
   
Abstract: Eye movements are a relatively novel data source for 
biometric identification. When video cameras applied to eye 
tracking become smaller and more efficient, this data source could 
offer interesting opportunities for the development of eye 
movement biometrics. In the present article, we study primarily 
biometric identification as seen as a classification task of multiple 
classes, and secondarily biometric verification considered as 
binary classification.  Our research is  based on the saccadic  eye 
movement signal measurements from 109 young subjects. In order 
to  test  the  data  measured,  we  use  a  procedure  of  biometric
identification according to the one-versus-one (subject) principle. 
In a development from our previous research, which also involved 
biometric verification based on saccadic eye movements, we now 
apply another eye movement tracker device with a higher 
sampling frequency of 250 Hz. The results obtained are good, with 
correct identification rates at 80-90% at their best. 

Index Terms: Biometrics, eye movements, identification of persons 

I. INTRODUCTION 
Biometric identification has been researched extensively in 

pattern recognition and related fields during the last few 
decades. Technologies on based of fingerprints [1] and face 
images [1-4] have also been successfully used in commercial 
applications. These methods are still being developed, 
achieving even better results for biometric purposes. In 
addition, several other form of biometric data are being studied, 
such as iris [3,5-7], retina [8], palm, and ear images [9,10], 
which are seen as fairly stable data sources, even though aging 
may change the subject in the long run. Pupil sizes are used for 
human identification and verification [11]. Other sorts of 
biometric data sources are sometimes called behavioral 
features. Typically, these are physiological signals measured 
from  subjects,  such  as  EEG,  ECG,  and  voice  signals  [12].
Furthermore, gait [12,13] is an interesting alternative that is 
recognized from video streams of walking subjects. The use of 
EEG, ECG, and voice signals as biometric techniques may be 
quite difficult because they are not easy to interpret and may 
vary depending on the circumstances. For example, ECG 
measured at rest differs from that recorded immediately after 
rapid movement. All different modalities contain advantages 
and disadvantages with respect to their feasibility. For instance, 
it may depend on illumination and a subject’s pose whether face 
images are applicable, and the dryness or cleanliness of the 
fingertips may determine whether good fingerprint images can 
be obtained. 
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For every modality, various shortcomings are recognized 
[13]. Thus, novel modalities have been introduced in recent 
years. For biometric verification and identification, novel 
biometric features are studied in an attempt to exploit 
information that originates from the brain and contains 
behavioral factors. A few years ago, we began to study eye 
movements for biometric verification or authentication, and we 
have obtained promising results [14-19]. We began our 
biometric research by seeing verification as a simpler problem 
than identification, because verification is a two-class 
classification task, whereas identification is a c-class 
classification task with c possibly  being  a  great  number  of
subjects. In the current study, we extend our research to 
identification on the basis of saccadic eye movements by 
creating a new testing algorithm and using another eye 
movement measuring device with a higher sampling frequency 
than in our earlier research [14-18]. 

Eye movements have been proposed for biometrics using the 
optic stimulation from a moving spot [20]. Signal analysis has 
been applied by computing Cepstrum features in order to 
identify the subject. Eye movements were measured from 9 
subjects with an eye tracking device on the basis of two small 
video cameras catching the movements of the pupil of each eye. 
Both a moving spot and images as stimulations have been used 
for 12 subjects [21]. Nevertheless, eye movements were found 
to be less useful for biometric identification than other factors, 
particularly the distance between the eyes of the subject. Eye 
movements from 41 subjects have been investigated by 
utilizing an optimization approach as an oculomotor plant 
model [22]. An eye movement technique has also been 
introduced for biometric identification by using face images as 
stimulations and graph matching methods for the eye 
movements recognized [23]. Measurements collected from 15 
subjects have covered both horizontal and vertical directions 
using face images as stimulations. Minimal spanning trees for 
graphs were constructed, which were used for biometric 
identification and also applied statistical methods. Moreover, 
there are somewhat similar features [24] computed from 
saccadic eye movements to those in our prior research [14-19] 
and also employed in the present research. Twenty-two, 32, and 
173 subjects were measured using three different set-ups [24]. 

Recently, a few novel articles have been published on eye 
movement biometrics. A method has been built on the basis of 
clustering to identify subjects with scan-path signals of eye 
movements [25] using a dataset of 32 subjects. Saccades and 
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eye fixations have also been used together with iris images for 
the biometric identification of 22 subjects [26]. Saccadic eye 
movements and gaze fixations between them were applied from 
34 subjects for user identification [27]. Eye movement signal 
were transformed into a decomposition form with a 
probabilistic representation of spatial and temporal features 
related to eye fixations on the basis of a large dataset of 200 
subjects [28].  

A biometric approach was developed for human 
identification and verification with eye blinks [29]. The electro-
oculographic (EOG) data of 25 healthy subjects were classified 
using different classifiers, such as Learning Vector 
Quantization, Discriminant Analysis, and Support Vector 
Machines. 

Saccades are interesting as a biometric data source, because 
they are the fastest movements a human is able to perform. 
Their durations are approximately 0.1 to 0.4 s and the latency 
after a stimulation has been observed to be 0.2 s on average. 
Thus, a human is easily able to make one or two saccades per 
second. Most eye movements made are saccades, for example, 
while looking at immobile targets in an environment or while 
reading a text. The brain, particularly the brainstem, controls all 
processing. Once a saccade is underway, a subject cannot alter 
it  at  will  [30].  Therefore,  a  large  amplitude  saccade  may  not  
always hit a target very accurately. Consequently, the exact 
replication of saccades is virtually impossible. This property is 
very useful for biometric verification and identification with 
regard to counterfeits and the recognition of a subject in situ. 
Most saccades are of less than perhaps 10° in normal life when 
a subject looks at surrounding objects or reads a text. 
Nevertheless, it is easy to make much a larger saccade – even 
up to 60-90° – by moving the gaze, in other words, rotating 
one’s eyeballs to focus on another target. Saccades of large 
amplitudes have been used in medicine since the 1960s, 
because they can reveal diseases better than saccades of small 
amplitudes [30-32]. Therefore, we assumed that large saccades 
may also reveal better differences between individuals. 

II. SIGNAL DATA 
To measure saccadic eye movements (i.e. their amplitudes) 

we used an eye movement camera system from EyeLink (SR 
Research, UK), which measures eye movements of ±30° by 
tracking the location of a subject’s pupil from every successive 
image of a video stream and computing the difference between 
the successive locations. The system, which contains two 
cameras, is attached with the headband. 

At the beginning, calibration of the camera system is 
accomplished for each subject before recording eye movements 
by moving a light dot on a computer screen. The task of the 
subject is to follow the light dot, but not to move his or her head. 
Horizontal moves of the stimulation dot are controlled by the 
computer by slightly varying the durations of the intervals 
between the jumps to make stimulations random for subjects,  
thus the subjects do not attempt to anticipate stimulation 
movements. The subject is seated in a fixed chair, maintaining 
a constant distance from the computer screen. The same 
stimulation sequence with varying stimulation amplitudes and 

intervals is used for every subject to make measurements 
comparable between individuals. The sampling frequency is 
250 Hz. 

Saccadic eye movements are easy to stimulate for biometrics, 
and they can be produced in many ways. We applied a simple 
stimulation formed by a small light dot jumping horizontally on 
a computer screen in front of the sitting subject (Fig. 1). The 
distance  of  the  eyes  from  the  screen  was  fixed  in  order  to  
generate the same stimulation sequence with the same 
stimulation amplitudes (angles) for every subject. Such 
stimulations have been utilized in neurological and other 
medical tests for decades [30-32]. We have exploited this 
straightforward method in order to collect a few dozen saccades 
of the same large amplitude for identification. Fig. 2 shows a 
signal example. A statistically large enough dataset is important 
when applying machine learning methods for biometric 
identification for any purpose. In principle, the more data per 
subject, the more information is obtained from the subject and 
this may improve the identification results. It is also necessary 
for comparing data between different subjects, as the data are 
the basis for identification and verification. 

 
 
 

 
 
 
Fig. 1. The stimulation and measurement set-up where the subject follows a 
horizontally jumping light dot on the screen with his gaze for 60 s without 
moving his head or closing his eyes. 

 
A sequence of stimulation angles takes 60 s and contains 51 

stimulation angles, of which 30 were the large ones (51°) used 
for the tests. An example is shown in Fig. 2. Large amplitudes 
have been applied to biometric identification, because we may 
assume that they give larger differences of saccadic features 
between subjects than saccades of small amplitudes. The larger 
the amplitude, the larger values are attained for most saccadic 
features (described in Section IV). Therefore, differences in 
individuals’ saccades may be easier observed. Furthermore, the 
approximate calibration resolution of the device used was 0.5°, 
meaning the larger amplitude, the better. This favors the use of 
large amplitudes, because the maximal error of ±0.5° is then 
smaller in percentage terms for the large amplitude of 51°. 



Fig. 2. A (blue) saccadic eye movement signal where the saccades followed the 
(noiseless) stimulation signal. The down direction on the vertical axis 
corresponds to an eye movement to the left, and the up direction to the right. 
The length of the signal segment is 20 s. 

For the large saccades of 51°, the direction is either from the 
left to the right edge or from the right to the left, with almost 
the entire width of the computer screen used. Other stimulation 
angles are smaller and also enable other alternatives (see Fig. 2) 
and their directions alter unsystematically. The intervals of 
roughly 1 s between stimulation movements vary slightly. The 
purpose of the amplitude and interval variations is to make 
stimulations difficult to anticipate, since anticipated or guessed 
saccades would not respond to the actual stimulations. The 
amplitude and interval variations are random from the 
viewpoint of the subject and thus eliminate the learning effect. 
Actual responses to real stimulations known to the researchers 
are desired to enable the computation of latency between 
stimulations and saccades, and the accuracy of saccadic 
amplitudes related to stimulations. In a way, anticipated eye 
movements would be more or less random, not responses to 
stimulation movements. 

Four separate measurements were recorded in succession 
from every subject, because saccades of the same stimulation 
amplitude may vary a little in their features. Of course, we also 
needed more than one measurement to use them in different 
ways in training and test sets employed with classification 
methods to run biometric identification experiments. We 
measured the saccades of 81 male and 28 female volunteers. 
The subjects’ average age was 25.2±6.0 years. We measured 
120 saccades of the largest amplitude from every subject. 

III. DATA ANALYSIS

First, a signal was filtered through a standard median filter of 
the window length of three samples. As usual, the eye 
movement tracker contains two cameras, one for each eye. 
Thus, the less noisy signal is chosen from the two measured 

from the subject. Typically, the noise present is very slight. 
Nevertheless, a single eye movement signal suffices for 
biometric identification. Next, saccades as responses to the 
stimulation sequence were recognized according to the first 
derivative approximated from the chosen eye movement 
position signal. This corresponds to the angular velocity of the 
eye. In order to recognize the beginning of a saccade, we 
applied a threshold of 50°/s and 10°/s for the end. The latter is 
less because, normally, the beginning segment of a saccade is 
faster (steeper) than its end segment. Furthermore, all 
stimulation movements have been searched for directly from 
the virtually noiseless stimulation signal as sharp steps. 

In addition to the velocity signal, the angular acceleration and 
deceleration signal were approximated as the second derivative, 
exemplified by Fig. 3. Both the velocity signal and the 
acceleration-deceleration signal were also exploited to compute 
some saccadic features (described in the following section).  

IV. SACCADIC FEATURES COMPUTED

Eight features have been dealt with in order to characterize 
each subject, in other words, for biometric identification. The 
present features were chosen since they measure the subject’s 
physiology and behavior in regard to eye movements while 
following the jumping stimulation light dot in the visual field. 
These features are applied in medical fields such as 
otoneurology and physiology [30,32]. 

Fig. 3 shows the schema for the features, of which three 
depend directly on time. Latency l equals the time difference 
from the saccade beginning br to the stimulation beginning bs. 
Duration d is the difference from the saccade end er to  its  
beginning br. Time to maximum velocity tmv is equal to the 
difference from the location of the maximum velocity p’(t), 
determined by the velocity signal, to that of saccade beginning. 
Two features relate to the saccade angle. Amplitude ar is  the  
(absolute) angular difference between the locations of the 
saccade p(er) end and beginning p(br). Accuracy c is the 
difference between amplitudes of a stimulation amplitude as 
and its responsive saccadic amplitude ar. This is positive when 
the subject’s brain produces a slightly smaller angle than its 
large stimulation, in the other words, the gaze does not hit the 
target precisely. It is seldom negative – i.e. the saccade is rarely 
too large. Ultimately, maximum angular velocity p’(t)max, 
maximum angular acceleration p’’(t)max, and maximum 
deceleration |p’’(t)min| (the absolute value of the minimum) were 
computed. 

V. IDENTIFICATION AND VERIFICATION EXPERIMENTS 
There are four signals from every subject. Every signal 

consists of 30 large amplitude saccades applied to our 
experiments. One signal was taken for testing and the other 
three, with a total of 90 saccades, were taken for training. 



Fig. 3. A hypothetical saccade (above) and its velocity and acceleration-
deceleration curves (below) along with saccade features to be computed: 
Latency, duration, time to maximum velocity, amplitude, accuracy, maximum 
velocity, acceleration, and deceleration. 

As frequently used for classification with machine-learning 
methods, we followed the one-versus-one principle as follows: 
There are n(n-1)/2 pairs for n=109 subjects. A pair of two 
subjects includes two times 90 saccades equal to 180 saccades 
from two subjects for training. For all these models, an 
authenticated subject (one by one among all subjects) was 
tested with his or her 30 test saccades, but his or her other 90 
saccades were used for building a model for classification. 
These n-1=108 runs have been made for all 109 subjects. In 
Algorithm 1, a winner subject is the one who has received the 
majority of scores and could get no more than the maximum of 
108 scores. Ties were also possible, i.e., more than one subject 
may have obtained the same highest score smaller than or equal 
to 108/2. The algorithm checks whether the authenticated 
subject obtains the most scores. 

Types of classifiers and their parameter set-ups have been 
chosen according to the test results obtained in our prior 
biometric verification studies [14-19], in which their tests have 
been executed extensively with several parameter selections 
and several other classification algorithms not used here. 

Algorithm 1 for identification 

All subjects n=109;  

For i=1:n subjects, the ith being the authenticated one at a time 

    k=m=0; 

Select one measurement (30 saccades) from the authenticated 
subject to be test saccades. 

For j=1:n(n-1)/2 pairs of subjects, 

Build a classification model on the basis of a subject pair: 
three measurements from each, i.e., 2 × 90 saccades, in the 
training set. 

Compute a test by classifying with 30 test saccades. 

The  winner  subject  obtains  a  score  of  1  and  the  loser  a  
score of 0. A tie being possible, in this case the winner 
subjects obtain 1/number of the winners (2 in practice). 

End  

If the authenticated subject received the highest scores, 

k=k +1; 

If the authenticated subject was the only one to receive the 
highest scores (no tie), 

m=m+1; 

End 

v=(k/n 100% 

u=(m/n 100% 

Computing the tests in the above way, quantity u gives the 
rate of surely correct identifications, because there is no tie. The 
larger value of v manifests possibly correct identifications 
because of ties. An occurrence of ties, i.e. an equal number of 
the highest scores for more than one subject, means that we are 
not sure whether the correct subject would be selected from 
among those inferred to be equally plausible. 

We programmed all computing with Matlab. Running times 
of some classifier types for 109 subjects took a long time: 2 
hours for logistic discriminant analysis (LDA), 4 hours for each 
of the support vector machine (SVM) alternatives, 10 days for 
multilayer perceptron (MLP) networks, and 21 days for radial 
basis function (RBF) networks with a 3 GHz machine. 
Therefore, we have not repeated experiments by alternating the 
test sequence through all four measurements for 109 subjects, 
but have only run it using one test sequence for each subject. 
The time complexity of the algorithm is O(n3), but in an actual 
application it would be less, O(n2), since only one subject is 
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then due to be identified at a time. 
As a result of the long running times, we also tested biometric 

identification by experimenting with a smaller set of n subjects 
equal to 20 and repeated this for 10 iterations by randomly 
choosing 20 of the subjects at a time from all 109. Finally, we 
calculated the averages of 10 iterations. 

In order to do the verification, identification is first run to 
detect a winner, i.e. probably the correct subject. Nevertheless, 
in the worst case, a tie is possible, producing more than one 
winner candidate: this has to be taken into account in the 
algorithm. Because the two test series run above have not dealt 
with possible impostors, we have continued by experimenting 
with the verification mode after the preceding experiments, as 
defined above, with 20 randomly taken subjects repeated for 10 
iterations. For verification (Algorithm 2), which is a two-class 
classification task, every training set has been built between 
saccades of the authenticated subject and those of other subjects 
by using the equal number of saccades from these two classes. 
Intruders, labelled “impostors”, are simulated by taking them 
outside the preceding group of 20 subjects. 

Algorithm 2 for verification 

U={all 109 subjects}; 

c1=c2=0; 

For i=1:10 iterations, 

Select randomly A={20 to be subjects for model building and 
tests} and B={20 to be impostors} from U. 

For each t in A+B, 

Take one measurement (30 saccades) of t to be test set T.  

Run Algorithm 1 with test set T and training set from A.   

If more than one winner candidate (tie) is obtained, this is 
a “no match” and skip the following verification. 

Verification: 

 Make training set E: (1) If t is from A,  take  the  other  3  
measurements (90 saccades) of t. Otherwise if t is from B, 
take 3 measurements of some case from A. (2) Take 90 
saccades by selecting randomly 10 saccades from a 
measurement (30 saccades) of each of the 9 subjects from 
those of U-A+B (69 subjects). 

Train a classifier with E for two classes: the authenticated 
subject and those other from U-A+B. 

Run verification with T. 

If the class of the authenticated subject gets enough support 
25 scores out of 30 corresponding to the test saccades), 

a winner candidate is found. Otherwise this is “no match”. 

For no match and authenticated t, we get a false negative 
(false rejection). 

For no match and impostor t we get a true negative: 
c2=c2+1. 

For impostor t and the winner candidate found, we get a 
false positive (false acceptance). 

For authenticated t and the winner candidate found, and 
these are the same subject, we get a true positive: c1=c1+1. 

For authenticated t and the winner candidate found, but 
these are different, we also get a false positive. 

End 

Compute average true positive c1/(10*20) and true negative 
c2/(10*20). 

VI. RESULTS OF EXPERIMENTS

In order to classify saccades, we have applied logistic 
discriminant analysis, linear, the quadratic and polynomial of 
the 3rd degree support vector machines, support machine with a 
radial basis kernel function (RBF) with parameter  equal to 4, 
radial basis function networks with normalized data (Sp=15 and 
goal=0.12), and multilayer perceptron networks trained with 8 
nodes of one hidden layer according to the Levenberg-
Marquardt algorithm. The parameter values mentioned are 
selected as the best with regard to the results from among 
several alternatives along with the experiments from our 
previous research [14-19]. 

TABLE I 
IDENTIFICATION RATES (%) GIVEN BY SVM CLASSIFIERS IN WHICH u IS THE 

SURELY CORRECT RESULT AND v IS POSSIBLY CORRECT BECAUSE OF TIES. 
Classifier Linear  

SVM 

Quadratic 

SVM 

Polynomial 

SVM 

SVM with RBF 

kernel 

u and v u and v u and v u and v 

Identification: 
109 subjects 

63.3  67.0 79.8   84.4 80.7  85.3 83.5  86.2 

Identification: 
20 subjects for 

10 times 

83.0  87.0 90.0   93.5 86.0  90.5 91.0  93.5 

TABLE II 
IDENTIFICATION RATES (%) GIVEN BY LOGISTIC DISCRIMINANT ANALYSIS 

(LDA), RADIAL BASIS FUNCTION (RBF) AND MULTILAYER PERCEPTRON (MLP)
NETWORKS IN WHICH u IS THE SURELY CORRECT RESULTS AND v POSSIBLY 

CORRECT BECAUSE OF TIES. 
Classifier LDA RBF MLP 

u and v u and v u and v 

Identification: 
109 subjects 

67.9  71.6 83.5  86.2 75.2   85.3 

Identification: 20 
subjects for 10 

times 

85.0  90.0 91.0  93.5 82.5   90.0 



Identification rates for the 109 subjects are shown in 
percentages in Tables I and II. They have been computed with 
Algorithm 1 according to the one-versus-one (subject) 
principle. Comparing and looking for the best results, we find 
that the results of SVM with the RBF kernel in Table I are 
equally good as those of the radial basis function network in 
Table II. The results of the quadratic SVM are the next best, 
followed, in the descending order, by the polynomial (3rd 
degree) SVM, multilayer perceptron, logistic discriminant 
analysis, and linear discriminant analysis. The difference 
between the best and worst is over 10%. 

Table III consists of the results of the other experimental 
set-up: first identification and second average false rejection 
rates and false acceptance rates for verification after 
identification. This was performed with 20 randomly selected 
subjects for 10 iterations by finally computing averages for all 
classification methods employed. Looking at the mean of FRR 
and FAR, the polynomial SVM is the best and the quadratic 
SVM is almost equally as good; SVM with the RBF kernel and 
the radial basis function network come equal third, followed by 
the multilayer perceptron network, logistic discriminant 
analysis, and linear SVM. 

To compare the results of identification and verification, the 
orders of the best classification methods vary, while multilayer 
perceptron network, logistic discriminant analysis, and linear 
SVM are the same in both. 

VII. DISCUSSION

According to the results, we may conclude that it is efficient 
to apply methods other than a multilayer perceptron network, 
logistic discriminant analysis, and linear SVM. In other words, 
it seems to best to choose from quadratic SVM, 3rd degree 
SVM, SVM with an RBF kernel, or a radial basis function 
network. 

Other researchers in the field of eye movement biometrics 

have reported results as follows: average false acceptance rate 
(FAR) from 1.4% to 17.5% and average false rejection rate 
(FRR) from 12.6% to 28.9% [20] for 9 subjects, and an 
identification rate of 83% for 12 subjects [21]; FAR 5.4% and 
FRR 56.6% for 41 subjects [22]; an equal error rate (EER) of 
nearly 30% for 15 subjects [23]; EER around 35% for 173 
subjects [24]; the best EER of 10.8% [28] for 200 subjects; 
accuracy of 63% for 32 subjects [26], the best accuracy of 
43.1% for 22 subjects [26]; and an accuracy of 33.3% for 34 
subjects [27]. The results obtained in the present research are at 
least equally good compared with these preceding studies. 
Nevertheless, the computational approaches of identification 
and verification, eye movement camera systems, methods of 
stimulating eye movements, and numbers of subjects employed 
have varied greatly. Therefore, no rigorous conclusions can be 
drawn between the earlier studies and our current results. Still, 
one can criticize the very small numbers of subjects in several 
earlier studies. Those with less than 30-40 subjects can be seen 
as preliminary investigations purely on statistical grounds. 

A researcher with a thorough knowledge of machine learning 
algorithms could show the weaknesses of how inadequately 
scarce tests have obviously been implemented in some of the 
previous research [20-27], and some descriptions of the test 
procedures have been very narrow. In order to achieve 
statistically reliable and credible results, the validation task has 
to be done thoroughly and it must follow the correct principles 
of testing in machine learning. Sometimes a straightforward 
split called hold-out validation [33,34] has obviously been 
applied, perhaps without remembering that it is only reasonable 
and usable for relatively great numbers of subjects, such as a 
few thousand. Of course, this depends on the properties of the 
data, e.g., how many variables are used. In addition, several 
models have to be built because normally some of them do not 
give reliable results; it is only after computing many models 
that their average results justify credible overall results and 
fitting conclusions. Sophisticated machine-learning algorithms 
such as multilayer neural networks probably cannot learn from 
small numbers of subjects and build statistically credible 
models because they have to train numerous weight values or 
other parameter values for modeling. In such cases, the simplest 
techniques, such as k-nearest neighbor searching, have to be 
utilized. 

Altogether, we may assume that the results attained can still 
be improved in future research and that saccades could be used 
jointly with other biometric data sources even for biometric 
identification. A probable advantage in the future will be the 
development of smaller – but more efficient and accurate – eye 
movement cameras. 

Although the identification task pursued on the basis of 
saccadic eye movements is more difficult than our previous 
verification experiments with saccades [14-19] because of the 
character of the c-class (c>>2) classification of identification 
compared to the two-class classification of verification, we 
have obtained better identification rates than expected in this 
first identification attempt. However, the occurrence of 
impostors is still a difficult issue. Clearly, more extensive data 
sets than used here might be complicated for identification 

TABLE III 
AVERAGE VERIFICATION RESULTS (%) OF ALGORITHM 2 FOR THE 10 SETS OF 20 

SUBJECTS WITH FALSE REJECTION RATES (FRR) AND FALSE ACCEPTANCE 
RATES (FAR). 

Classifier FRR FAR 

Linear SVM 46.5 38.5 

Quadratic SVM 21.5 28.5 

Polynomial SVM 36.5 11.5 

SVM with RBF kernel 24.5 34 

LDA 46.5 30.0 

RBF 24.5 34.0 

MLP 41.2 26.9 



based on saccades. For real-life applications in the future, we 
expect that eye movement biometrics will be applied jointly 
with some other biometrics, such as face or pupil images or 
fingerprints. 
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