This is the post print version of the article, which has

been published in International Journal of

Foundations of Computer Science . 2018, 29(4), g

623-645. [@Dﬁ D ~ This document has been downloaded from TamPub.uta fi
| @]C The Institutional Repository of University of T

http://dx.doi.org/10.1142/S0129054118410083 » T il ooy nesiyof fanpere

Dynamic RLE-compressed edit distance tables
under general weighted cost functions

Heikki Hyyro
Faculty of Natural Sciences, University of Tampere, Finland
heikki.hyyro@uta.fi

Shunsuke Inenaga
Department of Informatics, Kyushu University, Japan
inenaga@inf .kyushu-u.ac. jp

Abstract

Kim and Park [A dynamic edit distance table, J. Disc. Algo., 2:302—
312, 2004] proposed a method (KP) based on a “dynamic edit distance
table” that allows one to efficiently maintain unit cost edit distance infor-
mation between two strings A of length m and B of length n when the
strings can be modified by single-character edits to their left or right ends.
This type of computation is useful e.g. in cyclic string comparison. KP
uses linear time, O(m + n), to update the distance representation after
each single edit. Recently Hyyr6 et al. [Incremental string comparison, J.
Disc. Algo., 34:2-17, 2015] presented an efficient method for maintaining
the dynamic edit distance table under general weighted edit distance, run-
ning in O(¢(m+n)) time per single edit, where ¢ is the maximum weight of
the cost function. The work noted that the ©(mn) space requirement, and
not the running time, may be the main bottleneck in using the dynamic
edit distance table. In this paper we take the first steps towards reducing
the space usage of the dynamic edit distance table by RLE compressing A
and B. Let M and N be the lengths of RLE compressed versions of A and
B, respectively. We propose how to store the dynamic edit distance table
using ©(mN + Mn) space while maintaining the same time complexity as
the previous methods for uncompressed strings.

1 Introduction

Edit distance is a classic and widely used similarity measure between two strings
A and B. In this paper we concentrate on Levenshtein-type edit distance that
is defined as the minimum total cost of a sequence of single-character insertions,
deletions, and/or substitutions that transform A into B.

Let m and n be the lengths of A and B, respectively, and ed(A, B) the edit
distance between A and B. The fundamental ©(mn) time dynamic program-

ming edit distance algorithm computes information in a “directional” manner.
W.lo.g. we assume the typical left-to-right direction that allows one to effi-
ciently cope with changes to the right ends of A or B: the solution to ed(A, B)
can for example be updated into a solution to ed(Ac, B) or ed(A, Bc), where ¢
is a character appended to the right end of A or B, in ©(n) or ©(m) additional
time, respectively.! Changes to the left end are much more costly: e.g. updat-
ing a standard dynamic programming solution to ed(A, B) into a solution to
ed(cA, B) or ed(A,cB), where c is prepended to the left end of A or B, takes
©(mn) worst-case time.

There are several solutions (mainly [14, 12, 11]) that can handle left-end
modifications in O(m + n) time under unit cost edit distance. Efficient support
for left-end modifications is important in many applications, such as e.g. cyclic
string comparison and computing approximate periods (see [14, 17, 12, 8, 4]
for more details). The key to overcome the ©(mn) limit of the basic dynamic
programming algorithm is to use an indirect representation of the edit distance
information. In this paper we concentrate on the difference-representation used
by the ”dynamic edit distance table” that was first introduced by Kim and Park
[12] for unit cost edit distance and recently extended by Hyyro et al. [11] to
general weighted edit distance.

It was noted in [11] that the main practical limitation of the dynamic edit
distance table is its ©(mn) space requirement. As the first step towards reducing
space usage, the previous version [10] of this present article considered a method
to compactly store the dynamic edit distance table under the unit cost function.
Let M and N denote the sizes of run-length encodings (RLEs) of A and B,
respectively. We presented an algorithm which updates a sparse representation
of the dynamic edit distance table of size ©(mN + Mn) in linear O(m+n) time
per left-end modification.

This present paper extends our method in [10] to general weighted edit
distance. To deal with weighted costs, the proposed algorithm processes each
block of the edit distance table defined by two runs from A and B in a bit
different manner from the basic algorithm of [10] for unit cost edit distance, but
it retains the efficiency. Namely, the proposed algorithm stores the dynamic
edit distance table for weighted costs with ©(mN + Mn) space and updates it
in O(e(m +n)) time per left-end modification, where ¢ is the maximum weight
of the cost function. Hence, the proposed algorithm runs in O(m + n) time per
left-end modification for constant weights.

Related work. The problem of computing the edit distance and its related
metrics between two RLE compressed strings has been extensively studied in
the literature (e.g., see [5, 3, 15, 9, 1, 2, 16, 6, 13]). Among all the existing work,
our methods are most related to the followings:

Arbell et al. [3] showed how to store the edit distance table with ©(mN+Mn)
space and update it in O(m + n) time per right-modification. Their algorithm

IThe case of right-to-left direction is symmetric and would within the context of this paper
only result in interchanging the notions of “left” and “right” ends of a string.

only supports unit cost edit distance. The previous version [10] of this present
article is built on Arbell et al.’s method. Bunke and Csirik [5] considered the
problem of computing the longest common subsequence (LCS) of two RLE com-
pressed strings, and showed an algorithm which uses ©(mN + Mn) space and
runs in O(m + n) time per right-modification. This relates to the edit dis-
tance allowing only for insertions and deletions (namely the in-del distance).
Maikinen et al. [15] proposed an algorithm which stores the edit distance for
general weighted costs with ©(mN + Mn) space, and updates it in O(m + n)
time per right-modification. Our method proposed in this present article is built
on their method.

2 Preliminaries

We use the following notation with strings. The set of all characters (alphabet)
is 3. Let A be a string consisting of m characters. For 1 < i < m, A[i] denotes
the ith character of A, and for 1 < i < j < m, A[i : j] denotes the substring
of A that starts at its ith character and ends at its jth character. If i > j, we
define A[i : j] = €, where £ denotes the empty string.

Run length encoding (RLE) is a string compression method that compresses
a string A by replacing each maximally long substring A[i : j], where A[i] = A[k]
for all k € [i..j], by the pair (a,j—i+1), where a = A[i]. That is, each maximal
run of equal characters is replaced by a value-pair that describes the character
and the length of the run. It is usual to express such pairs (a,) in the form a®.
For example if A = aaaabbacccbbaabbb, the RLE compressed representation of
A may be written as a*b?alc®b?a?b®. The length of an RLE compressed string
(or the RLE length of a string) is the number of maximal runs in it. E.g. the
length of the preceding example string A is 17 and its RLE length is 7. RLE
compression is effective when the strings contain long runs of equal characters.
This makes RLE compression useful e.g. in image compression: pixel rows tend
to contain relatively long runs of similar pixels, which allows to save space by
storing pixel rows as RLE compressed strings.

Let ed(A, B) denote the edit distance between two strings A and B. The
distance ed(A, B) is generally defined as the minimum total cost of a sequence
of edit operations that transforms A into B, where the individual operation
costs are given by a predefined cost function §. The value §(x,y) is defined for
all z,y € ¥ U {e} and specifies a non-negative cost for replacing « with y. We
assume that § obeys the triangle inequality: (z,y) < 0(z,z) + d(z,y) for all
z,y,z € XU {e}.

The cost function essentially defines a Levenshtein-type edit distance that
permits the following three edit operations for a string A:

1. Insert a character z after position i of A. If i = 0, insert it to the left end.
The operation cost is d(e, z).

2. Delete the character a; from position i of A. The operation cost is §(a;, €).

3. Substitute the character a; at position i of A by a character x. The
operation cost is d(a;, x).

We further let ed; (A, B) denote the so-called unit cost edit distance between
A and B, which uses the specific operation costs §(z,y) = 0, if x = y, and
0(z,y) = 1, if # y. Note that ed;(A, B) essentially corresponds to the mini-
mum number of edit operations required in transforming A into B. For example
edq(apple, carpe) = 3 and an optimal three-operation way to transform A =
apple into B = carpe is to delete A[4] = 1, substitute A[2] = p by r and insert
the character ¢ to the front.

Throughout the paper let m denote the length of A and n denote the length
of B. The fundamental ©(mn) time solution for computing ed(A, B) fills an
(m+1) x (n+1) dynamic programming table D with values D[i, j] = ed(A[1 :
i], B[1: j]) for 0 < i <m and 0 < j < n. The cell D[m,n] will hold the desired
result ed(A, B). Each value DJi, j] is computed using the following well-known
recurrence (1).

D[i,0] = 30—, 8(an,e) for 0 <i <m,
D[0,j] =323 _, 8(e,by,) for 0 < j <n, and (1)

D[Zvj] = mln{D[ZaJ - 1] +6<E?b])7D[Z - 17.7] + 5(aia€)7
Dli—1,5 —1]4+6(a;, b))}, for 1 <i<mand 1<j<n.

Note that under unit costs, each cost of form §(z,) or d(e, x) in the recurrence
could be replaced by the value 1.

It is often useful to view edit distance computation as shortest path compu-
tation in a grid graph where each cell D[, j] is a node and each cell D[i, j] with
i > 0 and j > 0 has three incoming directed edges: one with weight (e, b;) from
the node DJi, j — 1], one with weight §(a;,€) from the node D[i — 1, j], and one
with weight §(a;,b;) from the node D[i — 1,5 — 1]. The boundary cells D[0, j]
with j > 0 have an incoming edge with weight d(e, b;) from the node D0, j — 1],
and the boundary cells D[i,0] with ¢ > 0 have an incoming edge with weight
d(a;,€) from the node D[i — 1,0]. Now each value DJi,j] = ed(A[l : 4], B[1 : j])
corresponds to the length of a shortest path from the start node D[0, 0] to the
node D[i, j]. Paths in this type of grid graph are typically called edit paths.

In the rest of the paper we assume that we are given edit distance informa-
tion, e.g. the table D, that corresponds to computing ed(A, B), and that the
string B will then be subjected to an edit operation at its left or right end. The
case of editing A is symmetric. Let B’ denote B after the operation. The goal is
to update the edit distance information, for example D, so that it corresponds
to ed(A, B’).

Let D’ denote D after it has been updated to correspond to ed(A, B’). If the
operation to B is done at its right end, in which case either B’ = Be (insertion),
B’ = B[l : n — 1] (deletion) or B’ = B[l : n — 1]c¢ (substitution), D may be
updated into D’ in O(m) time by computing a single column at index j = n or
j = n+ 1 using recurrence (1). It is well-known (see e.g. [12]) that any of the

c a r p e c a r p e c a r p e
01 2 3 45 1 1 1 1 1
a 1]1]1]2]3]4 a 1]0]|-1]-1|-1]-1 a olof1]1]1
p 2|212]2]2|3 p L|1][1]0]-1]-1 D ojojofo|l
p 3|/3|3[3[2]3 p 1|1]1|1]0]0 p olofol-1]1
1 444433 1 1]1|1]1]1]o0 1 ojolo]|-1]0
e 5|/5/5[5/4/3 e L|1]1|1]1]0 e 0[0/0]-1]-1
D DR.U DR.L

Figure 1: The tables D and DR for A = apple and B = carpe under unit cost
edit distance.

analogous left end modifications, corresponding to either B’ = ¢B (insertion),
B’ = B2 : n] (deletion) or B’ = ¢B[2 : n] (substitution), may lead to up to
©(mn) differences between D and D’. This gives a worst-case bound of ©(mn)
for updating D into D’.

3 The dynamic edit distance table

The “dynamic edit distance table”, originally proposed by Kim and Park [12]
for unit cost edit distance, avoids the ©(mn) bound of updating D into D’ by
maintaining a difference representation DR of D (instead of the original D).
Each cell DRJi, j] of the difference table has two fields: a vertical (upper) dif-
ference DRJi, j].U and a horizontal (left) difference DR][i, j].L. These difference
values are defined as

DR[i,j].U = Dli,j]— D[i —1,j] and
DR[i,j.L = DIi,jl—Dli,j—1], fori=1,...,mand j=1,...,n.

That is, DRJ[i, j].U tells the difference between DJi, j] and its upper neighbor
D[i—1,] and DRJi, j].L tells the difference between DJi, j] and its left neighbor
DJi, j—1]. Fig. 1 shows an example of D and the corresponding U- and L-values
in DR under unit cost edit distance. Note that if we have only DR available,
computing an arbitrary D[i, j] value requires O(min{m, n}) time since we need
to backtrack min{i, j} cells from DR][i, j]. However, the computation of DR can
be set to keep track of a constant number of specific values of interest, such
as D[m,n] = ed(A, B), without causing asymptotic (or practically significant)
overhead. This makes DR sufficient for many applications.

Let DR’ denote DR after it has been updated to correspond to ed(A, B'). Mod-
ifying the left end of B may shift column indices within B and DR. E.g. if a
character is deleted from the left end of B, then for j = 2,...,n the equality
B[j —1] = B’[j] holds and column j —1 in DR corresponds to column j in DR’
We define £ as a correcting offset: ¢ = —1 if a character was deleted from the left

end, £ = 1 if a character was inserted to the left end of B, and £ = 0 otherwise.
Now B[j — ¢] = B'[j] and column j — ¢ in DR corresponds to column j in DR’.

The crucial benefit from using DR instead of D is that under a variety of
cost functions DR and DR’ differ in much less than ©(mn) positions. In fact,
as first shown by Kim and Park [12], under unit cost edit distance DR differs
from DR in at most O(m + n) positions. A more general characterization is
given by the following Theorem 1, which is derived from the proof of Theorem
9 in [11].

Theorem 1 ([11]) Let ¢ be the mazimum weight of the cost function §. Any

single rowi € [1 .. m] of DR’ contains at most O(c) columns j where DR'[i, j].L #
DR[i,j — {].L. Any single column j € [1 .. n] of DR’ contains at most O(c)

rows ¢ where DR'[i,j].U # DR[i,j — ¢].U. Overall the table DR’ contains at

most O(c(m + n)) positions where DR'[i, j| # DR[i,j — {].

Both the unit cost algorithm of Kim and Park [12] and the general cost algorithm
of Hyyré et al. [11] update DR into DR’ in O(m + #cx) time, where #,,
denotes the overall number of differing positions between DR and DR’. Thus
both algorithms are optimal in the sense that their running times are directly
proportional to the number of entries that change when DR is transformed into
DR’. The following result concerning the algorithm of Hyyr6 et al. follows from
Theorem 1.

Theorem 2 ([11]) Let ¢ be the mazimum weight of the cost function 6. DR
can be updated to DR’ in O(c(m + n)) time.

Note that the running time is linear under unit cost edit distance, as then ¢ = 1.

Let us first briefly review how the algorithm of Hyyré et al. [11] (we will
from now on call it HNI) works. It is based on using Lemma 1 which states
those cells in DR’ that need to be recomputed.

Lemma 1 ([11]) Assume that the values DR'[i*,j*] are correct for all cells
where i* < i or j* < j. The entry DR'[i, j] needs to be recomputed if and only
if DR'[i —1,4].L # DRJi — 1,j — {].L or DR'[i,j — 1].U # DR[i,j — 1 — €].U.

Recall that the value ¢ referred to in Lemma 1 is a correcting offset that keeps the
indices aligned correctly when comparing values in DR and DR’. If £ = 1 and
Lemma 1 is applied in the first non-trivial column j = 1, the lemma references
values DR[i, —1].U in a non-existing column j — £ — 1 = —1. We accommodate
such negative columns by using the convention that D[i, j] = D[4, 0] if j < 0.
This defines the values DR[i, —1] as DR[i,—1].U = D[i,—1] — D[i — 1,—-1] =
D[i,0] — D[i—1,0] and DR[i,—1].L = DJ[i,—1]— DJi,—2] = D[i,0] — D[i,0] = 0.

We also remark that the same arguments as Lemma 1 apply to DS and
DS’, which are respectively sparse representations of DR and DR’ based on the
RLEs of the strings. The formal definitions of DS and DS’ will be given later
in Section 6.

Lemma 1 has two valuable consequences. The first is that when B is mod-
ified, we only need to update values in DR’ from that column j' onwards (to-
wards right) into which the modification was done. The second is that if this
computation has determined at some column j' + k that DR'[i,j" + k].U =
DR[i,j'+ k— (.U in all rows i = 1...m, then the computation can be stopped
and DR’ is ready.

The algorithm uses the following recurrence (2) when (re)computing the
value of any entry DR][i, j].

DRJi,0].U = 6(a;,) for every 1 <i <m,
DRI0, j].L = (e, b;) for every 1 < j < n, and
DRJi,jl.U = z — DR[i — 1,j].L and DRJ[i,j].L = z — DR[i,j — 1].U, where

z = min{DR[i — 1,j].L + 6(e,b;), DR[i,j — 1].U + 6(a;,€), 6(as, b;)}, for
every 1 <¢ < m and every 1 < j <n.

(2)

Assume that HNI is currently processing column j. The algorithm maintains a
sorted list prevA of rows ¢ that may need to be recomputed in column 7, that
is, those indices ¢ for which the inequality DR'[i,j — 1].U # DR|[i,j — 1 — £].U
was true in the previous column j — 1.2 This enforces the second condition in
Lemma 1. HNI processes the column j rows listed in prevA in increasing row
order. Each such cell DR'[i,j] is recomputed, and the U- and L-fields of the
new value are compared with the old ones (which corresponded to DRJ[i, j —¢]).
If the the U-fields do not match, the row ¢ of the next column j + 1 is added
to a second list, currA, that will later take the role of prevA for column j + 1.
If the L-fields do not match, the first rule of Lemma 1 is enforced: also the row
i+ 1 in column j will be computed (regardless of whether row 7 + 1 is present
in prevA or not). The computation can be stopped if currA remains empty or
J was the last column of DR.

4 Edit distance of RLE compressed strings

For the rest of the paper we assume that A and B have been RLE compressed
and denote their RLE lengths by M and N, respectively. In this section we
mostly follow the ideas of the algorithm of Mékinen et al. [15] that computes
ed(A, B) in ©(mN 4+ Mn) time under general weighted edit distance. Their
algorithm is superficially identical with the algorithm of Arbell et al. [3] for unit
cost distance; the algorithms differ only in details related to handling general
costs. Note that the time @(mN + Mn) complexity holds even if A and B are
given in uncompressed form: in that case A and B can first be RLE compressed
in O(m + n) time.

2In case of using a linked representation of DR, the list should also contain pointers to the
corresponding entries in column j.

The key idea is to divide the
dynamic programming table D
into “boxes” that are defined by in-
tersections of maximal runs of A
and B (see Fig. 2). D contains
(M +1) x (N +1) such boxes. Let
M denote the length of the Ith
run in A and N’ denote the length
of the Jth run in B. We also define
the end position of the Ith run in
A as ih = BI_ M* and the end
position of the Jth run in B as

.J _ J k . .
Figure 2: Boxes defined by intersecting JR = Zk:lN It s goonvegtent to
RLE runs. Boxes that consist of matching define special cases i = jg = 0

1 —1
characters are highlighted with dark grey. and ig” =Jjg= = —1. Under these
conventions, the box B!/ is de-

fined for 0 < I < M and 0 < J < N as the two dimensional index interval
that spans the rows ¢ = ilel +1,... ,ié and the columns j = jéfl +1,... ,jl‘{.
Thus 4§ tells the bottom row and j3 the rightmost column in the box B!/,

We may say that the box B/ resides on box row I and in box column .J.
Since the box B’/ is an index interval instead of a concrete sub-table of D, we
may refer to a box B’/ also in alternative representations of D, such as DR.

The table D is processed one box at a time, and in each box B only the
cells on its right/bottom boundary (in rightmost column jg and/or bottom row
iL) are filled. It is convenient to define the left/top boundary to consist of those
cells that are immediate left /top neighbours of B*/: the left boundary resides
on column jgfl and the top boundary on row ilel. The boxes are processed in
such a manner that the left /top neighboring boxes B/ ~1:/=1 BL.J=1 and BI=1./
are processed before the box B’*/. This guarantees that the cells in the left /top
boundary have been computed before B%/. The values in the right/bottom
boundary can be computed from the values in the left /top boundary.

Throughout the rest of this section we concentrate on computing a D[i, j]
inside the current box B’’/. Let a and b be respectively the characters of A
and B whose runs the current box B’/ corresponds to. Now, the dynamic
programming recurrence (1) has the form

0
1
2
3
4
5
6
7
8
9

O T T T o o o0 9 o

Dli, j] = min{D[i, j—1]+6(e,b), D[i—1, j]+d(a, &), D[i—1,j—1]+d(a,b)} (3)

for any cell (4,) inside the current box B'7. According to recurrence (3), the
box B!/ corresponds to a grid subgraph with uniform costs for each direction:
each horizontal step from (i, — 1) to (i, 7) costs d(g,b), each vertical step from
(i—1,7) to (4,]) costs d(a,e), and each diagonal step from (i —1,j —1) to (4, 5)
costs 0(a, b).

Consider a reversed optimal edit path from the cell (7, j) to the cell (0,0) and
define (i*, j*) as the first cell on this path that resides on the left/top boundary
of BL/. We will analyze an optimal subpath P from the cell (i,) to the cell

(i*,7*). Note that (i*,j*) must be the only left/top boundary cell in P. We
say that P is an L-path, when the cell (i*,5*) = (¢ ,31‘{ 1) resides on the left
boundary, and a T-path, when the cell (i*,5*) = (il ', j*) resides on the top
boundary.

Let h(i,7,3%,5%), v(i,j,i*,7*) and d(i,7,i*, j*) denote the number of hori-
zontal, vertical and diagonal steps along P. This gives rise to the equality

Dli,] = DI, 3]+ bl 7, 7)6(e,b) - 0(is 7, 57)6(a,2) + (i, 4,8, 5%)3(a,).

(4)
In order to use equation (4), we need to determine the values h(i,j,i*, j*),
v(i,4,4*,7*) and d(i,7,4*,5*). Since ¢ obeys the triangle inequality, P will
always contain as many diagonal steps as possible. This gives the equality
d(i,j,i*,7*) = min{i — i*,j — j*}. Depending on which of the previous two
minimum cases holds, the remaining steps (if any) will be either h(i, j,i*, j*) =
Ji —d(i,j,i*,j*) — j* horizontal steps from (i*,j — d(i, j,i*, j*)) to (i*,j*), or
v(i,4,4%,5%) =i —d(i,4,1*, j*) — ¢* vertical steps from (i — d(s, j,i*,j*),j*) to
(#*,7*). This implies that an L-path contains only diagonal and horizontal steps
and a T-path only diagonal and vertical steps. Let s = min{i — iy ', j — ji;{_l}
denote the minimum distance from (i,) to the left/top boundary An L-path

must end in one of the s+ 1 left boundary cells (i* ,ij) for i* = i — s e i,
and a T-path must end in one of the s + 1 top boundary cells (,J *) for
j*=4—s,...,7, as the max1mal number of s diagonal steps Wlll reach the

boundary cell (i — 8,55 ") or (i5™',j — s) before any cell (i —s — k,jg ') or

(' j—s—k) with & > 1. We call the set of poss1ble L-path end cells an
“L zone” and the set of possible t-path end cells“T-zone”, respectively. Fig. 3
illustrates.

Let us define Ls(3, 7, i*,ijl) as the minimum cost for an L-path between
(i,7) and an L-zone cell (i*,j5 '), and Ts(i,7,i }3 ! %) as the minimum cost
for a T-path between (i,5) and a T-zone cell (if; ',j*). These now have the
following equalities:

L5(i7ja *’]13‘]{ 1) = (.]_]13']{ ! (Z—Z*))d(f,b)—F(Z—Z*)(S(Cl,b),
Ts(i,j.if " 5%) = (i—if "= (G —4"))0(a,e)+ (j — j*)é(a,b).

The preceding discussion gives rise to the following Lemma 2, which is essentially
a translation of Lemma 5 in Mékinen et al. [15] to use our conventions.

Lemma 2 ([15]) Let (i,j) reside in the box BL7 and a and b be the corre-
sponding characters of A and B. Then Dli, j| = min{Zr, Zr}, where

Zp, = min;_s<i-<i(D[i*, i + L (i, j i J}Q Y), and

Zr = minj—sﬁj*éj(D[Zf{ T+ Ts (i gyig L 5%))-

Lemma 2 simply computes D[i, j] as the minimum value given by equality (4)
when the set of candidate cells D[i*, j*] is confined within the L- and T-zones.
The values Z;, and Zr in Lemma, 2 represent the minimum values of the respec-
tive zones.

A deque with heap order [7] (“min-deque”) maintains a set of values in
a double ended queue, requires O(1) amortized time per queue insertion or
removal, and provides the minimum value in the queue in O(1) time. We will
describe the details of this technique later in the next section, as it will also
be used as a building block of our dynamic edit distance computation for RLE
compressed strings.

If the L-zone values defined by Lemma 2 are stored in a min-deque Ldeque
and the T-zone values in a min-deque Tdeque, the computation D[i, j] = min{Zy, Zr} =
min{Ldeque.min(), Tdeque.min()} takes O(1) time. The min-deques can be
maintained eﬁiciently when the right boundary cells D[i*, jR] are computed
in the order i* = i5™* +1,...,i} and the bottom boundary cells D[i}, j*] in the
order j* = jR +1,...,]R Each boundary is handled separately.

Consider first the first right boundary value D[z 1 jR] Ldeque is initial-
ized with the two L-zone based values D[T 1,3R Nt Ls(il 41, 55, L l,jé h
and D[ZIB ! Jrl,jR]+L5(14,]R’ T,]R 1) Tdeque 1s 1n1tlahzed with
the two T-zone based Values D[ZB R = U+ Ts(ih ™ + 1,55, 1? 1 g4 —1) and
D[iL~ ,jR]—i—T (Y41, 58,0571 5%). After this the value D[zé +1, j] is com-
puted as D[ey ,j3] = min{Z;, Zr} = min{Ldeque min(), Tdeque.min()}.
See the rightmost case in Fig. 3.

Consider next the first left boundary value D[iB7 7= 4+ 1]. Ldeque is ini-
tialized with the two L-zone based values D[iB 1]] + Ls (ik, ji{_l +1,i5 —
L ja~) and D[ik, ja '] + L5(ZB,jIR +1 ZB7]R 1) Tdeque is initialized with
the two T- zone based Values Dlig 1,]R 4 T (ZB,jF‘tl + 1,i ,jé 1) and
Dlig gt +1]+T5(ZB,j L1l ,]R_l—l—l). After this the value D[i5 " +
1 jR] is computed as D[iL; —I—l,jé] = min{Zy, Zr} = min{Ldeque.min(), Tdeque.min()}.

The preceding pr0v1des the base cases for the first steps of each boundary.
Now consider how to update Ldeque and Tdeque as the computation moves
from some (i —1, 5) to (4,) or from some (i,5—1) to (i,7). The following easily
derived properties state how such steps change the minimal L- and T-path costs:

Step (i —1,7) — (J):
Ls (i, j,i* ,JR Y= Ls(i— 1,54, 55 ") + 6(a,b) — 6(e,b).
Té(ivja a]R) (71,‘7‘,2‘*,]}{_1)4*5(0,,6).

Step (i,5 — 1) — (4, 5):
Ls(i, jyi ,jé Y= Ls(i,j — 1, ji7Y) + 6(e, b).
Té(ivja a]R 1) = L5(7’a] - 177' 7.71‘3{_1) + 5(a7b) - 6(0’3 5)'

When the right boundary computation moves from (i*—1, 53) to (i*, j3), the end
of L-zone will expand to cover the cell (7*, jl}]{ 1), and all L-path costs change by
d(a,b) — d(g,b). In principle all current values of Ldeque should be adjusted by
d(a,b)—0d(e,b), but the same effect is achieved by decrementing the new value by
a = (i*—if '—1)(6(a,b)—d(e,b)): the value D[i*, jn | +Ls(i*, ji, 1% jn) —a
is added to the end of Ldeque. This readjustment policy is taken into account
by computing Zj, as Z; = Ldeque.min() + a. If sy > sp, the front value of

Ldeque is removed in order to remove the cell (i —sp —1, jf]{_l) from the L-zone.

10

T-zone

®PSOoON-—

DSON-—

mOOoON-—-—

-1

Jr Jr

v
Jr J=Jr

Figure 3: L- and T-zones when computing DJ[i,j]. The filled cells on the
right /bottom boundary are highlighted with a grid-pattern. The cells of the
L-zone and the T-zone are shown in dark grey. The dashed diagonal lines go
from DJi, j] to D[i — h,j — h].

In the case of T-zone, the cell D[ilel,ji{ — s7] will enter it if s7 < s;. The
previous values in Tdeque should be incremented by d0(a, &) which is handled by
decrementing the new value by 8 = (i* — i, ' — 1)d(a,¢) instead: If s7 < s,
the value D[z’é‘l,jé —s7] + Tg(i*,jl‘{,iIB_l,jl‘{ — s7) — [is added to the end
of Tdeque, and in any case Zp is computed as Zp = Tdeque.min() + 5. No
cell leaves T-zone, so no value is removed from Tdeque. Now the desired value
D[i*, j%] = min{Zy, Z7} may be computed, and the whole step has taken O(1)
amortized time.

When the bottom boundary computation moves from (i, j* — 1) to (i3, 5*),
the cell D[ik — s1,7* — s1] enters the front of L-zone if s;, < sp. The pre-
vious values in Ldeque should be incremented by §(e,b), which is handled by
decrementing the new value by a = (5* — j3 ' — 1)d(e, b) instead: If s;, < sr,
the value D[i§ — sp,j* — sp] + Ls(i, 5%, i — sr,7* — s1) — a is added to the
front of Ldeque, and in any case 7, is computed as Z; = Ldeque.min() + a.
No cell leaves the L-zone, so no value is removed from Ldeque. In the case
of T-zone, the cell (ilel, J*) will enter it and the values of Tdeque should be
adjusted by §(a,b) — §(a,e). This is handled by decrementing the new value by
B=("—jn ' =1)(6(a,b)=6(e,b)): the value D", j*]+T5 (i, j*,ipy *,j*)— B
is added to the end of Tdeque. If sy < sp, the front value of Tdeque is re-
moved in order to remove the cell (iIB_l,j* — s, — 1) from the T-zone. The
value Zp is computed as Zp = Tdeque.min() + 5. Now the desired value
Dli$,j*] = min{Zr, Zr} may be computed, and the whole step takes O(1)
amortized time.

Since each cell in a right/bottom boundary of a box can be computed in
O(1) amortized time and D has altogether @(mN + Mn) such cells, the overall
time for computing ed(A, B) is ©(mN + Mn).

5 Deques with heap order

In this section we briefly review a simple min-deque structure of Gajewska and
Tarjan [7] that supports value insertions and removals at both ends of a queue,

11

as well as minimum value queries, in O(1) amortized time per operation. The
original reference describes also a more complicated variant with unamortized
O(1) time.

The min-deque consists of a double ended queue deque and two stacks, front
and end. The stacks maintain information about minimum values within the
“front part” and the “end part” of queue: front is updated upon an insertion
or removal at the front of deque and end upon an insertion or removal at the
end of deque.

Let v; denote the ith value in queue and let f be the number of values in
the front part: the front part values are vy,...,vy and the end part values are
Vf4l,...,Un. Also let f; denote the ith value in front, e; the ith value in end,
last(x) the the largest index ¢ where v; = x, and first(z) the smallest index %
where v; = x.

The values f; in the front have a simple recursive definition. The first
value is fi = min{vy | k € [1..f]}. For ¢ > 1, the next value f;41 is defined
as fiy1 = min{vy | k € [first(fi) + 1..f]}. The value f;11 exists if and only if
first(f;) < f. Each value f;;1 tells the minimum within the remaining values of
the front part if a removal from the front of deque removes the first occurrence
of f;. When a new value z is inserted to the front of deque, x might become a
new smallest value: z is inserted to the front of front if it is currently empty
or x < fi. When the front value v; of deque is removed, also the first value
f1 of front is removed if f; = v1. By definition, if a new f; (which until now
was fo) exists, it is the minimum value among the remaining values in the front
part.

The end part stack end is symmetric. Its first value is e; = min{vy | k €
[f + 1..n]}, the next value e;y; for i > 1 is defined as e;11 = min{vy | k €
[f + L..dast(f;) — 1]}, and the value e;;1 exists if and only if last(e;) > f + 1.
Each value e; 1 tells the minimum within the remaining values of the end part
if values are removed from the end of deque up to the last occurrence of e;.
When a new value z is inserted to the end of deque, z is inserted to the front
of end if the end part was empty or z < e;. When the last value v,, of deque is
removed, the first value e; is removed if e; = v,,.

The overall minimum value in deque is computed as min{f;,e;}. Clearly
each insertion, removal or minimum operation described so far takes O(1) time.
The only complication is if a value is removed from the front (or end) of deque
but front (or end) is empty. In this case all n current values are either in the
front or the end part. A simple solution is to move [n/2] of the items to the
currently empty part, and then perform the deletion. The move is achieved by
rebuilding both stacks from scratch as if there was a sequence of front inser-
tions with values ~ v,,3,...,v1 and a sequence of end insertions with values
A Un/2415 - - - »Un. The values in deque remain unchanged. This takes O(n) time,
but the amortized cost is O(1) as the cost can be spread over §2(n) previous op-
erations that were required in order to create the inbalance |f — (n — f)| = n
between the sizes of the front and end parts.

12

6 Dynamic edit distance table for RLE strings

o LI
af——- ap—i| i @ aETiiE=l—=
¢ ¢ c c l
¢ c c c Il
b= ‘EiE=1 cEE cEiEE

Figure 4: The figures 1) - 4) depict how DS changes when the string B evolves
through the strings baaa, bbaaa, bbaac and bbaaacc by modifications to its
left or right end. Cells stored in DS are shaded with a pattern: vertical pattern
shows cells with U-fields, horizontal pattern cells with L-fields and grid-pattern
cells with both U- and L-fields.

Let us now turn to the main topic of this paper: handling left (and right) end
modifications efficiently when the strings A and B are RLE compressed. Instead
of the full difference table DR, we will maintain a “sparse” table DS that con-
tains only those columns and rows that coincide with the right/bottom bound-
aries of the boxes BT/, To be more precise, DS stores the values { DR.U][i, j3] | i €
[1.m],J € [1..N]} and {DR.L[i%,j] | I € [1..M],j € [1.n]}. Note that the
stored columns contain only the U-fields and the stored rows only the L-fields.
The cells at the intersections of these columns and rows contain both fields. See
Fig. 4 for an example. Assume that DS corresponds to ed(A, B) and that B
has been changed into B’ by a modification to its left or right end. Let DS’
denote DS after it has been updated to correspond to ed(A, B’). Our goal is to
find an efficient way to update DS into DS’.

First we note that even though we discuss only the case of editing B explic-
itly, the goal is to also allow left or right end edits to A. This means, among
other things, that we should be able to efficiently add/remove rows or columns
to/from DS when updating it to correspond to the DS’. A suitable solution (like
in [12]) is to store DS as a linked structure where each cell DS[i, j] has a pointer
to its four neighbours (left, up, right and down). Here we define a “neighbour”
to be the nearest cell that actually exists in DS, effectively hopping over those
cells of the boxes B!/ that do not reside on the right /bottom boundary of any
B'7. Such a linked sparse table DS can be stored using ©(mN + Mn) space
and adding or removing a column or row can be done in ©(n) or ©(m) time,
respectively.

Fig. 4 shows examples of how the form of DS (which cells are stored in
it) may change when the left or right end of B is modified. For example if
a character is inserted, it either expands the current boxes (step 1 — 2 in
Fig. 4) or adds completely new boxes (imagine the situation of step 3 without
the last character ¢ in B). Performing such changes to DS is straight-forward

13

in O(m) time. We assume that when we start to update DS into DS’, the
preprocessing step of changing the form of DS, if necessary, has already been
done. For convenience, we will already refer to this preprocessed (but not yet
fully updated) table as DS’ (or DR’, as the two tables differ only in that the
former is a partial representation of the latter).

6.1 Updating DS’ after a right end modification

The case of a right end modification essentially corresponds to (re)computing
right boundaries of the boxes in at most two rightmost box columns of DS’,
as e.g. Fig. 4 illustrates. These boundaries can be handled in O(m) time by
a straight-forward application of the algorithm of Mikinen et al. [15] that was
discussed in section 4.

6.2 Updating DS’ after a left end modification

Our approach for updating DS’ after a left end modification is to process DS as
if it contained all values of DR’. The algorithm will process essentially the same
set of values of DR’ as the uncompressed dynamic edit distance table algorithm
of Hyyro et al. [11]. Any value DR'[i,j] that is needed during the update
process, but which is not present in the sparse DS’ table, will be computed on
the fly and forgotten once it is no longer needed.

We update the table DS’ one box at a time in a column-wise manner, starting
from box column J = 1. According to Lemma 1, we need to update a box B!/
only if its left/top boundary contains a changed difference value; otherwise all
values within the box are already known to be correct. Recall that the left
boundary of B!/ is the right boundary of B/~ and the top boundary of
B'7 is the bottom boundary of B!~1/. Let prevBozA be an ordered list that
contains the box row index I of each box B*/~! whose right boundaries were
changed while processing box column J — 1. The preceding rule states that
a box BT/ needs to be updated only if I € prevBozA or if some difference
value on the top boundary of the box B!/ was changed while updating the top
neighbor box B'~!+/. We assume that a modification to the left end of B may
change any box Bl'!| and so the list prevBozA = {1,..., M} is used in the first
box column J = 1. When starting to process column J, we initialize an empty
auxiliary list currBozA. If updating a box B!/ changes some difference on its
right boundary, the box row index I is added to the end of the list currBozA.
After box column J has been processed, the contents of the lists currBozA
and prevBozA are interchanged: now prevBoxA is ready for use in the next
box column J + 1 as it contains the box row indices of all boxes whose right
boundaries were changed in box column J.

When updating a box, we want to focus on only those cells that need to be
updated according to Lemma 1. To this end we also build the following two lists
A’ and Ar?7 for each box B!/ whose right /bottom boundaries have been
changed. The list Ag’? records in increasing order of j the position-value-value

triplets (4, D'[i%, 4], D[iL, 7 — £]) for all cells (i§,7) on the bottom boundary of

14

B!7 where the inequality DR'[i},j].L # DR[iL,j — ¢].L holds. In a similar
manner, each list Ag?’ records in increasing order of i the position-value-value
triplets (i, D'[i, j3], D[i, jg — ¢]) for all cells (i,j3) on the right boundary of
BI7 where the inequality DR'[i,j3].U # DR[i,ji — ¢].U holds. Note that
the position-value pairs record concrete distance values D[z, j] and DJ[i,j — /)
instead of difference values. The positions may be accompanied by pointers to
allow direct reference in a linked DS’. The lists Ag”? and Ar?*”’ serve a similar
purpose as prevA in HNI: when updating box B/, we consult the lists Agl—tJ
and Ar?7~! to deduce which cells on the topmost row ié‘l +1 and the leftmost
column jé‘l + 1 of B"/ need to be recomputed based on Lemma 1.

We will also maintain a length-m array DRcol, a length-n array DRrow
and a length-M array TL for which the following conditions hold when we are
processing a box BT7:

e DRcolli] = (J — 1, DR[i, ji ' — £].U), if the left boundary cell (i,j5 ")
was changed when processing B7/~1.

e DRrow[j] = (I — 1, DR[ig ', j —].L), if the top boundary cell (i5™*,)
was changed when processing B/ =17,

o TLI| = (D'lig Y, 35", Dlig™ ", ja~" —), if at least one left boundary
cell (i,jé‘l) was changed when processing B/~1, or if at least one top
boundary cell (ilel, §) was changed when processing B/ =17,

DRcol and DRrow preserve the values of DR before their potential changes, and
TL provides the top-left corner distance values for the current box.

Initially we assume that a left end modification to B potentially changes all
rows in column 0 of DR’: before the box column J = 1 is processed, each previ-
ous box column list Ag”"? is initialized to contain the triplets (i, D'[i, 0], D[i, —€])
for i = ié‘l +1,...,iL. In addition the array DRcol is initialized with values
DRcoli] = (0, DR[i, —{).U) fori = 1,...,m, and the array TL is initialized with
values TL[I| = (D'[i5',0], D[iy, ', —¢]) for I = 1,..., M. All these initializa-
tions involve at most two first columns of D’ or D and can thus be computed in
O(m) time using recurrence (1). The array DRrow is initialized in O(n) time
with (null,null) values.

6.2.1 Processing a box B!/

When updating a box B/, we will perform the following tasks:
e Recompute all difference values on the right /bottom boundary that change.
e For each changed right boundary cell (i, j):

— Insert the position-value-value triplet (i, D'[i, j3], D[i, ji — ¢]) into
ABI’J.

— Set DRcol[i] = (J, DR[i, ji — £).U).

e For each changed bottom boundary cell (i, j):

15

— Insert the position-value-value triplet (j, D'[i§, j], D[iL,j — £]) into
ARI’J.

— Set DRrow[j] = (I, DR[ik,j — ¢].L).
e If at least one right boundary difference changed:

— Set TLI] = (D'[if; ", 3], Dlig ", 3 — €)).
— Add the box row index I to the end of currBozA.

e If at least one bottom boundary cell changed and I < M:
— Set TL[I + 1] = (D'[ik, i3~ "1, Dli%, jg~ ' — 4)).

If we are able to complete the first task of updating the changed boundary cells,
the remaining task are trivial to incorporate into the process. Therefore we will
concentrate on the first task. Fig. 5 depicts the initial situation when starting to
process a box B/, The grey cells mark changed cells on the left /top boundary,
as specified by the lists Ag’™"7 and Ag’/~!. Our strategy is to traverse
difference changes within the current box B!/ by depth-first-search (DFS).
This partially resembles how the KP algorithm [12] traces changes in DR. The
DF'S will also maintain L-zone and T-zone min-deques Ldeque’, Ldeque, Tdeque’
and Tdeque that allow computing values of D’ and D inside the current box
B/, We start a separate DFS from each position listed in Ag’ ™7 or Ag?/~1.
Each DFS traces cells of DR’ with difference changes as long as possible while
still remaining inside the current box. The search advances according to the
conditions of Lemma 1. If a DFS is currently in cell DR'[i, j], it will first try
to proceed one step right to the cell DR'[i, j + 1] if the condition DR'[i, j].U #
DRJi,j — €].U holds, and later one step down to the cell DR'[i + 1,j] if the
condition DR'[4,j].L # DRJi,j — £].L holds. Fig. 5 shows examples of the first
step from the left column or top row.

When a DFS moves into a cell (7,j), we want to achieve the following five
goals:

1. Ldeque’ will be set to represent L-zone values of D’ for the cell (3, j).
2. Ldeque will be set to represent L-zone values of D for the cell (i,j — ¢).
Tdeque’ will be set to represent T-zone values of D’ for the cell (3, j).

Tdeque will be set to represent T-zone values of D for the cell (7,5 — £).

oo W

The values of D' and D will be known for the four cells (i — 1,5 — 1),
(Z - 17j)7 (Zaj - 1) and (17])

Let us first concentrate on the first four goals: updating the min-deques. Before
a DF'S begins, all four min-deques are initialized to be empty.

It is useful to first note that all values DR'[i, j] and DR][i, j—¢] on the left/top
boundary of the current box are available in O(1) time, if we have a pointer to
within O(1) positions of the cell (4,7) in DS’. The values DR'[i, j] are available

16

directly in DS’, as the top/left boundaries have already been updated. Each
left boundary value DR, jf]{l — /] is stored in the second position of the pair
DRcol H, 1f the first pos1t1on of that pair is J — 1, and otherwise the equality
DRJi, ji " —¥] = DR'[i, j5 '] holds (that boundary value did not change). In a
similar manner each top boundary value DR[Lj— /] is stored in the second
position of the pair DRrow[], if the ﬁrst pos1t10n of that pair is I — 1, and
otherwise the equality DR[i ', j — ¢] = DR'[if; ", 5] holds.

l l l mmm[l ‘ -1 In order to make the discussion
B

more concise, we will discuss only the
min-deques Ldeque’ and Tdeque’ in
detail. The min-deques Ldeque and
Tdeque will be subjected to otherwise
identical operations but using values
of form D[i,j — ¢] or DR[i,j — ¢] in-
stead of D'[i, j] or DR'[i, j]. A similar
convention applies to the notion of L-
and T-zones: discussion about an L-

Figure 5: The first steps of a DFS when
starting from the left or the top bound-
ary. The current cell (4,7) is shown as
black, and the previous cell in grey. The
arrows show the possible directions for
next steps

or T-zone cell (7,7) will refer to the
cell (i,7 — £) in case of D. We start
by considering the first step of a DFS.
Fig. 5 illustrates the situation.

When the first step of a DFS is a
right step from the left boundary cell

(1, jR) to the cell (z] ~141), the list Ag”*/~! must have contained the triplet
(i,D [~1, D[i,jp "' — #]). The L-zone consists of the cells (i — 1,77 ') and
(i, ji~) All L-zone values become available after computing D'[i — 1]‘] =

D'[i, a1~ DR'[i, ji'].U and D[i—1,j5* —{] = D[z ja~t =~ DR, j5 ' —

£].U. The T- zone cells are (i ! %’i D) and (int gp
1 and D[ip o ﬂ] and the rema1n1ng T- -z0ne val-

+1). Now TL[I] provides

the values D’[,jR
ues are computed as D'lig Y gg 1) = D/ll e l+DR/lF LT 1)L
and DIig 1,]R +1 - f] = D[iIB_17]R (] + DR]if Jr LA 1AL

These Values are inserted into the correspondlng min- deques in accordance with

Lemma 2. Ldeque’ gets the values D'[i—1, jf~
1), and Tdeque’ gets the values D'l je)+
+1,i5 ,jR Yy and D'[iL~ l,jé_l—l—l]—l—T(;(i,j

D'[i, 31} 1]—|—L§(z jR +1,z,jR
Té(l IR

N+ Ls(iy gt 41, 2—1]J ') and

L1 ,jf]{ L41).

When the first step of a DFS is a down step from the top boundary cell

(it 5)tothecell(

Ly, j), the list Ap?’™17 must have contained the triplet

(,D lit !, 4], DJig ,j — ¢]). The L-zone consists of the cells (i5*, 3 ") and
('Ifl—l—l Jnh). Again TL[I] provides the values D'[i5 ', ja '] and Dligy; ', jp '~
4], and the reIna1n1ng L -zone values are computed as D'[i; ' + 1,755 '] =
D[k, F]—l—DR’[z 41,577 U and DLt 41,557) = [iIB_l,jI;{_l—
/] DR[41,5571 — £].U. The T-zone consists of the cells (i,] —1) and
(5!,) All T- zone Values will become known after computmg D' [) j 1] =
Dpli; " j)= DR'[ig ", j].L and Dlig, " j — 1 ={] = Dfigy”",j—] = DR[i ", j -
E].L. Ldeque gets the Values D'[i i Vi 4 Lt + 1, 5,05 gn 1) and
D'k 4+ 1,587 4+ Ls (g + 1, 4,05 L+ 1,557, and Tdeque’ gets the values

17

D'igt j =1+ Ts(ip ' +1, 5,05 15— 1) and D'[ig™", 5]+ Ts(ify 41, 4, ')

In summary, all four min-deques Ldeque’, Ldeque, Tdeque’ and Tdeque can
be initialized in O(1) time in the beginning of the first step to represent the
L- and T-zone values of both D’ and D. Later updates to the min-deques will
again use a value readjusting mechanism in order to account for changes in
the values h(i,j,i*,5%), v(i,7,4%,5*) and d(i,7,7%,j*) as we move to compute
a different cell. But because a DFS moves in a non-linear manner, we will
maintain the two adjustment values, one per zone, in separate variables a and
B. Initially « = 8 = 0. The values Z; and Zp will always be computed as
Z1, = Ldeque’min() + o and Zp = Tdeque'.min() + 5.

Now consider how the L- and T-zones change if the DFS makes a later
step into the cell (¢,7). The situation is illustrated in Fig. 6. Throughout
this discussion we assume that the values s;, = j — jl‘{_l, ST =1 — iIB_l and
s = min{sy, s7} have been computed to correspond to the current cell (7, 7).
We consider both forward and reverse steps, as the DFS can also backtrack.

The case of a right step from (4,7 —1) to (¢,7): The cell (i— s,ji{fl) is added
to the front of L-zone if s = s;, < s7, and otherwise L-zone remains unchanged.
The cell (ilel,j) is added to the end of T-zone, and if s = s < sz, the cell
(iIB_l, j—s—1) is removed from the front of T-zone. The adjustment values are
updated to be a < a + d(g,b) and S «+ 5+ d(a,b) — d(a,e).

The reverse left step from (i,5 + 1) to (i,7): if s = s, < sp, the cell
(i—s—1, ji,jfl) is removed from the front of L-zone, and otherwise L-zone
remains unchanged. The cell (i, ', 5 + 1) is removed from the end of T-zone,
and if s = s < sz, the cell (i]é_l,j — s) is added to the front of T-zone. The
adjustment values are updated to be @ + a—4d(g,b) and 8 «+ 8—d(a,b)+d(a,¢).

The case of a down step from (i —1, j) to (¢,7): The cell (i,jé‘l) is added to
the end of L-zone, and if s = s, < s7, the cell (i —s — 1,52 ") is removed from
the front of L-zone. If s = sp < sz, the cell (i, ', j — s) is added to the front of
T-zone, and otherwise T-zone remains unchanged. The adjustment values are
updated to be o < a + d(a,b) — d(e,b) and 8 + S+ (a,b) — d(a,e).

The reverse up step from (i + 1, 7) to (i,7): The cell (i + 1,j1‘>{_1) is removed
from the end L-zone, and if s = s;, < sr, the cell (i — s,j5 ') is added to
the front of L-zone. If s = sp < sz, the cell (i5 ', j — s — 1) is removed from
the front of T-zone, and otherwise T-zone remains unchanged. The adjustment
values are updated to be « = a — §(a,b) + d(¢,b) and 8 = 8 — d(a,b) + §(a, e).

Let deque.front() and deque.end() refer to the first and last values of a min-
deque deque, respectively. We also assume that the adjustment values a and
have already been updated as described above. We now provide the details of
how the min-deques can be updated to accommodate the zone changes described
above. Removals are trivial, as removing a cell from the front or end of a zone
corresponds to removing the front or end value of the corresponding min-deque.
Therefore we consider only additions, which concern the following cells:

Adding (i — s,j5~"): The minimal path from (i,7) to (i — s,jg ") uses
only diagonal steps and has cost sd(a,b). The minimal path from (¢,7) to
(i —s+ 1,]}1{1) uses s — 1 diagonal steps and one horizontal step, costing
0(g,b) + (s — 1)d(a,b). Therefore Ldeque’.front() corresponds to D'[i — s +

18

mooN-

s J—
Jr

-
Jr

Figure 6: An example of how the zones change upon a down or right step. The
black cell is the current position. The light grey cell is the previous position.

1,527 +8(g,b) + (s — 1)d(a, b) — B, and we would like to add the value D'[i —
$,jn ']+ sd(a,b) — B for the new cell (i — s,jg). This is achieved by adding
the value Ldeque’.front() +6(a,b) — 8(e,b) — DR'[i — s+ 1, j'].U to the front
of Ldeque’.

Adding (i, j3'): The minimal path from (i,3) to (4,5 ') uses only hori-
zontal steps and has cost s,6(¢,b). The minimal path from (i, j) to (i —1, jl‘{*l)
uses sy, — 1 horizontal steps and one diagonal step, costing (s, —1)d(e, b)+d(a,b).
Therefore Ldeque’.end() corresponds to D'[i—1, jg]+ (s —1)d(e, b)+(a, b) —
B, and we would like to add the value D'[i, jé‘l] + s1,0(e,b) — 8 for the new cell
(i, j2~1). This is achieved by adding the value Ldeque’.end() — d(a, b) + (¢, b) +
DR'[i, j .U to the end of Ldeque’.

Adding (i, ', 5 — 5): The minimal path from (4, j) to (if; ', 5 — s) uses only
diagonal steps and has cost sd(a, b). The minimal path from (i, 7) to (i5 ", j—s+
1) uses s — 1 diagonal steps and one vertical step, costing d(a,e) + (s —1)d(a, b).
Therefore Tdeque'.front() corresponds to D'[if !, j — s + 1] + (a,e) + (s —
1)d(a,b) — B, and we would like to add the value D'[i5 ™", j — s] + sd(a,b) — 3 for
the new cell (if; !, j—s). This is achieved by adding the value Tdeque’.front()+
8(a,b) — 6(a,e) — DR'[i5',j — s + 1].L to the front of Tdeque'.

Adding (i57*, j): The minimal path from (i, j) to (if; ', j) uses only vertical
steps and has cost spd(a,e). The minimal path from (i,5) to (i *,j — 1)
uses sp — 1 vertical steps and one diagonal step, costing (s —1)d(a,e)+d(a, b).
Therefore Tdeque’.end() corresponds to D'[ify !, j—1]+(s7—1)d(a,e)+5(a,b) —
3, and we would like to add the value D'[if; ', j] + s7(a,€) — B for the new cell
(%', 7). This is achieved by adding the value Tdeque’.end() —d(a, b) +d(a,) +
DR'[iL™*, 4].L to the end of Ldeque’.

The preceding min-deque updates take O(1) amortized time. Let us now
consider the fifth goal: that of ensuring that the values of D’ and D are known
for the four cells (¢ — 1,5 — 1), (¢ — 1,4), (4,4 — 1) and (4, 5).

We will first note in an inductive manner that the cells (¢ — 1,5 — 1) and
(i,j — 1) will be known already, if the current step moved right from (i, — 1)
to (i,7), and the cells (i — 1,5 — 1) and (¢ — 1,4) will be known already, if the
current step moved down from (i — 1, 5) to (4, 7).

If the first step was a right step from the left boundary cell (i, jéfl) to the

19

cell (i, jﬁi;l + 1), then the list Ar’771 provides the previous column values
D'[i, jn "] and D[i, ji " — ¢] directly, and the values D'[i — 1, j5 '] and D[i —
1,45~ —] can be computed as D'[i — 1,45~ '] = D'[i, jn '] — DR'[i, j5 ‘.U
and D[i — 1,53~ — €] = D[i,j3~* — €] — DR[i, ji~* —).U.

If the first step was a down step from the top boundary cell (ié‘l, Jj) to
the cell (i ' + 1,7), then the list Ag’™*’ provides the previous row val-
ues D’[i]é_l,j] and D[iIB_l,j — /] directly, and the values D’[iIB_l,j — 1] and
D[it™*, j—1—¢] can be computed as D'[i5™*,j—1] = D'[i5 ', j]— DR'[ik ", j].L
and D[iL™*,j —1—¢ = D[i5™*,j —{] - DR[i5 ", j — {].L.

Therefore the claim holds initially. Also, if each previous step has fulfilled
the fifth goal, then the claim holds also for the current (4, j). Fulfilling the fifth
goal also for the current cell (¢, j) requires us to compute values for two unknown
cells: either the cells (i — 1,7) and (4, 5) or the cells (¢,7 — 1) and (i,).

As the min-deques are already updated for the cell (i, 5), the values D[, j]
and D[i, j—¢] can be computed as D'[¢, j| = min{Ldeque’.min()+«, Tdeque’.min()+
B} and Dli,j¢] = min{Ldeque.min() + «,Tdeque.min() + S}. Let (i’,j") be
the single remaining unknown cell: it is either (i,5 — 1) or (i — 1,5). The
cell (i,7') can be handled by making a temporary reverse step into it. This
step is either a reverse left step from (4,7) to (i,j — 1), or a reverse up step
from (4,7) to (i — 1,7). Once the temporary step has updated the min-deques
and the adjusting values « and f, the values for the cell (i/,j') are com-
puted as D’[i’,j'] = min{Ldeque’.min() + «, Tdeque’.min() + 8} and D[i’, 4] =
min{Ldeque.min() + «, Tdeque.min() + B}. Then we make a normal right or
down step from (¢',5’) back to (4, 7). The whole process takes O(1) amortized
time.

Before performing a forward step to the right or down, we let the DFS store
the distance values of the current cells (i — 1,7 — 1), (i — 1,5), (4,4 — 1) and
(,7) onto a stack. This ensures that the preceding invariant about two known
values will hold also for the next step that moves right or down from (4, j); it
can look up the values from the top of the stack. Fig. 5 illustrates the four
neighboring cells involved in the process. Also note that each backtracking step
will update the min-deques and adjusting values « and S in O(1) time according
to the rules given for the reverse left and up steps, and read and remove the
last stored distance values from the top of the stack.

In summary, all five goals of a DFS step can be achieved in O(1) amortized
time. Let us now turn back to the high level organization of the DFS. We will
perform a separate DFS search from each position listed in Ag?™%7 or Ag?/~!
in such order, that first the positions in the top boundary list Ag!~™17 are
processed in reversed order of decreasing j, and after that the position in the
left boundary list Ag’*/~! are processed in the normal increasing order of i. We
maintain a length-n table bottom where the value bottom|j] tells the largest row
index ¢ that any DFS has visited in column j. The table is initialized with zeros
before any boxes have been processed, and when a forward DFS step reaches a
cell (i,7), the update bottom[j] = i is performed.

When a DFS is currently in the cell (¢,) and has the values of D’ and D in

20

the four neighboring cells (i — 1,5 — 1), (i — 1,4), (i,7 — 1) and (4, j) available,
the differences DR'[i, j|.U, DR'[i, j].L, DR[i,j — ¢].U and DR][i,j — {].L can be
computed and possible boundary changes recorded. If the current cell resides
on the right or bottom boundary, the DFS will update Ag’’, Ar?’, DRcol
and DRrow as described in the beginning of this section. One delicacy is that
each right boundary position-value-value triplet will be added to the end of the
list Ag?/, and each bottom boundary position-value-value triplet is added to
the front of Ag”’. The reason for this order becomes clear soon.

The DFS decides according to Lemma 1 if it should proceed right and/or
down, or if the next step must backtrack. If the current cell is on the right /bottom
boundary, the DFS will always backtrack. Otherwise the DFS will make a
right step to the cell (i,7) if and only if DR'[¢,j].U # DR[i,j — ¢].U and
bottom[j + 1] < i, and (possibly after backtracking from the right) a down
step to the cell (i + 1,7) if and only if DR'[i,j].L # DRJi,j — ¢].L.

The table bottom prevents two different DF'S searches from visiting the same
cell (4,7). The order in which we start the different DFS searches from the
left /top boundary ensures that if a previous DFS has visited a cell (7, j), then
no column j cell above it will need to be visited. The previous DFS traversed a
path from some (i*, j*) to (i,7), and the start point (¢’,5’) of the current DFS
must have either j* < j* or j/ = j* and i’ < 7*. In both cases a path from (7', j')
to a column j cell above (i,) would meet the earlier DFS path from (i*,5*) to
(i,7), making the path redundant from that meeting point onwards. A similar
argument also guarantees that the DFS searches will build the lists Agh? and
Ar%7 in correct order. Once a DFS has reached a right boundary cell (i,73),
the update bottom[jﬂ] = 4 will prevent redundant visits to the cells above it.
And in the same way, once a DFS has reached a bottom boundary cell (i, 5),
the update bottom/[j] = if; will prevent redundant visits to any cell to the right.

Once all DF'S searches for the current box have ended, we still need to update
the currBozA and TL, as described in the beginning of this section. The case of
currBozA is trivial, so consider TL. We need to store into TL[i§] the bottom left
corner values (D'[ik, jl‘{_l], D[iIB,jI;{_l —¢)), if a bottom boundary cell changed,
and into TL[i5; '] the top right corner values (D'[i5™", j3] and D5, ji& — 1)),
if a right boundary cell changed. The bottom left corner values are computed
by starting from the concrete distance values provided by the last triplet of the
list Ag?*/~1, or the top-left corner distances still given by TL[i]é_l], if Agh7/—1
is empty. Let this starting cell be (i*, jl{_l): the bottom left corner distances
can be computed in ij —i* steps by using the difference values DR'[i, jlgfl] and
DRJi,j3~']. The cost of these i, — i* steps can be charged to the DFS that
reached the bottom boundary: its start row must have been at or above row
i*. The top right corner values are handled in similar way: starting from the
concrete distance values provided by the last triplet of the list Ag’™7 or the
top-left corner distances in TL[iIB_l], if Ag?~%7 is empty. Let this starting cell
be (iéﬁl,j*): the top right corner distances can be computed in jl‘{ — j* steps
by using the difference values DR'[i5 ", j] and DR[i5 ', j]. The cost of these
ji — j* steps can be charged to the DFS that reached the right boundary: its

21

start column must have been at or to the left of column j*.

Let #%/ be the number of cells in box B!’ of DR’ that differ from DR.
The overall number of cells visited by the DFS searches is ©(#!/), as the DFS
searches proceed only to changed cells and no cell is visited more than O(1)
times. The work per DFS step is O(1) amortized time. Hence the overall work
per box is O(#!7). is O(1) amortized time. Hence the overall work per box is

O#").

Theorem 3 Let ¢ be the maximum weight of the cost function §. DS can be
updated to DS’ in O(c(m + n)) time.

Proof The initializing step takes O(m + n) time. Then, the theorem follows
from Theorem 1 and the fact that each box can be processed in O(#!/) time.
O

7 Conclusions

In this paper, we proposed a compact representation of the dynamic edit dis-
tance table of ©(mN + Mn) space which can be updated in O(¢(m + n)) time
per left or right modification under weighted costs, where m,n, M, N are re-
spectively the lengths of strings A and B to compare, and the sizes of the RLEs
of A and B, and c¢ is the maximum weight of the cost function. This generalizes
the result of the previous version [10] of this paper which deals only with the
unit costs, and reduces the space usage of the algorithm by Hyyro et al. [11]
which uses ©(mn) space for dynamic edit distance tables with weighted costs.
We remark that our proposed method is asymptotically as fast as these previous
methods.

References

[1] H. Ann, C. Yang, C. Tseng and C. Hor, A fast and simple algorithm for
computing the longest common subsequence of run-length encoded strings,
Inf. Process. Lett. 108(6) (2008) 360-364.

[2] A. Apostolico, G. M. Landau and S. Skiena, Matching for run-length en-
coded strings, J. Complexity 15(1) (1999) 4-16.

[3] O. Arbell, G. M. Landau and J. S. Mitchell, Edit distance of run-length
encoded strings, Information Processing Letters 83(6) (2002) 307 — 314.

[4] C. Barton, C. S. Iliopoulos and S. P. Pissis, Average-case optimal approx-
imate circular string matching, Proc. LATA 2015, (2015), pp. 85-96.

[5] H. Bunke and J. Csirik, An improved algorithm for computing the edit
distance of run-length coded strings, Inf. Process. Lett. 54(2) (1995) 93—
96.

22

[6]

[14]

[15]

[16]

[17]

K. Chen and K. Chao, A fully compressed algorithm for computing the edit
distance of run-length encoded strings, Algorithmica 65(2) (2013) 354-370.

H. Gajewska and R. E. Tarjan, Deques with heap order, Inf. Process. Lett.
22(4) (1986) 197-200.

P. Hsu, K. Chen and K. Chao, Finding all approximate gapped palin-
dromes, Int. J. Found. Comput. Sci. 21(6) (2010) 925-939.

G. Huang, J. J. Liu and Y. Wang, Sequence alignment algorithms for run-
length-encoded strings, COCOON 2008, (2008), pp. 319-330.

H. Hyyr6é and S. Inenaga, Compacting a dynamic edit distance table by
RLE compression, SOFSEM 2016, (2016), pp. 302-313.

H. Hyyro, K. Narisawa and S. Inenaga, Dynamic edit distance table under
a general weighted cost function, J. Disc. Algo. 34 (2015) 2-17.

S.-R. Kim and K. Park, A dynamic edit distance table, J. Disc. Algo. 2
(2004) 302-312.

P. Krusche and A. Tiskin, String comparison by transposition networks,
Proc. London Algorithmics Workshop 2008, Texts in Algorithmics 11
(2009), pp. 184-204.

G. M. Landau, E. W. Myers and J. P. Schmidt, Incremental string com-
parison, SIAM J. Comp. 27(2) (1998) 557-582.

V. Mékinen, G. Navarro and E. Ukkonen, Approximate matching of run-
length compressed strings, Algorithmica 35(4) (2003) 347-369.

Y. Sakai, Computing the longest common subsequence of two run-length
encoded strings, ISAAC 2012, (2012), pp. 197-206.

J. P. Schmidt, All highest scoring paths in weighted grid graphs and their
application in finding all approximate repeats in strings, SIAM J. Comp.
27(4) (1998) 972-992.

23

