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Abstract 

1Atrial Fibrillation (AF) is characterized by chaotic 

electrical impulses in the atria, which leads to irregular 

heartbeats and can develop blood clots and stroke. 

Therefore, early detection of AF is crucial for increasing 

the success rate of the treatment. This study is focused on 

detection of AF rhythm using hand-held ECG monitoring 

devices, in addition to three other classes: normal or sinus 

rhythm, other rhythms, and too noisy to analyze. The 

pipeline of the proposed method consists of three major 

components: preprocessing and feature extraction, feature 

selection, and classification. In total, 491 hand-crafted 

features are extracted. Then, 150 features are selected in a 

feature ranking procedure. The selected features are from 

time, frequency, time-frequency domains, and phase space 

reconstruction of the ECG signals. In the final stage, a 

random forest classifier is used to classify the selected 

features into one of the four aforementioned ECG classes. 

Using the scoring mechanism provided by 

PhysioNet/Computing in Cardiology (CinC) Challenge 

2017, the overall score (mean±std) of 81.9±2.6% is 

achieved over the training dataset in 10-fold cross-

validation. The proposed algorithm tied for the first place 

in the PhysioNet/CinC Challenge 2017 with an overall 

score of 82.6% (rounded to 83%) on the unseen test 

dataset. 

1. Introduction

Atrial Fibrillation (AF) is associated with too quick or 

chaotic contraction of atria’s muscle fibers. This can cause 

uncompleted blood transfer from atria to ventricles and 

decrease the efficiency of heart functioning. The AF global 

prevalence is estimated as 33.5 million in 2010 [1], and its 

rate is increasing based on regional studies [2]. This 

* The first two authors have contributed equally to this paper. 

arrhythmia is one of the main public health problems 

because of not only its prevalence but also its 

complications and costs. Symptomatic AF patients are 

more probable to be diagnosed and treated, whereas 

asymptomatic patients (silent AF) are more prone to 

serious complications caused by AF such as ischemia, 

stroke, or early mortality [3]. Therefore, early detection of 

AF is crucial for effective treatment, improving the clinical 

outcomes, and decreasing the costs.  

Based on the AF management guidelines [4], prompt 

ECG (at least 30s recording) is a diagnostic and effective 

method. The absence of significance P wave and irregular 

distances of QRS complexes are the main signs of AF on 

the ECG recordings. Therefore, to date, several studies 

have been conducted to automatically detect AF rhythm 

using signal processing and machine learning methods [5] 

[6]. However, only a few of them studied the ECG 

recorded by single-lead portable devices. Although it is 

shown that the hand-held devices cannot substitute a 

conventional ECG devices [7] [8], they can be used for 

daily usage and improve the accuracy of early AF detection 

[7].  

This work proposes a hybrid classification approach for 

ECGs recorded by the AliveCor hand-held devices [9]. It 

combines features from multi domains including time, 

frequency, time-frequency, phase space, and meta-level. It 

utilizes a feature selection approach based on a random 

forest classifier. Finally, the selected features are classified 

by another random forest classifier. The main 

contributions of this study are:  

1) To investigate a comprehensive set of discriminative

features, which is independent of the ECG lead positioning 

(Section 2.1). This is crucial because there are different 

alternatives for lead placement in hand-held devices, e.g., 

the measurement between left and right hand, or directly 

on the chest.  

2) To design an effective classification algorithm in

order to classify four ECG types including the AF rhythms 
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(Section 2.2).  

The proposed algorithm is evaluated over recently 

released single-lead ECG dataset [9]. In Sections 3 and 4, 

the results and conclusion are discussed.  

 

2. Materials and methods 

For this challenge, 8528 single-lead ECG recordings 

with sampling frequency of 300 Hz are provided by 

Physionet/Computing in Cardiology Challenge 2017 [10]. 

The objective of the challenge is to classify each ECG 

recording into one of the following classes: healthy 

(normal), AF, other rhythms, and noisy. More detailed 

information can be found in [9]. The proposed feature 

extraction and classification approach will be presented 

next.  

 

2.1. Feature engineering  

First as the preprocessing stage, the quality of the ECG 

recordings are enhanced based on the sparse derivative 

decomposition and denoising algorithm [11]. Once the 

ECGs are denoised and the baseline wander is removed, a 

set of 491 hand-crafted features is extracted. The extracted 

features are a combination of base-level (i.e., signal-level) 

features and meta-level features (i.e., the prediction of the 

base-level classifiers). Then, a random forest classifier 

ranks the features in decreasing order of importance. The 

importance of each feature is evaluated based on the 

reduction of the entropy. A subset of 150 highest-ranked 

features is then selected. The selected features are listed as 

follows: 

(1) Base-level time domain and morphological 

features: The 67 selected features in the time domain are: 

the average of RR intervals (𝑅𝑅̅̅ ̅̅ ); the coefficient of 

variation of 𝑅𝑅 intervals (𝐶𝑜𝑒𝑓𝑉𝑎𝑟(𝑅𝑅)); variance of the 

P wave amplitudes; mean of kurtosis values of T waves; 

eigenvalues of the covariance matrix of beats; the 

correlation coefficients and Rényi entropy [12] of P waves. 

Furthermore, mean, standard deviation, range, interquartile 

range (IQR), percentiles of energy, slope and angles of P-

QRS-T waves [13], PR intervals, and R amplitudes are 

extracted.  

(2) Base-level frequency domain features: First, the 

power spectral density of each beat is estimated using 

Burg’s method (𝑃). Then, two features are calculated for 

each beat in different frequency (𝑓) range (Hz) as follows: 

𝑃𝑓1 =
∑ 𝑃𝑓

15
𝑓=5

∑ 𝑃𝑓
40
𝑓=5

 (1) 

 

𝑃𝑓2 =
∑ 𝑃𝑓

40
𝑓=1

∑ 𝑃𝑓
40
𝑓=0

 (2) 

The average of 𝑃𝑓1 and 𝑃𝑓2 in each signal are used as two 

features in this domain. 

(3) Base-level time-frequency domain features: In 

total, 46 features are selected from this domain. Shannon, 

Tsallis, and Rényi entropies [12] of the five levels of detail 

and one level of approximation coefficients obtained by 

Symlet 4 wavelet are used. These entropy measures are 

extracted separately from the whole signal, P, and T waves. 

In addition, the statistical and morphological features of 

details and approximation coefficients of seven level 

decomposition, obtained by Daubechies 4 wavelet, are 

extracted [14]. Moreover, the homogeneity of the ECG 

signal is defined using continuous wavelet transform 

(CWT): 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑖𝑡𝑦 =  
∑ 𝑊𝑖,𝑗

𝐾
 (3) 

where 𝑊𝑖,𝑗 = 𝑃𝑖,𝑗 + |𝑖 − 𝑗|, 𝑃𝑖,𝑗 is the probability of bin 

(𝑖, 𝑗) in CWT space, and 𝐾 is the number of all bins. 

(4) Base-level nonlinear (phase space) features: In 

phase space representation, 1-D time series are embedded 

into higher dimensional space in order to reveal their 

dynamical evolution through time. In this study, we have 

used different embedding methods of 𝑅𝑅 series in order to 

characterise the different types of arrhythmia. The first 

feature is defined as if an ellipsoid can be fitted in the 2-D 

phase space with lag 1 (reconstructed based on Takens’ 

delay embedding theory [15]). The possibility or 

impossibility of fitting an ellipse representing the 

geometrical properties of 𝑅𝑅’s dynamic. Moreover, the 

local temporal behaviour of the phase space points is 

analyzed based on co-occurrence matrix [6]. 

The next selected feature is defined as:  

𝑠𝑡𝑒𝑝𝑝𝑖𝑛𝑔 =  

1
𝑛 − 2

∑ √(𝐼𝑗 − 𝐼𝑗+1)
2

+ (𝐼𝑗+1 − 𝐼𝑗+2)
2𝑛−2

𝑘=1

1
𝑛

∑ 𝐼𝑗
𝑛
𝑗=1

, (4) 

where 𝐼𝑗 is 𝑗th point in a 2-dimensional space formed by 

𝑅𝑅s (horizontal coordinate) and 
𝑑 𝑅𝑅𝑠

𝑑𝑡
 (vertical coordinate) 

[16]. 

Furthermore, two different phase space reconstruction 

methods, parabolic [17] and triangle [18] mappings, are 

used. Parabolic mapping is formed by 𝑅𝑅𝑖 and (𝑅𝑅̅̅ ̅̅ −
 𝑅𝑅𝑖)

2 as the horizontal and vertical coordinates, 

respectively. The coefficients of a fitted second order 

polynomial in this space are used as descriptive features. 

Likewise, the perimeter and area of the triangle phase 

space, which is constructed by 𝑅𝑅𝑖 and |(𝑅𝑅̅̅ ̅̅ − 𝑅𝑅𝑖)|, are 

selected as the key characteristics of this domain. In 

addition, AFEvidence, ATEvidence, and OrgIndex metrics 

[5] are used. 

(5) Meta-level features: these features are the 

statistical descriptors of the prediction of the base-level 

classifiers. In this work, we use three base-level classifiers: 

linear and quadratic discriminant analysis (LDA & QDA), 

and a random forest with 30 decision trees. These 

classifiers are then trained on the 20% random subset of 

the training data to generate the meta-level features for the 

next level classifier (see Fig.1). This process is discussed 
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in the following. 

The number of abnormal segments in an ECG signal can 

signify the irregularities with more resolution. For this 

purpose, first, the signal is windowed into 5s segments 

with 4s overlap. Once the R, P and T waves are detected in 

each segment, the following base-level features are 

extracted:  

 𝑓𝑠𝑒𝑞1 =  𝐶𝑜𝑒𝑓𝑉𝑎𝑟 (𝑅𝑅) (5) 

 

𝑓𝑠𝑒𝑞2 = 𝑚𝑒𝑎𝑛(𝑠𝑡𝑑(𝑇𝑤𝑎𝑣𝑒)) (6) 

 

𝑓𝑠𝑒𝑞3 = max(𝑚𝑒𝑎𝑛(𝑇𝑤𝑎𝑣𝑒)) (7) 

 

𝑓𝑠𝑒𝑞4 = ∑ 𝑚𝑒𝑎𝑛(𝐸𝑝𝑤𝑎𝑣𝑒
) (8) 

 

𝑓𝑠𝑒𝑞5 = ∑ 𝑚𝑒𝑎𝑛(𝐸𝑇𝑤𝑎𝑣𝑒
) (9) 

 

where 𝐸𝑝𝑤𝑎𝑣𝑒
 and 𝐸𝑇𝑤𝑎𝑣𝑒

 are the energy of P and T 

waves, respectively. In addition, each segment is modelled 

as an order 4 autoregressive process. The parameters of this 

model are used as new features (𝑓𝑠𝑒𝑞6-𝑓𝑠𝑒𝑞9). Then, all nine 

base-level features are fed into the three aforementioned 

base-level classifiers. Each classifier is used to generate 

four posterior probabilities of classes for each 5s segment. 

The mean and standard deviation of these posterior 

probabilities are used as meta-level features. 

 

2.2. Classification  

In this work, we used a hybrid classification framework 

in the sense that we combined the base-level and meta-

level features to generate the hybrid feature vectors, and 

then fed them into a single learning algorithm to classify. 

For this purpose, an (external) random forest classifier is 

trained over the remaining 80% of the training data by 

using 500 decision trees and random selection of features 

at each node creation. We use bagging, i.e. bootstrapped 

replicas of the training data, to train each decision tree, and 

30 features are randomly selected for each node. Then the 

entropy measure is used to decide which feature to split on 

at each node.   

 

3. Results and discussion 

The accuracy of the proposed method is evaluated in 10-

fold cross validation manner. Because 20% of data has 

already been used to train the base-level classifiers, we 

have used the remaining 80% of the training data for 

evaluation in order to avoid overfitting. These results are 

reported in Table 1. 

In hand-held devices, each ECG recording typically 

includes noise and artifacts, low-quality signals, 

intermediate rhythms, and transitional states between 

rhythms. The proposed algorithm in this paper only 

partially handles these difficulties. The sequential 

classification algorithms such as hidden Markov models 

(HMM), conditional random fields (CRFs), and recurrent 

neural networks (RNN) which analyze consecutive 

windows can be a possible solution for the aforementioned 

difficulties. They will be investigated in our future work. 

Table 1: Results of the proposed method: the overall 

score (mean±std) over 80% of the training dataset in 

10-fold cross-validation and the overall score on the 

unseen test dataset. 

Evaluation 

metrics 

Training set 

(%) 
Testing set 

(%) 

F1n (Normal) 90.49 ± 0.96 90.87 

F1a (AF) 79.43 ± 4.52 83.51 

F1o (Other) 75.64 ± 3.11 73.41 

F1p (Noisy) 61.11 ± 7.53 50.42 

F1 81.85 ± 2.57 83 

 

 
Figure 1. The proposed classification strategy 
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4. Conclusions 

In this paper, we have proposed a systematic approach 

for the detection of AF rhythms in ECG hand-held devices. 

We have investigated a comprehensive set of hand-crafted 

491 features, and ranked them based on their importance. 

A set of 150 highest-ranked features is selected and fed into 

a random forest classifier in order to detect AF rhythms in 

addition to three other ECG rhythms/types. The proposed 

method tied for the first place in the PhysioNet/CinC 

Challenge 2017 with an overall score of 82.6%. With this 

overall performance, the proposed algorithm has a 

potential for improvement, which is the subject of our 

future work. 
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