

Utilizing Bots in Delivering Content from Kentico Cloud and Kentico

EMS

Antti Eikonsalo

 University of Tampere

 Faculty of Natural Sciences

 Degree programme in Computer Science

 M. Sc. thesis

 Supervisor: Erkki Mäkinen

 October 2017

 i

University of Tampere

Faculty of Natural Sciences

Degree Programme in Computer Science

Antti Eikonsalo: Utilizing Bots in Delivering Content from Kentico Cloud and

Kentico EMS

M. Sc. thesis, 49 + 1 attachment pages

October 2017

This thesis explores an interesting and current topic of utilizing chatbots in con-

tent delivery. It defines the important terms and concepts for approaching the

subject and offers a brief history of chatbots to provide some background on the

topic.

 As the thesis is written for the software company Kentico, it specifically

focuses on delivering content from Kentico Cloud and Kentico EMS software.

Thus, the main research question the thesis aims to answer is what are the op-

tions for utilizing chatbots in delivering content from Kentico software. In order

to achieve this goal, the thesis introduces the Kentico software and the available

options, and then moves on to analyze their compatibility.

 As a result of the analysis, the thesis concludes that all of the considered

options would be suitable for delivering content from the Kentico software.

However, the extent of their suitability depends on what the user is looking for.

While some options are better suited for complex implementations, they would

also require more effort to develop. On the other hand, some of the options that

offer more limited features do not require such wide technical knowledge and

are faster to develop and set up.

Keywords: Dialog system, chatbot, content delivery, Kentico

 ii

Contents

1. Introduction ... 1

2. Terms and Basic Concepts ... 3

2.1. Intent, Entity, and Response .. 3

2.2. Dialog Systems .. 3

2.3. Conversational Agent and Chatbot .. 4

2.4. Categorizing Bots .. 5

2.5. Components ... 8

2.6. Overview of Chatbot History .. 9

3. Kentico Cloud & Kentico EMS ... 13

3.1. Kentico Cloud .. 13

3.2. Kentico EMS ... 15

4. Available Solutions ... 16

4.1. Platforms .. 16

4.1.1. Dialogflow .. 16

4.1.2. Chatfuel... 19

4.1.3. Motion.ai ... 20

4.1.4. Wit.ai ... 21

4.2. Frameworks ... 23

4.2.1. Microsoft Bot Framework, Microsoft Language Understanding

Intelligent Service (LUIS), and Cognitive Services ... 23

4.2.2. IBM Watson .. 26

4.2.3. Amazon Lex ... 28

5. Delivering Content ... 30

5.1. Platforms .. 31

5.1.1. Dialogflow .. 31

5.1.2. Chatfuel... 31

5.1.3. Motion.ai ... 33

5.1.4. wit.ai .. 34

5.2. Frameworks ... 36

5.2.1. Microsoft Bot Framework, Microsoft Language Understanding

Intelligent Service (LUIS), and Cognitive Services ... 36

5.2.2. IBM Watson .. 38

5.2.3. Amazon Lex ... 39

6. Conclusions ... 41

References ... 43

 iii

Appendix 1: List of example implementations for chatbots utilizing Kentico

Cloud or Kentico EMS .. 1

1

1. Introduction

While chatbots and the basic technology they use have been around for a signif-

icant amount of time, their use has become more and more common recently.

This can be seen, for example, in the rise in popularity of personal assistants,

such as Siri on the iOS and OS X platforms, Cortana on Windows, and Google

Now on Android. Also, products such as Google Home, Amazon Alexa, and

many other services have become more common lately [PR Newswire 2014].

Even before this, a type of a chatbot has been used, and is still used, for a long

time in some companies’ phone services, where the caller is routed to the cor-

rect line by an automated system, which takes input either as keypad presses or

by voice detection [Berg 2010; Wikipediab]. While these systems may have used

key-based navigation, some also supported voice control to navigate the men-

us.

The goal of the thesis is to identify the plausible chatbot solutions that could

be leveraged in delivering content from Kentico Cloud and Kentico EMS plat-

forms. To identify the advantages and the disadvantages of the options, they

are analyzed by general principles based on criteria used when selecting third-

party libraries internally at Kentico. The thesis was ordered by software com-

pany Kentico and was partly written while working at the company in question

in Brno, Czech Republic.

The thesis will state that while there are differences between the bot plat-

forms and frameworks, they can all be used to deliver content from Kentico

EMS and Kentico Cloud. The thesis shows that the extent to which this is possi-

ble depends on both the features offered by the bot platform or framework as

well as on the requirements and the implementation of the bot. From Kentico

Cloud’s point of view, the necessary technical requirements are fulfilled. For

Kentico EMS, the REST API offered suffices for content delivery and via cus-

tomization a custom API endpoint can be defined for any further need.

In Chapter 2, the basic terms and concepts necessary to define will be intro-

duced. Also, the concept of a chatbot will be determined, the different ways in

which chatbots can be categorized will be explored, and the components used

in chatbots will be described. Additionally, to offer some background on the

technological progression of chatbots, an overview of the history of bots will be

provided.

2

The third chapter of the thesis will shortly introduce the Kentico Cloud and

Kentico EMS. Also the technical requirements and limitations regarding the

two softwares will be discussed in this chapter.

Chapter 4 will describe the different available solutions for creating chat-

bots. The chapter is divided to two subchapters, platforms and frameworks,

which both detail several different options for creating bots that can be used for

content delivery.

In the fifth chapter, the available solutions will be analyzed in regard to de-

livering content from Kentico Cloud and Kentico EMS. The chapter is similarly

divided in to two subchapters as the fourth chapter. In the subchapters, the

suitability of each available option will be assessed. Finally, in the sixth chapter,

the results of the analysis are presented.

3

2. Terms and Basic Concepts

There are many terms used when talking about chatbots, for example, (human-

computer) dialog systems, (conversational) agents, chatterbots, or simply bots.

These terms are often used interchangeably with each other, however, distinc-

tions between the terms exist. In order to efficiently analyze the available solu-

tions for delivering content from Kentico EMS and Kentico Cloud, it is neces-

sary to understand what exactly each of these terms mean. Additionally, the

concepts closely related to them, such as intent, entity, and response, will be

defined in the following subchapter.

2.1. Intent, Entity, and Response

Intent represents the intention of the user, for example, Dialogflow defines it as

“the mapping between what the user says and what action should be taken”

[Dialogflowf]. Similarly, Saunders [2017] determines intent “as the question or

request that a user inputs”. An example of this could be, for instance, booking a

ticket.

Entities Saunders [2017] describes as “parameters we can pull out of a con-

versation”. Dialogflow goes on to specify that entities represent the detailed

information that clarifies the purpose of the intent [Dialogflowd]. To expand on

the example offered above, the entity could be a certain movie, that is, the us-

er’s intent is to book a ticket for a movie. Additional entities could be, for ex-

ample, time and location of the movie theater.

Finally, response is the action that is taken as a result of identifying the in-

tent and the entity. The response could be, for example, the data returned for

the end user, some actionable data that is returned by the platform or frame-

work, or a call to an external service to perform some action or to fetch external

data.

2.2. Dialog Systems

Dialog system is defined by Klüwer [2011, 22] as a “system which can conduct a

conversation with another agent, for example a human or another dialog sys-

tem. Dialog systems can use various forms of input and output (e.g. speech,

gestures or text).” Similarly, Berg [2014, 37] describes a dialog system as “a ma-

chine that verbally communicates with a human user to exchange information

about a common topic”. However, Klüwer defines dialog system to be a more

advanced system utilizing Natural Language Understanding (NLU) and more

4

complex techniques. She explains that these systems include additional mod-

ules to make the system more intelligent. Klüwer goes on to describe it as “a

system which can conduct a conversation with another agent, usually a hu-

man”. According to her, they usually include at least the following additional

components compared to traditional chatbots1: an input processing and NLU

functionality, one component for input management, and NLU features, dialog

flow management and an output generation component. [Klüwer, 2011, 3–4]

The definitions of Klüwer and Berg differ in the specificity of the definition.

Klüwer describes the dialog system as a more advanced system, which incorpo-

rates natural language understanding as well as generating the output instead

of simple pattern matching. Berg on the other hand doesn’t distinguish between

the simple pattern matching and more advanced systems. He defines the term

quite vaguely covering systems which offer varying levels of features and com-

ponents.

Berg and Düsterhöft categorize dialogs based on the initiative. They define

initiative as “the dialog partner who has influence on the control of the dialog”.

Berg and Düsterhöft state that depending on the party that has the control, the

dialog systems can be divided into three categories: system-initiative, mixed-

initiative, and user-initiative. They determine that a system-initiative system

would not allow the user to freely use natural language. Instead, only a simple

question-answer dialog would be possible. Additionally, a mixed-initiative sys-

tem would allow the user to affect the flow of conversation and the system

would adapt to user. Furthermore, a user-initiative system expects the user to

be the active party and does not attempt to lead the user towards their goal.

[Berg and Düsterhöft 2010]

2.3. Conversational Agent and Chatbot

Klüwer [2011, 2] defines chatbots as “text-based interfaces and a stimulus-

response pattern-matching algorithm constituting the basis for dialog function-

ality”. Alternatively, she offers a definition: “a text-based system which incor-

porates pattern-matching methods to conduct a conversation with another

agent” [Klüwer 2011, 22]. Along the same lines, AbuShawar and Atwell [2016,

374] determine that chatbot is “a conversational agent that interacts with user’s

turn by turn using natural language”. Furthermore, Abdul-Kader and Woods

[2015, 72] describe chatbot as “a computer program that have the ability to hold

a conversation with human using Natural Language Speech”. Abdul-Kader and

1 This will be returned to in the next subchapter.

5

Woods’ definition, however, assumes the mode of communication and expects

that the bot has the ability to hold a conversation in natural language. This def-

inition is not quite clear as one can assume the bot has an ability to understand

the context and the topic of the conversation and produce output to further the

conversation as the active party. It is not certain if a pattern matching bot that

can match a topic keyword in the input and provide a question on the topic to

the user is considered as holding a conversation. In contrast, both Klüwer’s and

AbuShawar and Atwell’s definitions are quite close to each other. They are

more clearly defined and they refer to a simpler bot, which utilizes methods

such as pattern matching to interact with another agent. While Klüwer’s defini-

tion includes the ability to conduct a conversation with another agent, it clearly

states that the system utilizes pattern matching methods.

As can be seen, the definitions of the terms vary slightly. In the scope of this

thesis, a chatbot is defined as a type of dialog system. Additionally, conversa-

tional agent and chatbot are understood as synonyms. The thesis will rely on

the definition and categorization of dialog systems provided by Berg. By this

definition, a dialog system does not include any advanced components such as

natural language understanding, natural language generation (NLG), or ma-

chine learning (ML).

To provide the functionality the bots offer, there are several related methods

that are used. The simplest bots use pattern matching algorithms to identify

certain keywords from the user input. The keywords are matched with a tem-

plate that is the best match and the predefined response is returned as output to

the user. However, there are different techniques used to make the bots seem

more intelligent than they in reality are. Subchapter 2.5 will explain in more

detail what techniques are used by the pattern matching bots, as well as the

components used in more advanced bots and what functionality each compo-

nent entails.

2.4. Categorizing Bots

While there are many ways to categorize bots, in the thesis categorizing of bots

is based on the way that the dialog control is handled. According to Berg, dia-

log systems can be divided to four main categories based on the way the dia-

logue manager handles the conversation flow: finite-state-based, frame-based,

plan-based, and information-stat-based approaches. Berg states that the sim-

plest of these is the finite-state-based approach where the conversation flow is

composed of a graph and the conversation advances through the graph by fi-

6

nite-state-automation. The questions asked by the system are represented as the

nodes and the user responses are in between the nodes, as can be seen in Figure

1. [Berg 2014, 41] These types of dialogs are inflexible and only allow for simple,

predefined order of questions.

Figure 1: Finite-state graph [Jokinen & McTear 2009, 25].

Frame-based approach can be understood through the analogy of printed

forms. In frame-based approach the frames and slots are equivalent to forms

and fields, respectively. Each slot in a frame represents an answer to a question

(Figure 2). The advantage of this approach is that several slots can be filled from

a single user utterance in any order. This allows the user to use a more natural

way of communicating by deciding what information is given at what time.

[Berg 2014, 42]

Figure 2: Frame [Berg 2014, 42].

Plan-based approach relies on the notion that users of a dialog system are

trying to reach some goal. The goal can be represented as a plan consisting of

certain steps, which may or may not be dependent on each other, to be taken in

order to achieve the goal. Berg uses an example from Jurafsky and Martin (see

Figure 3) of an agent A booking a flight F for client C: “The agent has a set of

true beliefs (he knows facts) and the client has the desire to book the flight. By

7

making a reservation, the flight is booked and C’s desire is accomplished” [Berg

2014, 43].

Figure 3: Action scheme [Jurafsky & Martin 2000].

Information-state-approach combines several different strategies, which al-

lows for a wider flexibility. The approach incorporates several components as

listed by Berg [2014, 43] (for more detailed descriptions, see Traum and Larsson

[2003]):

• Informational components: participants, user models, beliefs, intentions,

etc.

• Formal representations of the informational components as lists, typed

feature structures, etc.

• Dialogue moves that trigger the update of the information state (including

NLU and NLG)

• Update rules that govern the updating of the information state and select

a particular dialogue move to perform given conditions on the current

information state

• Update strategy for deciding which rules to apply.

The process for developing an informational state system starts with the de-

cisions on what information is to be modeled and how to model it. This pro-

duces the data structure that is called the informational state. According to Berg

[2014, 44], this can be thought of as a very complex frame, which holds a lot

more information than the frames in the frame-based approach.

Berg also states that dialogue moves are used as an abstraction to handle a

vast number of possible natural language messages that can be matched to a

certain update. For each type of update there must exist at least one dialogue

move. He goes on to explain, there are usually two types of moves: ask and an-

swer. Berg explains that update rules formalize the way of updating the infor-

mation state by defining the conditions when the update is done, the effects of

the update, and the selection of the next move. He also mentions that there

must also be a strategy based on which the rules are applied. [Berg 2014, 44]

8

2.5. Components

Probably one of the most common component mentioned alongside chatbots is

natural language understanding, which is the process of extracting the meaning

of the user input. According to Klüwer, part-of-speech tagging (POS tagging) is

used to identify the lexical information of the tokens in the user input. She ex-

plains that part-of-speech tagging can consist of, for example, identifying the

word class, such as a noun, a verb, or an adjective, inflections, and lemma of

words found in the input. Klüwer states that named entity recognition (NER) is

like POS tagging in a sense since it identifies and labels the words or sentences

that refer to named entities such as people, brands, or company names. For the

dialog system to understand the user input also syntactic and semantic parsing

is carried out. According to Klüwer, this means detection of higher structural

units which are analyzed to provide syntax description: “[…] the grammar-like

description of the structure in the sentence, describing which groups of words

go together (as constituents) and which words are the subject or object of a

verb.” Additionally, the semantic analysis will provide the meaning of the sen-

tences. [Klüwer 2011, 8–9] Through the semantic analysis the bot can provide

the user with more context aware responses as it will be able to distinguish the

subtler aspects of the user’s utterances.

According to Klüwer, dialog systems also generally include some output

generation module which constructs the output to be presented back to the us-

er. She explains that the module can generate several varying surface strings

based on the stored answer’s linguistic description while making sure the out-

put is appropriate in regard to the input’s structure. This is achieved with the

help of external knowledge bases and context gathered from the preceding dia-

log. [Klüwer 2011, 9] The simplest method to provide output to the user would

be to return a pre-stored response from a database. To add some flexibility to

the answers, another possibility is to use templates with stored text, which in-

clude some variables that can be dynamically replaced. Finally, the most com-

plex option for generating the response is when there is no predefined response

and the entire response is generated from scratch.

This process is described by Berg who divides it into three main stages:

document planning, microplanning and surface realization. He continues that

each one of these stages includes several subtasks. In the document planning

phase, the information that will be included is decided as well as the overall

structure of the text. Microplanning stage includes the lexicalization, merging

of similar sentences to make the response more natural, and choosing which

9

referring expressions, such as personal pronouns instead of a name, and the

tense or mood to be used. Finally, in the surface realization stage, the actual text

of the response will be generated “by applying grammar rules, inflecting verbs,

adding auxiliary verbs and building the correct tense”. [Berg 2014, 127]

Different forms of Machine Learning can be used also in bots, for example,

to understand the user in a more natural way and to generate more personal-

ized responses [Bertolucci 2016]. For example, a machine learning process

called active learning is described next. This process is used, for example, by

Microsoft Language Understanding Intelligent Service (LUIS). Microsoft LUIS’

documentation describes the machine learning as an iterative process, which

can begin once the necessary intent and entities for the bot’s domain have been

defined. It starts with the initial training of the bot to give it example utterances

for each of the intents defined for the bot. This way the bot will learn several

utterances it can compare untrained utterances to when it encounters them. Af-

ter the initial training, the active learning part of machine learning can start.

Next the bot is exposed to a number of utterances that it has not been trained to

understand. This could be done by, for example, in Microsoft LUIS’ case by

publishing the bot and allowing a number of real people to interact with the

bot. Once the bot has encountered some utterances where it had troubles identi-

fying the intents with a good probability or identified them wrong, the next

step of the process can begin. In this stage the bot is taught by a human the cor-

rect intents for the misidentified or uncertain intents. [Hanna and Mak 2017]

Additionally, neural networks can be utilized, however, the area is too wide to

be reviewed in the scope of this thesis.2

As the relevant terms have been described we can move on to a short over-

view of how the bots have advanced from the earliest chatbots to more recent

ones. In the next subchapter, we will take a look at the chatbot history through

some examples.

2.6. Overview of Chatbot History

The history of chatbots is generally considered to have begun in the 1960’s

when one of the earliest successful chatbots, ELIZA (see Figure 4), was devel-

oped by Weizenbaum [1966]. He describes the bot to use simple pattern match-

ing and keyword recognition to match the utterance of the user to a response.

However, for the bot to be “intelligent”, it requires a large database of prede-

2 For more information on neural networks, see, for example, Abadi et al. [2016], Sordoni et al.

[2015], and Vinyals and Le [2015].

10

fined patterns to match the user input against. To overcome this limitation

Weizenbaum used regular expression matching to match several utterances to

one response to narrow down the amount of stored responses in the system.

This allows for writing a general pattern for user utterances in which there are

countless possible variations. Additionally, he introduced a ranking system for

keywords3. [Weizenbaum 1966, 36–43]

Figure 4: Sample conversation with an implementation of ELIZA [Radziwill and Ben-

ton 2017].

Another problem arises with the rules being too permissive. To illustrate the

problem, Klüwer [2011, 4] uses a situation where the chatbot is told the user’s

name and the bot responds with a greeting which repeats the name user gave:

“User: My name is James and I will wear you down!

Chatbot: It’s a pleasure to meet you James and I will wear you down!”

This is an example that nicely exemplifies the limitations of pattern match-

ing architecture. Klüwer further explains, that to avoid repetition in the an-

swers provided by the bot, it is possible to write multiple reassembly rules for

3 The keyword ranking system will be described more later in this subchapter.

11

one decomposition rule. This way the bot’s responses seem more natural as

they are used in sequential order to avoid repeating the same response.

[Klüwer 2011, 4] To optimize the performance of ELIZA, Weizenbaum [1966]

introduced the possibility of including keywords and ranking values for key-

words in the rules. This allows only the rules that include the keyword to be

processed for the input reducing the number of rules to process. He describes

the keyword ranking to work in a way that the decomposition rules that in-

clude keywords with a higher rank will take precedence in the processing order

of rules. Additionally, rules that don’t include the keywords will not be pro-

cessed. [Weizenbaum 1966, 39–42]

Another similar bot based on same concepts as ELIZA is ALICE. It uses the

open source Artificial Intelligence Markup Language (AIML), an XML dialect,

seen in Figure 5, and is categorized as a stimulus-response bot using pattern

matching [Klüwer 2011, 6]. As Klüwer [2011, 6] and Abdul-Kader and Woods

[2015, 73] mention, these kinds of bots are as intelligent as the knowledge base

backing them is vast. The conversation will quite quickly become repetitive and

boring as the user has drained the existing pattern-template pairs in the bot’s

database. Nevertheless, ALICE’s developers have managed to make the con-

versation more flexible with features such as “[…] recursion, topic annotation,

variables and a short-term memory” to allow the bot to have different dialog

states [Klüwer, 2011, 8]. ALICE can, for example, remember the previous topic

and its own previous reply. This allows for the bot to respond in a more mean-

ingful way.

12

Figure 5: Example of Artificial Intelligence Markup Language (AIML) syntax [Alice-

bot].

Several bots still leverage the AIML language as it has proven to provide a

reasonable amount of flexibility and robustness [Artificial Intelligence Founda-

tion]. An example of the currently available options that are using AIML lan-

guage, is the Pandorabots platform [Pandorabots]. One of the earliest successful

bots inspired by ALICE was the SmarterChild bot. Launched in 2000, the bot

was available for chatting on American Online Instant Messenger (AIM) ser-

vice. SmarterChild could respond to several everyday topics. [Godara 2016]

With the launch of Facebook bot framework, a lot of new bot builders

emerged that leverage the platform. Many solutions also offer more advanced

artificial intelligence and machine learning functionality.

In this chapter the necessary terms and concepts have been defined and a

short overview of the history of chatbots has been looked through. In the next

chapter we will describe the Kentico Cloud and Kentico EMS in more detail.

13

3. Kentico Cloud & Kentico EMS

For identifying the suitable bot options for content delivery from Kentico Cloud

and Kentico EMS, it is necessary to describe these software to, firstly, under-

stand what the software is, secondly, to comprehend what possibilities they

offer for content publishing to different channels, and finally, to assess what

integrations are possible to use with the chatbot options analyzed. Thus, the

next subchapters will take a look at Kentico Cloud and Kentico EMS in more

detail.

3.1. Kentico Cloud

Kentico Cloud is a cloud-first headless, platform-agnostic content management

system (CMS) offered as a multi-tenant Software as a Service (SaaS). The plat-

form allows users to create and manage structured content for multi-channel

delivery. Kentico Cloud also stores assets in a Content Delivery Network

(CDN). CDN consists of several geographically distributed servers where the

files are stored [Wikipediaa]. Storing the assets in a CDN makes the content de-

livery faster, as the content is delivered from the closest server. The idea of the

headless CMS is to remove the front-end from the content management to defer

it to the application that will display the content: headless CMS will contain

only the structured content to be delivered via an API to the application han-

dling the presentation of the content [Kentico Cloud].

Kentico Cloud allows one to create content models to specify the structure

of the content items by using a drag-and-drop interface to add the necessary

contents elements. The available content elements are text, rich text, number,

multiple choice, date and time, asset, and modular content. It is possible to de-

fine different properties for the content elements, such as, element guidelines,

make the element required, limit the length of the text input or the number of

assets and so forth [Uhlara; Uhlarb].

14

Figure 6: View of content item in Kentico Cloud user interface [Kentico Cloudd].

Once the content models are created, content items based on the models can

be created where the actual content of content will be inserted as can be seen in

Figure 6. During the content creation process it is possible to perform several

actions: the content item can be moved to another step in a defined workflow,

assigned to user(s), commented on, location in the sitemap can be defined, or a

previous versions of the content item can be viewed and restored. [Kentico

Cloudd; Kentico Cloudb]

When the content item is published it can be retrieved via the Delivery API4.

For published items web hooks can be defined to notify external applications

off updates on the items. This can be used for example to clear cache of an ap-

plication to refresh content to reflect the newly updated version.

Total of three SDKs are currently available, with more coming5, for deliver-

ing content to custom applications from Kentico Cloud [Kentico Cloude].

Next, a brief overview of Kentico EMS is offered in order to understand the

difference between the two software.

4 The Delivery API also offers a preview for unpublished content items. For more information

on the Delivery API, see [Kentico Clouda].

5 Kentico Cloud Roadmap as well as GitHub show that PHP SDK is going to be released in Q4.

For more information, see [Kentico Cloudf; GitHubb].

15

3.2. Kentico EMS

Kentico EMS is an all-in-one solution offering CMS, e-commerce, and online

marketing platform. It provides a wide variety of Web Content Management

(WCM) features out of the box, online marketing, e-commerce, online commu-

nities, intranet, and collaboration (for a list of all features, see, [Kenticoa]).

Additionally, the platform is open to extension and many aspects can be

easily modified to fit custom requirements. It offers open API to directly call

Kentico features from a third-party application. The documentation provides a

large number of examples. [Kenticoc; Kenticod]

The built-in REST API allow reading, creating, updating, and deleting vir-

tually any object or document in Kentico EMS. The REST API can be used for

both transferring data to and from the system.

The most relevant area of Kentico EMS in the scope of this thesis is the con-

tent management. To create content, one must first define the content structure.

This is done by defining page types, which consist of required fields for the con-

tent. In addition, a page template can be created or one of the built-in page

templates can be used. Content items can be created using a built-in application

called Pages. In the Pages application, one can input the content for the content

item and place the new page in a proper hierarchy on the website. [Kenticob]

In addition to content management, Kentico EMS serves the website by us-

ing Microsoft Internet Information Services (IIS) web server. Furthermore, it is

possible to utilize Microsoft Azure platform to host Kentico in the cloud.

[Kenticof]

 Vast amount of additional functionality is also offered in Kentico, however,

in the scope of this thesis it is not necessary to extensively cover all of it6. In the

next chapter, the thesis moves on to describe the available options for creating

chatbots that can be utilized in delivering content.

6 For further details on available features, see [Kenticoe; Kenticod].

16

4. Available Solutions

The chatbot technology and conversational interfaces have become more and

more popular with personal assistants, such as Siri, Cortana and Alexa. As

mentioned before, the increasing popularity of bots can be perceived in phe-

nomena such as the introduction of Facebook bot platform and the growth seen

within a year of the platform’s introduction [Facebook Newsroom 2016]. Face-

book reported the rounded number of developers and bots to be 100 000 each.

Other major companies are also investing a lot of time and money into bot

technology [Ramos 2017]. This chapter presents different type of platforms and

services available for creating bots. Some of the solutions offer a full bot builder

experience while others offer some components as services that can be utilized

with other solutions.

The solutions could be categorized in many ways but for the purposes of

this thesis they are divided into platforms and frameworks.

4.1. Platforms

4.1.1. Dialogflow

Dialogflow is a platform owned by Google that allows you to create a natural

language interface by providing actionable data based on the input given. The

platform includes speech recognition, natural language understanding, ma-

chine learning as well as text-to-speech capabilities. The platform works on the

basis of intents and entities recognized from the user’s utterances rather than on

a predefined flow pattern branching only based on the response of the user.

There is a web-based user interface for defining the entities, intents, and re-

sponses for the chatbot or for other natural language interface. The agent’s7 dia-

log will move forward based on the identified intents that represent the inten-

tions of the end-user. The flow of the dialog can be defined by configuring con-

texts, prioritizing intents, slot filling, responsibilities, and fulfillment by using

web hooks, see Figure 7. [Dialogflowb]

7 The bots are referred to as agents in Dialogflow.

17

Figure 7: Overview of Dialogflow [Diagonflowa].

Dialogflow includes machine learning capabilities to further improve the

detection of the intentions from the user utterances. Intents include the follow-

ing sections: user says, action, response and contexts. User utterances can be

written either in example mode or template mode. Example mode utterance is

written in natural language and can be annotated for parameters. In the tem-

plate mode, the parameters are directly referenced in the utterances and they

cannot be annotated. It is recommended to rather use the example mode, be-

cause the example mode is easier to use and the machine learning can learn

faster in this mode. Contexts can be used to pass information from previous

conversations or external sources. For the intent to be triggered, all the contexts

defined for the intent must be active. It is possible to prioritize the intents in

case several intents are identified, define fallback and follow-up intents, and

define text responses. Rich responses can be used in case of using one of the

following one-click integrations that supports rich responses: Facebook Mes-

senger, Kik, Slack, or Telegram. [Dialogflowi; Dialogflowe; Dialogflowf]

When defining entities, it is possible to input several synonyms so multiple

words can be matched to the same entity. There are three types of entities sup-

ported by Dialogflow: system, developer, and user entities. System entities are

predefined entities, which enables one to handle most common concepts, while

developer entities allow one to create custom entities, and user entities are de-

fined on the session level. Additionally, automatic expansion allows the agent

to match values to entities even if they are not explicitly listed. The accuracy of

matching the unidentified values gets better with adding more synonyms for

the entity. The entities can be copied or moved to another agent easily through

the UI. Exporting the entities in JSON or CSV format and uploading them back

is also supported. [Dialogflowd]

18

Usage of intents and entities comes with some challenges, such as carrying

over the context of the conversation. Allowing the context of the conversation

to be carried over to the API permits defining the carried over context as input

and/or output context for entities. Once an intent has been identified from the

user utterance it can be set as the output context for future interactions. The

input context is the context that needs to be set in order for an intent to be

matched. If a given input context is not set, the intent will not be matched. The

training section for the agent offers an option to train the agent based on the

previous conversations. The analytics section offers some basic data of the us-

age of the agent, such as most used intents, number of sessions, and number of

inquiries per session. Provided statistics for the intents include the percentage

of users who exited the conversation during the intent. Additionally, and agent

response time information is provided. [Dialogflowc]

One-click integrations SDKs

Google Assistant Android

Facebook Messenger Apple (iOS / Watch OS / Mac OS X)

Slack Cordova

Dialogflow Web Demo HTML

Kik JavaScript

LINE Node.js

Skype .NET (WP8, WP10)

Spark Unity

Telegram Xamarin

Tropo C++

Twilio Python

Twilio Programmable Chat Ruby

Twitter PHP

Viber Epson Moverio

Amazon Alexa (exporter/importer) Botkit

Microsoft Cortana (exporter) Java

Table 1: Dialogflow integrations and SDKs [Dialogflowe; Dialogflowk].

A s seen in Table 1, the platform offers a wide range of integrations and

SDKs. Additionally, Dialogflow provides a variety of prebuilt agents, which

can be customized to fit your needs.

Dialogflow currently supports 15 languages8, which can used for the bots

[Dialogflowh; Dialogflowj].

8 Brazilian Portuguese, Chinese (Cantonese, Simplified & Traditional), English, Dutch, French,

German, Italian, Japanese, Korean, Portuguese, Russian, Spanish and Ukrainian

19

 While it is not possible to directly clone an agent, the agent can be exported

and after creating a new agent, the previous agent’s export can be restored to

the new agent in order to transfer the entities and intents.

4.1.2. Chatfuel

Chatfuel is a bot platform utilizing the Facebook Messenger platform and Tele-

gram. However, Chatfuel does support integration with services such as IFTTT

(If This Then That) and Zapier in order to allow, for example, to adding a new

card from Instagram updates. In addition to offering the integrations, there is a

JSON API available for creating custom integrations with other applications,

which makes the platform more flexible. The API allows to make GET and

POST requests to fetch the data and extract information from responses.

Through the API it is possible to generate dynamic content, get and set user

attributes, redirect users to another block in the bot and create postbacks.9

[Chatfuela]

The bot comprises of a set of blocks that allow the user to define different

actions based on the users input. The bot will move to another block depending

on the answer that is received from the user. Blocks are built by using plugins

that can, for example, move to another block, show content from RSS feed, per-

form a Google search or get input from the user. Chatfuel offers the following

types of responses: text, image, gallery, list, quick reply, and typing10. The flow

of the conversation is defined by the user replies and the branches based on

them, thus, the entire conversation flow is predefined. The blocks are connected

to each other by using the plugins inside the block, but there is no overview

showing all the connections between the blocks. Nevertheless, in order to or-

ganize the modules and provide structure for the bot, it is possible to group the

modules into named groups. [Chatfuele]

The user input can be text, images or files supported by Facebook Messen-

ger such as .pdf or .docx files. The input can be parsed and validated by the Us-

er Input Plugin, which saves the input to a given variable for the future use in

the conversation. [Chatfuelf] Chatfuel does not offer any NLP capabilities on its

own and as such, the interaction with the bots can easily become frustrating or

the user might lose interest as the bot follows a strict pattern to advance the

9 For more details on the JSON API, see [Friedrich].

10 This response type shows the message “…”, which indicates that the other party of the con-

versation (i.e. the bot) is typing.

20

conversation. However, as Chatfuel uses Facebook Messenger platform, it can

benefit from the built-in NLP functionalities. This functionality is, nevertheless,

quite limited in its nature and only supports English language by default.

Moreover, the detected entities are limited to greetings, thanks, goodbyes,

dates, times, locations, amounts of money, phone numbers and emails. Face-

book Messenger platform offers a possibility to customize the NLP through

wit.ai by adding custom entities in English as well as other languages. [Face-

book for Developers]

4.1.3. Motion.ai

Motion.ai is a platform that offers a visual builder for creating flow-based bots

by connecting modules. Additionally, Motion.ai offers a NLP engine, which is

currently available as beta, in order to understand natural language and intro-

duce the idea of intents and entities to the platform. Combining the flow-based

dialog and intents allows for more flexibility for the user as they can interact

more naturally with the bot since it remembers the context of the previous mes-

sages. However, the documentation on this feature is quite limited in the beta

stage. There is a video series that details how to enable the NLP engine, create

intents, tag for entities and train the NLP engine. The intents should be trained

by providing example user utterances, which allow the NLP engine to recog-

nize the intents and entities with more confidence. [Motion.aif; Motion.aie]

Motion.ai does not provide a way to define input and output contexts in the

same way as Dialogflow does. Each module can be connected to one or more

modules and each of the connections acts as an if-condition. This allows for

branching based on the response of the user, extracted data, or custom varia-

bles. Finally, a default fallback option can be provided, if none of the defined

options match. [Motion.aia]

Motion.ai has a list of standard modules for common tasks, which are avail-

able out of the box. Additionally, Node.js module allow using Node.js code in

bots to, for example, make calls to an external service or run other custom code.

The Node.js module is expected to return a JSON object with a certain structure

in order for the Motion.ai platform to properly process the output of the custom

module. The module allows including several popular libraries in order to ex-

tend the code. In case the NLP engine is enabled, the NLP enriched data is

available for use in the Node.js module in addition to the standard data availa-

ble in the response [GitHubd]. List of available modules along with their de-

scriptions can be seen in Table 2.

21

Module Purpose

Bot Statement The simplest of modules, bot statement is best for situa-

tions when you have no expectation of what the user's

response might be. Think of it as a free-form text field.

Multiple Choice Intended for situations where a number of defined options

or answers exist to a given question.

Sentiment (Yes/No) Formatting and extraction of data for Yes / No questions.

Email Collection Extracts an email address from an abstract response

URL Collection Extracts a URL from an abstract response

Number Collection Converts both numeric and phonetical numbers into inte-

gers.

Phone Number Collection Extracts and validates telephone numbers based on select-

ed country codes.

Date/Time Collection Extracts and validates an ISO string date stamp

Address Collection Extracts and validates a geolocation address, if detected

Duration Parsing Extracts representations of time and parses them into total

seconds

Get Name Extracts the user's name from user input

Table 2: Available modules in Motion.ai [Motion.aie].

 In regard to channels, Motion.ai offers the following options: web chat,

SMS, Facebook Messenger, Slack, and email. In case of any other medium, a

REST API is also offered for broadcasting the messages from the bot [Mo-

tion.aib].

4.1.4. Wit.ai

Wit.ai platform is owned by Facebook, and it is a similar service as above-

described Dialogflow, since it offers a service that provides actionable data

based on user input. Instead of providing a visual builder to design the conver-

sation flow, wit.ai offers an extensive API for parsing the input and providing

NLP parsed information for custom applications. As the platform is owned by

Facebook, there is an existing integration in Facebook Messenger platform for

using use wit.ai. [Facebook for Developers]. For integrating with other applica-

tions, one must handle sending requests and parsing the information returned

by wit.ai in their custom application. The conversation is managed by building

stories, which consist of entities and intents. There is a good amount of built-in

entities, which are optimized for use in the applications. Hence, it is recom-

mended to use them whenever possible. In case there are no suitable built-in

entities it is also possible to create custom entities to extend the possibilities.

The built-in entities can be easily used by first giving an example user utter-

22

ance, marking the appropriate part of text as the entity and selecting the entity

type, as can be seen in Figure 8 [wit.aia].

Figure 8: Tagging utterances for entities in wit.ai [wit.aid].

Custom entities can also be defined in the same way and there are different

options to be configured for the custom entity, depending on the lookup strate-

gy selected (trait value, keywords, or synonyms). The possible options for

lookup strategy along with use cases and examples can be seen in Table 3. The

trait value and the keyword represent the value API will return upon extracting

the entity. Synonyms can be defined for the keywords in order to allow for sev-

eral words to be matched to a single keyword. [wit.aid]

Wit.ai API is quite extensive and offers clear examples for each available

API command along with the sample response that would be returned. The app

can be trained via the API by providing sample utterances along with the enti-

ties, which should be recognized once the training finishes. The platform pro-

vides context objects to allow for the application to remember the state of the

current conversation. The context can only be updated on the client side appli-

cation. Wit.ai can use this information to decide between different responses as

is defined in the stories, which allows more context aware responses. [wit.aid]

23

Lookup Strategy Use Case Examples

Trait When the entity value is not in-

ferred from a keyword or specific

phrase in the sentence. There is no

obvious association between cer-

tain words in the sentence and the

value of the entity, but rather you

need the sentence as a whole to

determine the value.

Intent, Senti-

ment, poli-

teness

Free Text When you need to extract a sub-

string of the message, and this sub-

string does not belong to a prede-

fined list of possible values.

Message Body,

Contact Name

Keywords When the entity value belongs to a

predefined list, and you just need

substring matching to look it up in

the sentence.

Country, Bur-

ger, Room

Table 3: Types of entities for wit.ai [wit.aid].

4.2. Frameworks

4.2.1. Microsoft Bot Framework, Microsoft Language Understanding Intelli-

gent Service (LUIS), and Cognitive Services

Microsoft’s Bot Framework enables one to create, test, connect, and deploy

bots. It offers an option to get started quickly with the bot development by us-

ing Azure Bot Service to speed up the development by offering a web host and

ready-made bot templates that can be used as a base to develop a custom bot.

[Brandl and Standeref 2017] In addition to this, it is possible to use the Bot

Builder SDK available for .NET and Node.js to build a bot from the ground up.

The Bot Builder SDK provides an emulator that allows for easy testing and de-

bugging of the bot solution locally, as seen in Figure 9. [Mak et al. 2017;

Standefer et al. 2017a; Standefer et al. 2017b] In addition, Bot Framework REST

API is offered to make development in other programming languages possible.

24

Figure 9: Microsoft Bot Framework Emulator running locally for debugging [Mak et al.

2017].

Microsoft Bot Framework offers a myriad of samples11 showcasing the fea-

tures provided by the framework: these range from single feature samples to a

more complete reference implementation. The Bot Framework offers advanced

tools for handling the dialog flow, for example, sending and receiving text re-

sponses and attachments, remembering the context of the conversation, and

integrating other services such as search engines and natural language under-

standing. The platform offers a wide documentation and API reference as well

as structured sections for different phases of the development ranging from the

design of the bot to deploying and connecting the bot to different channels. If

one chooses to use the Azure Bot Service, one can also use one of the ready

provided templates to quickly get started on the bot development. A list of

provided templates can be seen in Table 4.

11 For a comprehensive list of samples, see [Standefer et al. 2017a; Standefer et al. 2017b].

25

Template Description

Basic Creates a bot that uses dialogs to respond

to user input.

Form Creates a bot that collects input from a

user via a guided conversation that is cre-

ated using FormFlow (in C#) or waterfalls

(in Node.js).

Language understanding Creates a bot that uses natural language

models (LUIS) to understand user intent.

Proactive Creates a bot that uses Azure Functions to

alert users of events.

Question and Answer Creates a bot that uses a knowledge base

to answer the user’s questions.

Table 4: Built-in templates offered for Azure Bot Service [Brandl and Standeref 2017].

In regard of the available channels for the bot, one can choose from a wide

variety of options including Bing, Cortana, Skype and Skype for Business, Mi-

crosoft Teams, Web Chat, Email, GroupMe, Facebook Messenger, Kik, Slack,

Telegram, and Twilio. In addition to the mentioned channels, one can use Di-

rect Line to connect the bot to their own application. The available options for

each bot depend on the features used by the bot as not all platforms support all

the response types offered by Microsoft Bot Framework. A Channel Inspector is

offered to make it easier for developers to see which response types are offered

and how the features look on each of the available channels. Microsoft Lan-

guage Understanding Intelligent Service (LUIS) can provide bots12 with addi-

tional data to understand the user input. The service provides as a response the

intents and entities extracted from the user input. In addition to the intent and

entity recognition offered by LUIS, one can utilize the more complex services

offered by Cognitive Services to extract meaningful data from user input, as can

be seen in Table 5. By using Azure Bot Service, one can easily start utilizing

some of the mentioned Cognitive Services. Nevertheless, it is also possible to

integrate them into a bot that is created using the Bot Builder SDK. A few ex-

amples on integrating these services are offered in the sample implementations.

12 Naturally Microsoft Language Understanding Intelligent Service (LUIS) can be used for other

types of applications as well, but in the scope of the thesis it is not relevant.

https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-formflow
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-prompts

26

Computer Vision Linguistic Analysis API

Content moderator Recommendations API

Video API Knowledge Exploration Service

Face API Entity Linking Intelligence Service

Emotion API Academic Knowledge API

Video Indexer QnA Maker API

Custom Vision Service Custom Decision Service

Translator Speech API Bing Autosuggest API

Bing Speech API Bing News Search API

Speaker Recognition API Bing Web Search API

Custom Speech Service Bing Entity Search API

Bing Spell Check API Bing Image Search API

Web Language Model API Bing Video Search API

Text Analytics API Bing Custom Search

Translator Text API

Table 5: Microsoft Azure Cognitive Services offered [Microsoft Azure].

4.2.2. IBM Watson

IBM Watson framework is similar to Microsoft Bot Framework, which offers a

variety of different services that can be used to build versatile conversational

agents. A list of the services offered can be seen in Table 6. The platform offers

an easy option for deploying a pre-trained virtual agent for certain domains,

which allows one to quickly launch a bot for customer service purposes. Build-

ing a conversational agent is also possible by utilizing the SDKs available for

Node.js, Python, Swift, Java, Unity, and .NET. If a SDK is not available for a

programming language, there is a REST API can be used. [GitHubf]

27

Conversation Quickly build and deploy chatbots and virtual agents

across a variety of channels, including mobile devic-

es, messaging platforms, and even robots.

Virtual Agent Build a chatbot for customer service - no machine

learning experience required.

Visual Recognition Tag, classify and search visual content using machine

learning.

Discovery Unlock hidden value in data to find answers, monitor

trends and surface patterns with the world’s most

advanced cloud-native insight engine.

Natural Language

Understanding

Analyze text to extract meta-data from content such

as concepts, entities, keywords and more.

Discovery News Infuse dynamic news content into every app you

build.

Knowledge Studio Teach Watson to discover meaningful insights in un-

structured text without writing any code.

Document Conversi-

on

Document Conversion capabilities have been migrat-

ed to Watson Discovery. Take advantage of im-

provements to PDF conversion using Watson Discov-

ery.

Speech to Text Convert audio and voice into written text for quick

understanding of content.

Text to Speech Convert written text into natural sounding audio in a

variety of languages and voices.

Personality Insights Predict personality characteristics, needs and values

through written text.

Tone Analyzer Understand emotions, social tendencies and per-

ceived writing style.

Language Translator Translate text from one language to another.

Natural Language

Classifier

Interpret and classify natural language with confi-

dence.

Retrieve and Rank Retrieve and Rank has evolved into Watson Discov-

ery and is deprecated as a stand-alone service.

Table 6: Services offered by IBM Watson framework [IBM Watson].

API documentation offers an overview of the available commands along

with examples on how to make the request in different programming lan-

28

guages and on sample responses that would be received from the API. In re-

gard to chatbots, the platform works based on intents and entities. The dialog

flow can be defined by using a visual tool to insert nodes into a tree structure.

Each node works as a conditional node: when given input X and the condition

Y is fulfilled, perform action Z. The action performed can be to return a re-

sponse or to trigger a programmatic action, as can be seen in Figure 10.

Figure 10: IBM Watson dialog flow illustration [IBM Bluemix 2017b].

When it comes to deployment, there are differences in IBM Watson in com-

parison to previous options. Test deployment can be done to Slack by using the

test deployment tool offered by the platform. However, to deploy the IBM

Watson bot to social media channels, such as Slack, Facebook Messenger and

Twilio, one must use Botkit middleware.13

4.2.3. Amazon Lex

Amazon Lex is an Amazon Web Services (AWS) service that offers easy access

to the technology used in Alexa personal assistant. Amazon Lex allows one to

create a conversational interface for any application, which uses voice or text

input. The service includes, among other things, natural language understand-

ing to enable natural conversions and machine learning to enable the ability to

improve through interactions. Amazon Lex also benefits from the other services

offered by AWS. They enable for more flexibility and complex implementa-

tions, which can also scale when needed.

13 More information on Botkit middleware, see [IBM Bluemix 2017a; GitHube].

29

Amazon Lex works by identifying the intents of the user from the input and

filling the required slots in case there are any required slots defined. Slots are

similar to entities, and they represent values that are necessary for fulfilling the

intent of the user. The necessary slots are defined in the intent along with a

prompt text, which Lex will use to query said information. Amazon provides a

very large number of possible slot types for gathering the necessary infor-

mation in order to fulfill an intent.14 In addition to the built-in slot types, it is

possible to define a confirmation prompt for each intent and a AWS Lambda

functions for validating the user input and fulfillment. Alternatively, one can

configure the bot to return the slot information to the application for custom

processing. [Amazon Developer]

Amazon Lex does not provide an interface for defining the dialog flow, as

the dialog will advance based on the intents identified from the user input. As

the dialog progresses the user is prompted to fill the required slots. Several

slots can be filled from single user input, which, as discussed earlier, allows for

a more flexible user experience.

Figure 11: Example of intent configuration in Amazon Lex [Amazon Web Servicesa].

Amazon Lex offers mobile SDKs for iOS, Android, Xamarin, and Unity. In-

tegrations are available for Facebook Messenger (text input only), Slack, and

Twilio. Additionally, bots can be exported as Alexa Skills in order to use them

with Amazon Alexa15.

14 For a full list of available slot types, see, Amazon Lex documentation [Amazon Developer].
15 It requires some extra steps for the skill to be properly defined. For more details, see, [Ama-

zon Web Services].

30

5. Delivering Content

This chapter determines how the presented services fit the purpose of deliver-

ing content from Kentico EMS and Kentico Cloud. To do so, it is necessary to

establish the requirements from the point of view of the source of the content.

In order to achieve this goal, criteria based on which it is possible to assess the

suitability of each option, has been chosen. Additionally, the chapter takes a

look at Kentico EMS and Kentico Cloud to consider if there is functionality

missing that would prevent or make it harder to integrate the products with the

chatbot options.

The goal of the thesis is not to select a single option but rather initially eval-

uate the options to identify what kind of features are available and what they

might require from the Kentico products. The focus is on what are the neces-

sary features or properties a chatbot service should have to be practical for con-

tent delivery.16 The following criteria is used to evaluate the options:

1. Is the product in active development?

2. Does the product have an active community?

3. Is the documentation of the products comprehensive?

4. How easy is it to integrate with channels?

The first two criteria have been selected to ensure that the option is not

showing signs of being abandoned either by the developer (item 1) or by the

community using it (item 2). Furthermore, an active community can give an

idea of the support that is received from the developing part: if the community

forums are actively answered by the company representatives, it shows a level

of commitment to the product. The third and the fourth criteria are used to de-

termine how easy the development would be and to evaluate the ease of inte-

gration with other third-party products. Moreover, a comprehensive documen-

tation that offers a good number of examples can help reduce the initial learn-

ing curve when starting to use the product, thus, likely leading to faster devel-

opment.

16 For evaluating the quality of chatbots and conversational agents, see [Radziwill and Benton

2017].

31

5.1. Platforms

5.1.1. Dialogflow

Dialogflow was originally known as Speaktoit and, until recently, as API.ai17.

The company was acquired by Google in September 2016. The product is being

actively developed by the company, and new features and sample bots are be-

ing added to the service. The product has a GitHub repository for sample im-

plementation, however, it does not seem to be very active. On the other hand,

the community forum appears to be relatively active with several topics posted

each day.

Dialogflow’s documentation is well organized and includes a good number

of examples and how–to guides. For most of the questions the answers can be

found in the documentation. The user interface of Dialogflow also includes a

good number of helpful tooltips and descriptive texts, which gives the user an

easy access to help without the need of navigating to the documentation. The

built-in integrations that are offered are simple to enable. For fulfillment, one

can define webhooks to fetch content from an external application, such as

Kentico Cloud or Kentico EMS. Recently, Dialogflow added the possibility of

defining the fulfillment logic in the web user interface by utilizing Google’s

Cloud functions for Firebase. Additionally, webhooks can be defined to com-

municate with third-party applications.

We can determine that Dialogflow is an active, stable product backed by a

large company, with comprehensive documentation, and offers good examples.

The platform has a good amount of functionality, which supports a wide varie-

ty of different kind of bots and channels to broadcast content to. However, no

REST API is provided with the platform and as such, for example, pushing

newly created content without user interaction from Kentico EMS or Kentico

Cloud is not possible. Using Dialogflow for a chatbot, that pulls content from

Kentico EMS or Kentico Cloud is certainly viable. The number of easily enabled

channels makes Dialogflow a good option especially for situations where one

want to make existing content available through several channels.

5.1.2. Chatfuel

Chatfuel is a platform that is targeted mainly for the Facebook Messenger plat-

form; however, it started in 2015 on Telegram messenger. The option for creat-

17 October 2017 API.ai was renamed to Dialogflow, and new features were added to the plat-

form. For more details, see [Dialogflowg].

32

ing a bot for Telegram still exists, but the main focus is on the Facebook Mes-

senger platform. While the platform hasn’t been around for a long time, accord-

ing to Mindbowser Chatbot Survey in 2017 [Mindbowser 2017], it is the fourth

most popular chatbot platform as ranked by respondents when asked for the

best platform to build chatbots with.

The company is actively developing the product and posting new blog

posts several times a month, which detail new features or give hints on using

the existing features of the platform. Additionally, the community forums for

Chatfuel seem to be active with community members contributing to the plat-

form, for example, by sharing custom tools they have created to ease the devel-

opment on the platform18.

Documentation for the platform is quite limited considering there were only

44 articles at the time of the writing19. While the company is fairly active in post-

ing guides on current and new features on its blog, the overall amount of doc-

umentation is unfortunately very limited. The documentation is missing a clear

navigation page, which would show the hierarchy of articles. Search functional-

ity is available for searching the documentation, but it does not provide a quick

overview of the documentation like a hierarchical structure would. Neverthe-

less, the company has recently been active in other ways, such as, publishing an

electronic book in collaboration with HubSpot, which details how one can build

their first bot with Chatfuel platform.20

Chatfuel offers a way to broadcast messages to existing users who have

previously interacted with the bot. The user interface allows for defining fol-

low-up messages and scheduling messages to be broadcasted at a later time.

Additionally, throught IFTTT and Zapier integrations it is possible to set up

autoposting from external sources. This feature makes Chatfuel able to deliver

content from Kentico EMS and Kentico Cloud as webhooks could be set up to

autopost new content that has been added to the system. The platform also of-

fers a JSON REST API that enables one to communicate with third-party cus-

tom applications which allowing chatbot responses to be constructed by exter-

nal application.

Chatfuel does offer a good amount of functionality, even though it is con-

strained by the Facebook Messenger platform. If one is looking for a simple

way to broadcast content through Facebook Messenger platform, Chatfuel is an

18 For an example of community user provided tool available on the forums, see [Chatfueld].
19 Articles available in documentation, see [Chatfuelc].
20 The book can be downloaded from Chatfuel’s blog, see [Chatfuelb].

33

option that would suit this scenario. Nevertheless, for more advanced scenarios

one might utilize the customization option available through wit.ai, which is

available through Facebook Messenger platform.

5.1.3. Motion.ai

Motion.ai platform was launched in 2015, and it states as its goal to offer a sin-

gle easy-to-use service for creating chatbots that can serve content to multiple

channels. [Motion.aic] Motion.ai was recently acquired by HubSpot, and for

now the offered service remains as it is. However, there is no promise of how

long the service will be provided in its current state. This poses a possible issue

since the service is meant as the single application to fulfill all the needs instead

of integrating with other third-party systems. In the event that the service

would be discontinued and, for example, if the service would only be offered as

a part of the HubSpot CMS software, it would present risk of a vendor lock-in.

Regarding community, Motion.ai does not currently offer forums, but a

slack channel is mentioned on the company’s website. Documentation for the

platform is nicely organized in categories, but it offers a quite limited number

of topics. Nevertheless, this is partially compensated by the design of the user

interface. As seen in Figure 12, the service is filled with hints and descriptive

texts that allow the user to find out most of the necessary information without

the need to navigate to the documentation in the first place. Additionally, the

company has prepared an example available on GitHub of using the Node.js

modules in a bot as well as a series of YouTube videos21 detailing how to utilize

the NLP engine and set up intents and entities for it. Motion.ai, similarly to

Chatfuel, does not have dedicated community forums but only a Slack channel.

21 Video series is available on Motion.ai’s YouTube channel, see [Motion.aif].

34

Figure 12: Hint and descriptive texts for Geo-Address module in Motion.ai [Mo-

tion.aic].

In regard to connecting the bot to social media and other channels, the ser-

vice only offers a limited amount of options out of the box, and choice of the

channel has to be made when starting the development of the bot. It is not pos-

sible to connect the same bot to several different channels. The offered RESTful

API, however, does allow one to broadcast messages to officially unsupported

channels.

Based on what has been presented in this subchapter, it is clear that the

functionality offered by Motion.ai is suitable to be used for content delivery

from Kentico Cloud and Kentico EMS. Through Node.js modules it is possible

to make calls to Delivery API of Kentico Cloud or to the REST API of Kentico

EMS to fetch the content.

5.1.4. wit.ai

The platform wit.ai was acquired by Facebook in early 2015 and has since been

developed actively. In July 2017, wit.ai announced that it is going to shut down

the bot builder and instead focus exclusively on providing a NLP service. The

reason behind this decision was the fact that the tools offered for building bots

have advanced since the bot engine was originally brought to market. At the

35

same time as the company announced shutting down the service, they also re-

vealed the built-in NLP service for the Facebook Messenger platform. [wit.aic]

The platform, while not offering a full bot builder, does provide a good NLP

engine, which can be used in practically any application through their API. The

development is going on actively, and this can be seen, for example, in the

wit.ai’s GitHub repository that has 26 repositories listed. The documentation

for the platform is comprehensive and offers a good amount of resources for

developers. It includes a getting started guide, example solutions to problems

as well as an exhaustive HTTP API Reference going through all the available

endpoints. Examples of the requests and sample responses returned are also

shown in the reference, as can be seen in Figure 13. SDK is offered for Node.js,

and libraries are available for Ruby and Python.

Figure 13: Example from wit.ai HTTP API Reference [wit.aib].

According to wit.ai blog, the usage of the platform has grown from 20,000

developers to more than 100,000. The popularity of the platform can be seen in

the Mindbowser [2017] chatbot survey with more than 45 percent of respond-

ents favouring the platform.

As the platform is currently offering only NLP services, direct integration

with social media is not available, with the exception of Facebook Bot platform,

which uses wit.ai to offer the built-in NLP functionality. Integrating with other

channels has to be handled within a custom application. The platform offers a

solid NLP service that comes with a well-documented API for interactions as

well as a stable company backing the service. As previously mentioned, wit.ai

36

allows one to extract intents and entities from the user input for a more in-

depth understanding of the user’s intent. The NLP engine provides the devel-

opers with a good amount of supporting data to help them create a context-

aware conversational interfaces for the application of their choice.

When considering the use of wit.ai from the point of view of the thesis’ goal,

as itself the service does not offer the kind of functionality that would be useful

for content delivery. However, the service can certainly be used in conjunction

with other services that provide other necessary services for interpreting the

NLP data, constructing the responses based on the data and broadcasting them

the channel of choice. For example, platforms that are targeting the Facebook

Messenger platform, utilizing the Facebook Bot platform, can benefit from the

additional flexibility that the additional NLP data offers. This allows for more

natural experience when interacting with the bots.

In regard to content delivery from Kentico Cloud or Kentico EMS there is

nothing that would prevent it. The content would be fetched by the custom ap-

plication that is utilizing wit.ai to provide the NLP services. All parties offer

REST API for communicating with third-party services, and thus it can be con-

cluded that no restrictions apply from wit.ai’s or Kentico’s side. The logic for

content delivery can be implemented in a custom application utilizing the REST

APIs available.

5.2. Frameworks

5.2.1. Microsoft Bot Framework, Microsoft Language Understanding Intelli-

gent Service (LUIS), and Cognitive Services

Microsoft Bot Framework offers a very comprehensive set of features, and this

can be seen in the surveys as well: for example, in Mindbowser’s [2017] chatbot

survey 41 percent of the respondents preferred the framework over other op-

tions. The framework has been available for the public from the end of March

2016 [Microsoft 2016]. Microsoft has been actively developing the service and

adding supporting services that allow for more complex functionalities for im-

proving the bots. For example, the Bot builder repository in GitHub shows a

total of 42 commits to all branches in the past month, as can be seen in Figure

14.

The documentation for the framework is very comprehensive covering the

SDKs (C# and Node.js), Azure Bot Services, and REST (Direct Line API). The

documentation includes also introductions to basic concepts of bots as well as

sections on designing, testing, debugging, and deploying bots. The Microsoft

37

Bot Framework enables one to easily connect to a large number of channels

within the web user interface with a flip of a switch or by following simple con-

figuration steps [Brandl et al. 2017]. The Microsoft Bot Framework, Microsoft

Language Understanding Intelligent Service (LUIS), and the Cognitive Services

are analyzed together as they are tightly connected. However, it is worth noting

that the LUIS and the Cognitive Services can also be used without the Bot

Framework as well. As mentioned earlier, the LUIS service is a part of the Cog-

nitive Services, which is a collection of services providing different kind of data

from a variety of input.

Figure 14: Commits for BotBuilder repository for 18th September to 18th October

2017[GitHubc].

Overall, Microsoft offers a complete set of tools for all kinds of bots from

simple ones to advanced ones. However, utilizing the Bot Framework and the

Cognitive Services would require more effort than many of the previous plat-

forms that were analyzed.

Nevertheless, in case one needs a bot that is armed with powerful under-

standing capabilities for a variety of different types of input (written or spoken

language, images, and video) as well as the ability to scale the services for a

larger userbase, Microsoft’s services are worth consideration. There are several

possible approaches that can be used in regard to delivering content from

Kentico Cloud or Kentico EMS. As mentioned, the effort needed to effectively

utilize more advanced features and services offered and to enable the bot to

38

scale with ease will require a bigger investment when designing the bot. Be-

cause of this the framework would be a good fit for more advanced or high

traffic chatbots.

5.2.2. IBM Watson

Another popular framework is the IBM Watson, which is one of the top

frameworks mentioned in the Mindbower’s [2017] chatbot survey with 61 per-

cent of respondents preferring it. The IBM Watson API was announced to be

made available for developers in 2013 [Upbin 2013]. Since then bots and appli-

cations utilizing the features offered by the framework have been launched on

various domains. The framework is the result of a long-running investment in

the field of artificial intelligence, and it can be said that the IBM backed offering

is not going to disappear any time soon. The framework is in active develop-

ment, as can be seen from the commits to the SDKs that are available on Wat-

son Developer Cloud’s GitHub account [GitHubf]. The combined amount of

commits for the six available SDKs (.NET, Java, Node.js, JavaScript, Android,

Swift, Python, and Unity) is 9857.22 Regarding documentation, there is a wide

array of topics detailing different services offered by the Watson Developer

Cloud as well as other services offered by IBM Bluemix platform.23 Many of the

topics also include some examples or videos further explaining the concepts or

features.

The framework, like the Bluemix platform in general, has an active commu-

nity behind it, which offers support. This can be seen, for example, from the

StackOverflow posts that are tagged with tags related to Bluemix and Watson,

such as “ibm-bluemix” (4587 posts), “ibm-watson-cognitive” (988 posts), “wat-

son-conversation” (454 posts), and “Watson” (442 posts).24 Additionally, a slack

channel and developerWorks forums are offered for posting questions. For ex-

ample, on the topic “watson” alone, 11255 posts can be found in the forums.25

The approach of IBM Watson is to be channel-agnostic, thus, one-click-

integrations are not available. However, there is an integration offered through

BotKit middleware to help connecting the services to different channels. The

framework provides similar services as the Microsoft Bot Framework along

with the supporting services, and this makes it similarly a good option for more

complex implementations. However, for simpler requirements, the framework

22 Checked on 19 October 2017 from Watson Developer Cloud GitHub [GitHubf].
23 For the entire documentation, see [IBM Bluemix].
24 Number of posts checked on 19 October 2017, see [StackOverflow].
25 developerWorks forums can be found at [IBM].

https://github.com/watson-developer-cloud
https://developer.ibm.com/answers/topics/watson.html

39

might be an overkill, which would require much more time in development

than using simpler options would.

5.2.3. Amazon Lex

Amazon Lex is similar in many ways to the other analyzed frameworks. The

development of the framework started in the 2010. It has been available for de-

velopers as a preview from the end of November 2016, and it was officially

launched in the end of April 2017 ([Lardinois 2016; Perez 2017]). The most well

know implementation using the Amazon Lex is the previously mentioned

Alexa personal assistant. The GitHub repository for Amazon Web Services

(AWS) shows that the combined number of commits for the various SDKs (An-

droid, C++, Go, Ruby, JavaScript+Node.js, PHP, iOS, .NET, and Java) available

is 20740 (not including a Java SKD v2 Developer preview with 166 commits)26.

It is also worth mentioning that the SDKs include methods for several services

in AWS, not only Lex.

Documentation for Amazon Lex service covers a myriad of topics from ini-

tial setup to advanced configuration. As an example of the coverage of the doc-

umentation, the Amazon Lex documentation as a pdf is 356 pages long (does

not include the separate documentation available for each of the SDKs offered).

The documentation is filled with example code snippets as well as full bot ex-

amples to showcase the features offered by the framework.

The framework includes integrations for Facebook Messenger, Slack, and

Twilio. Lex is tightly integrated with other Amazon AWS services. For exam-

ple, through the integration with Amazon Lambda, serverless enterprise con-

nectors are available to share data to services such as HubSpot, Marketo, Mi-

crosoft Dynamics, Salesforce, Zendesk, and QuickBooks. [Amazon Web Ser-

vicesd; Sanders 2017] Amazon Rekognition can be used to analyze images and

detect, for example, objects, scenery, celebrities, and facial features (including

expressions to detect sentiment) [Amazon Web Servicesb].

The framework offers a wide array of services that can be combined to cre-

ate a flexible chatbot, which uses machine learning and natural language un-

derstanding to fulfill the intent of the user. Amazon Lex also provides an easy-

to-follow guide on setting up a chatbot with few popular channels. The guide

makes it easy to get started with a simple bot. The wide selection of Amazon

26Number of commits checked on 21.10.2017. Amazon Web Services GitHub can be found at

[GitHuba].

https://github.com/aws

40

Web Services that can be leveraged alongside Lex make it a versatile option,

which is suitable for bots with different requirements.

As can be understood from the analysis in this chapter, the framework can

be determined to be suitable for content delivery from services like Kentico

Cloud and Kentico EMS. Like the previously analyzed framework, Amazon

Lex offers a wide variety of features and an extensive API.

41

6. Conclusions

The thesis has identified the suitable chatbot options for delivering content

from Kentico Cloud and Kentico EMS software. The thesis has moved to this

conclusion by first, in Chapter two, introducing and explaining several im-

portant terms and concepts, exploring the different ways of categorizing bots,

and in order to contextualize the topic, providing a brief history of chatbots.

After having established the important terms and concepts as well as the con-

text of the work, Chapter three moved on to familiarize the reader with the dif-

ferent features of the Kentico Cloud and Kentico EMS softwares. After estab-

lishing the characteristics of the software relevant for content delivery, Chapter

four moved on the take a look at the options available for content delivery. The

chapter divided these options into platforms and frameworks and detailed each

option’s important features concerning content delivery. The Chapter five then

delved into analyzing the options’ suitability with Kentico products.

In many aspects, the platforms were quite equal with only minor differences

between the systems. The frameworks analyzed all proved to have the widest

array of features offered, but on the other hand, they would also require most

effort for developing/development.

None of the systems can be clearly divided into categories based on the dia-

log flow as the options allow different kind of flows to be defined. For example,

finite-state-based dialog flow control can be achieved with all the analyzed sys-

tems. Some options that rely mainly on intents can require more work to limit

the conversation to a pre-defined flow than options that allow one to use a vis-

ual builder to construct the flow by using blocks. For frame-based approach,

some degree of NLP/NLU is required to, for example, properly identify and

extract entities from single user utterance and to match the information to the

correct slots to allow for the fulfillment of the user intent. Many of the bots

combine several strategies for the dialog flow to allow for more flexible and

more natural user experience.

Out of the systems analyzed, six out of seven options include some kind of

NLU/NLP capabilities out of the box. The only one missing the capabilities is

Chatfuel, however, the platform can benefit from the built-in NLP from Face-

book Bot platform that it is utilizing. Taking this in to consideration, all the sys-

tems can be said to have NLP capabilities. Similarly, all of the systems provide

an API for communicating with external applications, although, to varying ex-

tents. Some, for example, only offer the ability to query the API for NLP data,

42

while others allow for broadcasting messages to channels. Based on the docu-

mentation, the widest APIs are offered by the larger frameworks: Microsoft Bot

Framework, IBM Watson, and Amazon Lex.

Regarding offered SDKs, five out of seven options offer at least one SDK for

developers. The platforms that do not offer any SDKs are Motion.ai and Chat-

fuel. In both cases this decision makes sense as the platforms are designed for

easily creating chatbots by using a visual builder UI on the service’s website.

Releasing a SDK would not be in line with their intended use case. The lack of

SKDs is, however, a limiting factor as it could mean that additional custom de-

velopment would be needed if an integration with another application would

be required.

Another component of chatbots that was discussed earlier is machine learn-

ing. Machine learning was available for total five of the seven options analyzed:

Dialogflow, wit.ai, Microsoft Bot Framework, IBM Watson, and Amazon Lex.

The last three options offer the most advanced possibilities for utilizing ma-

chine learning, though, it is worth mentioning that in most cases the capabilities

provided by the other systems probably will suffice, depending of course on

the requirements of the implementation. Machine learning does not offer any

significant gains in regard to content delivery, thus, concerning the goal of the

thesis, this aspect can be excluded.

Most relevant aspect in terms of content delivery are integration possibili-

ties. For internet-connected devices and applications, this would mean, for ex-

ample, (REST) APIs and web hooks. Both Kentico products offer APIs for inte-

grating with other services. Kentico Cloud also offers web hooks built-in the

service. All the analyzed chatbot options included support for webhooks and

nearly all of them have a (REST) API.

While writing this thesis, several implementations utilizing chatbots in de-

livering content from Kentico Cloud and Kentico EMS emerged, a list of im-

plementations is provided in Appendix 1. The implementations further prove

the conclusions reached in the thesis

43

References

Martin Abadi et al. 2016. TensorFlow: Large-Scale Machine Learning on Heter-

ogeneous Distributed Systems. arXiv:1603.04467 [cs.DC], 16 March, 1–19.

Sameera A. Abdul-Kader, and John Woods. 2015. Survey on chatbot design

techniques in speech conversation systems. IJACSA 6, 7, 72–80.

Bayan AbuShawar, and Eric Atwell. 2016. Usefulness, localizability, human-

ness, and language-benefit: additional evaluation criteria for natural lan-

guage dialogue systems. Int J Speech Technol,19, 1, 373–383.

Amazon Developer. Slot type reference.

https://developer.amazon.com/docs/custom-skills/slot-type-reference.html

(23.10.2017).

Amazon Web Servicesa. Amazon Lex console.

https://console.aws.amazon.com/lex/ (23.10.2017).

Amazon Web Servicesb. Amazon Rekognition.

https://aws.amazon.com/rekognition/ (23.10.2017).

Amazon Web Servicesc. Exporting amazon Lex bots.

http://docs.aws.amazon.com/lex/latest/dg/export.html (23.10.2017).

Amazon Web Servicesd. What is Amazon Lex?

http://docs.aws.amazon.com/lex/latest/dg/what-is.html (23.10.2017).

Artificial Intelligence Foundation. A.I. Foundation chat bot survey.

http://www.alicebot.org/aimlbots.html (22.10.2017).

Markus M. Berg. 2014. Modelling of Natural Dialogues in the Context of Speech-

based Information and Control Systems. Ph.D. Dissertation, der Technischen

Fakultät, der Christian-Albrechts-Universität zu Kiel.

Markus M. Berg, and Antje Düsterhöft. 2010. Website interaction with text-

based natural language dialog systems. In: 7. Wismarer Wirtschaftsinformat-

iktage.

Jeff Bertolucci. 2016. Chat bots 101: A primer for app developers. IBM.

https://www.ibm.com/blogs/watson/2016/10/chat-bots-101-primer-app-

developers/ (22.10.2017).

Kim Brandl, and Robert Standeref. 2017. Azure Bot Service. Microsoft.

https://docs.microsoft.com/en-us/bot-framework/azure-bot-service-

overview (23.10.2017).

https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://console.aws.amazon.com/lex/
https://aws.amazon.com/rekognition/
http://docs.aws.amazon.com/lex/latest/dg/export.html
http://docs.aws.amazon.com/lex/latest/dg/what-is.html
http://www.alicebot.org/aimlbots.html
https://www.ibm.com/blogs/watson/2016/10/chat-bots-101-primer-app-developers/
https://www.ibm.com/blogs/watson/2016/10/chat-bots-101-primer-app-developers/
https://docs.microsoft.com/en-us/bot-framework/azure-bot-service-overview
https://docs.microsoft.com/en-us/bot-framework/azure-bot-service-overview

44

Kim Brandl, Denise Mak, Robert Standefer, Den Delimarsky, Jayme M. Perl-

man. 2017. Connect a bot to channels. Microsoft.

https://docs.microsoft.com/en-us/bot-framework/portal-configure-

channels (23.10.2017).

Chatfuela. Build a Facebook bot without coding. https://chatfuel.com/

(23.10.2017).

Chatfuelb. Chatbot-building eBook from Chatfuel & HubSpot.

https://blog.chatfuel.com/chatbot-building-ebook-from-chatfuel-hubspot/

(23.10.2017).

Chatfuelc. Documentation. http://docs.chatfuel.com/ (23.10.2017).

Chatfueld. Free tool - CheckBox plugin button generator.

https://community.chatfuel.com/t/free-tool-checkbox-plugin-button-

generator/13102 (23.10.2017).

Chatfuele. Plugins. http://docs.chatfuel.com/plugins (23.10.2017).

Chatfuelf. User input. http://docs.chatfuel.com/plugins/plugin-

documentation/user-input (23.10.2017).

Dialogflowa. Agents .https://dialogflow.com/docs/agents (22.10.2017).

Dialogflowb. Basics. https://dialogflow.com/docs/getting-started/basics

(23.10.2017).

Dialogflowc. Contexts. https://dialogflow.com/docs/contexts (23.10.2017).

Dialogflowd. Entities. https://dialogflow.com/docs/entities (21.10.2017).

Dialogflowe. Integrations. https://dialogflow.com/docs/integrations/

(22.10.2017).

Dialogflowf. Intents. https://dialogflow.com/docs/intents (21.10.2017).

Dialogflowg. Introducing Dialogflow, the new name for API.AI.

https://blog.dialogflow.com/post/apiai-new-name-dialogflow-new-

features/ (23.10.2017).

Dialogflowh. Languages. https://dialogflow.com/docs/reference/language

(23.10.2017).

Dialogflowi. Machine learning. https://dialogflow.com/docs/machine-learning

(23.10.2017).

Dialogflowj. Multi-language agents. https://dialogflow.com/docs/multi-

language (23.10.2017).

Dialogflowk.. SDKs. https://dialogflow.com/docs/sdks (22.10.2017).

https://docs.microsoft.com/en-us/bot-framework/portal-configure-channels
https://docs.microsoft.com/en-us/bot-framework/portal-configure-channels
https://chatfuel.com/
https://blog.chatfuel.com/chatbot-building-ebook-from-chatfuel-hubspot/
http://docs.chatfuel.com/
https://community.chatfuel.com/t/free-tool-checkbox-plugin-button-generator/13102
https://community.chatfuel.com/t/free-tool-checkbox-plugin-button-generator/13102
http://docs.chatfuel.com/plugins
http://docs.chatfuel.com/plugins/plugin-documentation/user-input
http://docs.chatfuel.com/plugins/plugin-documentation/user-input
https://dialogflow.com/docs/agents
https://dialogflow.com/docs/getting-started/basics
https://dialogflow.com/docs/contexts
https://dialogflow.com/docs/entities
https://dialogflow.com/docs/integrations/
https://dialogflow.com/docs/intents
https://blog.dialogflow.com/post/apiai-new-name-dialogflow-new-features/
https://blog.dialogflow.com/post/apiai-new-name-dialogflow-new-features/
https://dialogflow.com/docs/reference/language
https://dialogflow.com/docs/machine-learning
https://dialogflow.com/docs/multi-language
https://dialogflow.com/docs/multi-language
https://dialogflow.com/docs/sdks

45

Facebook for Developers. Natural language processing.

https://developers.facebook.com/docs/messenger-platform/built-in-nlp

(23.10.2017).

Facebook Newsroom. 2016. Messenger platform at F8.

https://newsroom.fb.com/news/2016/04/messenger-platform-at-f8/

(21.10.2017).

Luca Friedrich. JSON API. Chatfuel. http://docs.chatfuel.com/plugins/plugin-

documentation/json-api (22.10.2017).

GitHuba. Amazon web services. https://github.com/aws (23.10.2017).

GitHubb. Kentico. https://github.com/kentico (23.10.2017).

GitHubc. Microsoft/BotBuilder.

https://github.com/Microsoft/BotBuilder/pulse/monthly (24.10.2017).

GitHubd. MotionAI/nodejs-samples. https://github.com/MotionAI/nodejs-

samples (22.10.2017).

GitHube. watson-developer-cloud/botkit-middleware.

https://github.com/watson-developer-cloud/botkit-middleware

(23.10.2017).

GitHubf. Watson developer cloud. https://github.com/watson-developer-cloud

(23.10.2017).

Carol Hanna, and Denise Mak. 2017. Label suggested utterances.

https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/label-

suggested-utterances (23.10.2017).

IBM. Watson developerWorks answers.

https://developer.ibm.com/answers/topics/watson.html (23.10.2017).

IBM Bluemix. 2017a. Building a bot with botkit.

https://console.bluemix.net/docs/services/conversation/integrations.html#

building-a-bot-with-botkit (23.10.2017).

IBM Bluemix. 2017b. Building a dialog.

https://console.bluemix.net/docs/services/conversation/dialog-

build.html#dialog-build (23.10.2017).

IBM Bluemix. Get started by deploying your first app.

https://console.bluemix.net/docs/ (23.10.2017).

IBM Watson. Watson products and services.

https://www.ibm.com/watson/products-services/ (23.10.2017).

https://developers.facebook.com/docs/messenger-platform/built-in-nlp
https://newsroom.fb.com/news/2016/04/messenger-platform-at-f8/
http://docs.chatfuel.com/plugins/plugin-documentation/json-api
http://docs.chatfuel.com/plugins/plugin-documentation/json-api
https://github.com/aws
https://github.com/kentico
https://github.com/Microsoft/BotBuilder/pulse/monthly
https://github.com/MotionAI/nodejs-samples
https://github.com/MotionAI/nodejs-samples
https://github.com/watson-developer-cloud/botkit-middleware
https://github.com/watson-developer-cloud
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/label-suggested-utterances
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/label-suggested-utterances
https://developer.ibm.com/answers/topics/watson.html
https://console.bluemix.net/docs/services/conversation/integrations.html#building-a-bot-with-botkit
https://console.bluemix.net/docs/services/conversation/integrations.html#building-a-bot-with-botkit
https://console.bluemix.net/docs/services/conversation/dialog-build.html#dialog-build
https://console.bluemix.net/docs/services/conversation/dialog-build.html#dialog-build
https://console.bluemix.net/docs/
https://www.ibm.com/watson/products-services/

46

Kristiina Jokinen, and Michael McTear. 2010. Spoken Dialogue Systems. Morgan

& Claypool Publishers.

Daniel Jurafsky, and James H. Martin. 2000. Speech and Language Processing:

An Introduction to Natural Language Processing, Computational Linguis-

tics, and Speech Recognition. Prentice Hall PTR.

Kenticoa. All features. https://www.kentico.com/product/all-features

(23.10.2017).

Kenticob. Creating new pages. https://docs.kentico.com/k10/managing-website-

content/working-with-pages/creating-new-pages#Creatingnewpages-

CreatingnewpagesinthePagesapplication (23.10.2017).

Kenticoc. Extensibility and API. https://www.kentico.com/product/all-

features/development/extensibility (23.102017).

Kenticod. Kentico 10 documentation. https://docs.kentico.com/k10 (23.10.2017).

Kenticoe. Overview. https://www.kentico.com/product/overview (23.10.2017).

Kenticof. Server and hosting requirements.

https://docs.kentico.com/k10/installation/server-and-hosting-requirements

(23.10.2017).

Kentico Clouda. API Reference.

https://developer.kenticocloud.com/reference#api-introduction

(23.10.2017).

Kentico Cloudb. Authoring experience and collaboration.

https://help.kenticocloud.com/authoring-experience-and-

collaboration#collaboration (23.10.2017).

Kentico Cloudc. Content delivery. https://kenticocloud.com/content-delivery

(23.10.2017).

Kentico Cloudd. Content management. https://kenticocloud.com/content-

management (23.10.2017).

Kentico Cloude. Delivering content.

https://developer.kenticocloud.com/docs/delivering-content (23.10.2017).

Kentico Cloudf. Kentico cloud roadmap. https://kenticocloud.com/roadmap

(23.10.2017).

Tina Klüwer. 2011. From Chatbots to Dialog Systems. In: Diana Perez-Marin

and Ismael Pascual-Nieto (eds.), Conversational Agents and Natural Lan-

guage Interaction. IGI Global, 1–22.

https://www.kentico.com/product/all-features
https://docs.kentico.com/k10/managing-website-content/working-with-pages/creating-new-pages#Creatingnewpages-CreatingnewpagesinthePagesapplication
https://docs.kentico.com/k10/managing-website-content/working-with-pages/creating-new-pages#Creatingnewpages-CreatingnewpagesinthePagesapplication
https://docs.kentico.com/k10/managing-website-content/working-with-pages/creating-new-pages#Creatingnewpages-CreatingnewpagesinthePagesapplication
https://www.kentico.com/product/all-features/development/extensibility
https://www.kentico.com/product/all-features/development/extensibility
https://docs.kentico.com/k10
https://www.kentico.com/product/overview
https://docs.kentico.com/k10/installation/server-and-hosting-requirements
https://developer.kenticocloud.com/reference#api-introduction
https://help.kenticocloud.com/authoring-experience-and-collaboration#collaboration
https://help.kenticocloud.com/authoring-experience-and-collaboration#collaboration
https://kenticocloud.com/content-delivery
https://kenticocloud.com/content-management
https://kenticocloud.com/content-management
https://developer.kenticocloud.com/docs/delivering-content
https://kenticocloud.com/roadmap

47

Frederic Lardinois. 2016. Amazon launches Amazon AI to bring its machine

learning smarts to developers. Tech Crunch.

https://techcrunch.com/2016/11/30/amazon-launches-amazon-ai-to-bring-

its-machine-learning-smarts-to-developers/ (23.10.2017).

Denise Mak, Robert Standefer, Duc Cash Vo, Den Delimarsky, and Jayme M.

Perlman. 2017. Debug bots with the Bot Framework Emulator. Microsoft.

https://docs.microsoft.com/en-us/bot-framework/debug-bots-emulator

(23.10.2017).

Microsoft. 2016. Microsoft Bot Framework.

https://blog.botframework.com/2016/03/30/botframework/ (24.10.2017).

Microsoft Azure. Cognitive services directory. https://azure.microsoft.com/en-

gb/services/cognitive-services/directory/ (23.10.2017).

Mindbowser 2017. Global chatbot trends report – 2017.

http://mindbowser.com/chatbot-market-survey-2017/ (23.10.2017).

Motion.aia. Connections. https://docs.motion.ai/docs/module-connections

(23.10.2017).

Motion.aib. Custom/API. https://docs.motion.ai/docs/api (23.10.2017).

Motion.aic. Dashboard. https://dashboard.motion.ai/ (23.10.2017).

Motion.aid. FAQs. https://docs.motion.ai/v1.0/docs/frequently-asked-questions

(23.10.2017).

Motion.aie. Modules. https://docs.motion.ai/docs/what-are-modules

(22.10.2017).

Motion.aif. NLP Basics - Enabling the NLP engine. Youtube.

https://www.youtube.com/watch?v=YJ4NV25zT6g&list=PLCo77wGSKVe

OnnA0zmVhiOL6BHOdG5mNi (23.10.2017).

Motion.aig. NLP documentation.

https://docs.motion.ai/discuss/595ac34e2e3626002b8fdb87 (23.10.2017).

Pandorabots. Getting started with chatbot development.

http://docs.pandorabots.com/tutorials/getting-started/ (22.10.2017).

Sarah Perez. 2017. Amazon Lex, the technology behind Alexa, opens up to de-

velopers. Tech Crunch. https://techcrunch.com/2017/04/20/amazon-lex-the-

technology-behind-alexa-opens-up-to-developers/ (23.10.2017).

PR Newswire. 2014. Teens use voice search most, even in bathroom, Google's

mobile voice study finds. https://www.prnewswire.com/news-

https://techcrunch.com/2016/11/30/amazon-launches-amazon-ai-to-bring-its-machine-learning-smarts-to-developers/
https://techcrunch.com/2016/11/30/amazon-launches-amazon-ai-to-bring-its-machine-learning-smarts-to-developers/
https://docs.microsoft.com/en-us/bot-framework/debug-bots-emulator
https://blog.botframework.com/2016/03/30/botframework/
https://blog.botframework.com/2016/03/30/botframework/
https://azure.microsoft.com/en-gb/services/cognitive-services/directory/
https://azure.microsoft.com/en-gb/services/cognitive-services/directory/
http://mindbowser.com/chatbot-market-survey-2017/
https://docs.motion.ai/docs/module-connections
https://docs.motion.ai/docs/api
https://dashboard.motion.ai/
https://docs.motion.ai/v1.0/docs/frequently-asked-questions
https://docs.motion.ai/docs/what-are-modules
https://www.youtube.com/watch?v=YJ4NV25zT6g&list=PLCo77wGSKVeOnnA0zmVhiOL6BHOdG5mNi
https://www.youtube.com/watch?v=YJ4NV25zT6g&list=PLCo77wGSKVeOnnA0zmVhiOL6BHOdG5mNi
https://docs.motion.ai/discuss/595ac34e2e3626002b8fdb87
http://docs.pandorabots.com/tutorials/getting-started/
https://techcrunch.com/2017/04/20/amazon-lex-the-technology-behind-alexa-opens-up-to-developers/
https://techcrunch.com/2017/04/20/amazon-lex-the-technology-behind-alexa-opens-up-to-developers/
https://www.prnewswire.com/news-releases/teens-use-voice-search-most-even-in-bathroom-googles-mobile-voice-study-finds-279106351.html

48

releases/teens-use-voice-search-most-even-in-bathroom-googles-mobile-

voice-study-finds-279106351.html (21.10.2017).

Nicole Radziwill and Morgan Benton. 2017. Evaluating quality of chatbots

and intelligent conversational agents. ArXiv:1704.04579 [cs.CY], June, 21 pages.

Rick Ramos. 2017. The future of enterprise chatbots. Venturebeat.

https://venturebeat.com/2017/07/20/the-future-of-enterprise-chatbots/

(21.10.2017).

James Sanders. 2017. Amazon Lex: The smart person's guide. Tech Republic.

https://www.techrepublic.com/article/amazon-lex-the-smart-persons-

guide/ (23.10.2017).

Cruce Saunders. 2017. [A] slide deck: Engineering content for bots, AI, and

marketing automation.

https://simplea.com/Publications/Decks/Engineering-Content-for-Bots-AI

(21.10.2017).

Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji,

Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015. A

neural network approach to context-sensitive generation of conversational

responses. arXiv:1506.06714 [cs.CL], 22 June, 196–205.

StackOverflow. Newest questions. https://stackoverflow.com/questions

(23.10.2017).

Robert Standefer, Duc Cash Vo, Denise Mak, and Den Delimarsky 2017a. Bot

Builder SDK for .NET samples. Microsoft. https://docs.microsoft.com/en-

us/bot-framework/dotnet/bot-builder-dotnet-samples (23.10.2017).

Robert Standefer, Duc Cash Vo, Denise Mak, and Den Delimarsky 2017b. Bot

Builder SDK for Node.js samples. Microsoft. https://docs.microsoft.com/en-

us/bot-framework/nodejs/bot-builder-nodejs-samples (23.10.2017).

Juraj Uhlara. Content type elements reference. Kentico Cloud.

https://help.kenticocloud.com/define-content-structure/content-

elements/content-type-elements-reference (23.10.2017).

Juraj Uhlarb. Creating and deleting content types. Kentico Cloud.

https://help.kenticocloud.com/define-content-structure/structure/creating-

and-deleting-content-types (23.10.2017).

Bruce Upbin 2013. IBM opens up its Watson cognitive computer for developers

everywhere. Forbes.

https://www.prnewswire.com/news-releases/teens-use-voice-search-most-even-in-bathroom-googles-mobile-voice-study-finds-279106351.html
https://www.prnewswire.com/news-releases/teens-use-voice-search-most-even-in-bathroom-googles-mobile-voice-study-finds-279106351.html
https://venturebeat.com/2017/07/20/the-future-of-enterprise-chatbots/
https://www.techrepublic.com/article/amazon-lex-the-smart-persons-guide/
https://www.techrepublic.com/article/amazon-lex-the-smart-persons-guide/
https://simplea.com/Publications/Decks/Engineering-Content-for-Bots-AI
https://stackoverflow.com/questions
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-samples
https://docs.microsoft.com/en-us/bot-framework/dotnet/bot-builder-dotnet-samples
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-samples
https://docs.microsoft.com/en-us/bot-framework/nodejs/bot-builder-nodejs-samples
https://help.kenticocloud.com/define-content-structure/content-elements/content-type-elements-reference
https://help.kenticocloud.com/define-content-structure/content-elements/content-type-elements-reference
https://help.kenticocloud.com/define-content-structure/structure/creating-and-deleting-content-types
https://help.kenticocloud.com/define-content-structure/structure/creating-and-deleting-content-types

49

https://www.forbes.com/sites/bruceupbin/2013/11/14/ibm-opens-up-

watson-as-a-web-service/#1b19a08377ef (24.10.2017).

Oriol Vinyals, and Quoc Le. 2015. A Neural Conversational Model.

arXiv:1506.05869 [cs.CL], 22 June, 8 pages.

Joseph Weizenbaum. 1966. ELIZA - A computer program for the study of natu-

ral language communication between man and machine. Communications

of the ACM 9, 1, 36–45.

Wikipediaa. Content delivery network.

https://en.wikipedia.org/wiki/Content_delivery_network (23.10.2017).

Wikipediab. Interactive voice response.

https://en.wikipedia.org/wiki/Interactive_voice_response (21.10.2017).

Wit.aia. Getting Started with wit.ai. https://wit.ai/docs (23.10.2017).

Wit.aib. HTTP API Reference. https://wit.ai/docs/http/20170307 (23.10.2017).

Wit.aic. 2017. Launching built-in NLP for Messenger and sunsetting bot engine

(beta). https://wit.ai/blog/2017/07/27/sunsetting-stories (23.10.2017).

Wit.aid. Recipes for apps you can talk to. https://wit.ai/docs/recipes (23.10.2017).

Wit.aie. Which entity should I use?. https://wit.ai/docs/recipes#which-entity-

should-i-use (22.10.2017).

https://www.forbes.com/sites/bruceupbin/2013/11/14/ibm-opens-up-watson-as-a-web-service/#1b19a08377ef
https://www.forbes.com/sites/bruceupbin/2013/11/14/ibm-opens-up-watson-as-a-web-service/#1b19a08377ef
https://en.wikipedia.org/wiki/Content_delivery_network
https://en.wikipedia.org/wiki/Interactive_voice_response
https://wit.ai/docs
https://wit.ai/docs/http/20170307
https://wit.ai/blog/2017/07/27/sunsetting-stories
https://wit.ai/docs/recipes
https://wit.ai/docs/recipes#which-entity-should-i-use
https://wit.ai/docs/recipes#which-entity-should-i-use

1

Appendix 1: List of example implementations for chatbots utiliz-

ing Kentico Cloud or Kentico EMS

Brian McKeiver, Kentico EMS, E-commerce

bot

http://www.mcbeev.com/Blog/February-

2017/Building-a-Kentico-E-Commerce-Chat-Bot

Michael Kinkaid, Connecting Kentico Cloud,

Chat Bots and Google Home

https://www.youtube.com/watch?v=YlpGWCizdv

U

Bryan Soltis, Using Slack webhooks with

Kentico Cloud

https://kenticocloud.com/blog/using-slack-

webhooks-with-kentico-cloud

Bryan Soltis, Using an Azure Function

Webhook with Kentico Cloud

https://kenticocloud.com/blog/using-an-azure-

function-webhook-with-kentico-cloud

Bryan Soltis, Powering Alexa with Kentico

Cloud

https://kenticocloud.com/blog/powering-alexa-

with-kentico-cloud

Bryan Soltis and, Building Applications Us-

ing Microservices and Azure – Part 1

https://kenticocloud.com/blog/developing-apps-

using-microservices-and-azure-1

Ondrej Fridrich, Building Applications Us-

ing Microservices and Azure – Part 2

https://kenticocloud.com/blog/building-apps-using-

microservices-and-azure-2

http://www.mcbeev.com/Blog/February-2017/Building-a-Kentico-E-Commerce-Chat-Bot
http://www.mcbeev.com/Blog/February-2017/Building-a-Kentico-E-Commerce-Chat-Bot
https://www.youtube.com/watch?v=YlpGWCizdvU
https://www.youtube.com/watch?v=YlpGWCizdvU
https://kenticocloud.com/blog/using-slack-webhooks-with-kentico-cloud
https://kenticocloud.com/blog/using-slack-webhooks-with-kentico-cloud
https://kenticocloud.com/blog/using-an-azure-function-webhook-with-kentico-cloud
https://kenticocloud.com/blog/using-an-azure-function-webhook-with-kentico-cloud
https://kenticocloud.com/blog/powering-alexa-with-kentico-cloud
https://kenticocloud.com/blog/powering-alexa-with-kentico-cloud
https://kenticocloud.com/blog/developing-apps-using-microservices-and-azure-1
https://kenticocloud.com/blog/developing-apps-using-microservices-and-azure-1
https://kenticocloud.com/blog/building-apps-using-microservices-and-azure-2
https://kenticocloud.com/blog/building-apps-using-microservices-and-azure-2

