

SUPPORT VECTOR MACHINE AND DEEP LEARNING IN

MEDICAL APPLICATIONS

Julius Kallio

 University of Tampere

 Faculty of Natural Sciences

 M.Sc. Thesis

 Supervisor: Martti Juhola

 i

University of Tampere

Faculty of Natural Sciences

Master’s Degree Programme in Computational Big Data Analytics

JULIUS KALLIO: Support Vector Machine and Deep Learning in Medical Applica-

tions

M.Sc. Thesis, 45 pages

July 2017

Deep learning is a new field in machine learning that focuses mainly on deep neural net-

works. In this thesis, we focus on machine learning and deep learning, present support

vector machine and neural networks, and then we study some medical research in which

these methods have been applied. The main deep learning methods in this thesis are con-

volutional neural networks and recurrent neural networks. After presenting the medical

applications we also check some other applications of deep learning. Then we orient to

some tools that can be used to implement deep learning algorithms and see how a recur-

rent neural network could be implemented by using TensorFlow.

Keywords: deep learning, machine learning, neural networks, support vector machine

 ii

Contents

1. Introduction ... 1

1.1. Structure of this thesis .. 1

2. Machine Learning ... 3

2.1. Types of learning ... 3

2.2. Support Vector Machine (SVM) .. 4

2.3. Neural Networks ... 5

2.3.1. Artificial Neural Network (ANN) .. 6

2.3.2. Recurrent Neural Network (RNN) ... 8

2.3.3. Feedforward Neural Network (FFNN) .. 12

2.3.4. Self-Organizing Map (SOM) .. 13

2.4. Deep Learning ... 14

2.4.1. Deep Belief Neural Network (DBNN) ... 15

2.4.2. Convolutional Neural Network (CNN) 15

3. SVM and Deep Learning in Medical Sciences .. 18

3.1. SVM in classification of medical images .. 18

3.1.1. Using SVM.. 19

3.1.2. Results ... 19

3.2. Multi-dimensional RNNs in segmentation of 3D data 20

3.2.1. Using RNNs ... 21

3.2.2. Results ... 23

3.3. CNN in chest pathology ... 24

3.3.1. Using CNN ... 24

3.3.2. Results ... 26

4. Deep Learning in Non-Medical Applications .. 28

4.1. Natural Language Processing (NLP) ... 28

4.2. Robotics .. 29

5. Tools for Deep Learning .. 31

5.1. R language .. 31

5.2. Python language .. 36

5.3. Spark ... 39

5.4. TensorFlow... 39

5.4.1. Implementing RNN .. 39

6. Conclusion ... 41

References .. 43

1

1. Introduction

Deep learning has been a hot topic for a while. It has a large scale of applications in

different sciences and it has usually provided amazingly accurate results to researchers.

In this thesis we will take a look at deep learning methods and see how them have been

applied especially in medical sciences.

1.1. Structure of this thesis

Deep learning is a part of machine learning. For that reason we will first discuss about

machine learning. We present briefly the idea of learning, discuss about the differences

between supervised and unsupervised learning and take a look at some example algo-

rithms of them. Then we study briefly the theory between a support vector machine that

is later applied in a medical application. After that we start studying different types of

neural networks and start talking about deep learning. The main purpose of this second

chapter is to give a basic information of different learning processes and to show theories

behind different methods that are later applied in some applications.

In the third chapter we study three different medical researches. The first one of them

includes an application of a support vector machine, the second one includes an applica-

tion of a recurrent neural network, and the last one includes an application of a convolu-

tional neural network. We present the used methods, the problems that have been solved,

and the results that the methods gave to authors. The main purpose of this chapter is to

show that deep learning is really applied in medical applications and to explain what kind

of problems it has been used to solve.

In the fourth chapter we study briefly two non-medical applications of deep learning.

Those applications are natural language processing and robotics. The main purpose of

this chapter is to show how useful the deep learning methods are and to give more prac-

tical examples of their usage.

The fifth chapter focuses on the tools of deep learning. The programming languages

in that chapter are R and Python that are quite well-known and widely used in machine

learning and in deep learning. We present a large scale of their libraries that are useful in

deep learning. Then we study something about Apache Spark and its libraries. After

Spark we will take a look at TensorFlow that is another well-known and widely used tool

2

for deep learning. We will also check how the methods of TensorFlow can be used to

implement a recurrent neural network. The main purpose of this chapter is to provide a

useful information to those who are interested to implement their own deep learning al-

gorithms.

The last chapter is just a short conclusion of this thesis.

3

2. Machine Learning

According to Stephen Marsland (2015), “machine learning is about making computers

modify or adapt their actions so that these actions get more accurate, where accuracy is

measured by how well the chosen actions reflect the correct ones” [1]. We actually want

to make our machines to learn from data. If we want to describe this with human behav-

ioural terms, we can say that we try to make our machines to so intelligent that they learn

from experience.

To understand machine learning better, we could imagine a computer that plays

some game against us. At first, we beat it very easily, but after several games it starts

beating us. Finally, it gets so good that we never win it again. The computer has learned

from the played games and is now able to use the same strategies against people.

2.1. Types of learning

Sometimes we have the previous experience to use, but sometimes we only have the test

data itself and we can only try to find similarities between the data points to learn from

it. In general, we talk about two different types of learning: supervised learning and un-

supervised learning.

In supervised learning, we use a training set of examples whose correct responses

are known [1]. Based on that information, the algorithm generalises to respond correctly

to all possible inputs [1]. The training set consists a set of input data that has a target data,

which is the answer that the algorithm should produce, attached. The training set is usu-

ally written in a form (𝒙𝑖, 𝒕𝑖) where 𝒙𝑖 are the inputs, 𝒕𝑖 are the targets and 𝑖 is an index

running from 1 to 𝑁.

 Supervised learning is used in the example in which the computer learns to play

some game. All the previous games form the experience that is in other words our training

set, and by learning from it the computer wins every game that it plays.

 Supervised learning is the most common type of learning [1]. A general example

of a supervised learning algorithm is 𝑘-nearest neighbors algorithm that classifies every

test data point by finding 𝑘 nearest neighbors from the training set. Because the training

set has already been classified, the algorithm can find the most likely class to every test

data point by analysing the classes of those nearest neighbors from the training set.

4

Supervised learning is widely used in statistical methods too, for example in re-

gression models. Another good example of supervised learning methods are Bayesian

networks, Markov models and support vector machines (SVM).

In unsupervised learning, the algorithm tries to identify similarities between the

inputs without any training set [1]. We do not know the outputs for any test data points

and for that reason we cannot build for example any regression model. So, we try to

cluster inputs that are similar together. For example, if we have a 2-dimensional data that

we can draw in an xy coordinate system, then we can see how close the data points are

to each other and we want to create an algorithm that find the closest data points and puts

them into the same cluster.

 A classic example of an unsupervised learning algorithm is 𝑘-means clustering. In

this algorithm, we first define 𝑘. Then the algorithm creates 𝑘 clusters, puts some random

data points from test data to those clusters (one data point into one cluster) and sets the

data point values to the means of the clusters as start values. Then the algorithm sets every

data point to a cluster whose mean is the closest to its value, and then updates that cluster

mean. When all the data points have been clustered, the algorithm starts this again by

using the current means as start values. This is repeated until the start values do not

change anymore.

 Unsupervised learning is used a lot in neural computing. Good examples of neural

networks that are based on unsupervised learning are self-organizing map (SOM) and

adaptive resonance theory (ART).

2.2. Support Vector Machine (SVM)

Support vector machine (SVM) is a supervised learning model that was originally intro-

duced by Vapnik in 1992 [2]. SVM is one of the most widely used algorithms in modern

machine learning.

Basically, the idea in SVM is to fit a line (optimal hyperplane) between two differ-

ent classes in a multi-dimensional dataset so that the distance between marginal levels is

as great as possible and not a single data point exists between the marginals [2]. That has

been done in Figure 2.1.

5

Figure 2.1: Classifying a 2-dimensional dataset with SVM. Source: <http://docs.opencv.org/2.4/doc/tuto-

rials/ml/introduction_to_svm/introduction_to_svm.html>.

2.3. Neural Networks

Neural networks are a small part of artificial intelligence (AI) [3]. A single neural network

consists of layers of similar neurons. Usually it has at least an input layer and an output

layer. There is a black box between the input and output layers as in Figure 2.2. The

process that happens in the black box is supervised learning if we have specified the ideal

output [3]. If ideal outputs are not provided, then the process is unsupervised learning [3].

In supervised learning we teach the neural network to give the ideal output, and in unsu-

pervised learning we teach the network to group the input data [3].

6

Figure 2.2: A neural network with input layer, output layer and black box between them.

 The input and output patterns are arrays that consist of floating-point numbers. For

example, the input could be [1.00, 4.35, 0.38] and the output could be [2.84, −5.02].

Now we say that the input has three neurons and the output has two neurons. The number

of neurons does not change, even if you restructure the interior of the neural network.

 When a neural network is created, it has to be trained. Training is the process in

which the neural network is adapted to make predictions from data [3].

2.3.1. Artificial Neural Network (ANN)

An artificial neural network (ANN) is a type of neural network that consists of artificial

neurons. The artificial neuron receives input from one or more sources. This input is often

floating-point or binary.

 An artificial neuron multiplies the inputs by a weight. Then it adds these multipli-

cations and passes this sum to a function 𝑓 that we define as

𝑓(𝑥𝑖, 𝑤𝑖) = 𝜑 (∑(𝑤𝑖 ∗ 𝑥𝑖)

𝑛

𝑖=1

)

where 𝑥𝑖 are the inputs, 𝑤𝑖 are the weights, 𝜑 is an activation function and 𝑛 is the number

of the inputs. The activation function 𝜑 defines the output 𝑦 of the inputs as in Figure

2.3.

7

Figure 2.3: A detailed view of ANN. Source: <https://www.innoarchitech.com/artificial-intelligence-

deep-learning-neural-networks-explained/>.

Figure 2.3 shows an artificial neural network in a very detailed form. Usually, when

a neural network is presented as a diagram, the activation function and intermediate out-

puts are not shown. That kind of diagram can be seen in Figure 2.4.

Figure 2.4: A simplified view of ANN.

8

Figure 2.3 and Figure 2.4 show ANNs with only one building block. However, ANN

can also consist of several artificial neurons that are chained together as in Figure 2.5.

Figure 2.5: ANN with multiple artificial neurons.

In general, the layers between input and output layers are called hidden layers [3].

The number of hidden layers determines the name of the network architecture. The neural

network in Figure 2.5 presents an example of a two-hidden-layer network: neurons 𝑁1

and 𝑁2 form the first hidden layer, and 𝑁3 is the only neuron in the second hidden layer.

2.3.2. Recurrent Neural Network (RNN)

Recurrent neural network (RNN) is a type of artificial neural network in which the con-

nections do not have to flow only from one layer to the next [3]. In other words, connec-

tions are not forced to go only from input layer to output layer. They can come back to

9

the neuron itself, go to a neuron on the same level or go to a neuron on a previous layer.

That is called a recurrent connection [3]. An example of RNN is presented in Figure 2.6.

 The use of RNNs might be challenging because recurrent connections create infi-

nite loops if the network does not know when to stop looping. There are three ways to

prevent those endless loops: using context neurons, calculating output over a fixed num-

ber of iterations, or calculating output until neuron output stabilizes [3, 4].

 A simple RNN usually uses context neurons [3]. It is a special type of neuron that

remembers its input and provides that input as its output the next time that the network

in calculated [4]. For example, if we first give 0.5 as input, the output will be 0 that is

always the first output of a context neuron. If we after that give for example 0.6 as input,

the output will be 0.5. The input connections are never weighted in context neurons, but

of course the output can be weighted like any other connection in a network [4].

10

Figure 2.6: A recurrent neural network. Source: <http://blog.josephwilk.net/ruby/recurrent-neural-net-

works-in-ruby.html>.

2.3.2.1 Elman Neural Network

Elman neural network is a type of RNN from 1990, introduced by Elman [4]. This neural

network provides pattern recognition to time series. There is one input neuron for each

stream that you use to predict and one output neuron for each time slice that you try to

predict. There is a single-hidden layer between input and output layers. A layer of context

neurons takes its input from the hidden layer output and feeds back into the same hidden

layer. Thus, the context layers have the same number of neurons as the hidden layer [4].

2.3.2.2 Jordan Neural Network

Jordan neural network is a type of RNN from 1993, introduced by Jordan [4]. Is has been

created to control electronic systems. It has many similarities with Elman neural network

but the difference between then is that in Jordan neural networks the context neurons can

be fed from the output layer instead of the hidden layer. The output layers can also have

recurrent connections to themselves with no other connections [4].

Figure 2.7: Examples of Elman and Jordan neural network. Source: <http://www.turingfinance.com/mis-

conceptions-about-neural-networks/>.

11

 Figure 2.7 presents examples of Elman and Jordan neural networks. In this figure

we can also see 𝑧−1 nodes that complete 𝑧-transforms to neurons.

2.3.2.3 Long Short-Term Memory (LSTM)

Long short-term memory (LSTM) is a special type of RNN, introduced by Hochreiter

and Schmidhuber in 1997 [5], and improved by Gers et al. in 2000 [6]. LSTM is an ANN

that contains LSTM units instead of other network units [3]. For the LSTM units, it is

typical that there are no activation functions within the recurrent components. It is typical

that LSTM contains blocks that contain several LSTM units [3].

 LSTM blocks contain three or four gates [3]. The gates are implemented with lo-

gistic functions to compute a value between 0 and 1. The gates control the flow of infor-

mation into or out of the memory of the LSTM blocks [3]. There is an input gate to

control when new values are allowed to flow into the memory, a forget gate to control

the process in which the values remain in the memory, and an output gate to control the

process in which the values in memory are used to compute the output activation of the

block [3].

 A memory cell is a more complex LSTM unit. It is built around a central linear unit

with a fixed self-connection. The memory cell gets input from the gate units and it can

just flow the information through the block unchanged [3].

2.3.2.4 Gated Recurrent Unit (GRU)

Gated recurrent unit (GRU) is a gating mechanism in RNN from 2014 [7]. It can be seen

as a simplified version of LSTM. GRU does not have as many parameters as LSTM. For

example, GRU does not have any output gate. The differences between LSTM and GRU

can be seen in Figure 2.8.

12

Figure 2.8: LSTM and GRU. In (a), we can see input, forget and output gates 𝑖, 𝑓 and 𝑜, the memory cell

𝑐 and the new memory cell content 𝑐̃. In (b), we can see reset and update gates 𝑟 and 𝑧, the activation ℎ

and the candidate activation ℎ̃. Source: <https://deeplearning4j.org/lstm.html>.

2.3.3. Feedforward Neural Network (FFNN)

Feedforward neural network (FFNN) is a very common type of an artificial neural net-

work [3]. The term feedforward describes how FFNN processes and recalls patterns.

Every layer contains connections to the next layer but there are no connections that move

backward [3]. Thus, FFNN does not contain cycles and it is then different from RNN. An

example of FFNN is presented in Figure 2.9.

13

Figure 2.9: A sample of FFNN. Source: <https://www.researchgate.net/figure/234055177_fig1_Figure-

61-Sample-of-a-feed-forward-neural-network>.

2.3.4. Self-Organizing Map (SOM)

A self-organizing map (SOM) is a type of neural network that applies unsupervised learn-

ing. It has been published in 1988 by Kohonen [8]. SOM consists of input and output

neurons and it is used to classify the input data into one of several groups. Training data

is provided, as well as the number of the groups into which we wish to classify the data.

SOM classifies together the values that have the most similar characteristics [3].

This process is very similar to clustering algorithms like 𝑘-means clustering. The

difference is that SOM can continue classifying new data beyond the initial data set that

was used for training. SOM is unsupervised, so it figures out the data groups itself, based

on the training data, and then it classifies any future data into similar groups [3].

When the algorithm presents patterns to the input layer, the output neuron is the

winner when it contains the weights most similar to the input [3]. This similarity is cal-

culated by comparing the Euclidean distance between the set of weights from each output

neuron. The shortest distance wins.

Figure 2.10 shows us an example of SOM.

14

Figure 2.10: SOM with three input neurons and nine output neurons arranged in three-by-three grid.

Source: [3].

2.4. Deep Learning

Deep learning is a relatively new set of training techniques for multilayered neural net-

works [3]. It provides several algorithms that can train complex types of neural networks.

We can talk about deep learning when our neural network has more than two hidden

layers [3] as an example network in Figure 2.11.

15

Figure 2.11: A deep neural network with three hidden layers. Source:

<https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-

deep-learning>.

2.4.1. Deep Belief Neural Network (DBNN)

One of the first applications of deep learning was the deep belief neural network (DBNN)

[3]. It is simply a regular belief network with many layers. Belief networks are different

from regular FFNN because the input to DBNN must be binary, the output is the class to

which the input belongs, and DBNN can generate plausible input based on a given out-

come [3]. The input of FFNN is a decimal number, the output can be a class or a numeric

prediction, and FFNNs cannot perform like the DBNNs [3].

2.4.2. Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is a special kind of neural network that processes

data with a grid-like topology [3]. CNN has been originally created in 1980 by Fukushima

[3]. It has been widely used in medical sciences because it successes very well in practical

applications. An example of CNN can be seen in Figure 2.12.

 CNN has similarities with SOM. First, CNNs and SOMs do not follow the standard

treatment of input vectors as the other neural networks do. Second, they map their input

into 2D grids or higher dimension objects such as 3D boxes. The difference between

CNN and SOM is that CNN takes image recognition to higher level of capability.

16

Figure 2.12: A CNN recognizing boat from a picture. Source: <http://www.wildml.com/2015/11/under-

standing-convolutional-neural-networks-for-nlp/>.

2.4.2.1 Convolutional layer

One typical layer of CNN is a convolutional layer that uses mathematical convolution to

process the data [3]. Convolution is an operation on two functions 𝑓 and 𝑔 that generates

a new function 𝑓 ∗ 𝑔. Convolution can be defined as

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝑡 − 𝑥)𝑔(𝑥)𝑑𝑥

∞

−∞

.

Convolution is commutative, and thus we can equally define it as

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝑥)𝑔(𝑡 − 𝑥)𝑑𝑥

∞

−∞

.

When the functions 𝑓 and 𝑔 are discrete, the convolution is defined as

(𝑓 ∗ 𝑔)(𝑛) = ∑ 𝑓(𝑘)𝑔(𝑛 − 𝑘)

∞

𝑘=−∞

.

Often, when the mathematical convolution is applied in machine learning, the input is a

finite multidimensional data array and the kernel is a multidimensional array of variables

that are adapted by the learning algorithm. The convolutions are usually used to over

more than one axis at a time [3].

17

 The main purpose for a convolutional layer is to detect features such as edges, lines,

blobs of color and other visual elements [3]. To detect these features, the convolutional

layer uses filters that are square-shaped objects that scan over the image. The more filters

we give to a convolutional layer, the more features it can detect.

2.4.2.2 Max-pool layer

Max-pool layers downsample a 3D box to a new one with smaller dimensions [3]. Max-

pool layers are typically placed to follow a convolutional layer as in Figure 2.13. In this

layer, the size of the dimensions of the 3D boxes are decreased.

Figure 2.13: An example of an operation in a max-pool layer. Source: <http://cs231n.github.io/convolu-

tional-networks/>.

2.4.2.3 Dense layer

Dense layer is a layer type that is also used in FFNNs [3]. It connects every neuron in the

previous layer’s output 3D box to each neuron in the dense layer. Then it passes the result

vector through an activation function.

18

3. SVM and Deep Learning in Medical Sciences

In this chapter we will study three different medical researches in which SVM and some

deep learning methods are applied. The goal is to present the problems and what kind of

methods have been used to solve them.

3.1. SVM in classification of medical images

Vanitha and Venmathi (2011) [9] wanted to find a method to identify microbiological

types without human supervision. In other words, they wanted to find a suitable learning

method to classify bacterial types from medical images. Finally, they built a method that

consists of three steps:

1. Pre-processing

2. Feature extraction

3. Bacteria classification using support vector machine (SVM) classifier.

These steps are presented in Figure 3.1.

Figure 3.1: The process diagram. Source: [9].

In the first step, the goal is simply to remove the noise from the image that is given

as input data. This is required, because the feature extraction in the next step gives poor

results without this step.

The second step consists of three approaches: statistical approach, syntactic or

structural approach and spectral approach. In the statistical approach, there is a multidi-

mensional vector that presents a set of statistically extracted features that define the pat-

tern. In the syntactic approach, texture primitives that define the texture are spatially or-

ganized according to placement rules to generate complete pattern. In the syntactic pat-

tern recognition, a formal analogy is drawn between the language syntax and the struc-

tural pattern. In the spectral approach, the textures are defined by spatial frequencies and

evaluated by the texture’s autocorrelation function.

19

The third step is about using SVM to complete the bacterial classification.

3.1.1. Using SVM

Before presenting the use of SVM, the used variables are defined as follows:

1. Let 𝒙 be the input vector with dimension 𝑚0.

2. Let 𝑚1 be the dimension of the feature space.

3. Let 𝑤𝑗 be the linear weights that connect the feature space to the output space (for

𝑗 = 1 to 𝑚1).

4. Let 𝜑𝑗(𝒙) be nonlinear transformations from the input space to the feature space

(for 𝑗 = 1 to 𝑚1). These transformations represent the input supplied to the

weights 𝑤𝑗 via the feature space.

5. Let 𝑏 be the bias, 𝛼𝑖 be the Lagrange coefficients and 𝑑𝑖 be the corresponding

target outputs (for 𝑖 = 1 to 𝑁).

 The hyperplane acting as the decision surface is defined as

∑ 𝛼𝑖𝑑𝑖𝐾(𝒙, 𝒙𝑖) = 0

𝑁

𝑖=1

where 𝐾(𝒙, 𝒙𝑖) = 𝜑𝑇(𝒙)𝜑(𝒙𝑖) is the inner product of two vectors that are induced in the

feature space by 𝒙 and input pattern 𝒙𝑖 pertaining to the 𝑖𝑡ℎ example. This term is referred

to as inner-product kernel where 𝑤 = ∑ 𝛼𝑖𝑑𝑖𝜑(𝒙𝑖)
𝑁
𝑖=1 , 𝜑(𝒙) = [𝜑0(𝒙), … , 𝜑𝑚1

(𝒙)]
𝑇
,

𝜑0(𝒙) = 1 and 𝑤0 = 𝑏.

3.1.2. Results

The input data consisted of 180 bacterial images. 120 images were used for training and

remaining 60 images were used for testing. The pattern vectors (features) were extracted

from those images and provided to SVM as input. The classification accuracy and error

rate were defined as

20

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠

and

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠
.

The process was completed 6 times. Each time the training set contained 20 images

and the test set contained 10 images.

The SVM finally gave a classification efficiency of 97.5% during training phase and

93.33% during testing phase. The results were pretty good, and the classification accu-

racy can still be improved by extracting more features and providing a bigger training

data set.

3.2. Multi-dimensional RNNs in segmentation of 3D data

Andermatt et al. (2016) [10] present a supervised deep learning method that is used to

automatically segment 3D volumes of biomedical image data. The method is based on a

neural network that consists of multi-dimensional gated recurrent units. This method

gives accurate results without a huge amount of training data and without advanced data

pre- or postprocessing.

 Automatic segmentation of biomedical volumetric data is a challenging problem

because of high dimensionality, imaging noise, artifacts and other factors. This problem

could be solved with feed-forward neural networks, but we would then need a large num-

ber of layers. For that reason, the authors have used deep RNNs as their method.

 The dataset was the publicity available MrBrainS challenge dataset that consists of

5 labeled samples and 15 testing samples. The training data contained a label map for

training and another label map for testing. The training map consists of classes for cortical

gray matter (GM), basal ganglia, white matter (WM), WM lesions, cerebrospinal fluid

(CSF), ventricles, cerebellum, brainstem and background. The testing map only defines

classes for GM, WM and CSF.

21

 Andermatt et al. applied two types of RNNs in their research: long short-term

memory (LSTM) and gated recurrent unit (GRU). We will now check the details of how

these RNNs have been applied.

3.2.1. Using RNNs

3.2.1.1 LSTM

The authors used the multi-dimensional Long Short-Term Memory (MD-LSTM) called

PyraMiD-LSTM. It defines two LSTMs for each spatial dimension: the first one pro-

cesses data along that dimension, and the second one in the opposite direction.

3.2.1.2 GRU

The standard GRU is defined as

𝑟𝑗 = 𝜎([𝑊𝑟𝒙]𝑗 + [𝑈𝑟ℎ𝑡−1]𝑗),

𝑧𝑗 = 𝜎([𝑊𝑧𝒙]𝑗 + [𝑈𝑧ℎ𝑡−1]𝑗),

ℎ̅𝑡
𝑗

= 𝜑([𝑊𝒙]𝑗 + [𝑈(𝑟 ⊙ ℎ𝑡−1)]𝑗),

ℎ𝑡
𝑗

= 𝑧𝑗 ⊙ ℎ𝑡−1
𝑗

+ (1 − 𝑧𝑗) ⊙ ℎ̅𝑡
𝑗
,

where 𝒙 is the input data, 𝑟𝑗 is the reset gate, 𝑧𝑗 is the update gate of the hidden unit 𝑗

and the activation is performed in ℎ𝑗. The operator ⊙ represents an elementwise multi-

plication. The functions 𝜎(∙) and 𝜑(∙) stand for the logistic function and the hyperbolic

tangent. 𝑊 and 𝑈 are the weight matrices for the current input and last step’s output data

respectively. Now when the goal is to process 3D data, these equations have been trans-

formed in forms

𝑟𝑗 = 𝜎 (∑(𝑥𝑖 ∗ 𝑤𝑟
𝑖,𝑗

)

𝐼

𝑖

+ ∑(ℎ𝑡−1
𝑘 ∗ 𝑢𝑟

𝑘,𝑗
)

𝐽

𝑘

+ 𝑏𝑟
𝑗
),

𝑧𝑗 = 𝜎 (∑(𝑥𝑖 ∗ 𝑤𝑧
𝑖,𝑗

)

𝐼

𝑖

+ ∑(ℎ𝑡−1
𝑘 ∗ 𝑢𝑧

𝑘,𝑗
)

𝐽

𝑘

+ 𝑏𝑧
𝑗
),

22

ℎ̅𝑡
𝑗

= 𝜑 (∑(𝑥𝑖 ∗ 𝑤𝑖,𝑗)

𝐼

𝑖

+ 𝑟𝑗 ⊙ ∑(ℎ𝑡−1
𝑘 ∗ 𝑢𝑘,𝑗)

𝐽

𝑘

+ 𝑏𝑗),

ℎ𝑡
𝑗

= 𝑧𝑗 ⊙ ℎ𝑡−1
𝑗

+ (1 − 𝑧𝑗) ⊙ ℎ̅𝑡
𝑗
,

where ∗ represents a convolution and 𝑏 is a bias. Because these equations apply convo-

lution, this is called convolutional GRU (C-GRU). Its architecture is presented in Figure

3.2.

Figure 3.2: The architecture of C-GRU. Source: [10].

 The multi-dimensional GRU (MD-GRU) consists of two times 𝐷 C-GRUs, where

𝐷 is the dimensionality of the image data. One C-GRU is needed for each of the two

directions. The architecture of MD-GRU is presented in Figure 3.3.

23

Figure 3.3: The architecture of MD-GRU. Source: [10].

The architecture of the whole network can be seen in Figure 3.4.

Figure 3.4: The network architecture. Source: [10].

3.2.2. Results

The preprocessing step started by using a Gaussian smoothed image that was then sub-

tracted from the original images to produce highpass filtered volumes. In three training

steps, the subvolume size was first increased from 64 × 64 × 8 voxels to 128 × 128 ×

12 and then to 200 × 200 × 15. In the testing phase, the volume was divided into a grid

of equally sized subvolumes of 120 × 120 × 8.

 The authors wanted to compare MD-GRU and MD-LSTM by running the same

setup with the multi-dimensional RNN layers first on MD-GRU and then on MD-LSTM.

The results can be found in the Table 1.

24

Table 3.1: The accuracy values in percent for gray and white matter (GM/WM), cerebrospinal fluid (CSF)

and intracranial volume (ICV). Source: [10].

 GM WM CSF ICV

MD-LSTM 88.09 90.08 82.62 97.56

MD-GRU 87.88 90.15 83.19 97.73

 In the feasibility study, MD-GRU achieved comparable results to the MD-LSTM

in less time with the same settings. This means that MD-GRU has a great potential for

the segmentation of volumetric images.

3.3. CNN in chest pathology

Bar et al. (2015) [11] have presented a CNN that is applied in pathology detection for

chest radiograph data.

3.3.1. Using CNN

The authors used the DeCAF (“Deep Convolutional Activation Feature”) [12] implemen-

tation of CNN that can be seen in Figure 3.5. DeCAF was originally presented by Do-

nahue et al. (2013). It has been used in generic visual recognition and it is a good choice

when the goal is to recognize some patterns from images.

The main interests of the CNN were 5th layer (Decaf5), 6
th layer (Decaf6) and 7th

layer (Decaf7). Decaf5 contains 9216 activations of the last convolutional layer and is the

first set of activations that has been fully propagated through the convolutional layers of

the network. Decaf6 contains 4096 activations of the first fully-connected layer. Decaf7

denotes features taken from the final hidden layer.

25

Figure 3.5: CNN schematic view of the DeCAF CNN. Source: [11].

The CNN was trained with ImageNet that is a well-known non-medical image da-

tabase. In the training step, the CNN was trained over a subset of more than one million

images that are categorized into 1000 categories.

The second baseline descriptor was the “Picture Codes” (PiCoDes) descriptor. It is

a compact high-level representation of popular low-level features (SIFT, GIST, PHOG

and SSIM [13]) which is optimized over a subset of the ImageNet dataset containing

approximately 70,000 images. PiCoDes makes it possible to binarize images with high

performance rates on object category recognition. Local Binary Patterns (LBP) [14] and

GIST were used as descriptors.

The classification was done using SVM with linear kernel using leave-one-out-

cross-validation. There were three accuracy measurements: Sensitivity, Specificity and

the area under the ROC curve (AUC). Sensitivity and Specificity are derived based on

the optimal cut point on the ROC. All the values were standardized (except the binary

ones), so that each column has its mean subtracted and is divided by its standard devia-

tion.

All the steps are presented as a flowchart in Figure 3.6.

26

Figure 3.6: Algorithm flowchart. Source: [11].

3.3.2. Results

The dataset cosists of 93 frontal chest x-ray images from Sheba Medical Center. 37 im-

ages showed a healthy chest, 24 images showed an enlarged heart and 14 images showed

a right pleural effusion. The results can be seen in the Table 3.2, Table 3.3 and Table 3.4.

Table 3.2: The accuracy levels in Right Pleural Effusion Condition process in percent. Source: [11].

 Low Level High Level Deep Fusion

 LBP GIST PiCoDes Decaf L5 Decaf L6 Decaf L7 PiCoDes+Decaf L5

Sensitivity 71.00 79.00 79.00 93.00 86.00 86.00 93.00

Specificity 77.00 92.00 91.00 84.00 86.00 80.00 84.00

AUC 75.00 93.00 91.00 92.00 91.00 84.00 93.00

27

Table 3.3: The accuracy levels in Healthy vs. Pathology process in percent. Source: [11].

 Low Level High Level Deep Fusion

 LBP GIST PiCoDes Decaf L5 Decaf L6 Decaf L7 PiCoDes+Decaf L5

Sensitivity 65.00 68.00 59.00 73.00 89.00 76.00 81.00

Specificity 61.00 66.00 79.00 80.00 64.00 64.00 79.00

AUC 63.00 72.00 72.00 78.00 79.00 72.00 79.00

Table 3.4: The accuracy levels Enlarged Heart Condition process in percent. Source: [11].

 Low Level High Level Deep Fusion

 LBP GIST PiCoDes Decaf L5 Decaf L6 Decaf L7 PiCoDes+Decaf L5

Sensitivity 75.00 79.00 79.00 88.00 79.00 79.00 83.00

Specificity 78.00 81.00 84.00 78.00 88.00 77.00 84.00

AUC 80.00 82.00 87.00 87.00 84.00 79.00 89.00

28

4. Deep Learning in Non-Medical Applications

Deep learning is widely used also in non-medical applications. In this chapter we study

briefly some other common applications of deep learning methods.

4.1. Natural Language Processing (NLP)

Natural language processing (NLP) is a field of computer science that focuses on inter-

actions between computers and human (natural) languages [15]. Artificial intelligence

(AI) is widely used to make computers to understand both written and spoken language

and to create that kind of language by themselves [15].

NLP is a very common application of deep learning [16]. The problems in NLP

are too complex to solve with traditional methods but not too complex to solve with

deep neural networks.

A common deep learning method in NLP is a RNN. It is widely used especially in

speech recognition [17]. The strength of RNN in speech recognition is that we can teach

RNN to process all the previous letters and the previous words, not just the current one.

Thus, RNN uses all the useful information in this process and gives more accurate re-

sults than the other methods that can only process the current word without the previous

knowledge.

RNN is also used in text classification [18]. The power of RNN in text classifica-

tion is that also in this case RNN processes the text as a sequence and uses all the previ-

ous words when classifying a single word. Figure 4.1 shows an example of RNN that

classifies the words of a text “The first fifteen minutes were dry, but by the end I really

enjoyed the lecture.” into positive, neutral and negative classes.

29

Figure 4.1: A recurrent neural network classifying the words a text into positive (+), neutral (0) and neg-

ative (-) classes. Source: <http://cs224d.stanford.edu/>.

Also CNNs have been used in text classification [19]. The sentences are usually

given as input vectors to CNN. Then the CNN processes those input vectors in a very

similar way as pixels of an image. An example of that process can be seen in Figure 4.2.

Figure 4.2: A text classification example with CNN. Source: <http://www.wildml.com/2015/12/imple-

menting-a-cnn-for-text-classification-in-tensorflow/>.

4.2. Robotics

Robotics is a field of engineering and science that is about design, construction, opera-

tion and use of robots [20]. The robots apply AI and thus deep learning is used when

the robots have to do something “intelligent” that is hard to implement with more tradi-

tional methods [21].

30

 A well-known example of intelligent robots are digital cameras that recognize

faces of people before taking the picture. More complex examples are robots that recog-

nize different shapes or different colors.

To recognize more and more complex patterns, the robots use deep and complex

neural networks [21]. Deep learning algorithms have been used, for example, in phones

that recognize the fingerprint of the user.

31

5. Tools for Deep Learning

In this chapter we focus on tools for deep learning. We present R and Python program-

ming languages, some of their libraries and other tools that are usable with them. The

principal references of this chapter are the documentations of the presented tools.

 Visualization is an important part of machine learning [22], and so it is important

in deep learning [23]. For that reason, we are not only interested in the methods for ana-

lyzing the data but we also wish to find tools to visualize the processes.

5.1. R language

R is a language and environment for statistical computing and graphics. It is based on S

language and can be seen as a different implementation of S [24].

R provides a large scale of statistical and graphical techniques. For example, it can

be used for linear and nonlinear modelling, classical statistical tests, time-series analysis,

classification and clustering [24].

There are several R libraries that provide methods for machine learning and deep

learning. Now we will list at some of them and study their properties briefly.

 nnet is a simple and widely used R library to build neural networks. However, it

does not provide tools for complex neural networks because it lets the user to create only

one hidden layer. But for a simple neural computing this is a good choice. nnet can also

be used to plot the neural networks. Figure 5.1 shows an example of a one-hidden-layer

network that has been created and visualized with nnet.

32

Figure 5.1: A one-hidden-layer neural network created and visualized with nnet. In the picture, I1, …, I8

are the input nodes, H1, …, H10 are the hidden neurons, O1 is the output node, and B1 and B2 are bias

nodes. Source: <https://beckmw.wordpress.com/tag/neural-network/>.

 MXNetR is a library that works under MXNet [25]. This library provides tools for

complex FFNNs and for CNNs too. MXNetR also provides a simple method to visualize

the deep neural networks that we have created with it. Figure 5.2 shows an example of a

deep neural network that has been visualized with MXNetR. The CNNs in MXNet are

LeNet [26] networks. The strengths of MXNetR are that it is very fast and easy to use.

33

Figure 5.2: A deep neural network visualized with MXNetR. Source: <https://www.r-bloggers.com/deep-

learning-in-r-2/>.

 darch is a library for deep belief neural networks (DBNN) and Boltzmann ma-

chines. It is also very easy to use. For example, it requires only one function to train the

network.

 deepnet is a small library that does not provide many functions but is still very

powerful. With deepnet library we can create deep FFNNs, DBNNs or restricted

Bolzmann machines and train them with only function.

 H2O is a library that is based on H2O open-source software platform [27]. H2O

has a very special syntax and it is different from many other R libraries, but still it is easy

34

to use. H2O provides a very large scale of tools for deep learning and, as MXNet, it is

very fast. H2O also supports distributed computations and provides a web interface.

 deepr is a library that was developed when H2O library was not yet available. deepr

does not implement any deep learning algorithms but it forwards its tasks to H2O.

 dplyr is a library that provides powerful methods to transform and summarize tab-

ular data with rows and columns in R. With dplyr, we can manipulate data in several

ways with a very short code. This makes the data preprocessing much easier.

 mice is another R library to help with the data preprocessing. This library has been

designed to find missing values from the data and to handle them in an appropriate way.

mice provides several functions for the missing value handling process.

 ggplot2 is a graphical library that provides very powerful visualizations for the

results. Figure 5.3 shows an example visualization of the results of some clustering algo-

rithm.

35

Figure 5.3: The results of some clustering algorithm visualized with ggplot2. Source:

<http://www.sthda.com/english/wiki/ggfortify-extension-to-ggplot2-to-handle-some-popular-packages-r-

software-and-data-visualization>.

 Kohonen is a library to build SOMs for the data. The library name comes from

Finnish academic and researcher Teuvo Kohonen who is known as the creator of SOMs.

This library contains simple functions to process the data and also methods to visualize

the results as in Figure 5.4.

36

Figure 5.4: A visualization of the results of a SOM. The nodes that have the same color belong to the same

cluster and are more similar than two nodes from different clusters. The nodes are some cases from the

data. Source: <http://www.shanelynn.ie/self-organising-maps-for-customer-segmentation-using-r/>.

5.2. Python language

Python [28] is a programming language that provides many useful libraries for deep

learning. Now we will list some of them as examples.

NumPy (“Numeric Python” or “Numerical Python”) is an open library for scientific

computing with Python. It provides useful mathematical tools, such as multi-dimensional

arrays, matrices and a large scale of mathematical functions.

SciPy (“Scientific Python”) is an open source library for scientific computing and

technical computing. It builds on the NumPy array object and is actually a part of the

NumPy stack.

37

Scikit-learn is machine learning library that interoperates NumPy and SciPy. It pro-

vides several machine learning algorithms for classification, regression and clustering,

like support vector machine, random forests and 𝑘-means clustering.

Pandas is a library for data manipulation and analysis. It provides data structures

and operations to process numerical tables and time series.

Matplotlib is a library for Python that provides methods for data visualization. Fig-

ure 5.5 presents a simple neural network that has been visualized with Matplotlib.

Figure 5.5: A simple neural network visualised with Matplotlib. Source: <https://github.com/mi-

loharper/visualise-neural-network>.

Seaborn is a visualization library that has been built on Matplotlib. It provides tools

for advanced visualization. In other words, it can be used to visualize complex result of

some analysis, as in Figure 5.6.

38

Figure 5.6: Advanced visualization with Seaborn. Source: <http://seaborn.pydata.org/generated/sea-

born.pairplot.html>.

Theano [29] is a numerical computation library for machine learning. Its computa-

tions are expressed using NumPy. Theano provides tools, for example, for convolution,

pooling and long-term serialization, and it can be used to implement complex neural net-

works.

Pylearn2 is a machine learning library that is mostly built on Theano. It is very good

choice for neural computing as Theano, but the speciality in Pylearn2 is that it has been

planned to be so flexible that the user can do anything with it.

Caffe is a deep learning framework that supports many types of deep learning archi-

tectures, like CNNs and LSTMs. It is suitable for image classification and segmentation.

There is also Caffe2 that is built on Caffe but includes new features.

39

PyNeurGen is a very large library that supports deep and complex neural networks.

The user can create multiple hidden layers and use different types of neurons.

5.3. Spark

Apache Spark is a fast and general cluster-computing engine for large-scale data pro-

cessing. It can be used with R and Python, but also with Java and Scala. As R and Python,

Spark also has its own libraries for machine learning and deep learning.

 MLLib (“Machine Learning Library”) is a machine learning library for Spark. This

library offers very large scale of machine learning operations and it is easy to use. There

are, for example, basic statistical operations like correlation and hypothesis testing, but

also functions for support vector machine and 𝑘-means clustering.

 SparkNet is a library for training deep neural networks in Spark. It provides tools,

for example, for convolutional layers and max-pool layers so that the user can implement

a CNN.

 Spark can be used in R with a library SparkR or with sparklyr. In Python it can

be used with library pyspark.

5.4. TensorFlow

TensorFlow is an open source software library that was developed by Google Brain Team

[30]. It was released in 2015. TensorFlow can be used with Python and it provides a large

scale of machine learning methods, especially powerful methods to build deep and com-

plex neural networks.

5.4.1. Implementing RNN

Now we will look at how we could implement an RNN in TensorFlow. First of all, Ten-

sorFlow provides a module tf.contrib that includes many RNN operations. It contains the

base interface for all RNN cells, tf.contrib.rnn.RNNCell. We can also find specific inter-

faces for special kinds of RNN cells. For example, with tf.contrib.rnn.LSTMCell we can

implement an LSTM cell, and with tf.contrib.rnn.GRUCell we can implement a GRU

cell. With tf.contrib.rnn.MultiRNNCell we can implement an RNN cell that is composed

sequentially of multiple simple cells.

40

 The easiest way to implement the whole RNN with TensorFlow is to use class

tf.contrib.rnn.static_rnn. It asks a cell and the inputs as parameters and then creates a

RNN that computes the outputs. For more complex RNNs, we have classes like tf.con-

trib.rnn.stack_bidirectional_dynamic_rnn and tf.contrib.rnn.static_state_saving_rnn.

41

6. Conclusion

Deep learning is a field of machine learning that usually provides amazingly accurate

results. Basically, deep learning is about solving tricky problems with deep and complex

neural networks.

The deep learning methods are capable to solve problems that would be extremely

hard or even impossible to solve with traditional machine learning or statistical methods.

This has been noticed in many fields of science and nowadays deep learning methods are

used to solve practical problems that have not had any clear solutions before.

In medical applications, the common problem is that we have to recognize some

patterns from images. A support vector machine is good choice when the pattern is not

too complex. When it is complex, machine learning methods do not help us. Thus, we

need deep learning methods to find the patterns from the images. Multi-dimensional re-

current neural networks and convolutional neural networks are deep and complex neural

networks that process images very carefully by taking the images through several layers.

The accuracy of the result grows when we add new layers into the networks.

The results of deep learning methods in medical applications are not yet shown in

our everyday life but there are other deep learning applications that are. We have learned

that deep learning methods are applied in natural language processing and in robotics. If

we think about writing with computer or phone, we can notice that sometimes there is an

algorithm that tries to automatically recognize our mistakes and to fix them. We can also

find some voice control facilities from the modern smartphones. These are examples of

natural language processing applications in our everyday lives. Robotics are also close to

us if we, for example, take pictures with a digital camera that recognizes faces of people,

or use fingerprint locks in our phones.

There are several tools to implement the machine learning and deep learning meth-

ods. R and Python are good choices for programming languages, and with them we can

use several different libraries or specific tools like Spark or TensorFlow. When we com-

bine these tools in our code, we can make very powerful codes that preprocess our data

carefully, builds an appropriate neural network, trains it carefully, processes the data and

visualizes the results.

Because deep learning is a relatively new field of science, most of the tools are also

new. Actually new tools for deep learning are developed all the time. New methods are

42

needed, and of course people want to use tools that are easy to use but at the same time

fast and capable to solve complex problems.

It seems that deep learning is currently doing some revolution in many sciences.

Deep learning will surely be an important thing also in the future. It will give more and

more power in data analysis and help us to develop new products, like voice command

devices. In medical sciences, it can also provide so accurate results that doctors and biol-

ogists find new treatment methods against some diseases. Thus, deep learning has a huge

potential to change the world in some significant way.

43

Bibliography

[1] Marsland, S. (2015). Machine Learning: An Algorithmic Perspective, second edi-

tion. CRC Press.

[2] Cortes, C., Vapnik, V. (1995). Support-Vector Networks. Machine Learning 20,

273-297.

[3] Heaton, J. (2015). Artificial Intelligence for Humans, Volume 3: Deep Learning

and Neural Networks. Heaton Research Inc, USA.

[4] Lipton, Z., Berkowitz, J., Elkan, C. (2015). A Critical Review of Recurrent Neural

Networks for Sequence Learning. <https://arxiv.org/abs/1506.00019v4>.

[5] Hochreiter, S., Schmidhuber, J. (1997). Long Short-Term Memory. Neural Compu-

tation 9(8), 1735-1780.

[6] Gers, F. (2001). Long Short-Term Memory in Recurrent Neural Networks. PhD

Thesis, Ecole Polytechnique Fédérale de Lausanne.

[7] Chung, J., Gulcehre, C., Cho, K., Bengio, Y. (2014). Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling.

<https://arxiv.org/abs/1412.3555>.

[8] Kohonen, T. (1988). Self-Organization and Associative Memory, second edition.

Springer Series in Information Sciences.

[9] Vanitha, L., Venmathi, A. (2011). Classification of Medical Images Using Support

Vector Machine. International Conference on Information and Network Technol-

ogy. IPCSIT vol. 4. IACSIT Press, Singapore.

[10] Andermatt, S., Pezold, S., Cattin, P. (2016). Multi-dimensional Gated Recurrent

Units for the Segmentation of Biomedical 3D-Data. In: Medical Imaging. Vol. 9785

of Proceedings of the SPIE. p. 978510.

[11] Bar, Y., Diamant, I., Wolf, L., Greenspan, H. (2015). Deep Learning with non-

medical training used for chest pathology identification. Medical Imaging. Vol.

9414 of Proceedings of the SPIE.

[12] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.

(2013). DeCAF: A Deep Convolutional Activation Feature for Generic Visual

Recognition. <https://arxiv.org/abs/1310.1531>.

44

[13] Oliva, A., Torralba, A. (2001). Modeling the Shape of the Scene: A Holistic Repre-

sentation of the Spatial Envelope. International Journal of Computer Vision 42(3),

145-175.

[14] Ojala, T., Pietikäinen, M., Mäenpää, T. (2002). Multiresolution gray-scale and ro-

tation invariant texture classification with local binary patterns. IEEE Trans. Pat-

tern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987.

[15] Kibble, R. (2013). Introduction to Natural Language Processing. University of

London, Department of Computing.

[16] Lopez, M., Kalita, J. (2017). Deep Learning applied to NLP.

<https://arxiv.org/pdf/1703.03091.pdf>.

[17] G. Saon, H. Soltau, A. Emami, and M. Picheny. (2014). Unfolded Recurrent Neural

Networks for Speech Recognition. Fifteenth Annual Conference of the International

Speech Communication Association.

[18] Xu, J., Chen, D., Qiu, X., Huang, X. (2016). Cached Long Short-Term Memory

Neural Networks for Document-Level Sentiment Classification.

<https://arxiv.org/pdf/1610.04989.pdf>.

[19] Johnson, R., Zhang, T. (2015). Effective Use of Word Order for Text Categorization

with Convolutional Neural Networks. Human Language Technologies: The 2015

Annual Conference of the North American Chapter of the ACL, pages 103–112.

[20] Craig, J. (2005). Introduction to Robotics: Mechanics and Control, Third Edition.

Pearson Education, Inc.

[21] Lenz, I., Lee, H., Saxena, A. (2015). Deep Learning for Detecting Robotic Grasps.

The Internal Journal of Robotics Research, 34(4-5):705-724.

[22] Keim, D., Rossi, F., Seidl, T., Verleyzen, M., Wrobel, S. (2012). Information Vis-

ualization, Visual Data Mining and Machine Learning. Dagstuhl Reports, 2(2), pp.

58-83.

[23] Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H. (2015). Understanding

Neural Networks through Deep Visualization. <https://arxiv.org/abs/1506.06579>.

[24] Paradis, E. (2002). R for Beginners. Montpellier (F): University of Montpellier.

45

[25] Tianqi, C., Mu, L., Yutian, L., Min, L., Naiyan, W., Minjie, W., Tianjun, X., Bing,

X., Chiyuan, Z., Zheng, Z. (2015). MXNet: A Flexible and Efficient Machine Learn-

ing Library for Heterogenous Distributed Systems.

<https://arxiv.org/abs/1512.01274>.

[26] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-Based Learning

Applied to Document Recognition. Proc. IEEE, vol. 86, no. 11, pp. 2278-2324.

[27] Candel, A., Parmar, V., LeDell, E., Arora, A. (2015). Deep Learning with H2O.

H2O.ai Inc.

[28] Haltermann, R. (2011). Learning to Program with Python.

<https://www.cs.uky.edu/~keen/115/Haltermanpythonbook.pdf>.

[29] Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,

Bouchard, N., Bengio, Y. (2012). Theano: New Features and Speed Improvements.

Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.

[30] Goldsborough, P. (2016). A Tour of TensorFlow.

<https://arxiv.org/pdf/1610.01178.pdf>.

