertices

acquire low values for ci compared to stochastic dynamics. For example, in case of the

Lorenz system (Figure 7.1), most of the vertices (≈ 6, 500) acquire ci between 0.1 and

0.11. These vertices particularly belong to the center of gravity of the chaotic attractors

[16]. In case of stochastic dynamics, due to the existence of many short-cuts, relatively

broad range of values for ci (between 0.23 and 0.3) are acquired by the vertices (Figure

7.1). Since, ci is essentially defined as the inverse of average shortest path length of a

vertex to all other vertices in a network [155], the vertices of the RN constructed from

iAAFT surrogates tend to have larger values for ci due to increased short-cuts, compared

to the networks representing chaotic dynamics. Similar observation is made in case of

Rössler system (Figure 7.2).

Figures 7.3 and 7.4 show the histogram plot for the vertex-based measures in case of

hyperchaotic dynamics and the coressponding iAAFT surrogates for the number of data

points N = 10, 000 and 20, 000 respectively. Here we can observe that, again with

the increase in N , the vertex-based measures are able to better distinguish between

hyperchaotic and stochastic dynamics. Particularly, looking at the distributions for bi

and Ci for the hyperchaotic Rössler system and the corresponding surrogate at N =

10, 000 and 20, 000, it is clear that the nodes acquiring high values for bi and Ci in

RNs constructed from hyperchaotic Rössler system increases compared to the networks

constructed from the corresponding iAAFT surrogates as the data length is increased.

Also, looking at the distributions of ci and ki for N = 10, 000 and 20, 000, we again

observe that vertices of the RN representing hyperchaotic dynamics tend to acquire

lower values for closeness centrality ci compared to their stochastic counterparts for the

same reason as outlined above for the chaotic case. On similar lines, the distribution

of degree centrality ki show multiple peaks, which is missing in case of its stochastic

counterpart.
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Figure 7.1: Distributions of the vertex-based measures, the local clustering coefficient
(Ci), closeness centrality (ci), betweenness centrality (log10(bi+1)) and degree centrality
ki for the Lorenz system (left) and the corresponding iAAFT surrogate (right). For
this exemplary plot, the recurrence rate RR = 0.02, the embedding dimension m = 5

and number of data points N = 10, 000.

We used the two-sample Kolmogorov-Smirnov (KS-2) test to quantitatively compare

the distibution of the vertex-based measures between the (hyper)chaotic and stochastic

dynamics. The results from the KS-2 test for the Lorenz system and the corresponding

iAAFT surrogate is shown in Figure 6 of [P-I], for the chaotic Rössler system in

Figure S4 of [P-I], and for the hyperchaotic Rössler system in Figure S5 of [P-I]

and Figure S6 of [P-I] for N = 10, 000 and 20, 000 respectively. In all the cases, for

embedding dimension m > 1, the null hypothesis that the two samples (vertex-based

measures of RNs associated with chaotic and stochastic dynamics) are consistent with

the same underlying distribution is rejected (at 5% significance) with p value very close

to zero. In case of the hyperchaotic Rössler system, the value of the KS-2 statistic (the

maximum of the absolute difference between the cumulative distribution functions of

the two samples) increased as the data length was increased.

Figures 7.5 - 7.12 show the color-coded representation of the vertex-based measures in

the phase space for the chaotic and stochastic dynamics. From Figures 7.5 and 7.6 it

can be seen that in case of chaotic dynamics, the vertices that acquire high values for Ci
correspond very well to the regions of UPOs [16], where as in case of stochastic dynamics

such distinct patterns are absent. For the chaotic dynamics, it can be seen that certain
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Figure 7.2: Distributions of the vertex-based measures, the local clustering coefficient
(Ci), closeness centrality (ci), betweenness centrality (log10(bi+1)) and degree centrality
ki for the Rössler system (left) and the corresponding iAAFT surrogate (right). For
this exemplary plot, the recurrence rate RR = 0.02, the embedding dimension m = 5

and number of data points N = 10, 000.

regions in phase space acquire high values for bi (Figures 7.7 and 7.8) as these mainly

correspond to the region between UPOs and other regions in the vicinity of the UPOs

show low values for bi. In case of stochastic dynamics, relatively lesser number of vertices

acquire high values for bi.

On comparing the spatial distribution of ci in the phase space for chaotic and stochastic

dynamics, we find that due to increased number of short-cuts in the RNs associated

with stochastic dynamics, high values for ci is displayed compared to chaotic dynamics

(Figures 7.9 and 7.10). In case of ki (or the local RR), we observe that the outer portions

of the attractor, especially in case of the Lorenz system, acquire very low values for the

local RR as these areas have low phase space density. Similarly, vertices belonging to the

regions of high phase space density acquire high values for the local RR. The difference

between the spatial distribution of this local measure for the chaotic and stochastic

dynamics is evident from Figures 7.11 and 7.12

We explored the relationship between bi and Ci for the chaotic and stochastic dynamics.

In case of chaotic systems we observed that the vertices displaying low values for bi

display high values for Ci as these vertices belong to the regions in the phase space
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Figure 7.3: Distributions of the vertex-based measures, the local clustering coeffi-
cient (Ci), closeness centrality (ci), betweenness centrality (log10(bi + 1)) and degree
centrality ki for the hyperchaotic Rössler system (left) and the corresponding iAAFT
surrogate (right). For this exemplary plot, the recurrence rate RR = 0.02, the embed-

ding dimension m = 5 and number of data points N = 10, 000.

containing the UPOs (high-density clusters). The network measure Ci is related to the

geometric alignment of the vertices in the phase space [16] and the vertices along the

stable manifold of an UPO are characterized by high values of Ci. Since UPOs are the

backbone of chaotic attractors, the measure Ci is particularly important for the geometric

characterization of chaos. Additionally, the vertices belonging to a sparse region (that

exhibit low values for the local clustering coefficient Ci) that separates high-density

clusters, like the vertices belonging to the stable manifold of an UPO in the phase space,

acquire high values for betweenness centrality bi, as they act as transfer vertices between

two high-density clusters on the either side of the sparse region [16, 253]. Since UPOs

are absent in stochastic systems, there are no high-density clusters and consequently less

number of vertices acting as hubs between high density clusters to acquire high values of

bi. We also observe that, in contrast to chaotic dynamics, some vertices with low values

for betweenness centrality bi also exhibit low values for the local clustering coefficient Ci,
again due to the absence of UPOs. This relationship is depicted in Figure 7 of [P-I].

We also looked at the relationship between betweenness centrality bi and degree cen-

trality ki for the stochastic and chaotic systems. We observed that in case of chaotic
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Figure 7.4: Distributions of the vertex-based measures, the local clustering coeffi-
cient (Ci), closeness centrality (ci), betweenness centrality (log10(bi + 1)) and degree
centrality ki for the hyperchaotic Rössler system (left) and the corresponding iAAFT
surrogate (right). For this exemplary plot, the recurrence rate RR = 0.02, the embed-

ding dimension m = 5 and number of data points N = 20, 000.

dynamics, the vertices that acquire low value for the betweenness centrality bi also ac-

quire low value for degree centrality ki. These vertices are located in the vicinity of the

outer boundaries of the attractors, especially in the case of the Lorenz system, where

we observe more vertices exhibiting low values for both these measures simultaneously

compared to the Rössler system. We observed a similar trend in case of stochastic dy-

namics as well where vertices acquire low values for both these measures. Again, due

to the presence of UPOs, an important difference in the relationship between these two

measures is observed between chaotic and stochastic systems. Due to the accumulation

of states in the vicinity of UPOs, the vertices in this region of phase space acquire low

values for bi, where as the same vertices also acquire high values for ki (due to trapping

of states in UPO regions). This interesting region of the bi vs ki graph is completely

missing in case of the stochastic system. Additionally, in case of chaotic dynamics, it

can be seen that some of the vertices that acquire high values for bi have a broad range

of values for ki as these vertices reside in the sparse region of phase space and mostly

have vertices in the high-density clusters as their neighbors. In case of the stochastic

dynamics, we can see that the range for bi for a given value of ki is much narrower

compared to the chaotic dynamics. The reason for this narrower range is due to the
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Figure 7.5: Color-coded representation of the local clustering coefficient Ci in phase
space for the Lorenz system (A) and the corresponding iAAFT surrogate (B) for N =

20, 000 and RR = 0.02.
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Figure 7.6: Color-coded representation of the local clustering coefficient Ci in phase
space for the Rössler system (A) and the corresponding iAAFT surrogate (B) for N =

20, 000 and RR = 0.02.

homogeneous filling of the phase space and the sparse regions between two high-density

clusters do not exist. This also increases the total number of short-cuts between pairs

of vertices thus reducing the bi for a vertex i through which some of the short-cuts pass.

Also, few of the vertices (which would otherwise been a part of sparse region) tend to

have more neighbors due to homogeneous filling of the phase space increasing the value

of ki . These points are reflected in Figure 9 of [P-I] where we show the variation of the

log betweenness centrality log10(bi + 1) with ki for the Lorenz and the Rössler systems

and their corresponding surrogates.

7.4 Summary

In this work, we have shown that, both global and vertex-based RN measures can be

used to distinguish between (hyper) chaotic and stochastic dynamics with additional
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Figure 7.7: Color-coded representation of log betweenness centrality log10(bi + 1) in
phase space for the Lorenz system (A) and the corresponding iAAFT surrogate (B) for

N = 20, 000 and RR = 0.02.
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Figure 7.8: Color-coded representation of log betweenness centrality log10(bi + 1) in
phase space for the Rössler system (A) and the corresponding iAAFT surrogate (B) for

N = 20, 000 and RR = 0.02.

embedding. In particular, measures like T (or the related global dimension measure,

DT ), Ci, ki and bi are particularly sensitive to the presence of UPOs, which are the

hallmark of chaotic systems. Additionally, other measures such as ci, L and R were also

able to distinguish between (hyper) chaotic and stochastic dynamics.
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the Lorenz system (A) and the corresponding iAAFT surrogate (B) for N = 20, 000

and RR = 0.02.
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Figure 7.10: Color-coded representation of closeness centrality ci in phase space for
the Rössler system (A) and the corresponding iAAFT surrogate (B) for N = 20, 000

and RR = 0.02.
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CHAPTER 8

EFFECT OF NOISE ON RECURRENCE NETWORKS

[[P-I],[P-III]]

8.1 Introduction

Investigating the ability of RN measures to characterize the dynamics of a system in the

presence of observational noise is an important research question, as the real world data

is seldom without noise. Thiel et al. [48] studied the influence of observational noise

on RQA measures and found that they are susceptible to noise level of 20% or more

( noise level is given as the standard deviation of the underlying noise-free data) and

they proposed a threshold ε at least five times the standard deviation of the noise [48].

However, the impact of observational noise on both the local and global RN measures

for various threshold parameter ε ( or equivalently the recurrence rate RR) has not been

sufficiently studied yet.

In this chapter our aim is to study the impact of increasing levels of noise on both

local and global RN measures [[P-III],[P-I]]. Specifically, in [P-III], using the Rössler

system, we investigated at what noise level is the structural complexity and detection of

dynamical transitions as measured by RN measures are obscured. In [P-I], we investigate

the effect of increasing noise levels as well as data lengths on the RN measures and their

distributions (in case of vertex-based measures) for RNs derived from (hyper) chaotic

dynamics, using various paradigmatic model systems. We also compare our results with

the Complexity-Entropy plane approach to distinguish chaos from noise, proposed in

[77].

81
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8.2 Data and methods

We used the paradigmatic model systems described in Chapter 7 (the Lorenz system, the

chaotic Rössler system and the hyperchaotic Rössler system). We used the x-component

of the original dynamics to reconstruct the phase space using the method of delays [8].

We then added increasing levels of observational noise to the x-component of these model

systems as follows [48]

xnoise(t) = x(t) + η(t), (8.1)

where η(t) ∼ WN (0, σ2). Here, W is defined as the level of noise, which is given as a

percentage of the standard deviation of the noise-free data x(t). We added Gaussian

noise at levels 10%, 20%, 40%, 60%, and 100%. In [P-I], to study the impact of noise on

the data length, we generated N = 100, 000 data points (after discarding initial 50, 000

points as transients) with a step size of 0.05 (for Lorenz and chaotic Rössler) and 0.015

(for hyperchaotic Rössler). We then randomly choose N = 200, 500, 1, 000, 5, 000 and

10, 000 points as a sample of state vectors from the chaotic attractor. In case of the

hyperchaotic attractor, we used N = 10, 000, 15, 000 and 20, 000.

8.3 Results and discussion

In [P-III], we first compared the global clustering coefficient and average path length

associated with noisy periodic dynamics and noise-free chaotic dynamics. Let Cc0 and

Lc0 denote the global clustering coefficient and average path length of noise-free chaotic

dynamics derived from the Rössler system. We first observe that under noise-free con-

dition (0% noise), the value of C and L for periodic dynamics is greater than Cc0 and

Lc0 (see Figure 2 of [P-III]). Upon increasing levels of observational noise (see Figure

4 of [P-III]), we found that at RR < 0.03, C for periodic dynamics at noise level 10%

and above is lesser than Cc0. For RR >= 0.03, at 10% noise level we can see that C of

periodic dynamics is greater than Cc0. The behavior of L is different. At all values of

RR (0.01 to 0.05), L for periodic dynamics is greater than Lc0 at noise level of 10% .

For noise levels of 20 % and above, both C and L fail to have values greater than Cc0
and Lc0 respectively (for all values of RR).

On comparing the network measure C and L for noisy periodic and chaotic dynamics

[P-III], we find that, in case of C, as RR is increased, the difference between noisy

periodic and chaotic dynamics becomes clear with C of noisy periodic dynamics being

greater than that of chaotic dynamics. Particularly, for RR greater than 0.02, we can
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still distinguish between noisy periodic and chaotic dynamics up to noise levels of 40%

(see Figure 5 of [P-III]). However at noise levels above 40%, even at RR = 0.05, C for

noisy periodic and chaotic dynamics starts becoming indistinguishable. In case of L, it is

evident that the difference between noisy periodic and chaotic dynamics is independent

of RR. Irrespective of the value of RR, L for noisy periodic dynamics is still greater

than that of noisy chaotic dynamics for noise levels up to 20 %. At higher noise levels,

L for noisy periodic and chaotic dynamics becomes indistinguishable. In order to test

for ability of global measures such as C and L to characterize structural complexity of

chaotic signals under the influence of noise, we also generated iAAFT surrogates from

chaotic signals under increasing levels of noise. The results are shown in Tables 8.1 and

8.2. Our results indicate that, specifically in case of C, the influence of noise can be

minimized by increasing RR.

Table 8.1: Results of surrogate analysis on simulated chaotic signals : Number of
signals (out of 100) for which H0 is rejected using C as discriminatory statistic at
various noise levels and RR. Rejections are considered not significant are marked as

zero. (reproduced from [P-III].)

Noise level 0.01 0.02 0.03 0.04 0.05

0 % 100 100 100 98 98
10 % 74 94 96 96 96
20 % 0 0 38 66 76
40 % 0 0 30 38 38
60 % 0 0 16 18 24

Table 8.2: As in Table 8.1 , but for L as discriminating statistic. (reproduced from
[P-III].)

Noise level 0.01 0.02 0.03 0.04 0.05

0 % 100 100 100 100 100
10 % 100 100 100 100 100
20 % 100 100 100 100 100
40 % 28 28 28 30 30
60 % 30 24 28 34 32

In [P-I] we looked at the effect observational noise on both global and local RN measures

using all the three paradigmatic model systems. For example, in case of the Lorenz

system, we observed that as the level of noise is increased, the value of DT increases

above 2 at noise level of 10 % for RR = 0.01. As RR is further increased to 0.03, the

value of DT remains under 2 at 10% noise level. On further increasing the RR to 0.05,

even at the noise level of 20% we can observe that DT < 2 (see Figure 9 of [P-I]). In

case of assortativity R, the value of R drops as we increase the level of noise. However,

this behavior is affected by the choice of RR. For low values of RR such as 0.01, it can

be seen that R decreases up to a noise level of 20%. Interestingly, as the noise level

is increased beyond 20%, R starts to increase. However, the increase in R is further

constrained by the embedding dimension m and we observe that at very high noise levels

(> 20 %), Rm=5 < Rm=4 < Rm=3. We see this trend at other values of RR as well.
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However as RR increases, at m = 5, R continues to decrease with increase in noise

levels up to 60%. Thus, at m = 5, R shows expected behavior with the addition of

noise, where R decreases with the addition of noise and drops to a value less than 0.4

at 60% noise (see Figure 9 of [P-I]).

We also investigated the influence of noise on vertex-based measures - Ci, bi, ci, and ki

(see Figure 10 of [P-I]). In case of Ci and bi, the number of vertices acquiring high values

for both these measures decrease as noise is added. The reason for this is again related

to the distortion of the clustering structure as noise is added to chaotic dynamics, which

impacts both these measures. In case of closeness centrality ci, we see that the number

of vertices acquiring high values of ci increase with the addition of noise. As noise is

added, there are more short-cuts in the phase space due to homogeneous filling which

reduces the length of shortest paths, which is inversely related to ci (Equation 5.4). In

case of degree centrality ki, where one can observe multiple peaks in noise-free case (due

to many UPOs), addition of noise makes the distribution more skewed (and long tailed)

and the number of vertices with low degree increases as the noise is increased. Next, we

studied the impact of noise on the bi vs Ci for various RR (see Figure 11 of [P-I]). We

observed that with the addition of noise, at RR = 0.01 the number of vertices exhibiting

low Ci and bi increases. As the RR is increased to 0.05, we observed that the vertices

having low bi tend to acquire high values of Ci, a behavior observed in noise-free chaotic

dynamics. Thus increasing RR can minimize the influence of noise on the clustering

property of RNs representing chaotic dynamics in phase space. Similar observations

were made for Rössler and hyper-chaotic Rössler system [P-I].

8.3.1 Effect of data length and comparison with Complexity-Entropy

method

The number of rejections (out of 100 realizations) of null hypothesis H0 of a linear,

Gaussian correlated noise undergoing a nonlinear static transformation [96], for various

noise levels and data lengths using global network measure T at RR = 0.05 for the

Lorenz system is shown in Table 8.3. For the sake of comparison, we also present results

using the Complexity-Entropy causality plane method described in [77, 254], where we

set m = 3 and τ = 3.

Without making any assumption about the distribution of the test statistic, we use

the non-parametric approach (based on rank ordering) to test the null hypothesis H0

[8] (We obtained qualitatively similar results when the parametric approach using the

mean and standard deviation of surrogates was used). Since a chaotic time series should

produce high values of complexity compared to a stochastic signal and a stochastic signal
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Table 8.3: Number of rejections of the H0 from 100 realizations of the Lorenz sys-
tem for various data lengths and noise levels using complexity-entropy method and the
recurrence network measure T . For each realization, 99 iAAFT surrogates were gen-
erated. The embedding dimension m = 3, embedding delay τ = 3 and the recurrence

rate RR = 0.05. Reproduced from [P-I].

Noise Level
N = 200 N = 500 N = 1, 000 N = 5, 000 N = 10, 000

C-E T C-E T C-E T C-E T C-E T
0% 95 100 100 100 100 100 100 100 100 100

10% 88 100 100 100 100 100 100 100 100 100

20% 40 90 88 100 100 100 100 100 100 100

40% 5 60 52 77 93 100 100 100 100 100

60% 0 16 12 26 46 54 96 100 100 100

100% 0 11 3 8 7 5 20 22 28 32

displays higher entropy values compared to deterministic (chaotic) signal [77], the null

hypothesis of a linear, Gaussian, stochastic process can be rejected if the complexity of

the signal is greater than the maximum of the surrogates and the entropy of the signal

is lesser than the minimum of the surrogates. Two exemplary plots (Figures 8.1 and

8.2) showing the application of the Complexity-Entropy method to distinguish between

chaotic time series and the corresponding iAAFT surrogates under varying noise levels

for data length N = 200 and 1, 000 respectively. It is evident from these that the chaotic

signal maps on to a different position on the complexity-entropy plane compared to the

surrogates (stochastic signal), under noise-free condition. As the noise level is increased,

we can see that at short data length, at noise levels greater than 10%, the location of

the noisy chaotic signal on the Complexity-Entropy plane falls within that of the 99

surrogates and is no longer distinct. When the data length is increased to N = 1, 000,

we can see that a clear distinction between noisy chaotic signal and its corresponding

iAAFT surrogates can be made up to a noise level of 40%.

In case of RN measures like T , L, and R, the null hypothesis H0 is rejected if the RN

measure of the signal under test is greater than the maximum of the RN measures of

the surrogates. Since we are using 99 surrogates, the probability with which a false

rejection will occur is 1/100 (i.e., α = 0.01). We can see that at N = 200, compared to

Complexity-Entropy method, T gives comparatively higher rejections of H0, even when

the noise level is 40% (see Table 8.3). Even at 60% noise level, T gives a significant

number of rejections (= 16), where as the Complexity-Entropy method fails to reject

H0 for all the 100 realizations. Thus, the recurrence network measure T is still able to

reject H0 with high confidence for short time series corrupted with noise as high as 40 %

and 60 %. As N is increased, performance of the complexity-entropy method improves

and it can be seen that at larger values of N (> 1, 000), both the complexity-entropy

method and RN measure T reject H0 (almost 100 rejections) even at noise level of 60%.
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Figure 8.1: MPR Complexity-Entropy plane for chaotic Lorenz system (blue circle)
and corresponding 99 iAAFT surrogates (red circles) under noise levels 0% (A), 10%
(B), 20% (C), 40% (D), 60% (E), and 100% (F). The data length is N = 200. Repro-

duced from [P-I].
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Figure 8.2: MPR Complexity-Entropy plane for chaotic Lorenz system (blue circle)
and corresponding 99 iAAFT surrogates (red circles) under noise levels 0% (A), 10%
(B), 20% (C), 40% (D), 60% (E), and 100% (F). The data length is N = 1000. Repro-

duced from [P-I].
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We also computed RN measures L and R (see Table 8.4). In case of L, we can again see

that at short data lengths, the number of rejections are still considerably high for noise

levels up to 60%. We can see almost 100% rejections at N > 500 for noise levels as high

as 40%. At N = 5, 000 and 10, 000, even at noise levels of 60%, we can see that all the

100 realizations reject H0. Even at 100% noise, we can see about 40 rejections of H0 for

N = 10, 000. However, in case of R, at m = 3, none of the realizations of the Lorenz

system rejected the null hypothesis H0 (results not shown here). As we demonstrated

earlier in the thesis, in case of the network measure R, a higher embedding dimension

is required to distinguish chaotic from stochastic dynamics. When m was set to 5, we

observed that the number of rejections of H0 increases and reached 100% for N > 200

(see Table 8.4). As noise is increased beyond 20%, the network measure R can no longer

distinguish between chaos and noise even when N = 10, 000.

We also observed that as the noise level is increased, the topology of the RN changes

and it tends to fill the phase space (see Figures S20-S22 in supplementary data of [P-I]).

However, the topology of the RN, which is reflective of the topology of the embedded

attractor (Lorenz attractor in this case) is not completely destroyed even at short data

length of N = 200 and considerably high noise levels up to 40%. As the noise level is

increased (60% and 100%), we see that the topology of the RN does not resemble the

shape of the Lorenz attractor and the network tends to fill the phase space.

Table 8.4: Number of rejections of H0 from 100 realizations of the Lorenz system
for various data lengths and noise levels using the RN measure L and R. For each
realization, 99 iAAFT surrogates were generated. The embedding delay τ = 3 and the
recurrence rate RR = 0.05. In case of R, the embedding dimension m was set to 5

instead of 3. Reproduced from [P-I].

Noise Level
N = 200 N = 500 N = 1, 000 N = 5, 000 N = 10, 000
L R L R L R L R L R

0% 97 82 100 100 100 100 100 100 100 100

10% 97 72 100 98 100 100 100 100 100 100

20% 99 30 100 52 100 74 100 100 100 100

40% 68 2 100 0 100 0 100 0 100 0

60% 33 0 63 0 94 0 100 0 100 0

100% 9 4 2 0 5 0 14 0 40 0

Figures 8.3 - 8.5 show the color-coded representation of Ci, log(1+bi), and ki respectively

for RNs derived from Lorenz system under increasing levels of noise. Under noise-free

condition, most vertices have high values for Ci (see Figure 8.3), but as the level of noise

increases, many vertices start displaying low values for Ci and the topology of the RN

changes as well due to the addition of noise. This is due to the distortion of the clustering

structure associated with RNs derived from chaotic system. Similarly, as noise level is

increased, higher number of vertices acquire lower values of log betweenness centrality

(see Figure 8.4). The local recurrence rate, which is proportional to degree centrality,
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Figure 8.3: Color-coded representation of local clustering coefficient for the Lorenz
attractor under noise levels 0% (A), 10% (B), 20% (C), 40% (D), 60% (E), and 100%
(F). The data length N = 5, 000, recurrence rate RR = 0.05, embedding dimension

m = 3 and the embedding delay τ = 3. Reproduced from [P-I].
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Figure 8.4: Color-coded representation of log betweenness centrality for the Lorenz
attractor under noise levels 0% (A), 10% (B), 20% (C), 40% (D), 60% (E), and 100%
(F). The data length N = 5, 000, recurrence rate RR = 0.05, embedding dimension

m = 3 and the embedding delay τ = 3. Reproduced from [P-I].

for the Lorenz attractor under increasing levels of noise is shown in Figure 8.5. It is

clear from the Figure 8.5 that as noise level increases, the local recurrence rate for most

of the vertices decreases and at very high noise levels most of the vertices tend to have

similar values for local recurrence rate.



Chapter 8. Effect of noise on recurrence networks 89

−20 0 20
−20

−10

0

10

20

(A)

0.02

0.04

0.06

0.08

−20 0 20
−20

−10

0

10

20

(B)

0.02

0.04

0.06

0.08

−40 −20 0 20
−30

−20

−10

0

10

20

(C)

0.02

0.04

0.06

0.08

−50 0 50
−40

−20

0

20

40

(D)

0.02

0.04

0.06

0.08

−50 0 50
−40

−20

0

20

40

(E)

0

0.02

0.04

0.06

0.08

0.1

−50 0 50
−50

0

50

100

(F)

0.02

0.04

0.06

0.08

0.1

0.12

Figure 8.5: Color-coded representation of local recurrence rate (proportional to degree
centrality) for the Lorenz attractor under noise levels 0% (A), 10% (B), 20% (C), 40%
(D), 60% (E), and 100% (F). The data length N = 5, 000, recurrence rate RR = 0.05,
embedding dimension m = 3 and the embedding delay τ = 3. Reproduced from [P-I].

8.4 Summary

In this study we addressed the effect of noise on RNs by adding increasing levels of

observational noise to paradigmatic model systems. Effect of noise on the network

measures such as Ci, bi, and T can be minimized to a certain extent by setting RR to

an appropriate value. Furthermore, for noise levels greater than 40% in case of C and

20% in case of L, the network measures fail in distinguishing between noisy periodic

and chaotic dynamics. We also demonstrated that global RN network measures like T
and L are more robust at short data lengths compared to other approaches such as the

Complexity-Entropy plane approach to distinguish chaos from noise.





CHAPTER 9

RECURRENCE NETWORK ANALYSIS OF EEG SIGNALS

[[P-III],[P-IV]]

9.1 Introduction

Our curiosity to understand the dynamical properties of brain, especially in disorders

like epilepsy, has immensely benefited from nonlinear time series analysis. Andrzejak

et al. [4] applied nonlinear measures like nonlinear prediction error P , and effective

correlation dimension D2,eff , to different classes of EEG data - extracranially recorded

healthy EEG with eyes open and closed, intracranially recorded interictal and ictal

EEG signals. They reported the strongest indication of nonlinearity for ictal EEG,

while healthy EEG (eyes open) was compatible with quasilinear process. Gautama et

al. [255] applied the DVV method for the data described in [4] and found indications

of nonlinearity for both intracranial and surface EEG recordings. Given the potential

of RN measures in characterization of dynamical systems [16, 165] and its reported

advantages over other traditional nonlinear measures [15], its application in investigating

the structural properties of EEG signals has hitherto not been explored. Furthermore,

surrogate testing, which is an important tool in signal analysis [70] (See also Section 3.6),

has not been used in combination with RN measures for the analysis of the structural

property of biological time series such as EEG data. Here, our aim is to analyze the

structural properties of different classes of EEG data (healthy and epileptic EEG signals)

using RN measures in conjunction with the surrogate testing [P-III]. Since RN measures

describe the structural properties of the attractors underlying a time series [163], we

hypothesize that these measures can be used as a discriminatory statistic to test for the

91
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structural complexity (or conversely stochasticity) of the original data in conjunction

with the surrogates.

9.2 Data and methods

Table 9.1 describes the five EEG datasets used in [P-III] and [P-IV], which was origi-

nally published by Andrzejak et al. [4] and is available online for free download i. For

a detailed description of these datasets, the reader is directed to [4]. Each dataset con-

sists of 100 EEG signals recorded extracranially (eyes open - A , eyes closed -B ) and

intracranially (interictal EEG data recorded from Hippocampus - C, epileptogenic zone

- D and ictal EEG data - E). The sampling frequency was 173.6 Hz and each signal was

23.6 seconds long (4096 samples).

Table 9.1: EEG data published by Andrzejak et al. [4] used in [P-III].(reproduced
from [P-III].)

Datasets Description Number of signals

A Eyes open 100
B Eyes closed 100
C Hippocampal-Interictal 100
D Epileptogenic zone-Interictal 100
E Ictal 100

We applied time-delay embedding methodology proposed by Takens to reconstruct the

attractor from the time series [30] (also see Section 3.1). The optimal lag τ was estimated

using the first minimum of the auto mutual information function and the minimum

embedding dimension m was obtained using the modified FNN approach [47], where

the threshold r was set to the standard choice of 10 [46, 47]. In [P-III], RNs were

constructed from the EEG signals by fixing the RR instead of threshold ε, so that we

obtain RNs with approximately the same number of edges so as to allow for objective

comparison between different RNs [17]. We computed the network measures such as C
and L for the healthy and epileptic EEG signals [P-III] . For the estimation of RNs and

the computation of the associated measures, the software pyunicorn [252] was used. We

performed surrogate analysis by generating univariate iAAFT surrogates [96].

In case of univariate iAAFT surrogates, the null hypothesis H0
uni, to be tested is that the

underlying dynamics of the time series is a stationary, linear, stochastic, and correlated

process which is measured by a static, monotonic, and possibly nonlinear observation

function [4, 96]. Further, the autocorrelation, mean, and variance of the underlying

process are such that the measurement results in the autocorrelation and amplitude

distribution of the original time series [70]. Without making any assumption about the

ihttp://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3

http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3


Chapter 9. Recurrence network analysis of EEG signals 93

underlying distribution of the data, similar to the approach given in [4], we employ a

non-parametric method to test the null hypothesis H0
uni. The procedure is outlined as

follows [P-III],

1. Compute the RN measure (for example, C or L) for the original data. Let us

denote it as Xd.

2. Compute the RN measure for the corresponding iAAFT surrogates.

3. Let us denote the maximum and minimum of the RN measure for the surrogates

as Xsurr
max and Xsurr

min respectively.

4. Reject H0
uni if (Xd > Xsurr

max ) (or if Xd < Xsurr
max ).

Let Rmax be the number of rejections of H0
univ in a given set, due to (Xd > Xsurr

max ). For a

two-tailed test, the probability pmax of having Rmax or less rejections at the significance

level of α = 2
1+s , where s is the number of surrogates, can be estimated via binomial

cumulative distribution function [4, 256]

pmax = 1−
Rmax∑
k=0

(
n

k

)
(α)k(1− α)n−k (9.1)

where n is the number of signals in a given set. In an analogous manner, one can

compute pmin using Rmin. In [P-III] we used 49 surrogates and thus, α = 0.04. For the

EEG dataset, we also performed statistical testing at the set level using non-parametric

Wilcoxon signed rank test [4] to facilitate the comparison of our results with the results

of Andrzejak et al. [4]. We used one surrogate per set and used {Xd
1···100} and {Xsurr(1)

1···100 }
as paired observations for the Wilcoxon signed rank test as suggested in [4].

9.3 Results and discussion

We computed C and L as a function of RR for the set A-E of EEG signals. We observed

that set E has the highest value for C for RR ≥ 0.02, followed by the sets D,C,B, and

A. The same order is observed in decreasing values for L and it is consistent for all the

values of RR. Furthermore, we also observed that C increases with increasing RR while

L decreases. This is depicted in Figure 6 in [P-III].
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Table 9.2 shows the result of surrogate analysis for EEG datasets (Table 9.1) using C
and L as discriminatory statistic. We only show Rmax in Table 9.2 as Rmin was non-

significant in all cases. Comparison of our results to the work of Andrzejak et al. [4] and

Gautama et al. [255] is also presented in Table 9.2. It is evident from from our results

that the maximum rejections of H0
uni is found for the set E (ictal activity) followed by

the sets D (interictal activity-epileptogenic zone), C (interictal activity-hippocampal

zone), B (scalp EEG, eyes closed) and A (scalp EEG, eyes open). For epileptic EEG

recordings capturing the epileptogenic interictal and ictal activity (D and E), we find

that L gives lesser rejections compared to C.

Table 9.2: Results from surrogate analysis at individual level for EEG data at RR =
0.05. The number of rejections Rmax at significance level α = 0.04 (49 surrogates) for
sets A-E is shown. As comparison, results from Andrzejak et al. [4] and Gautama et

al. [255] are shown in columns 3, 4 and 5 respectively. (reproduced from [P-III].)

Datasets Description C L P [4] D2,eff [4] DVV [255]

A Eyes open 17 20 4 0 29
B Eyes closed 21 33 9 0 32
C Hippocampal-Interictal 26 37 14 0 46
D Epileptogenic Zone-Interictal 48 40 37 17 53
E Ictal 98 76 89 56 92

The results presented in Table 9.2, clearly point towards an increasing degree of struc-

tural complexity in epileptic EEG signals by giving higher rejections of H0
uni compared

to healthy EEG, which is consistent with the transition towards nonlinearity in epileptic

EEG compared to healthy EEG as reported in [4, 255] [P-III]. Andrzejak et al. [4] used

P and D2,eff to study the dynamical properties of the EEG time series and found the

maximum number of rejections for ictal activity (set E) and thus a strong evidence for

an underlying nonlinear process, while no significant rejections were found for scalp EEG

in eyes open condition (set A). In comparison to [4], our results gave higher rejection

rates for sets A-E using recurrence network measures. The main difference was that we

could obtain higher rejections of H0
uni in sets A and B which are surface EEG record-

ings compared to [4]. Gautama et al. [255] applied DVV method for the EEG data

described in [4] and also obtained higher rejections of H0
uni in sets A and B compared

to [4]. We also applied A-NN method to the EEG data described in [4] and found that

the recurrence networks associated derived from surface EEG signals are more complex

than random networks and display small-world property [P-IV].

9.4 Summary

In this study, we presented the evidence for increased structural complexity in epileptic

EEG, using RNs in combination with surrogate analysis. Furthermore, resting state
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EEG signals in healthy subjects also show indications of structural complexity by giving

significant number of rejections for the null hypothesis, but to a lesser degree compared

to epileptic EEG signals. The network measure C outperformed L in characterizing the

structural properties of epileptic EEG signals.





CHAPTER 10

DISTINGUISHING FOCAL AND NONFOCAL EEG SIGNALS

[P-II]

10.1 Introduction

Several human as well as non-human animal studies have confirmed that even during

the interictal period, epileptic brain is different from normal and it has been hypothe-

sized that the interictal EEG recordings also exhibit increased nonlinearity due to the

deterministic dynamics that accompanies the epileptic process [9]. Thus, we can hy-

pothesize that the analysis of interictal EEG signals can provide valuable information

about the localization of epileptogenic areas. Besides the obvious clinical benefit, this

is also extremely beneficial from the patient’s point of view, as it minimizes the need

to record seizures for the sake of localization, since occurrence of each seizure is a po-

tentially debilitating event that can cause health impairment [70]. Motivated by this,

Andrzejak et al. [70] combined iAAFT surrogates with nonlinear prediction error P ,

an univariate measure and nonlinear interdependence measure L, a bivariate measure,

to test for randomness and nonlinear-independence respectively, in intracranial EEG

signals. These EEG signals were acquired from epileptogenic (focal EEG signals) and

non-epileptogenic areas (nonfocal EEG signals) of five epilepsy patients. They analyzed

seizure-free recordings by excluding recordings of the seizure activity and three hours

after the last seizure activity. Their results showed that the focal EEG signals had higher

rejections for both the randomness test and nonlinear-independence test compared to

the nonfocal EEG signals, thus indicating that the focal EEG signals are more nonran-

dom and have more nonlinear interdependence between them compared to the nonfocal

EEG signals. They also used linear variability measures to test for stationarity in the
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EEG signals. Based on the surrogate testing, their results showed that the nonfocal

EEG signals are more nonstationary compared to the focal EEG signals. The nonsta-

tionarity in the time series caused an increase in the rejection probability of both the

randomeness test (for focal EEG signals) and nonlinear-independence test (for focal and

nonfocal EEG signals). Furthermore, they also showed that the contrast between the

focal and nonfocal EEG signals using the randomness test and nonlinear-independence

test is further enhanced when the signals that reject the stationarity test are excluded.

They also studied the dependence between the randomness and nonlinear-independence

test and found that these two tests give nonredundant information and thus can con-

tribute to characterization of EEG signals in different ways. These results are highly

important from clinical as well as the physics point of view, as they reveal that the focal

EEG signals are more nonrandom, more nonlinearly interdependent and more stationary

compared to the nonfocal EEG signals. Thus, these measures can be used as potential

biomarkers to delineate the epileptogenic brain areas from the non-epileptogenic ones.

However, one important issue that remains to be addressed more adequately is the ro-

bustness of these nonlinear measures to nonstationarity in the EEG signals. Whether the

contrast between the focal and nonfocal EEG signals, as measured by the randomness

and nonlinear-independence test, still remains significant when we only consider those

EEG signals that have rejected the stationarity test, remains to be answered. In other

words, do these nonlinear measures still perform when they are applied to nonstationary

signals ? Moreover, In Ref. [70], iAAFT surrogates were used which are stationary by

construction and therefore nonstationarity can thus violate the null hypothesis [8, 257].

This is a relevant and vexing issue as the epileptic signals often exhibit nonstationary

behavior [233]. Even though the focal EEG signals are more stationary than the non-

focal EEG signals [70], there can still be considerable degree of nonstationarity present

in the focal EEG signals. For instance in [70], Andrzejak et al. still found that out of

3750 focal EEG signals, 1750 signals rejected the stationarity test (i.e., roughly 46%).

Ideally, the measures derived from the nonlinear theory should be able to distinguish

between the dynamics of the focal and nonfocal EEG signals even in the presence of

some degree of nonstationarity.

In this study, our aim is to apply both RN and CRN measures in combination with

surrogates generated using the iAAFT scheme [96] to univariate and bivariate EEG

time series described in [70]. In order to make the results more reliable, particularly

in case of nonstationary EEG signals, we also use the TFT surrogates proposed by

Nakamura et al [97]. The TFT surrogates preserve some nonstationarity present in the

original data, unlike the iAAFT surrogates which can only preserve the linear properties

[97, 258]. Particularly, we test for randomness based on the univariate RN measures

and independence based on bivariate CRN measure using the focal and nonfocal EEG
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signals. To allow for a direct comparison with the results obtained in [70] where the

effect of nonstationarity on P and L was studied along with the dependence between

these two measures, we also compute the same rejection probability measures [70] for

the randomness and nonlinear-independence test combined with iAAFT and TFT (in

case of nonstationary EEG signals) surrogates.

10.2 Data and methods

The data comprises of intracranial EEG data published by Andrzejak et al. [70]. The

data was recorded from five patients who were candidates for epilepsy surgery and is

available for free download i.

The data is divided into two parts, a) focal EEG data recorded from epileptogenic brain

areas and b) nonfocal EEG data recorded from non-epileptogenic brain areas. The EEG

channels where ictal signal changes were first detected by two expert neurologists are

considered as focal EEG channels and all other channels are defined as non-focal EEG

channels. Furthermore, the EEG activity pertaining to seizures and three hours after the

last seizure were excluded, so as not to include any ictal activity [70]. In order to form

the focal and non-focal EEG dataset, 3750 pairs of electrodes (X and Y ) were selected

randomly from two neighboring intracranial EEG channels. The selection procedure is

explained in detail elsewhere [70]. Pre-processing of the data included low-pass filtering

the data at 40 Hz with an eight-order Butterworth filter and downsampling to 128 Hz.

The length of each EEG signal was about 20 seconds (2560 samples).

In order to construct RNs and CRNs, we fixed the parameters τ = 4 and m = 8, as

suggested in [70]. Also, we set the recurrence rate RR = 0.02 and the cross recurrence

rate CRR = 0.03. We computed univariate network measures such as global clustering

coefficient C, average path length L, assortativity R, and average betweeness centrality

BC and the bivariate cross network measure Ccross for the focal and nonfocal EEG [P-II].

For the estimation of RNs and the computation of the associated measures, the software

pyunicorn [252] was used.

The steps to perform univariate surrogate testing (iAAFT or TFT) has already been

discussed in Chapter 9. In [P-II] we generated 19 iAAFT and TFT surrogates. The

null hypothesis H0
biv to be tested in case of iAAFT bivariate surrogates is that the

original bivariate EEG time series represents a stationary, bivariate, linear, stochastic

correlated Gaussian process[259]. The measurement function through which the EEG

signal pairs are observed are invertible, but possibly nonlinear [259]. The surrogates

ihttp://www.dtic.upf.edu/~ralph/

http://www.dtic.upf.edu/~ralph/
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generated have the same auto-correlation and cross-correlation as the original pair of

EEG signals. In case of the TFT surrogates, the null hypothesis to be tested is that the

irregular fluctuations in the data arise from a linear stationary system [97]. For bivariate

cross network measure, the hypothesis testing is done as follows

1. Compute the cross network measure, Ccrossxy and Ccrossyx , for the original signal pairs.

Let this be denoted as B
orig
xy and B

orig
yx respectively.

2. Generate 19 bivariate surrogates (iAAFT or TFT) using original pair of signals in

accordance with [93].

3. Compute the cross network measures for all surrogate pairs. Let this set be denoted

as B
surr
xy =

{
B

surr1
xy , B

surr2
xy · · ·Bsurr19

xy

}
and B

surr
yx =

{
B

surr1
yx , B

surr2
yx · · ·Bsurr19

yx

}
rep-

resenting average cross-clustering coefficient Cxy and Cyx for bivariate surrogates

respectively.

4. If B
orig
xy > B

orig
yx and B

orig
xy > max(B

surr
xy ), the coupling direction y → x is considered

significant and null hypothesis is rejected. Let the number of such rejections be

n(B
rej
xy )

5. Similarly, if B
orig
yx > B

orig
xy and B

orig
yx > max(B

surr
yx ), the coupling direction x → y

is considered significant and null hypothesis is rejected. Let the number of such

rejections be n(B
rej
yx )

6. The total number of signals rejecting the null hypothesis B0
biv is n(B1) = n(B

rej
xy )+

n(B
rej
yx )

In order to generate TFT surrogates, one needs to specify the cut-off frequency fc (see

Section 3.6 in Chapter 3), which represents the normalized frequency (between 0 and 0.5)

corresponding to the integer index (0, 1, 2, ..., N/2) of the N -point Fourier transformed

data, where N is the number of points in the data. This way, local nonstationarity

and even global nonstationarity i.e., trends (for sufficiently high fc) are preserved in

the generated TFT surrogates [258] but at the same time local structures in short-term

variability are destroyed [97]. As it is evident, generation of TFT surrogates crucially

depends on the choice of cut-off frequency fc, which is the maximum preserved frequency.

If this frequency is too high, the surrogates become too similar to the original data and

might share too much of its nonlinear dynamics. On the other hand, if this value is too

low, then the TFT surrogates might not preserve any trends and behave in a similar

fashion to the iAAFT surrogates. In [P-II], we varied fc between 0 (0 Hz) to 0.05 (25.6
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Hz). Thus, we had 3750 pairs (set X and Y each containing 3750 EEG signals) of EEG

signals from focal and nonfocal EEG signals.

In this study, we also compute a number of conditioned and unconditioned rejection

probabilities proposed in [70]. These measures has been defined and described in [P-

II]. Briefly, we compute the unconditioned rejection probability, p(U1
X), by computing

the ratio between number of signals that reject the null hypothesis (using RN measures

C, R, L or BC as the test statistic), n(U1
X), to the total number of signals in the set,

n(X), i.e., p(U1
X) =

n(U1
X)

n(X) . Additionally, we condition these probabilities with signals

that have rejected (or not rejected) the stationary test [70]. For example, in order to

assess the influence of nonstationarity on univariate measures, the following conditional

probabilities are estimated [70].

p
(
U1
X

∣∣S0
X

)
=
n(U1

X ∩ S0
X)

n(S0
X)

(10.1)

p
(
U1
X

∣∣S1
X

)
=
n(U1

X ∩ S1
X)

n(S1
X)

(10.2)

Where, S0
X and S1

X are the outcomes of the stationarity test [70] being not rejected

and rejected respectively. Consequently n(S1
X) and n(S0

X) are the number of signals in a

given set X (for example 3750 univariate EEG signals from focal EEG dataset) that have

not rejected and rejected the stationarity test respectively. These rejection probabilities

are defined analogously for bivariate measures (pair of EEG signals in focal and nonfocal

EEG datasets). Following [70], we compare the rejection probabilities using the relative

difference measure D suggested in Andrzejak et al.[70]

D =
p1 − p2

p1 + p2
(10.3)

10.3 Results and discussion

Table 10.1 shows the unconditioned and conditioned rejection probabilities for the ran-

domness test combined with iAAFT surrogates based on network measures - C (first

row), R (second row), L (third row), and BC (fourth row). Since there are 3750 pairs

of EEG signals from focal and nonfocal EEG dataset, we only show results from set
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X. Similar results were found from set Y . Also for the sake of comparison, rejection

probabilities using nonlinear prediction error P [70] is also shown (fifth row). Here DAll

represents the contrast between unconditioned probabilities, where as DS0
X and DS1

X

represent the contrast between rejection probabilities conditioned on S0
X and S1

X respec-

tively. It is clear from our results that the contrast between all the focal and nonfocal

EEG signals (III column) as given by DAll is the highest for the randomness test based

on R, followed by C and nonlinear prediction error P . In contrast, it can be seen that

L and BC give similar rejection probability for both the focal and the nonfocal EEG

signals resulting in low (non-significant) values for DAll

Table 10.1: Comparison of the unconditioned rejection probability for the focal and
non-focal EEG signals and the corresponding D value for the univariate measures are
shown columns II−IV . Columns V −V II and V III−X are same as columns II−IV

but for stationary and non-stationary signals respectively.

Measures pF pN DAll pF (U1
X |S0

X) pN (U1
X |S0

X) DS0
X pF (U1

X |S1
X) pN (U1

X |S1
X) DS1

X

C 0.37 0.14 0.43 0.42 0.17 0.40 0.31 0.12 0.43
R 0.16 0.05 0.50 0.17 0.07 0.42 0.16 0.04 0.57
L 0.48 0.44 0.04 0.42 0.38 0.05 0.55 0.50 0.04
BC 0.35 0.32 0.04 0.31 0.31 0.01 0.40 0.34 0.08
N [70] 0.29 0.20 0.19 0.30 0.15 0.33 0.28 0.23 0.09

Also, it can be seen from Table 10.1 that the contrast between stationary focal and

nonfocal EEG signals as given by DS0
(V I column) is again highest for R, followed by

C and P , with L and BC giving low and non-significant values. When the analysis is

restricted to nonstationary signals, we can observe that the network measures R and

C can still very well distinguish between focal and non-focal EEG signals as evidenced

by DS1
(IX column). The network measures L, BC and P give relatively much lower

values for DS1
.

Table 10.2: Same as Table 10.1, but for bivariate measures.

Measures pF pN DAll pF (B1|S0) pN (B1|S0) DS0

pF (B1|S1) pN (B1|S1) DS1

Ccross 0.43 0.22 0.31 0.46 0.23 0.32 0.40 0.21 0.31
L [70] 0.56 0.42 0.15 0.52 0.40 0.26 0.61 0.51 0.09

Table 10.2 show the unconditioned and conditioned rejection probabilities for the nonlinear-

independence test using bivariate iAAFT surrogates and based on the cross network

measure Ccross. For the sake of comparison, the rejection probabilities for the nonlinear-

independence test based on L [70] is also shown. In case of bivariate analysis, we found

that the cross network measure Ccross could successfully distinguish between focal and

nonfocal EEG signals, even when the analysis is restricted to nonstationary signals. In

contrast, L gave low values for the contrast between focal and nonfocal EEG signals
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Table 10.3: Contrast between focal and nonfocal EEG signals that have rejected the
stationarity test. Columns II to V I shows the DS1

values for fc = 0.01, 0.02, 0.03,
0.04 and 0.05 respectively.

Measures fc = 0.01 (5.12 Hz) fc = 0.02 (10.24 Hz) fc = 0.03 (15.36 Hz) fc = 0.04 (20.48 Hz) fc = 0.05 (25.6 Hz)

C 0.45 0.39 0.41 0.40 0.32
R 0.45 0.48 0.43 0.38 0.17
L 0.08 0.18 0.21 0.28 0.28
BC 0.12 0.23 0.24 0.26 0.23
P [70] 0.14 0.12 0.12 0.10 −0.01

when the analysis was restricted to nonstationary signals. Furthermore, in each case,

the D value for global cross-clustering coefficient Ccross was greater than the nonlinear

interdependence measure L.

Table 10.3 shows the results for the randomness test based on TFT surrogates to quantify

the contrast between nonstationary focal and nonfocal signals. Our results show that as

fc is increased (up to 0.02), the rejection probability of focal and nonfocal EEG signals

increase in case of the network measures C and R (see Figure 4 in [P-II] ). However,

the contrast between focal and nonfocal signals is still maintained very well (see Table

10.3). In case of the network measures L and BC, we see that as fc is increased, the

contrast between focal and nonfocal EEG signals starts to improve, while the rejection

probabilities start to decrease for both focal and nonfocal EEG signals (see Figure 4 in

[P-II] ). Similar observations are made in case of P , but the contrast between focal and

nonfocal EEG signals as given by D is lower compared to network measures (see Table

10.3) . For high values of fc (> 0.03), we observe that the rejection probabilities for both

focal and nonfocal EEG signals starts to drop in case of all the measures as the surrogates

start becoming increasingly similar to the original data and might contain too much of

the nonlinear deterministic dynamics of the original data in them. Similar observations

were made in case of the nonlinear-independence test based on TFT surrogates, Ccross
outperformed L (see Figure 6 in [P-II] ).

Additionally, in this study we also investigated the dependence between univaritae and

bivariate network measures by estimating the conditional probabilities p
(
B1
∣∣U0

XU
0
Y

)
,

p
(
B1
∣∣U1

XU
0
Y

)
, and p

(
B1
∣∣U1

XU
1
Y

)
(see Figure 7 in [P-II] ). We observed that rejection

of one of the randomness test based on C increases the rejection probability of the

nonlinear-independence test based on Ccross, while rejection of both the randomness

tests based on C further increases the rejection probability of nonlinear-independence

test based on Ccross. Similar observations can be made when P and L as mentioned in

[70] were used. However, we also observed that the value of p
(
B1
∣∣U0

XU
0
Y

)
was still above

the significance level, indicating that rejection of randomness test alone is not a sufficient

condition for the rejection of the nonlinear-independence test. To test this conjecture,

following the work of Andrzejak et al. [70], we shuffled the pairs of stationary focal EEG
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signals without replacement. Instead of pairing signal x with its neighboring contact y,

it was paired with some other signal that was randomly selected without replacement

from the remaining signals in set Y [70]. Thus, any potential nonlinear dependence is

destroyed and we end up with pairs of signals that are independent of each other, but

might posses strong individual dynamics. The result from this shuffling (see Figure

8 in [P-II] ) indicates that irrespective of the outcome of the randomness test, the

rejection probabilities of the nonlinear-independence test based on Ccross are close to the

significance level and remain approximately at the same level resulting. These results

indicate independence between the signals and a good specificity for Ccross.

10.4 Summary

In this study, we proposed the application of randomness and nonlinear-independence

test based on RN measures and demonstrated that these measures, combined with sur-

rogate analysis, can distinguish between focal and nonfocal EEG signals. Our findings

based on these tests reveal that focal EEG signals exhibit an increased degree of struc-

tural complexity and interdependency compared to nonfocal EEG signals. Particularly,

measures such as C, R and Ccross can successfully distinguish between the focal and

nonfocal EEG signals, even when the analysis is restricted to nonstationary signals, ir-

respective of the type of surrogates used. In contrast, the network measure L and BC
fail to distinguish between the focal and nonfocal EEG signals when iAAFT surrogates

are used. However, their performance improved upon using TFT surrogates.



CHAPTER 11

MOVING WINDOW RECURRENCE NETWORK ANALYSIS

OF EEG [[P-I],[P-V]]

11.1 Introduction

In this study we demonstrate the application of moving window RNA to capture the

dynamical transitions in neural data. Since RN approach can handle short and non-

stationary data, it can be an ideal candidate for this type of analysis, which hitherto has

not been explored for EEG data. This work is divided into two separate sections related

to the analysis of EEG data from two epileptic patients undergoing EEG recordings

[P-I] and LFP data recorded from non-human primate performing a visuomotor task

[P-V]. In this section, we will briefly introduce the motivation behind the work carried

out in [P-I] and [P-V].

It is well known that epilepsy is a dynamical disorder and the epileptic brain transitions

between different dynamical states - inter-ictal state, pre-ictal state, ictal state and the

post-ictal state. Characterizing the dynamical transitions in an epileptic EEG signal

can potentially lead to unambiguous identification of pre-ictal state, which holds the

key in preventing or suppressing the seizure before it strikes. In [P-I], we look at some

preliminary results obtained in this direction, where we try to characterize the dynamical

shifts in the epileptic EEG data using RN measures.

In [P-V] we apply the moving window RNA to LFP data acquired from the primary

motor cortex of a monkey performing a visuomotor task. It is well known that cortical

rhythms like the LFPs in the β frequency range are ubiquitous in the motor cortex of

mammals including monkeys and humans across the upper limb area of the primary

105
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motor cortex. The dynamics of the LFPs has been generally characterized based on the

temporal profile of the amplitude of oscillations including event related synchronization,

event related desynchronization and phase locking methods. However, the dynamical

properties of such LFPs have not been characterized well enough especially with re-

spect to wide-band oscillations. Since RNA can be applied to short data segments and

RN measures can be still computed reliably, in [P-V] we explore the applicability of

RNA methods to wide-band LFP data (β and low γ bands)to characterize the inherent

dynamics simply using evoked responses.

11.2 Data and methods

11.2.1 EEG data

The EEG data used in [P-I] was originally published by Quiroga et al. [260] and is

available for free download at https://vis.caltech.edu/~rodri/data.htm. Basically,

the data comprises of tonic-clonic seizures of two subjects recorded using scalp EEG with

right central electrode (channel C4 according to 10-20 system [261]). The EEG data has

been filtered between 1-50 Hz and sampled at 102.4 Hz. Figure 11.1 shows 3 minutes

of EEG data from one of the two patients. The beginning of the seizure is marked with

a solid red line (approximately at 80 seconds). The seizure discharge lasts for about 8

seconds and the clonic phase begins at 123 seconds (marked with dashed red line) [260].

The seizure ends approximately around 155 seconds (marked with solid black line). Also

at around 140 seconds (not shown in the figure), the clonic discharge begins to separate

[260].
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Figure 11.1: EEG data from channel C4 of patient 1, with the clinical onset of seizure
marked with solid red line. The dashed red line represents beginning of the clonic phase

and the solid black line represents that end of seizure.

We computed global measures like DT , L and R for each window using moving window

RNA. We divided the time series into 5 seconds window (≈ 500 samples) and 10 seconds

window (≈ 1, 000 samples) with 90 % overlap. In order to get the temporal profile

of global network measures, we assigned the global measure to the mid-point of each

window. Based on the first local minimum of the auto mutual information function, we

https://vis.caltech.edu/~rodri/data.htm
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set τ = 18. The embedding dimension m was varied from 2 to 8 and the recurrence rate

RR was set to 0.05.

11.2.2 LFP data

The LFP data was recorded using a 96-channel (Blackrock Microsystems; 1 mm in

length and 400 µm inter-electrode spacing) implanted in the primary motor cortex of a

monkey (see Figure 11.5) performing a visuomotor task. Using a two-link exoskeleton

manipulandum [262], the monkey performed a visuomotor task of moving a cursor on a

horizontal screen (see Figure 11.4). A new target was displayed at a random location

within a workspace when the monkey successfully reached the current target. The

monkey was rewarded after successfully hitting five or seven consecutive targets.

The LFPs were bandpass filtered into [1, 30] Hz and [30, 80] Hz bands with a fourth-

order Butterworth filter and the evoked response from 1000 consecutive successful trials

were computed. We partitioned the data into a series of highly overlapping windows

of length 150 ms with a step-size of 1 ms. The reader is directed to [P-V] for further

details regarding data pre-processing and preparation.
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Figure 11.2: Estimation of τ us-
ing the first local minima of auto

mutual information.
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Figure 11.3: Estimation of m
using the false nearest neighbor

method.

We averaged over 1000 trials of LFP data (-100 ms before the event and 350 ms after the

event) for all the 96 channels. The averaged data was divided into highly overlapping

windows of length 150 ms and step size 1 ms. The optimal delay and the minimum

embedding dimension was computed using first minimum of the auto mutual information

and FNN method for all the channels. We found that for most of the data the embedding

parameters were, τ = 5 (see Figure 11.2) andm = 3 (see Figure 11.3). Although the FNN

statistic approaches zero at m = 5, as a trade-off between data length and embedding

dimension, we choose m = 3 for signals from all the channels. At m = 3 , we can see
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Figure 11.4: Experimental setup for the visuomotor task, where the monkey performs
random target pursuit using two-link exoskeleton robot. The monkey moves the visual
cursor (red circle) to a target (blue square). Each time monkey hits the target, a new
target appears at a random location (green square). Figure reproduced with permission

from [263]

Figure 11.5: Location of the Utah microelectrode array in the arm area of the primary
motor cortex, showing the landmarks central sulcus (Cs) and arcuate sulcus(As). Figure

reproduced with permission from [264].

that the FNN statistic is already below 0.05. Using these embedding parameters we

constructed same-sized recurrence networks for each window and channel. Instead of

specifying the recurrence threshold ε, we fix the recurrence rate RR = 0.05 so that we

obtain recurrence networks with approximately the same number of edges so that we

can compare the networks obtained from different time windows [17].

11.3 Results and discussions

11.3.1 EEG data

Figures 11.6 (B)-(D) show the result of moving window RNA for the RN measures DT ,

L and L respectively, for EEG data of patient 1 with 10 seconds window and varying

embedding dimension, m. From Figure 11.6 (B), it can be seen that DT increases with

embedding dimension m until about 80 seconds before the seizure. Beyond 80 seconds,

DT starts to drop for m ≥ 4. For m = 2, we do not observe much variation in DT .

This result for DT clearly indicates that just before the beginning of the seizure at

80 seconds, the global dimension as measured by DT begins to drop even if the m is
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increased up to 10, a characteristic associated with a (low-dimensional) deterministic

system. This behavior is seen again at around 120 seconds when the clonic phase of the

seizure begins. Towards the end of the seizure, DT again drops and remains at the same

level for increasing values of m. The period after the seizure is characterized again by

values of DT that increase with embedding dimension m.

Regarding the behavior of L, one can observe that starting around 70 seconds, there is

a ramping up of L for increasing m (m ≥ 4) and L peaks at around 84 seconds, which

coincides with the time of the local minima for DT for the seizure period. L then starts

to decrease and again begins to increase at around 140 seconds and peaking at around

150 seconds. In the post-seizure period, we can see that as the value of m increases the

value of L decreases (as observed in the pre-seizure period). The temporal profile of L
is more clearly depicted for m = 8 in Figure 11.7 (C).

The behavior of R becomes clear only for m ≥ 6, where R begins to increase from 70

seconds reaching its local maxima at around 84 seconds, which coincides with the local

minima for DT for that period. It then begins to drop and again tends to increase at

around 140 seconds and peaks at at around 150 seconds. Around the seizure period, for

m ≥ 6, irrespective of the value of m, the value of R remains approximately around the

same value. (Also see Figure 11.7 (D)).

Figure 11.7 shows the result from moving window RNA for the EEG data from patient

1, at m = 8, where the temporal variations of the global measures are seen more clearly,

along with the markings for beginning and ending of the seizure.

Our results from moving window RNA clearly indicates that the measures DT , R and L
are not entirely independent and they track dynamical transitions in a related fashion.

Furthermore, these three measures, as applied to the EEG data at hand, start showing

signs of change well before the clinical identification of seizure (compare the clinical

onset of seizure in Figure 11.7 (A) to the point when the global network measures start

increasing (or decreasing in case of DT ) in Figure 11.7 (B-D)). This feature represents

the possibility of using these measures to predict the seizure in advance. However note

that, in the dataset used, the clinical onset of the seizure occurs just 80 seconds into

the data. Having a longer segment of data before the seizure onset could also reveal

interesting shifts in dynamics much prior to the onset of the seizure. Recent studies

have shown that it is possible to detect interesting changes in EEG tens of minutes

before the actual seizure occurrence [265, 266]. However, most of these measures require

long window sizes, of the order of 10 minutes, which is long in comparison to the global

network measures, which are able to capture the rapidly changing dynamics using short

windows of 5 seconds (512 samples) and 10 seconds (1024 samples). This is one of the key

advantages of RNA compared to other existing methods. Also, In case of patient 1, the
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Figure 11.6: Moving window RNA of epileptic EEG data showing DT , L and R
before, during and after the seizure. (A) EEG data from channel C4 of patient 1 with
the clinical onset of seizure marked with solid red line. The dashed red line represents
beginning of the clonic phase and the solid black line represents that end of seizure.
(B-D) Temporal profile of the global measures (for m = 2, 4, 6, 8, 10) using a moving

window of 10 seconds (≈ 1000 samples) with 90% overlap. Reproduced from [P-I]

clonic phase begins around 123 seconds and we observe that all the three global measures,

display shift in their dynamics around this time point (See Figure 11.7 (B-D) ). Also,

we observed an increase in DT and decrease in L and R, before these measures stabilize

in the post-seizure period, which can be considered as a surrogate marker. This shift in

dynamics is also consistent with the analysis in [260] using Gabor transform and could

represent decrement in neural firing along with increase in inhibitory mechanisms, that

could be responsible for seizure termination [260]. However, further research is needed to

relate the variation of global RN towards the transition to post-ictal activity. We found

qualitatively similar results were found for Patient 2 (see Figure S26 in supplementary

data of [P-I] ) and with window size of 5 seconds (see Figure S27 in supplementary data

of [P-I]).
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Figure 11.7: Moving window RNA of epileptic EEG data showing DT , L and R
before, during and after the seizure. (A) EEG data from channel C4 of patient 1 with
the clinical onset of seizure marked with solid red line. The dashed red line represents
beginning of the clonic phase and the solid black line represents that end of seizure.
(B-D) Temporal profile of the global measures (for m = 8) using a moving window of

10 seconds (≈ 1000 samples) with 90% overlap. Reproduced from [P-I]

11.3.2 LFP data

The measure C for evoked responses of each channel across the two frequency bands

were shown in Figs. 11.8 & 11.10. Within each frequency band, temporal variations

across channels are somewhat similar. For [1,30] Hz band including the β peak, there

is a minor peak slightly before 50 ms, and that particular timing is close to the high-

est phase locking of narrow band beta oscillations from this data set. However, other

prominent features such as peaks at -50 ms and between 125-250 ms are unique features

that either traditional magnitude or phase locking analysis based on narrow band beta

oscillation did not exhibit. In contrast, low γ band apparently showed more heteroge-

neous temporal variations across the channels and timing at which high C values are

attained are almost opposite (after about 30 seconds from cue onset). Furthermore the

timing at which local maxima are attained (25-120 ms) vary significantly between 0.2 to

0.4, especially compared to [1,30] Hz band where the peak C timing in that time period

roughly corresponds to the highest phase locking.
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Figure 11.8: Temporal variation
of C across all channels for [1-30]

Hz band.
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Figure 11.9: Temporal variation
of C across all channels for [30-80]

Hz band.
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Figure 11.10: Average of C across all channels for [1-30] and [30-80] Hz band.

The mean of the temporal variations of C across all the channels for both the bands

are shown in Figure 11.10. The standard deviation at any given time point for both

frequency bands are somewhat compatible, but the mean trends show more or less

opposite behavior. Furthermore, probably due to phase locking over the β range, the

temporal trajectory of C quickly changes between 25 to 125 ms. Therefore, RNA method,

even at the level of evoked potential, exhibit much richer response patterns than simple

narrow band phase locking or wide band amplitude trajectories.
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11.4 Summary

The results presented in [P-I] represent the possibility of using RN measures as biomark-

ers for seizure prediction in advance. Also, we observed that RN measures capture the

dynamical variations underlying the epileptic EEG signal in a related fashion. We also

applied moving window RNA to characterize the dynamical characteristic of LFP os-

cillations from a non-human primate performing visuomotor task in [P-V]. Our results

revealed that such analysis can reveal richer dynamics of wide band signals and clear con-

trol of the underlying network dynamics during the task based only on evoked responses

in LFPs.





Part III

General discussions and

conclusions
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CHAPTER 12

OVERVIEW AND DISCUSSIONS

In this doctoral thesis, we used local and global RN measures to distinguish between

chaotic and stochastic processes. We also investigated the effect of noise on RN mea-

sures. With regard to the applicability of RN measures in biological time series, we

analyzed EEG signals across multiple spatial scales (intracranial EEG signals, extracra-

nial EEG signals and LFPs). For the first time, we combined RN methods with surrogate

analysis to test for the presence of deterministic structure in epileptic EEG signals. We

presented novel results regarding the ability of certain global RN measures to not only

distinguish between healthy and epileptic EEG signals, but also between interictal EEG

signals recorded from epileptogenic and non-epileptogenic brain areas. Furthermore, we

have also demonstrated the application of moving window RNA to capture dynamical

transitions in EEG and LFP signals using short window sizes.

12.1 Distinguishing between chaotic and stochastic dynam-

ics

Inferring the signatures of chaotic deterministic and stochastic processes from exper-

imental data can lead to useful practical applications in wide array of fields such as

climatology, finance, biology, to cite a few. Using RN measures and both paradigmatic

models like Rössler and Lorenz systems and noisy experimental data like EEG signal,

we have demonstrated that (hyper)chaotic and stochastic processes can be distinguished

after additional embedding [P-I]. In contrast to some of the other approaches [8, 20],

our approach based on RN properties, is both conceptually and computationally simple

(particularly when transitivity-based measures are used). Also, it has been shown that
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RN properties can be estimated from short time series reliably unlike other nonlinear

approaches [15, 142]. In fact, Lacassa et al. used VGs, another network-based approach

to characterize the time series, to describe stochastic and chaotic dynamics using both

numerical simulations and experimental data [71].

Using model systems, it has been demonstrated that certain local RN measures like

the local clustering coefficient are sensitive to the presence of UPOs [16]. The vertices

close to low-periodic UPOs have relatively higher values of local clustering coefficient.

Also, global measures like transitivity T tend to have higher values (or consequently

lower values for the transitivity dimension DT for RNs associated with chaotic systems

due to infinite number of UPOs [16]. In contrast, stochastic dynamics (for example,

linear surrogates) theoretically exhibit infinite dimension and thus the associated DT

should be limited by the embedding dimension (in non-pathological cases). As mentioned

above, chaotic attractors are formed differently in contrast to time-delay embedded

linear-stochastic processes since only the former consists of densely packed UPOs, which

cause an unique microscopic imprint to the system’s invariant density. In contrast,

surrogate data constructed from finite records fail to recover this structure. Therefore,

we hypothesized that the RN constructed from linear surrogates should exhibit larger

DT compared to the chaotic system (or conversely higher T than the surrogates). We

tested these assumptions in [P-I], where we not only used DT , but several other local and

global network measures and demonstrated using paradigmatic model systems that RN

measures can distinguish between the signatures of deterministic (chaotic/hyperchaotic)

and stochastic dynamics. Our results revealed that both local and global measures

derived from RNs associated with chaotic dynamics are different (after embedding) than

that of stochastic dynamics, primarily due to the presence of infinitely many UPOs in

the chaotic attractor. Furthermore, these results were consistent for different values of

RR. Specifically in the case of hyperchaotic attractors, the results improved with the

increase in the data length N , since high-dimensional chaos is better characterized with

higher number of data points.

As revealed by moving window RNA of epileptic EEG data in [P-I], RN approach can

be a powerful tool to detect (chaotic) deterministic signatures in real-world data such

as epileptic EEG recordings, which are characterized by irregular fluctuations and rapid

transitions in dynamics that usually buried under noise. Indications of (low-dimensional)

deterministic dynamics underlying the ictal period were found using short window sizes

(512 samples). This result is consistent with previous findings increased nonlinearity

and low-dimensionality associated with seizure activity [7].
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12.2 Impact of noise

Real-world data is seldom noise-free and thus assessing the robustness of nonlinear mea-

sures against noise is important. Despite the application of RN measures in various

fields, the impact of noise on local and global network measures has not been investi-

gated. In comparison to the previous works on RNs, we have carefully considered the

effects of noise in tandem with the data length. In particular, how well the time series

fills out the reconstruction of the attractor as noise is added for different data lengths

have not been explored yet. We studied the impact of observational noise on both global

and local RN measures in [P-III] and compared the RN approach with the Complexity-

Entropy [77] approach in [P-I], where effects of both increasing noise levels and data

lengths were considered. In [P-III] the results obtained are system-specific, in the sense

that, the values obtained for the measures C and L depend on the system under study

and the respective parameter space values. This implies that the results we report on

the tolerable noise levels strictly refer to the two reference states we consider in our

simulation example in [P-III]. However, our results generally indicate that the influence

of noise on certain RN measures can be minimized by increasing RR and this is not a

system-specific observation. This is due to the fact that small RR correspond to small

ε and thus resolve mainly small-scale structures of the attractor. Adding a noise of less

than the order of epsilon will more or less fully corrupt these structures. This situation

will mainly affect measures like C, T . Thus, as RR (and thus ε) is increased, larger

scales will be captured and thus remain potentially unaffected by larger noise ampli-

tudes. In contrast, the measure L will be largely unaffected, since the general structure

of shortest paths in phase space will be approximately the same as in the noise-free case

for noise up to a certain limit (20 % in this specific case). Further increase in noise

level creates artificial short-cuts dropping the L value. In case of local or vertex-based

measures like bi, ki, and Ci which are influenced by the presence of UPOs, increasing

the RR again minimizes the influence of noise, as shown in [P-I]. The only other work

investigating the influence of noise on RP-based methods was by Thiel et al. [48], where

impact of noise on RQA parameters was studied. The results obtained in [48] show that

RQA measures are susceptible to observational noise , but can yield reliable results for

optimal value of recurrence threshold ε. Our results are consistent with this observa-

tion, where we show that the influence of noise on RN measures can be minimized by

proper choice of RR (which is related to ε). Furthermore, in [P-I] we compared global

RN measures with the Complexity-Entropy approach and found out that RN measures

like transitivity T and the average path length L outperform the Complexity-Entropy

causality plane approach in distinguishing chaos and noise at very short data lengths

(≈ 200− 500 samples). These results are consistent with previous observations that the

RN methods perform very well particularly for very short time series [142, 166].
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In [P-I] and [P-III] we consider only the influence observational noise on RN measures.

It is important to note that if the noise is dynamical, then the bifurcation scenario

mentioned in [P-III] might be enhanced or suppressed as dynamical noise impacts the

future evolution of the system.

12.3 Application of recurrence network methods to EEG

data

12.3.1 Application to healthy and epileptic EEG signals

Application of RN measures such as C and L in combination with surrogate analysis

revealed that these measures can successfully distinguish between the structural prop-

erties of healthy and epileptic EEG signals by giving different rejection rates [P-III]. It

has to be noted that surrogate analysis has never been combined with RN approach to

study the structural properties of time series data. In general, surrogate analysis allow

us to test results from nonlinear time series analysis against a specified null hypothesis

and require two ingredients - 1) surrogate data that share the same linear properties as

the original data but differ in their possible nonlinear (deterministic) structure and 2)

A discriminatory statistic. Typically, measures such as correlation dimension, nonlin-

ear prediction error, entropy measures and others have been used as a discriminatory

statistic. These measures differ in their sensitivity and specificity depending on specific

properties of the data under study and this has an effect on their rejection rates for the

specified null hypothesis.

We proposed RN properties that are derived from graph theory as an alternative discrim-

inatory statistic. In the context of combining the RN method with surrogate analysis, it

is important to explain what the rejection of null hypothesis means . The RN properties

do not capture dynamical characteristics, but rather describe the geometric structure

of the system (respectively its attractor) in phase space. Although geometric structure

and dynamics are closely related with each other in case of chaotic dynamics [174], it is

not possible to directly relate structural differences in the system’s (invariant) density

to either linear or nonlinear dynamics. Thus RN properties characterize are different

aspects of attractor geometry [16]. In this spirit, applying the surrogate method in con-

junction with RN characteristics provides a test for structural (geometric) complexity

of the data rather than for nonlinearity. The theoretical foundation for this was fur-

ther provided by Donges et al. [153]. These earlier studies correctly implied that the

data sharing same invariant density (for example the data and the iAAFT surrogates

constructed thereof), the probability density function in the reconstructed phase space



Chapter 11. Overview and discussions 121

should be the same and hence, the RN measures cannot differ. However, this implication

holds true only if embedding techniques are not employed prior to the computation of

these measures. Since embedding changes the phase space properties of a deterministic

system in a way different than stochastic system, particularly due to the presence of

infinitely many UPOs (in case of chaotic system), the RN measures clearly differ for the

original data (if the data is driven by deterministic processes) and the surrogates. In

this spirit, our results clearly demonstrated that both healthy and epileptic EEG signals

have structural properties that are very different than those exhibited by stochastic pro-

cesses. Thus, by applying the surrogate method in conjunction with RN characteristics,

we have provided a novel test for the structural (or geometric) complexity of the data.

12.3.2 Distinguishing focal and nonfocal EEG signals

We extended our application of RN methods to EEG data by using both network and

cross network measures to distinguish between the structural properties of focal (interic-

tal EEG from epileptogenic zone) and non-focal (interictal EEG from non-epileptogenic

zone) time series [P-II] . We used the publicly available data from Andrzejak et al.

[70], who applied nonlinear prediction error and nonlinear interdependence measure to

distinguish between focal and nonfocal EEG signals.

As mentioned previously, localization of epileptic foci using interictal EEG is an im-

portant clinical problem and various measures (linear and nonlinear) have been pro-

posed to address this. Previous studies have reported the presence of more nonlinearity

[185, 232, 267] in the EEG signals and stronger interdependence between the EEG sig-

nals [240, 259, 268–272] derived from epileptogenic brain areas in comparison to the

EEG signals derived from normal brain areas. We compared our results with the results

obtained by Andrzejak et al. [70], in which the influence of nonstationarity was ass-

esed for the first time, and found that global network measures C and R gave a better

contrast between focal and nonfocal EEG signals compared to the nonlinear measure P

used in [70] where it was shown that P combined with iAAFT surrogates gave higher

rejections for focal EEG signals (even when analysis is restricted to nonstationary sig-

nals) compared to nonfocal EEG signals. We found that the network measure C gave

higher rejections in case of focal EEG signals and gave lower rejections for the null hy-

pothesis in case of nonfocal EEG compared to P and other network measures L and BC.
Thus, the overall contrast between focal and nonfocal EEG signals as given by C was

much better compared to P . This indicates that the network measure C captures a more

elaborated property of increased complexity in the organization of EEG data obtained

from the focal areas in comparison to the nonfocal areas. In this case, the difference

in the degree of structural complexity of the supposed attractors underlying the focal
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and nonfocal EEG signals directly relates to the presence of a nonlinear deterministic

structure in the focal EEG signals induced by the epileptic process, which is absent in

nonfocal EEG signals. Although the measure R gave lesser rejections compared to P in

case of focal EEG signals, the overall contrast between focal and nonfocal EEG signals

as given by R was still superior to P . In case of bivariate analysis of focal and nonfocal

EEG signals, the performance of the cross network measure Ccross was superior to the

nonlinear interdependence measure. The increased interdependency between EEG sig-

nals recorded from the focal brain areas are very well captured by the bivariate measure

Ccross, even when the analysis is restricted to nonstationary EEG signals.

It is well known that both univariate and bivariate iAAFT surrogates represent a null

hypothesis that contains several assumptions. One such assumption is that of stationar-

ity. In order to study the impact of nonstationarity on these measures, we also used TFT

surrogates, which are not stationary by construction and preserve the global behavior

of the original EEG data. Thus, any difference between the TFT surrogates and the

original data at hand must not arise due to nonstationarity (i.e., trends) but possibly

due to the difference in dynamics encoded in the irregular fluctuations of the data. Our

results with TFT surrogates quantitatively show that the contrast between focal and

nonfocal EEG signals, as given by RN measures (particularly C and R), was still high

in comparison to the nonlinear prediction error P . The same observation holds true for

bivariate recurrence network measure, Ccross in comparison to the nonlinear interdepen-

dence measure L. However, it has to be noted that we have considered only two types of

surrogate schemes - iAAFT and TFT surrogates. There are other surrogate techniques

that can be used to preserve the nonstationarity in the surrogates. Recently, Lucio et

al. [258] proposed an improved surrogate technique to preserve nonstationarity in the

surrogates by detrending the data before computing the Fourier transform and then

retrending the data after inverse Fourier transform. This technique is combined with

TFT technique and can be applied using any linear surrogate generation algorithm and it

preserves the linear properties of the nonstationary original data in the surrogates quite

well [258]. Other methods based on wavelet surrogates have also been proposed to deal

with nonstationarity [102–104]. A detailed comparative study on application of differ-

ent surrogate techniques to investigate nonlinear dynamics, specifically in nonstationary

epileptic EEG data would be considered in future.

The results obtained in [P-II] demonstrate their usefulness for diagnostic purposes. The

RN measures like C and R can provide valuable information from interictal EEG signals

from the point of view of localization of the epileptic foci. Especially the measure C,
which clearly gave high rejections for the focal EEG signals compared to the nonfocal

EEG signals, could be particularly useful as it can characterize the structural properties
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of the different time series better, easy to compute, has lesser computational expenditure,

and does not require long segments of data compared to other nonlinear measures.

12.3.3 Moving window recurrence network analysis

Our results from moving window RNA for epileptic EEG [P-I] and LFP signals [P-V]

revealed that certain global RN measures can capture the rapid shift in dynamics using

very short window sizes. Typically, most methods used in nonlinear time series analy-

sis require large datasets and one of the advantages of RNA is that the RN measures

can be reliably computed even with short data segments [15, 165, 170]. This property

renders the application of RNA readily to nonstationary real-world time series [142].

In the context of epileptic EEG analysis, establishing the presence of UPO is of great

importance [273] as it can open up the possibility of short term prediction and control

[19]. Seizure prediction and identification of a preictal state has been a central prob-

lem in the field of epileptic EEG signal analysis as the unpredictability of seizures is

associated with significant morbidity. Examples of some nonlinear measures used as

feature vectors for seizure prediction include correlation dimension, phase synchroniza-

tion [274], dynamic similarity index [275], and very recent approaches include the use

of short-term Lyapunov exponent [266] and GenericPred [265] method. Most of these

measures require relatively longer window lengths ranging from 30 seconds to even 20

minutes. Using RN measures like C or T as feature vector in seizure prediction could

be particularly advantageous due to their ability to characterize the structural property

of the system and capture dynamical transitions with rather short time windows (2 sec-

onds) and reduced computational cost. Although in our example in EEG [P-I], we did

not have longer segment EEG data before the onset of seizure to check if RN measures

can identify any dynamical transition related to preictal state. However, our results in

EEG [P-I] suggest that global RN measures can distinguish between preseizure, seizure

and post-seizure state. In future, we hope to explore the applicability of RN measures,

including bivariate cross-network measures, for seizure prediction.

12.3.4 Interpretation of recurrence network measures

In the context of RN measures, high values for C might imply regularity in the fluctuation

(deterministic structure) of dynamics, where as low values might imply an erratic or ran-

dom fluctuation in the dynamics [276]. In case of deterministic chaotic systems, where

the fluctuations are seemingly non-regular, the presence of UPOs contribute towards an

increase in C. Relating this interpretation to our findings from epileptic EEG signals, we

can say that the underlying deterministic structure of the interictal signal recorded from
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focal areas are strongly reflected in the measure C leading to higher rejections for the null

hypothesis since the iAAFT surrogates by construction are stochastic (less predictable)

in nature (Cdata > Csurr). Also interpreting this in the context of results obtained in

[P-III], where C gave highest rate of rejection for ictal EEG in comparison to other mea-

sures, we can say that C is clearly able to reflect the presence of a regular or deterministic

structure that is dominant in such signals. The measure R reflects the homogeneity of

the RN derived from the time series. The RN derived from chaotic time series show as-

sortative mixing and those from stochastic system show disassortative mixing as already

shown in [P-I]. The multiple clusters that exist in the phase space of a chaotic system,

due to the presence of many UPOs, result in most of the vertices being connected to each

other within the same cluster. Most of these vertices have similar degrees, barring few

that exist on the boundaries of the cluster [277]. Due to the existence of edges between

vertices that have similar degrees, such networks show assortative behavior. In contrast,

a the phase space of a stochastic system clear do not have multiple clusters, as there

are no UPOs in such systems. Our results in [P-II] show that RNs derived from EEG

signals recorded from focal areas are more assortative than the EEG signals recorded

from nonfocal areas. The measure R also resulted in higher number of rejections of the

null hypothesis for focal EEG signals compared to nonfocal EEG signals implying that

RN derived from nonfocal EEG signals does not exhibit assortative mixing. Also in

[P-I] we showed that R increases during the seizure period compared to the pre-seizure

and post-seizure period. These observations signify that RN measures, particularly T , C
and R can be used as discriminatory statistic between deterministic and stochastic pro-

cesses when applied to real-world biological signals, particularly epileptic EEG signals.

As mentioned before, detecting the presence of deterministic structures in epileptic EEG

signals is of fundamental importance due to its possible application in seizure control

techniques. Particularly, responsive neurostimulation, which is a new approach to treat

epileptic seizures by stimulating the focal areas, can benefit by nonlinear dynamical

analysis of interictal EEG activity [278]. In this regard, our results in [P-II] have shown

that, interictal EEG activity obtained from focal areas are more deterministic compared

to recordings from nonfocal areas. One way of interpreting the clear difference in the

rejection rates between focal and nonfocal signals is the presence of UPOs in interic-

tal EEG signals obtained from focal areas. This is because, the surrogates represent

stochastic processes and lack UPOs and RN measures like C, T and R are sensitive to

the presence of UPOs. As noted in [70], the difference in rejection rate can also be due

to the presence of nonstationarity, among other alternatives. Since, iAAFT surrogates

generated by definition are stationary, presence of nonstationarity in the original data

can give false rejections. To test this, we used TFT surrogates and found our results to

be consistent [P-II].
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The network measure L for a complex network is derived by averaging the length of

shortest connections between all pairs of vertices. For an RN, changes or variations in

L reflects a dynamical transition. This is reflected in our moving window analysis of

the epileptic EEG data in [P-I], where around the seizure onset, L starts to increase

reflecting a change in the underlying attractor geometry. Although transitivity measures

like T or C are unrelated to L [276], our results from [P-I] shows that they can still

be correlated in some cases. During the seizure, the RNA of the EEG data shows high

values for both T and L. This could signify the underlying deterministic nature of the

dynamics associated with seizure (that leads to high value for T ), where as high value

for L could result due to the fact that there is a significant change in the dynamics

during seizure compared to a more baseline state after the seizure, where the value of L
does not vary much.





CHAPTER 13

CONCLUSIONS

The purpose of this doctoral thesis was to propose RN measures in combination with

surrogate analysis to characterize the structural properties of neural signals and study

the applicability of RNA to neural signals such as extracranial EEG, intracranial EEG

and LFP data. Furthermore, using paradigmatic model systems we also investigated the

influence of noise on RN measures and their ability to distinguish between deterministic

(chaotic) and stochastic processes. The main conclusions that can be made from the

results of this doctoral thesis are

1. Both local and global RN measures can distinguish between deterministic chaotic

and stochastic processes after additional embedding [P-I].

2. RN measures are robust against noise and perform very well in distinguishing chaos

from noise, even for very short time series. The influence of noise on RN measures

can be further minimized by increasing RR [[P-I],[P-III]].

3. Epileptic EEG signals display higher degree of structural complexity compared to

healthy EEG signals. Thus, novel results regarding the application of RN measures

to distinguish between the structural complexity in the organization of healthy and

epileptic EEG data was obtained [P-III].

4. Interictal EEG signals recorded from epileptogenic brain areas are more determin-

istic and interdependent compared to EEG signals obtained from non-epileptogenic

brain areas. This result was consistent even when the analysis was restricted to

nonstationary EEG signals. Thus, univariate and bivariate RN measures can be

used as reliable biomarkers for localization of epileptic foci from interictal EEG

signals [P-II].
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5. RNA of epileptic EEG data and LFP signals recorded from visuomotor task can

capture the rapid dynamical transitions underlying these biological signals, using

short window sizes [P-I].
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[177] Gonzalo Marcelo Ramı́rez Ávila, Andrej Gapelyuk, Norbert Marwan, Thomas

Walther, Holger Stepan, Jürgen Kurths, and Niels Wessel. Classification of car-

diovascular time series based on different coupling structures using recurrence net-

works analysis. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 371(1997):20110623, 2013.

[178] Zhong-Ke Gao, Xin-Wang Zhang, Ning-De Jin, Norbert Marwan, and Jürgen

Kurths. Multivariate recurrence network analysis for characterizing horizontal

oil-water two-phase flow. Physical Review E, 88(3):032910, 2013.

[179] Richard Caton. Electrical currents of the brain. The Journal of Nervous and

Mental Disease, 2(4):610, 1875.

[180] Charles Shagass. Evoked brain potentials in psychiatry. Springer Science & Busi-

ness Media, 1972.
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D’Havé, Claude Adam, Bernard Renault, Francisco Varela, and Michel Baulac.

Anticipation of epileptic seizures from standard eeg recordings. The Lancet,

357(9251):183–188, 2001.

[276] JF Donges, RV Donner, Norbert Marwan, Sebastian FM Breitenbach, Kira Re-

hfeld, and Jürgen Kurths. Non-linear regime shifts in holocene asian monsoon

variability: potential impacts on cultural change and migratory patterns. Climate

of the Past, (11):709–741, 2015.

[277] Zhongke Gao and Ningde Jin. Flow-pattern identification and nonlinear dynamics

of gas-liquid two-phase flow in complex networks. Physical Review E, 79(6):066303,

2009.

[278] Pen-Ning Yu, Min-Chi Hsiao, Dong Song, Charles Y Liu, Christi N Heck, David

Millett, and Theodore W Berger. Unstable periodic orbits in human epileptic

hippocampal slices. In Engineering in Medicine and Biology Society (EMBC),

2014 36th Annual International Conference of the IEEE, pages 5800–5803. IEEE,

2014.



Part IV

Original publications





PUBLICATION I

Puthanmadam Subramaniyam, N., Donges, J. and Hy�inen, J.

Signatures of chaotic and stochastic dynamics using ε-recurrence

networks

Proceedings of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, 471(2183):20150349, 2015.

Reprinted with permission from the publisher.



rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

xxxxx, xxxxx, xxxx

Keywords:

xxxx, xxxx, xxxx

Author for correspondence:

Insert corresponding author name

e-mail: xxx@xxxx.xx.xx

Signatures of chaotic and
stochastic dynamics
uncovered with ε-recurrence
networks

N P Subramaniyam1,3, J F Donges2,4 and

J Hyttinen1,3

1 Department of Electronics and Communications

Engineering, Tampere University of Technology,

Tampere, Finland
2 Potsdam Institute for Climate Impact Research,

Potsdam, Germany
3 BioMediTech, Tampere, Finland
4 Planetary Boundary Research Lab, Stockholm

University, Stockholm, Sweden.
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series. In this paper, we propose the applicability of
local and global ε-recurrence network measures to
distinguish between chaotic and stochastic dynamics
using paradigmatic model systems like the Lorenz
system, and, the chaotic and hyper-chaotic Rössler
system. Additionally, we also demonstrate the effect
of increasing levels of noise on these network
measures and provide a real-world application of
analysing electroencephalographic data comprising
of epileptic seizures. Our results show that both
local and global ε-recurrence network measures are
sensitive to the presence of unstable periodic orbits
and other structural features associated with chaotic
dynamics that are otherwise absent in stochastic
dynamics. These network measures are still robust at
high noise levels and short data lengths. Furthermore,
ε-recurrence network analysis of the real-world
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of chaotic and stochastic dynamics based on the
geometric properties of time series.
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1. Introduction
Distinguishing chaotic from stochastic processes is an important problem arising in many fields
ranging from biology and physics to ecology and finance. In this paper, we propose an approach
based on ε-recurrence networks [1], obtained by transforming time series into complex networks,
to distinguish between chaotic and stochastic dynamics. Numerous approaches have been
proposed to solve this critical issue of distinguishing between stochastic and chaotic dynamics,
which is laced with several challenges since both chaotic and stochastic processes share some
common properties, e.g., a broadband power spectrum, delta-like autocorrelation function and
long-term irregular behavior [2,3]. It may even be practically impossible to distinguish high-
dimensional chaos from a stochastic process. Since in a chaotic system, the time evolution of
two nearby trajectories will diverge exponentially fast compared to a stochastic system where the
separation is randomly distributed [4], methods based on short-term predictability have been
applied to distinguish chaos from noise [5,6]. Thus, for a chaotic time series, the accuracy of
forecast should decrease with increasing prediction-time interval and for a stochastic time series
this accuracy should be independent of the prediction-time interval [6]. Kaplan and Glass [7,8]
proposed a test for determinism based on the measurement of average directional vectors in
a coarse-grained phase space. This test is based on the observation that the tangents to the
trajectories of a deterministic system, passing through a small region in phase space, will be well
aligned, i.e., oriented in the same direction, a behavior not observed in stochastic dynamics [7,8].
Another line of approach borrows from the concept that a chaotic attractor should have finite,
non-integer values for fractal dimensions, while stochastic processes must theoretically exhibit
infinite dimensions. This traditional view was challenged by Osborne and Provenzale [9], when
they demonstrated that finite correlation dimension could be obtained from a simple class of
colored random noise characterized by power-law spectra. Recently, quantifiers from information
theory have been used to address the issue of distinguishing between chaotic and stochastic
dynamics, leading to some interesting results [10]. Rosso et al. [3] introduced the complexity-
entropy causality plane, a two-dimensional representation space that relates the two information
theoretic quantities namely entropy and complexity, to distinguish between stochastic and chaotic
dynamics. By explicitly including the time scale notion, Zunino et al. [2] proposed the multiscale
complexity-entropy plane to identify the time scales where stochastic and chaotic components
govern the system’s dynamics. The classification of stochastic or chaotic character of a given time
series at different resolution scale using entropic analysis was first proposed by Cencini et al. [11].
Olivares et al. [12,13] also proposed a combination of two information theoretic quantities, the
Shannon entropy and the Fisher information, to obtain the Shannon-Fisher causality (S × F)
plane and showed that stochastic and chaotic dynamics map to different locations on this
two-dimensional plane.

By bridging the gap between nonlinear time series analysis and complex network theory,
methods to transform a time series into a complex network comprising of nodes which represent
the state vectors in phase space and edges that are defined based on some criteria such as mutual
closeness or transition probabilities, have emerged [14,15]. Different classes of such time-series
based complex networks exist like proximity networks [1,14,16–18], transition networks [19] or
visibility graphs [20,21]. A comprehensive review on these network-types is given elsewhere
[14]. The underlying principle in this approach is to characterize the topology of the resultant
network using tools from graph theory to gain insights into the dynamics underlying the
time series. Complex network-based univariate and multivariate time series analysis has been
successfully applied in different fields including climatology [1,15,22,23] fluid dynamics [24–27]
and neuroscience [28–31], to cite a few.

Lacasa and Toral [4] used horizontal visibility graphs (HVG) [32], a geometrically simpler
version of the visibility graph algorithm, to distinguish between chaotic and stochastic (correlated
and uncorrelated) dynamics based on the node degree distribution (specifically the slope of
the logarithm of the degree distribution) of the resultant networks. Recently, Ravetti et al. [10]
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showed that the HVG approach is sensitive to the scaling zone and combined the HVG approach
with information theory quantifiers (the S × F plane) that leads to a better characterization of
deterministic and stochastic dynamics.

Recurrence is a fundamental property of dynamical systems [33] and using the recurrence
matrix derived from a time series, one can define a recurrence network by reinterpreting the
recurrence matrix as an adjacency matrix of a complex, undirected network [1,14]. Xu et al. first
proposed the concept of transforming a time series into an undirected complex network [34].
Such networks, known as recurrence networks, belong to the class of proximity networks where
the existence of an edge in the network is defined based on the mutual closeness between two
state vectors (nodes). Since such a recurrence matrix can be defined in many ways, depending on
the chosen neighborhood criteria there are different types of recurrence networks [14] namely k-
nearest neighbor recurrence networks [18,35], adaptive nearest neighbor recurrence networks [34]
and ε-recurrence networks [1,14]. Specifically, the neighborhood can be defined in terms of either
fixed number of edges (k-nearest or adaptive nearest neighbor recurrence networks) [18,34–36] or
fixed phase space distance (ε-recurrence networks) centered around a node i (i.e., a state vector
in phase space) [1]. All the nodes that fall within this volume are connected to the node i by
forming an edge. ε-recurrence networks are both symmetric and undirected. In this work, we will
be dealing only with ε-recurrence networks.

Over the recent years, ε-recurrence networks have gained much popularity and they have
been thoroughly analyzed and applied using data from simulated as well as real world systems.
Using model systems, Donner et al. [14] studied the ε-dependence of local and global network
properties. Donges et al. [37] provided a thorough analytical framework for ε-recurrence network
analysis of periodic/quasiperiodic dynamics, chaotic maps, stochastic processes and higher-
dimensional symmetric sets. Zou et al. [38] showed that global network measures like global
clustering coefficient C and average path length L derived from ε-recurrence networks can be
used to distinguish between periodic and chaotic dynamics in both discrete and continuous-
time dynamical systems. Furthermore, using the Rössler system, they showed that these network
measures can reliably identify complex periodic windows in parameter space. Since an ε-
recurrence network can be considered as a random geometric graph, the distribution of the nodes
in the space where the network is embedded is determined by the probability density function
of the system’s invariant measure [37]. Furthermore, the edges are formed only between those
nodes that are spatially close to each other as determined by some distance threshold. Thus,
based on the theory of random geometric graphs [39], Donner et al. [40] provided the relationship
between geometric properties of a dynamical system and the transitivity properties like the
local clustering coefficient and transitivity of the associated ε-recurrence networks. Specifically,
it was shown that these transitivity measures can be considered as an alternative notion of fractal
dimension of the dynamical system under study [40]. Also, it has been demonstrated that the
ε-recurrence networks display power-law degree distributions and the scaling exponent of the
degree distribution is related to system’s invariant density [38]. It has also been demonstrated that
the transitivity properties can reliably detect unstable periodic orbits (UPOs) in model systems
[14].

Since transitivity properties can be understood as some notion of fractal dimension, the
associated transitivity dimension should exhibit non-integer values for dissipative chaotic
systems. This feature could be particularly useful in distinguishing whether the observed
dynamics is chaotic or stochastic. Thus, in case of a stochastic process (which theoretically exhibits
infinite dimensions), the estimated dimension should be limited by the phase space dimension.
Characterizing and differentiating a chaotic process from a stochastic process based on the
transitivity dimension has not been studied so far. It was shown by Donges et al. [37] that ε-
recurrence network measures cannot distinguish between stochastic and deterministic process if
both have identical invariant density distribution in phase space. This observation was based on
the analytical computation of continuous ε-recurrence network measures - transitivity, clustering
coefficient, average path length and betweenness for the 1D-Bernoulli map and uniform noise.
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This observation, as mentioned by the authors themselves, holds true when embedding is not
used and it has been proposed that an additional embedding can overcome this shortcoming [14].
One reason for this could be the difference in the structure of chaotic attractors, primarily due
to the presence of densely packed unstable periodic orbits, compared to time-delay embedded
stochastic processes which fail to recover this structure. However, this has not been studied or
tested elaborately using well known model systems. Thus, we hypothesize that the transitivity
dimension of the chaotic attractors should be lower than that of stochastic dynamics, which
should have a transitivity dimension close to the embedding dimension. Previously we have
shown that by combining ε-recurrence network measures with iterative amplitude adjusted
Fourier transform (iAAFT) surrogates [41] which represent stationary, linearly correlated,
stochastic processes (colored Gaussian), different classes of electroencephalography (EEG) data
can be distinguished [29]. Particularly we observed that the rejection rate of the null hypothesis
based on iAAFT surrogates for network measures the global clustering coefficient C and the
average path length L was higher for pathological EEG compared to normal EEG [29]. However,
a rigorous evaluation of the ability of ε-recurrence network measures to particularly distinguish
deterministic from stochastic processes and of how embedding alters the phase space distribution
of these processes is missing. Also, a careful consideration of the effects of noise on the recurrence
networks to distinguish between stochastic and chaotic process and the impact of data length
on such distinction has not been addressed so far. In particular, detecting and distinguishing
chaotic from stochastic processes could pose great challenge when the data is short and noisy.
Since an important advantage of network-based time series analysis is that network measures
can be reliably estimated from rather short time series with high confidence, we hypothesize that
such an approach could be particularly useful in addressing this challenge compared to other
classical approaches of nonlinear time series analysis.

Using ε-recurrence networks constructed from stochastic and chaotic dynamics, we investigate
the applicability of global measures - transitivity dimension, assortativity, average path length
and the vertex based measures - local clustering coefficient, betweenness centrality, closeness
centrality and degree centrality in distinguishing deterministic (chaos) processes from stochastic
processes. As an example of low and high dimensional chaotic systems, we use Lorenz,
chaotic Rössler and 4D Rössler systems respectively. Specifically, we use the x-component of
these systems and the corresponding iAAFT surrogates (stochastic, linearly correlated process,
sharing the power spectrum and amplitude distribution with the original chaotic time series)
derived from the x-component to construct ε-recurrence networks representing chaotic and
stochastic dynamics, respectively. We construct the ε-recurrence networks representing chaotic
and stochastic dynamics for varying embedding dimensions and recurrence rates (related to
the threshold ε). Additionally, we also investigate the effect of increasing noise levels and data
length on the network measures and their distributions (in case of vertex-based measures) for
ε-recurrence networks derived from chaotic dynamics. We compare our results with complexity-
entropy plane approach proposed in [3]. In addition to the theoretical simulation described above,
we also present results from the application of ε-recurrence network analysis to epileptic EEG
data, which contains pre-seizure, seizure and post-seizure segments. Here, we investigate if ε-
recurrence network measures, when applied to rather short window-sizes can track dynamical
changes underlying such real-world, noisy biological signals.

2. Recurrence networks and measures

(a) Recurrence networks

Given a phase space vector, a recurrence matrix can be defined as [33]

R(i, j) =Θ(ε − ‖xi − xj‖), (2.1)

where ε is a predefined global threshold, xi and xj are the m-dimensional phase space vectors
at time ti and tj (with tj < ti) respectively. If only the univariate time series is available, then



5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

one can reconstruct the phase space vector using time-delay embedding [42], xi = (x(ti), x(ti +

τ ), ..., x(ti + (m− 1)τ )). Here m is the embedding dimension and τ is the optimal time lag that
can be determined using standard methods like false nearest neighbor and first minimum of auto-
mutual information function respectively [43].

One can define an adjacency matrix A of a recurrence network using the recurrence matrix
defined above as follows [1]

A(i, j) =R(i, j)− δ(i, j), (2.2)

where δ(i, j) is the Kronecker delta, introduced to avoid artificial self-loops [33]. Each vertex i

of a recurrence network represents a state vector xi and the edges between the nodes are formed
based on their mutual closeness as defined by euclidean or manhattan or maximum norm. Note
that due to the way recurrence networks are formed, they can be considered as random geometric
graphs [37]. In this work, we use the maximum norm as the distance norm. Furthermore, instead
of fixing ε, we fix the recurrence rate RR= 1

N2

∑N
i,j=1

R(i, j), where N is the number of state
vectors, since we are essentially interested in comparing the properties of systems (chaotic and
stochastic) with different phase space diameters [14]. Thus, we vary RR from 0.01 to 0.05 in steps
of 0.01. Additionally, we also vary the embedding dimension m from 1 to 5.

(b) Recurrence network measures

(i) Degree centrality

Degree centrality of a vertex i can be defined as the number of vertices directly connected to i. It
is given as

ki =

N∑

j=1

A(i, j). (2.3)

This measure can be normalized to yield the local connectivity, which describes the local phase
space density [14] i.e., the local recurrence rate

ρi =
ki

N − 1
, (2.4)

where N is the the data length (or the embedded state vectors).

(ii) Closeness centrality

Closeness centrality can be defined as the inverse of the average geodesic distance (i.e., the length
of the shortest path ) between a vertex i and all other vertices in a network. According to this
definition, a vertex is considered central, if it is close to all the other vertices in the network. Let
d(i, j) be the shortest-path between two vertices i and j. The closeness centrality of the vertex i is
then defined as [44]

ci =
N − 1

∑N
j=1

d(i, j)
. (2.5)

Other definitions for the closeness centrality exist. For instance, in [45], ci is simply defined as the
inverse of

∑N
j=1

d(i, j), without the factor N − 1 and sometimes it is also defined as the mean
geodesic distance between a vertex i and all other vertices in a network. In this work, we adapt
the definition given in Equation 2.5. For a recurrence network, closeness centrality gives the local
centeredness of a state in the phase space and with a small number of ε-jumps, most of the vertices
are reachable from a vertex with high centrality [14].

(iii) Betweenness centrality

Betweenness centrality, like other centrality measures, also describes the importance of a vertex in
a network and was first introduced in [46,47]. The betweenness centrality of a vertex i is defined
as the total number of the fraction of shortest paths between all pairs of vertices that pass through
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i. Let σjk be the total number of shortest paths from a vertex j to k in a network and σjk(i) be the
number of short paths (from a total of σjk) that pass through vertex i. The betweenness centrality
for a vertex i can be defined as [48]

bi =
∑

j 6=i6=k

σjk(i)

σjk
. (2.6)

When this measure is applied to a recurrence network, where the vertices represent the states of a
dynamical system, a high value of betweenness is acquired by those vertices belonging to a sparse
region in phase space that separates different high density clusters [14].

(iv) Local clustering coefficient

The local clustering coefficient for a vertex i gives the probability that two randomly drawn
neighbors j and q are themselves neighbors. In an undirected graph, since the maximum possible
number of connections between the neighbors of a vertex i is given as ki(ki − 1)/2, the local
clustering coefficient can be given by the ratio

Ci =

∑
j,q A(i, j)A(j, q)A(q, i)

ki(ki − 1)
. (2.7)

(v) Transitivity dimension

Network transitivity measures the fraction of the connected triples in a network that form
triangles, where a connected triple is defined as a single vertex connected to an unordered pair of
vertices [49]. It was first introduced in [50]. It can be given by the following ratio

T =

∑N
i,j,q=1

A(i, j)A(j, q)A(q, i)
∑N

i,j,q=1
A(i, j)A(q, i)

. (2.8)

Essentially, T also measures the probability that if two vertices are neighbors of another vertex,
then the two vertices themselves are neighbors. This definition is similar to the notion of clustering
coefficient, but there is a slight difference between these two measures. While the averaged
network clustering coefficient is the mean, computed over all vertices, of the ratio given in
Equation 2.7, the network transitivity is the ratio of the mean number of edges between the
neighbors of a vertex and the mean number of possible edges between neighbors of a vertex
[50]. Also, network transitivity gives equal weight to all triangles in a network, where as the
clustering coefficient is biased to vertices with low-degree and weights their contributions more
heavily [40,49]. In [40], a new measure of global dimension known as transitivity dimension
was introduced, which can be considered as some notion of fractal dimension. The transitivity
dimension at a single scale ε is given as [40]

Tε =
log T

log(3/4)
. (2.9)

For the sake of simplicity, in the remainder of this paper we will always refer to single-scale
transitivity dimension as transitivity dimension, DT .

(vi) Assortativity

A network is said to be assortative if vertices of similar degrees tend to link up with each other.
The measure assortativity can be defined as a Pearson product-moment correlation of the vertex
degrees on either ends of all the edges [14,51,52]
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R=

1

N

∑
j>i kikjA(i, j) − [ 1N

∑
j>i

1

2
(ki + kj)A(i, j)]2

1

N

∑
j>i

1

2
(k2i + k2j )A(i, j)− [ 1N

∑
j>i

1

2
(ki + kj)A(i, j)]2

. (2.10)

A recurrence network showing assortative mixing implies that the density of states change
more slowly and continuously and, hence, R can be considered as a measure of the fragmentation
of the attractor [14].

(vii) Average path length

The average path length L for a graph can be defined as the mean value of geodesic lengths over
all pairs of nodes. It is given as

L=
1

N(N − 1)

∑

i6=j

d(i, j). (2.11)

The disconnected pairs of nodes are not included in computing the average [1,53]. Dynamical
transitions in complex systems can be identified by changes in the values of L [1,22,54,55]. For
example, a continuous dynamical system with periodic trajectory has a higher L compared to a
system exhibiting chaotic dynamics for comparable ε [38].

3. Simulations and results

(a) Model systems

In this study we consider the Lorenz system [56],

ẋ= 10(y − x), ẏ = x(28− z), ż = xy −
8

3
z, (3.1)

and the chaotic Rössler system [57],

ẋ=−y − z, ẏ= x+ 0.1y, ż = 0.1 + z(x− 18), (3.2)

as examples for three-dimensional chaotic oscillators. Additionally we also consider the hyper-
chaotic Rössler system [58],

ẋ=−y − z, ẏ= x+ 0.25y + w, ż = 3 + xz, ẇ=−0.5z + 0.05w. (3.3)

In each case, we consider the x-component of the system and reconstruct the dynamics for
varying embedding dimension using the method of delays. The optimal embedding lag in each
case was found using the auto mutual information criterion [59]. We obtained τ =3, 28, and 107
for the x-component of the Lorenz, Rössler and hyper-chaotic Rössler systems respectively. For
the chaotic systems, the number of data points generated were N =10, 000 (after discarding initial
5, 000 points as transients) with step size of 0.05. In case of the hyper-chaotic Rössler system, we
considered (again discarding initial 5, 000 points as transients) N =10, 000, 15, 000 and 20, 000,
with step size of 0.01. We also generated 99 iAAFT surrogates in each case using the x-component.
Furthermore, to study the effect of noise, we generated 100 realizations from the chaotic systems
described above, for data lengths N = 200, 500, 1, 000, 5, 000 and 10, 000. We added observational
noise to the x-component of each system

xnoise(t) = x(t) + η(t), (3.4)

where η(t)∼WN (0, σ2). Here, W is defined as the level of noise, which is given as a
percentage of the standard deviation of the noise-free data x(t). We added Gaussian noise at
levels 10%, 20%, 40%, 60% and 100%.
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(b) Global network measures

Figures 1 - 3 show the variation of DT , L and R with respect to the embedding dimension m

for different RR, for the chaotic and stochastic dynamics reconstructed from the x-component
of the Lorenz system and its iAAFT surrogates respectively. It can be seen from Figure 1 that
DT for the Lorenz attractor (chaotic dynamics) saturates at a fractal dimension < 2 (it varies
approximately between 1.5 for RR= 0.05 to 1.8 for RR=0.01), whereas in case of the stochastic
dynamics, the DT continues to increase with the embedding dimension m, consistent with the
theory (see Section 1). The classical measures, correlation dimension and the upper box-counting
dimension, which theoretically represent respectively the upper and lower bounds of the fractal
dimension of a dynamical system, were estimated to be 2.06 and 2.33 respectively for a Lorenz
system [60].

UPOs are the skeleton of chaotic dynamics and there are infinitely many densely packed UPOs
in such a system [61], where as stochastic dynamics are not characterized by the presence of
UPOs. Since DT is essentially a measure of the global dimension of the system [40], presence of
UPOs (especially low-periodic ones) should result in values of DT <m for increasing values of m
while in case of stochastic dynamics, DT should continue to increase with m. Our results reflect
this behaviour and show how DT can be used to distinguish between chaotic and stochastic
dynamics. Note that at m=1, DT of both chaotic and stochastic dynamics is the same, i.e.,
≈ 1, and as m is increased, the difference in the DT emerges between these two systems. This
due to the fact that at m=1, both the x-component of the Lorenz system and its corresponding
iAAFT surrogate share the same invariant density [15,37]. Regarding the behaviour of L, we can
see from Figure 2 that the ε-recurrence networks derived from iAAFT surrogates exhibit lower
values of L compared to that of the Lorenz system and this difference increases with m. These
observations for L are also expected as more short-cuts are introduced in the phase space (due to
homogeneous filling of the phase space) for the stochastic data leading to lower average number
of hops between two vertices in phase space. Thus, L for the stochastic dynamics decreases with
increasing m, while L for chaotic dynamics slightly increases with increasing m. Note that, in
a chaotic system there exist such short-cuts as well leading to lower values of L compared to
periodic systems, again due to relatively more homogeneous filling of the phase space, for a
comparable attractor diameter and threshold ε [38]. However, compared to stochastic dynamics,
the L of chaotic dynamics is still higher as evident from our results. Similar results were obtained
for DT and L in case of the chaotic Rössler system.

Figure 3 shows the behaviour of R for the chaotic (Lorenz system) and stochastic dynamics
(iAAFT surrogates). In case of chaotic dynamics, R remains around the same level for m> 1

and only shows a slight tendency to increase with m at high values of RR. For instance, R≈ 0.85,
0.81 and 0.78 for RR= 0.01, 0.02 and 0.03, respectively, for all values of m> 1, where as R ranges
between 0.74− 0.76 and 0.71− 0.75 for RR= 0.04 and 0.05 respectively as m is increased from
2 to 5. Meanwhile, we observe that in case of stochastic dynamics, R decreases linearly with
increasing m and for m> 3, the value of R for stochastic dynamics drops below that of chaotic
dynamics. As a network measure, R measures the correlation of the degrees of the vertices on
either ends of an edge. In a chaotic system, due to the presence of UPOs, there exists high density
clusters comprising of vertices that roughly have the same degree and at an appropriately chosen
threshold, this clustering property of the chaotic systems in the phase space is maintained and
the recurrence networks representing such systems should exhibit assortative mixing leading
to high values of R [62]. In our results, we consistently observe high values of R (> 0.7) for
all values of RR and m for the Lorenz system, explaining the presence of densely packed
UPOs, that form clusters. In case of stochastic dynamics, the behavior of R is a bit ambiguous
and difficult to interpret for m<=3. For higher values of m, we observe that the ε-recurrence
networks representing the stochastic dynamics exhibits lower values of R (0.68<R< 0.52 ) for
m= 5 at various RR. Also, it can be seen that with the increase in RR, the value of R drops.
Following Donner et al. [14], this behaviour can be attributed to the larger coverage of the phase
space due to increasing RR leading to much stronger variation in phase space density, thus less
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similar degrees for neighbouring vertices. Also, the behaviour of R also seems to be system-
specific as in case of the chaotic Rössler system (Figure 4) it can be seen that at low values of
RR(< 0.04), R can distinguish between chaotic and stochastic dynamics for m> 2. However,
from our results it is clear that R can distinguish successfully between chaotic and stochastic
dynamics at a sufficiently high embedding dimension, with ε-recurrence networks derived from
chaotic dynamics exhibiting more assortative mixing compared to stochastic dynamics.
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Figure 1. Transitivity dimension DT of the ε-recurrence networks constructed from the x-component of Lorenz system

(dashed blue lines) and corresponding iAAFT surrogates (solid red lines) for varying embedding dimension m and

recurrence rate RR (N=10,000). The DT for surrogates are averaged over 100 realizations with error bars representing

the standard deviation.
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Figure 2. Average path length L of the ε-recurrence networks constructed from the x-component of Lorenz system

(dashed blue lines) and corresponding iAAFT surrogates (solid red lines) for varying embedding dimension m and

recurrence rate RR (N=10,000). L for surrogates are averaged over 100 realizations with error bars representing the

standard deviation.

In case of the hyperchaotic Rössler system, it was observed that the difference between the
(chaotic) deterministic and stochastic dynamics particularly improved as the number of data
points was increased. We observed that, for low values of RR (< 0.03) and m (≤ 3), there is an
overlapping of DT for hyper-chaos and stochastic processes (See Figure S1 from supplementary
data). Similar observations were made for the network measures L and R (Figures S2 and S3 from
supplementary data). From Figure 5 it can be seen that L distinguishes between hyperchaotic
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Figure 3. Assortativity R of the ε-recurrence networks constructed from the x-component of Lorenz system (dashed blue

lines) and corresponding iAAFT surrogates (solid red lines) for varying embedding dimension m and recurrence rate RR

(N=10,000). R for surrogates are averaged over 100 realizations with error bars representing the standard deviation.
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Figure 4. Assortativity R of the ε-recurrence networks constructed from the x-component of the chaotic Rössler system

(dashed blue lines) and corresponding iAAFT surrogates (solid red lines) for varying embedding dimension m and

recurrence rate RR (N=10,000). R for surrogates are averaged over 100 realizations with error bars representing the

standard deviation.

and stochastic dynamics quite well for increasing m. As N is increased, L for the hyper-chaotic
system begins to decrease as the spread of the attractor increases in the phase space (hyper-
chaos is better characterized geometrically with increasing data length) and this creates shortcuts
between distant attractor points [61]. Also, in case of network measures DT and R (Figure 5),
the distinction between hyperchaotic and stochastic dynamics improved with increasing N and
m. These results are expected as a higher number of data points leads to a better characterization
of the underlying hyperchaotic dynamics. Figure 5 summarizes the dependence of theses global
measures on data length N and m for the hyperchaotic Rössler system and their corresponding
iAAFT surrogates at RR= 0.02. Similar observations were made for other values of RR (not
shown here).

(c) Vertex-based network measures

The results for the vertex-based measures Ci, ci, ki and bi for the Lorenz system, chaotic Rössler
system, hyperchaotic Rössler system and their corresponding iAAFT surrogates are presented
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Figure 5. Transitivity dimension DT (A), average path length L (B), and assortativity R (C) of the ε-recurrence networks

constructed from the x-component of hyper-chaotic Rössler system (dashed blue lines) and corresponding iAAFT

surrogates (solid red lines) for embedding dimension m= 2 and increasing data length N at recurrence rate RR= 0.02.

The surrogates are averaged over 100 realizations with error bars representing the standard deviation. (D-F), (G-I), and

(J-L) likewise in (A-C) but for m= 3, 4 and 5 respectively.

and discussed in this section. In order to compare the distribution of the local measures for
the (hyper) chaotic attractor and the corresponding iAAFT surrogate, we used the two-sample
Kolmogorov-Smirnov (KS-2) test. The result from the KS-2 test for the vertex-based measures
is shown in Figure 6 for the Lorenz system. For the Lorenz system, it can be seen that the
KS statistic, which gives the maximum of the absolute difference between the cumulative
distribution functions of the two samples (for example, between the Lorenz attractor and the
iAAFT surrogate), for the vertex-based measure Ci increases with the embedding dimension m

for all values of the recurrence rate RR. For m> 1 and all values of RR, the null hypothesis
that the two samples are consistent with the same underlying distribution was rejected (at 5%
significance level) with the p value being very close to 0. Similar observations were made in case
of ci, bi and ki. We also repeated the KS-test for different realizations of the original data and
its corresponding iAAFT surrogate and found similar results as in 6. Thus, the distributions of
the vertex-based measures for the chaotic attractors were significantly different from their iAAFT
surrogates for m> 1 and for all values of RR. An exemplary result from the KS-2 test for the
chaotic Rössler attractor and the corresponding iAAFT surrogate is shown in Figure S4 (from the
supplementary data). Additionally, Figures S8-S11 from supplementary data show the colour-
coded representation of the vertex-based measures for the chaotic attractors (Lorenz and Rössler
attractor) and their corresponding surrogates. It is evident from these figures that there exists
clear difference in the spatial distribution of the vertex-based measures for chaotic and stochastic
dynamics.

Figure 7 shows the relationship between bi and Ci for the reconstructed chaotic attractors
(Lorenz and Rössler) and their corresponding iAAFT surrogates. As a vertex-based measure, Ci
reflects for a given vertex, the density of the links between its neighbours. In the context of an
ε-recurrence network, the measure Ci is related to the geometric alignment of the vertices in the
phase space [14]. For instance, the vertices along the stable manifold of an UPO are characterized
by high values of Ci and since UPOs are the backbone of chaotic attractors, the measure Ci
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Figure 6. KS-statistic for the local clustering coefficient Ci (A), closeness centrality ci (B), betweenness centrality bi (C),

and degree centrality ki (D) for the Lorenz system (N = 10, 000) and the corresponding iAAFT surrogate for varying

embedding dimension m and recurrence rate RR.

is particularly important for the geometric characterization of chaos. Furthermore, the vertices
belonging to a sparse region (that separate high-density clusters like the vertices belonging to the
stable manifold of an UPO) in the phase space acquire high values of bi as they act as transfer
vertices or hubs between two high-density clusters on the either side of the sparse region [14,63].
Also, these vertices exhibit low values of Ci as they belong to sparse region in phase space and
lack clustering properties compared to the vertices within the high-density clusters. Thus, the
vertices belonging to the high-density cluster in the phase space must exhibit high values of Ci
and low values of bi. These points are clearly reflected in Figure 7 (A-C) where it can be seen that
for the chaotic dynamics (Lorenz and Rössler system), more vertices with low values of bi (for
convenience we have plotted log10(bi + 1)) exhibit high values of Ci compared to the stochastic
dynamics (Figure 7 (B-D)). The obvious reason for this difference is that the stochastic dynamics
are not characterized by the presence of UPOs and, hence, there are no high-density clusters and
consequently less number of vertices acting as hubs between high density clusters to acquire high
values of bi. Also, we can see the expected trend of vertices with high values of bi exhibiting low
values of Ci from Figure 7. The difference between chaotic and stochastic dynamics is evident
here as well, as the value of Ci acquired by vertices (displaying high values of bi) belonging to
ε-recurrence networks constructed from iAAFT surrogates are much lower than their chaotic



13

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Log betweenness log10(bi + 1)

L
o
ca
l
cl
u
st
er
in
g
co
effi

ce
n
t
C
i

(A)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Log betweenness log10(bi + 1)

L
o
ca
l
cl
u
st
er
in
g
co
effi

ce
n
t
C
i

(B)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Log betweenness log10(bi + 1)

L
o
ca
l
cl
u
st
er
in
g
co
effi

ce
n
t
C
i

(C)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Log betweenness log10(bi + 1)

L
o
ca
l
cl
u
st
er
in
g
co
effi

ce
n
t
C
i

(D)

Figure 7. Variation of log betweenness centrality log10(bi + 1) with the local clustering coefficient Ci for the Lorenz

attractor (A) and the corresponding iAAFT surrogate (B). (C)-(D) same as (A)-(B) but for the chaotic Rössler attractor

and the corresponding iAAFT surrogate. The parameters for the exemplary plot are, embedding dimension m= 5 and

RR=0.02.

counterparts. Xiang et al. [63] studied the relationship between Ci and bi with adaptive nearest
neighbor recurrence networks for the chaotic Rössler system and found that vertices with low bi
display high Ci, an observation our results as shown in Figure 7 (A) and (C) supports.

The ε-recurrence networks constructed from chaotic systems contain more vertices that display
high values of bi (> 3000 vertices with approximately 104 shortest paths) and Ci (> 3000
vertices with Ci ≈ 0.6) compared to the ε-recurrence networks constructed from the stochastic
dynamics in case of the Lorenz attractor and the corresponding iAAFT surrogate (Figure S12
from supplementary data). Thus, the presence of UPOs in the chaotic dynamics is captured
geometrically by the local vertex-based measures like Ci and bi. However, it has to be noted here
that, in case of chaotic dynamics, although vertices with low betweenness exhibit very high Ci,
there exists broad range of values for betweenness centrality for vertices displaying high Ci (≈ 0.6)
and as noted in [64], bi alone cannot confirm the presence of UPOs.

Next we looked at the relationship between bi and ki in chaotic and stochastic systems. The
vertex measure ki is related to the local phase space density while the measure bi depends on
the relative number of shortest paths that pass through i. It can be seen from Figure 8 that in
case of chaotic dynamics (Lorenz and Rössler), the vertices that exhibit low value for bi (< 103

shortest paths) also exhibit low value for ki. These are specifically the vertices in the vicinity of
the outer boundaries of the attractors. This effect is enhanced in case of Lorenz attractor, where we
observe more vertices exhibiting low values for bi and ki simultaneously compared to the Rössler
attractor as in case of the Lorenz system the outer parts of the attractor that are not involved in
the shortest paths, exhibit low phase space density [64]. In case of stochastic dynamics, we see
this trend as well where vertices with low bi also acquire low ki. However, due to the presence
of UPOs, an interesting region is observed in bi vs ki graph in case of chaotic dynamics which is
missing in stochastic dynamics. The vertices that are in the vicinity of UPOs acquire somewhat
low values for bi due to the accumulation of states leading to increased shortest paths [64]. But,
these vertices in the vicinity of the UPOs, acquire relatively high values for ki due to the very same
reason of accumulation of states. This fact is clearly reflected in Figure 8 (A-C) where vertices with
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Figure 8. Variation of log betweenness centrality log(bi + 1) with the degree ki for the Lorenz attractor (A) and the

corresponding iAAFT surrogate (B). (C)-(D) same as (A)-(B) but for Rössler attractor and the corresponding iAAFT

surrogate. The parameters for the exemplary plot are, embedding dimension m=5 and RR=0.02.

104 <= bi <=106 acquire 200< ki < 300. This middle region of the graph is completely missing
in case of the corresponding iAAFT surrogates (Figure 8 (B-D))

Furthermore, in case of chaotic dynamics, it can be seen that some of the vertices that acquire
high values of bi (> 104 ) have a broad range of ki (50 to 400) as these vertices reside in the sparse
region of phase space and mostly have vertices in the high density clusters as their neighbors. In
case of the stochastic dynamics, we can see that the range for bi for a given value of ki is much
narrower compared to chaotic dynamics. The reason for this can be that in case of stochastic
dynamics, the sparse regions between two high-density clusters do not exist as in the case of
chaotic dynamics, but rather the space is uniformly filled with vertices. This increases the total
number of short-cuts between pairs of vertices thus reducing the bi for a vertex i through which
some of the short-cuts pass. Furthermore, few of the vertices (which would otherwise been a
part of sparse region) tend to have more neighbors due to homogeneous filling of the phase space
increasing the value of ki (up to 800). However, most of the vertices in case of stochastic dynamics
tend to have low degree that display bi between 103 and 105.

The distribution of ci in case of chaotic dynamics (Lorenz attractor) is clearly different
compared to the stochastic dynamics. Specifically, in case of chaotic dynamics, most of the vertices
(≈ 6, 500) acquire ci between 0.1 and 0.11. these vertices particularly belong to the centre of
gravity of the chaotic attractors [14]. In case of stochastic dynamics, due to the existence of many
short-cuts, relatively broad range of ci (between 0.23 and 0.3) is acquired by the vertices. Since
ci used in this work follows the definition in [44], where ci is essentially defined as the inverse
of average shortest path length of a vertex to all other vertices in a network (see Equation 2.5),
the vertices of ε-recurrence networks constructed from iAAFT surrogates tend to have larger
values due to increased short-cuts, compared to the networks representing chaotic dynamics. The
distribution of ki has multiple peaks due to many UPOs embedded in chaotic attractors [62](for
example at 100, 200 and 400 in Figure S13 from supplementary data) where as the distribution of
ki in case of stochastic dynamics is skewed and most of the vertices have a low degree of around
150 to 200.

In case of the hyperchaotic Rössler system, the value of the KS-statistic increased as the
data length was increased (See Figures S5 - S7 from the supplementary data), specifically in
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Figure 9. Impact of noise on the global measures for the Lorenz system for varying embedding dimension m and

recurrence rate RR= 0.01, 0.03 and 0.05.

the case of the vertex-based measures Ci and bi. Looking at the distributions of bi and Ci for
the hyper-chaotic Rössler attractor and the corresponding surrogate at N = 10, 000 and 20, 000

(Figures S14 and S16 from supplementary data), it is clear that the nodes acquiring high values
of bi and Ci in ε-recurrence networks constructed from hyper-chaotic Rössler system increases
compared to the networks constructed from the corresponding iAAFT surrogates as data length is
increased. Also, looking at the distributions of ci and ki (Figures S15 and S17 from supplementary
for N = 10, 000 and 20, 000 respectively), we again observe that vertices of the ε-recurrence
networks representing hyper-chaotic dynamics tend to acquire lower values of ci compared to
their stochastic counterparts for the same reason as outlined above for the chaotic case. On similar
lines, the distribution of ki again shows multiple peaks in case of hyper-chaotic dynamics, which
is missing in case of its stochastic counterpart.

Thus, the vertex-based measures are able to better distinguish between the hyperchaotic and
stochastic dynamics with increasing data length (similar to the global measures). With respect to
the relationship between bi and Ci, we also noticed that in case of hyper-chaotic dynamics, more
vertices with low values of bi exhibit high values of Ci compared to the stochastic dynamics (not
shown here).

(d) Effect of noise

Figure 9 shows the impact of noise on the global measures DT , L and R. In case of DT it can be
seen that at 0% noise (i.e., noise-free case) the value of DT is less than 2 for increasing dimension
for various RR. More specifically, as RR is increased the value of DT drops. For instance, at
RR= 0.05, DT is around 1.7 to 1.8, while at RR= 0.01, DT is around 1.4 to 1.5, and these values
remain approximately at the same level for m> 2. In the following, we will only discuss results
pertaining to m> 2 since m= 3 is the minimum dimension needed to unfold the dynamics of the
Lorenz system. As the level of noise is increased, the value of DT increases above 2 at noise level
of 10 % for RR=0.01. As the RR is further increased to 0.03 the value of DT remains under 2

at 10 % noise level. On further increasing the RR to 0.05, even at the noise level of 20 % we can
observed that DT < 2 for m> 3.

At noise levels greater than 20 %, irrespective of RR, the value of DT becomes greater than
2 and continues to increase with noise. For example, at the noise level of 40 %, DT = 2.38 at
RR= 0.05 and m= 3. This is due to the homogeneous filling of the phase space due to the
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addition of the noise which makes the dynamics more stochastic, thus leading to an increase in the
fractal dimension. Alternatively, as noise level increases, the local microscopic fine-structure of the
chaotic attractors, namely the densely packed UPOs, is destroyed. Since T essentially measures
the clustering property, the distortion of the clustering property due to the presence of UPOs
results in lower values for T (equivalently a higher value for DT ) for noise levels greater than
20 %. Regarding the behaviour of L under noise, it can be seen from Figure 9 that as noise
increases, L expectedly decreases since more short-cuts are introduced with increasing noise
levels in phase space leading to shorter paths. We can observe a drop of about 40 to 50 % in
the value of L at noise level of 40 % for m> 2. Also, the drop is sharper at low values of RR.
Previously, we have shown that the global clustering coefficient (different from T but still related
to the triangles in a network) and L cannot distinguish between noisy periodic dynamics and
noise-free chaotic dynamics at noise level greater than 20 % and the influence of noise on global
clustering coefficient can be minimized by increasing the RR [29]. By increasing the RR and thus
the ε, larger scales are captured due to which the impact of noise amplitudes on measures like T

and global clustering coefficient is reduced. With respect to the behavior of R under noise, it can
be seen from Figure 9 that for m> 2, the value of R decreases as noise levels increase, however
this behavior is modulated by the choice of RR. For low values of RR such as 0.01, it can be seen
that R decreases up to noise level of 20 %. Interestingly, as the noise level is increased beyond
20 %, R starts to increase. However, the increase in R is further constrained by the embedding
dimension m and we observe that very high noise levels (> 20 %), Rm=5 <Rm=4 <Rm=3. We
see this trend at other values of RR as well, however as RR increases, at m= 5, R continues to
decrease with increase in noise levels up to 60 %. Thus, at m= 5, R shows expected behavior with
the addition of noise, where R decreases with the addition of noise and drops to a value less than
0.4 at 60 % noise. As mentioned previously (see Section (b)), sufficiently higher m (m=5 in case
of Lorenz attractor ) is required for reliable structural characterization of chaotic attractors with
R.

Next, we investigated the influence of noise on the vertex based measures Ci, bi, ci and ki. In
case of Ci and bi, as noise is increased the number of vertices acquiring high values for both these
measures decrease compared to the noise-free case as shown in the first two columns of Figure
10 where it is evident that the distributions shift left with increasing noise. In case of bi, in the
noise-free case there are ≈ 3000 vertices with approximately 104 shortest paths and this drops to
approximately 2, 000 at 40 % noise. In case of Ci, there are ≈ 3, 000 vertices with Ci ≈ 0.6 and this
drops to ≈ 500 vertices at 40 % noise. The reason for this is again related to the distortion of the
clustering structure as noise is added to chaotic dynamics, which impacts both these measures.

In case of ci, we see that the number of vertices acquiring high values of ci increase with the
addition of noise (third column from left, Figure 10). As noise is added, there are more short-cuts
in the phase space due to homogeneous filling which reduces the length of shortest paths, which
is inversely related to ci (Equation 2.5). In case of ki, where one can observe multiple peaks in
noise-free case (due to many UPOs), addition of noise makes the distribution more skewed (and
long tailed) and the number of vertices with low degree increases as the noise is increased (last
column, Figure 10).

Figure 11 show the impact of noise on the bi vs Ci for various RR. From Figure 11 (A-C) it
can be seen that with the addition of noise, at RR= 0.01 the number of vertices exhibiting low Ci
and bi increases. As the RR is increased to 0.05 (Figure 11 (G-I)), we can see that vertices having
low bi tend to acquire high values of Ci, a behavior observed in noise-free chaotic dynamics.
Thus increasing RR can minimize the influence of noise on the clustering property ε-recurrence
networks representing chaotic dynamics in phase space. Similar observations were made for
Rössler and hyperchaotic Rössler system.

(i) Effect of data length and comparison with complexity-entropy method

Table 1 shows the number of rejections (out of 100 realizations) for various noise levels and
data lengths using global network measure T at RR= 0.05 for the Lorenz system. Results using
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Figure 10. Impact of noise on vertex-based measures for the Lorenz system. Parameters for the exemplary plot are

RR=0.03 and m= 5.
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and RR= 0.05 respectively.

the complexity-entropy (C-E) causality plane method described in [3,65] to distinguish between
chaos and noise is also shown for comparison, where we set m= 3 and τ = 3. The C-E method
uses two quantifiers - the Shannon entropy [66] and the MPR statistical complexity measure
proposed by Lamberti et al. [67]. Before estimating quantifiers based on Information Theory
like entropy or the statistical complexity measure, a probability distribution associated with the
time series must be provided. As described in [3], we use Bandt-Pompe methodology [68] to
estimate the probability distribution P using the details of attractor reconstruction procedure
(Taken’s theorem) and causal information is incorporated in the construction process yielding
P ∈Ω, where Ω is the probability space. The entropy estimates the uncertainty associated with
the processes described by P , where as the MPR complexity measure is capable of distinguishing
different degrees of periodicity and chaos. The details of the C-E method and computation of the
probability distribution using Bandt-Pompe methodology is explained in detail elsewhere [3,65].
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Figure 12. MPR Complexity-Entropy plane for chaotic Lorenz system (blue circle) and corresponding 99 iAAFT

surrogates (red circles) under noise levels 0% (A), 10% (B), 20% (C), 40% (D), 60% (E), and 100% (F). The data length

N =200.

We provide freely downloadable MATLAB code based on [3,65] to compute the C-E causality
plane.

Two exemplary plots (Figures 12 and 13) are shown using the C-E method to distinguish
between chaotic time series and the corresponding iAAFT surrogates under varying noise levels
for data length N =200 and 1, 000 respectively. It is evident from these figures that under noise-
free condition, the position of the chaotic signal maps on to a different position on the C-E plane
compared to the surrogates (stochastic signal). The complexity of the chaotic signal is higher
than that of the surrogates, where as the entropy of the chaotic signal is lower than that of the
surrogates. As the chaotic signal is corrupted with noise, we can see that at short data length
(Figure 12), at noise levels greater than 10%, the location of the noisy chaotic signal on the C-
E plane falls within that of the 99 surrogates and is no longer distinct. When the data length is
increased to N = 1, 000, we can see that a clear distinction between noisy chaotic signal and its
corresponding iAAFT surrogates can be made up to a noise level of 40%.

Without making any assumption about the distribution of the test statistic, we use the
non-parametric approach (based on rank ordering) to test the null hypothesis H0 [43] (We
obtained qualitatively similar results when the parametric approach using the mean and standard
deviation of surrogates was used). Since a chaotic time series should produce high values of
complexity compared to a stochastic signal and a stochastic signal displays higher entropy
values compared to deterministic (chaotic) signal [3], the null hypothesis of a linear, Gaussian,
stochastic process can be rejected if the complexity of the signal is greater than the maximum
of the surrogates and the entropy of the signal is lesser than the minimum of the surrogates. In
case of ε-recurrence network measures like T , L, and R, the null hypothesis H0 is rejected if
the ε-recurrence network measure of the signal under test is greater than the maximum of the
ε-recurrence network measures of the surrogates [29,69]. Since we are using 99 surrogates, the
probability with which a false rejection will occur is 1/100 (i.e., α= 0.01).

We can see that at N = 200, compared to C-E method, T gives comparatively higher rejections
of H0, even when the noise level is 40 % (see Table 1). Even at 60 % noise level, T gives significant
number of rejections (= 16), where as C-E method fails to reject H0 for all the 100 realizations.
Thus, the recurrence network measure T is still able to reject H0 with high confidence for short
time series corrupted with noise as high as 40 % and 60 %. As N is increased, performance of C-E
method improves and it can be seen that at larger values of N (> 1, 000), both C-E method and
ε-recurrence network measure T reject H0 (almost 100 rejections) even at noise level of 60 %.

http://www.students.tut.fi/~puthanma/rspa_data/codes.zip
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Figure 13. MPR Complexity-Entropy plane for chaotic Lorenz system (blue circle) and corresponding 99 iAAFT

surrogates (red circles) under noise levels 0% (A), 10% (B), 20% (C), 40% (D), 60% (E), and 100% (F). The data length

N =1000.

Table 1. Number of rejections of the H0 from 100 realizations of the Lorenz system for various data lengths and

noise levels using C-E method and ε-recurrence network measure T . For each realization, 99 iAAFT surrogates were

generated. The embedding dimension m= 3, embedding delay τ =3 and the recurrence rate RR=0.05.

Noise Level
N = 200 N =500 N = 1, 000 N =5, 000 N = 10, 000

C-E T C-E T C-E T C-E T C-E T

0% 95 100 100 100 100 100 100 100 100 100
10% 88 100 100 100 100 100 100 100 100 100
20% 40 90 88 100 100 100 100 100 100 100
40% 5 60 52 77 93 100 100 100 100 100
60% 0 16 12 26 46 54 96 100 100 100
100% 0 11 3 8 7 5 20 22 28 32

We also computed ε-recurrence network measure L and R (see Table 2). In case of L, we can
again see that at short data lengths, the number of rejections are still considerably high for noise
levels up to 60%. We can see almost 100 % rejections at N > 500 for noise levels as high as 40%. At
N = 5, 000 and 10, 000, even at noise levels of 60%, we can see that all the 100 realizations reject
H0. Even at 100% noise, we can see about 40 rejections of H0 for N = 10, 000. However, in case of
R, at m= 3, none of the realizations of the Lorenz system rejected the null hypothesis H0 (results
not shown here). As we demonstrated earlier (See Figure 3), in case of the network measure R, a
higher embedding dimension is required to distinguish chaotic from stochastic dynamics. When
m was set to 5, we observed that the number of rejections of H0 increases and reached 100% for
N > 200 (see Table 2). As noise is increased beyond 20%, the network measure R can no longer
distinguish between chaos and noise even when when N =10, 000.

Thus, both T and L outperform the C-E method to distinguish between noisy chaotic time
series and noise at very short data length (N = 200). Particularly, L seems to be very effective
metric in this regard giving upto 94 rejections for N = 1, 000 and 60 % noise compared to T and
C-E method, both of which manage about 50% rejections. However as N is increased (>= 5, 000),
C-E method, ε-recurrence network measures T and L, give equally high rejections of H0 even at
noise levels as high as 60%. Qualitatively similar observations were made for the Rössler system
(results not shown here).

We also observed that as noise level is increased, the topology of the ε-recurrence network
changes and it tends to fill the phase space (see Figures S18-S20 in supplementary data). However,
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Table 2. Number of rejections of the H0 from 100 realizations of the Lorenz system for various data lengths and noise

levels using the ε-recurrence network measure L and R. For each realization, 99 iAAFT surrogates were generated. The

embedding delay τ =3 and the recurrence rate RR= 0.05. In case of R, the embedding dimension m was set to 5

instead of 3.

Noise Level
N = 200 N = 500 N = 1, 000 N =5, 000 N = 10, 000

L R L R L R L R L R

0% 97 82 100 100 100 100 100 100 100 100
10% 97 72 100 98 100 100 100 100 100 100
20% 99 30 100 52 100 74 100 100 100 100
40% 68 2 100 0 100 0 100 0 100 0
60% 33 0 63 0 94 0 100 0 100 0
100% 9 4 2 0 5 0 14 0 40 0

the topology of the ε-recurrence network, which is reflective of the topology of the embedded
attractor (Lorenz attractor in this case) is not completely destroyed even at short data length of
N = 200 and considerably high noise levels up to 40%. As noise level is increased (60% and 100%),
we see that the topology of the ε-recurrence network does not resemble the shape of the Lorenz
attractor and the network tends to fill the phase space.

Figures S21 and S22 from supplementary data show the colour-coded representation of
the local clustering coefficient and log betweenness centrality respectively for the ε-recurrence
networks under increasing levels of noise for the Lorenz system. Under noise-free condition,
most of the vertices have high values for Ci, but as the level of noise increases, many vertices
start displaying low values for Ci and the topology of the ε-recurrence network changes as well
due to the addition of noise. As mentioned earlier (also see Figure 10), due to the addition of noise,
the clustering structure associated with ε-recurrence networks derived from chaotic systems gets
distorted leading to lower values of Ci for many vertices. Similarly, as noise level is increased,
higher number of vertices acquire lower values of log betweenness centrality (see Figure ??).

Figure S23 shows the colour-coded representation of the local recurrence rate, which is
proportional to degree centrality, for the Lorenz attractor under increasing levels of noise. It
is clear from the figure that as noise level increases, the local recurrence rate for most of the
vertices decreases and at very high noise levels most of the vertices tend to have similar values
for local recurrence rate. This effect can also be seen from Figure 10 where the shape of the degree
distribution changes from having multiple peaks (due to the presence of UPOs) under noise-free
case to approaching Poisson distribution with the addition of noise.

4. Experimental EEG data with seizures

(a) EEG data

In this section we will demonstrate the ability of ε-network measures to capture dynamical
transitions in noisy biological signals such as EEG data using rather short window sizes.
Epilepsy affects nearly 1% of the world’s population and epileptic seizures arise due to
unpredictable and irregular interruptions in the neuronal activity [70]. The EEG data used in
this work was originally published by Quiroga et al. [71] and is available for free download
at https://vis.caltech.edu/~rodri/data.htm. Basically, the data comprises of tonic-
clonic seizures of two subjects recorded using scalp EEG with right central electrode (channel C4

according to 10-20 system [72]). The EEG data has been filtered between 1-50 Hz and sampled at
102.4 Hz. Figure 14 (A) shows 3 minutes of EEG data from one of the two patients. The beginning
of the seizure is marked with a solid red line (approximately at 80 seconds). The seizure discharge
lasts for about 8 seconds and the clonic phase begins at 123 seconds (marked with dashed red

https://vis.caltech.edu/~rodri/data.htm
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line) [71]. The seizure ends approximately around 155 seconds (marked with solid black line).
Also at around 140 seconds (not shown in the figure), the clonic discharge begins to separate [71].

(b) Moving window ε-recurrence network analysis

We used moving window ε-recurrence network analysis to compute global measures like DT , L
and R for each window. We divided the time series into 5 seconds window (≈ 500 samples) and
10 seconds window (≈ 1, 000 samples) with 90 % overlap. In order to get the temporal profile of
global network measures, we assigned the global measure to the mid-point of each window. Based
on the first local minimum of the auto mutual information function, we set τ = 18. The embedding
dimension m was varied from 2 to 8 and the recurrence rate RR was set to 0.05. Figures 14 (B)-(D)
show the result of ε-recurrence network analysis for the EEG data with 10 seconds window.

• Transitivity dimension : It can be seen that DT increases with embedding dimension
m until about 80 seconds before the seizure. Beyond 80 seconds, DT starts to drop for
m≥ 4. For m= 2, we do not observe much variation in DT . This result for DT clearly
indicates that just before the beginning of the seizure at 80 seconds, the global dimension
as measured by DT begins to drop even if the m is increased up to 10, a characteristic
associated with (low-dimensional) deterministic system. This behavior is seen again at
around 120 seconds when the clonic phase of the seizure begins. Towards the end of
the seizure, DT again drops and remains at the same level for increasing values of m.
The period after the seizure is characterized again by values of DT that increase with
embedding dimension m.

• Average path length : Regarding the behavior of L, one can observe that starting around
70 seconds, there is a ramping up of L for increasing m (m≥ 4) and L peaks at around
84 seconds, which coincides with the time of the local minima for DT for the seizure
period. L then starts to decrease and again begins to increase at around 140 seconds and
peaking at around 150 seconds. In the post-seizure period, we can see that as the value of
m increases the value of L decreases (as observed in the pre-seizure period). The temporal
profile of L is more clearly depicted for m= 8 in Figure 15 (C).

• Assortativity : The behavior of R becomes clear only for m≥ 6, where R begins to
increase from 70 seconds reaching its local maxima at around 84 seconds, which coincides
with the local minima for DT for that period. It then begins to drop and again tends to
increase at around 140 seconds and peaks at at around 150 seconds. Around the seizure
period, for m≥ 6, irrespective of the value of m, the value of R remains approximately
around the same value. (Also see Figure 15 (D)).

We make the following crucial observations based on the application of ε-recurrence network
analysis to the EEG data.

(i) It is clear from the above results that the measures DT , R and L are not entirely
independent and they track dynamical transitions in a related fashion.

(ii) These three measures, as applied to the EEG data at hand, start showing signs of change
well before the clinical identification of seizure (compare the clinical onset of seizure
in Figure 15 (A) to the point when the global network measures start increasing (or
decreasing in case of DT ) in Figure 15 (B-D)). This feature represents the possibility
of using these measures to predict the seizure in advance. However note that, in the
dataset used, the clinical onset of the seizure occurs just 80 seconds into the data. Having
a longer segment of data before the seizure onset could also reveal interesting shift in
dynamics much prior to the onset of the seizure. Recent studies have shown that it is
possible to detect interesting changes in EEG tens of minutes before the actual seizure
occurrence [73,74]. However, most of these measures require long window sizes, of the
order of 10 minutes, which is related to our next observation.
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(iii) The global network measures are able to capture the rapidly changing dynamics using
short windows of 5 seconds (512) and 10 seconds (1024) samples, which is one of the
key advantages of ε-RNA compared to other methods. It is well known that the epileptic
seizures exhibit high nonlinearity compared to the normal background EEG activity [75]
as demonstrated in [76,77]. Previously, we have also demonstrated that ε-recurrence
networks derived from EEG recorded during the seizures display high values for the
global clustering coefficient and average path length compared to networks derived
from normal and inter-ictal (EEG between seizures) activity, thus capturing the increase
in nonlinearity and the associated structural complexity of the data [29]. However, the
results in [29] were obtained with EEG data of length 20 seconds (2560 samples) which is
still long compared to the window size of 5 (512 samples) and 10 seconds (1024 samples)
chosen in this study

(iv) In case of patient 1, the clonic phase begins around 123 seconds and we observe that
all the three global measures, display shift in their dynamics around this time point
(See Figure 15 (B-D) ). Also, we observed an increase in DT and decrease in L and R,
before these measures stabilize in the post-seizure period, which can be considered as a
surrogate marker. This shift in dynamics is also consistent with the analysis in [71] using
Gabor transform and could represent decrement in neural firing along with increase in
inhibitory mechanisms, that could be responsible for seizure termination [71]. However,
further research is needed to relate the variation of global ε-recurrence network measures
towards the transition to post-ictal activity.

(v) The results based on these global measures suggest that the EEG signals before and after
the seizure are more consistent with stochastic dynamics and during the seizure, the
dynamics is more deterministic.

Qualitatively similar results were found for Patient 2 (Figure S24 in supplementary data)
and with window size of 5 seconds (Figure S25 in supplementary data). These are novel and
interesting results for the application of ε-recurrence network analysis to epileptic EEG data.
However, these observations are based on the dataset from only two patients and would need
an extensive further study involving data from a large number of patients and different types
of epilepsies to draw a more substantiated conclusion. Also, we have considered data from
only one channel. Recent studies have shown evidence of seizure onset within network of
brain regions known as epileptic networks [78–80]. Hence, an approach taking into account
functionally connected brain regions [81] is more advantageous. The possibility of using cross and
joint recurrence network measures [82,83] to derive functional networks [84] using multivariate
epileptic EEG data will be considered in the future.

5. Conclusions
In summary, we have shown that ε-network measures, both global and vertex-based, can be used
to distinguish between (hyper-) chaotic and stochastic dynamics. We also demonstrated the effect
of noise on these network measures. As a real world application, we have showed that moving
window ε-recurrence network analysis can detect dynamical shifts in epileptic EEG data.

We have shown that measures like transitivity T (or the related global dimension measure, the
transitivity dimension DT ), local clustering coefficient Ci, degree centrality ki and betweenness
centrality bi are particularly sensitive to the presence of unstable periodic orbits, which are the
geometric backbone of the chaotic attractors. Additionally, other global measures such as average
path length L and assortativity R were also able to distinguish between (hyper-) chaotic and
stochastic dynamics. With assortativity R, we particularly observed that the difference between
chaotic and stochastic dynamics increased with embedding dimension and generally a large
embedding dimension (for example m= 5 in case of Lorenz system) is required for successful
characterization of chaos. The vertex-based measure closeness centrality ci is also sensitive to the
geometry of chaos leading to small values for chaotic dynamics compared to stochastic dynamics.
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Figure 14. Moving window ε-recurrence network analysis of epileptic EEG data showing DT , L and R before, during

and after the seizure. (A) EEG data from channel C4 of patient 1 with the clinical onset of seizure marked with solid red

line. The dashed red line represents beginning of the clonic phase and the solid black line represents that end of seizure.

(B-D) Temporal profile of the global measures (for m=2, 4, 6, 8, 10) using a moving window of 10 seconds (≈ 1000

samples) with 90% overlap.
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For the first time, we have demonstrated that the topological statistics derived from ε-recurrence
networks can distinguish between chaotic and stochastic dynamics. In case of hyper-chaotic
dynamics, we further find that the distinction between chaotic and stochastic dynamics increases
with data length. We have also shown in this study that, addition of noise impacts both global
and vertex-based measures. Influence of noise levels on the clustering property of the ε-recurrence
networks and the presence of unstable periodic orbits was evident with the increase in transitivity
dimension DT , decrease in number of vertices with high values for local clustering coefficient
Ci and betweenness centrality bi and disappearance of peaks (which is related to the unstable
periodic orbits) in the distribution of degree centrality ki. The influence of noise on these measures
can be minimized to some extent by increasing the recurrence rate RR, but a large recurrence rate
RR can present additional issues [40]. We also demonstrated that global ε-recurrence network
measures like transitivity T and the average path length L are more robust at short data lengths
compared to other approaches such as complexity-entropy method [3] to distinguish chaos from
noise.

We also demonstrated the applicability of the ε-recurrence network measures to the real-world
EEG data containing epileptic seizures. Using a small window size (≈ 500 or 1000 samples) and
global network measures like transitivity dimension DT , assortativity R and average path length
L , we were able to capture the rapidly changing dynamics representing pre-seizure, seizure and
post-seizure states. The drop in the transitivity dimension DT and increase in assortativity R and
average path length L during the seizure is possibly an indication of a deterministic dynamics and
is correlated with increased nonlinearity associated with the seizure activity. These results from
the real data provide an useful conclusion that ε-recurrence network measures can successfully
detect different states associated with epileptic EEG using rather short window sizes, that can
potentially open up some interesting future possibilities in the field of seizure prediction.

Data accessibility. The computations involving recurrence networks were performed using the python
package - pyUnicorn [85](available at http://tocsy.pik-potsdam.de/pyunicorn.php) developed at
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generated in this work is freely available for download.
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In VÃl’ra KÅŕrkovÃą, Roman Neruda, and Jan KoutnÃ k, editors, Artificial Neural Networks
- ICANN 2008, volume 5163 of Lecture Notes in Computer Science, pages 61–70. Springer Berlin
Heidelberg, 2008.

19. Grégoire Nicolis, A Garcia Cantu, and Catherine Nicolis.
Dynamical aspects of interaction networks.
International Journal of Bifurcation and Chaos, 15(11):3467–3480, 2005.

20. Jonathan F Donges, Reik V Donner, and Jürgen Kurths.
Testing time series irreversibility using complex network methods.
EPL (Europhysics Letters), 102(1):10004, 2013.

21. Lucas Lacasa, Bartolo Luque, Fernando Ballesteros, Jordi Luque, and Juan Carlos Nuño.
From time series to complex networks: The visibility graph.
Proceedings of the National Academy of Sciences, 105(13):4972–4975, 2008.

22. JF Donges, RV Donner, N Marwan, SFM Breitenbach, K Rehfeld, and J Kurths.



26

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Non-linear regime shifts in holocene asian monsoon variability: potential impacts on cultural
change and migratory patterns.
Climate of the Past, 11(5):709–741, 2015.

23. J. F. Donges, R. V. Donner, K. Rehfeld, N. Marwan, M. H. Trauth, and J. Kurths.
Identification of dynamical transitions in marine palaeoclimate records by recurrence network
analysis.
Nonlinear Processes in Geophysics, 18(5):545–562, 2011.

24. Zhong-Ke Gao, Xin-Wang Zhang, Ning-De Jin, Reik V Donner, Norbert Marwan, and Jürgen
Kurths.
Recurrence networks from multivariate signals for uncovering dynamic transitions of
horizontal oil-water stratified flows.
EPL (Europhysics Letters), 103(5):50004, 2013.

25. Zhong-Ke Gao, Yu-Xuan Yang, Peng-Cheng Fang, Yong Zou, Cheng-Yi Xia, and Meng Du.
Multiscale complex network for analyzing experimental multivariate time series.
EPL (Europhysics Letters), 109(3):30005, 2015.

26. Zhong-Ke Gao, Xin-Wang Zhang, Ning-De Jin, Norbert Marwan, and Jürgen Kurths.
Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase
flow.
Physical Review E, 88(3):032910, 2013.

27. Zhong-Ke Gao, Yu-Xuan Yang, Peng-Cheng Fang, Ning-De Jin, Cheng-Yi Xia, and Li-Dan Hu.
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Scientific reports, 5:8222, 2015.

28. Narayan Puthanmadam Subramaniyam and Jari Hyttinen.
Analysis of nonlinear dynamics of healthy and epileptic eeg signals using recurrence based
complex network approach.
In Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on, pages 605–608.
IEEE, 2013.

29. Narayan Puthanmadam Subramaniyam and Jari Hyttinen.
Characterization of dynamical systems under noise using recurrence networks: Application
to simulated and eeg data.
Physics Letters A, 378(46):3464–3474, 2014.

30. Narayan Puthanmadam Subramaniyam and Jari Hyttinen.
Dynamics of intracranial electroencephalographic recordings from epilepsy patients using
univariate and bivariate recurrence networks.
Phys. Rev. E, 91:022927, Feb 2015.

31. Narayan Puthanmadam Subramaniyam, Jari Hyttinen, Nicholas G Hatsopoulos, and
Kazutaka Takahashi.
Recurrence network analysis of wide band oscillations of local field potentials from the
primary motor cortex reveals rich dynamics.
In Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference on, pages 960–963.
IEEE, 2015.

32. Bartolo Luque, Lucas Lacasa, Fernando Ballesteros, and Jordi Luque.
Horizontal visibility graphs: Exact results for random time series.
Physical Review E, 80(4):046103, 2009.

33. Norbert Marwan, M Carmen Romano, Marco Thiel, and Jürgen Kurths.
Recurrence plots for the analysis of complex systems.
Physics Reports, 438(5):237–329, 2007.

34. Xiaoke Xu, Jie Zhang, and Michael Small.
Superfamily phenomena and motifs of networks induced from time series.
Proceedings of the National Academy of Sciences, 105(50):19601–19605, 2008.

35. Jean-Pierre Eckmann, S Oliffson Kamphorst, and David Ruelle.
Recurrence plots of dynamical systems.
Europhys. Lett, 4(9):973–977, 1987.

36. Michael Small, Jie Zhang, and Xiaoke Xu.
Transforming time series into complex networks.
In Complex Sciences, pages 2078–2089. Springer, 2009.

37. Jonathan F Donges, Jobst Heitzig, Reik V Donner, and Jürgen Kurths.
Analytical framework for recurrence network analysis of time series.



27

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Physical Review E, 85(4):046105, 2012.
38. Yong Zou, Reik V Donner, Jonathan F Donges, Norbert Marwan, and Jürgen Kurths.

Identifying complex periodic windows in continuous-time dynamical systems using
recurrence-based methods.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(4):043130, 2010.

39. Jesper Dall and Michael Christensen.
Random geometric graphs.
Physical Review E, 66(1):016121, 2002.

40. Reik V Donner, Jobst Heitzig, Jonathan F Donges, Yong Zou, Norbert Marwan, and Jürgen
Kurths.
The geometry of chaotic dynamicsâĂŤa complex network perspective.
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Figure S1. Transitivity dimension DT of the ε-recurrence networks constructed from the x-component of the hyper-

chaotic Rössler system (dashed blue lines) and corresponding iAAFT surrogates (solid red lines) for varying embedding

dimension m and recurrence rate RR (N=10,000). DT for surrogates are averaged over 100 realizations with error bars

representing the standard deviation.
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Figure S2. Average path length L of the ε-recurrence networks constructed from the x-component of the hyper-

chaotic Rössler system (dashed blue lines) and corresponding iAAFT surrogates (solid red lines) for varying embedding

dimension m and recurrence rate RR (N=10,000). L for surrogates are averaged over 100 realizations with error bars

representing the standard deviation.
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Figure S4. KS-statistic for the local clustering coefficient Ci, closeness centrality ci, betweenness centrality bi and

degree centrality ki for the chaotic Rossler system (N =10, 000) and the corresponding iAAFT surrogate for varying

embedding dimension m and recurrence rate RR.
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Figure S5. KS-statistic for the local clustering coefficient Ci, closeness centrality ci, betweenness centrality bi and

degree centrality ki for the hyper-chaotic Rössler system (N =10, 000) and the corresponding iAAFT surrogate for

varying embedding dimension m and recurrence rate RR.
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Figure S6. KS-statistic for the local clustering coefficient Ci, closeness centrality ci, betweenness centrality bi and

degree centrality ki for the hyper-chaotic Rössler system (N =15, 000) and the corresponding iAAFT surrogate for

varying embedding dimension m and recurrence rate RR.
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Figure S7. KS-statistic for the local clustering coefficient Ci, closeness centrality ci, betweenness centrality bi and

degree centrality ki for the hyper-chaotic Rössler system (N =20, 000) and the corresponding iAAFT surrogate for

varying embedding dimension m and recurrence rate RR.
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Figure S8. Color-coded representation of the local clustering coefficient Ci for the reconstructed Lorenz attractor (A) and

the corresponding iAAFT surrogate (B) for N = 20, 000 and RR=0.02. (C-D) likewise in (A-B) but for reconstructed

chaotic Rössler attractor and the corresponding iAAFT surrogate.
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Figure S9. Color-coded representation of the logarithm of betweenness centrality log10(bi + 1) for the reconstructed

Lorenz attractor (A) and the corresponding iAAFT surrogate (B) for N =20, 000 and RR= 0.02. (C-D) likewise in (A-B)

but for reconstructed chaotic Rössler attractor and the corresponding iAAFT surrogate.
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Figure S10. Color-coded representation of the closeness centrality ci for the reconstructed Lorenz attractor (A) and the

corresponding iAAFT surrogate (B) for N = 20, 000 and RR= 0.02. (C-D) likewise in (A-B) but for reconstructed chaotic

Rössler attractor and the corresponding iAAFT surrogate.
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reconstructed Lorenz attractor (A) and the corresponding iAAFT surrogate (B) for N = 20, 000 and RR=0.02. (C-D)

likewise in (A-B) but for reconstructed chaotic Rössler attractor and the corresponding iAAFT surrogate.
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corresponding iAAFT surrogate (B). (C)-(D) same as (A)-(B) but for local clustering coefficient Ci. The parameters for the

exemplary plot are, embedding dimension m= 5, RR= 0.02 and N =10, 000.
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embedding dimension m= 5, RR= 0.02 and N =10, 000.
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Figure S2 . Moving window ε-recurrence network analysis of epileptic EEG data showing DT , L and R before, during

and after the seizure. (A) EEG data from channel C4 of patient 1 with the clinical onset of seizure marked with solid red

line. The dashed red line represents beginning of the clonic phase and the solid black line represents that end of seizure.

(B-D) Temporal profile of the global measures (for m= 8) using a moving window of 5 seconds (≈ 500 samples) with

90% overlap.
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Dynamics of intracranial electroencephalographic recordings from epilepsy patients using
univariate and bivariate recurrence networks
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Recently Andrezejak et al. combined the randomness and nonlinear independence test with iterative amplitude
adjusted Fourier transform (iAAFT) surrogates to distinguish between the dynamics of seizure-free intracranial
electroencephalographic (EEG) signals recorded from epileptogenic (focal) and nonepileptogenic (nonfocal)
brain areas of epileptic patients. However, stationarity is a part of the null hypothesis for iAAFT surrogates and thus
nonstationarity can violate the null hypothesis. In this work we first propose the application of the randomness and
nonlinear independence test based on recurrence network measures to distinguish between the dynamics of focal
and nonfocal EEG signals. Furthermore, we combine these tests with both iAAFT and truncated Fourier transform
(TFT) surrogate methods, which also preserves the nonstationarity of the original data in the surrogates along with
its linear structure. Our results indicate that focal EEG signals exhibit an increased degree of structural complexity
and interdependency compared to nonfocal EEG signals. In general, we find higher rejections for randomness and
nonlinear independence tests for focal EEG signals compared to nonfocal EEG signals. In particular, the univariate
recurrence network measures, the average clustering coefficient C and assortativityR, and the bivariate recurrence
network measure, the average cross-clustering coefficient Ccross, can successfully distinguish between the focal
and nonfocal EEG signals, even when the analysis is restricted to nonstationary signals, irrespective of the type
of surrogates used. On the other hand, we find that the univariate recurrence network measures, the average path
lengthL, and the average betweenness centrality BC fail to distinguish between the focal and nonfocal EEG signals
when iAAFT surrogates are used. However, these two measures can distinguish between focal and nonfocal EEG
signals when TFT surrogates are used for nonstationary signals. We also report an improvement in the performance
of nonlinear prediction error N and nonlinear interdependence measure L used by Andrezejak et al., when TFT
surrogates are used for nonstationary EEG signals. We also find that the outcome of the nonlinear independence
test based on the average cross-clustering coefficient Ccross is independent of the outcome of the randomness test
based on the average clustering coefficient C. Thus, the univariate and bivariate recurrence network measures
provide independent information regarding the dynamics of the focal and nonfocal EEG signals. In conclusion,
recurrence network analysis combined with nonstationary surrogates can be applied to derive reliable biomarkers
to distinguish between epileptogenic and nonepileptogenic brain areas using EEG signals.

DOI: 10.1103/PhysRevE.91.022927 PACS number(s): 05.45.Tp, 02.10.Ox, 87.19.le

I. INTRODUCTION

Epilepsy is a dynamical disorder of the brain [1]. It is
characterized by epileptic seizures which interrupt the normal
functioning of the brain in a recurrent and unpredictable
manner [2]. It is generally accepted that the epileptic brain
transitions between different dynamical states, namely the
interictal state (occurring between the seizures), the preictal
state (occurring before the seizure), the ictal state (occurring
during the seizure) [3], and the postictal state (occurring
after the seizure). Removal of the brain areas responsible
for seizure generation (known as epileptogenic areas) is a
widely accepted therapeutic option for a subset of patients
diagnosed with drug-resistant focal epilepsy [4]. Intracranial
electroencephalographic (EEG) recordings obtained from the
brain surface or from deeper structures within the brain are
used for the purpose of localizing the epileptogenic areas [5].
In contrast to the normal background EEG activity, epileptic
EEG shows increased nonlinearity [6] and thus ictal EEG
recordings can play an important role in the localization of
the epileptogenic areas.

*npsubramaniyam@gmail.com

However, it has also been shown by several human as well
as nonhuman animal studies that even during the interictal
period, the epileptic brain is different from normal and it
has been hypothesized that the interictal EEG recordings
also exhibit increased nonlinearity due to the deterministic
dynamics that accompanies the epileptic process [3]. Thus,
we can hypothesize that the analysis of interictal EEG signals
can provide valuable information about the localization of
epileptogenic areas. Besides the obvious clinical benefit, this
is also extremely beneficial from the patient’s point of view,
as it minimizes the need to record seizures for the sake of
localization, since occurrence of each seizure is a potentially
debilitating event that can cause health impairment [5].

Recently, Andrzejak et al. [5] combined iterative amplitude
adjusted Fourier transform (iAAFT) surrogates with nonlinear
prediction error N , a univariate measure, and nonlinear inter-
dependence measure L, a bivariate measure, to test for random-
ness and nonlinear independence respectively, in intracranial
EEG signals. These EEG signals were acquired from epilep-
togenic (focal EEG signals) and nonepileptogenic areas (non-
focal EEG signals) of five epilepsy patients. They analyzed
seizure-free recordings by excluding recordings of the seizure
activity and three hours after the last seizure activity. Their
results showed that the focal EEG signals had higher rejections
for both the randomness test and nonlinear independence test

1539-3755/2015/91(2)/022927(18) 022927-1 ©2015 American Physical Society
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compared to the nonfocal EEG signals, thus indicating that the
focal EEG signals are more nonrandom and have more nonlin-
ear interdependence between them compared to the nonfocal
EEG signals. They also used linear variability measures to test
for stationarity in the EEG signals. Based on the surrogate
testing, their results showed that the nonfocal EEG signals
are more nonstationary compared to the focal EEG signals.
The nonstationarity in the time series caused an increase in
the rejection probability of both the randomness test (for focal
EEG signals) and nonlinear independence test (for focal and
nonfocal EEG signals). Furthermore, they also showed that the
contrast between the focal and nonfocal EEG signals using the
randomness test and nonlinear independence test is further
enhanced when the signals that reject the stationarity test
are excluded. They also studied the dependence between the
randomness and nonlinear independence test and found that
these two tests give nonredundant information and thus can
contribute to characterization of EEG signals in different ways.
These results are highly important from clinical as well as the
physics point of view, as they reveal that the focal EEG signals
are more nonrandom, more nonlinearly interdependent and
more stationary compared to the nonfocal EEG signals. Thus,
these measures can be used as potential biomarkers to delineate
the epileptogenic brain areas from the nonepileptogenic ones.

However, one important issue that remains to be addressed
more adequately is the robustness of these nonlinear measures
to nonstationarity in the EEG signals. Whether the contrast
between the focal and nonfocal EEG signals, as measured by
the randomness and nonlinear independence test, still remains
significant when we only consider those EEG signals that have
rejected the stationarity test remains to be answered. In other
words, do these nonlinear measures still perform when they are
applied to nonstationary signals? Moreover, In Ref. [5], iAAFT
surrogates were used which are stationary by construction and
therefore nonstationarity can thus violate the null hypothe-
sis [7,8]. This is a relevant and vexing issue as the epileptic
signals often exhibit nonstationary behavior [9]. Even though
the focal EEG signals are more stationary than the nonfocal
EEG signals as per the findings reported in Ref. [5], there can
still be a considerable degree of nonstationarity present in the
focal EEG signals. For instance in Ref. [5], Andrzejak et al. still
found that out of 3750 focal EEG signals, 1750 signals rejected
the stationarity test (i.e., roughly 46%). Ideally, the measures
derived from the nonlinear theory should be able to distinguish
between the dynamics of the focal and nonfocal EEG signals
even in the presence of some degree of nonstationarity.

The brain is a complex dynamical system and the dynamics
associated with complex systems can also be described using
the method of recurrence plots [10]. This method makes use
of the concept of recurrence, which is one of the fundamental
properties of a complex dynamical system. Recurrence plot
(RP) based techniques can be used for the analysis of short and
nonstationary data [10]. An RP is a graphical representation
of the binary recurrence matrix that encodes the relationship
between the two states that are neighbors in phase space (as
per some proximity criterion) [11]. This recurrence matrix
can be reinterpreted as an adjacency matrix of an undirected
complex network, which is known as the recurrence network.
There are many ways of transforming a time series into a
complex network. The recurrence networks fall under the

category of proximity networks. There are different types of
recurrence networks, namely the k nearest neighbor networks,
the adaptive nearest neighbor networks, and the ε-recurrence
networks. In k nearest neighbor networks, the neighborhood
of each vertex (state) is defined in terms of a fixed mass,
i.e., k nearest neighbors are fixed for each vertex in the
network resulting in a directed network [12]. A symmetric
and undirected version of the k nearest neighbor networks has
also been proposed in Ref. [13]. In adaptive nearest neighbor
networks, suggested in Refs. [14,15], undirected networks
are obtained after correcting for a constant number of edges
for each vertex [16]. ε networks are the most extensively
studied and applied networks, where the neighborhood of
each vertex is defined in terms of a fixed phase space volume
ε [11,17]. The underlying common factor in all the above
mentioned recurrence networks is that the vertices of the
network are represented by the state vectors and the edges
between the vertices are represented by the recurrence of the
states. Different measures derived from graph theory can then
be used for the quantitative characterization of the recurrence
networks to gain an insight into the phase space properties of
the dynamical system underlying a time series.

ε networks have been applied to model systems as well
as real world data like paleoclimate records and biomedical
data [11,18–26]. Network measures, like the average clustering
coefficient C and the average path length L, have been used
to discriminate between chaotic and periodic dynamics [20].
The transitivity T (local and global) has been shown to
trace unstable periodic orbits [17]. In [27], local clustering
coefficient and transitivity T were used to define measures of
dimension in phase space. As an example of the application of ε

networks to real world data Donner et al. [16] used the network
measures average path length L, transitivity T , assortativity
R, and the network diameter D to identify hidden transitions
in marine terrigenous dust flux record. They found that the
intervals identified by these network measures correlated with
important transitions in climate system.

Apart from ε networks which can be used for the dynamical
characterization of univariate time series, recently a bivariate
extension of the recurrence network approach has been pro-
posed to quantify the interdependence between two dynamical
systems that share the same phase space [28]. This approach is
basically a straightforward extension of the cross-recurrence
plot method proposed in Ref. [29]. After embedding two time
series x(t) and y(t) in the same phase space, a cross-recurrence
matrix can be derived using the test for closeness (based on
some proximity criterion) between each point in the phase
space of x(t) with each point in the phase space of y(t). Now
one can define the intersystem recurrence network (IRN) [28],
which is basically comprised of (1) two monopartite graphs,
representing the recurrence networks associated with time
series x(t) and y(t) individually, (2) a bipartite graph known
as the cross-recurrence network, including links between
vertices of two recurrence networks associated with x(t) and
y(t). Cross-network measures like cross-average clustering
coefficient Ccross, and cross-transitivity Tcross [30] have been
proposed to study the topology of cross-recurrence networks
to characterize and identify the coupling direction between two
time series [28]. Cross-network measures have been applied to
model systems like coupled chaotic oscillators and real world
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data like the paleoclimate data [28] and also to characterize
horizontal oil-water two-phase flows [31].

Given the ability of recurrence network measures to char-
acterize dynamics of the underlying complex system using the
time series data, its application to EEG time series has not been
fully explored. Recurrence network measures like the average
clustering coefficient C and average path length L have been
used to compare the dynamical properties of EEG signals de-
rived from healthy and epileptic patients [32,33]. Particularly,
bivariate measures derived from cross-recurrence networks
have not been investigated to identify interdependence be-
tween two EEG time series. Also the robustness of recurrence
network measures (both univariate and bivariate) against non-
stationarity has not been investigated using any real world data
like the EEG time series. Also, whether or not the univariate
recurrence network measure and the bivariate cross-recurrence
network measure give redundant information about the dynam-
ics of the underlying system has hitherto not been studied.

To address these issues, combined with surrogates
generated using the iAAFT scheme [34], we apply
ε-recurrence network measures (henceforth simply referred
as recurrence network measures) derived from univariate and
bivariate EEG time series described in Ref. [5]. In order to
make the results more reliable, particularly in the case of
nonstationary EEG signals, we also use the truncated Fourier
transform (TFT) surrogates proposed by Nakamura et al. [35].
TFT surrogates are particularly useful in preserving some
nonstationarity present in the original data in the surrogates,
unlike the iAAFT surrogates which can only preserve the
linear properties [35,36]. Particularly, we test for randomness
based on network measures, the average clustering coefficient
C, assortativity R, the average path length L, and the average
betweenness centrality BC and independence based on cross-
network measure, the average cross-clustering coefficientCcross

in the focal and nonfocal EEG signals. To facilitate a direct
comparison with the results obtained in Ref. [5] where the
effect of nonstationarity on nonlinear prediction error N and
nonlinear interdependence measure L was studied along with
the dependence between these two measures, we also compute
the same rejection probability measures for the randomness
and nonlinear independence test combined with iAAFT and
TFT (in the case of nonstationary EEG signals) surrogates.

II. MATERIALS AND METHODS

A. EEG data and preprocessing

The EEG data used in this study is described in Ref. [5] and
is publicly available for download at [37]. Therefore, we will
only briefly describe the composition of EEG signals and the
preprocessing steps involved. For a detailed explanation about
the EEG data and recording conditions the reader is directed
to Ref. [5].

Intracranial EEG recordings were obtained from five
patients who were candidates for epilepsy surgery. The dataset
is comprised of two sets of EEG data, namely (a) focal EEG
signals recorded from epileptogenic areas and (b) nonfocal
EEG signals recorded from nonepileptogenic areas. The signal
has been digitally bandpass filtered between 0.5 and 150 Hz.
The signals were originally recorded at 1024 Hz and were

down-sampled to 512 Hz. Further, each set of this dataset is
comprised of randomly selected 3750 pairs of simultaneously
recorded signals, from two neighboring channels. This random
selection procedure involved selecting one of the five patients
randomly and then selecting a recording of 20 sec long from
the focal EEG channel (each EEG recording was divided into
a 20-sec-long window comprised of 10 240 samples) and its
neighboring channel for the focal EEG signal pair. Likewise
selection was done for the nonfocal EEG signal pairs. It is
important to note that the focal EEG channels are defined
as those channels where ictal EEG signal changes were first
detected by two expert neurologists. All other channels are
defined as nonfocal EEG channels. Also, recordings of any
seizure activity and three hours after the last seizure were
excluded [5]. Recording samples contaminated by artifacts
were also excluded. Finally, before computing any nonlinear
measure, the data are low-pass filtered with a cutoff frequency
of 40 Hz with an eighth order Butterworth filter and further
downsampled to 128 Hz [5]. Thus, each EEG signal was 20 sec
long and contained 2560 samples.

B. Recurrence networks

A univariate time series x(t) can be transformed into a
complex network based on the concept of recurrences. In
particular, recurrence occurs if at some time instance tj , the
trajectory of a complex dynamical system returns into the
neighborhood of its previous state xi at previous time instance
ti , where ti < tj [17]. If this neighborhood is defined in terms of
an ε ball centered at xi [17], one can define a binary recurrence
matrix R(ε) with elements [11,38]

Ri,j (ε) = �(ε − ‖xi − xj‖), (1)

where xi = (x(ti),x(ti + τ ), . . . ,x[ti + (m − 1)τ ]) is the re-
constructed m-dimensional phase space vector corresponding
to the observation point t = ti in the time series, �(·) is the
Heaviside function, τ is the embedding delay, ‖ · ‖ is any
distance norm, and ε is the recurrence threshold specifying the
maximum spatial distance between the neighboring states.

If there are two observational time series x(t) and y(t) (for
instance, a signal recorded from a pair of EEG electrodes)
emerging from same complex dynamical system, one can
define a cross-recurrence matrix Rcross

xy (ε) with elements [29]

Rcross
i,j (ε) = �(ε − ‖xi − yj‖), (2)

where xi and yj are the reconstructed m-dimensional phase
space vectors from the observed time series at point t = ti for
x(t) and t = tj for y(t) respectively. In this case, ε is known
as the cross-recurrence threshold. Combining Eqs. (1) and (2),
one can define a 2 × 2 intersystems recurrence matrix [28]
RIS(ε) as follows:

RIS(ε) =
(

Rx(ε) Rcross
xy (ε)

Rcross
yx (ε) Ry(ε)

)
, (3)

where Rcross
yx (ε) = [Rcross

xy (ε)]T , is the cross-recurrence matrix
derived from the bivariate time series x(t) and y(t), Rx(ε) and
Ry(ε) are recurrence matrices derived individually from uni-
variate time series x(t) and y(t) respectively. The intersystem
recurrence matrix can be transformed into an adjacency matrix
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using the following transformation [28]:

A(ε) = RIS(ε) − I (4)

resulting in

A(ε) =
⎛
⎝ A

self
x (ε) A

cross
xy (ε)

A
cross
yx (ε) A

self
y (ε)

⎞
⎠ , (5)

where I is an identity matrix of size 2N [given that the
length of the phase space vectors reconstructed from x(t)

and y(t) is N each]. The adjacency matrices A
self
x and A

self
y

represent the unweighted and undirected complex network
derived from time series x(t) and y(t) individually, which
is simply known as the recurrence network [11,17]. On the
other hand the adjacency matrices A

cross
xy (ε) and A

cross
yx (ε)

represent the cross-recurrence network derived from bivariate
time series x(t) and y(t) jointly. Together these adjacency
matrices represent the IRN.

Now one can estimate complex (cross-)network measures

using the A
self

(ε) and A
cross

(ε) to derive univariate and
bivariate measures for a single channel and two channel
time series respectively. Instead of specifying the recurrence
threshold ε, we specified the recurrence rate RR, so that the
resulting recurrence networks have approximately the same
number of edges. This allows for an objective comparison
of the network topologies using graph theoretical measures.
In this work, we set embedding delay τ = 4 and embedding
dimension m = 8 as suggested in Ref. [5]. Further, we fixed the
recurrence rate RR at 0.03 [11,17,19] and the cross-recurrence
rate CRR at 0.02. In general, it is advisable to set RR > CRR so
that we achieve few cross-recurrences compared to intrasystem
recurrences in order to be able to distinguish two subnetworks
corresponding to individual, univariate time series [28]. Also,
as the distance norm we used the maximum norm.

C. Network measures

To characterize the recurrence networks derived from single
or two channel time series, graph theoretic measures can be
used. Here, we give a brief description about the network
measures used in this study. The network measure computed
for the recurrence network associated with single channel time
series is known as univariate recurrence network measure and
the cross-recurrence network associated with two channel time
series is known as bivariate cross-recurrence network measure.

1. Univariate recurrence network measures

(a) Average clustering coefficient. The local clustering
coefficient c(i) [39] of a vertex i of a undirected complex
network can be defined as the likelihood of its neighbors
also being neighbors. Given as a ratio between the number of
edges that exist between neighbors of a vertex to the maximum
number of possible connections, the clustering coefficient is
an important quantitative characteristic of a network structure.
The average clustering coefficient C is simply the average of
the local clustering coefficient of all the vertices present in a
network. The local clustering coefficient of a vertex i is given
as

c(i) =
∑

j,m A(i,j )A(j,m)A(m,i)

ki(ki − 1)
, (6)

where ki is the degree of the vertex i. The average clustering
coefficient is simply

C = 1

N

∑
i∈N

c(i). (7)

Generally speaking, a high average clustering coefficient C
for a complex network can signify a special structure that is
different from that of a random network and more conducive
for efficient local information transfer. For a recurrence
network, the average clustering coefficient C can identify and
discriminate qualitatively different types of dynamics. For
instance, networks associated with periodic dynamics have
high average clustering coefficient C while those associated
with chaotic dynamics have relatively lower values [20].

(b) Assortativity. In a network, if vertices that have a high
degree tend to connect to other vertices that also have a high
degree, then the network is said to exhibit assortative mixing.
On the other hand, if vertices with a high degree tend to connect
with vertices which have a low degree, then the mixing is said
to be disassortative. For a network, assortativity R can be
estimated by the Pearson correlation coefficient of degrees at
either end of vertices and is given as [40]

A =
1
N

∑
j>i kikjA(i,j ) − [ 1

N

∑
j>i

1
2 (ki + kj )A(i,j )]2

1
N

∑
j>i

1
2 (k2

i + k2
j )A(i,j ) − [ 1

N

∑
j>i

1
2 (ki + kj )A(i,j )]2

(8)

For recurrence networks, significant assortative mixing
indicates that the density of states within the ε ball does not
vary much or change very slowly and hence assortativity R
can be considered as a measure of continuity of phase space
density [17].

(c) Average path length. Average path length is a measure
of separation between two vertices in a network and can be
computed as an average value of shortest path lengths taken
over a vertex tuple (i,j ). For a undirected network, the average
path length L is given as

L = 1

Emax

∑
i,j �=i

d(i,j ), (9)

where d(i,j ) is the length of the geodesic from vertex i to j ,
Emax is the maximum number of edges a network can have
and it is N(N−1)

2 for a undirected network having N vertices.
(d) Betweenness centrality. The importance of a vertex in a

network can be described using betweenness centrality. If the
total number of shortest paths from a vertex i to another vertex
j in a network is given by σij , then betweenness centrality for
a vertex v can be defined as [41]

b(v) =
∑

i �=v �=j

σij (v)

σij

, (10)

where σij (v) is the number of short paths (from a total of
σij ) that pass through v. For a complex network, betweenness
centrality measures the importance of a vertex in information
transfer. When this measure is computed for a recurrence
network a different interpretation is needed as there is no
information flow between the vertices in a recurrence network.
Accordingly, in [17] it has been argued that vertices of a
recurrence network that acquire high values of betweenness
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belong to a sparse region in the phase space that separates
different high density clusters. Since betweenness centrality is
defined for each node in a network, we will use the average
betweenness centrality BC, which is simply the average of
betweenness centrality of all the vertices in a network, as a
single global measure for the entire network.

2. Bivariate cross-recurrence network measure

Average cross-clustering coefficient. The interaction be-
tween two subgraphs in a bipartite graph like the cross-
recurrence network can be quantified using the concept of
the local cross-clustering coefficient [30]. For two subgraphs
Gx and Gy represented by adjacency matrices Ax and Ay

respectively, the local cross-clustering coefficient for vertex i

in Ax can be defined as [28,30]

c
cross
xy (i) =

∑
Axy(i,j )Ay(j,k)Axy(k,i)

ki,xy(ki,xy − 1)
. (11)

Basically, c
cross
xy (i) gives the probability that two randomly

drawn neighbors of vertex i ∈ Gx from subnetwork Gy

are also neighbors. In order to avoid divergencies, for
the vertices that have cross-degree of 0 or 1, the local
cross-clustering coefficient is set to 0 [28]. By averaging the
local cross-clustering coefficient c

cross
xy (i) over all the vertices,

we can define the average cross-clustering coefficient Ccross
xy . In

an analogous fashion one can define C
cross
yx . If Ccross

xy > Ccross
yx ,

the direction of the coupling is from y to x, y → x. On the
other hand, if Ccross

xy < Ccross
yx , the direction of the coupling

is from x to y, x → y. Also, in the case of no coupling or
complete synchronization, Ccross

xy ≈ Ccross
yx

In this work, for EEG signal pairs in the set X and Y , we
determine the number of pairs for which the coupling is in
the direction x → y as well as y → x. The total number of
interdependent signals in the total EEG signal pairs is then
the sum of the number of signals interacting in these two
directions. In this work, we will simply refer to the average
cross-clustering coefficient as Ccross to denote both Ccross

xy and

Ccross
yx . In this work, recurrence networks were computed using

the python package - pyUNICORN [42].

D. Surrogate testing

1. iAAFT surrogates

As described in Ref. [5], we first generated univariate [34]
and bivariate surrogates [43] for hypothesis testing of the
randomness and nonlinear independence test respectively. The
null hypothesis H 0

univ to be tested by univariate surrogates
is that the dynamics of original univariate time series is
compatible with a Gaussian linear, stochastic, and stationary
process measured by a monotonic and possibly nonlinear
observation function [5,44]. For the univariate recurrence
network measures, the hypothesis testing is done as follows:

(1) Compute the univariate network measure, U
orig
x , for the

univariate EEG signal x(t).
(2) Generate 19 surrogates using the procedure described

in [34] and compute the univariate recurrence network measure
for each of the surrogates. Let this set of network measures be

U
surr
x = {U surr1

x ,U
surr2
x . . . U

surr19
x }.

(3) Reject the null hypothesis H 0
univ if U

orig
x > max(U

surr
x ).

(4) The total number of signals rejecting the null hypothesis
H 0

univ is n(U 1).
The null hypothesis B0

biv to be tested by the bivariate
surrogates is that the original bivariate EEG time series
represents a stationary, bivariate, linear, stochastic correlated
Gaussian process [45]. The measurement function through
which the EEG signal pairs are observed are invertible, but
possibly nonlinear [45]. The surrogates generated have the
same autocorrelation and cross-correlation as the original pair
of EEG signals. For bivariate cross-recurrence network mea-
sure using a global-cross-clustering coefficient, the hypothesis
testing is done as follows:

(1) Compute the cross-network measure, the average cross-
clustering coefficient Ccross

xy and Ccross
yx for the original signal

pairs. Let this be denoted as B
orig
xy and B

orig
yx .

(2) Generate 19 bivariate surrogates using original pair of
signals in accordance with [43].

(3) Compute the cross-network measures for all
surrogate pairs. Let this set be denoted as B

surr
xy =

{Bsurr1
xy ,B

surr2
xy . . . B

surr19
xy } and B

surr
yx = {Bsurr1

yx ,B
surr2
yx . . . B

surr19
yx }

representing an average cross-clustering coefficient Cxy and
Cyx for bivariate surrogates respectively.

(4) If B
orig
xy > B

orig
yx and B

orig
xy > max(B

surr
xy ), the coupling

direction y → x is considered significant and the null hypoth-

esis is rejected. Let the number of such rejections be n(B
rej
xy ).

(5) Similarly, if B
orig
yx > B

orig
xy and B

orig
yx > max(B

surr
yx ), the

coupling direction x → y is considered significant and the null
hypothesis is rejected. Let the number of such rejections be

n(B
rej
yx ).

(6) The total number of signals rejecting the null hypothesis

B0
biv is n(B1) = n(B

rej
xy ) + n(B

rej
yx ).

2. TFT surrogates

Apart from univariate and bivariate iAAFT surrogates,
we also generated univariate TFT surrogates and extended
them for the bivariate time series. The procedure to generate
TFT surrogates is straightforward and can be applied to any
surrogate technique that involves phase randomization, like
AAFT or iAAFT technique. In the TFT method, one first
defines a cutoff frequency fc, which corresponds to the first few
frequencies at which the phase of the original data is preserved,
whereas the phases corresponding to frequencies greater than
fc are randomized as usual, for instance using the iAAFT
method. Here, fc can vary between 0 (i.e., 0 Hz, no phase is
preserved and is equivalent to iAAFT surrogate) and 0.5 (i.e.,
0.5× sampling frequency, no phase is randomized and hence
surrogate is exactly the same as data). Thus, fc represents
normalized frequency (between 0 and 0.5) corresponding to
the integer index (0,1,2, . . . ,N/2) of the N -point Fourier
transformed data, where N is the number of points in the data.
This way, local nonstationarity and even global nonstationarity,
i.e., trends (for sufficiently high fc), are preserved in the
generated surrogates [36] but at the same time local structures
in short-term variability are destroyed [35]. As iis evident,
generation of TFT surrogates crucially depends on the choice
of cutoff frequency fc, which is the maximum preserved
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FIG. 1. (Color online) Impact of varying fc on the global behavior of a surrogate signal. (a) 10 sec of an exemplary surrogate signal (dashed
red line) and original EEG signal (solid blue line) at fc = 0 which is equivalent to iAAFT surrogate. Figures 1(b)–1(h) as in Fig. 1(a) but for
fc = 0.01–0.07 respectively. Note that for display purposes, in each case the surrogate signal (dashed red line) has been shifted below the
original EEG signal (solid blue line).

frequency. If this frequency is too high, the surrogates become
too similar to the original data and might share too much
of its nonlinear dynamics. On the other hand, if this value
is too low, then the TFT surrogates might not preserve
any trends and behave in a similar fashion to the iAAFT
surrogates.

In this work we applied TFT with iAAFT method for both
univariate and bivariate surrogates and varied fc from 0.01 to
0.05 (which corresponds to frequencies from approximately
5 to 25 Hz). In the context of the EEG data at hand, this
means that the maximum preserved frequency at 0.05 is about
25.6 Hz. Preserving frequencies beyond 25.6 Hz resulted in
generation of surrogates that are almost identical to the data
since the data are already low pass filtered at 40 Hz and hence a

value of fc > 0.05 could already be considered quite high for
these data. Thus any discriminating statistic will naturally fail
to distinguish between data and the corresponding surrogates
beyond this cutoff frequency and will give low values of
rejection probabilities. Also, it is important to check that the
surrogates share the linear properties of the original data. The
autocorrelation function at lag 1 is a good indicator of the linear
structure of the data [35]. We observed that for the values of fc

used in this study, the autocorrelation of original data at time
lag 1 was within the distribution obtained for surrogate sets.

Figures 1 and 2 show exemplary surrogate signals (dashed
red line) and original EEG data (solid blue line) for different
values of fc. It can be see from Fig. 1 that at low values of fc

(< 0.02), the surrogates do not follow the global behavior of
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FIG. 2. (Color online) Impact of varying fc on the local structure of a surrogate signal. (a) Exemplary surrogate signal (dashed red line)
superimposed on an EEG signal (solid blue line) at fc = 0 which is equivalent to iAAFT surrogate. Figures 2(b)–2(h) as in Fig. 2(a) but for
fc = 0.01–0.07 respectively.

the data, whereas at high values of fc (> 0.05), the data and
the surrogates are almost similar where both the local (Fig. 2)
and global (Fig. 1) behavior of the surrogate matches the EEG
signal. Also it is evident from Fig. 2(a) that at fc = 0, which
is equivalent to the iAAFT surrogate, the trend present in the
data (solid blue line) is destroyed in the surrogate (dashed red
line). For intermediate values of fc (between 0.02 and 0.05),
we can see that the surrogates follow the global behavior of
data and at the same time the local structures of the surrogates
and the data differ (see Figs. 1 and. 2).

Another issue that is common with Fourier trans-
form (FT) based surrogates is that of end mismatch
which could result in false rejection of the null hypoth-
esis [43]. Schrieber and Schmitz [43] proposed a metric
to quantify the end point mismatch which is defined as

follows:

γ = x(t1) − x(tN )∑N
n=1[x(tn) − 〈x〉] . (12)

We found that for the EEG data used in this study, the
contribution of the end point mismatch to the total power of
the series, γ , was negligible (<0.02%) and hence we can
neglect any effects caused by the end mismatch on the results.
The null hypothesis to be tested using TFT surrogates is that
the irregular fluctuations in the data arise from a stationary,
Gaussian, linear, and stochastic process [35] and the hypothesis
testing is carried out as described in the steps above. Note
that, in both cases (iAAFT and TFT applied with iAAFT),
we are using 19 surrogates and hence the hypothesis tests are
performed at a significance level of α = 0.05.
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E. Estimation of rejection probabilities

In this section we define several probability estimates that
have been used in this study and are consistent with the work
of Andrzejak et al. [5]. The formulas mentioned here are for
signals in set X (focal or nonfocal). The analogous definition
for signals in set Y applies.

For the univariate and bivariate network measures, we
define the following probability estimates.

1. Unconditioned rejection probabilities

For the signals in set X, the rejection probability for the
randomness test based on the univariate measure is estimated

via [5]

p
(
U 1

X

) = n
(
U 1

X

)
n(X)

, (13)

where n(X) is the total number of signals in set X which is 3750
and n(U 1

X) is the number of signals in set X that have rejected
H 0

univ. Analogously, one can define the rejection probability for
the nonlinear independence test based on the bivariate measure

p(B1) = n(B1)

n(X)
, (14)

where n(B1) is the number of pair of signals that have rejected
H 0

biv.

D = 0.43
(0.38,0.47)

(a)

pF (U1
X) pN (U1

X)
0

0.2

0.4

0.6

0.8

1
D = 0.40
(0.35,0.46)

(b)

pF (U1
X |S0) pN (U1

X |S0)
0

0.2

0.4

0.6

0.8

1
D = 0.43
(0.36,0.51)

(c)

pF (U1
X |S1) pN (U1

X |S1)
0

0.2

0.4

0.6

0.8

1

D = 0.50
(0.42,0.58)

(d)

pF (U1
X) pN (U1

X)
0

0.2

0.4

0.6

0.8

1
D = 0.42
(0.32,0.52)

(e)

pF (U1
X |S0) pN (U1

X |S0)
0

0.2

0.4

0.6

0.8

1
D = 0.57
(0.43,0.70)

(f)

pF (U1
X |S1) pN (U1

X |S1)
0

0.2

0.4

0.6

0.8

1

D = 0.04
(0.02,0.07)

(g)

R
ej
ec
ti
o
n
p
ro
b
a
b
il
it
y

pF (U1
X) pN (U1

X)
0

0.2

0.4

0.6

0.8

1
D = 0.05
(0.01,0.09)

(h)

pF (U1
X |S0) pN (U1

X |S0)
0

0.2

0.4

0.6

0.8

1
D = 0.05
(0.02,0.08)

(i)

pF (U1
X |S1) pN (U1

X |S1)
0

0.2

0.4

0.6

0.8

1

D = 0.04
(0.01,0.07)

(j)

pF (U1
X) pN (U1

X)
0

0.2

0.4

0.6

0.8

1
D = 0.01
(-0.04,0.06)

(k)

pF (U1
X |S0) pN (U1

X |S0)
0

0.2

0.4

0.6

0.8

1
D = 0.08
(0.04,0.12)

(l)

pF (U1
X |S1) pN (U1

X |S1)
0

0.2

0.4

0.6

0.8

1

D = 0.19
(0.15,0.23)

(m)

pF (U1
X) pN (U1

X)
0

0.2

0.4

0.6

0.8

1
D = 0.33
(0.26,0.39)

(n)

pF (U1
X |S0) pN (U1

X |S0)
0

0.2

0.4

0.6

0.8

1
D = 0.09
(0.03,0.14)

(o)

pF (U1
X |S1) pN (U1

X |S1)
0

0.2

0.4

0.6

0.8

1

FIG. 3. (Color online) Contrast between the rejection probabilities of focal pF (red) and nonfocal pN (green) EEG signals as given by the
randomness test based on the average clustering coefficient C for all the signals (a), stationary signals (b), and nonstationary signals (c). Rows
2–5, as in (a)–(c), but for assortativity R, the average path length L, the average betweenness centrality BC, and nonlinear prediction error N

respectively. The bars indicate 95% confidence intervals, the dashed horizontal line indicates significance levels of the tests (0.05), D values
indicate the relative difference used to compare probabilities with 95% confidence intervals given in parentheses [5].
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2. Conditioned rejection probabilities

In order to assess the influence of nonstationarity on
univariate measures, the following conditional probabilities
are estimated [5]:

p
(
U 1

X

∣∣S0
X

) = n
(
U 1

X ∩ S0
X

)
n
(
S0

X

) , (15)

p
(
U 1

X

∣∣S1
X

) = n
(
U 1

X ∩ S1
X

)
n
(
S1

X

) , (16)

where S0
X and S1

X are the outcomes of the stationarity test [5]
being not rejected and rejected respectively. Consequently
n(S1

X) and n(S0
X) are the number of signals in the set X that have

not rejected and have rejected the stationarity test respectively.
These rejection probabilities are defined analogously for
bivariate measures as per Eqs. (15) and (16).

Next, the dependence between univariate and bivariate
recurrence network measures is assessed. To do so, we first
define the conditional probability [5]

p
(
B1

∣∣U 1
XU 1

Y

) = n
(
B1 ∩ (

U 1
X ∩ U 1

Y

))
n
(
U 1

X ∩ U 1
Y

) (17)

that assesses whether the probability of rejection using
bivariate measure is impacted by the fact that both the signals
individually rejected H 0

univ. Analogous to Eqs. (17), we define
p(B1|U 1

XU 0
Y ) and p(B1|U 0

XU 0
Y ). In order to test the dependence

the other way, we define the conditional probability [5]

p
(
U 1

XU 1
Y

∣∣B1
) = n

((
U 1

X ∩ U 1
Y

) ∩ B1
)

n(B1)
(18)

that assesses whether the probability of rejection using univari-
ate measures for signal pairs in sets X and Y is impacted by the
fact that H 0

biv was rejected. Analogous to Eqs. (18), we define
p(U 1

XU 0
Y |B1), p(U 0

XU 0
Y |B1), p(U 1

XU 0
Y |B0), p(U 0

XU 0
Y |B0), and

p(U 1
XU 1

Y |B0).

3. Comparing probabilities

We compare the probabilities using the relative difference
measure D suggested in Andrzejak et al. [5]

D = p1 − p2

p1 + p2
. (19)

The measure D varies between −1 and 1. Evidently, negative
values are obtained when p1 < p2 and positive values are
obtained when p1 > p2. We derive the confidence intervals
(CIs) for the measure D and the probability estimates exactly
as given in Ref. [5]. The reader is directed to Ref. [5] for an
excellent and detailed description regarding the estimation of
CI for the probabilities and D.

F. Results from Andrzejak et al. [5]

In order to classify the focal and nonfocal EEG signals into
stationary and nonstationary signals, Andrzejak et al. [5] used
a combination of amplitude stationarity test, frequency sta-
tionarity test, and correlation stationarity test as a stationarity
test. The full description of the test can be found in Ref. [5].
In order to reject the stationarity test, it is sufficient to reject

TABLE I. Comparison of the rejection probability for the focal
EEG signals. First column shows the univariate measures on which
the randomness test is based. Second and third column shows the
rejection probability for the focal EEG signals that have not rejected
and have rejected the stationarity test respectively. Fourth column
shows the corresponding D value.

Measures pF (U 1
X|S0) pF (U 1

X|S1) D

C 0.42 0.31 0.14
R 0.17 0.16 0.03
L 0.42 0.55 −0.13
BC 0.32 0.40 −0.11
N [5] 0.30 0.28 0.03

either the amplitude stationarity test or frequency stationarity
test or correlation stationarity test. It has to be noted that this
stationarity test is very strict and the significance level of the
test, using 99 surrogates, is 0.049.

To facilitate a direct comparison of recurrence network
measures with the nonlinear measures used in Andrzejak
et al. [5], we use the results of the stationarity test, randomness
test based on nonlinear prediction error N , and nonlinear in-
dependence test based on nonlinear interdependence measure
L described in [5] which is publicly available for download
[37].

III. RESULTS

A. Univariate measures

Figure 3 shows the unconditioned and conditioned rejection
probabilities for the randomness test combined with iAAFT
surrogates based on univariate recurrence network measures—
the average clustering coefficient C (first row), assortativity R
(second row), the average path length L (third row), and the
average betweenness centrality BC (fourth row). Also for the
sake of comparison, rejection probabilities using nonlinear
prediction error N [5] is also shown (fifth row).

It is clear from Fig. 3 that the contrast between all the focal
and nonfocal EEG signals (left column) as given by the D

value is highest for the randomness test based on assortativity
R [Fig. 3(d)], followed by the average clustering coefficient
C [Fig. 3(a)] and nonlinear prediction error N [5] [Fig. 3(m)].
Also, the unconditioned rejection probability based on the
randomness test for these measures is greater for the focal
EEG signals compared to the nonfocal EEG signals. On the
other hand, it can be seen that the average path length L and
the average betweenness centrality BC give similar rejection

TABLE II. Same as Table I, but for nonfocal EEG signals.

Measures pN (U 1
X|S0) pN (U 1

X|S1) D

C 0.17 0.12 0.17
R 0.07 0.04 0.22
L 0.38 0.50 −0.13
BC 0.31 0.34 −0.04
N [5] 0.15 0.23 −0.21
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TABLE III. Comparison of the rejection probability for focal EEG signals that have rejected the stationarity test. First column shows the
univariate measures on which the randomness test combined with TFT surrogates is based. Columns 2–6 show the rejection probability for
fc = 0.01, 0.02, 0.03, 0.04, and 0.05 respectively.

Measures fc = 0.01 (5.12 Hz) fc = 0.02 (10.24 Hz) fc = 0.03 (15.36 Hz) fc = 0.04 (20.48 Hz) fc = 0.05 (25.6 Hz)

C 0.41 0.51 0.45 0.27 0.14
R 0.22 0.34 0.25 0.16 0.08
L 0.42 0.27 0.20 0.17 0.12
BC 0.28 0.17 0.15 0.13 0.10
N [5] 0.32 0.24 0.12 0.06 0.03

0

0.2

0.4

0.6

0.8

1

D = 0.43
(0.36,0.51)

D = 0.45
(0.39,0.51)

D = 0.39
(0.35,0.44)

D = 0.41
(0.36,0.47)

D = 0.40
(0.32,0.48)

D = 0.32
(0.22,0.43)

(a)

0

0.2

0.4

0.6

0.8

1

D = 0.57
(0.43,0.70)

D = 0.45
(0.36,0.55)

D = 0.48
(0.41,0.55)

D = 0.43
(0.35,0.51)

D = 0.38
(0.27,0.48)

D = 0.17
(0.04,0.29)

(b)

0

0.2

0.4

0.6

0.8

1

D = 0.05
(0.02,0.08)

D = 0.08
(0.04,0.12)

D = 0.18
(0.12,0.24)

D = 0.21
(0.14,0.29)

D = 0.28
(0.19,0.37)

D = 0.28
(0.17,0.39)

(c)

R
ej
ec
ti
o
n
p
ro
b
a
b
il
it
y

0

0.2

0.4

0.6

0.8

1

D = 0.08
(0.04,0.12)

D = 0.12
(0.06,0.18)

D = 0.23
(0.14,0.31)

D = 0.24
(0.15,0.33)

D = 0.26
(0.16,0.36)

D = 0.23
(0.12,0.35)

(d)

0

0.2

0.4

0.6

0.8

1

D = 0.09
(0.03,0.14)

D = 0.14
(0.08,0.19)

D = 0.12
(0.06,0.18)

D = 0.12
(0.03,0.21)

D = 0.10
(-0.03,0.23)

D = -0.01
(-0.18,0.15)

(e)

p
F
(U

1X |S
1)

p
N
(U

1X |S
1)

p
F
(U

1X |S
1)

p
N
(U

1X |S
1)

p
F
(U

1X |S
1)

p
N
(U

1X |S
1)

p
F
(U

1X |S
1)

p
N
(U

1X |S
1)

p
F
(U

1X |S
1)

p
N
(U

1X |S
1)

p
F
(U

1X |S
1)

p
N
(U

1X |S
1)

FIG. 4. (Color online) (a) Contrast between the rejection probabilities of focal pF (red) and nonfocal pN (green) EEG signals as given
by the randomness test combined with TFT surrogates based on the average clustering coefficient C for nonstationary signals, from left to
right, at fc = 0, 0.01, 0.02, 0.03, 0.04, 0.05. (b)–(e) As in (a), but for assortativity R, the average path length L, the average betweenness
centrality BC, and nonlinear prediction error N respectively. The bars indicate 95% confidence intervals, the dashed horizontal line indicates
significance levels of the tests (0.05), D values indicate the relative difference used to compare probabilities with 95% confidence intervals
given in parentheses [5].
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TABLE IV. Same as Table III, but for nonfocal EEG signals that have rejected the stationarity test.

Measures fc = 0.01 (5.12 Hz) fc = 0.02 (10.24 Hz) fc = 0.03 (15.36 Hz) fc = 0.04 (20.48 Hz) fc = 0.05 (25.6 Hz)

C 0.16 0.22 0.18 0.11 0.07
R 0.08 0.12 0.10 0.07 0.05
L 0.36 0.19 0.13 0.09 0.06
BC 0.22 0.11 0.09 0.08 0.06
N [5] 0.24 0.18 0.05 0.06 0.03

probability for both the focal and the nonfocal EEG signals
resulting in low values for D [Figs. 3(g) and 3(j)].

On excluding signals that reject the stationarity test (Fig. 3,
middle column) we see that the contrast between the focal
and nonfocal EEG signals as given by the D value is still
the highest for assortativity R [Fig. 3(e)] followed by the
average clustering coefficient C [Fig. 3(b)] and nonlinear
prediction error N [Fig. 3(n)]. Again, the rejection probability
based on these measures is greater for the focal EEG signals
compared to the nonfocal EEG signals. The average path
length L and the average betweenness centrality BC again
give similar rejection probabilities when conditioned on S0

X,
leading to low D values [Figs. 3(h) and 3(k)] and thus poor
contrast between the focal and nonfocal EEG signals. It
can be seen from Figs. 3(m) and 3(n) that when using the
nonlinear prediction error N the contrast between the focal
and nonfocal EEG signals increases significantly on excluding
signals that reject the stationarity test, as reported in [5] as
well.

When the analysis is restricted purely to the focal and
nonfocal EEG signals that have rejected the stationarity test
(Fig. 3, right column), i.e., nonstationary signals, we can see

that the contrast between the focal and nonfocal EEG signals
is still the highest for assortativity R [Fig. 3(f)] followed by
the average clustering coefficient C [Fig. 3(c)]. The rejection
probability based on these measures is greater for the focal
EEG signals than the nonfocal EEG signals. The average
path length L, the average betweenness centrality BC, and
the nonlinear prediction error N give a similar rejection
probability for both the focal and nonfocal EEG signals which
results in low D value [Figs. 3(i), 3(l), and 3(o) respectively].

Tables I and II show the impact of nonstationarity on the
rejection probability of the randomness test based on the
univariate measures, for the focal and nonfocal EEG signals
respectively. We observe that, for the both focal and nonfocal
EEG signals, a rejection of the stationarity test increases the
rejection probability substantially for the randomness test
based on the average path length L, whereas in the case of
the betweenness centrality BC, for the nonfocal EEG signals
only a slight increase of the rejection probability is found and
for the focal EEG signals a reasonable increase is observed.
On the other hand, a rejection of the stationarity test decreases
the rejection probability for the randomness test based on
assortativity R and the average clustering coefficient C, for
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FIG. 5. (Color online) (a) Contrast between the rejection probabilities of focal pF (red) and nonfocal pN (green) EEG signals as given
by the nonlinear independence test based on the average cross-clustering coefficient Ccross for all the signals (a), stationary signals (b), and
nonstationary signals (c). (d)–(f)As in (a)–(c) but for the nonlinear independence test based on nonlinear interdependence measure L described
in [5]. Other elements in the figure are as in Fig. 3.
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nonfocal EEG signals. In the case of focal EEG signals,
only the average clustering coefficient C shows a decrease
in rejection probability, while the rejection of the stationarity
test has no impact on assortativity R. In comparison, for the
nonfocal signals a rejection of the stationarity test increases
the rejection probability for the randomness test based on the
nonlinear prediction error N . For the focal signals a rejection
of stationarity test has no impact on the rejection probability
for the randomness test based on the nonlinear prediction error
N . Also, the number of focal and nonfocal signals rejecting
the null hypothesis of the randomness test is the lowest for
assortativity R.

Figure 4 shows the results of randomness test combined
with TFT surrogates for nonstationary EEG signals, using the
average clustering coefficient C, assortativity R, the average
path length L, the average betweenness centrality BC, and
nonlinear prediction error N for values of the cutoff frequency
fc ranging 0–0.05 in steps of 0.01 (from left to right). It
can be seen from Fig. 4 that as fc is increased (up to
0.02), the rejection probability of focal and nonfocal EEG
signals increase in the case of average clustering coefficient
C and assortativity R. However, the contrast between focal
and nonfocal signals is still maintained very well [Figs. 4(a)
and 4(b)]. In the case of the network measures the average
path length L and average betweenness centrality BC, we
see that as fc is increased, the contrast between focal and
nonfocal EEG signals starts to improve, while the rejection
probabilities start to decrease for both focal and nonfocal EEG
signals [Figs. 4(c) and 4(d)]. Similar observations are made
in the case of nonlinear prediction error N , but the contrast
between focal and nonfocal EEG signals as given by D is
lower compared to recurrence network measures [Fig. 4(e)].
For high values of fc (> 0.03), we observe that the rejection
probabilities for both focal and nonfocal EEG signals start to
drop in the case of all the measures as the surrogates start
becoming increasingly similar to the original data and might
contain too much of the nonlinear deterministic dynamics of
the original data in them. These results are also summarized
in Tables III and IV.

B. Bivariate measure

Figures 5(a)–5(c) show the unconditioned and conditioned
rejection probabilities for the nonlinear independence test
based on the average cross-clustering coefficient Ccross. For
the sake of comparison, the rejection probabilities for the non-
linear independence test based on nonlinear interdependence
measure L described in [5] is also shown [Figs. 5(d)–5(f)].

It is clear from Fig. 5 that the contrast between all the
focal and nonfocal EEG signals as given by the D value
is greater for the average cross-clustering coefficient Ccross

[Fig. 5(a)] compared to the nonlinear interdependence measure
L [Fig. 5(d)]. Also, on excluding signals for which the
stationarity test was rejected, we see that the contrast between
the focal and nonfocal EEG signals is enhanced when the
nonlinear interdependence measure L is used [Fig. 5(e)],
but the D is still less than what is obtained with average
cross-clustering coefficient Ccross [Fig. 5(b)]. When only
nonstationary signals are considered, the contrast between the
the focal and nonfocal EEG signals as given by the D values

TABLE V. Comparison of the rejection probability for the focal
EEG signals. First column shows the bivariate measures on which
the nonlinear independence test is based. Second and third columns
show the rejection probability for the focal EEG signals that have not
rejected and have rejected the stationarity test respectively. Fourth
column shows the corresponding D value.

Measures pF (B1|S0) pF (B1|S1) D

Ccross 0.46 0.40 −0.06
L [5] 0.52 0.61 −0.08

is very low, when nonlinear interdependence measure L is
used [Fig. 5(f)]. On the contrary, in the case of the global
cross-clustering coefficient Ccross we observe that the contrast
between the focal and the nonfocal EEG signals as given by the
D value still remains at the same level as it was when stationary
signals or all the signals were considered [Fig. 5(c)].

Tables V and VI show the impact of nonstationarity on
the rejection probabilities for the nonlinear independence test
based on the average cross-clustering coefficient Ccross and
the nonlinear interdependence measure L. It is evident that
the rejection of the stationarity test considerably increases the
rejection probability for the nonlinear independence test based
on the nonlinear interdependence measure L, for both the
focal and nonfocal signals. On the other hand, the rejection
of the stationarity test has a negligible impact on the rejection
probability for the nonlinear independence test based on the
average cross-clustering coefficient Ccross, for both the focal
and nonfocal signals.

Figure 6 shows the results of the nonlinear independence
test combined with TFT surrogates for nonstationary focal
and nonfocal EEG signals, using average cross-clustering
coefficient (shown at left) and nonlinear interdependence
measure (shown at right). We only show results for fc = 0.02
as we observed a similar trend as in the case of univariate
measures for increasing values of fc. It is clear from the figure
that the rejection probabilities for focal and nonfocal EEG
signals increase in the case of the average cross-clustering
coefficient compared to the results obtained from iAAFT
surrogates. However the contrast between focal and nonfocal
EEG signals as given by D is almost at the same level as
for iAAFT surrogates [Fig. 5(c)]. In the case of the nonlinear
interdependence measure, the rejection probabilities for focal
and nonfocal EEG signals decrease compared to the results
obtained with iAAFT surrogates whereas the contrast between
the focal and nonfocal EEG signals is enhanced compared to
what was obtained with iAAFT surrogates [Fig. 5(f)]. These
results are summarized in Table VII.

C. Dependence between univariate and bivariate measure

In order to assess the dependence between univariate and
bivariate recurrence network measures and compare our results

TABLE VI. Same as Table V, but for nonfocal EEG signals.

Measures pN (B1|S0) pN (B1|S1) D

Ccross 0.23 0.21 −0.04
L [5] 0.30 0.51 −0.25
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FIG. 6. (Color online) Contrast between the rejection probabilities of focal pF (red) and nonfocal pN (green) EEG signals as given by the
nonlinear independence test combined with TFT surrogates based on the average cross-clustering coefficient Ccross (left) and the nonlinear
interdependence measure L (right). The bars indicate 95% confidence intervals, the dashed horizontal line indicates significance levels of the
tests (0.05), D values indicate the relative difference used to compare probabilities with 95% confidence intervals given in parentheses [5].
Other elements in the figure are as in Fig. 3.

directly with that of Andrzejak et al. [5], we considered only
the focal EEG signals that did not reject the stationarity test so
as to reduce the influence of nonstationarity on the results, as
suggested in [5].

We estimated the conditional probabilities p(B1|U 0
XU 0

Y ),
p(B1|U 1

XU 0
Y ), and p(B1|U 1

XU 1
Y ) [see Eq. (17)]. Here we

only report the results for the dependence between the
average clustering coefficient C (univariate measure) and
average cross-clustering coefficient Ccross (bivariate measure),
as similar observations were made for the dependence between
other univariate recurrence network measures and the average
cross-clustering coefficient Ccross.

From Fig. 7(a) it can be seen that rejection of one of
the randomness tests (left) based on the average clustering
coefficientC increases the rejection probability of the nonlinear
independence test based on the average cross-clustering coeffi-
cient Ccross, while rejection of both the randomness tests based
on the average clustering coefficient C further increases the
rejection probability of nonlinear independence tests (right)
based on the average cross-clustering coefficient Ccross. Similar
observations can be made when nonlinear prediction error N

and nonlinear interdependence measure L as mentioned in [5]
are used [Fig. 7(b)].

However, it can also be seen that the rejection of the
randomness tests alone is not necessary for the rejection of the

TABLE VII. Comparison of rejection probabilities for the nonsta-
tionary focal and nonfocal EEG signals using nonlinear independence
test combined with TFT surrogates at fc = 0.02 (10.24 Hz). First
column shows the bivariate measures on which the nonlinear inde-
pendence test is based. Second and third columns show the rejection
probabilities for the focal and nonfocal EEG signals respectively.

Measures pF (B1|S1) pN (B1|S1)

Ccross 0.51 0.28
L [5] 0.32 0.23

nonlinear independence test as the value of the rejection proba-
bility p(B1|U 0

XU 0
Y ) is still considerably above the significance

level in the case of both the average cross-clustering coefficient
Ccross and nonlinear interdependence measure L [Figs. 7(a)
and 7(b) (middle)]. As suggested and performed in [5], we also
test this conjecture by shuffling the pairs of stationary focal
EEG signals without replacement. Instead of pairing signal
x with its neighboring contact y, it was paired with some
other signal that was randomly selected without replacement
from the remaining signals in set Y [5]. Thus, any potential
nonlinear dependence is destroyed and we end up with pairs of
signals that are independent of each other, but might possess
strong individual dynamics. To see if the individual dynamics
caused any false interdependence between the signals as
measured by the average cross-clustering coefficient Ccross, we
again computed the probability measures mentioned above
and the results are shown in Fig. 8. It can be seen from
the figure that irrespective of the outcome of the randomness
test, the rejection probabilities of the nonlinear independence
test based on the average cross-clustering coefficient Ccross

are close to significance level and remain more or less
the same resulting in very low values D values. Also,
for a large number of these shuffled signal pairs Ccross

xy ≈
Ccross

yx , in this case, indicating independence between the
signals.

We also assessed the dependence other way, i.e., testing if
the outcome of the nonlinear independence test impacts the
outcome of the randomness test. From Fig. 9 it can be seen
that the rejection of the nonlinear independence test based
on the average cross-clustering coefficient Ccross increases
the rejection probabilities of randomness tests based on the
average clustering coefficient C [Fig. 9(c)]. However, from
the figure it is also evident that the rejection of the nonlinear
independence test is not necessary for the rejection of the
randomness tests as the rejection probabilities pF (U 1

XU 1
Y |B0)

and pF (U 1
XU 0

Y |B0) are still above the significance levels. Also,
it can be seen the randomness tests are accepted even if

022927-13



NARAYAN PUTHANMADAM SUBRAMANIYAM AND JARI HYTTINEN PHYSICAL REVIEW E 91, 022927 (2015)

D = 0.36

(0.24,0.47)

D = 0.54

(0.49,0.60)

(a)

pF (B1|U1
XU0

Y ) pF (B1|U0
XU0

Y ) pF (B1|U1
XU1

Y )
0

0.2

0.4

0.6

0.8

1

D = 0.12

(0.05,0.19)

D = 0.23

(0.17,0.28)

(b)

R
ej
ec
ti
o
n
p
ro
b
ab

il
it
y

pF (B1|U1
XU0

Y ) pF (B1|U0
XU0

Y ) pF (B1|U1
XU1

Y )
0

0.2

0.4

0.6

0.8

1

FIG. 7. (Color online) (a) Impact of the outcome of the randomness tests on the nonlinear independence test for the average cross-clustering
coefficient Ccross when one of the randomness tests is rejected (left), neither of the randomness tests is rejected (middle), and both of the
randomness tests are rejected (right). (b) As in (a) but for the nonlinear interdependence measure L and nonlinear prediction error N . Other
elements in the figure are as in Fig. 3.

the nonlinear independence test is rejected, as given by the
rejection probability pF (U 0

XU 0
Y |B1)

IV. DISCUSSION

This study assesses the impact of nonstationarity in the
data on the computation of univariate recurrence network
measures—the average clustering coefficient C, assortativity
R, the average path length L, the average betweenness
centrality BC, the bivariate cross-recurrence network measure,
and the average cross-clustering coefficient Ccross. We applied
recurrence network measures, combined with iAAFT as well
as TFT surrogate methods, to the EEG data described in
Ref. [5] which is comprised of 3750 pairs of focal and
nonfocal EEG signals of length 20 sec (2560 samples) each.
At this time scale, as per the stationarity test based on linear
variability measures, Andrzejak et al. [5] found that there is
more nonstationarity in the nonfocal EEG signals compared to
the focal EEG signals. However, they also found that the focal

EEG signals still contained a significant amount of signals
(roughly 46%) that reject the stationarity test.

A. Univariate and bivariate recurrence network measures

1. Impact of nonstationarity

Previous studies have reported the presence of more
nonlinearity [43,46,47] in the EEG signals and stronger inter-
dependence between the EEG signals [44,48–53] derived from
epileptogenic brain areas in comparison to the EEG signals
derived from normal brain areas. However, the influence
of nonstationarity in the EEG data on the obtained results
had not been considered in these studies. For the first time,
Andrzejak et al. [5] assessed the influence of nonstationarity
on both the univariate and bivariate nonlinear measures.
They provided the evidence that the univariate and bivariate
measures they considered could distinguish between focal and
nonfocal signals more effectively, once nonstationarity was
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FIG. 8. (Color online) Outcome of the randomness test based on the average clustering coefficient C does not impact the outcome of
nonlinear independence test based on the average cross-clustering coefficient Ccross. The rejection probabilities shown are for shuffled signal
pairs that are independent of each other. Other elements in the figure are as in Fig. 3.
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FIG. 9. (Color online) Impact of the outcome of the nonlinear independence test based on the average cross-clustering coefficient Ccross on
the outcome of randomness test based on the average clustering coefficient C. Probability that neither randomness test is rejected (a), one of
the randomness tests is rejected (b), and both randomness tests are rejected (c). Other elements in the figure are as in Fig. 3.

controlled for. Also, only linear surrogate methods like iAAFT
or AAFT techniques have been used so far in combination
with randomness or nonlinear independence tests. These
surrogates are stationary by construction and may violate the
null hypothesis wrongly leading to false rejections. In this
work we combine recurrence network measures not only with
iAAFT surrogates but also with TFT surrogates. The TFT
technique preserves the nonstationarity in the surrogates and at
the same time destroys any nonlinearity arising due to irregular
fluctuations in the data [35].

Transforming time series into complex networks based
on recurrences in phase space and quantifying its topology
using graph theoretical measures to study the properties of
the underlying dynamical system has garnered much interest
recently. From graph theory, we know that a completely
random network has a low clustering coefficient C and average
path length L compared to nonrandom graphs that have some
structure in them. Also, in the absence of any assortative
mixing, the assortativity R for a network is zero, whereas for
a perfectly assortative network, the assortativity R is 1. For
a disassortative network, the value of assortativity R ranges
−1–0. In a random network, dissimilar nodes are more likely
to be paired with each other (for example, high degree nodes
pair with low degree nodes) and such a network tends towards
being disassortative. It has been shown that the recurrence
network measures like the average clustering coefficient C
and average path length L can distinguish between periodic
and chaotic dynamics [20]. Particularly, the values of average
clustering coefficient C and the average path length L are high
for dynamical systems exhibiting periodic dynamics compared
to chaotic dynamics. Recently, it was also shown that, after
embedding, the recurrence networks constructed from the
surrogates, which are Gaussian, linear stochastic processes,
exhibit lower values of average clustering coefficient and

average path length compared to the original data that have
some deterministic (chaotic) dynamics [33]. Hence, compar-
ing the topological characteristics of the complex networks
generated from surrogate time series with that of the original
EEG signal yields an interesting way to study the presence
of any existing nonrandom structure in the original EEG time
series [33]. Our results indicate that the complex networks
obtained from the focal EEG signals are more assortative and
clustered compared to that of the complex networks obtained
from the nonfocal EEG signals, which possibly have more
random structure in them. Additionally, results obtained from
TFT surrogates also indicate that the attractors reconstructed
from focal EEG signals are more fractionated [17] than that of
nonfocal EEG signals as indicated by the average betweenness
centrality measure.

The implications of the results obtained with the average
clustering coefficient C and assortativity R for the randomness
test and the average cross-clustering coefficient Ccross for the
nonlinear independence test, combined with iAAFT surro-
gates, are in agreement with the work of Andrzejak et al. [5].
Also, it was pointed out in Ref. [5] that nonstationarity in the
data can wrongly favor the rejection of the null hypothesis
and hence increase the rejection probability, as was the case
with nonlinear prediction error N for the nonfocal EEG signals
and nonlinear interdependence measure L, for both the focal
and nonfocal EEG signals used in their work. Contrary to
the findings reported in Ref. [5], we found that rejection
of the stationarity test decreases the rejection probability
for the randomness test based on the univariate measures,
the average clustering coefficient C for both the focal and
nonfocal EEG signals, and assortativity R for the nonfocal
EEG signals. However, in the case of the average path length
L and the average betweenness centrality BC, for both the
focal and nonfocal EEG signals, the rejection probability of the
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randomness test increases with the rejection of the stationarity
test. For the bivariate measure, the average cross-clustering
coefficient Ccross, for both focal and nonfocal EEG signals, the
rejection of the stationarity test had almost no impact on the
rejection probability of the nonlinear independence test.
The contrast between the focal and nonfocal EEG signals
obtained with the measures—the average clustering coefficient
C, assortativity R, and the average cross-clustering coefficient
Ccross, irrespective of whether the considered signals are sta-
tionary or nonstationary, is greater than what is obtained using
nonlinear prediction error N and nonlinear interdependence
measure L described in [5]. However, the average path length
L and the average betweenness centrality BC fail to distinguish
between the focal and nonfocal EEG signals due to their high
rejection probabilities when iAAFT surrogates are used.

We found that the results for the average path length L
and the average betweenness centrality BC improved when
TFT surrogates were used. On preserving the phases of low
frequency components of the original data in the surrogates,
these measures could better distinguish between nonstationary
focal and nonfocal EEG signals. The univariate measure
nonlinear prediction error N , which gave low contrast in
the rejection probabilities between nonstationary focal and
nonfocal EEG signals when iAAFT surrogates were used,
could distinguish between focal and nonfocal EEG signals
relatively well with TFT surrogates. These results indicate
that, by including the trends in the surrogates, one can improve
the performance of these measures in distinguishing between
different dynamics. However, it is important to note that TFT
surrogates depend mainly on the maximum preserved cutoff
frequency fc. If fc is too high, the surrogates can contain too
much of the nonlinearity present in the data and the rejection
probabilities for the randomness test starts decreasing. In the
case of the average clustering coefficient C and assortativityR,
which could distinguish well between nonstationary focal and
nonfocal EEG signals even with iAAFT surrogates, performed
in a similar manner with TFT surrogates. This implies that
these recurrence network measures characterize the dynamical
complexity contained in the irregular fluctuations of the data
very well.

Like the univariate surrogates, the bivariate surrogates
based on iAAFT, which is used in this study and as well
as in previous studies [5,45] represent a null hypothesis that
is composed of different assumptions. One such assumption
is that of stationarity. Our results based on the average
cross-clustering coefficient Ccross, in conjunction with iAAFT
surrogates, indicate that the focal EEG signals are less
consistent with the null hypothesis H 0

biv compared to the
nonfocal EEG signals. This result was consistent across the
board, whether the signals rejected the stationarity test or not.
However, we found using iAAFT surrogates that the nonlinear
interdependence measure L is affected by nonstationarity
in the data so as to falsely favor the rejection of the null
hypothesis when the analysis is restricted to nonstationary
signals. Hence, in the case of the nonlinear interdependence
measure L, one needs to correct for nonstationarity, by ex-
cluding nonstationary signals, in order to enhance the contrast
between focal and nonfocal EEG signals [5]. Contrary to this
observation, the bivariate cross-recurrence network measure,
the average cross-clustering coefficient Ccross, is not affected

by nonstationarity in the data, giving same levels of rejection
probabilities for nonstationary signals as for stationary signals.
Hence, one need not control for nonstationarity when applying
bivariate cross-recurrence network measure, the average cross-
clustering coefficient Ccross. Overall, in the case of average
cross-clustering coefficient Ccross, the contrast between the
focal and nonfocal EEG signals changed very little and so did
their rejection probabilities for the nonlinear independence test
with respect to the inclusion or exclusion of the nonstationary
signals. Like in the case of univariate measures, we repeated
this analysis using TFT surrogates for nonstationary focal and
nonfocal EEG signals, which does not assume stationarity in
surrogates. In the case of the bivariate measure, the average
cross-clustering coefficient Ccross, performed similarly when
iAAFT or TFT surrogates were used, by distinguishing well
between nonstationary focal and nonfocal EEG signals. On the
other hand, the performance of the nonlinear interdependence
measure L improved with TFT surrogates and it could
distinguish relatively better between nonstationary focal and
nonfocal EEG signals as evidenced by the improvement in the
D value compared to the iAAFT case. However, the contrast
between focal and nonfocal EEG signals as provided by the
nonlinear interdependence measure L was less than that of the
average cross-clustering coefficient Ccross in the case of both
iAAFT and TFT surrogates.

With respect to the average clustering coefficient C and
assortativity R, our results can be interpreted in two ways.
First, since both these measures give lower rejections for
the randomness test using iAAFT surrogates, when signals
that reject the stationarity test are included, it could mean
that nonstationarity does not impact these measures so as
to favor false rejections as in the case of the average path
length L, the average betweenness centrality BC, and the
nonlinear prediction error N . Particularly, assortativity R
shows good specificity by giving rejections almost at the level
of significance for the nonfocal EEG signals. High specificity is
desirable especially if the aim is to exclude nonepileptogenic
(nonfocal) brain areas from being wrongly resected. On the
other hand, the average clustering coefficient C shows good
sensitivity by giving higher rejections for the focal EEG signals
for the randomness test compared to the nonlinear prediction
error N and assortativity R, even when only nonstationary
signals are considered. From a clinical application point of
view, the average clustering coefficient C could be particularly
useful in correctly identifying epileptogenic (focal) brain
areas for resection. A combination of the recurrence network
measures assortativityR and the average clustering coefficient
C can provide an even more reliable way to distinguish focal
brain areas from the nonfocal ones. This is clearly evident
from our results as the relative difference D, which is used to
compare the rejection probabilities is higher for assortativityR
and the average clustering coefficient C compared to the other
measures used in this study, including the nonlinear prediction
error N .

The second interpretation of our results obtained using the
average clustering coefficient C and assortativity R as applied
to the nonstationary signals could be given on the basis of
how nonstationarity in the data interacts with these measures.
It could be very well possible that the nonstationarity in the
data impacts the computation of these two networks measures
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and causes them to be lower than that of surrogates that
are stationary by construction. This impact is seen for both
focal and nonfocal EEG signals in the case of the average
clustering coefficient C and mostly nonfocal signals in the
case of assortativity R. To test this conjecture, we also used
TFT surrogates, which are not stationary by construction and
preserve the global behavior of the original data. Thus, any
difference between the TFT surrogates and the original data
at hand must not arise due to nonstationarity (i.e., trends) but
possibly due to the difference in dynamics encoded in the
irregular fluctuations of the data. However, irrespective of the
supposed effect of nonstationarity on the complex networks,
our results quantitatively show that the contrast between focal
and nonfocal EEG signals, as given by the relative difference D

using the univariate recurrence network measures (particularly
average clustering coefficient C and assortativity R), was still
high in comparison to the nonlinear prediction error N . The
same observation holds true for the bivariate recurrence net-
work measure, the average cross-clustering coefficient Ccross,
in comparison to the nonlinear interdependence measure L.

2. Dependence between univariate and bivariate measures

In this study we also assessed the relationship between the
univariate recurrence network measure, the average clustering
coefficient C, and the bivariate cross-recurrence network
measure Ccross. Here we considered only stationary focal EEG
signals to minimize the influence of nonstationarity on the
results [5]. Although we found that rejection of the randomness
test based on the average clustering coefficient C does increase
the rejection probability for the nonlinear independence test
based on Ccross, this correlation as noted in [5] could be
because the EEG signal pairs analyzed are from neighboring
contacts and such signal pairs are usually correlated. Hence
these are indeed not independent measurements. Again for
the same reason, we also noted that the rejection of the
nonlinear independence test also increased the probability that
the randomness test is rejected for one or both the signals.
Similar results were obtained in the study of Andrzejak
et al.[5] between the nonlinear measure N and nonlinear
interdependence measure L. In order to truly measure the
specificity of the bivariate cross-recurrence network measure,
the average cross-clustering coefficient Ccross, we shuffled the
EEG signal pairs so as to have pairs that contain independent
signals as suggested in Ref. [5]. We observed that in this case,
the rejection probability of the nonlinear independence test
based on the average cross-clustering coefficient was at the
significance level and did not depend on the outcome of the
randomness test, implying good specificity for the measure,
the average cross-clustering coefficient Ccross.

B. Limitations and outlook

We note that our study has several limitations, which
can be considered as potential future work. First, as already

noted in Ref. [5], the stationarity test itself is based on null
hypothesis and its rejection cannot guarantee that the dynamics
are truly nonstationary. Hence our analysis also suffers from
the same limitation as we have also used the stationarity test
proposed in [5] and thus, more advanced methods are needed to
analyze nonstationarity. Recently, Reike et al. [54] proposed
a method based on the analysis of distributions of temporal
distances of neighboring phase space vectors as a measure for
nonstationarity. Also, this technique does not require the time
series to be divided into smaller segments.

Second, the results of such time series analysis of EEG data
depend heavily on the type of surrogates used. In this work
we considered two types of surrogate schemes: iAAFT and
TFT surrogates (applied with iAAFT scheme). There other
surrogate techniques that can be used to preserve the nonsta-
tionarity in the surrogates. Recently, Lucio et al. [36] proposed
an improved surrogate technique to preserve nonstationarity
in the surrogates by detrending the data before computing the
Fourier transform and then retrending the data after inverse
Fourier transform. This technique is combined with the TFT
technique and can be applied using any linear surrogate
generation algorithm and it preserves the linear properties of
the nonstationary original data in the surrogates quite well [36].
Other methods based on wavelet surrogates have also been
proposed to deal with nonstationarity [55–57]. A detailed
comparative study on the application of different surrogate
techniques to investigate nonlinear dynamics, specifically in
nonstationary epileptic EEG data, would be considered in the
future.

As a concluding remark, the univariate recurrence network
measures and bivariate cross-recurrence network measure
can successfully distinguish between the dynamics of the
intracranial focal and nonfocal epileptic EEG signals and
these measures seem promising as reliable biomarkers to
distinguish epileptogenic brain areas from nonepileptogenic
areas, especially considering their performance regarding
nonstationary EEG signals.
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In this letter, we study the influence of observational noise on recurrence network (RN) measures, the 
global clustering coefficient (C) and average path length (L) using the Rössler system and propose the 
application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. 
We find that for an appropriate recurrence rate (R R > 0.02) the influence of noise on C can be minimized 
while L is independent of R R for increasing levels of noise. Indications of structural complexity were 
found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than 
L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural 
properties of EEG in normal and pathological states.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many natural systems are inherently governed by nonlinear dy-
namics. For example, the dynamical behavior of individual neurons 
in the brain is governed by threshold and saturation phenom-
ena, which give rise to nonlinearity [1]. Thus, nonlinear time se-
ries analysis is an important tool in understanding the dynamical 
properties of the brain using electroencephalography (EEG), which 
provides temporal resolution in the millisecond range. One of the 
most important applications of nonlinear EEG analysis itself is in 
epilepsy [2,3] because of the dynamic nature of the disease [4]. 
Furthermore, the underlying dynamics of epileptic EEG are highly 
nonlinear when compared to normal background EEG activity [5].

Nonlinear dynamical systems (also known as complex systems) 
have two main properties – determinism and recurrence [6]. A de-
terministic dynamical system can be defined as a system whose 
future behavior can be accurately predicted, given sufficient knowl-
edge for the current state of the system exists. Let the current state 
of the system be given as zn , such that zn ∈ M ⊆ Rm , where M
is an m-dimensional phase space attractor [7]. If there is an evo-
lution operator Φ : M × Z �→ M such that Φ(zn, t) = zn+t , then 

* Corresponding author.
E-mail address: npsubramaniyam@gmail.com (N. Puthanmadam Subramaniyam).

the system described by (M, Φ) is said to be deterministic if the 
evolution operator Φ can precisely predict the state zn+t , using 
the information present in zn [7]. Recurrence is another property 
which can be used to characterize the nonlinear dynamics of a 
system [6]. Recurrence plot (RP) is a method for visualizing recur-
rences and was originally introduced by Eckmann et al. [8]. An RP 
is a two-dimensional graphical representation of a matrix (known 
as recurrence matrix – binary, square, and symmetric) that has an 
entry of one for times when two states are neighbors (as defined 
by some proximity criterion) in phase space and zero elsewhere 
[9]. A simple visual analysis of RPs can give an insight into the dy-
namics of the system. For example, the RP of a system exhibiting 
periodic dynamics contains long and non-interrupted diagonals, 
while for chaotic dynamics, the diagonals are much shorter [6]. 
On the other hand, for a stochastic system, the RP looks erratic 
and filled with many isolated black dots [10]. Apart from visual 
analysis, one can also derive quantitative measures for RPs using 
recurrence quantification analysis (RQA) [11,12] to investigate the 
dynamical properties of the system. For an excellent and detailed 
review on RPs, the reader is referred to [6]. Since the information 
from real world systems is usually in the form of a time series, 
one has to reconstruct the phase space using suitable methods like 
time-delay embedding [13] before applying RP based approaches. 
Note that, apart from RP-based methods, a host of other nonlinear 
methods have been introduced for time series analysis. Some of 

http://dx.doi.org/10.1016/j.physleta.2014.10.005
0375-9601/© 2014 Elsevier B.V. All rights reserved.
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the most important and popular techniques are correlation dimen-
sion [14], Lyapunov exponent [15] and entropy-based measures 
[16]. An attractive feature of an RP based approach compared to 
other nonlinear approaches is that, it can be applied to short and 
non-stationary data [9].

In the last two decades, complex network theory has emerged 
as a popular tool to analyze complex and spatially extended sys-
tems [6]. It has found applications in melange of fields ranging 
from sociology to biological sciences [17]. Using network mea-
sures (local and global) [18,19], one can characterize the network 
structure and function of a complex system that is composed of 
many interacting elements [19]. Mathematically, a complex net-
work can be represented by a graph G = (N ,L), where the set 
N ≡ {n1,n2, ...,nN } is known as vertices or nodes and the set 
L ≡ {l1, l2, ..., lK } are the edges or links between those nodes [18]. 
For simplicity, we consider undirected graphs only. By integrat-
ing complex network theory with the concept of recurrence from 
dynamical systems theory, a new field of network-based time se-
ries analysis has been introduced that deals with the topological 
characterization of the time series using complex networks [9,
20]. Proximity networks are based on the concept of recurrences. 
Connectivity in such networks is defined in a data adaptive lo-
cal manner [21]. Under proximity networks, a class of networks 
known as recurrence networks, which include k-nearest-neighbor 
networks, adaptive nearest neighbor (ANN) networks [22,23], and 
epsilon-recurrence networks (ε-networks) [9,20], reinterpret the 
binary recurrence matrix as an adjacency matrix of the complex 
network [6]. Specifically, an attractor’s neighborhood is defined in 
terms of either fixed number of edges (k-nearest networks or ANN 
networks) [8,22–24] or fixed phase space volume (ε-networks) [9]. 
Such networks are also known as fixed mass and fixed volume net-
works respectively.

By quantifying the topology of the recurrence network using lo-
cal and global measures from graph theory [25,26], the dynamical 
properties of the underlying complex system can be characterized 
[20]. Using global graph theoretic measures like the global clus-
tering coefficient (C ) and the average path length (L) for G(N, K ), 
Zou et al. [27] studied the identification of complex periodic win-
dows in the Rössler system using ε-networks. It was found that for 
continuous-time dynamical system, C and L are in general greater 
for periodic dynamics compared to chaotic dynamics. Specifically, 
L is much smaller for a system exhibiting chaotic dynamics com-
pared to periodic dynamics. In another study by Shimada et al. 
[24], using fixed mass networks (k-nearest neighbor networks) it 
was shown that chaotic dynamics can be characterized by small 
world networks (high C and small L). Xiang et al. [28] studied 
fixed mass networks (ANN networks) and found that L scales lin-
early with the network size for low-order periodic dynamics, but 
exponentially for chaotic dynamics. Also, the value of C is gener-
ally higher for periodic dynamics compared to chaotic dynamics.

Investigating the ability of network measures like C and L to 
characterize the dynamics of a system in the presence of observa-
tional noise is an important research question, as the real world 
data is seldom noise free. Thiel et al. [29] studied the influence of 
observational noise on RQA measures and found that these mea-
sures are susceptible to noise level of 20% or more (noise level 
is given as the standard deviation of the underlying noise-free 
process) and they proposed a threshold ε that is five times the 
standard deviation of the noise [29]. However, it has not been 
sufficiently studied yet, how the addition of observational noise 
can cause a change in the measures of recurrence networks like C
and L for various threshold parameter (for example, various phase 
space volumes in case of ε-networks or number of edges in case of 
ANN networks). Also a study involving surrogate analysis method 
to test for the structural complexity of the data in the presence of 
noise by network measures like C or L has hitherto not been ad-

dressed. In general, a systematic study investigating the effect of 
observational noise on recurrence network measures and the abil-
ity of such measures to characterize the dynamical systems under 
increasing levels of noise is missing.

As mentioned before, nonlinear analysis is an important tech-
nique to understand the dynamical properties of the brain, es-
pecially in disorders like epilepsy. Andrzejak et al. [1] applied 
nonlinear measures like nonlinear prediction error P and effec-
tive correlation dimension D2,eff to different classes of EEG data: 
healthy EEG with eyes open and closed, EEG recordings between 
the seizures which is known as interictal EEG and EEG recordings 
of epileptic seizures which is known as ictal EEG. They reported 
strongest indication of nonlinearity for ictal EEG, while healthy EEG 
(eyes open) was compatible with quasilinear process. Gautama et 
al. [30] applied the method of delayed vector variance (DVV) for 
the data described in [1] and found indications of nonlinearity for 
both intracranial and surface EEG recordings. Given the potential of 
recurrence networks in characterization of dynamical systems and 
its reported advantages over other traditional non-linear measures 
in terms of its applicability to short and non-stationary data, its 
application in investigating the dynamical properties of EEG signals 
has not been fully explored. We have previously used the dataset 
described in [1] and characterized the underlying dynamics using 
fixed mass recurrence networks [31]. We found that the networks 
associated with ictal EEG are regular with high C and L, while the 
networks associated with interictal and surface EEG signals show 
small world property. However, we did not consider the effect of 
varying the threshold on the derived network measures. Also, we 
did not perform any surrogate analysis as reported in [1] to ana-
lyze structural properties of different classes of EEG signals.

Surrogate testing is an important tool in signal analysis [32]. 
In general, to use surrogate techniques for detecting nonlinear-
ity, a null hypothesis is defined, which assumes that the original 
signal is compatible with a linear, stochastic, and stationary pro-
cess, which is observed through a possibly nonlinear measurement 
function [1]. Based on this null hypothesis, a large number of sig-
nals (known as surrogates) are generated from the original signal 
such that the surrogates have the same linear autocorrelations as 
the original signal, but are otherwise random [32]. We then calcu-
late a discriminating statistic for both the original signal and the 
surrogates. If the discriminating statistic of the original signal devi-
ate from the surrogates, the null hypothesis is rejected. Rejection of 
the null hypothesis implies that the original signal is not consistent 
with the assumption of a linear, stochastic and stationary process 
and could indicate the presence of a possible nonlinear structure 
with a certain confidence level. Since recurrence network measures 
(like C and L) describe the structural properties of the attractors 
underlying a time series [33], these measures can be used as a 
discriminatory statistic to test for the structural complexity of the 
original data in conjunction with surrogates.

In this letter our aim is to investigate the ability of global net-
work measures like C and L derived from recurrence networks to 
characterize dynamical systems under increasing levels of noise us-
ing simulated data and then to apply this method to study the 
structural properties of experimental signals like the EEG data. We 
organize our study to answer two specific questions

1. At what noise level is the structural complexity and detection 
of dynamical transitions as measured by recurrence network 
measures obscured?

2. Can recurrence network measures be used to analyze the dif-
ferent structural properties of healthy and epileptic EEG sig-
nals?

To answer question 1, we simulate the Rössler system to display 
periodic and chaotic dynamics, to which we systematically add in-
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Fig. 1. Time series of the solution of Rössler system (x-component, 5000 data points) generated with a step size of h = 0.05 for (A) periodic regime (a = b = 0.1, c = 4) and 
(B) chaotic regime (a = b = 0.1, c = 18).

creasing levels of noise. To answer question 2, we use healthy and 
epileptic EEG datasets published in [1]. In this study we will focus 
only on recurrence networks derived using fixed volume approach, 
i.e., ε-networks. We also perform surrogate analysis [34] to inves-
tigate the ability of dynamical invariants like C and L derived from 
recurrence networks in analyzing structural properties of healthy 
and epileptic EEG time series.

2. Materials and methods

2.1. Simulated and real data

We used the Rössler system [35] to simulate periodic and 
chaotic regimes and for the real-world data we used the EEG data 
described in [1]. The following sections describe more in detail 
about the simulated and real-world data used in this study.

2.1.1. Rössler system
The Rössler system [35] is defined by a set of ordinary differ-

ential equations (ODE) as follows,

dx

dt
= −y − z, (1)

dy

dt
= x + ay, (2)

dz

dt
= b + z(x − c) (3)

By varying the parameters a, b, and c we can generate periodic 
and chaotic dynamics. In this study, a and b were fixed at 0.1, 
while c was set to 4 and 18, to generate periodic and chaotic dy-
namics respectively. The ODE was solved using the fourth-order 
Runge–Kutta method with a fixed step size of h = 0.05. We per-
formed 100 simulations each for periodic and chaotic dynamics 
with randomly chosen initial conditions. The initial transients were 
removed by discarding the first 5000 steps of integration. For con-
structing networks based on the time series, we used 5000 data 
points of the x-component of the solution of the Rössler ODE and 
reconstructed the phase space using time-delay embedding. Exem-
plary signals (x-component) for periodic and chaotic regimes are 
shown in Fig. 1.

To the simulated data x(t), we added the Gaussian observa-
tional noise η(t),

xnoise(t) = x(t) + η(t) (4)

Table 1
EEG published by Andrzejak et al. [1] which is used in this study.

Datasets Description Number of signals

A Eyes open 100
B Eyes closed 100
C Hippocampal-Interictal 100
D Epileptogenic Zone-Interictal 100
E Ictal 100

where η(t) ∼ DN (0, σ 2). Here D defined as the level of noise, 
which is given as a percentage of the standard deviation of the 
noise-free data x(t). In this study, we added Gaussian noise at lev-
els 10%, 20%, 40%, and 60%. In total, for each dynamics we had 500 
signals (100 iterations of the noise-free data plus 100 iterations ×
four noise levels).

2.1.2. EEG data
In this study, we used the EEG data published by Andrzejak 

et al. [1], which is available online at http://epileptologie-bonn.de. 
Description of the EEG data is given in Table 1. More details 
about the data, recording settings and conditions can be found 
elsewhere [1]. Briefly, the data contains five sets of EEG signals 
denoted as A–E, where sets A and B contain segments from the 
surface EEG recordings in eyes open and eyes closed conditions 
respectively. Sets C and D contain intracranial EEG recordings ob-
tained between the seizure activity (known as interictal EEG) from 
hippocampal zone and epileptogenic zone respectively. Set E con-
tains intracranial EEG recordings obtained during the seizure activ-
ity (known as ictal EEG). The sampling frequency was 173.6 Hz and 
each set contains 100 EEG signals of duration 23.6 seconds (4096 
samples) each.

2.2. Time series to recurrence networks

We applied time delay embedding methodology proposed by 
Takens to reconstruct the attractor from the time series [13]. 
Given a scalar time series v(ti), where i = 1,2, ..., N samples, an 
m-dimensional phase space attractor can be reconstructed,

xi = (
v(ti), v(ti + τ ), ..., v

(
ti + (m − 1)τ

))
(5)

with xi ∈ Rm . The optimal time delay τ is obtained as the first 
minimum of the auto mutual information [36] and the minimum 



N. Puthanmadam Subramaniyam, J. Hyttinen / Physics Letters A 378 (2014) 3464–3474 3467

embedding dimension m can be obtained using the false nearest 
neighborhood (FNN) approach [37]. After the reconstruction of the 
attractor, we can define the RP in different ways based on differ-
ent neighborhood criteria. In general, an RP tells us at what times 
the state vectors are close to each other as defined by the neigh-
borhood criteria and the corresponding distance norm (Euclidean 
or manhattan or maximum). This recurrence matrix can be further 
reinterpreted as an adjacency matrix for further network analysis. 
In this study, we specifically consider the fixed volume (ε-network) 
approach to define the neighborhood. In this approach one can de-
fine the neighborhood of an attractor in terms of a fixed phase 
space distance – ε [9,20]. According to this approach, given an 
m-dimensional phase space attractor, we can compute a recurrence 
matrix with elements,

Ri, j = Θ
(
ε − d(xi,x j)

)
(6)

where θ is the Heaviside function, ε is the size of the neighbor-
hood, also known as the recurrence threshold, d is any suitable 
distance norm (in this work we have used maximum norm), and x
is the phase space attractor. Thus, the binary recurrence matrix R
contains one for all the pairs of state vectors that satisfy the con-
dition d(xi, x j) < ε and zero otherwise [9]. The adjacency matrix A
is given by,

A = R − I (7)

where I is an identity matrix. The above equation simply elimi-
nates all the self-loops from R.

We constructed ε-networks from the Rössler system and the 
EEG datasets by fixing the recurrence rate R R instead of the 
threshold ε so that we obtain ε-networks with approximately the 
same number of edges so as to facilitate objective comparison be-
tween different ε-networks [21]. Thus, we construct ε-networks 
for R R ranging from 0.01 to 0.05 in steps of 0.01. For each time 
series, we estimated τ using the first minimum of the auto mutual 
information. The minimum embedding dimension was obtained 
using the modified FNN approach described in [38] to avoid spu-
rious results due to noise. Basically, the modified FNN approach 
suppresses all those pairs whose initial distance is already greater 
than σ/r, where the threshold r is set to the standard choice of 
10 [37,38] and σ is the standard deviation of the data. This way 
invalid candidates are excluded from the computation of the FNN 
statistic.

2.3. Complex network measures

2.3.1. Global clustering coefficient
The measure clustering coefficient for a graph was introduced 

by Watts and Strogatz [26]. For a given node i, if there are two 
neighbors j and m, then the clustering coefficient of a node i, given 
by ci , simply tells how likely it is for j and m to be also neighbors 
[18]. In other words, how likely is it for a jm = 1, where a jm is the 
element of the adjacency matrix A. Mathematically,

ci =
∑

j,m aija jmami

ki(ki − 1)
(8)

where ki is the degree of node i (i.e., number of edges incident on 
node i). Then one can define clustering coefficient for the entire 
graph G(N, K ), known as the global clustering coefficient C ,

C = 1

N

∑
i∈N

ci (9)

The global clustering coefficient C is a sensitive indicator of dy-
namical transitions and can be used to detect qualitative changes 
in the dynamics [21]. For continuous dynamical systems, the value 
of C for periodic trajectories is higher than that of chaotic trajec-
tories for comparable ε [27].

2.3.2. Average path length
Given two nodes, i and j, a geodesic is defined as a path of 

minimum length between these nodes. The length of this path is 
known as the geodesic length between i and j and is denoted 
by dij . The average path length L for a graph can then be defined 
as the mean value of geodesic lengths over all couple of nodes. It 
is given by the following equation,

L = 1

N(N − 1)

∑
i, j∈N , i 	= j

di j (10)

The disconnected pairs of nodes are excluded from the compu-
tation of the average [9,18]. Changes in the values of L can be used 
as an indicator of dynamical transitions in complex systems [9]. 
For example, a complex system (continuous system) with periodic 
trajectory has a higher L compared to a complex system exhibiting 
chaotic dynamics for comparable ε [27].

2.4. Surrogate analysis and statistical testing

Surrogates were generated for simulated as well as real data us-
ing iterative amplitude adjusted Fourier transform (IAAFT) scheme 
[34]. This method employs an iteration scheme and produces sur-
rogates that have the same power spectra and values as the orig-
inal data at hand [34]. For each time series, we generated 49 sur-
rogates. The null hypothesis H0, to be tested is that the underlying 
dynamics of the time series is a stationary, linear, stochastic, and 
correlated process which is measured by a static, monotonic, and 
possibly nonlinear observation function [1,34]. Further, the auto-
correlation, mean, and variance of the underlying process are such 
that the measurement results in the autocorrelation and amplitude 
distribution of the original time series [32]. Without making any 
assumption about the underlying distribution of the data, similar 
to the approach given in [1], we employ a non-parametric method 
to test the null hypothesis H0. The procedure is outlined as fol-
lows,

1. Compute the network measure (C or L) for the original data. 
Let us denote it as Md .

2. Compute the network measure (C or L) for the corresponding 
49 surrogates.

3. Find the maximum and minimum of the surrogate network 
measures. Let us denote it as Msurr

max and Msurr
min respectively.

4. Reject H0 if (Md > Msurr
max) or (Mdata < Msurr

min ).

Let Rmax be the number of rejections of H0 in a given set, be-
cause Md > Msurr

max . For a two-tailed test, the probability pmax (or 
pmin) of having Rmax (or Rmin) or less rejections at the significance 
level of α = 2

1+s , where s is the number of surrogates (49 in our 
case, thus α = 0.04) can be estimated via binomial cumulative dis-
tribution function [1,39]

pmax = 1 −
Rmax∑
k=0

(
n

k

)
(α)k(1 − α)n−k (11)

where n is the number of signals in a given set. In an analogous 
manner, one can compute pmin using Rmin . For the EEG dataset, we 
also perform statistical testing at the set level using nonparametric 
Wilcoxon signed rank test [1] to facilitate the comparison of our 
results with the results of Andrzejak et al. [1]. We used one surro-
gate per set and use {Md} and {Msurr

1 } as paired observations for 
the Wilcoxon signed rank test as suggested in [1].
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Fig. 2. Dependence of the network measures C (A) and L (B) on the embedding dimension m for periodic (blue solid line) and chaotic dynamics (red dashed line) respectively 
under noise-free condition for ε-networks at the recurrence rate R R = 0.01. The network measures are the averaged over the 100 realizations of the Rössler system. The 
error bars are the standard deviation of the 100 realizations of the Rössler system. (C–D), (E–F), (G–H), and (I–J) are the same as in (A–B), but at R R = 0.02, 0.03, 0.04 and 
0.05 respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Results

3.1. Rössler systems

3.1.1. Noise-free condition
Fig. 2 shows the variation of the network measures C and L as 

a function of the embedding dimension. It can be seen from Fig. 2
that for different recurrence rates (R R = 0.01 to 0.05), the differ-
ence between network measures (C and L) for the periodic and 
chaotic dynamics is clear and remains consistent, with C and L of 
ε-networks constructed from the periodic time series being greater 
than that of the chaotic time series. Fig. 3 shows the variation of 
network measures C and L with respect to R R for ε-networks at 
the embedding dimension m = 3. The embedding delay as given 
by the first local minimum of the auto mutual information var-
ied between 5 and 10 for the periodic dynamics, while for the 
chaotic dynamics it varied between 25 and 30. It can be seen that 
the C for ε-network increases and L decreases with increasing 
R R for both the periodic and chaotic dynamics. However, as men-
tioned before, from Fig. 2 it is clear that the difference between 
the periodic and chaotic dynamics remains consistent across vary-
ing values of R R for the ε-network under noise-free condition.

3.1.2. Effect of noise: noisy periodic vs. noise-free chaotic dynamics
Here we compare noisy periodic dynamics with noise-free 

chaotic dynamics. Let C and L of noise-free chaotic dynamics be 

denoted as Cc0 and Lc0. We have already seen that under noise-
free condition (0% noise), the value of C and L for periodic dy-
namics is greater than Cc0 and Lc0. We would like to investigate 
at what level of additive noise do the network measures for peri-
odic dynamics become lesser than Cc0 and Lc0 and thus become 
unreliable in the detection of dynamical transitions. This could 
be, for example, a scenario where there is chaos-periodic transi-
tion and the periodic dynamics is superimposed with noise. Note 
that if the noise is dynamical, then such bifurcation scenario might 
be enhanced or suppressed as dynamical noise impacts the future 
evolution of the system. Here we consider only the case of super-
imposed observational noise and investigate how reliable are the 
network measures C and L in distinguishing noisy periodic state 
from chaotic state. In order to do so, we computed the C and L
for periodic dynamics under increasing levels of noise (10%, 20%, 
40% and 60%). From Fig. 4(A) it can be seen that at R R < 0.03, the 
C for periodic dynamics at noise level of 10% and above is lesser 
than Cc0. For R R ≥ 0.03, at 10% noise level we can see that C of 
periodic dynamics is greater than Cc0. The situation for L is differ-
ent. At all values of R R from 0.01 to 0.05, L for periodic dynamics 
is greater than Lc0 at noise level of 10% (see Fig. 4(B)). For noise 
levels of 20% and above, both C and L fail to have values greater 
than Cc0 and Lc0 respectively for all values of R R . When adding 
noise to the signals, it was observed that the value of τ decreases 
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Fig. 3. Dependence of the network measure C (A) and L (B) on the recurrence rate R R for periodic dynamics. The network measures are the averaged over the 100 realizations 
of the Rössler system. The error bars are the standard deviation obtained from 100 realizations of the Rössler system. (C–D) is the same as in (A–B), but for chaotic dynamics.

Fig. 4. Influence of observational noise on the network measures. (A) Dependence of the network measure C for periodic dynamics at noise levels of 0% (blue solid line), 10% 
(green solid line), 20% (cyan solid line), 40% (black solid line), 60% noise (magenta solid line) and for chaotic dynamics at noise level of 0% (red dashed line) for ε-networks. 
The network measures are the averaged over the 100 realizations of the Rössler system. The error bars are the standard deviation obtained from 100 realizations of the 
Rössler system. (B) Same as in (A), but for the network measure L. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

as the level of noise increases. Especially at high noise levels (60%) 
there is an abrupt drop in the value of τ .

3.1.3. Effect of noise: noisy periodic vs. noisy chaotic dynamics
Next, we compare the network measures C and L for noisy pe-

riodic and chaotic dynamics. Fig. 5 shows how C and L for periodic 
and chaotic dynamics change for increasing levels of additive noise 
at different R R (from 0.01 to 0.05). It can be seen that in case 
of C , as R R is increased the difference between noisy periodic and 
chaotic dynamics becomes clear with C of noisy periodic dynam-
ics being greater than C of chaotic dynamics. Particularly, for R R
greater than 0.02, we can still distinguish between noisy periodic 
and chaotic dynamics (C of noisy periodic dynamics >C of noisy 
chaotic dynamics) up to noise levels of 40%. However at noise lev-
els above 40%, even at R R = 0.05, the value of C for noisy periodic 
and chaotic dynamics starts becoming indistinguishable. In case 
of L, it is evident that the difference between noisy periodic and 
chaotic dynamics is not dependent on R R . Irrespective of the value 
of R R , the L for noisy periodic dynamics is still greater than L for 
noisy chaotic dynamics for noise levels up to 20%. At higher noise 

levels, the value of L for noisy periodic and chaotic dynamics be-
comes indistinguishable.

3.1.4. Effect of noise: test for structural complexity under noise
In order to study the ability of network measures to character-

ize the structural complexity of the time series under the influence 
of noise, we generated surrogates from the original time series that 
are stochastic linear processes observed via a static, monotonic, 
and possibly nonlinear function [34]. The results of non-parametric 
testing with the surrogate data for chaotic dynamics under increas-
ing levels of noise are presented in this section. It has to be noted 
that we present the results only for rejections due to Rmax as in all 
cases Rmin was zero and thus non-significant (pmin > 0.04).

Tables 2 and 3 show the number of rejections (out of 100 
signals), Rmax , at various noise levels and R R for the network mea-
sures C and L respectively. For the network measure C , it can be 
clearly seen from Table 2 that at 0% noise level, irrespective of 
R R , Rmax is almost 100 indicating that almost all the signals re-
jected H0. At 10% noise level, at R R of 0.02 or higher, Rmax is 
greater than 90. As the noise level increases, Rmax increases only 
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Fig. 5. Influence of observational noise on the network measures C (A) and L (B) for periodic (blue solid line) and chaotic (red dashed line) signals at recurrence rate 
R R = 0.01. The network measures are the averaged over the 100 realizations of the Rössler system. The error bars are the standard deviation of the 100 realizations of the 
Rössler system. (C–D), (E–F), (G–H), and (I–J) are the same as in (A–B), but at R R = 0.02, 0.03, 0.04 and 0.05 respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Table 2
Results of surrogate analysis on simulated chaotic signals: number of signals (out of 
100) for which H0 is rejected (Rmax) using C as discriminatory statistic at various 
noise levels and R R . Rejections are considered not significant if pmax > 0.04 and are 
marked as zero.

Noise level 0.01 0.02 0.03 0.04 0.05

0% 100 100 100 98 98
10% 74 94 96 96 96
20% 0 0 38 66 76
40% 0 0 30 38 38
60% 0 0 16 18 24

as the R R increases, reaching 76 and 38 at noise levels of 20% 
and 40% respectively at R R = 0.05. At noise level of 60%, 24 out 
of 100 the signals reject H0 at R R = 0.05. It is to be noted that 
as per Eq. (11) the probability of having 20 rejections or less by 
chance is already very small (4.19 × 10−4) at the significance level 
of α = 0.04. From Table 3 it can be seen that for L, Rmax is 100 
for noise levels up to 20% regardless of R R . At noise levels of 40% 
and above, Rmax drops to about 30 at R R = 0.01 and remains in 
the range of 28 to 34 for increasing R R .

3.2. EEG data

3.2.1. Recurrence network measures
Using the modified FNN approach, we found that the mini-

mum embedding dimension for all the EEG time series in set A–E. 

Table 3
As in Table 2, but for L as discriminating statistic.

Noise level 0.01 0.02 0.03 0.04 0.05

0% 100 100 100 100 100
10% 100 100 100 100 100
20% 100 100 100 100 100
40% 28 28 28 30 30
60% 30 24 28 34 32

Since we have limited amount of EEG data (N = 4096 samples) 
which might be even noisy, the embedding dimension cannot be 
set too high as the noise in the data may reduce the density of 
the points defining the attractor. In this work, we set m = 6 for 
the phase space reconstruction, which is the largest embedding di-
mension consistent with the available amount of data [10] and the 
modified FNN criterion [38]. The embedding delay τ given as the 
first local minimum of the auto mutual information, which var-
ied between 5 and 20. Fig. 6 shows the variation of C and L as 
a function of R R for the set A–E of EEG signals. It is clear from 
the figure that set E has the highest C and L for R R of 0.02 or 
higher, followed by the sets D, C, B, and A. The same order is ob-
served in decreasing values of L and it is consistent for all the 
values of R R . As for the Rössler system (see Fig. 3), we can ob-
serve here as well that C increases with increasing R R while L
decreases.
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Fig. 6. Dependence of the network measures C (A) and L (B) on the recurrence rate R R for the EEG dataset – eyes open (set A, �), eyes closed (set B, �), interictal-
hippocampal zone (set C, �), interictal-epileptogenic zone (set D, �), and ictal (set E, ◦). The network measures shown are the average of 100 EEG signals in each dataset.

Table 4
Results of surrogate analysis at individual level for EEG data at R R = 0.05. The number of rejections Rmax at significance level α = 0.04 for sets A–E is shown. As comparison, 
results from [1] and [30] are shown in columns 3, 4 and 5 respectively.

Datasets Description C L P [1] D2,eff [1] DVV [30]

A Eyes open 17 20 4 0 29
B Eyes closed 21 33 9 0 32
C Hippocampal-Interictal 26 37 14 0 46
D Epileptogenic Zone-Interictal 48 40 37 17 53
E Ictal 98 76 89 56 92

3.2.2. Structural properties of different EEG time series
Table 4 presents the results of surrogate analysis for EEG 

datasets at an individual level using C and L as discriminatory 
statistic at R R = 0.05 (Only Rmax is presented as Rmin was non-
significant in all cases). Comparison of our results to the work of 
Andrzejak et al. [1] and Gautama et al. [30] is also presented in 
Table 4. It is evident from Table 4 that maximum rejections of 
H0 is found for set E (ictal activity) followed by sets D (interic-
tal activity-epileptogenic zone), C (interictal activity-hippocampal 
zone), B (scalp EEG, eyes closed) and A (scalp EEG, eyes open) 
when using C and L as the discriminatory measure. For epilep-
tic EEG recordings capturing the epileptogenic interictal and ictal 
activity (D and E), we find that L gives lesser rejections compared 
to C .

Table 5 shows the results of surrogate analysis at the set level 
using nonparametric Wilcoxon signed rank test at R R = 0.05. We 
found the null hypothesis to be rejected (p < 0.001) for all sets of 
EEG data when using both C and L as the discriminatory measure.

4. Discussion

Our results using the Rössler system show that the recurrence 
network measures (C and L) are able to clearly distinguish be-
tween periodic and chaotic dynamics under noise free condition. 
The influence of noise on the network measure C can be mini-
mized by an appropriate choice of R R , while the influence on L
is independent of this choice. Our results from surrogate analy-
sis using chaotic time series data from Rössler system show that 
both C (with an appropriate choice of R R) and L can still char-
acterize its phase space structure in the presence of noise levels 
as high as 60%. We applied recurrence networks to analyze the 
structural properties of EEG time series. For this purpose, we used 
the EEG data described in [1]. By combining network measures 
C and L with surrogates (IAAFT method), we could differentiate 
between the structural properties of the attractors reconstructed 
from pathological (epileptic) and healthy EEG.

4.1. Effect of noise on network measures

In a study by Zou et al. [27], it was reported that the difference 
between chaotic and periodic network measures for ε-networks 

remain consistent over a reasonable range (0.01 to 0.05) of R R
under noise free conditions, wherein C and L of networks con-
structed from periodic time series are consistently greater than 
that of chaotic time series for continuous dynamical systems like 
the Rössler system. Our results are in accordance with their study. 
Previous studies have shown that L scales with the recurrence 
threshold as 1/ε [40] and C is severely affected by the attractor 
boundaries as ε gets larger [20]. Our results confirm this as we 
observe that L decreases and C increases as R R is increased.

The networks constructed from periodic attractors of a contin-
uous system like the Rössler system tend to have high values of 
C and L compared to that of chaotic attractors [24,27], as the 
filling of the phase space with observed states for periodic tra-
jectories is less homogeneous than chaotic ones [27]. Addition of 
observational noise to the periodic time series makes the under-
lying dynamics high dimensional [22,28] (as also revealed by the 
fact that minimum embedding dimension increases with addition 
of noise), thus increasing the dimension of the space in which the 
associated spatial networks are embedded. This leads to lower val-
ues of C for the associated networks as explained by the theory of 
spatial random graphs [41], which states that C becomes smaller 
for increasing spatial dimension, which has been observed in our 
results as well. At low levels of R R , noise dominates the detec-
tion of periodic dynamics. Also, small values of R R correspond to 
small ε and thus resolve mainly small-scale structures of the at-
tractor. Adding noise less than the order of ε will corrupt these 
structures, which will mainly affect C . We observed that increas-
ing the R R minimizes the effect of noise. This is because, as R R
(and thus ε) increases, larger and larger scales will be captured 
and thus remain potentially unaffected by the noise amplitude. It 
has been suggested that a choice of R R � 0.05 is reasonable to 
construct recurrence networks [42]. In view of this, if the noise 
level is high (20% or more), then using the network measure C
can lead to problems in distinguishing between periodic dynam-
ics with noise and noise free chaotic dynamics even at R R = 0.05. 
Addition of noise to the periodic time series decreases the net-
work diameter of the associated recurrence network, which in turn 
reduces the maximum path length of the network. So naturally, 
L decreases with the addition of noise. At noise level of 10%, this 
reduction still results in values of L for periodic dynamics with 
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Table 5
Results of surrogate analysis at group level using Wilcoxon test for EEG sets A–E at R R = 0.05 are shown. As comparison, results from [1] are shown in the last two columns. 
Rejections are considered significant if p < 0.05.

Datasets Description C L P [1] D2,eff [1]

A Eyes open H0 rejected H0 rejected H0 not rejected H0 not rejected
B Eyes closed H0 rejected H0 rejected H0 rejected H0 not rejected
C Hippocampal-Interictal H0 rejected H0 rejected H0 rejected H0 not rejected
D Epileptogenic Zone-Interictal H0 rejected H0 rejected H0 rejected H0 rejected
E Ictal H0 rejected H0 rejected H0 rejected H0 rejected

noise which are greater than noise free chaotic dynamics (irre-
spective of the choice of R R), indicating that the average phase 
space separation of states in periodic dynamics at this noise level 
(10%) is still greater than in the case of chaotic dynamics without 
noise. Any further increase in the noise level added to the peri-
odic dynamics will impact the distribution of points in the phase 
space and makes it more heterogeneous, leading to artificial short-
cuts that drops the path length and in this case, below that of 
the noise free chaotic dynamics. In short, if periodic time series is 
corrupted by a level of observational noise which is greater that 
10%, then the statistics of the associated networks drop below that 
of noise free chaotic time series. In the case where noise added 
to both periodic and chaotic dynamics, the corresponding network 
measures C and L associated with periodic and chaotic dynamics 
decreases as noise is increased. Distinction between noisy periodic 
and chaotic dynamics is still possible up to noise levels of 40%, for 
an appropriate choice of R R (>0.02) in case of C whereas, L can 
distinguish between noisy periodic and chaotic dynamics up to the 
noise levels of 20% irrespective of the choice of R R .

The effect of observational noise on RQA was studied in [29]
and it was found that a noise level of 20% or higher could lead to 
the failure of RQA measures and a choice of recurrence threshold, 
ε, five times the standard deviation of the observational noise was 
recommended. Our results on recurrence network measures, which 
are also derived from recurrence matrices like RQA, indicate sim-
ilar observations, in the sense that, as the recurrence rate (which 
is related to ε) is increased, the effect of noise on C is minimized 
while L is not affected by this choice. Also, we found that L and C
could still characterize structural complexity in some signals at a 
noise level as high as 60%. To answer first question raised in Sec-
tion 1, the network measures C and L can characterize dynamical 
transitions under noise, where periodic dynamics with noise can 
be distinguished from chaotic dynamics with noise using C (for an 
appropriate R R up to noise level of 40%) and L (up to noise level 
of 20%). Also, the structure of the time series can be character-
ized even at the noise level as high as 60% (again with appropriate 
choice of R R only in case of C ).

However, it is important to note that the results obtained here 
are system-specific and hence the effect of noise levels on the net-
work measures strictly refer to the two reference states we have 
considered in simulating the periodic and chaotic dynamics. Hence 
the value of tolerable noise levels might vary for different parame-
ters (for example different values of c in Eq. (1)), especially for the 
chaotic regime. The general behavior of network measures under 
the influence of noise for a range of system parameters will be a 
subject of future study.

Another aspect to be noted here is that L is impacted by the 
transients in the data that could create artificial shortcuts [27]
leading to a value of L lower than that of the corresponding surro-
gates. In case of simulation study described in this work, we have 
removed the initial transients [27] and that probably could be the 
one of the reasons for the good performance L as a discriminating 
statistic. However, in case of noisy experimental data, the compu-
tation of L may be impacted due to the aforementioned reason, 
which is also discussed in [27] and in the following section.

4.2. Application to EEG data

Andrzejak et al. [1] used P and D2,eff to study the dynamical 
properties of the EEG time series. Using P and D2,eff , they found 
the maximum number of rejections for ictal activity (set E) and 
thus a strong evidence for an underlying nonlinear process, while 
no significant rejections were found for scalp EEG in eyes open 
condition (set A). In comparison to [1], our results gave higher re-
jection rates for sets A–E using recurrence network measures. The 
main difference was that we could obtain higher rejections of H0
in sets A and B which are surface EEG recordings compared to [1]. 
Gautama et al. [30] applied the method of delay vector variance 
(DVV) for the EEG data described in [1] and also obtained higher 
rejections of H0 in sets A and B compared to [1]. We have previ-
ously applied fixed mass recurrence network method to the EEG 
data described in [1] and found that networks associated with sur-
face EEG signals are more complex than random networks [31]. 
As noted in [30], P takes into consideration only the determin-
istic structure, which alone cannot account for nonlinearity. This 
can lead to the linear surrogates having the same predictability as 
the original data, thus leading to false negatives. The DVV method 
on the other hand is a phase space based method that can de-
tect deterministic property in addition to the nonlinear behavior 
in the signal [30]. Similarly, RP based methods also work on the 
phase space geometry and use the recurrence property of the dy-
namical system. Due to these reasons, DVV and RP based methods 
yield better performance over other nonlinear methods described 
in [1]. Our results (especially from C ), clearly point towards an in-
creasing degree of structural complexity in epileptic EEG by giving 
higher rejections of H0 compared to healthy EEG, which is con-
sistent with the transition towards nonlinearity in epileptic EEG 
compared to healthy EEG as reported in [1,30].

The dynamics behind the epileptic seizures are assumed to be 
highly non-linear in comparison to the normal EEG activity [5,
43–46]. Our results show that the ictal signals (set E) gave max-
imum number of rejections for H0 using both C and L, imply-
ing that the attractors reconstructed from ictal signals are differ-
ent and structurally more complex than that of surrogate signals, 
which by construction are linear-stochastic processes. Sets C and
D comprise of interictal EEG, recorded from non-epileptogenic and 
epileptogenic zones respectively. Accordingly, more signals in D re-
jected H0 in comparison to C. Placing this in the context of the 
results reported in previous studies, it seems plausible that in-
terictal EEG obtained from epileptogenic zones could reflect more 
non-linearity due to its direct involvement in the epileptic process 
[1]. As mentioned previously in Section 1, due to the threshold and 
saturation phenomena, non-linear dynamics is introduced at the 
level of single neurons in the brain. In this regard, the neuronal 
dynamics can be modeled as a nonlinear dynamical system [47]. 
Whether this nonlinearity is reflected in macroscopic EEG record-
ings, which measures the summed activity of quasi-independent 
neurons, is questionable [48]. Also, as mentioned in [1], the blur-
ring of the dynamical properties of surface EEG could be caused 
because surface EEG signals recorded at the scalp are measured 
from the activity of a large number of neurons and are further 
subjected to volume conduction. However, surface EEG generated 
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due to a constraint imposed such as closing of the eye (the alpha 
rhythm), strengthens the nonlinear structure of the underlying sig-
nal [1]. However other results have reported an evidence of an 
underlying nonlinear structure in surface EEG recordings under 
normal conditions (eyes open) [30,49,50].

It is important to recognize that, the number of signals reject-
ing H0 using L as a discriminatory measure in case of sets D and
E (which includes interictal EEG from epileptogenic zone and ictal 
EEG respectively) were less than that of using C as a discrimina-
tory measure. This probably could be due to the presence of tran-
sients like spike and sharp waves in epileptic signals [51], which 
could have impacted the computation of L. This was not observed 
in the simulated scenario where we could simply discard the initial 
transients. In this sense, C is comparatively a more robust measure, 
which could still give high number of rejections in case of epilep-
tic EEG sets D and E. Nonetheless, L could still reject reasonable 
percentage of signals in these sets based on surrogate testing. The 
other caution to be exercised as already noted in [1], is that the 
surrogates generated are stationary signals by construction. Hence 
H0 can be rejected based on non-stationarity in the data as well. 
Another limitation of the study is that is we have not considered 
the effect of noise due to biological artifacts in the EEG signals. 
The EEG signals considered in this study have been selected after 
visual inspection to exclude artifacts arising from the muscle activ-
ity or eye movement [1]. Overall, our results are in agreement with 
the results reported in [1] for sets C–E and with the results re-
ported in [30] for sets A–E. Answering the second question raised 
in Section 1, we can conclude that the recurrence based network 
approach can be used to determine the structural properties of dif-
ferent classes of EEG signals. This approach is robust and more 
sensitive even in detecting certain degree of structural complexity 
existing in macroscopic EEG recordings like the surface EEG signals 
[30,49,50] compared to other nonlinear methods reported in [1]. 
Thus, our results show that recurrence network measures capture 
a more elaborated property of structural complexity. As recurrence 
network measures can be computed from short time series with 
high confidence [52], they can cope with non-stationarity through 
window-based analysis [9,21]

The issue of selecting the embedding dimension, m, for noisy 
and finite experimental signals like the EEG data needs some men-
tion here. Previous studies on the same EEG dataset have reported 
an embedding dimension of m = 6 [1], m = 8 [32], and m = 10
[30]. In this work, we also tried varying m from 2 to 12 and found 
that for most of the EEG signals in set E, which contains ictal 
activity (which are hypothesized to be low-dimensional [5]), the 
network measures did not change much beyond m = 4. However 
for other EEG signals, this saturation was reached at m = 6 to 10. 
As noted in [7], this consistency could simply be a result of em-
bedding in an ever increasing dimension. Given a finite amount of 
noisy data, choosing a large embedding dimension might lead to 
inaccurate estimation of recurrence network properties. Also, the 
requirement for the size of the data grows as a power of embed-
ding dimension. Finding the right embedding dimension for noisy 
experimental signals is a tricky and challenging task. Other ad-
vanced embedding methods could be used for this purpose, but 
selection of the right embedding dimension is still not guaranteed 
due to the presence of noise. In this work we restricted ourselves 
to using an already established method like the modified FNN ap-
proach [10], which avoids spurious effects due to noise, to find the 
optimal embedding dimension.

Our results indicate towards the possibility of applying recur-
rence network methods to study structural properties of neural 
data like the EEG signals and thus the dynamics encoded within 
them. Especially, in disorders like epilepsy, it is assumed that dif-
ferent dynamical states exist. Understanding the dynamics of the 
transitional state, the so-called pre-ictal state, holds the key in un-

derstanding how the brain makes the transition from the interictal 
state to the ictal state. The pre-ictal state can exist several minutes 
before the seizure [53] and its indubitable identification before the 
seizure onset could lead to clinical intervention [54] and applica-
tion of therapeutic measures [55]. Also, the epileptic EEG signals 
in general are non-stationary signals [51]. In this regard, RP based 
methods like recurrence networks (network measure C ) seem to 
be an appropriate choice. However the robustness of these mea-
sures against biological artifacts (which are common in scalp EEG 
and more so during seizures) needs to be studied in detail and will 
be a subject of future research. Another interesting area to explore 
would be the estimation of connectivity between different brain 
regions using the recently proposed multivariate extension of re-
currence networks [56].

5. Conclusions

In conclusion, firstly we addressed the effect of noise on global 
measures like the global clustering coefficient and the average path 
length of ε-networks derived from the Rössler system. We then 
studied the structural properties of EEG signals using the global 
clustering coefficient and the average path length of the associ-
ated ε-networks. From the simulation study, we found that the 
observational noise has a considerable impact on these network 
measures. Effect of noise on the global clustering coefficient can 
be minimized to a certain extent by setting the recurrence rate 
to an appropriate value (>0.02), while the effect of noise on the 
average path length is independent of the recurrence rate. How-
ever, for noise levels greater than 40% in case of C and 20% in 
case of L, the recurrence network measures fail in distinguish-
ing between noisy periodic dynamics and noisy chaotic dynamics. 
However these measures can describe, to a certain degree, the 
structural complexity of the signal under the presence of noise 
level as high as 60%.

From the application of the recurrence network measures to the 
EEG data, we found the evidence of increased structural complex-
ity in epileptic EEG signals. Resting state EEG in healthy subjects 
also showed indications of structural complexity but to a lesser 
degree compared to the pathological EEG. Also, the application of 
the recurrence network measures to real EEG data revealed that 
the global clustering coefficient performed better in characterizing 
the structural properties of epileptic EEG signals compared to the 
average path length, as the average path length is more susceptible 
to the presence of transients in the data and epileptic signals of-
ten include transients. In conclusion, recurrence network measures 
(especially the global clustering coefficient) can be useful in char-
acterizing the structural properties of healthy and epileptic EEG.
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Abstract² Epilepsy is a neurological condition characterized 

by sudden occurrences of rapid electrical discharges. Different 

non-linear methods like correlation dimension, Lyapunov 

exponent, entropy and more recently recurrence quantification 

analysis (RQA) have been used to characterize the non-linear 

dynamics behind interictal (between seizures) and ictal (during 

seizure) activities. While RQA is sensitive to embedding 

parameters other non-linear methods mentioned above require 

long and stationary data. In this study we propose recurrence 

network (RN) based approach to quantify the non-linear 

dynamics of the underlying attractors in healthy, interictal and 

ictal electroencephalographic (EEG) data. The dataset used to 

test the method is obtained from Department of Epileptology, 

Bonn University, Germany and consists of altogether 500 

signals from interictal, ictal and healthy (eyes open and eyes 

closed) EEG activity. We compute network measures like 

clustering coefficient o and path length x  on RN derived from 

EEG time series to characterize the underlying attractor.  Our 

results show that interictal signals are characterized by chaotic 

attractors and their networks display small world property 

(high o and low��x) while ictal signals are characterized by 

quasiperiodic attractors with high values of  o and  x.  Further, 

our results show that for healthy EEG signals with eyes closed, 

the attractors are highly chaotic while for EEG signals with 

eyes open the attractors are less complex than fully chaotic 

attractor. RN based approach for the characterization of non-

linear dynamics of epileptic EEG signals is promising and has 

advantages over other non-linear approaches as it makes no 

assumptions about data stationarity, length and is not sensitive 

to embedding parameters. 

I. INTRODUCTION 

Epilepsy is a neurological disorder characterized by 
recurrent and unpredictable occurrences of electrical 
discharges in the brain, known as seizures [1]. Prediction of 
epileptic seizures well before its onset is one of the grand 
challenges in neural engineering, which if solved can lead to 
new diagnostic application to control the seizures [2]. Since 
electroencephalography (EEG) is a direct measure of the 
electrical activity of the brain, analysis of epileptic EEG 
signal can help in revealing the dynamic fingerprint of the 
brain during the interictal state between the seizures which is 
characterized by sharp waves with transients and ictal state 
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during the seizure which is characterized by self-sustained 
rhythmic activity [3].  

EEG signals can be regarded as an output of a highly 
non-linear multidimensional system [3, 4]. Over the past two 
decades there has been a growing interest in the application 
of methods from chaos and non-linear theory to follow 
transitions from interictal to ictal period. Such studies have 
focused on measures like the Lyapunov exponents [5, 6], 
correlation dimension [7, 8], entropy measures [5, 9] and 
fractal dimensions [10, 11]. These methods generally require 
long and stationary data and it is well known that EEG 
signals in general are non-stationary [3].  

A recurrence plot (RP) is a two-dimensional graphical 
representation of a binary matrix that reflects the recurrence 
of states in a phase space and it can be used to analyze 
complex dynamical system [12, 13]. Such a binary matrix is 
known as recurrence matrix and it gives the times when two 
states in phase space are in proximity as defined by a 
neighborhood criteria [12]. Given a scalar time series, one 
can reconstruct the underlying phase space attractor (PSA) 
using a suitable I-dimensional time delay embedding [14, 
15]. RP can be quantified using recurrence quantification 
analysis (RQA) [16]. RQA has been applied towards the 
characterization of interictal, pre-ictal and ictal signals in 
rats and humans [3, 17]. The main advantage of RQA is that 
it makes no assumptions about stationarity and no apriori 
model of brain dynamics is required [3, 17, 18]. However, 
recent studies have shown that RQA is sensitive to 
embedding parameters which leads to introduction of 
spurious correlation in RP [14, 18]. To overcome this issue, 
a new approach of transforming time series into recurrence 
networks (RN) that reflect attractor geometry has been 
proposed [14]. In RN approach complex networks are 
constructed from PSA and network measures like clustering 
coefficient  % and characteristic path length  . are used to 
quantify the geometrical nature of the underlying PSA [19]. 
For example, RN constructed from chaotic attractors display 
small world property with high % and low��. [19, 20].  The 
RN approach is attractive in EEG analysis as it can handle 
data non-stationarity, requires simple significance tests and 
is not sensitive to embedding parameters [14]. 

In this paper we introduce a RN based approach to 
quantify the underlying non-linear dynamical properties of 
EEG signal in three different stages ± healthy, interictal and 
ictal. This is achieved by transforming EEG time series into 
PSA and then computing RN from PSA using an adaptive 
near neighborhood (ANN) algorithm [21]. We then compute 
complex network measures��%��and��.��for the RN to 
characterize the non-linear dynamics and thus the underlying 
PSA for healthy, interictal and ictal EEG signals. 
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II. MATERIALS AND METHODS 

A.  EEG data 

The EEG data used in this paper is provided online by 
the department of epileptology, Bonn University, Germany, 
through the work of Andrzejak et al [22]. The dataset 
consists of five subsets ± A (normal EEG, relaxed and awake 
state, eyes open), B (normal EEG, relaxed and awake state, 
eyes closed), C (interictal EEG from hippocampal 
formation), D (interictal EEG from epileptic zone) and E 
(ictal EEG). Each subset contains 100 single channels EEG 
data of 23.6 seconds each, sampled at 173.6 Hz giving 4096 
time points. The data is recorded from five healthy subjects 
(sets A and B) and five epileptic subjects (sets C, D and E). 
These segments of data have been manually cut out from 
continuous multichannel EEG data (128-channel system) 
after visual inspection for eye or muscle artifacts. The data is 
bandpass filtered between 0.5-40 Hz.  

B. Transforming time series into phase space attractor 

Given a scalar time series�<T:E;á E L sátá å á0=, using a 
time delay embedding procedure one can construct a phase 
space vector 

��� L kT:E;á T:E E �ì;á ä ä á T:E E :I F s;ì;o                       (1) 

where I is the embedding dimension and ì is the time 
delay. The optimal value for ì is obtained as the first 
minimum of the mutual information content [23]. The 
optimal embedding dimension can be determined using false 
nearest neighbor method [24]. In this method, given a phase 
space vector����, the optimal embedding dimension is 
defined as the dimension I for which the number of nearest 
false neighbors vanishes to zero.  

C. Complex recurrence networks based on ANN algorithm 

Recurrent states of a I-dimensional phase space vector 
as given by (1) can be represented using RP. By defining 
some criteria for proximity, one can construct a binary 
recurrence matrix that represents neighbors in phase space. 
This matrix contains the value one for those pairs of phase 
space vectors that are close to each other as defined by 
proximity criteria and zero for others. Such a recurrence 
matrix is analogous to adjacency matrix in graph theory and 
is known as RN. 

There are several such approaches to transform phase 
space vector to a RN [25]. We adopt a fixed-edge based 
proximity networks approach by implementing ANN 
algorithm where in every point on the attractor is a defined 
as a node in the RN and the edges between the nodes are 
defined based on the proximity between corresponding 
attractor points such that every node has exactly M edges to 
its geometric neighbors [21, 25]. The advantage of this 
approach is that it results in an undirected binary matrix with 
fixed edge distribution, so that comparison between different 
network measures (e.g. % and�.) derived from such networks 
are more meaningful. The algorithm is described in detail 
below 

1. Compute a Euclidean distance matrix &gh such that 

every E-th row of the distance matrix contains 

distance from the E-th point on the attractor to all 
other points excluding itself 

2. Select G near neighbors based on Euclidean distance 
for every E-th row. Let us denote the set of these G 
points as /Ü = <T:F5;å T:FÞ;= such that T:F5; is the 
first nearest neighbor and so on. The set /Ü is known 
as the neighborhood of vertex E�[25] 

3. Construct a binary matrix 4�such that 4ÜÝ = 1, if F 

belongs to set /Ü  else set 4ÜÝ = 0. Also, form bi-

directional links such that 4ÝÜ= 1 if 4gh = 1. Remove E 

from the neighborhood of all the vertices present in 
�/Ü to avoid double-counting. 

The binary matrix 4 is known as the RN and it 
consists of 0 nodes that correspond to 0 points on the 
PSA. 

D. Complex network measures 

Local and global network measures can be derived from 
4��which can be considered as the adjacency matrix. 
Clustering coefficient %  and characteristic path length . are 
two such interesting measures that can be used to investigate 
small-worldness of networks [19]. Given a network graph 
C� L � :0á'; consisting of 0�nodes and ' edges such 
that�'� C �0 H 0, the clustering coefficient %Ü for a node i 
can be defined as [15] 

%Ü L �
Ã ËÔáÓËÓáÕËÕáÔ
¿
ÓáÕ8-

ÞÔ:ÞÔ?5;
                                                            (2) 

where 4 is the adjacency matrix which is the same as the 

recurrence network matrix and  GÜ is the degree of the 

node��E, and is given by [15] 

GÜ L �Ã 4ÜáÝ
Ç
Ý@5                                                   (3) 

where 0 is the number of nodes or network size. The 

global clustering coefficient can then be defined as the 

average value of clustering coefficient % of all the nodes and 

is given as [15] 

% L � 5
Ç
Ã %Ü
Ç
Ü@5                    (4) 

The characteristic path length . of a network is the 

average length of the shortest paths between all the pairs of 

nodes and is given as [15] 

. L � 5

Ç:Ç?5;
Ã @ÜáÝ
Ç
ÜáÝ@5                                                           (5) 

where @ÜáÝ is the shortest distance between nodes E and F. 

E. Application to epileptic and healthy EEG signals 

We apply the methods described above to a total of 500 
EEG signals derived from five subsets of data (A-E). We 
first transform each of the time series data into phase space 
attractor vector after computing optimum delay ì and 
embedding dimension I for each signal. Then we transform 
the PSA to RN by employing the ANN algorithm. The size 
of the RN is equal to the number of points on the attractor 
and it is 4000 in our study based on the data time points. 
Finally we compute two network measures ± % and . for 
each RN and its optimal embedding dimension�I.  



  

  

 

Figure 1. Normalized characteristic path length . .Ë¤  as a function of 

network size�0. 

In order to test the behavior of % and . with respect to 0 
we varied the size of time series in each case and hence 0 
from 200 to 4000 nodes by fixing the number of adjacent 
nodes (hence node degree) to 20. To perform the 
significance testing we normalized the values of % and . for 
each network with %Ë and�.Ë, calculated from 100 random 
networks generated by preserving the node density 
distribution of the original network. We also computed the 
small worldness 5 for each RN which is given as [26] 

5 L �
¼
¼Ã
W
Å
ÅÃ
W

                                                                              (6) 

When the value of�5� P �s, we can say that the network 

exhibits small world property as its characteristic path length 

. is small compared to the clustering coefficient��%. The 

average value of network measures - % and . per subset is 

taken as the representative value for that subset.  

III. RESULTS 

The dependence of normalized . and % as a function of 0 
for the RN of PSA of EEG signals in dataset A-E are shown 
in Figure 1 and 2 respectively. The values of . and % are 
averaged over 100 phase space networks constructed from 
each dataset. From Figure 1 it can be seen that normalized . 
of RN of all signals increase linearly with 0 for small 
network sizes. However , as 0 increases (around 2000) , 
normalized . decreases for RN of dataset A,B,C and D, with 
B showing the largest drop followed by D and A. The 
normalized �. for the RN of dataset E continues to increase 
linearly with��0. From Figure 2 it can be seen that the value 
of normalized �% of RN of attractors of all the dataset (A-E) 
show a similar tendency of increasing linearly as function 
of��0.  

Next, we investigated the variation of 5 of the RN of the 
attractors of signals from dataset A-E using (6) as a function 
of��0. This variation is show in Figure 3. It can be seen 
clearly from Figure 3 that, initially the value of 5 of RN for 
dataset A-E remains at the same level. However as 0 
increases (around 2000), RN of attractors for set B shows the 
strongest tendency towards small world networks with high 
values of 5 for large�0. RN of attractors for set C and D also 
show strong small world properties with large values of 5 
for large values of��0. The value of 5 for the RN of attractors 
for set E remains at the same level (around the value 2) for  

  

Figure 2. Normalized global clustering coefficient % %Ë¤  as a function of 
network size�0. 

varying 0 whereas the variation of 5 for RN of attractors for 
set A is somewhere between the two extremes for large��0. 

IV. DISCUSSION  

Complex network measures derived from the RN of the 
attractor of time series can be used to characterize the 
underlying dynamical system [19, 20, 27]. It has been 
recently shown that small world property emerges in 
networks that are produced by chaotic attractors due to 
orbital instability present in them using Rössler system, 
Lorenz system and real signals [19]. It has also been 
demonstrated that networks of periodic or limit cycle 
attractors are characterized by high values for  % and  . for 
increasing network size [19]. Based on these observations 
our results indicate that small world property emerges from 
the attractors of EEG signals during eyes closed (alpha 
rhythm) and interictal state. There has been evidence linking 
chaotic attractors to EEG alpha rhythm during eyes closed 
state [28]. Our results further confirm this by giving high 
value for 5 (high % and low�.) for RN constructed from 
attractors of EEG during eyes closed state. Similarly for 
interictal signals recorded from epileptogenic zones and 
hippocampal formation, the RN showed small world 
property and thus pointing towards a chaotic attractor 
underlying these signals. This seems plausible as interictal 
signals are associated with attractor of high-dimensional 
chaos [29].  The RN derived from the attractor of ictal signal 
showed high values of  % and  . with increasing��0. This 
behavior is consistent with that of a periodic attractor [19]. 
However it should also be noted that the value of 5 for ictal 
signal was still greater than 1 although it did not tend to 
increase with  0 but stayed at the same level. This may 
mean that the attractor is not completely periodic but slightly 
more complex than periodic but definitely less complex than 
a chaotic attractor that describes interictal state. This makes 
sense as ictal signals are associated with more ordered state 
with high synchronization. It has been demonstrated that 
even though the seizure activity is rhythmic and self-
sustained, it is more complex than limit cycle behavior [30] . 
For normal EEG signals with eyes open the attractor can be 
characterized as chaotic due to appreciable increase in 5 (to 
about a value of 4) for large 0 but less complex than the 
attractors of interictal and EEG signals with closed eyes. 
Also our approach could clearly differentiate between the 
EEG signals with eyes open and closed conditions which  



  

 

Figure 3. Small worldness 5 as a function of network size�0 

could not be detected by non-linear methods proposed by 
Andrzejak et al [22].  

V. CONCLUSION 

In this work we applied RN based approach to derive 
complex network measures from three classes of EEG 
signals ± healthy, interictal and ictal. Our results show that 
RN based approach is able to characterize different classes 
of EEG signals based on their attractor complexity. Future 
work will involve multivariate extension of this approach to 
EEG signals along with analysis of the attractor underlying 
pre- ictal EEG signals which is thought to play a crucial role 
in transitioning of interictal activity to ictal activity. 
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Recurrence network analysis of wide band oscillations of local field potentials
from the primary motor cortex reveals rich dynamics.

Narayan Puthanmadam Subramaniyam, Jari Hyttinen, Senior Member, IEEE,
Nicholas G. Hatsopoulos Senior Member, IEEE, Kazutaka Takahashi, Senior Member, IEEE

Abstract— Aggregate signals that reflect activities of a large number
of neurons in the cerebral cortex, local field potentials (LFPs) have
been observed to mediate gross functional activities of a relatively small
volume of the brain tissues. There are several bands of the oscillations
frequencies in LFPs that have been observed across multiple brain
areas. The signature oscillation band of the LFPs in the primary motor
cortex (MI) is over β range and it has been consistently observed
both in human and non-human primates around the time of visual
cues and movement onsets. However, its dynamical behavior has not
been well characterized. Furthermore, dynamics of β oscillations has
been documented based on the phase locking of β oscillations, but
not in terms of the inherent dynamics of the oscillations themselves.
Here, we used the complexity measure derived from cluster coefficients
of a recurrence network and analyzed a pair of wide-band signals,
one including β band of the LFPs and the other ranging the low γ
band in MI recorded from a non-human primate. We show rather
unique temporal profiles of the evoked responses using complexity of
the dynamical behavior in both bands of the oscillation, either of which
is not simply resembling either the power of the oscillation or the phase
locking of β oscillations. Therefore, the current method can reveal a
new type of dynamics of the underlying network complexity during the
task simply based on event evoked potentials of wide-band oscillatory
signals.

Index Terms— Local field potentials, event evoked potentials, recur-
rence network, temporal dynamics, motor cortex, functional connectiv-
ity

I. INTRODUCTION

Cortical rhythms have been extensively studied since early de-
scriptions of oscillations in sensorimotor cortex by Jasper and
Penfield [1]. In particular, local field potentials (LFPs) and elec-
troencephalograms (EEG) in the β frequency range (15-30 Hz) are
ubiquitous in the motor cortex of mammals including monkeys
and humans across the upper limb area of the primary motor
cortex (MI). The dynamics of the β oscillation has been grossly
characterized, based on a temporal profile of the amplitude of
the oscillations, such as event related synchronization (ERS) and
event related desynchronization (ERD) [2], [3], and phase locking
to the instruction cues [4]. However, the dynamical properties of
β oscillations have not been well characterized. Recently, it has
been reported that phase of β oscillations propagated as plane
waves along the rostrocaudal axis of the motor cortex during
motor preparation and execution, and are believed to subserve
cortical information transfer [5]. However, it has not been shown
inherent dynamics of LFPs, in particular, β oscillations, and their
spatiotemporal dynamics. The dynamics of neurons in general can
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be considered as nonlinear, mainly arising from the threshold and
saturation phenomena [6]. It has been recently shown that methods
based on recurrence plots, particularly recurrence networks (RN)
can be used to study the structural complexity of the EEG signals
[7], [8]. One particular advantage of RN based analysis is that it can
be applied to short segments of data, since the network properties
like global clustering coefficient C or average path length L can
still be reliably estimated. The topological characterization of the
RN using such network properties can provide insights into the
complexity of the dynamics associated with the time series [9].

II. METHOD

A. Behavior task and data collection

All of the surgical and behavioral procedures were approved by
the University of Chicago IACUC and conform to the principles
outlines in the Guide for the Care and Use of Laboratory Animals.
One monkey was trained to perform a visuomotor task using a two-
link exoskeleton manipulandum [10]. The monkey was required
to move a cursor on a horizontal screen that was aligned to the
monkey’s hand to the position of a target. When the monkey
successfully reached the current target, a new target was displayed
at a random location within a workspace while the current target
disappeared. The monkey received a juice reward after successfully
acquiring five or seven consecutive targets.

We recorded local field potentials (LFPs) from up to 96 channels
simultaneously at 1 kHz from MI in the monkey using an Utah
microelectrode array (Blackrock Microsystems; 1 mm in length
and 400µm inter-electrode spacing) implanted contralateral to the
moving arm. We analyzed 1000 consecutive successful trials. The
LFPs were bidirectionally bandpass filtered over [1, 30] Hz and
[30, 80] Hz with a 3rd order Butterworth filter respectively to
separate the raw signals into low frequency contents including up
to β and low γ range up to 80Hz. We partitioned the data into a
series of windows of length 150 ms, starting from the following time
windows [−100, 50] ms in relation to visual cue onset, incremented
by 1 ms up to [200, 350] ms.

B. Recurrence Networks

Given an univariate time series, {u(i), i = 1, 2, · · · , N}, one can
reconstruct the phase space trajectory of the underlying dynamics
using the method of delays [11]

xi = (u(i), u(i+ τ), · · · , u(i+ (m− 1)τ)), (1)

where xi ∈ Rm, τ is the embedding delay determined as the
first local minimum of the auto mutual information [12] and m
is the embedding dimension which can be determined using the
false nearest neighbor (FNN) approach [13]. One can visualize
the dynamics of the phase space trajectories using the method
of recurrence plots [14]. A Recurrence plot (RP) is a graphical
representation of the recurrence matrix, which is a closeness test



depicting the times when two states visit roughly the same area in
phase space. This closeness can be defined based on Euclidean or
Manhattan or maximum norm. A recurrence matrix R depicting the
closeness between the pairs of state vectors can be given as [15],
[9]

Ri,j(ε) = Θ(ε− ‖xi − xj‖), (2)

where Θ(·) is the Heaviside function, ‖ · ‖ is a distance norm,
and ε is the recurrence threshold specifying the maximum spatial
distance of neighboring states. The recurrence matrix is a binary,
symmetric matrix with an entry of 1 if the distance between two
states is less than the recurrence threshold ε, else the entry is 0.
The recurrence matrix can be reinterpreted as an adjacency matrix
after the following transformation [15], [9],

A = R− I, (3)

where I is the identity matrix. The above operation simply elimi-
nates the artificial self-loops. The adjacency matrix A represents an
undirected, unweighted complex network known as the recurrence
network as in [9]. The recurrence network can be characterized
using graph theoretical methods to reflect the dynamically invariant
properties of the associated dynamical system. In this work, we
compute the global clustering coefficient C of the recurrence
network. Given a network with N nodes and V vertices, the local
clustering coefficient of a node i can be defined as the likelihood
that the neighbors of i will also be neighbors of each other.
Formally, the local clustering coefficient of a node i can be given
as in [16],

c(i) =

∑
j,r Ai,jAj,rAr,i

ki(ki − 1)
, (4)

where k is the degree of a node. The Global clustering coefficient
is simply the average of local clustering coefficient computed over
all the nodes of a network and is given as,

C =
1

N

∑
i∈N

c(i). (5)

In order to perform the analysis described above, we first
averaged the trials of LFP data (-100 ms before the event and 350
ms after the event) for all the 96 channels. The averaged data was
divided into highly overlapping windows of length 150 ms and
step size 1 ms. The optimal delay and the minimum embedding
dimension was computed for all the channels and we found that for
most of the data the embedding parameters were, delay τ = 5 and
embedding dimension m = 3. Also, to determine the embedding
dimension, we used the improved FNN approach [17] to avoid
spurious effects due to noise. Using these embedding parameters
we constructed same-sized recurrence networks for every window
and channel. Instead of specifying the recurrence threshold ε, we
fix the recurrence rate RR = 0.05 so that we obtain recurrence
networks with approximately the same number of edges so that we
can compare the networks obtained from different time windows
[18].

III. RESULTS

A. Spectral profiles of LFPs

First, Fig. 1 shows a power spectrum of LFPs computed over
[−100, 350] ms of visual cue onset over 1000 consecutive cue
presentations. The multi-taper method was used and the parameters
used are: [TW,K] = [3, 5], where TW denotes the time-bandwidth
product and K being the number of tapers. There is a distinct peak
around 18-19 Hz over the β oscillation and a small peak around
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Fig. 1. Stereotypical example of power spectrum of LFP. There is a
clear peak around 18-19Hz in this subject over β range and a small peak
around 40 Hz in a low γ range.

40Hz over the low γ range. For the rest of the recurrence analysis,
we focused on wide band oscillations: low band being [1, 30] Hz
to cover up to β oscillation frequency range and the higher being
[30, 80] Hz to cover low γ oscillation frequency range.

B. Optimal delay

Fig. 2 shows the auto-mutual information for an exemplary
channel. It can be seen from Fig. 2 that the first local minimum of
the auto-mutual information occurs at a lag of 5. Similar behavior
was seen for most of signals from other channels.
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Fig. 2. Optimal delay τ using auto-mutual information for an exemplary
channel. The red line denotes the first local minimum.

C. Embedding dimension

Fig. 3 shows the plot of the FNN statistic with respect to
the embedding dimension for an exemplary signal. Already at an
embedding dimension of 3, the value of FNN statistic drops to 0.04.
Given the amount of data in each window (150 sample points), the
choice of m = 3 seems feasible. Going for larger values of m like 5
or 6 might greatly reduce the amount of points needed to estimate
the network characteristics. For the sake of consistency, based on
these observations, we set optimal delay τ = 5 and embedding



dimension m = 3 to reconstruct the phase space vector from all
the signals.
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Fig. 3. Minimum embedding m using the FNN method for an exemplary
channel. At m = 3, the FNN statistic is already below 0.05

D. Temporal profiles of cluster coefficients across different bands

The cluster coefficients for evoked responses for each channel
across the two frequency bands were shown in Figs. 4 & 5.
Within each frequency band, temporal variations across channels
are somewhat similar. For [1,30]Hz band including the β peak, there
is a minor peak slightly before 50 ms, and that particular timing is
close to the highest phase locking of narrow band beta oscillations
from this data set (18.5 ± 3 Hz , results not shown). However, other
prominent features such as peaks at -50 ms and between 125-250
ms are unique features that either traditional magnitude or phase
analysis based on narrow band beta oscillation did not exhibit.

C
h
a
n
n
el
s

Time [ms]

[1-30] Hz

−75 −50 −25 0 25 50 75 100 125 150 175 200 225 250 275

10

20

30

40

50

60

70

80

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 4. Global clustering coefficient C for the evoked response (1-30 Hz)
across all channels computed with moving windows of 150 ms and 1 ms
step size. The value within each window of C is assigned to the mid-point
of the window.
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Fig. 5. Global clustering coefficient C for the evoked response (30-80 Hz)
across all channels computed with moving windows of 150 ms and 1 ms
step size. The value within each window of C is assigned to the mid-point
of the window.

Compared to the lower frequency band, low γ band apparently
showed more heterogeneous temporal variations across the channels
and timing at which high C values are attained are almost opposite
(except for the first tens of windows). Furthermore the timing at
which local maxima are attained (25-120 ms) vary significantly
between 0.1 to 0.4, especially compared to [1,30]Hz band where
the peak C timing in that time period roughly corresponds to the
highest phase locking.
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Fig. 6. Variations of global clustering coefficients across channels for
the two different bands. Each plot shows mean ± std computed over all
the channels used for the analysis. Top for low frequency range, [1,30]Hz.
Bottom for high frequency (or low γ ) range [30,80]Hz.

Then, we looked at the temporal variations of the C values across
channels in Fig. 6. The standard deviation at any given time point
for both frequency bands are somewhat compatible, but the mean
trends show almost opposite behavior. Furthermore, probably due to
phase locking over the β range, the temporal trajectory of C quickly
changes between 25 to 125 ms. Therefore, the recurrence network
analysis, even at the level of evoked potentials exhibit much richer



response patterns than simple narrow band phase locking or wide
band amplitude trajectories.

IV. DISCUSSIONS

Based on our previous work [19], we had shown that the
relative power of β oscillation and γ oscillation changed around the
movement onset and that there were effectively three states based
on the ratios of β and γ powers averaged over all the channels from
our MI array. In our current work, we applied recurrence network
analysis to wide band signals containing β range and the low γ
range. Although the computations are more involved, our analysis
capture richer dynamics of wide band signals and clear control of
the underlying network dynamics during the task based only on
evoked responses in LFPs.

In our current study, we only looked at temporal dynamics
of recurrence network analysis, but we would like to extend the
method to characterize spatiotemporal dynamics of cortical signals
as we used phase based method to characterize wave propagation
of narrow-band filtered signals [5]. Particularly, the current method
can be very attractive to study wide(r) band signals such as low and
high γ oscillations for which phase calculation can be non-trivial.
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