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Abstract

Background: Severe acute malnutrition (SAM) has been associated with low polyunsaturated fatty acid (PUFA)
status. However, investigations regarding PUFA status and correlates in children with moderate acute malnutrition
(MAM) from low-income countries are scarce. The aim of this study was to describe whole-blood PUFA levels in
children with moderate acute malnutrition (MAM) and to identify correlates of PUFAs.

Methods: We conducted a cross-sectional study using baseline data from a prospective nutritional intervention trial
among 1609 children with MAM aged 6–23 months in Burkina Faso,West Africa. Whole-blood PUFAs were measured by
gas chromatography and expressed as percent of total whole-blood fatty acids (FA%). Potential correlates of PUFAs
including infection, inflammation, hemoglobin, anthropometry (difference between children diagnosed as having MAM
based on low mid-upper-arm-circumference (MUAC) only, low MUAC and weight-for-height z-score (WHZ), or low WHZ
only) and diet were assessed by linear regression adjusted for age and sex.

Results: Children with MAM had low concentrations of whole-blood PUFAs, particularly n-3 PUFAs. Moreover, children
diagnosed with MAM based only on low MUAC had 0.32 (95% confidence interval (CI), 0.14; 0.50) and 0.40 (95% CI, 0.16;
0.63) FA% lower arachidonic acid (AA) than those recruited based on both low WHZ as well as low MUAC and those
recruited with low WHZ only, respectively. Infection and inflammation were associated with low levels of all long-chain
(LC)-PUFAs, while hemoglobin was positively associated with whole-blood LC-PUFAs.

Conclusion: While PUFA deficiency was not a general problem, overall whole-blood PUFA concentrations, especially of
n-3 PUFAs, were low. Infection, inflammation, hemoglobin, anthropometry and diet were correlates of PUFAs
concentrations in children with MAM.

Trial registration: The trial is registered at http://www.isrctn.com (ISRCTN42569496).
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Introduction
Approximately, 33 million children worldwide suffer from
moderate wasting [1]. The current case definition of mod-
erate acute malnutrition (MAM) includes children with
moderate wasting, defined as a weight-for-height z-score

(WHZ) between -2 and -3, based on the 2006 WHO
growth standard [2], and/or children with a mid-upper-
arm circumference (MUAC) between 115 and 125 mm [3].
Children with MAM are at immediate risk of morbidity
and mortality from infectious diseases [4, 5], and may
present with lipid metabolism disturbances likely to impair
blood levels of polyunsaturated fatty acids (PUFAs) [6].
Tissue concentrations of PUFAs are reflected in the fatty

acid composition of plasma and erythrocytes and the
amount of various PUFAs in these pools has been shown
to be low in children with severe malnutrition [7, 8]. Lim-
ited data exist on early life intake and blood levels of
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PUFAs in low-income countries among malnourished
children [9]. The fatty acid composition in plasma or red
blood cells from children with moderate malnutrition has
only been investigated in two studies with small samples
sizes [7, 10]. However, in these studies included children
with moderate stunting and/or underweight rather than
wasting and used different growth references rather than
the current WHO growth standards from 2006 [2]. No
study was found that investigated fatty acids in children
with MAM based on the above definition and compared
the fatty acid composition in whole-blood between chil-
dren diagnosed with MAM based on low MUAC only,
low MUAC and WHZ, or low WHZ only.
PUFAs play an important role in early life because they

are needed to ensure optimal growth and development of
all organ systems [11]. More specifically, linoleic acid
(LA), α-linolenic acid (ALA), docosahexaenoic acid
(DHA) and arachidonic acid (AA) are involved in numer-
ous metabolic processes in addition to acting as a source
of energy [12]. LA, incorporated in skin ceramides, is of
great importance for skin barrier integrity [13]. DHA is
abundant in the cells of the central nervous system and is
important for brain development [14]. Furthermore, DHA
and AA are incorporated into cell membrane phospho-
lipids and are precursors of lipid mediator signalling mole-
cules [15, 16], which play important roles, among others,
in the immune system [17]. Considering these important
functions, more attention should be paid to PUFA status
in children with MAM and it should be investigated how
blood PUFA composition correlates with factors such as
diet, infections (e.g. diarrhea, malaria), inflammation and
anemia and whether there is an association between
PUFAs and anthropometry.
Previous studies investigating blood PUFA composition

in Burkina Faso, West Africa, have been undertaken in
populations not suffering from MAM and in the central
region [18–20], an area of the country where groundnuts
are widely available and diets are high in fat [21]. Our
study was focused on whole-blood PUFA composition
among 6–23 months-old children with MAM from the
northern region in Burkina Faso, where food insecurity is
common. The aim of the study was 1) to describe whole-
blood PUFA composition in children with MAM and 2)
to identify correlates (e.g. hemoglobin, acute phase pro-
teins, clinical infection, anthropometry and diet) of PUFA
composition.

Subjects and methods
Study setting and participants
This is a cross-sectional study using baseline data from a
prospective nutritional intervention trial among 1609
children with MAM aged 6–23 months. The study took
place in the Province du Passoré, Burkina Faso, at five
local governmental health centers (Gomponsom,

Latoden, Bagaré, Bokin and Samba). The recruitment
area covered a total of 143 villages and a population of
approximately 258,000. Recruitment took place from
September 2013 to August 2014.
Children, aged 6–23 months, residing in the recruit-

ment area were invited to participate if they were diag-
nosed with MAM; based on a WHZ between -3 and -2
based on the 2006 WHO growth standard [2] and/or
MUAC between 115 mm and 125 mm [3]. Children
were excluded if they were treated for SAM, if they
were already in a nutritional program or if they had
been hospitalized within the past 2 months, had med-
ical complications requiring hospitalization, or a se-
vere disability.

Socio-demographic, clinical and diet data collection
A local nurse carried out a clinical examination and col-
lected data on sociodemographic characteristics as well
as 2 week retrospective morbidity. Fever was defined as
an axillary temperature ≥37.5 °C [22]. The nurse also
collected data on breastfeeding and the childrens’ diet
using structured questionnaires administered to the
caretakers by trained interviewers. With regard to
breastfeeding, caretakers were asked whether the child
was ever breastfed, currently breastfed and if so how
many times the child was breastfed in the previous 24 h.
Dietary data was collected using a qualitative 24-h recall
interview. More specifically, caretakers were asked what
the children consumed in the previous 24-h, but no
quantities were recorded. If a particular dish was men-
tioned, caretaker’s were asked to list the ingredients. In-
formation recorded during the qualitative 24-h recall
interview was then used to complete the food group list
section of the questionnaire by answering “yes” or “no”
for each food group. The list of 25 food groups was
based on internationally available questionnaires from
WHO [23], FAO [24] as well as research about diets in
Ouagadougou carried out by the Institut de Recherche
et Développement [25] and adapted to the local context
using dietary information collected during the Treatfood
pilot study. For reasons of simplicity, the 25 food groups
was then aggregated into eight food groups, namely i)
cereals, roots, and tubers; ii) legumes and nuts; iii) liquid
oils and fats; iv) dairy; v) flesh foods; vi) eggs; vii) vitamin
A-rich fruits and vegetables or viii) other fruits and veg-
etables as suggested by WHO [23].

Blood sampling and analyses
During the medical examination up to 2.5 mL of none
fasting venous blood were collected by phlebotomy
using needle and syringe. One drop of blood was used
to carry out rapid antigen test for Plasmodium falcip-
arum malaria (SD Bioline, Malaria antigen P.f.), and a
second drop for determination of hemoglobin level by
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Hemocue (HB 301, Ängelholm, Sweden). A third drop
was used to saturate 1 cm2 of a chromatography paper
strip treated with 50 μg 2,6-di-tert-butyl-4-methylphenol
(butylated hydroxytoluene) and 1000 μg deferoxamine
mesylate salt (both from Sigma-Aldrich, St. Louis, MI,
USA) as described previously [26]. The blood spots were
allowed to air dry and then the paper strip were kept in
cold boxes in the field and stored in zip lock plastic bags
at 4 °C until shipment to Canada. The remaining blood
sample was put into a tube with clot activator (BD tube
reference #368492; Becton, Dickinson and Company,
Franklin Lakes, USA) and transported in a coldbox at 2–
8 °C to the trial lab, where serum was isolated following
centrifugation at 3000 RPM for 5 min (EBA 20 S Het-
tich, Tuttlingen, Germany).
Serum was stored at -20 °C until shipment to a labora-

tory in Germany (Vitamin lab, Willstaett, Germany) for
analysis. Serum C-reactive protein (CRP) and α1-acid
glycoprotein (AGP) were determined using a simple
sandwich enzyme-linked immunosorbant assay [27]. The
thresholds used for defining abnormal values for CRP
and AGP were as follows: CRP >10 mg/L [28] and AGP
>1 g/L [29].
The fatty acid composition of whole-blood was ana-

lysed as previously described [30, 31]. In brief, fatty
acid methyl esters were prepared from dried blood
spots by direct trans-esterification in 14% boron tri-
fluoride in methanol (Pierce Chemicals, Rockford, IL,
USA) with hexane using a convectional block heater
set at 95 °C for 60 min. The organic layer containing
the fatty acid methyl esters was collected for analysis
on a Varian 3900 gas chromatograph with a CP-8400
autosampler (Varian Inc., Mississauga, ON, Canada)
and equipped with a DB-FFAP 15 m × 0.10 mm i.d. ×
0.10 μm film thickness, nitroterephthalic acid modified,
polyethylene glycol, capillary column (J&W Scientific
from Agilent Technologies, Mississauga, ON, Canada).
Fast gas chromatography settings with hydrogen as the
carrier gas were used as previously described [30, 31].
Peaks were identified by retention times through compari-
son to an external mixed standard sample (GLC-462, Nu
Chek Prep Inc., Elysian, MN, USA). Whole-blood fatty
acid concentration is given as (μg fatty acid/100 μL
whole-blood) and fatty acid composition data are
given as weight percent of individual fatty acids rela-
tive to the total fatty acid concentration in each sam-
ple (FA%).
Due to lack of cut-off points for whole-blood Mead

acid and n-6 docosapentaenoic acid (DPA), the ratios
Mead acid:AA, n-6 DPA:DHA or n-6/n-3 PUFAs were
used to define PUFA deficiency. Based on data in healthy
well-nourished Danish infants (Lauritzen et al. unpub-
lished data), we considered a Mead acid:AA ratio > 0.02
as an indicator of PUFA deficiency and a ratio of n-6

DPA:DHA > 0.2 and a n-6/n-3 PUFA ratio > 10.5 was
taken to indicate low n-3 PUFA status.

Anthropometric measures
Anthropometric measurements were done by trained staff,
after standardisation sessions. Weight was measured in
duplicate to the nearest 100 g with an electronic scale
(Seca model 881 1021659, Seca GmbH & Co. KG,
Hamburg, Germany) with double weighing function.
Length was measured in duplicate to the nearest 1 mm
with a wooden length board. MUAC was measured to the
nearest 1 mm at the midpoint between the olecranon and
the acromion process using a standard measuring tape.

Data analysis
The data were doubled entered into Epidata 3.1 software
(Epidata Association, Odense, Denmark). The statistical
analysis and tests were performed in Stata 12 (StataCorp,
College Station, TX, USA). A WHO WHZ table was used
during recruitment at sites, but for data analysis WHZ
scores were recalculated using the STATA package
“zscore06”. Variables were tested for normality using
Shapiro-Wilk tests and histograms. Results are shown as
mean ± standard deviation (±SD) or median (interquartile
range (IQR)). The difference between groups was analyzed
by one-way analysis of variance (ANOVA) and p-values
from post-hoc pairwise comparisons (three comparisons
for each ANOVA test) were Bonferroni adjusted. Multivari-
able linear regression analysis was performed to assess cor-
relates of individual PUFAs in children with MAM adjusted
for age and sex. Statistical significance was set at p < 0.05.

Results
Among the 1609 recruited children, a total of 1572
(97.7%) children had whole-blood fatty acids deter-
mined and 37 (2.3%) did not either due to failure to
draw blood or problems during blood analysis at the
lab. Upon recruitment, 457 (29%), 786 (50%), and 329
(21%) were diagnosed with MAM based on “MUAC
only”, “MUAC and WHZ”, and “WHZ only”, respect-
ively, as previously reported [32]. The median (IQR)
age was 11.3 (8.2; 16) months, half (54.8%) were girls
(Table 1) and 95% were still breastfed. As reported
elsewhere [33], co-morbidity was common. Among
the 1572 children with fatty acid data, 593 (38.1%)
children had been ill in the 2 weeks before admission
based on maternal recall – hereof 318 (20.2%) with
fever and 277 (17.6%) with diarrhea. At recruitment,
629 (40.2%) had a positive malaria test, 275 (17.5%)
had fever and 83 (5.3%) had diarrhea. The mean
hemoglobin was 10.0 (±1.6) g/dL, while the median
CRP and AGP were 2.3 (0.8; 9.5) mg/L and 1.2 (0.9;
1.6) g/L, respectively, and 364 (23.6%) had elevated
CRP and AGP.
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The majority (85.2%) of the children had consumed
cereals, roots and tubers in the previous 24 h, while 285
(18.1%), 237 (15.1%), and 454 (28.9%) had consumed li-
quid oils and fats, legumes and nuts or vitamin A-rich
fruits and vegetables, respectively (Table 4). More than
half (54.5%) of the children had also consumed others
fruits and vegetables. Almost all children were breastfed
(95%) and only 6 (0.4%), 60 (3.8) and 107 (6.8%) had
eaten eggs, dairy and flesh foods, respectively, on the
day before the examination.

Concentrations and correlates of polyunsaturated fatty acids
The mean weight percent of whole-blood LA and ALA
were 16.22 (±2.26) and 0.21 (±0.09) FA%, respectively,
while that of their respective LC-PUFAs, AA and DHA,
were 7.08 (±1.53) and 1.64 (±0.53) FA%, respectively
(Table 2). The mean Mead acid:AA ratio of 0.01 (±0.00)
and the generally low mean weight percent of Mead acid
(0.07 (±0.03) FA%) indicates that essential fatty acid defi-
ciency was not frequent in the participants. Based on
our definition, only 1.21% of the children with MAM
had signs of PUFA deficiency. However, the mean ratio
of 0.25 (±0.10) between n-6 DPA and DHA and the
mean n-6/n-3 PUFA ratio of 11.23 (±2.85) indicates low
n-3 PUFA status. The percents of children who were
above the mean ratio of 0.25 (±0.10) between n-6 DPA
and DHA or 11.23 (±2.85) between n-6 and n-3 PUFA
were 51.2 and 45.8% respectively.
Comparisons using ANOVA showed that children re-

cruited based on MUAC only had lower AA than those
recruited based on both MUAC and WHZ (6.88 vs. 7.15
FA%, p = 0.007) and WHZ only (6.88 vs. 7.19 FA%, p =
0.013), but higher ALA than those recruited based on
WHZ (0.22 vs. 0.20 FA%, p = 0.042) (Table 3). Further-
more, children recruited based on low MUAC only had
lower EPA than those recruited with WHZ only (0.12 vs.
0.14 FA%, p = 0.040). Furthermore, multiple regression

Table 1 Background data, anthropometric, clinical and
biochemical characteristics among 1572 children with moderate
acute malnutrition

Age (months), median (IQR) 11.3 (8.2; 16.0)

6-11, n (%) 854 (54.3)

12-17, n (%) 447 (28.5)

18-23, n (%) 271 (17.2)

Sex

Boys, n (%) 682 (45.2)

Girls, n (%) 710 (54.8)

Breastfeeding status

Still breastfed, n (%) 1488 (94.8)

Not breastfed, n (%) 82 (5.2)

Anthropometrics indicators, mean (±SD)

WHZ −2.2 (±0.5)

HAZ −1.7 (±1.1)

MUAC (mm) 122.6 (±4)

Biochemical

Hemoglobin (g/dL), mean (±SD) 10.0 (±1.6)

AGP (g/L), median (IQR) 1.2 (0.9; 1.6)

CRP (mg/L), median (IQR) 2.3 (0.8; 9.5)

Morbidity

Ill the last two weeks

No, n (%) 967 (61.9)

Yes, n (%) 596 (38.1)

Diarrhea at recruitment

No, n (%) 1489 (94.7)

Yes, n (%) 83 (5.3)

Fever at recruitment

No, n (%) 1295 (82.5)

Yes, n (%) 275 (17.5)

Malaria at recruitment

No, n (%) 936 (59.8)

Yes, n (%) 629 (40.2)

Data are total numbers (%), mean (±SD) or median (interquartile range (IQR):
25th; 75th percentile) as indicated. Numbers in categories may not sum up
1572 due to missing data, e.g. data on breastfeeding were available from
1570, on AGP or CRP from 1541, on ill the last two weeks from 1563, on fever
from 1570 and on malaria from 1565

Table 2 Whole blood fatty acids composition in 1572 children
with moderate acute malnutrition

Mean (±SD)

Saturated fatty acid 45.29 (±2.99)

Monounsaturated fatty acid 22.57 (±3.39)

Polyunsaturated fatty acid (PUFA) 28.52 (±2.78)

n-6 PUFA 25.99 (±2.65)

Linoleic acid (LA) 18:2n-6 16.22 (±2.26)

Dihomo-y-linolenic acid 20:3n-6 0.85 (±0.21)

Arachidonic acid (AA) 20:4n-6 7.08 (±1.53)

Adrenic Acid 22:4n-6 0.95 (±0.26)

n-6 Docosapentaenoic acid (DPA) 22:5n-6 0.38 (±0.12)

n-3 PUFA 2.48 (±0.65)

α-Linolenic acid (ALA) 18:3n-3 0.21 (±0.09)

Eicosapentaenoic acid (EPA)a 20:5n-3 0.13 (0.10; 0.18)

n-3 Docosapentaenoic acid 22:5n-3 0.43 (±0.12)

Docosahexaenoic acid (DHA) 22:6n-3 1.64 (±0.53)

Mead acid 20:3n-9 0.07 (±0.03)

Mead acid:AA 20:3n-9/20:4n-6 0.01 (±0.00)

n-6 DPA:DHA 22:5n-6/22:6n-3 0.25 (±0.10)

n-6 PUFA:n-3 PUFA 11.13 (±2.85)

Data are given as mean (± standard deviation, SD) in weight percent relative
to total fatty (FA%), if not otherwise indicated. Mean total fatty acid concentration
was 417 (±183) μg/100 μL whole blood in study children. aMedian (interquartile
range: 25th; 75th percentile)
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analyses, adjusted for age and sex, revealed that the chil-
dren who were recruited based on MUAC only had 0.32
(95% confidence interval (CI), 0.14; 0.50) FA% lower AA
than those recruited based on both MUAC and WHZ
and 0.40 (95% CI, 0.16; 0.63) FA% lower AA than those
recruited based on WHZ only. Recruitment based on
MUAC only was also associated with 0.09 (95% CI, 0.01;
0.17) FA% lower DHA than those recruited based on
WHZ only, whereas recruitment based on both MUAC
and WHZ was associated with a higher ratio of n-6 DPA
relative to DHA (0.01 [95% CI, 0.00; 0.02]) and higher
Mead acid (0.004 [95% CI, 0.000; 0.007] FA%) compared
to those recruited with WHZ only. Being recruited based
on MUAC only compared to WHZ only was positively
associated with Mead acid:AA ratio (β = 0.001, 95% CI,
0.000; 0.002). Although median age differed between
children recruited based on MUAC only, both MUAC
and WHZ, or WHZ only, the difference in AA, DHA
and Mead acid:AA across recruitment criteria was not
confounded by age, sex and breastfeeding.
Diet was found to be a correlate of whole-blood PUFA

status adjusted for age and sex (Table 4). Relative to chil-
dren who were not breastfed, breastfed children had

1.17 (95% CI, 0.64; 1.70), 0.75 (95% CI, 0.39; 1.11), and
0.13 (95% CI, 0.01; 0.25) FA% higher LA, AA, and DHA,
respectively. Children who had consumed foods from
the legumes and nuts group or the oils and fats group in
the previous 24 h had 0.38 (95% CI, 0.16; 0.59) and 0.32
(95% CI, 0.12; 0.52) FA% lower AA, respectively, com-
pared to those who did not consume these foods. This
was also the case for children with a dietary intake from
the vitamin A-rich fruits and vegetables group. Children
with a dietary intake from the oils and fats group or the
flesh food group had 0.08 (95% CI, 0.09; 0.15) and 0.23
(95% CI, 0.12; 0.33) FA% higher DHA, respectively com-
pared to those who had not eaten these foods. Dietary
intake from the flesh foods group was found to be asso-
ciated with a higher proportion of DHA relative to that
of AA and that was also the case for dietary intake of
oils, which were mainly vegetable oils. Dietary intake
from both of these food groups was also found to pro-
vide a larger difference in the proportion of n-3 PUFAs
than in n-6 PUFAs.
Morbidity and biochemical markers of infection were

also correlates of whole-blood PUFA content after ad-
justment for age and sex (Table 5). Children who had

Table 3 Whole blood fatty acids composition by recruitment criteria in 1572 children with moderate acute malnutrition

MUAC
(n= 457)

MUAC and WHZ
(n= 786)

WHZ
(n= 329)

Median age (IQR)
9.6 (7.3; 13.6)

Median age (IQR)
11.6 (8.4; 16.4)

Median age (IQR)
13.3 (9.9; 17.8)

Mean FA (±SD) Mean FA (±SD) Mean FA (±SD)

Saturated fatty acid 45.35 (±3.38) 45.29 (±2.82) 45.24 (±2.82)

Monounsaturated fatty acid 22.77 (±3.53) 22.57 (±3.34) 22.29 (±3.31)

Polyunsaturated fatty acid (PUFA) 28.40 (±2.69) 28.54 (±2.78) 28.68 (±2.92)

n-6 PUFA 25.91 (±2.53) 25.99 (±2.67) 26.11 (±2.77)

Linoleic acid (LA) 18:2n-6 16.37 (±2.16) 16.15 (±2.31) 16.22 (±2.29)

Dihomo-y-linolenic acid 20:3n-6 0.87 (±0.21) 0.85 (±0.21) 0.85 (±0.21)

Arachidonic acid (AA) 20:4n-6 6.88 (±1.53)1,2 7.15 (±1.53) 7.19 (±1.54)

Adrenic Acid 22:4n-6 0.92 (±0.26)2 0.96 (±0.27) 0.97 (±0.27)

n-6 Docosapentaenoic acid (DPA) 22:5n-6 0.37 (±0.13) 0.39 (±0.13) 0.38 (±0.13)

n-3 PUFA 2.42 (±0.64) 2.50 (±0.68) 2.51 (±0.62)

α-Linolenic acid (ALA) 18:3n-3 0.22 (±0.09)2 0.22 (±0.09) 0.20 (±0.09)

Eicosapentaenoic acid (EPA)a 20:5n-3 0.12 (0.09; 0.18)2 0.13 (0.10; 0.18) 0.14 (0.10; 0.20)

n-3 Docosapentaenoic acid 22:5n-3 0.43 (±0.12) 0..45 (±0.13) 0.44 (±0.12)

Docosahexaenoic acid (DHA) 22:6n-3 1.60 (±0.52) 1.65 (±0.54) 1.67 (±0.53)

Mead acid 20:3n-9 0.07 (±0.03) 0.07 (±0.03) 0.07 (±0.02)

Mead acid:AA 20:3n-9/20:4n-6 0.01 (±0.01) 0.01 (±0.00) 0.01 (±0.01)

n-6 DPA:DHA 22:5n-6/22:6n-3 0.25 (±0.10) 0.25 (±0.10) 0.24 (±0.09)

n-6 PUFA:n-3 PUFA 11.40 (2.91) 11.10 (2.86) 11.00 (2.77)

Data are given as mean (±standard deviation, SD) weight percent of total whole blood fatty acids, if not otherwise indicated. p-value for difference between
admission groups are based on ANOVA test with Bonferroni adjustment. Abbreviations: WHZ weigh-for-height z-score, MUAC mid-upper arm circumference
1p <0.05 between MUAC and, MUAC and WHZ, and 2p <0.05 between MUAC and WHZ
aMedian (interquartile range: 25th; 75th percentile) and ANOVA test on log value
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fever at recruitment had lower LA, AA and DHA by
0.52 (95% CI, 0.23; 0.82), 0.29 (95% CI, 0.09; 0.49) and
0.10 (95% CI, 0.03; 0.17) FA%, respectively. Similarly,
fever in the 2 weeks prior to recruitment was associated
with low AA and DHA, but not LA. Diarrhea at recruit-
ment was negatively associated with LA, but positively
associated with DHA, which was also seen with diarrhea
based on maternal recall (p < 0.05, data not shown).
Children with elevated CRP had 0.91 (95% CI, 0.74;
1.10) and 0.23 (95% CI, 0.17; 0.30) FA% lower AA and
DHA, respectively, but 0.04 (95% CI, 0.02; 0.05) FA%
higher ALA. Elevated AGP was also associated with
lower AA and DHA (0.60 [95% CI, 0.43; 0.76] and 0.10
[95% CI, 0.04; 0.15] FA%, respectively) but higher ALA
(0.02 [95% CI, 0.01; 0.03] FA%). A positive malaria test
was associated with lower AA and DHA (1.06 [95% CI,
0.91; 1.20] and 0.30 [95% CI, 0.25; 0.35] FA%, respectively)
and higher ALA (0.05 [95% CI, 0.04; 0.05] FA%). Overall,
elevated serum CRP and AGP, and a positive malaria test
were associated with a higher Mead acid:AA ratio. A posi-
tive malaria test was also associated with a higher n-6
DPA/DHA ratio. For each 1 g/dl increase in hemoglobin,
LA and ALA decreased by -0.22 (95% CI, -0.29; -0.15) and
-0.02 (95% CI, -0.02; -0.01) FA%, respectively. However,
for each 1 g/dl increase in hemoglobin, AA and DHA in-
creased by 0.39 (95% CI, 0.35; 0.44) and 0.11 (95% CI,
0.10; 0.13) FA%, respectively.

Discussion
While we found that PUFA deficiency was not a general
problem in children with MAM, overall PUFA concen-
trations, especially of n-3 PUFAs, were low. There could
be a number of explanations for this. Firstly, the low
levels of whole-blood n-3 PUFAs found in children with
MAM could be linked to their diet [34]. The children
were from a population with a mainly plant-based diet
rich in LA, including peanut oils and peanut based-
products, cottons seed oils and cereals. Infants and
young children in such a population will have an n-3
PUFA intake far below the recommended intake [35].
Previous studies from the central region in Burkina Faso
have demonstrated a high proportion of n-6 PUFAs rela-
tive to n-3 PUFAs in breast milk of healthy mothers
nursing 5-months-old infants and this was negatively as-
sociated with growth [18]. The low relative levels of n-3
PUFAs in children with MAM was compensated for by
a high proportion in SFA, which is in line with data from
moderately wasted Pakistani children [6]. This high pro-
portion of SFA in our study could be due to more
breastfeeding in Burkina Faso as shown in previous stud-
ies [18, 36]. Secondly, the low whole-blood n-3 PUFAs
could be due to metabolic disturbances occuring with
malnutrition [6]. Micronutrient deficiencies such as zinc
and iron combined with protein deficiency may impair

delta-6 desaturase activity [5, 37] and decrease the con-
version of ALA to DHA.
As expected, breastfeeding, flesh foods, vegetable oils

and fats were found to be correlates of PUFAs in chil-
dren with MAM. Breast milk is recognised as a good
source of LC-PUFAs [38], although this is influenced by
maternal diet [39]. Children who were breastfed on the
day before blood sampling had higher LA, AA, and
DHA compared to those who were not breastfed. Chil-
dren who consumed flesh foods (meat and fish) in the
previous 24 h also had higher whole-blood n-3 PUFAs
and DHA than those who did not consume these types
of foods. This is in line with meat and specifically fish
being the dominant sources of n-3 LC-PUFAs [34]. A
high intake of n-3 LC-PUFAs has been shown to in-
crease EPA and DHA in plasma and tissue phospho-
lipids [40], which is often compensated by a reduction in
LA, AA and n-6 DPA.
With regard to anthropometry, children recruited by

MUAC only seem to have lower whole-blood n-6 PUFAs
and n-3 PUFAs compared to those recruited by WHZ
only. Specifically, recruitment by MUAC only was asso-
ciated with low AA and DHA and this could be related
to a low muscle mass. Low MUAC only has been shown
to be related to low arm muscle mass [41], which is gen-
erally associated with hypercortisolemia occuring with
malnutrition [42]. Hypercortisolemia increases resting
energy expenditure fueled by increased oxidation of fat
[43], and this may decrease whole-blood LC-PUFA sta-
tus in children with low MUAC. Another explanation
could be that intake of LC-PUFAs and protein quality
could be related, as seen in a Canadian population [44],
and thus affect muscle and whole-blood LC-PUFAs in
parallel. The tissue most affected by malnutrition in
the first months of life is muscle mass [45]. It could
also be speculated that low MUAC is more related to
long-term inflammation, which may be the cause of
low PUFA status.
Markers of infection and inflammation were nega-

tively associated with whole-blood PUFAs. This find-
ing could be explained by an infection-induced
supression of appetite and could be a direct effect of
dietary intake, but may also be related to impaired
absorption, poor nutrient utilization and/or increased
nutrient catabolism caused by the inflammatory state
[46, 47]. We speculate that the negative association of
LA but positive association of DHA with diarrhea
could be due to low absorption of fat during diarrhea
resulting in low plasma triacylglycerols and thus, rela-
tively higher levels of DHA from the blood cells.
Fever during infection leads to an increase in energy
requirement [48] and possibly an increased use of
PUFAs as fuel. Infection-induced inflammation has
been suggested to increase LC-PUFA catabolism,
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mainly of AA and DHA for the production of pro-
and anti-inflammatory mediators [49] and is likely
contributing to the reduced AA and DHA seen in the
MAM children, specifically those with low MUAC. Fi-
nally, hemoglobin was found to positively correlate
with whole-blood LC-PUFAs, mostly AA and DHA,
which could possibly be due to their incorporation in
phospholipids of erythrocyte membranes [14]. The
negative association between hemoglobin and whole-
blood LA could be caused by a preferential inorpora-
tion of LC-PUFAs in erythrocyte membranes at the
expense of LA. The association with anemia and
hemoglobin may therefore in part reflect changes in
blood composition (erythrocyte number) and may
therefore not be an ideal indicator of whole blood
PUFA status.
The current study is the first to investigate whole-

blood PUFA composition and correlates among a large
sample of children with MAM. Also, this is the first
study to show a relationship between low MUAC and
PUFAs. The diversity of correlates such as infection, in-
flammation, diet, and anthropometry highlight the com-
plexity of factors which may affect whole-blood PUFA
composition in children with MAM, and these factors
should be taken into account in studies investigating
PUFAs among malnourished children. However, the
study had some limitations, in particular the lack of a
control group from the same study setting, which makes
it difficult to differentiate between potential effects of
diet and the overall low nutritional status. Differences in
diet could confound differences in nutritional status
even if we had been able to collect data from a well-
nourished group of children in Burkina Faso. The diet
information was based on a single qualitative 24-h recall
which may have reduced accuracy and thus, reduced the
association between diet and PUFAs. The observed asso-
ciations were however meaningful. Furthermore, PUFA
status was only based on a single non-fasting whole-
blood sample and may not provide a measure of
long-term status as is the case for example in adipose
tissue samples [50], but whole-blood EPA and DHA
correlates with and predicts erythrocyte EPA and
DHA [51]. It may however, match the short-term col-
lection of dietary information and also morbidity,
which was based only on recall data from the previ-
ous 2 weeks and data from clinical examinations on
the day of recruitment.
In conclusion, although PUFA deficiency based on the

definition used here was not common, children with
MAM in Burkina Faso have low whole-blood n-3 PUFA
concentrations. Low n-3 PUFA levels are likely to be, to
some extent, explained by a low intake of animal based
foods, vegetable oils and fat sources of n-3 PUFA, or by
other correlating factors such anemia, infection and

inflammation. Children with low MUAC seem to have
lower whole-blood PUFAs compared to children with
MAM based on WHZ. This observation needs to be con-
firmed in future investigations among children with
MAM.
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