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Abstract

Machine learning approaches have been widely used for the identification of

neuropathology from neuroimaging data. However, these approaches require

large samples and suffer from the challenges associated with multi-site, multi-

protocol data. We propose a novel approach to address these challenges, and

demonstrate its usefulness with the Autism Brain Imaging Data Exchange

(ABIDE) database. We predict symptom severity based on cortical thickness

measurements from 156 individuals with autism spectrum disorder (ASD)

from four different sites. The proposed approach consists of two main stages:

a domain adaptation stage using partial least squares regression to maximize

the consistency of imaging data across sites; and a learning stage combining

support vector regression for regional prediction of severity with elastic-net

penalized linear regression for integrating regional predictions into a whole-
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brain severity prediction. The proposed method performed markedly better

than simpler alternatives, better with multi-site than single-site data, and

resulted in a considerably higher cross-validated correlation score than has

previously been reported in the literature for multi-site data. This demon-

stration of the utility of the proposed approach for detecting structural brain

abnormalities in ASD from the multi-site, multi-protocol ABIDE dataset

indicates the potential of designing machine learning methods to meet the

challenges of agglomerative data.

Keywords: Autism spectrum disorder, Magnetic resonance imaging,

cortical thickness, Machine learning, Domain adaptation

1. Introduction

Autism Spectrum Disorder (ASD) is a developmental disorder charac-

terized by impairments in social interaction and communication, restricted

interests, and repetitive patterns of behaviour (Lord and Jones, 2012; Wing,

1997; Gillberg, 1993). The definition admits substantial behavioural hetero-

geneity (Georgiades et al., 2013); ASD is, in fact, a family of developmental

disorders with unique, but related, phenotypes, with a variety of genetic as-

sociations (Devlin and Scherer, 2012). Moreover, ASDs are developmental

disorders, and the behavioural abnormalities evolve over time (Gotham et al.,

2012; Szatmari et al., 2015), adding to the apparent heterogeneity. This large

behavioural heterogeneity appears to be paralleled by a wide array of neu-
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roanatomical abnormalities, which also evolve over development (Zielinski

et al., 2014; Wolff et al., 2014). Almost every brain region has been impli-

cated in autism, including subcortical (Jacobson et al., 1988; Cerliani et al.,

2015) and cerebellar regions (Bauman, 1991; Fatemi et al., 2002), gray-matter

and white-matter (Barnea-Goraly et al., 2004; Rojas et al., 2006), and re-

gions of all lobes of the cerebrum (Zilbovicius et al., 2000; Courchesne et al.,

2011; Lewis et al., 2013, 2014). Indeed, the neuroanatomical heterogeneity is

so great that replication of results across studies is rare. The inconsistencies

in findings are likely primarily due to the small sample sizes used in most

studies, in combination with the large behavioural heterogeneity, as well as

measurement related differences (Auzias et al., 2014, 2016; Castrillon et al.,

2014). Thus, there is an urgent need for larger sample sizes, if we are to dis-

cover clinically useful information (Amaral et al., 2008; Auzias et al., 2014,

2016; Lefebvre et al., 2015). Large samples may allow the extraction of core

neuroanatomical abnormalities from the noise introduced by the heterogene-

ity of the disorder. Such abnormalities could serve as biomarkers, and could

provide insight into the causes of the disorder, and potential interventions.

However, datasets collected by a single site are not sufficient in size to

achieve such goals (albeit making exact claims about the required dataset size

is a complex matter and depends on the goals of study (Button et al., 2013)).

Further, there are limited publicly available data from multi-site studies uti-

lizing a single scanner type with the same acquisition protocol across sites.

But, so-called ‘big data’ has come to neuroscience, including for the study of

3



ASD. There are currently multiple initiatives to bring together neuroimaging

data from multiple sites, acquired on multiple types of scanners, and with

differing protocols. The Autism Brain Imaging Data Exchange (ABIDE)1

is one such initiative (Di Martino et al., 2014). ABIDE provides previously

collected datasets composed of both MRI data and phenotypic information

from 16 different international sites for over 1100 individuals, approximately

half of whom are typically developing (TD) and half have been diagnosed

with ASD. This sample size, which is more than an order of magnitude

larger than that used in most single-site studies, provides the power needed

to identify neuroanatomical abnormalities related to ASD. But, the multi-

site, multi-protocol aspect of the data introduces additional heterogeneity.

Indeed, previous studies using the ABIDE data have shown that acquisition

site has significant effects on basic image properties (Nielsen et al., 2013;

Castrillon et al., 2014). This further exacerbates the problem of identifica-

tion of core neuroanatomical abnormalities in this extremely heterogeneous

data. The between-site heterogeneity constitutes the main technical chal-

lenge in the current work (Auzias et al., 2014), and the solution that we

offer is a contribution applicable not only to the ABIDE dataset, but to any

neuroimaging data agglomeration.

The solution to the problem lies in finding a new common space within

different datasets for reduction of between-site variation. Techniques for

1http://fcon_1000.projects.nitrc.org/indi/abide/
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achieving this are often referred to as domain adaptation (Jiang, 2008; Pan

and Yang, 2010). Domain adaptation is a new branch of machine learning

techniques that seeks to improve the similarity of the data from different

sources with mismatched distributions. We utilize these domain adaptation

machine learning algorithms to address the problem that arises in the situ-

ation where the data distribution changes across different acquisition sites.

We apply this approach to the ABIDE data to identify neuroanatomical

abnormalities associated with symptom severity in ASD. Between-sites vari-

ance in neuroimaging studies is commonly handled by regressing out the site

identity from the imaging data in a voxel-wise manner before performing

analysis (Gupta et al., 2015) and similar methods have been adapted for ma-

chine learning analysis with limited success (Kostro et al., 2014). Instead,

here we propose a novel approach for reducing between-sites variability by

projecting data from different sites into a new, common space in a way that

effectively reduces nuisance variation between the data from different sites.

The current approach for dealing with the site effect is novel in the context of

multi-site imaging studies, and for the estimation of severity scores in ASD

patients.

The great majority of ASD studies have focused on identifying group

differences between typically developing individuals and those with ASD,

or conversely, training classifiers to distinguish between these groups (Ecker

et al., 2010; Nielsen et al., 2013; Wang et al., 2015). But, perhaps the largest

source of heterogeneity is associated with the severity of the disorder. In fact,
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both individuals with ASD as well as those deemed to be typically develop-

ing display a wide range of symptoms of autism in a variety of behaviours.

This variability may mask neural abnormalities associated with these symp-

toms, and limit the success of attempts to classify an individual based on

their neuroimaging data. Approaches which relate dimensional measures of

symptoms to measures of neuroanatomy appear more useful than those which

aim only to identify abnormalities associated with a diagnosis of ASD (Sato

et al., 2013; Schumann et al., 2009). Thus, in this work we take this latter ap-

proach. We design a model to estimate symptom severity scores derived from

the Autism Diagnostic Observation Schedule (ADOS) from cortical thickness

measurements. We are motivated by evidence that local cortical thickness

measures provide an index of the maturation of cortex and cortico-cortical

connectivity (Shaw et al., 2008; Raznahan et al., 2011), and that ASD may

be characterized by delayed maturation (Webb et al., 2011; Johnson et al.,

2015).

Our proposed method for estimation of the severity score consists of two

main stages: a domain adaptation stage that uses partial least squares re-

gression (PLS) with sites as response variable, and the learning stage which

consists of the combination of two different regression methods, i.e. support

vector regression (SVR) and elastic-net penalized linear regression (LR). We

evaluate the reliability of the model across a multisite dataset without stan-

dardization of the acquisition protocol across sites, and the effect of each part

of the algorithm.
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2. Materials and methods

2.1. ABIDE data

The data used in this study were from the ABIDE dataset (Di Martino

et al., 2014). ABIDE is a publicly available dataset that involved 16 interna-

tional sites, from 532 individuals with ASD and 573 typical controls, yielding

1112 datasets composed of MRI (functional and structural) and phenotypic

information for each subject. The sequence parameters as well as type of

scanner varied across sites, though all data were collected with 3 Tesla scan-

ners. The scan procedures and parameters are described on the ABIDE

website 2.

2.2. Image preprocessing

The T1-weighted volumes were processed with CIVET, a fully automated

structural image analysis pipeline developed at the Montreal Neurological

Institute. CIVET corrects intensity non-uniformities using N3 (Sled et al.,

1998); aligns the input volumes to the Talairach-like ICBM-152-nl template

(Collins et al., 1994); classifies the image into white matter, gray matter,

cerebrospinal fluid, and background (Zijdenbos et al., 2002; Tohka et al.,

2004); extracts the white-matter and pial surfaces (Kim et al., 2005); and

warps these to a common surface template (Lyttelton et al., 2007). Cortical

thickness (CT) is measured in native space using the linked distance between

the two surfaces at 81,924 vertices. The thickness map was then blurred to

2http://fcon_1000.projects.nitrc.org/indi/abide/
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impose a normal distribution on the corticometric data, and to increase the

signal to noise ratio; a 30-millimeter full width at half maximum surface-

based diffusion smoothing kernel was used.

Quality control (QC) of the CIVET results was performed by two inde-

pendent reviewers. Data with artifacts due to motion, low signal to noise

ratio, hyperintensities from blood vessels, or poor placement of the gray or

white matter (GM and WM) surfaces for any reason were excluded. 215

subjects with ASD were excluded in the QC.

2.3. Subjects

After image preprocessing and the QC, the number of ASD subjects re-

duced from 532 to 317 from 16 different sites. Next, we excluded ASD sub-

jects with missing ADOS total and module information and then we included

only subjects from sites containing at least 20 subjects. The remaining 156

subjects were from 4 different sites (NYU, PITT, TRINITY, USM) which

were used for estimating severity score. Details of the characteristics of the

ABIDE samples used in this work are presented in Table 1. The subject IDs

of the included subjects can be found in the supplement.

2.4. Severity score

This work studies the relation between cortical thickness and measures

derived from the Autism Diagnostic Observation Schedule (ADOS) (Lord

et al., 2000). The ADOS is a semi-structured assessment of communication,

social interaction, and stereotypical behaviours for individuals with autism or
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Table 1: Subject demographics; The values are site-wise averages and the values in paren-
theses provide standard deviations.

Site NYU PITT TRINITY USM
No. of subjects 72 20 23 41
Males/Females 61/11 17/3 23/0 41/0
Full Scale IQ 107.14 (16.64) 112 (13.51) 108.83 (15.23) 102 (17.05)

Range: 76-148 Range: 86-131 Range: 72-135 Range: 65-132
Verbal IQ 105.64 (16.53) 109.60 (12.56) 107.96 (14.45) 98.51 (19.20)

Range: 73-139 Range: 89-132 Range: 85-135 Range: 55-130
Performance IQ 107.58 (17.12) 111.05 (13.53) 107.36 (15.33) 105.15 (17.11)

Range: 72-149 Range: 87-128 Range: 63-131 Range: 72-133
Age 14.82 (7.09) 17.65 (5.84) 17.36 (3.63) 24.61 (8.05)

Range: 7-39 Range: 9-32 Range: 12-26 Range: 14-50
ADOS total 11.25 (4.06) 11.75 (2.97) 10.57 (2.94) 13.22 (3.34)

Range: 5-22 Range: 7-18 Range: 7-17 Range: 6-21
Severity score 6.32 (2.13) 6.70 (1.56) 5.70 (1.82) 7.38 (1.56)

Range: 2-10 Range: 4-9 Range: 3-9 Range: 3-10

other pervasive developmental disorders. The ADOS applies to individuals

ranging from nonverbal to verbally fluent, and ranging from infants to adults.

But different ADOS modules are utilized, depending on the individual’s de-

velopmental and language level, and the scores from different modules are

not directly comparable. In order to achieve comparability across modules,

the ADOS scores must be transformed to calibrated severity scores (Gotham

et al., 2009).

The ABIDE data provides the calibrated severity scores for some but not

all subjects; and for those without calibrated severity scores, the information

necessary to compute calibrated severity scores is also missing. But a proxy

calibrated severity score can be derived from the available ADOS measures.

A two-step procedure is used to derive the calibrated severity scores: (i) a

weighted sum of ADOS item scores is computed, with the weights determined
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by Gotham et al. (2007); (ii) the calibrated severity score is retrieved from

a lookup table provided by Gotham et al. (2009), which is indexed with the

individual’s age, the ADOS module used, and the weighted sum from step (i).

For those cases in which ABIDE provides both the total of the social and

communication ADOS scores and the weighted sum of the ADOS item scores,

the difference between the two is small. We thus approximate the calibrated

severity scores by substituting the total of the social and communication

ADOS scores for the weighted sum of the ADOS item scores in the first

step of the procedure. Our proxy of the calibrated severity score is then

arrived at by using the lookup table from Gotham et al. (2009) together

with the total of the social and communication ADOS scores, the ADOS

module used, and the individual’s age. We investigate the relation between

cortical thickness and these proxy calibrated severity scores. Note that one

reason for transforming the ADOS scores into calibrated severity scores is

to remove effects of the subject demographics, such as age, thus making the

calibrated severity scores to more truly reflect the disease severity.

This proxy of the calibrated severity score is discussed in greater detail

in the supplementary material. There, for comparison, we also report the

experiments of cortical thickness based prediction of the total of the social

and communication ADOS scores, using the information of which ADOS

modules were used. Severity scores of the included subjects can be found in

the supplement.
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2.5. Overview of methodology

The generic structure of the proposed method is illustrated in Figure 1.

The method is divided into two main stages: 1) the domain adaptation stage

and 2) the learning stage. In the domain adaptation, first, the cortical thick-

ness measures along cortex were divided into separate regional subsets ac-

cording to the Automated Anatomical Labelling (AAL) atlas. Each regional

subset contains only the vertices belonging to one AAL cortical region. In

order to reduce the between-sites variability, we performed PLS based do-

main adaptation for each subset separately (Section 2.6). This resulted in 78

region-specific site-adapted subsets of cortical thickness components (Figure

1 A) with the same, fixed number of components (25) for each region, thus re-

ducing regional cortical thickness measures into 25 features per a region and

a subject. The domain adaptation was performed in an unsupervised manner

in all subjects before dividing data into training and test sets. Note that we

did not use the severity score (label information) or any kind of cognitive in-

formation of the subjects in this stage and only the site information was used

as the response variable. This is termed unsupervised domain adaptation,

but since all the cortical thickness data is used, the whole learning process

becomes transductive that is typical for domain adaptation algorithms (Gong

et al., 2012). We stress that the label information was not used so this does

not lead to double-dipping. For a clear explanation of this fact and the dif-

ferences between transductive and inductive machine learning algorithms, we

refer to Gammerman et al. (1998). It is important to note that the division of
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Figure 1: Workflow of the proposed method for estimating severity score in ASD subjects.
A) The PLS based domain adaptation stage and B) the learning stage.
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the cortical thickness measures into regional subsets must be done before the

PLS-based domain adaptation stage as otherwise the PLS components will

not be regionally specific. Also, we need a large enough number of subjects

from each site to be able to recognize the possible site-differences.

In the learning stage, first, we applied SVR in each (site-adapted, after

domain adaptation) subset separately, with the severity score as the response

variable (Section 2.7). This resulted in 78 outputs, each of them estimating

the severity score based on only one AAL brain region. In order to combine

the results from different brain regions, we concatenated these 78 outputs

from SVR to form a new dataset. The resultant dataset has dimensionality

78, from 78 SVR outputs. Finally, we applied elastic-net penalized linear

regression on the new set to obtain the final estimated severity score (Figure

1 B; Section 2.8).

2.6. Partial Least squares domain adaptation

As our data are from 4 different sites, our purpose is to identify a feature

space where the data from different sites have similar distributions. We pro-

pose to achieve this by using Partial Least Squares (PLS) in order to identify

a new low dimensional feature space that would only contain such cortical

thickness information that is maximally invariant between the acquisition

sites. PLS is a linear feature transformation method for modeling relations

between sets of observed variables. Similarly to principal component analy-

sis (PCA), PLS constructs new predictor variables, i.e., latent variables, as
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linear combinations of the original predictor variables; regional cortical thick-

ness values in this case. The difference between PCA and PLS is that PLS

considers response variables, sites in our case, for constructing latent vari-

ables while PCA considers only the predictor variables. In particular, PLS

tries to discover the relation between the predictor variables X and response

variables Y by determining the multidimensional direction in the X space

with the maximum multidimensional variance direction in the Y space.

We denote a regional subset of the cortical thickness values by X ∈ RN×D,

where N is the number of subjects and D is the number of cortical thickness

measures in the corresponding subset. D varied from 114 (olfactory cortices)

to 2218 (middle frontal gyri). The same process is applied to each of the

78 cortical regions; we drop the sub-section index for clarity. The response

variable representing the site information is Y = {Y1,1, ..., YN,M}, where M is

the number of sites. Yn,m is 1 if subject n belongs to site m and otherwise it

is 0. PLS assumes the following relationships between X and Y:

X = TPT + E,

Y = UQT + F,

(1)

where the latent variables corresponding to X and Y are stored in T and U

matrices, respectively; P and Q are loading matrices and E and F are error

terms. In particular, the N × K matrix T = [t∗1, . . . , t∗K ] = [t1, . . . , tN ]T ,

where K denotes the number of PLS components, provides projections of

cortical thickness values that we are going to use to predict severity scores.
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The decompositions of X and Y are computed by iterative application of the

singular value decomposition (SVD)(Abdi, 2007; de Leeuw, 2007) in such a

way that in each iteration the covariance between T and U is maximized.

That is, in each iteration, PLS tries to find weight vectors wi, ci so that

[cov(t∗i,ui)]
2 = [cov(Xwi,Yci)

2] = max|r|=|s|=1[cov(Xr,Ys)]2 (2)

where cov(t∗i,ui) = t∗i
Tui/N is the covariance between latent variables cor-

responding to the cortical thickness and the site information (Rosipal and

Krämer, 2006). For the computation of PLS, we use the SIMPLS algorithm

(De Jong, 1993) that yields cortical thickness projections t∗i directly as lin-

ear combinations Xwi and, importantly, constraints any t∗i and t∗j to be

orthogonal. The idea is that the first few t∗i (i < V ) encode the site related

information and then the later t∗i (i ≥ V ) contain site invariant information;

note that V may have the value of 1. In this reasoning, we utilize the con-

nection between the PLS and the Fisher’s discriminant analysis (Rosipal and

Krämer, 2006). We leave it to the machine learning algorithm to discard the

first components that may be useless for the severity score prediction and

keep all the PLS components.

We note that PCA, but not PLS, has previously been used for unsuper-

vised domain adaptation as a baseline method for the applications of object

recognition and sentiment analysis (Shi and Sha, 2012), where all data from

both source and target domain were projected into PCA direction computed
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from the data in the target domain. In Shi and Sha (2012) the model was

trained on a data from the single source domain and tested on data from the

target domain while we consider the multiple source domain adaptation.

We have additionally developed and tested an inductive version of the

algorithm which comes with certain disadvantages compared to the trans-

ductive version. These and experimental results with the inductive algorithm

are discussed in the Section 4 of the supplement.

2.7. Support Vector Regression

After PLS analysis on each of the 78 regional subsets of cortical thickness

measures, we have 78 matrices T`, ` = {1, ..., 78} of the site adapted cortical

thickness coefficients corresponding to the 78 cortical regions. To derive a

prediction of the severity score based on a single cortical region, we apply

support vector regression (SVR). Again, the process is done independently

for each region and we drop indexes pertaining to the regions for clarity.

Support vector machines (SVM) were first introduced (Cortes and Vap-

nik, 1995; Boser et al., 1992; Vapnik and Vapnik, 1998) as a pattern recog-

nition method representing decision boundary between samples from two

different classes in such a way that the margin (the distance) between the

decision boundary and the closest training sample to it is maximized. SVM

transforms the training data from the original space into a high dimensional

feature space via a kernel-induced mapping function, and then the separating

hyperplane is computed in this new feature space.
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Support vector machines can also be applied to regression problems when

the response variable is a real-valued number, resulting in support vector

regression (SVR). To achieve the maximal margin property in a regression

problem, Vapnik (1995) proposed the ε-SVR algorithm by devising the ε-

insensitive loss function. In SVR, a specific value is determined as ε in the

loss function, after which the task is to fit a regression line surrounded by

a tube with radius ε to the data. The data points inside the tube are not

considered in determining the regression line and only the data points lying

on the edges or outside the tube, i.e. support vectors, affect the course of

the regression line.

SVR approximates a severity score by a nonlinear function described by

the weight vector ŵ and the bias b̂ so that

severity ≈ f(t) = ŵTφ(t) + b̂, (3)

where t is a vector of the regional site adapted cortical thickness (CT) co-

efficients for a subject, φ is a non-linear mapping and the response variable

is the corresponding severity score. SVR handles the nonlinearity via the

kernel trick. A high (or infinite) dimensional dot product ŵTφ(t) can be

computed as a sum of dot products implicitly described in the input space

with the original dimensionality f(t) =
∑N

i=1wik(t, ti), where k is the kernel

function, ti are the site adapted CT coefficients for the training subject i

and wi are the parameters to be solved by the SVR algorithm. The kernel-
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trick makes otherwise intractable computations feasible and φ and ŵ do not

need to be explicitly defined. In this work, we adopted the radial basis func-

tion kernel (RBF) k(x,y) = exp(−γ||x− y||2) and set γ to its default value

1/K, where K = 25 is the number of PLS components. The RBF kernel

is the most widely used kernel function in nonlinear SVR. For solving the

SVR parameters wi, b̂, we used ν-SVR (Schölkopf et al., 2000). This is a

re-parametrization of the original soft-margin ε-SVR algorithm (Cortes and

Vapnik, 1995) allowing automatic tuning of ε by introducing an additional

parameter ν (Smola and Schölkopf, 2004). The ν-SVR aims to solve the

following optimization problem:

min
1

2
‖ŵ‖2 + C(νε+

1

N

N∑
n=1

(ξn + ξ∗n))

subject to


severityn − (ŵTφ(tn)− b̂) ≤ ε+ ξn

(ŵTφ(tn) + b̂)− severityn ≤ ε+ ξ∗n

ξn, ξ
∗
n ≥ 0, ε ≥ 0

(4)

This allows for training errors exceeding ε by introducing slack variables

ξn, ξ
∗
n. The overfitting is prevented by the regularization term 1

2
‖ŵ‖2 =∑

i

∑
j wiwjk(ti, tj) and the tradeoff between the close fit to the data and

regularization is controlled by the parameter C.

We re-iterate that the purpose of this step is to determine a predictive
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severity score for each subject based on each cortical region. This step was

repeated for each brain region separately, which resulted in 78 single scores

for each subject, each of them predicting severity score based on one cortical

region.

2.8. Penalized Linear Regression

From the SVR, we have a predicted severity score zi,` = ŵT
` φ(ti,`) + b̂`

for a subject i and region `. For each subject i, we concatenate the regional

predictions into a 78-element vector zi. In order to integrate the predicted

severity scores derived from different brain regions, we used least squares

linear regression (LR) with elastic net penalty. The elastic net penalty is

a combination of ridge and lasso penalties (Zou and Hastie, 2005) that has

two important advantages in our case: 1) it allows for variable selection,

meaning that the regions with low predictability are dropped from the model

and 2) it possesses the grouping effect meaning that the regions with similar

predictions receive similar weights in the final model. These two properties

improve the interpretability and stability of the elastic-net penalized models.

The LR model is formalized as:

severityi = aTzi + b+ εi =
78∑
`=1

a`zi,` + b+ εi, (5)

where i refers to a subject, a = [a1, . . . , a78]
T and b are the model parameters

and εi is the error term. Adding the elastic net penalty, the model is solved

by minimizing the following elastic net cost function:
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1

2N

N∑
i=1

(severityi − b− zTi a)2 + λ[(1− α)||a||22/2 + α||a||1], (6)

where N is the number of training samples, λ is the complexity parameter

found by cross-validation, α ∈ [0, 1] defines the compromise between ridge

||a||22/2 and lasso penalties ||a||1, and || · ||1 denotes the L1-norm. Here, we

selected α = 0.5 to give equal weights for the ridge and lasso penalties.

2.9. Implementation and validation

It is imperative to avoid using the test subjects’ severity scores for training

the model as this would result positively biased estimates of the prediction

accuracy. For dividing data into two training (SVR-training and SVR-test)

and test sets, we used two nested and stratified cross-validation loops (10-

folds for each loop) except for site-based testing where the outer loop was

leave-one-site-out loop. In the inner CV loop, the SVR-train set was used

to train the SVRs and the SVR-test set was used for constructing regional

predictions zi,` for every training subject; we did not use the same dataset

both for learning the SVR and computing regional predictions to avoid over-

fitting. The training set (union of SVR-training and SVR-test) was used to

train the Elastic-net regression model. We re-divided the training set into

10-folds for finding the optimal λ for the model. Test data were used only

for evaluating the model. The performance of the model was then evalu-

ated based on the (cross-validated) Pearson correlation coefficient (R), mean
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absolute error (MAE) and the coefficient of determination3(Q2) between es-

timated and true severity score in test set. The reported results are averages

over 100 nested 10-fold CV runs in order to minimize the effect of the random

variation. Three different metrics are reported, because these each provide

complementary information. Cross-validated R is simple to interpret, but it

can hide the bias in the predictions, which are made apparent by Q2-value.

MAE provides the prediction errors in the equal scale with the original scale

of the severity scores. Prior to each step, both the predictor variables and

response variable were normalized to have zero mean and unit variance, ex-

cept in domain adaptation step in which the data are centralized/normalized

by default. To compare the performance of two learning algorithms, we com-

puted a p-value for the 100 correlation scores with a permutation test. For

computing p-values associated with the null hypothesis that the correlation

coefficient between the observed and predicted values is zero, we used a per-

mutation test (Anderson and Robinson, 2001) and for computing the 95%

confidence interval of the correlation coefficient we used bootstrap on the run

with the median correlation score across 100 cross-validation iterations.

PLS was computed by the PLSREGRESS functions in MATLAB software

3The Q2 provides a measure of how well out-of-training set severity scores are
predictable by the learned model (http://scikit-learn.org/stable/modules/model_

evaluation.html#regression-metrics). It is defined as Q2 = 1 −
∑N

i=1(si−ŝi)
2∑N

i=1(si−s̄)2
, where

ŝi is the predicted severity score for subject i, si is the true severity score for subject i,
and s̄ is mean of the actual/true severity scores. Q2 is bounded above by 1 but is not
bounded from below. Note that Q2 does not equal R2, i.e., the correlation squared, but
the Q2 value can never exceed R2. More details about different metrics and their relations
are available in the supplement (Section 6).
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with a fixed number of components. The SVR training was implemented

using LIBSVM (Chang and Lin, 2011). The parameters in SVR, namely C

(the soft margin parameter) and γ (parameter for RBF kernel function), were

set to their default values (C = 1, ν = 0.5, γ = 1/F, where F is the number of

features here equaling to K = 25). Since the cortical thickness measures were

divided into 78 subsets and both PLS and SVR were computed in each subset

separately, tuning the method parameters, inside a nested cross-validation

loop, was impractical. Therefore, we used fixed number of components in

PLS and the default parameters of the SVR across all subsets. The fixed

number of PLS components in the proposed method was 25, selected by

initial experiments among the candidate set {5, 10, 15, 20, 25, 30}.

The implementation of elastic-net penalized linear regression was done

by using the GLMNET library (Qian et al., 2013) and the regularization

parameter λ was selected using 10-folds CV in the training data. Note that

the penalized LR was done only once in the outputs of SVR from different

brain regions and hence tuning the regularization parameter using CV was

easily feasible.

3. Results

The average cross-validated correlation R between the estimated and ob-

served severity scores among 100 distinct 10-fold CV iterations was 0.51

(standard deviation 0.04, range from 0.39 to 0.63, p < 0.0001), the average

mean absolute error (MAE) was 1.36 (standard deviation 0.05, range from
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1.25 to 1.51) and the average coefficient of determination Q2 was 0.26 (stan-

dard deviation 0.045, range from 0.13 to 0.39). These values indicated that

the proposed approach was able to provide information about the severity

of the disease based on structural information of the brain in ASD patients.

Particularly, we note that the union of 95% confidence intervals (CIs) of

R for individual runs was [0.25, 0.72], where CIs were computed based on

the Fisher’s r-to-Z transform, and the lower limit of the worst 95% CI of

R was clearly positive. The box-plots of the correlation scores and MAEs

are available in Fig. 2 and the scatter plot of the estimated and observed

severity scores of the CV run with the median R is shown in the upper left

panel of Fig. 3. We note that validation accuracy was almost the same (the

average R was 0.49 or 0.50 depending on whether module information was

used) when predicting raw ADOS scores instead of the proxy severity scores.

The validation results concerning the prediction of the raw ADOS scores are

presented in the Supplementary figures 2, 3, and 4.

For evaluation of the effectiveness of each stage (PLS, SVR, Elastic-net

LR) of the proposed approach, we performed experiments by excluding each

stage of the method separately and comparing the accuracy of the predictions

obtained this way to the accuracy of the predictions of the complete method.

To evaluate the PLS based domain adaptation stage, we repeated the

experiments with the same procedure, except that we replaced PLS by PCA

which can be thought as an unsupervised dimensionality reduction method

equivalent to PLS but not utilizing the information about the acquisition
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site. In other words, by using PCA, a common feature space was determined

for all data from different sites without considering the site information. The

PCA was applied in the transductive setting as The optimal number of PCA

components used (20) was selected with the same procedure as the number of

PLS components (see Section 2.9). When the PLS-based domain adaptation

was substituted by PCA, the average correlation score (among 100 different

runs) dropped from 0.51 to 0.42 (p < 0.0001 for correlation decrease), the

average MAE increased from 1.36 to 1.45 and the average Q2 dropped from

0.26 to 0.17. Since both PCA and PLS project data into a new feature

space, we omitted this feature transformation step to see the effect of image

acquisition differences between sites on the performance of the model. When

the the feature transformation step was omitted, the average correlation score

(only 5 CV runs were done) decreased to 0.16, the average MAE increased to

1.65 and the average Q2 dropped to -0.07. Thus, the feature transformations

were useful.

To validate the SVR step, we performed two experiments. First, we esti-

mated severity score by applying elastic-net penalized regression directly on

the site adapted thickness values, i.e., retaining PLS-based domain adapta-

tion step but performing it to the 81924 thickness values without dividing

them to regional subsets and not performing the nonlinear SVR (PLS+LR

(whole brain)). By eliminating the SVR step, the average correlation score

decreased to 0.17 (p < 0.0001 for the correlation decrease), the average MAE

increased to 1.56 and the average Q2 decreased to 0.03. Second, we averaged
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Figure 2: Box plots for correlation score and mean absolute error within the 100 computa-
tion runs of the proposed approach (PLS + SVR + LR), substituting PLS based domain
adaptation by PCA (PCA + SVR + LR) and without the SVR step (PLS + LR). PLS +
LR (whole brain) refers to the approach where all 81924 vertices were used as the input to
PLS stage and PLS + LR (regional mean CT) refers to the approach where the regionally
averaged thickness values were used as the input for the PLS; see the text for details. On
each box, the central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not considered outliers,
and outliers are plotted with a +.

the cortical thickness values within each AAL region, performed the PLS

based domain adaptation on these 78 regional mean cortical thickness mea-

sures and used the Elastic net penalized LR to predict severity scores based

on the resulting PLS components (PLS + LR (regional mean CT)). The av-

erage correlation score decreased to 0.20, the MAE increased to 1.55 and the

Q2 decreased to 0.04. Again, the optimal number of the PLS components (5)

was selected by the same procedure as for the complete method (see Section

2.9). We also repeated the experiments (only 5 CV runs were done) by omit-

ting the PLS step and applying elastic net penalized LR on regional mean
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Figure 3: Scatter plots of the estimated severity score vs. observed severity score for
the proposed method (PLS + SVR + LR), without PLS based domain adaptation (PCA
+ SVR + LR), and without the SVR step (PLS + LR). See the text and Figure 2 for
details. The scatter plots are from a cross-validation run with the median correlation
within 100 cross-validation runs. In the panel corresponding to PLS + SVR + LR, data
corresponding to female subjects is shown in red color in order to ensure that they did not
act as outliers.

of cortical thickness to predict severity scores. This experiment yielded the

average correlation score of 0.05, the average MAE of 1.60 and the average

Q2 of -0.02 and it appeared that the severity cannot be estimated based on
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the regional cortical thickness values.

Figure 2 shows box plots for the R and MAE for different experiments

across 100 computation runs. It can be observed that the regional SVR had

the largest effect on the performance of the method. The performance of

the method was not good when excluding this step despite that PLS based

domain adaptation was used. Figure 2 also illustrates that the PLS based

domain adaptation step led to markedly improved predictions when coupled

with the regional SVR. Figure 3 shows the scatter plot between estimated and

observed severity scores (of the median correlation within 100 computation

times). According to these plots, the severity scores with very high or very

low values were the most difficult to estimate as most of the observed severity

scores were located within the range from 4 to 9. Also, as shown in the upper

left panel of Fig. 3, the few females in the sample did not act as outliers.

Figure 4 illustrates the effect of age on the estimated severity scores for the

proposed approach. As it can be seen in Figure 4, there is no effect of age

on the residuals and there is no significant difference within the residuals of

different sites. The results of an experiment performed with a more narrow

age range are reported in Section 5 of the supplement.

Figure 5 shows the importance of top 24 brain regions identified by av-

erage magnitude of the regression coefficients in the penalized LR, i.e., the

final step of the proposed approach, within 100 computation times of 10 fold

CV. The visualization of these regions is provided in Figure 6. Since we stan-

dardized the data before applying LR, the absolute value of each regression
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Figure 4: Scatter plot of prediction residual vs. age for the proposed method (PLS +
SVR + LR) with a cross-validation run with the median correlation score within 100
computation runs. A fitted line is added for the residuals of each site. There was no
significant difference within the slopes of fitted lines (p > 0.5) and the slopes of all fitted
lines are non-significant (p > 0.5). Female subjects are plotted with a different color
than the male subjects, however, the regression lines were fitted considering both genders
together.

coefficient provides the importance of corresponding predictor in the model

and therefore we could compute the importance of each brain region based

on the magnitude of the regression coefficients.

We studied the effect of acquisition site on the performance of the pro-

posed method. To address this issue, a ”site-wise” cross-validation analysis

was performed. To be more specific, a 4-fold leave-one-site-out CV was per-

formed in such a way that the data from each site was in its own fold and the

method was trained using data from 3 sites and tested in the remaining site.

The results are listed in the Table 2. Figure 7 shows the scatter plot between

estimated and observed severity scores (of the median correlation within 100
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Figure 5: The importance of the top predictors for estimating severity score in ASD
subjects. The ranking is based on the average magnitude of standardized regression co-
efficients across 100 cross-validation runs. The gray bars display the average magnitude
and the error bars (in black) of the length equal to twice the standard deviation of the
magnitude. Predictors with the average magnitude higher than 0.03 are included. For the
importance of other regional predictors, see Fig. 6.

computation times) for each site. The prediction accuracy of the site PITT

was comparable with that of the standard 10 fold CV, but the prediction
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Figure 6: The importance of each cortical region in the estimation of severity score using
the proposed approach. The importances are the average magnitudes of the standardized
regression coefficients from the Elastic-net penalized regression across 100 cross validation
runs.

accuracy in the other sites decreased markedly from that of the standard 10

fold CV. These results suggest that utilizing some samples from the same

site as the test sample in the learning procedure might improve notably the

prediction accuracy. One possible explanation for this result is obviously

the decreased number of training subjects available for the method training,

especially in the case of NYU and USM sites, which contained the largest

number of subjects (NYU 72 of 156 subjects and UsM 41 of 156 subjects,

see Table 1). Also, Q2 scores for TRINITY and USM sites were strongly
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negative indicating that the severity scores predicted from the data of the

other sites were biased. One reason for the bias can be explained when exam-

ining the average observed severity scores from each site (NYU: 6.3; PITT

: 6.7; TRINITY: 5.7; USM: 7.4). The average severity score of TRINITY

was lower than the average of the other sites and the average severity score

of USM was higher than the average of the other sites while the penalized

regression creates shrinkage towards the average severity score (see Zou and

Hastie (2005)) and thus could produce biased severity predictions for the

two sites. We note that the domain adaptation method of this article cannot

correct for possible site differences in administering the ADOS tests as it is

blind to severity scores.

We experimented with the method by training and testing with single

site data, that is, we trained four different prediction models and tested them

with the data from the same site in the nested cross-validation framework.

The average cross-validated correlation R within ten 10-fold CV runs was the

largest for the site USM (average correlation score R(USM) was 0.22) and for

the three other sites the average correlation score was close to or below zero

(R(NY U) = −0.05, R(PITT ) = 0.01, R(TRINITTY ) = −0.28). These

results clearly suggested the utility of having a larger number of subjects

at the expense of having to deal with multi-site data. We still point out

that the variance of cross-validated performance measures was inflated due

to small sample sizes and the sample sizes for PITT and TRINITY are too

small for adequate error estimation. In particular, the clearly negative R for
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the site TRINITY, with the smallest sample size, could be attributed to the

small sample size that, for example, considerably decreased the stability of

the inner CV and led to the selection of poor models.

Table 2: The results of ”site-wise” based cross-validation. The reported results are the
averages across 100 10-fold cross-validation runs.

Site Correlation MAE Q2

NYU 0.22 1.57 -0.04
PITT 0.56 1.08 0.22
TRINITY 0.15 1.59 -0.25
USM 0.24 1.44 -0.29

Since certain cognitive functions are lateralized (Hugdahl, 2005), we per-

formed the experiments within right and left hemispheres separately to study

the relative relevance of each hemisphere in estimating the severity score.

The results revealed greater relevance of right hemisphere in estimating the

severity score compared to left hemisphere. Using only the cortical thickness

measures belonging to the right hemisphere yielded the average correlation

score of 0.46, the average MAE of 1.41 and the average Q2 of 0.20. The

measures in the left hemisphere produced significantly lower average corre-

lation score of 0.28 (p < 0.0001), the average MAE of 1.53 and the average

Q2 of 0.05. These results support the findings of Torgerson et al. (2015)

that indicated higher relevance of regions and connections of the right hemi-

sphere compared to the left hemisphere in predicting ASD severity based

on ADOS score. While using cortical thickness measurements from only the

right hemisphere led to accurate severity score estimates, combining cortical
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Figure 7: Scatter plots of the estimated severity score vs. observed severity score for the
proposed method for each site separately. The scatter plot for different sites are from a
cross-validation run with the median correlation within 100 computation times.

thickness measurements from both right and left hemispheres still led to a

better performance (p < 0.0001). This can be also seen in Fig. 5 where

among the most important brain regions for the model there are regions

from both hemispheres, although, the best predictors were located in the

right hemisphere.
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Figure 8: Scatter plots of the estimated severity score vs. observed severity score for
the proposed method for each brain hemisphere separately. The scatter plots are from a
cross-validation run with the median correlation within 100 computation times.

In order to demonstrate the suitability of SVR (with an RBF kernel)

for designing regional models in the proposed approach, we replaced it with

different linear models (elastic net LR, relevance vector regression (RVR)

and SVR with linear kernel) for predicting severity scores. Replacing the

non-linear SVR with the linear alternatives led to a marked performance de-

crease. The correlation score averaged over 10 CV runs dropped to 0.32 when

using linear SVR, 0.28 when using linear RVR and 0.13 when using elastic

net LR. The elastic net LR was selected as the learner for the last step to

obtain a model that is easy to interpret and we did not test other learners for

this stage. As explained in Section 2.8, the elastic net LR provides spatially

sparse model by simultaneously performing variable selection and model esti-

mation and, furthermore, it possesses so called grouping effect meaning that
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correlated predictors are selected simultaneously (Zou and Hastie, 2005).

4. Discussion

The objective of the current study was to devise methods to overcome

the issues associated with multi-site, multi-protocol data in order to take

advantage of the increased sample sizes provided by such agglomerative data

to better predict behavioural outcomes from brain structure. We explored

this problem using data from four sites from the ABIDE dataset, and used

cortical thickness to predict ADOS-based ASD symptom severity. We de-

veloped a novel two-stage approach consisting of a domain adaptation stage

that uses partial least squares regression with site as a response variable, and

a learning stage which utilizes a combination of support vector regression and

linear regression. We evaluated the reliability of the method by comparison

with variations without domain adaptation, or without support vector re-

gression. The proposed two-stage method performed markedly better than

the alternatives, and resulted in a cross-validated correlation score that was

much higher than for any of the sites alone, and considerably higher than

has previously been reported in the literature for multisite data (Sato et al.,

2013).

Recent studies on multisite classification of autism using ABIDE data

have shown poor accuracy in classification of ASD versus TD subjects (Nielsen

et al., 2013; Haar et al., 2016). The study by Nielsen et al. (2013) showed

that classification rate was much lower in a multisite dataset than for single
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site data. The effect of scanner variation in multisite analyses of cortical

thickness abnormalities in ASD patients was also studied by Auzias et al.

(2014, 2016). They showed that scanner variation is a significant confound-

ing factor, which is distributed across the cortical surface and reaches its

peaks in the frontal region. Thus, the effect of acquisition site on the ba-

sic image properties might be a possible reason for the poor classification

accuracy in the studies by Nielsen et al. (2013) and Haar et al. (2016), as

well as for the inconsistencies on the reported results from different studies,

especially in the context of abnormalities in cortical thickness measurements

(Raznahan et al., 2013; Hadjikhani et al., 2006).

In the current study, we used PLS based domain adaptation in order to

maximize the consistency of the imaging measures over the multiple scan-

ners/protocols before assessing ASD pathology. Unlike previous approaches,

such as PCA, in which site/scanner are treated as any other nuisance vari-

able, the PLS based domain adaptation established a feature space where the

data from multiple sites/scanners have similar distributions. Accommodat-

ing multiple sites/scanners in such a way resulted in significantly improved

performance (Figs. 2 and 3), indicating the power of our PLS based domain

adaptation approach for dealing with multi-site data. While our domain

adaptation method can correct for differences in imaging data between sites,

it cannot correct for possible site differences in administering the ADOS tests

(due to inter-examiner differences in the administration and scoring of the

tests) as it is blind to severity scores. Also, the domain adaptation method
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searches for consistent data projections across sites and tries to divide the

thickness data in the orthogonal site-specific and site independent compo-

nents. Therefore, it has no control what is the cause for the site-specificity

of the data later left out by the SVR (scanner differences, different subject

characteristics, or interactions of the two, which are all characteristic to neu-

roimaging data agglomeration efforts). The method needs a certain number

of subjects for each site and we have no clear answer what this number

should be. We also hypothesize that the necessary number of subjects per

site increases with the number of different sites, as the site adaptation prob-

lem becomes harder as more sites need to be accommodated in a common

feature space. More specifically, the complexity of the PLS based domain

adaptation step increases when more sites are added due to the increase of

the dimensionality of the response variable. Including those 4 sites which

had at least 20 ASD subjects with severity scores available led to promising

results in this study and the requirement of having this number of subjects

per site does not limit the foreseeable applications of the method.

The subjects ranged in age from 8 to 40 years, and the age is known

to influence cortical thickness in ASD (Doyle-Thomas et al., 2013). Note

that while the age influences cortical thickness, it can be assumed inde-

pendent of the severity score due to the calibration, and, therefore, it acts

as a source of nuisance variability for the prediction (similarly to so called

suppressor variables in the ordinary linear regression (Friedman and Wall,

2005)). Therefore, the age effects on cortical thickness do not artificially
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increase the cross validated performance measures, but accounting for them

could improve the predictions and we tried to incorporate age information in

the learning process, in order to improve disease severity predictions. How-

ever, the experiments with multiple methods were unsuccessful with the best

results reached by including the subject age in the domain adaptation step

so that the response variable in PLS was constructed based on subject’s site

and age information. However, by doing this the performance of the model

dropped considerably (cross-validated R was 0.44), technically probably due

to increase of the complexity of the domain adaptation. Linearly regressing

out the age information, that is a widely used in dementia related machine

learning applications (Klöppel et al., 2015) and has often improved the pre-

dictions (Tohka et al., 2016), did not work here (R was 0.42 when the age

was regressed out vertex wise before the domain adaptation step and R was

0.30 when the age was regressed out component-wise after the domain adap-

tation). We speculate that these results are due to 1) less pronounced age

related cortical thickness changes in autistic subjects than those of normal

controls (Doyle-Thomas et al., 2013); 2) strong variation in the age related

change according to the disease severity, which undermines the suitability of

severity score independent age corrections; and 3) since the age is one of the

probable sources of the data heterogeneity, possibly projecting the data in

the new space manages to separate some of age effects into their own com-

ponents aiding machine learning algorithm to handle the nuisance variability

caused by age. Finally, results with the data set with a more restricted age
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range are reported in the supplement (Section 5) suggesting that, for our

method, it is more important to have a larger number of training subjects

than to try to balance the subject demographics across the sites.

Haar et al. (2016) suggested that their poor decoding accuracy for classi-

fication of multisite ABIDE data was not only because of between-site varia-

tion, but also weak anatomical abnormalities in the ASD pathology which of-

fer very limited diagnostic value. Substantial variability within each diagnos-

tic group complicates classification, hence our decision to predict symptom

severity from neuroimaging measures. The prediction of raw ADOS scores

based on MRI and cortical thickness was previously investigated by Sato et al.

(2013). They predicted ADOS from MRI based inter-regional thickness cor-

relations with SVR as the machine learning method. The method yielded

a cross-validated Spearman correlation of 0.36 with a dataset consisting of

MRIs of 82 autistic patients acquired at three different sites with a stan-

dardized protocol. To compare our results to theirs, we calculated the cross-

validated Spearman correlation between the estimated and observed severity

scores, which was 0.51. The higher correlation value that we obtained must

be understood in the context of the following differences between our study

and that performed by Sato et al. (2013). First, our data are from 4 different

sites without any standardization protocol, so the between-site variation was

an additional challenge in the current work. Second, Sato et al. (2013) used

inter-regional thickness correlation for estimation ADOS score, instead, we

determined a predictive score for each distinct brain region and then com-
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bined them via a linear regression model to estimate severity score. Third,

we used severity score instead of using raw ADOS score. Lastly, our method

was evaluated with almost double the sample size (156 subjects).

In addition to the PLS-based domain adaptation, the other novel tech-

nical characteristic of the proposed method was our treatment of the whole-

brain problem of prediction as a set of regional problems of prediction. We

divided the cortical thickness measures into regional subsets, determined a

predictive score for each region separately, and then combined the regional

scores into a whole brain measure of disease severity. This enabled us to

divide the problem into several sub-problems with lower complexity while

better retaining the original spatial resolution of the thickness measures. We

hypothesized that both of these properties are important for successful pre-

dictions: Khundrakpam et al. (2015) have previously demonstrated that a

fine parcellation of the cortical thickness measures was advantageous for age

estimation within healthy children. However, increasing spatial resolution re-

sults in higher dimensionality, which increases the complexity of the model.

Specifically, in the domain adaptation stage, finding a low dimensional site-

independent representation for the high dimensional data (81924 cortical

thickness measures) is considerably more challenging than is the problem for

any regional subset.

Moreover, the regional predictions are themselves of value, providing in-

sight into which brain regions are related to a particular behaviour, and how

strongly the measures in those regions predict that behaviour. Here we have
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shown that cortical thickness predicts autism symptom severity in a number

of regions, and have ranked the strongest predictors. Each of these predictor

regions has been associated with autism in previous research, but the much

larger sample size provided by the ABIDE data lends confidence to these find-

ings. As expected based on existing literature and given that problems with

communication are part of the definition of ASD, a number of the strongest

predictors are related to language: the left pars triangularis, rolandic opercu-

lum, superior temporal gyrus, and angular gyrus. The left pars triangularis

is part of Broca’s area, which is critical for language production, and has

been implicated in autism in numerous studies (Just et al., 2004; Zielinski

et al., 2014; Lewis et al., 2014). The left rolandic operculum is involved in

the production of prosody, a lack of which is one of the hallmarks of autis-

tic speech, as well the perception of prosody, and shows abnormal levels of

activiation in ASD (Paul et al., 2005; Gebauer et al., 2014). The superior

temporal gyrus also does acoustic processing important for language, as well

as housing Wernicke’s area, a core area for receptive language ability, and

is consistently reported to show abnormalities in ASD (Lewis et al., 2014;

Zilbovicius et al., 2000; Bigler et al., 2007). The angular gyrus has also been

shown to be important for language (Binder et al., 1997), and to exhibit

abnormalities in ASD (Just et al., 2004). Issues with social interaction is

also a core feature of ASD. The superior temporal gyrus is also involved in

non-language social cognition (Adolphs, 2001), as well as the adjacent supe-

rior temporal sulcus (Allison et al., 2000); both have been implicated in this
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domain in ASD (Di Martino et al., 2009; Zilbovicius et al., 2006; Redcay,

2008). The bilateral intraparietal sulci are also involved in social cognition.

They are considered part of the mirror neuron system (Rizzolatti and Fabbri-

Destro, 2010), and play a role in interpreting the intentions of the actions of

others (Hamilton and Grafton, 2006). Another core aspect of social cogni-

tion is social orienting/joint attention, which has been argued to be defective

in ASD (Mundy et al., 1990; Dawson et al., 2004). These aspects of social

cognition have been linked to the anterior cingulate cortex and to dorsal me-

dial frontal cortex, both of which show abnormalities in ASD (Mundy et al.,

2009; Mundy, 2003). The third part of the ASD definition involves repeti-

tive patterns of behaviour, exemplified by stereotypic body movements such

as hand-flapping. Such repetitive behaviours have been suggested to relate

to basal ganglia dysfunction in the inhibition of supplementary motor and

motor areas (Mink, 1996).

In addition to these core behavioural abnormalities, motor and sensory

processing abnormalities are pervasive in children and adults with autism

(Smith, 2004; Marco et al., 2011; Leekam et al., 2007). Individuals with

autism exhibit a range of motor abnormalities (Smith, 2004), and both hypo-

and hyper-sensitivity to visual, auditory, and tactile inputs (Leekam et al.,

2007). In this respect, it is interesting to note that some of the strongest

predictors seen here are in regions associated with low level processing of

motor, visual, auditory, and tactile inputs. Abnormalities in motor behav-

iors in ASD are associated with abnormalities in motor and supplementary
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motor cortex (Mostofsky et al., 2007). Visual processing involves the striate

cortex within the calcarine fissure, and the surrounding cortex, including the

cuneus, the caudal portion of the precuneus, and the lingual gyrus. Findings

of abnormalities in visual cortex in ASD are common (Barbeau et al., 2015;

Samson et al., 2012; Philip et al., 2012; Green et al., 2013). Auditory process-

ing involves Heschl’s gyrus and the surrounding cortex within the superior

temporal gyrus. Individuals with ASD have been reported to show abnor-

malities in these areas (O’Connor, 2012; Samson et al., 2011; Green et al.,

2013). Tactile processing involves the postcentral gyrus, which also exhibits

abnormalities in individuals with ASD (Rumsey et al., 1985; Horwitz et al.,

1988; Kaiser et al., 2015).

A possible limitation of the study is that the severity scores that we aim

to predict are integer valued with a limited range (as can be observed in Fig.

3) and therefore the continuity assumption made in the regression models

might not be correct. A possible solution would be the use of the methods

for ordinal regression, where the response variables are treated as ordered

categories and not as continuous variables (Bender and Grouven, 1997; Chu

and Keerthi, 2007). However, since the severity scores also carry metric

information (Gotham et al., 2009), not used in the ordinal regression,it is

unclear if ordinal regression models would be suitable for the task.

It bears repeating that the methods described here for research with

multi-site, multi-protocol data are applicable to any such data. The re-

sults here served to demonstrate the validity of the methods, and their use in
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identifying and ranking regional brain measures as predictors of behaviour.

But the brain measures need not be cortical thickness, and the predicted

behavioural measures need not be the severity of symptoms of ASD.

Acknowledgments

The authors wish to acknowledge CSC – IT Center for Science Ltd., Fin-

land, for the allocation of computational resources. This research has been

supported by The Azrieli Neurodevelopmental Research Program in part-

nership with Brain Canada Multi-Investigator Research Initiative (MIRI)

grant to BSK, JDL and ACE. This research was enabled in part by support

provided by Calcul Quebec (www.calculquebec.ca) and Compute Canada

(www.computecanada.ca).

This project has received funding from the Universidad Carlos III de

Madrid, the European Union’s Seventh Framework Programme for research,

technological development and demonstration under grant agreement nr 600371,

el Ministerio de Economı́a y Competitividad (COFUND2013-40258) and

Banco Santander.

References

Abdi, H., 2007. Singular value decomposition (svd) and generalized singular

value decomposition. Encyclopedia of measurement and statistics. Thou-

sand Oaks (CA): Sage , 907–912.

44



Adolphs, R., 2001. The neurobiology of social cognition. Current opinion in

neurobiology 11, 231–239.

Allison, T., Puce, A., McCarthy, G., 2000. Social perception from visual

cues: role of the sts region. Trends in cognitive sciences 4, 267–278.

Amaral, D.G., Schumann, C.M., Nordahl, C.W., 2008. Neuroanatomy of

autism. Trends in neurosciences 31, 137–145.

Anderson, M.J., Robinson, J., 2001. Permutation tests for linear models.

Australian & New Zealand Journal of Statistics 43, 75–88.

Auzias, G., Breuil, C., Takerkart, S., Deruelle, C., 2014. Detectability of brain

structure abnormalities related to autism through mri-derived measures

from multiple scanners, in: Biomedical and Health Informatics (BHI), 2014

IEEE-EMBS International Conference on, IEEE. pp. 314–317.

Auzias, G., Takerkart, S., Deruelle, C., 2016. On the influence of confounding

factors in multi-site brain morphometry studies of developmental patholo-

gies: Application to autism spectrum disorder. IEEE J Biomed Health

Inform 20, 810 – 817.

Barbeau, E.B., Lewis, J.D., Doyon, J., Benali, H., Zeffiro, T.A., Mottron, L.,

2015. A greater involvement of posterior brain areas in interhemispheric

transfer in autism: fmri, dwi and behavioral evidences. NeuroImage: Clin-

ical 8, 267–280.

45



Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L., Reiss,

A.L., 2004. White matter structure in autism: preliminary evidence from

diffusion tensor imaging. Biological psychiatry 55, 323–326.

Bauman, M.L., 1991. Microscopic neuroanatomic abnormalities in autism.

Pediatrics 87, 791–796.

Bender, R., Grouven, U., 1997. Ordinal logistic regression in medical re-

search. Journal of the Royal College of Physicians of London 31, 546–551.

Bigler, E.D., Mortensen, S., Neeley, E.S., Ozonoff, S., Krasny, L., Johnson,

M., Lu, J., Provencal, S.L., McMahon, W., Lainhart, J.E., 2007. Superior

temporal gyrus, language function, and autism. Developmental neuropsy-

chology 31, 217–238.

Binder, J.R., Frost, J.A., Hammeke, T.A., Cox, R.W., Rao, S.M., Prieto,

T., 1997. Human brain language areas identified by functional magnetic

resonance imaging. The Journal of Neuroscience 17, 353–362.

Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for

optimal margin classifiers, in: Proceedings of the fifth annual workshop on

Computational learning theory, ACM. pp. 144–152.

Button, K.S., Ioannidis, J.P., Mokrysz, C., Nosek, B.A., Flint, J., Robinson,
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Klöppel, S., Peter, J., Ludl, A., Pilatus, A., Maier, S., Mader, I., Heimbach,

B., Frings, L., Egger, K., Dukart, J., et al., 2015. Applying automated

mr-based diagnostic methods to the memory clinic: A prospective study.

Journal of Alzheimer’s Disease 47, 939 – 954.

52



Kostro, D., Abdulkadir, A., Durr, A., Roos, R., Leavitt, B.R., Johnson,

H., Cash, D., Tabrizi, S.J., Scahill, R.I., Ronneberger, O., et al., 2014.

Correction of inter-scanner and within-subject variance in structural mri

based automated diagnosing. NeuroImage 98, 405–415.

Leekam, S.R., Nieto, C., Libby, S.J., Wing, L., Gould, J., 2007. Describing

the sensory abnormalities of children and adults with autism. Journal of

autism and developmental disorders 37, 894–910.

de Leeuw, J., 2007. Derivatives of generalized eigensystems with applications.

UCLA Department of Statistics Papers , 1–28.

Lefebvre, A., Beggiato, A., Bourgeron, T., Toro, R., 2015. Neuroanatomical

diversity of corpus callosum and brain volume in autism: meta-analysis,

analysis of the autism brain imaging data exchange project, and simula-

tion. Biological psychiatry 78, 126 – 134.

Lewis, J.D., Evans, A., Pruett, J., Botteron, K., Zwaigenbaum, L., Estes, A.,

Gerig, G., Collins, L., Kostopoulos, P., McKinstry, R., et al., 2014. Net-

work inefficiencies in autism spectrum disorder at 24 months. Translational

psychiatry 4, e388.

Lewis, J.D., Theilmann, R.J., Townsend, J., Evans, A.C., 2013. Network

efficiency in autism spectrum disorder and its relation to brain overgrowth.

Frontiers in human neuroscience 7, 845.

53



Lord, C., Jones, R.M., 2012. Annual research review: Re-thinking the clas-

sification of autism spectrum disorders. Journal of Child Psychology and

Psychiatry 53, 490–509.

Lord, C., Risi, S., Lambrecht, L., Cook Jr, E.H., Leventhal, B.L., DiLa-

vore, P.C., Pickles, A., Rutter, M., 2000. The autism diagnostic observa-

tion schedule—generic: A standard measure of social and communication

deficits associated with the spectrum of autism. Journal of autism and

developmental disorders 30, 205–223.

Lyttelton, O., Boucher, M., Robbins, S., Evans, A., 2007. An unbiased iter-

ative group registration template for cortical surface analysis. Neuroimage

34, 1535–1544.

Marco, E.J., Hinkley, L.B., Hill, S.S., Nagarajan, S.S., 2011. Sensory process-

ing in autism: a review of neurophysiologic findings. Pediatric Research

69, 48R–54R.

Mink, J.W., 1996. The basal ganglia: focused selection and inhibition of

competing motor programs. Progress in neurobiology 50, 381–425.

Mostofsky, S.H., Burgess, M.P., Larson, J.C.G., 2007. Increased motor cortex

white matter volume predicts motor impairment in autism. Brain 130,

2117–2122.

Mundy, P., 2003. Annotation: The neural basis of social impairments in

54



autism: the role of the dorsal medial-frontal cortex and anterior cingulate

system. Journal of Child Psychology and psychiatry 44, 793–809.

Mundy, P., Sigman, M., Kasari, C., 1990. A longitudinal study of joint

attention and language development in autistic children. Journal of Autism

and developmental Disorders 20, 115–128.

Mundy, P., Sullivan, L., Mastergeorge, A.M., 2009. A parallel and

distributed-processing model of joint attention, social cognition and

autism. Autism research 2, 2–21.

Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange, N.,

Bigler, E.D., Lainhart, J.E., Anderson, J.S., 2013. Multisite functional

connectivity mri classification of autism: Abide results. Frontiers in human

neuroscience 7.

O’Connor, K., 2012. Auditory processing in autism spectrum disorder: a

review. Neuroscience & Biobehavioral Reviews 36, 836–854.

Pan, S.J., Yang, Q., 2010. A survey on transfer learning. Knowledge and

Data Engineering, IEEE Transactions on 22, 1345–1359.

Paul, R., Augustyn, A., Klin, A., Volkmar, F.R., 2005. Perception and

production of prosody by speakers with autism spectrum disorders. Journal

of autism and developmental disorders 35, 205–220.

Philip, R.C., Dauvermann, M.R., Whalley, H.C., Baynham, K., Lawrie, S.M.,

Stanfield, A.C., 2012. A systematic review and meta-analysis of the fmri

55



investigation of autism spectrum disorders. Neuroscience & Biobehavioral

Reviews 36, 901–942.

Qian, J., Hastie, T., Friedman, J., Tibshirani, R., Simon, N., 2013. Glmnet

for matlab, 2013. http://www.stanford.edu/~hastie/glmnet_matlab/

.

Raznahan, A., Lenroot, R., Thurm, A., Gozzi, M., Hanley, A., Spence, S.J.,

Swedo, S.E., Giedd, J.N., 2013. Mapping cortical anatomy in preschool

aged children with autism using surface-based morphometry. NeuroImage:

Clinical 2, 111–119.

Raznahan, A., Lerch, J.P., Lee, N., Greenstein, D., Wallace, G.L., Stockman,

M., Clasen, L., Shaw, P.W., Giedd, J.N., 2011. Patterns of coordinated

anatomical change in human cortical development: a longitudinal neu-

roimaging study of maturational coupling. Neuron 72, 873–884.

Redcay, E., 2008. The superior temporal sulcus performs a common function

for social and speech perception: implications for the emergence of autism.

Neuroscience & Biobehavioral Reviews 32, 123–142.

Rizzolatti, G., Fabbri-Destro, M., 2010. Mirror neurons: from discovery to

autism. Experimental Brain Research 200, 223–237.

Rojas, D.C., Peterson, E., Winterrowd, E., Reite, M.L., Rogers, S.J., Tregel-

las, J.R., 2006. Regional gray matter volumetric changes in autism asso-

56



ciated with social and repetitive behavior symptoms. BMC psychiatry 6,

56.
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