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Abstract 
 
Genetic variations in pharmacogenomic genes result in diverse response of individuals to 
different drugs. Understanding the functional implications of these variations has gathered a 
significant research interest over the past decades providing a prime example for personalized 
medicine.  Personalized medicine is a rapidly evolving field of pharmacogenetics that 
involves individual design of drug composition and dosage based on the genetic profile.  The 
annotation of the genomes of domestic animals such as dog followed by an increasing amount 
of available whole genome sequencing data opens new opportunities for pharmacogenomics 
(PGx) in animal models. Despite some highlighted examples of canine PGx, e.g. MDR1 
susceptibility, canine PGx is still poorly characterized.   
 
The major aim of this thesis was to utilize the growing number of WGS (Whole Genome 
Sequence) data for PGx profiling by developing a bioinformatic analysis pipeline that can 
identify potential candidate pathogenic variants. Canine orthologs for 540 Human PGx genes 
were retrieved resulting in 495 canine PGx genes.  Ensembl’s phylogenetic trees were used to 
identify the orthologs. The pipeline analysis was piloted in 24 dogs in Border collie. A 
pipeline was developed to analyze the WGS of these dogs and to identify the pathogenic 
variants. The analysis altogether revealed 2964 variants in the coding regions of these 495 
Canine pharmacogenomic genes. Out of these, 56 variants (1.8%) were predicted to be 
pathogenic and could be prioritized for further validation to determine their prevalence and 
functional significance. A pharmacogenomic annotation of these genes was also established, 
using available human data as a reference model. This annotation categorizes them based on 
their ortholog relationship, role in drug processing and importance in pharmacogenomics.
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1. Introduction 
 
It has been known for centuries that not everybody reacts to a medicine in a uniform fashion. 

In the 1500s, Philippus Paracelsus said ‘Medicine is not merely a science but is an art’. Sir 

William Osler stated in 1892 that ‘If it were not for the great variability among individuals, 

medicine might as well be a science and not an art’.  Several genes, generalized as 

pharmacogenes are involved in the life cycle of a drug in a body. Pharmacogenomics 

(hereafter referred as PGx in the document) is the study of how genomic variation in these 

genes influences the pattern a drug is processed in a body. These pharmacogenes play an 

important role in processing of the drug that includes Absorption, Distribution, Metabolism 

and Excretion (ADME) (Johnson, 2003). Genetic variability has a significant influence on 

how a drug mechanism works in a body and mutations in these genes can thus be a major 

causative factor for distinctive response to a drug (Shin, Kayser, & Langaee, 2009) as shown 

in Figure 1. For example, a mutation in a drug receptor-encoding gene could result in an 

altered protein, affecting the process of absorption of the drug and eventually the effect of the 

drug. 

  
Figure 1 An illustration on, different people respond differently to the same therapy 

 

However, a mutation in the pharmacogenes can be pathogenic only when administered with 

drugs, although the individual may not display any disease specific phenotype in absence of 

the drug. The ability to tailor the prescription, so that there is an increase in the probability of 

beneficial outcomes and a decrease in the probability of negative effects, has led to increasing 
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interest towards ‘personalized medicine’ (Chan & Ginsburg, 2011). This field also focuses on 

preventive and prediction medicine, at a reduced cost, rather than responsive medicine.  

PGx intends to customize the medical treatment as per their individual genome and uses 

bioinformatics approach to study their genomic profile. The basic idea of personalized 

medicine revolves around, the concept of, connecting information from traditional medicine 

with personal genomics. While traditional medicine defines the relationship between 

phenotype (pathogenic state) and the medical treatment, personal genomics provides 

information on phenotype and genotype correlation. As can be seen in Figure 2, 

pharmacogenomics connects genotype information from personal genomics, medicinal 

information from translation medicine and draws a meaningful relationship between them.  

 

 
 

Figure 2. Personalized medicine connecting genotype, phenotype and medicine (Fernald, 
Capriotti, Daneshjou, Karczewski, & Altman, 2011a).  

 

Bioinformatics plays an essential role in various stages in the process of making personalized 

medicine a reality (Rodriguez-Antona, 2015). The exponential increase in the use of 

sequencing technologies and reduction in its cost has enabled the use of next generation 

sequencing (NGS) in many genetic studies. As a result there is an increased availability of 

personal genomic data. A bioinformatic approach to resourcefully use the available NGS data, 

to yield clinically relevant information is a multistep process as shown below in Figure. 3 

(Fernald, Capriotti, Daneshjou, Karczewski, & Altman, 2011b).  
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Figure 3. A schematic overview of pipeline to achieve translation-medicine from NGS data. 

 
It would thus be of great necessity to have a bioinformatic pipeline that can serve this need. 

This project is a start to suffice the first two steps of the pipeline depicted in Figure. 3 and 

study the variance and mutations in pharmacogenes using the canine genome as a model of 

study. The process is documented in the next chapters of this thesis. In chapter 2, Literature 

review, the essential background information to understand the thesis and key finding in the 

same line of research is reviewed. In the chapter 3, Aims and Objectives, the overall aim and 

specific objectives of the study are listed. In chapter 4, Methods and materials, the pipeline 

developed and algorithms adapted in the pipeline are described. In chapter 5, Results, the 

finding obtained by applying the pipeline to a set of data is recorded section. In chapter 6, 

Discussion, along with discussing the findings, the efficiency and the limitations of the 

pipeline is also discussed. The results are also compared with the present on going research in 

this chapter. Finally in chapter 7, labeled as Conclusion, the possible options of optimizing 

the tool to address the limitations and the future prospects of research are discussed.  
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2. Literature Review 
 
A drug that is administered needs to be absorbed at proper levels, distributed to targeted 

tissues, metabolized and then excreted from the body, as is the process of ADME. A mutation 

in a gene that encodes the drug processing protein can interfere the process of drug 

metabolism or sometimes may also cause toxic effects. Information on such mutations is the 

key to identify or design biomarkers that can qualitatively and quantitatively predict the drug 

response (Frank & Hargreaves, 2003). There are several PGx databases that have been 

striving to identify, store and deliver such important information of the pharmacogenomic 

genes, their variation and relationships such as gene-drug, gene-pathway etc. Some of the 

very well known databases are PharmGKB (Thorn, Klein, & Altman, 2005, 2010) and 

pharmaADME (http://www.pharmaadme.org).  

 

PharmGKB is a pharmacogenomic database that started as an effort to store post-genomic 

data in 2000 (Thorn et al., 2010). With the advent of new technologies, the flow of data has 

exploded, and since then, PharmGKB refocused to employ knowledge and capture complex 

relationship between genes, drugs, pathways and variations. All the gathered information is 

organized, stored and labeled based on different criteria such as pharmacokinetics, 

pharmacodynamics, cellular component, molecular function, clinical significance 

(disease/phenotype), importance in drug processing and availability of genotype data. The 

data can be accessed with respect to these labels or the gene. About 400 pharmacogenes have 

been listed as a part of various collaborative projects such as Clinical Pharmacogenetics 

Implementation Consortium (CPIC) (Relling, 2015), International Tamoxifen 

Pharmacogenomics Consortium (ITPC) and International Warfarin Pharmacogenomics 

Consortium (IWPC) (International Warfarin Pharmacogenetics Consortium et al., 2009). 

Several well-known examples include Cytochrome P450 (CYP) drug-metabolizing family 

genes in the liver, as well as genes in the ATP-binding Cassette (ABC) transporters and 

Solute Carrier (SLC) transporter families.   

 

PharmaADME is another well-known pharmacogenomic consortium that makes effort to 

develop standardized evidence based drug metabolizing genetic biomarkers. The biomarkers 

are used in the process of drug development to predict genetic and pharmacokinetic (the rate 

at which the drug is processed) variability in an individual body. PharmaADME has 

categorized genes as core, extended and related genes based on its importance and relatedness 
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with drug processing. There are also databases specific to some very important PGx genes 

and alleles such as CYP-allele database (S. C. Sim & Ingelman-Sundberg, 2013), NAT-allele 

database (E. Sim, Fakis, Laurieri, & Boukouvala, 2012) and TP search database (Ozawa et al., 

2004). Combining the information from these databases with genomics would leadoff 

genotype to phenotype research in contrast to the traditional phenotype to genotype mode of 

approach. This mode of research was tried out successfully to predict drug sensitivity 

phenotypes by using genotype information of CYP2D6 from CPIC (Gaedigk, Sangkuhl, 

Whirl-Carrillo, Klein, & Leeder, 2016). 

 

Most of these databases are aimed at pharmacogenomics of human genome. However, the 

availability of genome assembly and advances in sequence data annotations for domestic 

animals is making it possible to make significant finding in veterinary pharmacogenomics. 

Court et al suggest that using the advancing bioinformatic technologies and comparative 

genomics, it is also possible to relate knowledge from the above databases to contribute to 

comparative medicine (Mosher & Court, 2010). 

 

 Dog as a model for Pharmacogenomics 2.1
 

A dog (Canis lupus familiaris) characterizes as an interesting model for both genetic and 

pharmacogenetic study. The whole genome of human and dog are about 95 percent similar. 

Most of the genes in humans have an orthologous or a predicted gene in the dog.  Both human 

and dog follow a similar disease inheritance pattern and the mutated gene for a disease is 

often the same. Several findings in dogs have helped to identify genetic conditions in humans 

such as in cancer (Ranieri et al., 2013) and neurological disease (Seppälä et al., 2011). The 

genetic distance in different breeds of dogs is much higher (3-4 x) than the genetic diversity 

in different human populations. Breed-specific mutations in PGx genes are very important as 

these mutations could have toxic effects against the administered drugs (Fleischer, Sharkey, 

Mealey, Ostrander, & Martinez, 2008). Along with genomic features, environmental factors 

also play a huge role in personalized medicine (Ginsburg & Willard, 2009). Dogs share the 

same environment with humans and hence are exposed to very similar environmental factors. 

Thus, dogs can be considered as an important model for pharmacogenetic study.  
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Although the pharmacogenomics research in dogs is still not as advanced, as in human, it is 

one of the most well studied animals with clinically relevant pharmacogenetic discoveries. 

Many variants that could be pharmacogenomic related and pathogenic have been identified 

(Katrina L Mealey, 2006). The key transporter and metabolizer genes well studied in canine 

include, the ABC transporter and CYP family genes. Some of the prominent discoveries in 

canine PGx include the MDR1 (Multi Drug Resistance) delta mutation(Katrina L Mealey, 

2013), Cytochrome P-450 variants (Court, 2013) and the TPMT variation (Salavaggione & 

Kidd, 2002).  

 

The P-glycoprotein (P-gp) produced by the MDR1 gene is a key transporter protein (Zhou, 

Gottesman, & Pastan, 1999). The well-known four base pair deletion in MDR1 shifts the ORF 

leading to generation of premature stop codon (K L Mealey, Bentjen, Gay, & Cantor, 2001). 

This produces a malformed or mutated P-gp protein that is about 10% in length of the normal 

P-gp protein. The affected dogs are said to exhibit the "multidrug sensitivity" phenotype. 

These dogs exhibit high difference in distribution and excretion of the drug when compared to 

the normal ones. Studies have shown that the normal dogs could show neurotoxicity at high 

doses  (>2 mg/kg), while heterozygous and homozygous mutants showed neurotoxicity at 

lower doses, approximating at 300 micro g/kg dose and 129 micro g/kg respectively (K L 

Mealey et al., 2001). In another study a Collie with hetero MDR1 mutation affected with 

lymphoma when treated with doxorubicin, a P-gp substrate, exhibited gastro intestinal 

toxicity. It was inferred in this study that improper excretion of the drug could have been the 

causative factor of the toxicity (K. L. Mealey et al., 2008) 

 

CYP is an essential drug metabolizing and excreting gene. The CYP genes CYPB11 is said to 

be highly variable among different dog breeds (Court, 2013). However, the clinical impact of 

this is not yet known. There are also other possible pathogenic variants identified in dogs but 

with unknown clinical significance such as CYP2C41 gene deletion and amino acid variants 

in CYP2D15, CYP2E1 and CYP3A12. A genetic variation in the CYP2D15 gene, which 

processes the drug Celecoxib, includes deletion of an exon 3. This deletion leads to 

unidentified metabolism of Celecoxib.  The other noted polymorphism in this family is the 

CYP1A2 premature stop polymorphism.  The premature stop codon causes loss of enzyme 

activity of the gene. In the study by Court et. al, the affected dogs seemed to contain high 

level of the respective substrate drug, when compared to the normal dogs, depicting low or no 

enzyme activity of the impaired gene (Court, 2013).  
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TPMT is a Phase II metabolizing enzyme that has a pharmacogenomic-identified variant. This 

variant, causes decreased enzymatic activity of its substrate azathioprine leading to high 

susceptibility to azathioprine-induced suppression of bone marrow (Haller et al., 2012).  

 Role of Next Generation Sequencing in Canine PGx study 2.2
 
To make reliable PGx predictions based on individual genomes and gathered genetic 

evidence, the first essential requirement as depicted in Figure 2, is to accumulate genomic 

data. DNA sequencing is the process of resolving the DNA sequence from a sample.  The 

history of DNA sequencing hails back to 1965 when Holley sequenced yeast tRNA. Sanger 

sequencing was a major breakthrough for DNA sequencing as it laid foundations to the 

process of First Generation Sequencing or Automated Sanger sequencing. Ever since many 

improvements have been made at a faster pace in the process of sequencing leading to the 

advent of NGS methods. 

 

Table 1. History of DNA Sequencing Adapted from (Messing & Llaca, 1998) 

Efficiency(bp/person/year) Year Breakthrough in Sequencing 

 
1870 Miescher: Discovers DNA 

 
1953 Watson &Crick: Double Helix structure of 

DNA 

1 1965 Holley: Sequences Yeast tRNA 

1500 1977 Sanger Sequencing 

50,000 1990 Cycle (Fluroscent) Sequencing  

50,000,000 - 100,000,000,000 2002-2008 Next Generation Sequencing 

 

With the exponential decrease in the cost of NGS analysis, the accumulation of genomic 

sequence data across species is less of a challenge today (Figure 4). For the past 15 years, the 

cost of sequencing per genome has drastically reduced from 100 million dollars to about 1 K 

dollars.  
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Figure 4. Data from NHGRI describing the reduction in cost for sequencing per genome 
(“The Cost of Sequencing a Human Genome,” n.d.) 

 

The first Whole Genome Sequence (WGS) was accomplished in the year 1995 by 

Fleischmann et.al, when they published the complete sequence of Heamophilus influenza- a 

common bacteria present in the respiratory tract of humans. The application of WGS saw a 

rapid rise in the early 2000s when human and mouse and many other mammals were 

sequenced (Waterston et al., 2002).  

 

The first version whole Canine genome was sequenced in Standard Poodle in 2003, and was 

followed by a higher quality sequence in Boxer in 2005. This was referred as the first canine 

genome assembly, CanFam1.0. The assembly was updated to CanFam2 in 2005 (Lindblad-

Toh et al., 2005).  The latest updated version of canine assembly is CanFam3.1 that was 

published in 2012. Besides WGS, methods such as whole exome sequencing (WES) and 

targeted resequencing that includes sequencing of only the exome of a genome and a specific 

region of genome, respectively, are also widely used in dogs nowadays (Ahonen et al 2013) .  

 

Once the genome is sequenced either through WGS, WES or targeted resequencing, the 

produced data can be used to perform downstream NGS data analysis. However, there are 

many challenges that need to be overcome to obtain reliable and reproducible data (Shendure 

& Ji, 2008). Improper quality of the NGS data is a significant challenge that needs to be 

addressed. Many issues such as poor quality of the sequencing technique leading to increased 

error in base pair calling, low coverage and low quality reads are a few to mention (Yu & 

Sun, 2013). After sequencing data quality control,  the identification of novel variants should 

be a performed with increased confidence, to avoid false positives and detect the variants, 
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which are otherwise falsely tagged as negatives(Nielsen, Paul, Albrechtsen, & Song, 2011). 

For this use of dbSNP and in-house variants are essential.  

 

The WGS data of a sample includes 3-4 millions variants. However, not all of these variants 

are pathogenic. Particular bioinformatic and functional approaches are required to predict and 

confirm the pathogenicity of the variants. Most of the pathogenic genomic variants alter the 

amino acid sequence and subsequent protein structure affecting its proper function. A study 

suggests that protein molecules are quite robust and tolerate small changes in the amino acid 

sequence (M Pajunen et al.). However, if an amino acid or multiple amino-acid changes 

happen to alter a property of the protein such as structure (Feyfant E et.al) of protein or 

catalytic activity of protein (Yusuke Takahashi et.al), then it could be pathogenic.  Certain 

mutations could happen to change the function of a protein (M Oren et al), i.e. if a protein has 

a ligand binding capacity, loss of function would lead to improper binding to ligand, while 

gain of binding would lead to unnecessary binding to ligand.  Hence, understanding the 

impact of the mutation on the protein structure and function is essential to be able to evaluate 

the pathogenicity of the mutation. For the prediction of the possible impact of the mutation, 

evolutionary analysis is an approach, based on the assumption that a change in a conserved 

position does not allow alterations without a compromise on function. However, the 

bioinformatic methods can only do the predictions and the true pathophysiology of the 

mutation has to be confirmed experimentally (Fernald et al., 2011b) . 
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3. Aims of the study 
 
Our hypothesis is that extensive genomic variation exist in canine PGx genes at individual 

and breed level and that the most likely pathogenic variants lie within the conserved 

functional regions of the open reading frames (ORFs) altering the protein structure and 

functions. To test this hypothesis in a pilot study cohort of 24 Border Collies, we included the 

following specific aims: 

 

• Retrieve a list of known human PGx genes and their annotations such as 

pharmacogenomic functions and processed drugs utilizing available public databases 

such as PharmgKb and PharmaADME. 

• Identify canine PGx orthologs. 

• Build a bioinformatic pipeline to analyze the WGS data of 24 Border Collies to 

identify genomic variants and their predicted implications in canine PGx genes.   

• Analyze the frequency and significance of the variants in the breed.  
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4. Materials and Methods 
 
The process and flow of the project, starting from detecting the pharmacogenetic genes, to 

discovering the possibly pathogenic variants and genes, are described in detail in this section. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The schematic overview of the proposed pipeline, which involves two different 
sections; One section involves identification of Orthologue for the Canine PGx genes and the 
other section involves WGS data analysis to identify pathogenic variants for the PGx genes 
from section 1. 

 Human – Canine Pharmacogenetic Genes  4.1
 
PharmGKB and pharmaADME are selected for this study as these two databases contain 

information about pharmacogenetics on a generic level, unlike specific gene families 

databases such as CYP, NAT, etc., (S. C. Sim, Altman, & Ingelman-Sundberg, 2011) or drug 

transporters and  modifier specific databases. From PharmGKB, genes from sections 

PharmgKb- Drugs and genes and CPIC (Clinical Pharmacogenetics Implementation 

Consortium) genes were included. Genes that are considered to play a key role in 

pharmacogenomics by prof. Mikko Niemi at the Department of Pharmacogenetics, University 

of Helsinki, were also included in the study. The genes from all the four sources were 

retrieved and consolidated to create a list of Pharmacogenetic genes.  
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 Canine orthologues 4.2
 
The canine orthologues were retrieved using Ensembl Compara gene trees (Vilella et al., 

2009). Ensembl Compara is a computation pipeline that was built to produce phylogenetic 

trees for many genomes, especially the vertebrates, evolved during the process of evolution. 

The general idea of evolution is that all forms of life shares a common ancestor and this 

primary theory is defined as ‘descent with modification’. Sweeping changes in the genome 

has led to the process of speciation throughout evolution. Even after speciation, many genes 

or proteins sharing the same functionality remain highly similar. A phylogenic tree is more 

like a graph of the evolutionary journey of a gene from root to different species (Doolittle, 

1999). Species that are genetically close lie close to each other or belong to the same cluster 

in a phylogenetic tree. To perform comparative analysis on an interested gene, the first 

essential step is not only to identify the homologous gene, but also to identify the type of the 

relationship of the gene between the species, i.e. whether it is in an ortholog or a paralog.  

This information is readily available from a phylogenetic tree or a gene tree.   

 

 

Figure 6. Example of phylogenetic tree adapted from 
(Studer & Robinson-Rechavi, 2009) 

The Ensembl Compara gene trees were created using a series of computational steps that 

starts with protein sequences of all species and ends with creation of gene tress.  The protein 

sequences were obtained, from all the species involved in the study, by retrieving the longest 

translation available in the Ensembl database. The protein sequence from each species was 

analyzed with pBLAST against protein sequences of all other species protein databases. 

Based on the BLAST Score Ratios (BSR) (Ratio of blast score between two species), proteins 

of different species were connected to form a graph. From the graph the clusters were 

Table 2. Gene relationship in gene from 
different species 
 

Gene  Pair Relation- 

Ship 

Type 

A All others 
Orthologue 

One-to-

many 

α Bα and Cα 
Orthologue 

One-to-One 

β Bβ, Cβ1 and 

Cβ2 
Orthologue 

One-to-

many 

Β Cβ1 and Cβ2 Paralogue Within-

species 
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identified using linkage cluster methods. All the proteins in a single cluster belonged to a 

single gene family.  The protein sequences of all these were performed Multiple Sequence 

Alignment (MSA) using MUSCLE. The protein sequence obtained from MSA was back 

translated to DNA sequence, and was given as an input to the program, TreeBeST, that 

generated the required phylogenetic tree. 

 

Ensembl Perl API consists of four connected databases known as Core, Compara, Variation 

and Regulation. Each database uses different classes known as adaptors to retrieve the 

required information. The homology adaptor from Compara was used to retrieve the ortholog 

information between human and dog. Along with the orthologue gene, information such as 

eValue and dn/ds ratio was also retrieved. 

 Identifying ORF in Canine PGx Genes  4.3
 
For the canine orthologs retrieved from Ensembl Compara, the genomic co-ordinates for only 

the protein coding regions needed to be obtained. As per the central dogma of molecular 

biology, the DNA is transcribed into mRNA (Introns + Exons + UTR), mRNA in-turn into 

mature mRNA (Exons +UTR) after the splicing event. Maximum portion of the mature 

mRNA is comprised of the coding sequences that are translated to proteins. This region of 

mRNA that is translated to protein comprises the open reading frame (ORF, Figure 7). 

 

 
Figure 7. Up stream , downstream, intron , exon and ORF explained 

 

By using the information of ortholog gene retrieved (from the homology adaptor), gene 

specific information was retrieved using the gene adaptor from the Ensembl core database. 

The information included details of the gene such as genomic location, co-ordinates of exons 

and coding regions within the gene. Using this information a bed file was created with only 

the open reading frames (of the longest transcript) of each ortholog genes. 
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 Whole Genome Sequencing  4.4
 
DNA samples were collected from twenty-four Border Collies. DNA was isolated from the 

EDTA-blood using semi-automated Chemagen robot and purified. DNA prepared and 

sequenced using Illumina HiSeq2500 methodology as described by Hytönen et al 2016, 

PlosGenet.  

4.4.1 Illumina Sequencing 
 
Illumina is a widely adopted sequencing platform. The complete process of Illumina 

sequencing can be divided into four stages: sample preparation, cluster generation, 

sequencing and data analysis. Libraries are constructed that contains adaptors to be attached 

to the DNA during sequencing. Paired end approach was used, as it reads from both ends of 

the DNA. In this approach both ends of DNA are ligated with adaptors to make sure that both 

ends are read during sequencing. The adapters on either end of the DNA fragment are 

complementary to each other (Figure 8).   

 

 
Figure 8. Ligation of adaptors to DNA and binding to the flow cell. Retrieved from 
illumina.com 

 

These ligated DNA fragments undergo amplification and are then bind to the flow cell. The 

flow cell is a slide that has multiple lanes. On these lanes a number of oligonucleotides are 

attached to the floor of the flow cell. There are two types of oligo nucleotides and they are 

complementary to each other and to the adaptors ligated to the DNA fragments. The DNA is 

hybridized to the flow-cell with the complimentary oligos and adaptors. A polymerase creates 
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a complementary strand to the hybridized DNA creating a double stranded DNA. From this 

double stranded DNA, the original strand is detached by washing it away. The free end of the 

newly created complementary strand also binds to the flow cell by hybridizing with the other 

oligonucleotides.  These DNA fragments now attached on both sides to the flow through the 

ligands undergo bridge amplification as shown in figures 8 and 9, leading to amplification of 

both the forward and reverse strand of the DNA fragment. 

 
Figure 9.  Bridge Amplification and formation of read clusters. Retrieved from 
www.illumina.com 

The same process is followed through out all the lanes of the flow cell forming clusters of 

DNA fragments. Next the reverse strand is washed away and further amplification is blocked. 

The ligand present at the free end of the DNA fragment contains region that is complimentary 

to a sequences primer. Thus a sequencing primer is hybridized to the ligand that starts 

producing the read. Fluorescent nucleotides are attached to the DNA fragment producing a 

read. With each addition a light specific to that nucleotide is emitted from the flow cell 

cluster, depicting the nucleotide in the read. The number of time the light is emitted at a 

cluster depicts the length of the read. The intensity of the color emitted depicts the quality of 

the base call. This read depicting the read one is washed away. The DNA is bridged and a 

complementary sequence is produced washing away the first fragment. The sequencing 

process is again repeated, now in the opposite direction producing the read two. These reads 

are recorded on files known as fastq/fasta.  
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4.4.2 Alignment 
 
The raw fastq files obtained from Illumina sequencing contains millions of reads in a raw 

state. Hence pre-processing needs to be performed to remove low quality reads. When the 

sequencer calls a base, it gives each base a phred score or quality score (q-score). The q-score 

denotes the probability that the based called could be an error. The minimum read quality is 

maintained as more than 20, as Kwon et al,(Kwon, Park, Lee, & Yoon, 2013) suggests that 

read quality less than this could indicate a 90% flawed base call. The pre-processing was 

performed using FASTX Toolkit, a toolkit (Blankenberg et al., 2010), and reads with quality 

less than 20 were removed.  

 

Once the fastq files were filtered, the next step was to align them against a reference genome. 

The whole idea of aligning is to find the location of where a read completely aligns with the 

reference genome. This can be compared to a collection of sub-strings that needs to be 

matched to a bigger string. There are many algorithms available that can align the reads to the 

reference and can be run parallel using multi-threading. However, they require extensive 

memory capacity. Using Tries solves this problem. Also known as Prefix Tree or Radix Tree, 

a Trie is a data structure that can represent a given collection of sub-string in form of a tree. 

The basic idea behind the tries is to combine all the sub-string in form of a rooted tree, where 

sub-string flows in a ‘from root to leaf ‘path and each branch represents a letter of the sub-

string. To further reduce the memory, suffix tries are used.  All the possible suffixes of the 

entire genome are collected and taken created in the form of a trie.  

A genome is a very large string, and if has to be indexed using the suffix tree, it would still 

take a lot of memory. This can be reduced; by encoding the genome, i.e. if there are repeats in 

the genome they are converted into runs. These runs that are both compressible and 

irreversible can be achieved using Burrows Wheelers Transform (BWT) (Figure 10).   

 

4.4.3 Borrows Wheeler Transform 
 
BWT is a reversible permutation of a string. The three crucial properties of BWT are that it is 

compressible, reversible and indexed. For a given string (here the genome), a symbol or a 

special character (here $) is added in the end of the string, to denote the position of the end or 

the star of the string once the string is permuted. All distinct rotations of the string are noted, 

i.e. all the possible permutations of the strings maintaining the same order are noted in the 

form of a matrix. Shown below is the cyclic rotations for banana$. The first column of this 
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matrix is sorted lexicographically and the resulting matrix is known as Burrows Wheeler 

matrix. From this matrix the string from the last column is known as Burrows Wheeler 

Transform.  

BANANA$         B1A1N1A2N2A1$1 

BANANA$  $BANANA  A  $  $1BANANA1 

ANANA$B  A$BANAN  N  A  A1$BANAN1 

NANA$BA  ANA$BAN  N  A  A2NA$BAN2 

ANA$BAN Sorted ANANA$B  B Sorted A   A3NANA$B1 

NA$BANA  BANANA$  $  B  B1ANANA$1  

A$BANAN  NA$BANA  A  N  N1A$BANA2 

$BANANA  NANA$BA  A  N  N2ANA$BA3 
BWT Matrix    BWT    Last Column First column First Last Property 

 

From the last column the first column can be retrieved by lexographically sorting it. Then, the 

first and last columns when combined to form a two-dimensional matrix are known as 2mers. 

These 2mers when sorted can be used to re-construct (decompress) the whole original string 

in an order. The process of decompression is more efficient by a property of BWT, which is 

the ‘First-Last Property’. From a Burrows Wheelers Matrix, for a particular symbol or 

character, its nth occurrence in the last column and nth occurrence in the first column, 

correspond to the same position in the original string. The statement can be re-arranged as, if 

a character ‘a’ has many repeats in a string, then the same character ‘a’ at a position ‘x’ in the 

string, has kth occurrence in both the first and second columns. For example, taking A1, A2 

and A3 for instance. A1 in the last column and A1 in the first column belong to the same 

position in BANANA, that BA1NANA. Similarly, A2 and A3 in the first column and last 

column belong to positions BANA2NA and BANANA3 respectively.  

4.4.4 BWT Pattern Matching 
 
Using the BWT and suffix array, the alignment of the read (sub-string) to the genome (string) 

can be performed efficiently with less memory. The genome is compressed to BWT. 

Combining this information with the first-last property, pattern matching can be achieved 

very efficiently. The tool Burrows Wheeler Aligner (BWA) that uses BWT, was used to 

perform the alignment of the filtered reads. The reads were aligned against canine reference 

assembly CanFam3.1. The output of the alignment in saved in a binary format in files known 

as Binary Alignment Map (BAM).  
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To identify the variations in the PGx genes from the bam files, the reads have to be processed 

using various tools, including BWA, Samtools, GATK, Picard, VCF-Tools and SnpEff. 

Figure 10. An overview of different analysis steps of NGS sequence data to identify 
pathogenic variants. 

4.4.5 Pre-processing the aligned reads 
 
Even after aligning the reads, a couple of pre-processing steps are needed. A Read produced 

by sequencer contains information of the location of the read in the first line and the 

nucleotide sequence in the next consecutive lines. Not every read produced by the sequencer 

needs to be mapped. Many reads could be left un-mapped due to various reasons such as poor 

quality or incompleteness of the reference genome or due to unknown genome contamination 

(Gouin et al., 2014).   However, these reads can still map to the reference and might be a 

source of confusion or false discovery. Hence, these unmapped reads are removed before 

further analysis. In the process of sequencing, the DNA is amplified to make available enough 

samples for the sequencer to read the nucleotide sequence. This step results in duplicated 

reads. These reads are undesirable as they might impede the actual statistical proof of 

genotyping a variant such as allele frequency (Tin, Rheindt, Cros, & Mikheyev, 2014). In 

cases where many reads are duplicated with similar co-ordinates, the read that has better 

quality is retained and the others are removed. The unmapped reads were removed using 

Samtools (H. Li, 2011; H. Li et al., 2009). After some research it was analyzed that marking 
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the duplicates was better than removing them (Ebbert et al., 2016). Picard 

(http://broadinstitute.github.io/picard/) was used to mark the duplicate reads. We utilized here 

a PCR-free protocol for the WGS of 24 Border Collies to lower the number of ‘PCR 

contaminants’ in the data analysis and to improve the sequencing coverage elsewhere in the 

genome. 

4.4.6 Calculate Coverage 
 
Once the unwanted reads are removed, the remaining mapped reads are calculated for 

coverage. In theory, coverage can be mentioned as the number of times a nucleotide n a read 

is sequenced. The higher the coverage better is the quality of the sequencing and in an 

obvious manner higher is the cost. Though the overall or average coverage is given with a 

value, e.g. ~35x, it is possible that there are reads more than 90x and some even less than 10x. 

When coverage of some portion of genome is low, this can affect the reliability of the variant 

calling. For instance, if there are only total of 4 reads for a locus and 2 reads among them 

were called wrong due to some sequencing error, then this leads to call of a false variant. 

Thus, it is always a good practice to calculate the coverage (Sims, Sudbery, Ilott, Heger, & 

Ponting, 2014). The overall and genomic region specific coverage is calculated using 

qualimap (Garc??a-Alcalde et al., 2012). 

4.4.7 Indel Re-alignment 
 
The insertions or deletions in a read sequence can be confusing for the aligning algorithm to 

align with the reference. The Indels could be easily misinterpreted as multiple SNPs and can 

also disturb the recalibration process. Local re-alignment around target intervals is quite 

essential to avoid false discovery of SNP. Local re-alignment looks for problem causing 

regions, where there could be a possible indel. Multiple consecutive SNPs in a read are one 

such possible locus. In such locus, the reads are re-aligned by finding the possible alternate 

consensus sequences. The consensus sequence is scored, by summing up the mismatch scores. 

The alternate consensus sequence with the best score is selected rather than the original 

alignment.  The indel realignment is performed using ‘IndelRealigner’ option from GATK 

(DePristo et al., 2011).  

4.4.8 Re-calibration 
 
Each single base has a phred score that depicts the quality of base in a read. However, the 

score of a single base is not sufficient to determine the quality of the read. Reads that are run 
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together in a batch in a sequencing machine belong to a read group. Each read contains a read 

group id, depicts the read group it belongs to in the sequencing machine run. Though the 

phred scores can depict the error probability of a single base call, it is not appropriate measure 

to identify insertions or deletions. For this covariates are calculated between the phred score 

of the base in a read, the position of the base in the read, the previous nucleotide and it’s 

phred score and the machine cycle the base is produced. The recalibration of a base is done in 

two steps. The first step includes, creation of recalibration table and using this data the bam is 

re-calibrated in the second step. The re-calibration table contains the details of the number of 

bases in a read group and the frequency of mismatched bases, as per dbSNP. Once the 

recalibration table is created, the quality scores of the reads in the old bam file are re-

calculated and written to a new re-calibrated bam file. These new phred scores are essential to 

identify indels (DePristo et al., 2011). Using dbSNP data from DoGSD as a reference dbSNP, 

recalibration was performed using ‘BaseRecalibrator’ option from GATK (Bai et al., 2015).  

4.4.9 Variant Identification 
 
From the bam file, once the reads are aligned with the reference and re-calibrated, the single 

nucleotide bases that differ from the reference are identified as SNPs (Nielsen et al., 2011). 

The nucleotide from the aligned reads at each genomic position is first genotyped and variants 

are identified based on the genotype information. The base call intensities from the 

sequencing are noted in terms of per base quality score based on noise from image analysis. 

This values is converted to phred score by the below formula 

 

 

Qphred = -10log10 (error) 
(Qphred = 20 =>  1% error ) 

Formula.1. Calculation of phred score 

 

As this cannot be trusted completely, recalibration was performed using GATK using the 

empirical phred scores that was calculated as the difference between the mismatches between 

the base call and the reference genome and the mismatches implied by the raw quality score.  

This empirical phred score is added to the raw quality score to obtain the recalibrated quality 

scores. These base calls and the recalibrated quality scores are used to determine the genotype 

and eventually the variant. In the classic method of genotyping, the number of alleles at a site 

is counted and would be determined heterozygous if the non-reference allele is between 20-
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80%; else it is determined as homozygous depending on weather the allele is reference or 

non-reference. However, this could work as described only if the coverage is about 20x and 

this method also does not provide the probability of certainty of the genotype called. Hence 

the best available option for genotype calling is probabilistic models. The genotype calling 

using probabilistic models are done using Bayesian probability. 

   
Formula.2. Bayesian probability explained 

 

Applying the Bayes Theorem to calculate the posterior probability P (G|X) of a genotype G it 

is essential to calculate the genotype likelihood and the prior probability. The quality scores 

of each read are used to calculate the genotype likelihood P( X | G). If the number of reads at 

a particular site is given by i, then the genotype likelihood is estimated as  

 

P(X |G) =  Πi P(Xi |G)  

where  P(Xi |G) is quality score of Xi (data in read i) 

 
Formula.3.Genotype Likelihood based on Bayesian probability theorem  

 

The prior genotype probability P (G) for each genotype is either assigned equally or by using 

information from external databases such as dbSNP. 

 

The variants identified are output in a Variant Call Format (VCF) file. GATK and Samtools 

are the tools used to identify the SNPs. Most of the Indels could be misinterpreted as SNPs. 

The earlier step indel re-alignment avoids the False Discovery Rate (FDR) of SNPs. Indels 

are identified using tools GATK and Samtools. To ensure good quality predictions variants 

that have a minimum depth of 10 and have a minimum quality score of 40 were selected. The 

variants identified by different tools were combined using the GATK ‘CombineVariants’ 

option and written to a VCF output.  
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Variant databases have a broad set of SNPs, where each variant is tagged with a variant 

identifier. The GATK variant annotator, marks these ids to the variants in the filtered vcf file, 

i.e. if a variant present in the filtered VCF file has an id tagged to it in the database, then   the 

annotator, tags the id to the variant. These ids were added to the Id Field in the VCF File. 

 Filtering PGx variants 4.5
 
At this stage, the two parallel segments of the pipeline were completed: (1) create bed files 

with ORF genomic positions of the PGx genes; (2) identify variants from the samples under 

study. The next step was to combine the outputs of the two segments and filter the variants 

based on the ORF genomic positions of PGx genes. Thus, a two-step filtering was performed. 

One, only variants related to PGx genes were retained and two, only variants that belonged to 

the ORFs were selected. Also variants from psuedogenes were filtered out. The remaining 

variants from all the samples under study were combined into a single file using GATK tool.  

 

 Pathogenicity Prediction 4.6
 
Proteins that have the same function in different species (orthologues) have evolutionarily 

conserved sequence structure especially in the functional domains. In such conserved 

positions, when the existing amino acid is changed by another amino acid with different 

properties, the change is potentially deleterious.   

 

Two programs, SIFT and PolyPhen 2, are used to predict the pathogenicity of the variants 

based on evolutionary conservation. SIFT gets sequences from all the available protein 

databases and aligns it using PSI- BLAST to get a homologous sequence. It aligns the query 

sequence with the homologous sequence to create a scaled-probability matrix. The below 

figure is an example of scaled probability matrix. The matrix contains the calculated 

probability for all possible 20 amino acids at a position and normalized with the probability of 

the most frequent amino acid at that position. This probability is also known as scaled 

probability, which is defined using the below formula. 

  
Formula 4. Scaled Probability Pca for amino acid ‘a’ at position  ‘c’ (Ng & Henikoff, 2001) 

Where  
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Nc = Number of amino acids in the sequence 

 Bc = Number of pseudo counts exp (Σa(ra*gca)) 

 ra =rank of the amino acid a in the BLOSUM matrix  

gca= sequence weighed frequency that amino acid a appears at c (for normalizing) 

fca = Pseudo count function added to Nc  

A substitution is considered deleterious if its score is below a threshold (here < 0.05) (Ng & 

Henikoff, 2006).  

 

 
Figure11. Scaled Probability matrix for a protein sequence (Ng & Henikoff, 2006) 

Polyphen 2, aligns the proteins from closely related species using MSA. From the MSA, 

Position Specific Independent Counts score is calculated (PSIC Score), which represents the 

logarithmic ratio of likelihood of a particular amino acid occurring at a particular position to 

the likelihood of occurring at any other position (background frequency).  These scores are 

accumulated to form the profile matrix for a protein sequence. For a mutation, the difference 

in the PSIC score of the reference and the mutant is calculated as ΔPSIC. Very high ΔPSIC 

value indicates a possibility of pathogenic mutation(Adzhubei, Jordan, & Sunyaev, 2013).  

Polyphen2 also uses a structure-based prediction along with the sequence-based features to 

predict the pathogenicity. It gathers structure related protein information from databases like 

Dictionary of Secondary Structure in Proteins (DSSP), Protein Data Bank (PBD) and also 

calculates this information based on some protein structure parameters (such as 

hydrophobicity, electrostatic interactions etc.). It maps the amino acid change to the structure 

information available to decide if the amino acid is pathogenic(Adzhubei et al., 2013).   
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The final VCF file that was created by combing all the variants was first annotated using 

SnpEff tool. SnpEff is a variant annotation tools, that interprets the variants based on the 

chromosomal position and predicts the possible effect based on available information such as 

transcript information, protein sequence, etc. (Cingolani et al., 2012). Some of the common 

effects predicted by the SnpEff includes Synonymous variant, Non-Synonymous variant, 

frame shift, stop gain/stop lost codon. As Polyphen2 and SIFT performs predictions only for 

SNPs for a canine genome, pathogen prediction was performed separately for Indels. SnpSift 

was used to select the variants with specified effect predictions. Non-synonymous variants 

were selected from SNPs, frame-shift from indels, stop-lost and stop-gain variants were 

selected.  

Figure 12. Pathogen Prediction pipeline for Indels and SNPs. 

While SIFT takes VCF as an input; Polyphen 2 requires an input in a specific format. Thus, 

VCF is given as input to SIFT and a formatted text file for Polyphen2. For Polyphen 2 the 

input files are run in array batch mode as described in the manual to reduce the time required 

for the process. From the output only the variants that are tagged as ‘probably damaging’ and 

have a Bayesian probability greater than 0.98 are retained. Similarly SIFT is run from 

Ensembl variant effect prediction (VEP) tool using the default parameters. Here only the 

variants that are identified as low tolerated, highly confident and have a SIFT score greater 
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than 0.9 are included.  The filtered variants from SIFT and Polyohen2 are further filtered to 

retain only the SNPs predicted pathogenic by both the tools.  

 

Unlike for the SNPs there are rather few tools to predict the effect of Indels for Canine 

genome. Hence they need to be confirmed using genome viewer tools such as IGV. As it is 

difficult to view so many Indels, a two-step filtering is used. From these indels only frame-

shift and splice region variants are selected, as these are the most probable indels that can be 

deleterious. Next, only the variants with a depth greater than 20 are kept. Another interesting 

feature to be observed here is breed specific variants. Variants in a homozygous state in all 

the samples could either be variants specific to Border collie or Boxer (the reference genome 

breed) and hence are removed. The remaining set of mutations is mostly true and deleterious, 

however they are confirmed using IGV.  

 

The missense variants identified as pathogenic by both SIFT and Polyphen2, the stop 

mutations and the frame-shifts selected from the above processes are combined to get the final 

list of interesting variants, among the 24 samples included in this study. To increase the 

pathogenicity confidence of the indels the allele frequency and zygosity of the variant are 

calculated using genotype frequency. Based on the information calculated, the variants are 

categorized into pathogenic with high confidence, likely pathogenic and unlikely pathogenic.  

 Known functional inference 4.7
 
There are many clinical or disease or drug-related databases that provide implication of many 

known mutations. The only online database for Canine is Online Mendelian Inheritance for 

Animals (OMIA). However, there are many clinical or disease related database for human 

such as CliniVar, Online Mendelian Inheritance for Man (OMIM), PharmGKB. To be able to 

use the information from human databases, the genomic co-ordinates of certainly pathogenic 

variants are converted to its orthologuous base in human genome using liftOver. LiftOver is 

an online tool developed by the University of California, Santa Cruz (UCSC) genome 

browser, and it provides amino acid in the human reference orthologous to the one at the 

canine reference. The genomic positions are converted from CanFam3 to hg38.   

 

To understand the biological characteristic of the certainly pathogenic variants, functional 

analysis is performed using DAVID online tool. 
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5. Results 

 Identification of Canine PGx genes 5.1
 
To generate the list of Canine PGx genes, we first developed a list of known human PGx 

genes from various sources, including PharmGKB, PharmaADME databases and the gene list 

(382 genes) from prof. Mikko Niemi at the Department of clinical pharmacology. The list of 

genes includes 47 genes from PharmGKB VIP gene set and 200 and 110 genes from 

PharmGKB CPIC and drug related genes set, respectively. From the PharmaADME database, 

31 Core genes, 267 extended and 74 related PGx genes were selected. The total set included 

540 genes and they were divided into three categories: core genes, extended genes and related 

genes (Figure 13).  The core genes consisted of the genes that belonged to VIP gene set from 

PharmGKB and core gene set from pharmaADME. The extended gene set consisted of genes 

with known drug information (genes that belonged to drug related gene set) from PharmGKB 

and the genes that belonged to extended gene set from pharmaADME. The related genes were 

the genes that belonged to the related category (target/receptor genes) from pharmaADME 

and other genes that do not belong to any other categories.  

 

 
Figure 13. The generation of the human PGx list included in further studies in the pipeline. 

Canine orthologues were identified using the Ensembl Compara API tool. We retrieved 495 

orthologous canine genes for 492 human genes. Among the 495 orthologues, 60 were likely 

pseudo-genes genes.  Pseudo-genes are said to be the genes, that are evolutionarily related to 

functional protein coding genes, but are suspected to have lost the protein coding 

functionality due to various possible mutations such as a frame-shift or stop mutation. Even 

though these 60 genes are pseudo-genes, recent studies using high-throughput technologies 
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have suggested that pseudo-genes could possess gene-expression regulatory functions (W. Li, 

Yang, & Wang, 2013). There are also studies that suggest pseudo-genes have important 

associations with pharmacogenomic genes and also act as therapeutic targets in some 

cases(Roberts & Morris, 2013)(Cordero & Ashley, 2012).   

Most of the orthologue pairs are mapped one to one, i.e one human gene to one canine gene. 

For example, human ABCB1 and TPMT have MDR1 and TPMT as canine orthologues (only 

one orthologue each). However, there were few orthologue pairs on an one-to-may-many 

basis. For example, the canine CYP2A13 gene mapped to three human genes CYP2A13, 

CYP2A7, and CYP2A6. The likely reason for this is that the three human genes are paralogs 

to each other with high sequence similarity. However, the most likely orthologue pair can be 

checked from the e-value (appendix Table 1) (Figure 15).  Including both on-to-one and one-

to-many orthologue pairs, a total number of 532 human-canine orthologue pairs were 

observed (with 492 human and 495 canine genes, Figure 14).  
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Figure 14.  a) Categorizing all the human and canine orthologues based on type of 
orthologue relationship b) Categorizing PGx genes based on type of orthologue relationship. 
c,d) Categorizing the PGx genes based on PGx type( Core, Extended and Related) 

 
Chi squared test with Yates correction was performed to check how enriched the canine PGx 

list was with genes that have a one to one orthologue relationship with human genes.  
 

Table 3. Contingency table for the fischer exact test. The pValue from the fischer.test was about 0.001 
 

Other Relationship One to one 

Other Genes 11021 15398 

PGX Genes 180 409 
 
To understand the protein sequence similarities between the orthologues, eValues from pBlast 

were obtained for two orthologue peptides from Ensembl compara API. When an eValue is 

very small (negative exponentials) it is close to zero. For the convenience of understanding, 

such values are converted to the minimum evaluable scientific number, which is ‘2.225074e-

308’. Also the number of base pairs in open reading frame of the orthologues was retrieved. 

 
Figure 15. a) A density plot depicting the distribution of negative log10 e-value of the 
orthologue peptides with different types of orthologue mapping. b) Histogram of then ratio of 
the number of canine base pairs with the number of human base pairs. 

 

 PGx Annotation Table 5.2
 
A category annotation table was created using the information from PharmgKB and 

PharmADME databases. The table contains information for each PGx gene in human; it’s 

canine orthologue, the type of mapping (one2one, one2many and many2many), the gene type 

(core, extended or related) and it’s pharmacogenomic role (enzyme, transporter, receptor, 
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modifier etc).  Based on pharmacogenomic importance, the genes are categorized into core, 

extended or related as described in the human Pharmacogenomic genes section.  Based on 

their known pharmacogenomic function they were categorized as transporter, modifier, Phase 

I enzyme, Phase II enzyme, target or a receptor.  If it did not belong to any of the categories 

then they were marked as ‘unknown’, so that it could be updated once the information is 

available.  The last category was based on its orthologues mapping with human as described 

in the above section into one2one, one2many or many2many orthologues mapping. With 

these information collected from PharmgKb, pharmaADME and ensembl an annotation table 

was created to assist in further downstream analysis.  An example of the annotation table for 

the orthologue genes is shown in the example table below. The complete table is available in 

the appendix (Table 1).  

 

Table 4. An example of PGx annotation table 

Human 
Gene Importance Type 

Canine 
Gene 

Orthologue 
Mapping 

ABCA1 Transporter Extended ABCA1 one2one 
ABCG2 Transporter Core ABCG2 one2one 
ADH5 Phase-I Extended ADH5 one2many 
HMGCR Target/Receptor Core HMGCR one2one 
AHR Modifier Core AHR one2one 

 
 NGS Data Analysis  5.3

The output of the Illumina sequencing is in the fastq file form, for all the twenty-four Border 

collie samples.  

5.3.1 Remove reads with low quality reads 

The initial step of the pipeline is to pre-process the reads to remove bad quality and unwanted 

reads. In the first step the reads were trimmed to remove the low quality reads by using a 

threshold quality score 20. Eventually all the reads less than the quality score 20 were filtered 

out. For the convenience of representation one of the samples is selected to report the 

statistics of the NGS analysis (BC223). After this step 97.99 percent of the reads passed the 

quality filter that is used for the next processing step while 2.01 percent of the reads were 

removed.  
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5.3.2 Align with reference and coverage 

 
The fastq files from the above step were aligned with the reference genome CanFam3.1. The 

coverage of all the samples was calculated (Figure 16).   

 
Figure 16.   A plot representing the coverage after pre-processing the low quality reads. The 
X-axis and Y- axis represents the 24 samples and the average coverage across the whole 
genome. 

After the alignment the reads that were left unmapped were removed. 0.6 % of the reads was 

found to left be unmapped and were removed. From this output of this file duplicate reads 

(formed due to PCR amplification) were removed. About 3.39 percent of the reads were 

removed in this step. The output bam after this was a successfully pre-processed file. The pre-

processed bam file was re-calibrated using dbSNP data from DoGSG as a reference. The 

statistics of all these steps are presented in the tables below (Tables 4-7) 

Table 5. Statistics of reads before alignment 
 Raw fastq 

Files 
% of Total 
Reads 

Filtered Fastq 
file 

% of reads 
passed 

% of Reads 
removed 

Read 1 658,200,600 51.25 643,444,600 97.76 2.24 
Read 2 626,093,375 48.75 615,667,265 98.22 1.78 
Total 
Reads 

1,284,294,105 100 1,259,111,865 97.99 2.01 

 

Table 6. Statistics of reads aligned to reference 
Initial Reads Mapped Reads UnMapped Reads % Mapped Reads % Unmapped Reads 

1,259,111,865 1,250,549,904 8,561,961 99.324 0.676 
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Table 7. Statistics after marking the duplicated reads  
Before Marking 
Duplicates 

After marking Reads Marked Reads % Marked Reads 

1,250,549,904 1,209,546,285 410,003,619 3.39 
 

Table 8. Statistics after re-calibration 
Total number of 
reads 

Reads from 1st in pair (Number 
and %) 

Reads from second in pair (Number 
and %) 

1,209,546,285 606,635,506 50.15 602,910,779 49.85 
 
The chromosome wise coverage was calculated after re-calibration for a better insight into the 

coverage details.  

 
Figure 17. Plot representing chromosome wise coverage. 

 Variant Identification 5.4
 

The final recalibrated bam contains 94.17 % of reads compared to the raw reads after the pre-

processing and recalibration steps. These reads were used to call the variants that include 

SNPs, Indels and some structural variants.  

With the default set parameters GATK identified 4771681 SNPS and 1391674 Indels while 

Samtools identified 4595077 SNPS and 189339 Indels. The variants were combined based on 

the chromosome position and the nucleotide change in the variation using the GATK combine 

variants option. Both the tools identified 96.09 % of SNPs. GATK and Samtools individually 

identified 2.23 % and 1.68% of the SNPs. Similarly, out of the 1581013 total potential indels 

identified, 550812 indels that contribute to 65.16% from the combined lists were the ones 
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identified by both GATK and Samtools. GATK and Samtools separately identified 361473 

and 189339 indels that respectively represents 22.8 % and 11.9 % of the final list of potential 

indels. The table represents the statistics of SNPs and INDELS identified by GATK and 

Samtools. 

Table 9. Statistics of SNPs identified.  
 SNPs by 

GATK 
Only 
by 
GATK 

SNPs by 
Samtools 

Only by 
Samtools 

Common 
by both 
tools 

Total 
SNPs 

Number 
4771681 16604 4765424 10347 4595077 4782028 

Percentage 
99.7 2.23 99.65 1.68 96.12 100 

 

Table 10. Statistics of Indels identified by GATK and Samtools. 
 Indels by 

GATK 
Only By 
GATK 

Indels by 
Samtools 

Only by 
Samtools 

Common 
by both 
tools 

Total 
Indels 

Number 
1391674 361473 1219540 189339 550812 1581013 

Percentage 
88.02 22.8 77.13 11.9 65.16 100 

 
 

 
 
 
 
 
 
 
 
 

Figure 18. Venn Diagram depicting the proportion of variants identified by different too 

 Variant Filtering 5.5
 
The final variants from the NGS pipeline were further filtered through a series of steps to 

retrieve the final list of predicted pathogenic variants in PGx genes. The length of the Canine 

genome is about 2.3 Gbp while the length of the pharmacogenetic genes approximates to 

0.022 Gbp or 22.03 Mbp that comprises of about 0,1 % of the whole genome. Hence first step 

was to select only the variants from these genes, to reduce the disk space and computation 

time for the next processing steps. From the below table it can also be observed that the open 

reading frames of the PGx genes comprises about 40% of the whole genes. As this study was 

mainly concentrated on the coding regions, only the variants that occur in open reading 

frames (ORFs) were selected to further reduce the computational time and disk space.  A bed 
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file was created using Bedtools with information of genomic regions of just the ORF of PGx 

genes. This bed file was used to filter the variants. The final output of this step is also a VCF 

file. 

Table11. Length of Canine PGx genes and ORFs. Length in Base Pairs 
 
Whole Canine 
Genome Pharmacogenomic (PGx) Genes PGx Genes ORF 
2,392,715,236  

22,031,443  922,260 

 
The VCF file from the above step was then annotated with SnpEff and ensembl annotations. 

From the annotation, variants that were missense, frame-shift, Stop-Gain or Stop Lost and 

splice site region variants were selected, as these are the types of mutations that are usually 

pathogenic. The numbers of mutations in each category are depicted in the flowchart below. 

 

  

 
 
 
Figure19. Number of variants at various stages of filtering from all the 24 Border Collie 
samples. 
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 Pathogen variation prediction 5.6
 
The Missense variants were further processed to find or predict the possibly pathogenic 

mutations. Polyphen2 classifies the predictions into benign, possibly damaging and probably 

damaging. The variants that were predicted probably damaging with a Bayesian probability 

greater than 0.95 are selected, as they are the one with high confidence. SIFT, identifies the 

pathogenic variants or deleterious   variants and gives a confidence score. The variants that 

were deleterious with high confidence were selected. As Polyphen predicts based on sequence 

alignments and SIFT based on conservation score, selecting only the variants that are 

predicted pathogenic by both the programs, further increases the confidence of the prediction. 

Among the 826 variants from 24 samples, 42 variants from Polyphen2 and and 36 variants 

form SIFT were selected based on their respective selecting criteria as mentioned above.   

 

Table 12. Variants identified by Polyphen 2 
Predicted as 
benign 

Predicted as 
damaging  

Predicted as 
damaging with 
Bayesian score 
> 0.95 (selected) 

Predicted 
damaging based on 
alignment 

Predicted 
damaging based on 
structure 

704 122 42 40 2 
 

Table13.Variants identified by SIFT. 
Predicted benign  Predicted deleterious Deleterious with high confidence 

676 150 42 
 

 

 
Figure 20. Pie diagram depicting the overlap between Polyphen2 and SIFT 

The indels, that included frame shift, stop gain / stop lost and splice site mutations were 

further analyzed in IGV. Variants that were false positive and had very low coverage were 

removed. An example of low coverage is depicted in figure 21 at 

‘chr7:79047553:GCCCC>GCCC’, the coverage is very less and hence the genotype cannot be 

reliable. 

 

15	
9	

27	

Only	SIFT	

Only	Polyphen	2	

Both	SIFT	and	
Polyphen	2	



	 35	

 
Figure 21. IGV screen shot of a variant filtered out due to low coverage 

 
 
 
One of the indels identified at chromosome position ‘ is a false positive as depicted in figure 

22. It can be seen that the indel is actually two snps at adjacent positions and is falsely called 

as an indel. From the frame-shift variants 2 and 3 variants were removed due to low coverage 

and false positives respectively. 
 

 
Figure 22: IGV screen shot of  two consecutive snps false called as an indel.  
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A simple algorithm was written to calculate the number of homozygous and heterozygous 

mutation at each site and the allele frequency based on the genotype frequency. In the final 

step, 20 variants were removed, as they were present in all the samples in a homozygous state 

implying that they could be specific to Border collie or the Boxer (reference genome).  All the 

remaining variants were then categorized into three classes such as pathogenic variants with 

high confidence, likely pathogenic and unlikely pathogenic. Highly confident pathogenic 

variants included the frame-shift and stop-gain indels after the filtering and the missense 

variants identified by both SIFT and Polyphen 2. The highlighted boxes in figure 19 represent 

the set of highly confident pathogenic variants. Likely pathogenic variants include breed 

specific variants, variants with low coverage and pathogenic missense variants identified by 

either SIFT or polyphen2. The variants that did not come under any of this category belonged 

to unlikely pathogenic variants.  

 
Figure 23. Illustration of a pie chart; depicting the number of variants, at each level of 
pathogenicity. 

 
A total of 68 variants were classified as certainly pathogenic variants out of which 9 belonged 

to core genes and 59 belonged to either extended or related genes. Among the rest of the 

variants 251 variants belonged to the likely pathogenic category while 657 variants were 

categorized as unlikely pathogenic variants. The complete list of pathogenic variants with 

high confidence from this study is listed here below (Table 14). 
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Table  14.1: The final list of missense pathogenic variants with high confidence and their PGx 
information. 
 

Gene CHR POS REF ALT PGx Imp Function AA Change 0/1 1/1 
ABCB4 chr14 13543365 C T Extended Transporter p.R1191G 4 0 
ABCC10 chr12 11915224 T G Extended Transporter p.A1120S 9 2 
ABCC11 chr2 66872504 G A Extended Transporter p.N1099S 3 0 
ABCC8 chr21 39963480 C T Extended Transporter p.S1485G 5 4 
ACAA2 chr7 79043218 A C Related Unknown p.S189Y 1 0 
CRAT chr9 54576878 A G Reltated Unknown p.E388K 1 0 
CYP2J2 chr5 49978117 A G Core Phase-I p.A407T 2 0 
DHRSX chrX 1190103 T C Extended Phase-I p.A161T 8 3 
DLA-DQA chr12 2225877 A G Related Unknown p.V221M 9 0 
DLA-DQA chr12 2225964 T C Related Unknown p.L250F 4 18 
EPHX1 chr7 38980909 T C Extended Phase-I p.R71H 7 0 
FMO3 chr7 27725328 A G Extended Phase-I p.P358S 1 0 
FMO6P chr7 27686759 T C Extended Phase-I p.G442R 3 2 
MDR1 chr14 13710943 G T Core Transporter p.Q197H 4 0 
PML chr30 37265646 T C Related Unknown p.R457W 3 0 
RPS6KB1 chr9 34424229 T C Related Unknown p.P448S 5 1 
SLC22A1 chr1 49277508 A G Core Transporter p.G218D 11 4 
SLC22A1 chr1 49279319 A G Core Transporter p.G308E 5 0 
SLC22A10 chr18 53608679 G T Extended Transporter p.S189R 7 3 
SLC22A12 chr18 52549442 A G Extended Transporter p.L72F 9 0 

 

Table  14.2: The final list of Stop gain /splice site pathogenic variants with high confidence and their 
PGx information. 
 

Gene CHR POS REF ALT PGx Imp Function AA Change 0/1 1/1 
ALDH3B1 chr18 49807490 G A Extended Phase-I R198* 3 0 
ALDH3B1 chr18 49807373 C A Extended Phase-I E237* 2 1 
ALDH3B1 chr18 49807860 A T,C Extended Phase-I C74* 3 17 
ALDH3B1 chr18 49807979 G A Extended Phase-I Q35* 3 19 
AOH2 chr37 9870736 C T Extended Phase-I R518* 2 0 
CYP1A2 chr30 37821686 C T Core Phase-I R373* 7 0 
CYP3A26 chr6 9797643 C A Extended Phase-I E122* 3 0 
DLA-
DRB1 chr12 2157139 G C Related Unknown Y119* 1 0 
DLA-
DRB1 chr12 2157346 G T,C Related Unknown Y50* 9 2 
SAA1 chr21 40704199 G T Related Unknown G93* 1 0 
SAA1 chr21 40684958 G T Related Unknown G109* 1 0 
SLC22A18 chr18 46885448 GG GGGTG Extended Transporter . 0 1 
SLC22A18 chr18 46885444 GGG GGGGGG Extended Transporter . 7 14 
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Table  14.3: The final list of frame-shift pathogenic variants with high confidence and their PGx 
information. 
 
 

Gene CHR POS REF ALT PGx Imp Function 0/1 1/1 

ABCA1 chr11 60809270 TGA T Extended Transporter 1 0 

ADH4 chr32 21295994 GTTTTTT GTTTTT Extended Phase-I 3 0 

ALDH3B1 chr18 49807377 CTG C Extended Phase-I 1 1 

ALDH3B1 chr18 49807371 CT C Extended Phase-I 0 1 

ARVCF chr26 29530257 TGGGGGG 
GGGGTG
GGGAGG
GGGG 

Related Target/Receptor 0 1 

CAR chr38 21255656 GGTACGT GGT Extended Modifier 6 1 

CEBPB chr24 36633990 
CCCCCGG
CGGGCCC
CGGC 

CCCCCG
GC Related Unknown 1 0 

CYP1A2 chr30 37820110 CAA CA Core Phase-I 3 0 

CYP1A2 chr30 37824002 CCCCCAT
CTAT 

CCCCCA
TCTATCC
CCATCT
AT 

Core Phase-I 4 0 

CYP2S1 chr1 112747078 G GGC Extended Phase-I 1 0 

CYP4A39 chr15 13668765 TCCC TCC Extended Unknown 7 1 

DLA-DQA chr12 2224871 CTGT CT Related Unknown 4 0 
DLA-
DRB1 chr12 2157296 A AT Related Unknown 3 0 

DLA-
DRB1 chr12 2157345 GGT GCCACG

T,G Related Unknown 2 1 

DLA-
DRB1 chr12 2157297 A AG Related Unknown 1 0 

FLT4 chr11 1171662 GT G Related Unknown 0 1 

FLT4 chr11 1171641 GGGGCGG
GCGGG 

GGGGCG
GG Related Unknown 1 0 

METAP1 chr32 21208568 CTTTT CTT Extended Phase-I 12 1 

NFKB1 chr32 23948573 TTGTTCTG
TT TTGTT Related Unknown 1 0 

PML chr30 37215571 C CA Related Unknown 7 1 

SLC22A10 chr18 53608677 GCT GT Extended Transporter 8 3 

SOD1 chr31 26539786 CTATAT CTAT - Modifier 9 0 

TNFRSF8 chr2 84202155 GCAC GCACAC Related Unknown 1 0 

UGT2B31 chr13 58949074 C CA Extended Phase-II 2 0 

 
 
 
 



	 39	

 

The allele frequencies of these pathogenic variants in the 24 samples studied was calculated 

as per Hardy Weinberg Equilibrium. The plot in figure 22, depicts the distribution of the 

mutations and their zygosity.  The detailed information is available in table 15. 

 
Figure 24. Histograms for pathogenic variants with high confidence in the 24 Border collies 
analyzed representing the frequency of a) allele frequencies b) the number of samples that are 
carriers for the mutation c) the number of samples that are homozygous for the mutation. 

 Known and Unknown Mutations 5.7
	
The pathogenic variants with  high confidence were accessed across known clinical databases 

to verify if any of these were clinically relevant. The only online gene-variant database for 

dogs is Online Mendelian Inheritance for Animals (OMIA). To be able to use the information 

from human databases, the genomic co-ordinates of certainly pathogenic variants were 

converted to its orthologous base in human genome using liftOver. Based on the orthologous 

genomic positions of the canine variants, the human databases CliniVar, OMIM and 

PharmGKB were accessed for comparison (Figure 23). We found several examples of known 

pathogenic change in the dog genes when compared to human PGx gene variants. In this 
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process a few interesting phenotypes reported in and around the same region were identified.   

These studies were related to Cytochrome P-450 and the ABC transporters families.  

 

CYP1A2, a member of the Cytochrome P 450 enzymes family is a PGx Core gene and a 

Phase-I metabolizing enzyme.  The mutation identified as a part of this study, c.1117C>T, has 

an entry in OMIA and has been has identified to cause a truncated protein, when in a 

homozygous state, resulting in phenotypes of poor or extensive metabolizers in beagle dogs. 

In the current study , this mutation is not homozygous, but 7 out of 24 dogs pose to be carriers 

for this mutation (Mise, Hashizume, Matsumoto, Terauchi, & Fujii, 2004). Given the 

importance of CYP1A2 in the pharmacogenomics, this gene should be screened in additional 

Border Collies and other breeds to understand prevalence and to develop strategies to avoid 

adverse drug responses in future. CYP2J2 is another PGx Core, Phase –I enzyme, that has a 

mutation p.A407T in 2 Border Collies in heterozygous state. In humans a mutation p.N404T 

in the same gene has been identified to show significantly reduced metabolism of both 

arachidonic acid and linoleic acid in their homozygous state(King et al., 2002).  It would be 

interesting to screen through other canine WGS data avialble for this mutation and check for 

possible phenotype and penetrance.  

 

Among ABC transporters, three genes ABCA1, ABCB1 (MDR1) ,ABCC8 and ABCA1 had 

some interesting phenotypes in human. A missense mutation p.Q197H in MDR1 was 

identified in this study. In humans, a missense mutation p.G191R in the same protein domain 

has been identified and demonstrated to be resistant to many drugs in a set of leukemia 

patients, causing an efflux on the drug transport (Yang, Wu, Bui, & Ho, 2008). Therefore, it is 

possible that Q197H has clinical implications and should be further studied. MDR1(Multi 

Drug Resistant) is a highly sensitive gene towards many drugs both in human and canine. The 

well- known MDR1-delta(Δ) mutation, a four base pair deletion, in canine was not observed 

in this set of Border collies and has been found rare also in other studies (Katrina L Mealey, 

2013). There was also another predicted pathogenic missense mutation p.S1485G in ABCC8 

that requires further attention. The ABCC8 is a member of the ATP Binding Cassette, 

transporter family. There is a reported mutation in humans in the same protein nucleotide 

binding domain 2 (p.R1486K) that is a potential pathogenic mutation in case of  patients with 

hyperinsulinemic hypoglycemia  (HHG), a glucose metabolism disorder (Ohkubo et al., 

2005). Another mutation R1420C, in the same nucleotide binding domain has been identified 

to be the cause the same disorder in infants (Tanizawa et al., 2000). Also it was observed 
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from mutdb that any mutation in this domain is highly pathogenic and is related to HHG. In a 

similar manner the frame shift mutation in ABCA1 (PGx extended and transporter)  at p.I570 

occurs in a protein domain that is highly sensitive to high density lipo-protein deficiency 

(HDLD) in humans. Mutations at this protein domain halt the release of lipids and cholesterol 

from cells causing hindrance to the production of HDL leading to HDLD.  

 

  
Figure 25. Pathogenic indels and missense variants further classified based on their role in 
Pharmacogenomics  

 DAVID Functional Enrichment analysis 5.8
 
To understand the biological significance behind the variants, functional annotation was 

performed for these genes using DAVID. The functional annotation was carried out for the 

pathogenic variants of high confidence to look for enriched pathways or protein domains. The 

enriched terms with a Benjamini Hochberg (BJ) adjusted pValue threshold less than 0.01 

were selected.  The details of the enriched pathways and protein domains are listed below in 

Table 15.  

Table 15. The enriched pathway or mechanisms related to the pathogenic variants of high confidence 
and the genes involved in respective pathways or mechanisms in pharmacogenetics. 

Category Enriched 
Terms 

Genes Involved pValue Adjusted 
(BJ) 
pValue 

KEGG_PATHWAY 
ABC 
transporters ABCA1,ABCB4,ABCC10,ABCC11,ABCC8 1.4E-5 1.3E-3 

KEGG_PATHWAY 

Metabolism of 
xenobiotics by 
cytochrome 
P450 UGT2B31,ADH4,CYP1A2,CYP2S1,EPHX1 2.5E-5 1.2E-3 

0	
2	
4	
6	
8	
10	
12	
14	
16	

Modifier	
Transporter	
Phase	I/II	

0%	 50%	 100%	

Human	Ortholog	aa	
position	

Canine	Certainly	
Pathogenic	

Novel	 dbSNP	 OMIA	 clinivar/PharmgKB	



	 42	

KEGG_PATHWAY 

Drug 
metabolism - 
cytochrome 
P450 UGT2B31,ADH4,CYP1A2,FMO3 5.7E-4 1.9E-2 
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6. Discussion 
 
Although the pharmacogenomic study in humans is quite well annotated and being carried out 

at increasing pace, it is still in an early developmental stage in dogs. This project aimed to 

build a bioinformatic pipeline for NGS data to identify and classify genetic variation in canine 

PGx genes in 24 Border Collies. The orthologues of the ~500 known human PGx genes were 

identified and screened for variations in the ORFs. Thousands of variants were identified and 

bioinformatic predictions indicate that about 1.3% of these could be harmful with expected 

phenotypes at least in the homozygous dogs. These likely pathogenic variants should be 

prioritized for experimental functional and clinical validation and for better estimation of the 

prevalence in the larger study cohorts within the Border collie and other breeds.  

 

This pilot study establishes not only a useful bioinformatic tool and infrastructure for future 

studies but also reveals novel insights into the extent of the likely pathogenic PGx gene 

variation in dogs with implication to veterinary medicine. NGS data is rapidly accumulating 

in dogs and the approach developed here should greatly facilitate the identification of 

candidate variants for subsequent genetic, functional and clinical validations.   The pipeline 

has been carefully designed by analyzing the results at the end of each phase that includes, 

ortholog identification, dna sequencing, variant identification and pathogen prediction, to 

ensure precise identification of the desired variants.  

 

 

Many tools such as eggnog, UCSC Lift over, ensembl, and orthoMCL were reviewed to 

identify the canine orthologues. However, according to a few studies, the ensembl compara 

api has been evaluated to give best results for vertebrates when compared with other tools 

(Altenhoff & Dessimoz, 2009). Although the pseudo-genes identified by the compara API 

were not used in the further analysis in this study, they are saved in the in-house database for 

possible analyses. Using the ensembl api, 72% of the 27000 human genes have orthologues in 

canine genome. The percentage of genes with no orthologues can be related to the excess 

predicted genes and their paralog genes in human possibly due to spurious gene prediction 

(Lindblad-Toh et al., 2005). Contradictory to this, the human PGx list used in this project has 

about 90 % of orthologues in canine. This can be correlated with the study of parallel 

evolution between human and dogs (Wang et al., 2013), which states that most of the 

positively selected genes between human and canine belong to metabolism and digestion.  
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The pValue from the Chi-square test (0.001) provides additional support to this statement. 

From the eValues retrieved for the orthologue peptides, the highest value is ‘9e-21’ (for 

CEBPD -an enhancer binding protein), which could still be considered a good eValue. About 

75.02 % of the PGx orthologues have an eValue rounded to zero, as can be seen in Figure 15, 

suggesting that this percent of genes almost have no chance of the alignment occurring just by 

chance. Also from the histogram in Figure 15, depicting the ratio of base pairs in canine and 

human orthologue genes, it can be inferred that most of the orthologues have almost same 

length of open reading frame. The eValue and the gene length ratio provide additional 

confidence to use these human PGx genes as a reference to study canine pharmacogenomics. 

It is also interesting to note that genes with one to one orthologue relationship do not have any 

psuedogenes. The characterization of psuedogenes is very important, as it is evident from 

UGT1A1, a transferase enzyme producing gene, which is also a core PGx gene (Barbarino, 

Haidar, Klein, & Altman, n.d.). The human UGT1A1 has only a pseudogene as a canine 

orthologue, but the study by Troberg et al., provides details into the UGTs of canine and  its 

pharmacogenomic relevance. (Troberg et al., 2014). More such studies are essential to 

understand the functionalities of the missing orthologues or psuedogenes. There has also been 

growing evidence that pseudogenes could be therapeutic targets. This information could be 

used to study how the small RNAs produced by pseudogene transcripts are involved with the 

regulation of gene expression of their genes (Roberts & Morris, 2013). 

 

The high quality WGS data utilized here was generated by Illumina HiSeq2500 protocols. 

The steps followed in the sequencing pipeline are with reference to the GATK Best practices 

pipeline, which best suits to Illumina data. A good 99.3 percent of the reads were mapped 

after removing the low quality reads, representing a good sequencing library (Illumina Hi 

Seq) and alignment (BWA – MEM) combination. Although the percentage of unmapped 

reads is small (only 0.6%), and should not affect the storage of further performance much, 

they are still removed as well as the 3.39% of duplicate reads to avoid spurious variant calls. 

Samtools and GATK were utilized to identify variants in the WGS data. Although both tools 

are quite efficient in identifying variants, the combination of the tools helped to identify an 

additional 4% of the variants . Use of the combination of the tools has previously proven 

beneficial especially with the canine genome (Ahonen, Arumilli, & Lohi, 2013). We observed 

an overlap of 96% for SNPs but only 65% for indels between the tools. The haplotype caller 

is used to identify the variants with GATK and re-aligning the indels included in the pipeline 

ensures the confidence of the accuracy of the indels identified. Although the overall results 
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give an idea that the performance of GATK and Samtools is similar, the 4% difference in the 

SNPs can be related to the difference in the Bayesian genotyping method.  Also the error 

modeling during GATK likelihood calculation, could cause the difference in the genotype 

calling from Samtools, especially when the depth is more than hundred folds. The 

‘genotypeMerge’ option has been used to take care of the variants with genotype differences 

between samtools and GATK, by prioritizing the GATK genotypes. This suggests that use of 

combination of tools or algorithms is always a better choice to increase the accuracy and rate 

of novel variants identified. The same procedure could also be used with exome sequencing 

samples, as this project only intends to look at the open reading frames of the genes. The NGS 

pipeline used has been developed in such a way that, the variant files are made available in a 

standard VCF 4.0 format, so that they could be used for any other research project if required. 

 

Filtering the variants based on the open reading frame positions was the initial step to use 

VCFs from the whole genome samples.  This step significantly reduced the storage space as 

the interested regions (ORFs of the PGx genes), comprised only about 0.1% of the whole 

genome variant file.  This change would be quite radical even for an exome variant file, as the 

PGx ORFs contribute to only about 1% of the whole canine exome region. This decreases the 

computational space and time required for further processing.   

 

SnpEff has been a very useful tool to predict the effect of the variants on the coding 

sequences. Based on the type of variation, an impact factor is assigned to it. The impact factor 

has been quite useful to further filter the variants. Other than missense SNPs, that are 

classified to have moderate impact by SnpEff, high impact variations were selected to proceed 

further. Among the high impact variations there were only frame-shift, stop gain or stop lost 

mutations. As the project looks at only the open reading frames, it is possible than only these 

types of variations occurred. Also information such as name of the gene, change in the amino 

acid sequence due to the variation, exon number, name of the transcript, etc., were also 

annotated using SnpEff.  To be able to differentiate between novel and known variations, the 

variants were annotated with variants from canine dbSNP. In this whole process Ensembl 

database was used, as the same is being followed throughout, from identifying the 

orthologues to predicting the pathogenic variants.  

 

As not all missense variants are pathogenic, they were run using two separate pathogenic 

tools, Polyphen2 and SIFT. Although the total number of variants predicted deleterious with a 
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good confidence were quite close, 200 by Polyphen2 and 230 by SIFT, the number of variants 

identified commonly by both the tools is only 27, which is only about 7% to 8% of the 

individual pathogenic sets. The reason for this is that, both the tools classify them into 

different categories of pathogenicity. Polyphen2 classifies them into possibly damaging, 

probably damaging and neutral with a Bayesian score. SIFT classifies into predicted 

deleterious, tolerated and neutral with different confidence type, high confidence and low 

confidence. As only a strict selection criterion was used, the missense variations that were 

predicted as absolutely deleterious were selected. This selection criterion suits the PGx study 

as mentioned in bioinformatics approach to achieve translation medicine from NGS data 

(Figure 3 in the Introduction section). There are also other studies that support the approach 

of using a combination of multiple pathogen prediction tools to ensure the confidence of 

pathogenicity(Grimm et al., 2015)(Hicks, Wheeler, Plon, & Kimmel, 2011). Although there is 

a debate on reliability on pathogen prediction tools, due to possibility of missing true 

positives, it is still an efficient method to prioritize the variants for functional validation. 

 

The key challenge in the whole process was validation of the indels using IGV, as the task 

demanded more manual work. The accurate detection of indels is still a challenge due to 

reasons such as low coverage and presence of repeated sequences. The study by Yue Jiang et 

al suggests that the indels reported by different studies on a same population are highly 

inconsistent(Jiang, Turinsky, & Brudno, 2015). Such studies also support the necessity of 

more accurate indel detection tool and high throughput data with better quality. The other 

interesting set of variants was the presence of homozygous variants in all the samples. These 

variants could be either specific to the reference genome Boxer or the Border Collies. 

Analyzing the same variants in exomes or whole genomes of other breeds could give a better 

insight. However as this scenario has appeared only in indels (frame shift) it would be 

appropriate to re-call the indels using different parameters before drawing conclusions. These 

facts suggest that there is still a lot of scope for better indel calling algorithms.  

 

The certainly pathogenic variants contribute to about 6% of variant set studied for 

pathogenicity. Figure 23 (in the Results section) clearly depicts the portion of likely, unlikely 

and pathogenic with high confidence variants. While the small portion of final variants 

depicts the confidence in the pathogenic variants, the 25% of likely pathogenic variants (low-

confidence) is the result of difference in pathogen prediction algorithms. This also depicts the 
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need for a universal prediction algorithm that can detect pathogenic variants with more 

accuracy.    

 

Recent studies have suggested that many genetic variants that are pathogenic are common in 

asymptomatic individuals (Cassa, Tong, & Jordan, 2013). The study of functional variants in 

human PGx genes by Nelson R.et al, depicts that there is an abundance in the number of 

deleterious rare variants that have a functional impact on drug metabolism. This pattern of 

distribution highlights the necessity to analyze the allele frequency of PGx mutations in a 

population (Nelson et al., 2012). In most of the cases the adverse reaction to drugs is caused 

by homozygous mutations. In addition to being carriers, heterozygous mutations can 

sometimes cause adverse reaction with reduced intensity. For example in the analysis of 

human CYP genes van der weide et al, categorized the mutations into poor, intermediate and 

extensive metabolizers based on the genotype of the mutations (van der Weide & Hinrichs, 

2006). Hence understanding of the distribution of allele frequencies and zygosity is quite 

essential. From the figure 22.a, it can be seen that in the Border collie population studied a 

huge proportion of the pathogenic variants are rare and specific to samples. It can also be 

inferred from the figure 22.b,c that the proportion of the heterozygote mutations are more 

when compared to homozygous mutations.  The outlier in the histogram represent variants 

from DLA-DQA1 and DLA-DRB1 which is are highly polymorphic genes (Kennedy et al., 

2000). From the David functional enrichment analysis, it can be seen that the enriched 

pathways are transporters and metabolism related. Previous interest has also targeted 

transporters (Katrina L Mealey, 2013) and metabolizing enzymes (Court, 2013). As the 

canine genome has possibilities for new assembly and annotation in future, updating the 

annotation table and re-running that last step of the table is sufficient to keep the analyzed and 

new data updated. Also the different phases of the pipeline are independent of the other and 

hence can be upgraded or optimized easily whenever there is possibility.   
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7. Conclusion and future prospects 
 
The increase in the need to understand personalized medicine, due to ineffective or toxic 

responses of a group of individuals to certain drugs, has led to tremendous increase in the 

study of pharmacogenomics in the past four to five years. This project aimed at 

accomplishing the first two stages of the ‘bioinformatics approach to achieve personalized 

medicine’ that are, processing of large-scale genomic data and functional interpretation of the 

effect and impact of the genomic variation. Identification of the pathogenic variants can be 

further validated and analyzed for possibility of being a potential biomarker. The output could 

be further integrated with other biological data, such as proteomic and metabolomics data, 

using systems biology approaches to achieve translational or personalized medicine.  

 

This study had practical and scientific implications. We established a powerful bioinformatic 

infrastructure that allows systematic study of NGS data for PGx variation in future. A precise 

set of PGx genes was gathered and respective canine orthologs were identified. After detailed 

analysis, the canine PGx set was included in the analysis. The PGx gene set was also 

annotated with labels, based on the gene’s role and importance in drug processing. A standard 

pipeline was established using the state of the art techniques to perform the NGS analysis. 

The pipeline was designed in such a way, that it could process, either WGS or WES data.  

The final output of the data included a set of pathogenic variants that were predicted to have 

pharmacogenomic implications in the population studied. The framework also produced a 

report on the frequency, pathway analysis and allele zygosity of the pathogenic variants. The 

pipeline is designed in an object or module oriented design. As a result, each module is 

independent of each other and any future changes for optimization would be easy and would 

not affect the other modules.  

 

This mode of analysis could be highly useful to study the clinical impact, since we already 

discovered several putative functional variants, in the small pilot of 24 samples. Ongoing 

analyses in about 500 samples, following a genotype to phenotype pattern of research, should 

reveal many new candidate variants, especially in the core PGx genes. It would also establish 

a large study of functional and clinical pharmacogenomics in dogs, contributing to 

translational and personalized medicine.  
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9. Appendix 
 File Formats 9.1

9.1.1 Fastq 
 
The Fastq Files contain two types of lines. One has the read identifier that starts with the 

symbol ‘>’ and the next succeeding line is the nucleotide (or amino acid if it is a protein fasta 

file) sequence of the particular read (or transcript for protein fasta). Once the sequence is 

completed the next line again starts with the identifier of the next sequence and it goes on so. 

As mentioned the sequence identifier starts ‘>’ and is immediately followed by the name or id 

of the sequence. The id or name could be a combination of information. In the example 

below, it can be seen that the identifier starts with ‘>’ and is followed by gene name, ensembl 

gene id, transcript id and protein name separated by ‘:’. The second line  depicts the 

nucleotide sequence. 

 
>ACBA1:ENSCAFG00000002727:ENSCAFT00000004346:ABCA1 
TTAATGACCAGCCACGGCGGCCGCCTCCACGGGCCCCCGAGCCACACGCACGGTGCTGGCGCCGCCCGCTGAGCCGACATGG
CCTCCTGGCCTCAGCTGCGCCTGCTGCTGTGGAAGAACCTCACCTTCAGAAGAAGGCAGACCTGTCAGCTGTTGCTGGAAGTG
GCCTGGCCTCTGTTTATCTTCCTGATCCTGATCTCCGTGCGGCTGAGCTACCCGCCCTATGAGCAACATGAGTGCCACTTTCCA
AACAAAGCCATGCCCTCTGCAGGAACGCTTCCTTGGATTCAGGGGATTATCTGTAATGCCAATAACCCCTGCTTCCGCTATCC
GACTCCTGGTGAGGCCCCTGGGGTGGTTGGAAACTTTAACAAATCCATTGTGTCTCGCCTGTTCTCAGATGCTCAGCGGCTCC
TTTTA 

9.1.2 BAM 
 
Binary Alignment Map or BAM file is a binary form of sequence alignment data. 
 
HISEQ:16:D24BTACXX:6:2301:1341:71647 163 chr1 112734887 60 101M = 112735185
 399
 TCAGTCAGTGGAGCGTGCACTCTTGATCTCGGGGTGGGGTGGGGGTGTTTGAGTTTGAGCCCCACGTTGGGTGGAA
AGAGGACTTAGAAACAAAAGCTTAA
 =>:>===>=>===<4;<;<;<<<<<<<<<<4;;;/9;<<.69;;;6799<;::9:<=:<:;<<<<5:==<<:9;;<<;2:;<;=???>??>>??>==>==?
 MC:Z:101M
 BD:Z:EEHHKKJJIGIGDIEGFGHDGDDDFGFFDDCDBBEEGBBEEGBBBEEEE?FGCHF@GHDIFDDGEFGFGHCFFHGF
@EDDGHHIFEIEGBHHJCCIMHEDE MD:Z:101
 BI:Z:FFHHHGHHGEGGEGEFEEHDGDECEGFEEDCEDDEEGDDEEGDDDEEFEAEGEFEBFHFHGEEHEGGFFHEFFHH
GBFGGHIFIEGIHIDHJKFFJMIDFF NM:i:0 MQ:i:60 AS:i:101 XS:i:0 RG:Z:BC223-5B5E6E0A 

9.1.3 VCF 
 
Variant Call Format (VCF) is a tab-separated file that has details of the NGS variants. The 

VCF file was initially created by the 1000 genomes. It starts with a meta-information line, 

header and then followed by data. The meta-information lines starts with ‘##’ and each line 

contains details of the file such as format or information of the header, such as, Chromosome 

(CHROM), position (POS), Reference (REF), etc. The fields of the VCF files are mentioned 

here below 
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CHROM Chromosome Number 

POS Position of the variant 

ID Variant ID eg/- BICF2S2345117 

REF The reference nucleotide at the given chromosome position 

ALT The alternate nucleotide/variant  in the sample at the same position 

QUAL Quality of the read at the chromosomal position 

FILTER Denotes if the position has passed all the filters   

INFO Denotes other information such as Allele frequency, allele count, depth, 
sample genotype etc. Also the annotation is included in this column. 

 

9.1.4 Bed File 
 
A bed file is a tab-delimited file with information about a genomic region. There are three 

mandatory regions in a bed file, chromosome name, region start and region end. There are 

nine other optional fields such as name, strand etc., and providing information about the 

genomic region in the mandatory field. The below is an example of a basic bed file used in 

this project.  

 
 >CYP1A2.bed 
chr30 37819355 37820173 
chr30 37820699 37820819 
chr30 37821253 37821342 
chr30 37821600 37821723 
chr30 37822620 37822706 
chr30 37823781 37824078 

9.1.5 Polyphen 2 Input 
 
The input is a tab-delimited text with protein name, position of the alteration, reference and 

alternate amino acids. The alternate amino acid is the substitution for the reference amino acid 

due to the variation. The protein identifier can be protein name, Uniprot or ensembl or Ref 

Seq name. In this case the ensembl protein identifier is retrieved from translation 

adaptor(ensembl perl api) using transcript id, which in turn  can be obtained from vcf file 

using the SnpSift ‘extractFields’ utility in SnpEff tool. 

 

Protein Identifier Position in 
Sequence 

Amino Acids Ref Amino Acids Alt 

ENSCAFP00000001840 22 R P 
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 Key Commands and Arguments  9.2

9.2.1 Retrieve Orthologs(Ensembl Compara Perl API) 
 
my $gene_member_adaptor =$reg->get_adaptor( "Multi", "compara", "GeneMember" );  

my $homology_adaptor = $reg->get_adaptor( "Multi", "compara", "Homology" ); 

my $gene_member =$gene_member_adaptor->fetch_by_source_stable_id( 'ENSEMBLGENE',$geneEId ); 

my $dog_ortholougues =$homology_adaptor->fetch_all_by_Member_paired_species($gene_member, "Canis 

lupus familiaris",['ENSEMBL_ORTHOLOGUES'] ); 

9.2.2 WGS 
 
Pre-processing Reads 
 
gunzip -c <fastq1> |<path_to_fastx>/fastq_quality_filter -i - -o <fastq1_filtered> -v -Q 33 -q 20 ; 
 
gunzip -c <fastq2> |<path_to_fastx>/fastq_quality_filter -i - -o <fastq2_filtered> -v -Q 33 -q 20 ; 
 
 Align against Reference 
 
bwa mem -R '@RG\tID:bwa\tLB:'<Sample_Name>'\tSM:'<SampleName>'\tPL:ILLUMINA' <canFam3.1> 
<fastq1_filtered>  <fastq2_filtered> | samtools view -bS - > <alignment_bam> 
 
 
Pre-processing Aligned Reads 
 
#Sort Bam file 

samtools sort <alignment_bam> <alignment_sorted_bam> 

#Remove unmapped reads 

samtools_0.1.18 view -bF 4 <alignment_sorted_bam> > <alignment_sorted_MR> 

#Mark duplicates 

java -jar picard.jar MarkDuplicates  INPUT=<alignment_sorted_MR> 
OUTPUT=<alignment_sorted_MF_dedup>  
 
#Calculate coverage 

qualimap bamqc -bam <alignment_sorted_MF_dedup>  -outformat PDF  -c > <Alignment_Coverage_Stats> 
 
Indel Re-alignment and Recalibration 
 
#Identify intervals 

java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -R <canFam3.1> -I 
<alignment_sorted_MF_dedup>  -o <alignment_realign.intervals> 
 

#Realign around intervals 

java -Xmx4g -jar GenomeAnalysisTK.jar -T IndelRealigner -R <canFam3.1>  -I 
<alignment_sorted_MF_dedup> -targetIntervals <alignment_realign.intervals> -o <alignment_realign_bam> 
 

#Re-calibration 
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java -Xmx4g -jar GenomeAnalysisTK.jar -T BaseRecalibrator -R <canFam3.1>  -knownSites <dogGSD.vcf> -I 
<alignment_realign_bam> -o <alignment_realign_recal> 
java -Xmx4g -jarGenomeAnalysisTK.jar -T PrintReads -R <canFam3.1> -I <alignment_realign_bam> -BQSR 
<alignment_realign_recal> -o <alignment_recalibrated.bam> 
 
Identify Variants with GATK 
 
#GATK variants identification 

java -jar GenomeAnalysisTK.jar -R <canFam3.1> -T HaplotypeCaller -I <alignment_recalibrated.bam> -
stand_emit_conf 10 -stand_call_conf 30 --genotyping_mode DISCOVERY -o <GATK.vcf> 
 
#Filter with depth and remove others 

java -jar GenomeAnalysisTK.jar -R <canFam3.1> -T VariantFiltration --variant <GatkSNP_raw.vcf> --
filterExpression 'QD < 2.0' --filterName QD --filterExpression 'MQ < 40.0' --filterName MQ --filterExpression 
'DP < 10' --filterName DP -o <Gatk_filt.vcf> 
 
java -jar GenomeAnalysisTK.jar -R <canFam3.1> -T SelectVariants --variant - --excludeFiltered -o 
<Gatkfilt_Sel.vcf> 
 
Identify Variants with Samtools 
 
samtools_0.1.18 mpileup -ABugf <canFam3.1>  -d 1000000  <alignment_recalibrated.bam> | bcftools view -
vcg - | bcfTools/vcfutils.pl varFilter -D 1000000 > <Sam.vcf> 
 

##Filter SNPS 

bcftools/vcfutils.pl varFilter -Q 40 -d 10 <Sam.vcf> | awk '$6>=40' > <Sam_filt.vcf> 

 
Combine both GATK and Samtools 
 
java -jar GenomeAnalysisTK.jar -T CombineVariants -R <canFam3.1> --variant:Gatk <Gatkfilt_Sel.vcf> --
variant:Sam <Sam_filt.vcf> -genotypeMergeOptions PRIORITIZE -priority Gatk,Sam --
filteredrecordsmergetype KEEP_UNCONDITIONAL -o <Snp_Indel_Filt.vcf> 
 
Annotate with SnpEff 
 
java -Xmx4G -jar  snpEff.jar eff -c  snpEff.config -v CanFam3Broad <Snp_Indel_Filt.vcf> > 
$<Snp_Indel_Filt_snpEff.vcf> 
 

9.2.3 Pathogen Prediction  
 
Filter PGx variants and select Mis-sense, Frame-shift, Stop-gain/lost, Splice region 
 
java -Xmx2g -jar <GenomeAnalysisTK.jar>  -R <canFam3.1> -T SelectVariants <Snp_Indel_Filt_snpEff.vcf> -
-variant  -o <Snp_Indel_Filt_snpEff_PGx.vcf> -L PGx_ORF_Genes.bed 
 
cat <Snp_Indel_Filt_snpEff_PGx.vcf> | snpEff/scripts/vcfEffOnePerLine.pl |java -jar <SnpSift.jar> filter "( 
EFF[*].EFFECT = 'frameshift_variant' )" - > <PGx_ORF_FS.vcf> 
 

cat <Snp_Indel_Filt_snpEff_PGx.vcf> | snpEff/scripts/vcfEffOnePerLine.pl |java -jar <SnpSift.jar> filter "( 
EFF[*].EFFECT != 'frameshift_variant') & (EFF[*].IMPACT = 'HIGH')" - >  
<PGx_ORF_HIGH.vcf>   
 

cat <Snp_Indel_Filt_snpEff_PGx.vcf> |snpEff/scripts/vcfEffOnePerLine.pl |java -jar <SnpSift.jar> filter "( 
EFF[*].EFFECT ='missense_variant')" - > <PGx_ORF_NS.vcf>  
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 Tables 9.3
 
 
Table 1.  The PGx annotation table for all Canine human orthologues 

Human Gene Importance Type Canine Gene Mapping 

ABCA1 Transporter Extended ABCA1 One2one 

ABCA4 Transporter Extended ABCA4 One2one 

ABCB1 Transporter Core MDR1 One2one 

ABCB11 Transporter Extended ABCB11 One2one 

ABCB4 Transporter Extended ABCB4 One2one 

ABCB5 Transporter Extended ABCB5 One2one 

ABCB6 Transporter Extended ABCB6 One2one 

ABCB7 Transporter Extended ABCB7 One2one 

ABCB8 Transporter Extended ABCB8 One2one 

ABCC1 Transporter Extended MRP1 One2one 

ABCC10 Transporter Extended ABCC10 One2one 

ABCC11 Transporter Extended ABCC11 One2one 

ABCC12 Transporter Extended ABCC12 One2one 

ABCC2 Transporter Core MRP2 One2one 

ABCC3 Transporter Extended ABCC3 One2one 

ABCC4 Transporter Extended ABCC4 One2one 

ABCC5 Transporter Extended ABCC5 One2one 

ABCC6 Transporter Extended ABCC6 One2one 

ABCC8 Transporter Extended ABCC8 One2one 

ABCC9 Transporter Extended ABCC9 One2one 

ABCD1 Unknown Related ABCD1 One2one 

ABCG1 Transporter Extended ABCG1 One2one 

ABCG2 Transporter Core ABCG2 One2one 

ABL1 Unknown Reltated ABL1 One2one 

ACAA1 Unknown Reltated ACAA1 One2one 

ACAA2 Unknown Reltated ACAA2 One2one 

ACAD10 Unknown Reltated ACAD10 One2one 

ACAD11 Unknown Reltated ACAD11 One2one 

ACAD8 Unknown Reltated ACAD8 One2one 

ACAD9 Unknown Reltated ACAD9 One2one 

ACADL Unknown Reltated ACADL One2one 
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ACADM Unknown Reltated ACADM One2one 

ACADS Unknown Reltated ACADS One2one 

ACADSB Unknown Reltated ACADSB One2one 

ACADVL Unknown Reltated ACADVL One2one 

ACAT1 Unknown Reltated ACAT1 One2one 

ACAT2 Unknown Reltated ACAT2 One2one 

ACE Unknown Core ENSCAFG00000012998 One2many 

ACOT8 Unknown Reltated ACOT8 One2one 

ACOX1 Unknown Reltated ACOX1 One2one 

ACOX2 Unknown Reltated ACOX2 One2one 

ACOX3 Unknown Reltated ACOX3 One2one 

ADD1 Unknown Reltated ADD1 One2one 

ADH1A Phase-I Core ENSCAFG00000010410 One2many 

ADH1B Phase-I Core ENSCAFG00000010410 One2many 

ADH1C Phase-I Core ENSCAFG00000010410 One2many 

ADH4 Phase-I Extended ADH4 One2one 

ADH5 Phase-I Extended ADH5 One2many 

ADH5 Phase-I Extended ENSCAFG00000009465 One2many 

ADH5 Phase-I Extended ENSCAFG00000013007 One2many 

ADH6 Phase-I Extended ADH6 One2one 

ADH7 Phase-I Extended ENSCAFG00000029473 Many2many 

ADHFE1 Phase-I Extended ADHFE1 One2one 

ADORA2A Unknown Reltated ADORA2A One2one 

ADRB1 Unknown Core ADRB1 One2one 

ADRB2 Unknown Core ADRB2 One2one 

AHR Modifier Core AHR One2one 

AKAP9 Target/Receptor Related AKAP9 One2one 

AKR1A1 Unknown Reltated AKR1A1 One2one 

AKR1B1 Unknown Reltated AKR1B1 One2many 

AKR1B1 Unknown Reltated ENSCAFG00000003343 One2many 

AKR1C3 Unknown Reltated AKR1C3 One2many 

AKR1D1 Unknown Reltated ENSCAFG00000028750 One2many 

AKR1D1 Unknown Reltated ENSCAFG00000029647 One2many 

AKR1D1 Unknown Reltated ENSCAFG00000032319 One2many 

AKR1E2 Unknown Reltated AKR1E2 One2one 
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AKR7L Unknown Reltated AKR7L One2one 

AKT1 Unknown Reltated AKT1 One2one 

ALB Target/Receptor Related ALB One2one 

ALDH1A1 Phase-I Core ALDH1A1 One2one 

ALDH1A2 Phase-I Extended ALDH1A2 One2one 

ALDH1A3 Phase-I Extended ALDH1A3 One2one 

ALDH1B1 Phase-I Extended ALDH1B1 One2one 

ALDH2 Phase-I Extended ENSCAFG00000008683 Many2many 

ALDH2 Phase-I Extended ENSCAFG00000019771 Many2many 

ALDH3A1 Phase-I Extended ALDH3A1 One2one 

ALDH3A2 Phase-I Extended ALDH3A2 One2one 

ALDH3B1 Phase-I Extended ALDH3B1 One2one 

ALDH3B2 Phase-I Extended ALDH3B2 One2one 

ALDH4A1 Phase-I Extended TAS1R2 One2one 

ALDH5A1 Phase-I Extended ALDH5A1 One2one 

ALDH6A1 Phase-I Extended ALDH6A1 One2one 

ALDH7A1 Phase-I Extended ALDH7A1 One2one 

ALDH8A1 Phase-I Extended ALDH8A1 One2one 

ALDH9A1 Phase-I Extended ALDH9A1 One2one 

ALK Unknown Reltated ALK One2one 

ALOX5 Unknown Core ALOX5 One2one 

AMACR Unknown Reltated AMACR One2one 

ANKK1 Unknown Reltated ANKK1 One2one 

AOX1 Phase-I Extended AOH2 One2many 

AOX1 Phase-I Extended ENSCAFG00000030427 One2many 

APOA2 Target/Receptor Related APOA2 One2one 

APOE Unknown Reltated APOE One2one 

ARG1 Unknown Reltated ARG1 One2one 

ARNT Modifier Extended ARNT One2one 

ARSA Modifier Extended ARSA One2one 

ARVCF Target/Receptor Related ARVCF One2one 

ASL Unknown Reltated ENSCAFG00000010332 One2many 

ASNA1 Target/Receptor Related ENSCAFG00000002783 One2many 

ASNA1 Target/Receptor Related ENSCAFG00000017208 One2many 

ASS1 Unknown Reltated ASS1 One2one 
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ATIC Unknown Reltated ATIC One2one 

ATP7A Modifier Extended ATP7A One2one 

ATP7B Modifier Extended ATP7B One2one 

AhRR Unknown Reltated AHRR One2one 

BCR Unknown Reltated BCR One2one 

BDH2 Target/Receptor Related BDH2 One2one 

BLVRB Unknown Reltated BLVRB One2one 

BRAF Unknown Reltated BRAF One2one 

BRCA1 Unknown Core BRCA1 One2one 

C11orf65 Unknown Reltated C11orf65 One2one 

CALU Unknown Reltated CALU One2one 

CAT Modifier Extended CAT One2many 

CAT Modifier Extended ENSCAFG00000002508 One2many 

CBR1 Phase-I Extended ENSCAFG00000014444 One2many 

CBR1 Phase-I Extended ENSCAFG00000023660 One2many 

CBR1 Phase-I Extended ENSCAFG00000031486 One2many 

CBR3 Phase-I Extended CBR3 One2one 

CCR5 Unknown Reltated CCR5 One2one 

CDA Modifier Extended CDA One2one 

CEBPA Unknown Reltated CEBPA One2one 

CEBPB Unknown Reltated CEBPB One2one 

CES1 Phase-I Extended CESDD1 One2one 

CES2 Phase-I Extended CES2 One2one 

CFTR Modifier Core CFTR One2one 

CHRNA2 Target/Receptor Related CHRNA2 One2one 

CHST1 Phase-II Extended CHST1 One2one 

CHST10 Phase-II Extended CHST10 One2one 

CHST11 Phase-II Extended CHST11 One2one 

CHST12 Phase-II Extended CHST12 One2one 

CHST2 Phase-II Extended CHST2 One2one 

CHST3 Phase-II Extended CHST3 One2one 

CHST4 Phase-II Extended CHST4 One2one 

CHST5 Phase-II Extended ENSCAFG00000020075 One2many 

CHST6 Phase-II Extended ENSCAFG00000020075 One2many 

CHST7 Phase-II Extended CHST7 One2one 
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CHST8 Phase-II Extended CHST8 One2one 

CHST9 Phase-II Extended CHST9 One2one 

COL18A1 Target/Receptor Related COL18A1 One2one 

COL22A1 Unknown Reltated COL22A1 One2one 

COMT Target/Receptor Core COMT One2one 

COQ2 Unknown Reltated COQ2 One2one 

CPS1 Unknown Reltated CPS1 One2one 

CRAT Unknown Reltated CRAT One2one 

CRHR1 Unknown Reltated CRHR1 One2one 

CRHR2 Unknown Reltated CRHR2 One2one 

CROT Target/Receptor Related CROT One2one 

CRP Unknown Reltated CRP One2one 

CRYZ Target/Receptor Related CRYZ One2many 

CRYZ Target/Receptor Related ENSCAFG00000002181 One2many 

CTSK Target/Receptor Related CTSK One2one 

CYB5R1 Unknown Reltated CYB5R1 One2one 

CYB5R2 Unknown Reltated CYB5R2 One2one 

CYB5R3 Phase-I Extended CYB5R3 One2one 

CYB5R4 Unknown Reltated CYB5R4 One2one 

CYP11A1 Phase-I Extended CYP11A1 One2one 

CYP11B1 Phase-I Extended ENSCAFG00000001285 One2many 

CYP11B2 Phase-I Extended ENSCAFG00000001285 One2many 

CYP17A1 Phase-I Extended CYP17A1 One2one 

CYP19A1 Phase-I Extended CYP19A1 One2one 

CYP1A1 Phase-I Core CYP1A1 One2one 

CYP1A2 Phase-I Core CYP1A2 One2one 

CYP1B1 Phase-I Extended CYP1B1 One2one 

CYP20A1 Phase-I Extended CYP20A1 One2one 

CYP21A2 Phase-I Extended CYP21 One2one 

CYP24A1 Phase-I Extended CYP24A1 One2one 

CYP26A1 Phase-I Extended CYP26C1 One2one 

CYP27A1 Phase-I Extended CYP27A1 One2one 

CYP27B1 Phase-I Extended CYP27B1 One2one 

CYP2A13 Phase-I Extended CYP2A13 Many2many 

CYP2A6 Phase-I Core CYP2A13 Many2many 
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CYP2A7 Phase-I Extended CYP2A13 Many2many 

CYP2B6 Phase-I Core CYP2B6 One2one 

CYP2C18 Phase-I Extended ENSCAFG00000013311 Many2many 

CYP2C8 Phase-I Core CYP2C21 One2many 

CYP2E1 Phase-I Core CYP2E1 One2one 

CYP2F1 Phase-I Extended CYP2F1 One2one 

CYP2J2 Phase-I Core CYP2J2 One2one 

CYP2R1 Phase-I Extended CYP2R1 One2one 

CYP2S1 Phase-I Extended CYP2S1 One2one 

CYP2W1 Unknown Reltated CYP2W1 One2one 

CYP39A1 Phase-I Extended CYP39A1 One2one 

CYP3A4 Phase-I Core CYP3A12 Many2many 

CYP3A4 Phase-I Core CYP3A26 Many2many 

CYP3A4 Phase-I Core ENSCAFG00000014939 Many2many 

CYP3A4 Phase-I Core ENSCAFG00000014990 Many2many 

CYP3A43 Phase-I Extended CYP3A12 Many2many 

CYP3A43 Phase-I Extended CYP3A26 Many2many 

CYP3A43 Phase-I Extended ENSCAFG00000014939 Many2many 

CYP3A43 Phase-I Extended ENSCAFG00000014990 Many2many 

CYP3A5 Phase-I Core CYP3A12 Many2many 

CYP3A5 Phase-I Core CYP3A26 Many2many 

CYP3A5 Phase-I Core ENSCAFG00000014939 Many2many 

CYP3A5 Phase-I Core ENSCAFG00000014990 Many2many 

CYP3A7 Phase-I Extended CYP3A12 Many2many 

CYP3A7 Phase-I Extended CYP3A26 Many2many 

CYP3A7 Phase-I Extended ENSCAFG00000014939 Many2many 

CYP3A7 Phase-I Extended ENSCAFG00000014990 Many2many 

CYP46A1 Phase-I Extended CYP46A1 One2one 

CYP4A11 Phase-I Extended CYP4A37 Many2many 

CYP4A11 Phase-I Extended CYP4A38 Many2many 

CYP4A11 Phase-I Extended CYP4A39 Many2many 

CYP4A11 Phase-I Extended ENSCAFG00000023399 Many2many 

CYP4A22 Unknown Reltated CYP4A37 Many2many 

CYP4A22 Unknown Reltated CYP4A38 Many2many 

CYP4A22 Unknown Reltated CYP4A39 Many2many 



	 xi	

CYP4A22 Unknown Reltated ENSCAFG00000023399 Many2many 

CYP4B1 Phase-I Extended CYP4B1 One2one 

CYP4F12 Phase-I Extended ENSCAFG00000015931 One2many 

CYP4F3 Phase-I Extended CYP4F3 One2one 

CYP51A1 Phase-I Extended CYP51A1 One2one 

CYP7A1 Phase-I Extended CYP7A1 One2one 

CYP7B1 Phase-I Extended CYP7B1 One2one 

CYP8B1 Phase-I Extended CYP8B1 One2one 

DDO Phase-I Extended DDO One2one 

DECR1 Unknown Reltated DECR1 One2one 

DHRS1 Phase-I Extended DHRS1 One2one 

DHRS13 Phase-I Extended ENSCAFG00000008572 Many2many 

DHRS2 Phase-I Extended DHRS2 One2one 

DHRS3 Phase-I Extended DHRS3 One2one 

DHRS4 Phase-I Extended DHRS4 One2many 

DHRS4L2 Phase-I Extended DHRS4 One2many 

DHRS7 Phase-I Extended DHRS7 One2one 

DHRS7B Phase-I Extended DHRS7B One2one 

DHRS7C Phase-I Extended DHRS7C One2one 

DHRS9 Phase-I Extended DHRS9 One2one 

DHRSX Phase-I Extended DHRSX One2one 

DNTTIP2 Target/Receptor Related DNTTIP2 One2one 

DPEP1 Phase-I Extended DPEP1 One2one 

DPYD Phase-I Core DPYD One2one 

DRD2 Unknown Core DRD2 One2one 

EAF2 Target/Receptor Related EAF2 One2one 

ECH1 Unknown Reltated ECH1 One2one 

ECHS1 Unknown Reltated ECHS1 One2one 

ECI1 Unknown Reltated ECI1 One2one 

ECI2 Unknown Reltated ECI2 One2one 

EGF Unknown Reltated EGF One2one 

EGFR Unknown Core EGFR One2one 

EHHADH Unknown Reltated EHHADH One2one 

EPHX1 Phase-I Extended EPHX1 One2one 

EPHX2 Phase-I Extended EPHX2 One2one 



	 xii	

ERBB2 Unknown Reltated ERBB2 One2one 

ERCC1 Unknown Reltated ERCC1 One2one 

ESR1 Unknown Reltated ESR1 One2one 

ESR2 Unknown Reltated ESR2 One2one 

EXOC6 Target/Receptor Related EXOC6 One2one 

F2 Unknown Reltated F2 One2one 

F5 Unknown Core F5 One2one 

FCER1G Target/Receptor Related FCER1G One2one 

FCGR3A Unknown Reltated ENSCAFG00000013015 One2many 

FDPS Unknown Reltated FDPS One2one 

FGFR1 Unknown Reltated FGFR1 One2one 

FGFR3 Unknown Reltated FGFR3 One2one 

FIP1L1 Unknown Reltated FIP1L1 One2one 

FKBP1A Unknown Reltated ENSCAFG00000006795 One2many 

FLOT1 Unknown Reltated FLOT1 One2one 

FLT1 Unknown Reltated FLT1 One2one 

FLT4 Unknown Reltated FLT4 One2one 

FMO1 Phase-I Extended FMO1 One2one 

FMO2 Phase-I Extended FMO2 One2one 

FMO3 Phase-I Extended FMO3 One2one 

FMO4 Phase-I Extended FMO4 One2one 

FMO5 Phase-I Extended FMO5 One2one 

FMO6P Phase-I Extended FMO6P One2one 

FOXA3 Unknown Reltated FOXA3 One2one 

G6PD Target/Receptor Core G6PD One2one 

GBA Unknown Reltated GBA One2one 

GCDH Unknown Reltated GCDH One2one 

GCLC Target/Receptor Related GCLC One2one 

GCLM Target/Receptor Related GCLM One2one 

GGCX Unknown Reltated GGCX One2one 

GNB3 Unknown Reltated GNB3 One2one 

GPLD1 Target/Receptor Related GPLD1 One2one 

GPX1 Phase-I Extended GPX1 One2one 

GPX2 Phase-I Extended GPX2 One2one 

GPX3 Phase-I Extended GPX3 One2one 



	 xiii	

GPX5 Phase-I Extended GPX5 One2one 

GPX6 Phase-I Extended GPX6 One2one 

GPX7 Phase-I Extended GPX7 One2one 

GRIK4 Unknown Reltated GRIK4 One2one 

GSR Phase-I Extended GSR One2one 

GSS Phase-I Extended GSS One2one 

GSTA1 Phase-II Extended ENSCAFG00000002230 One2many 

GSTA2 Phase-II Extended ENSCAFG00000024271 Many2many 

GSTA3 Phase-II Extended ENSCAFG00000031682 Many2many 

GSTA4 Phase-II Extended ENSCAFG00000009164 One2many 

GSTA4 Phase-II Extended GSTA4 One2many 

GSTA5 Phase-II Extended ENSCAFG00000002230 One2many 

GSTCD Phase-II Extended GSTCD One2one 

GSTK1 Phase-II Extended ENSCAFG00000004632 One2many 

GSTK1 Phase-II Extended ENSCAFG00000023764 One2many 

GSTK1 Phase-II Extended ENSCAFG00000029004 One2many 

GSTM1 Phase-II Core ENSCAFG00000019812 One2many 

GSTM2 Phase-II Extended ENSCAFG00000019812 One2many 

GSTM3 Phase-II Extended GSTM3 One2one 

GSTM4 Phase-II Extended ENSCAFG00000019812 One2many 

GSTM5 Phase-II Extended ENSCAFG00000019812 One2many 

GSTO1 Phase-II Extended GSTO1 One2one 

GSTO2 Phase-II Extended GSTO2 One2one 

GSTP1 Phase-II Core ENSCAFG00000010648 One2many 

GSTP1 Phase-II Core ENSCAFG00000011452 One2many 

GSTP1 Phase-II Core ENSCAFG00000019307 One2many 

GSTP1 Phase-II Core ENSCAFG00000025332 One2many 

GSTP1 Phase-II Core ENSCAFG00000032752 One2many 

GSTP1 Phase-II Core GSTP1 One2many 

GSTT1 Phase-II Core GSTT1 One2one 

GSTT2 Phase-II Extended ENSCAFG00000014043 One2many 

GSTZ1 Phase-II Extended GSTZ1 One2one 

HADH Unknown Reltated HADH One2one 

HADHA Unknown Reltated HADHA One2one 

HADHB Unknown Reltated ENSCAFG00000004314 One2many 



	 xiv	

HADHB Unknown Reltated ENSCAFG00000029395 One2many 

HAGH Phase-I Extended HAGH One2one 

HIF1A Unknown Reltated HIF1A One2one 

HLA-DOB Target/Receptor Related DLA-DOB One2one 

HLA-DQA1 Unknown Reltated DLA-DQA One2many 

HLA-DRB1 Unknown Reltated DLA-DRB1 One2many 

HMGCR Target/Receptor Core HMGCR One2one 

HNF1A Unknown Reltated HNF1 One2one 

HNF4A Modifier Extended HNF4A One2one 

HNMT Phase-II Extended HNMT One2one 

HPRT1 Unknown Reltated HPRT One2one 

HSD11B1 Phase-I Extended HSD11B1 One2one 

HSD17B10 Unknown Reltated HSD17B10 One2one 

HSD17B14 Phase-I Extended HSD17B14 One2one 

HSD17B4 Unknown Reltated HSD17B4 One2one 

HTR1A Unknown Reltated HTR1A One2one 

HTR2C Unknown Reltated HTR2C One2one 

IAPP Modifier Extended IAPP One2one 

IFNL3 Unknown Reltated ENSCAFG00000005588 One2many 

IGF2R Target/Receptor Related CI-MPR/IGF2R One2one 

IL1B Unknown Reltated IL1B One2one 

IL1RN Unknown Reltated IL1RN One2one 

IL2RA Unknown Reltated IL2RA One2one 

IL6 Unknown Reltated IL6 One2one 

IL6R Unknown Reltated IL6R One2one 

IL6ST Unknown Reltated IL6ST One2one 

INMT Unknown Reltated ENSCAFG00000013528 Many2many 

INTS12 Target/Receptor Related INTS12 One2one 

ITK Unknown Reltated ITK One2one 

ITPA Unknown Reltated ITPA One2one 

KCNH2 Unknown Core KCNH2 One2one 

KCNJ11 Modifier Core KCNJ11 One2one 

KDR Unknown Reltated KDR One2one 

KIT Unknown Reltated KIT One2one 

KRAS Unknown Reltated K-RAS One2one 



	 xv	

LCK Unknown Reltated LCK One2one 

LDLR Unknown Reltated LDLR One2one 

LTC4S Unknown Reltated LTC4S One2one 

MAOA Target/Receptor Related MAOA One2one 

MAOB Target/Receptor Related MAOB One2one 

MAP2K1 Unknown Reltated MAP2K1 One2one 

MAP2K2 Unknown Reltated MAP2K2 One2one 

MAT1A Modifier Extended MAT1A One2one 

METAP1 Phase-I Extended METAP1 One2one 

MGST1 Phase-II Extended MGST1 One2one 

MGST2 Phase-II Extended MGST2 One2one 

MGST3 Phase-II Extended MGST3 One2many 

MKI67 Unknown Reltated MKI67 One2one 

MPO Modifier Extended MPO One2one 

MS4A1 Unknown Reltated MS4A1 One2one 

MTHFR Unknown Core MTHFR One2one 

MTOR Unknown Reltated MTOR One2one 

MTRR Unknown Reltated MTRR One2one 

NAGS Unknown Reltated NAGS One2one 

NCOA1 Unknown Reltated NCOA1 One2one 

NFE2L2 Target/Receptor Related NFE2L2 One2one 

NFKB1 Unknown Reltated NFKB1 One2one 

NHLRC1 Target/Receptor Related NHLRC1 One2one 

NNMT Phase-II Extended NNMT One2one 

NOS1 Phase-I Extended NOS1 One2one 

NOS3 Phase-I Extended NOS3 One2one 

NQO1 Target/Receptor Core NQO1 One2one 

NR0B2 Unknown Reltated NR0B2 One2one 

NR1H2 Unknown Reltated NR1H2 One2one 

NR1H3 Unknown Reltated NR1H3 One2one 

NR1H4 Unknown Reltated NR1H4 One2one 

NR1I2 Modifier Core PXR One2one 

NR1I3 Modifier Extended CAR One2one 

NR3C1 Target/Receptor Related NR3C1 One2one 

NR5A2 Unknown Reltated NR5A2 One2one 



	 xvi	

ORM1 Target/Receptor Related ENSCAFG00000003331 One2many 

ORM2 Target/Receptor Related ENSCAFG00000003331 One2many 

OTC Unknown Reltated OTC One2one 

P2RY1 Unknown Core P2RY1 One2one 

P2RY12 Unknown Core P2RY12 One2one 

PDE3A Phase-I Extended PDE3A One2one 

PDE3B Phase-I Extended PDE3B One2one 

PDGFRA Unknown Reltated PDGFRA One2one 

PDGFRB Unknown Reltated PDGFRB One2one 

PGR Unknown Reltated PGR One2one 

PIK3CA Unknown Reltated PIK3CA One2one 

PKD2 Target/Receptor Related PKD2 One2one 

PLG Target/Receptor Related PLG One2one 

PML Unknown Reltated PML One2one 

PNMT Phase-II Extended PNMT One2one 

POLG Unknown Reltated POLG One2one 

PON1 Phase-I Extended PON1 One2one 

PON2 Phase-I Extended PON2 One2one 

PON3 Phase-I Extended PON3 One2one 

POR Modifier Extended OR One2one 

PPARA Modifier Extended PPARA One2one 

PPARD Modifier Extended PPARD One2one 

PPARG Modifier Extended PPARG One2one 

PPP1R9A Target/Receptor Related PPP1R9A One2one 

PRKAB2 Target/Receptor Related PRKAB2 One2one 

PSMB8 Target/Receptor Related PSMB8 One2one 

PTGIS Target/Receptor Core PTGIS One2one 

PTGS2 Unknown Core COX-2 One2one 

RALBP1 Target/Receptor Related RALBP1 One2one 

RARA Unknown Reltated RARA One2one 

RHD Unknown Reltated RH30 One2many 

RPS6KB1 Unknown Reltated RPS6KB1 One2one 

RXRA Modifier Extended RXRALPHA One2one 

RYR1 Unknown Core RYR1 One2one 

SAA1 Unknown Reltated SAA1 Many2many 



	 xvii	

SCN1A Unknown Reltated SCN1A One2one 

SCN5A Unknown Core SCN5A One2one 

SCP2 Unknown Reltated SCP2 One2one 

SERPINA7 Modifier Extended TBG One2one 

SERPINC1 Unknown Reltated SERPINC1 One2one 

SGOL2 Target/Receptor Related SGOL2 One2one 

SHBG Target/Receptor Related SHBG One2one 

SLC10A1 Transporter Extended SLC10A1 One2one 

SLC10A2 Transporter Extended SLC10A2 One2one 

SLC13A1 Transporter Extended SLC13A1 One2one 

SLC13A2 Transporter Extended SLC13A2 One2one 

SLC13A3 Transporter Extended SLC13A3 One2one 

SLC15A1 Transporter Extended SLC15A1 One2one 

SLC15A2 Transporter Core SLC15A2 One2one 

SLC16A1 Transporter Extended MCT1 One2one 

SLC19A1 Transporter Core SLC19A1 One2one 

SLC22A1 Transporter Core SLC22A1 One2one 

SLC22A10 Transporter Extended SLC22A10 One2one 

SLC22A11 Transporter Extended SLC22A11 One2one 

SLC22A12 Transporter Extended SLC22A12 One2one 

SLC22A13 Transporter Extended SLC22A13 One2one 

SLC22A14 Transporter Extended SLC22A14 One2one 

SLC22A15 Transporter Extended SLC22A15 One2one 

SLC22A16 Transporter Extended SLC22A16 One2one 

SLC22A17 Transporter Extended SLC22A17 One2one 

SLC22A18 Transporter Extended SLC22A18 One2one 

SLC22A2 Transporter Core SLC22A2 One2one 

SLC22A3 Transporter Extended SLC22A3 One2one 

SLC22A4 Transporter Extended SLC22A4 One2one 

SLC22A5 Transporter Extended SLC22A5 One2one 

SLC22A6 Transporter Core SLC22A6 One2one 

SLC22A7 Transporter Extended SLC22A7 One2one 

SLC22A8 Transporter Extended SLC22A8 One2one 

SLC22A9 Transporter Extended ENSCAFG00000015226 One2many 

SLC27A1 Transporter Extended SLC27A1 One2one 



	 xviii	

SLC28A1 Transporter Extended SLC28A1 One2one 

SLC29A2 Transporter Extended SLC29A2 One2one 

SLC2A4 Transporter Extended SLC2A4 One2one 

SLC2A5 Transporter Extended SLC2A5 One2one 

SLC47A1 Unknown Reltated SLC47A1 One2one 

SLC47A2 Unknown Reltated SLC47A2 One2one 

SLC5A6 Transporter Extended SLC5A6 One2one 

SLC6A6 Transporter Extended SLC6A6 One2one 

SLC7A5 Transporter Extended SLC7A5 One2one 

SLC7A7 Transporter Extended SLC7A7 One2one 

SLC7A8 Transporter Extended SLC7A8 One2one 

SLCO1A2 Transporter Extended OATPA One2one 

SLCO1B1 Transporter Core OATPC One2many 

SLCO1B3 Transporter Core OATPC One2many 

SLCO1B7 Unknown Reltated OATPC One2many 

SLCO1C1 Transporter Extended SLCO1C1 One2one 

SLCO2A1 Transporter Extended SLCO2A1 One2one 

SLCO2B1 Transporter Extended SLCO2B1 One2one 

SLCO3A1 Transporter Extended SLCO3A1 One2one 

SLCO4A1 Transporter Extended SLCO4A1 One2one 

SLCO4C1 Transporter Extended SLCO4C1 One2one 

SLCO5A1 Transporter Extended SLCO5A1 One2one 

SLCO6A1 Transporter Extended SLCO6A1 One2one 

SOD1 Modifier Extended SOD1 One2one 

SOD2 Modifier Extended SOD2 One2one 

SOD3 Modifier Extended SOD3 One2one 

SPG7 Target/Receptor Related SPG7 One2one 

STK19 Target/Receptor Related STK19 One2one 

SULF1 Phase-I Extended SULF1 One2one 

SULT1A1 Phase-II Core SULT1A1 One2many 

SULT1A2 Phase-II Extended SULT1A1 One2many 

SULT1A3 Phase-II Extended SULT1A1 One2many 

SULT1B1 Phase-II Extended SULT1B1 One2one 

SULT1C2 Phase-II Extended SULT1C2 One2one 

SULT1E1 Phase-II Extended SULT1E1 One2one 



	 xix	

SULT2A1 Phase-II Extended ENSCAFG00000000894 Many2many 

SULT2B1 Phase-II Extended SULT2B1 One2one 

SULT4A1 Phase-II Extended SULT4A1 One2one 

TAP1 Transporter Extended TAP1 One2one 

TAP2 Transporter Extended TAP2 One2many 

TBXAS1 Target/Receptor Related TBXAS1 One2one 

TMEM43 Unknown Reltated TMEM43 One2one 

TMEM63A Target/Receptor Related TMEM63A One2one 

TNFRSF8 Unknown Reltated TNFRSF8 One2one 

TNFSF13B Unknown Reltated TNFSF13B One2one 

TNIP1 Target/Receptor Related TNIP1 One2one 

TOMM40L Target/Receptor Related TOMM40L One2one 

TP53 Unknown Reltated P53 One2one 

TPMT Phase-II Core TPMT One2one 

TSC1 Unknown Reltated TSC1 One2one 

TSC2 Unknown Reltated TSC2 One2one 

TSPO Target/Receptor Related TSPO One2one 

TTBK1 Target/Receptor Related TTBK1 One2one 

TTR Target/Receptor Related TTR One2one 

TYMS Target/Receptor Core TS One2one 

UGT1A10 Phase-II Extended ENSCAFG00000031066 One2many 

UGT1A4 Phase-II Extended ENSCAFG00000024836 Many2many 

UGT1A6 Phase-II Extended UGT1A6 One2one 

UGT1A7 Phase-II Extended ENSCAFG00000031066 One2many 

UGT1A9 Phase-II Extended ENSCAFG00000031066 One2many 

UGT2A1 Phase-II Extended ENSCAFG00000002857 One2many 

UGT2B10 Phase-II Extended ENSCAFG00000031254 Many2many 

UGT2B11 Phase-II Extended ENSCAFG00000030088 Many2many 

UGT2B15 Phase-II Core ENSCAFG00000028888 Many2many 

UGT2B17 Phase-II Core ENSCAFG00000029376 Many2many 

UGT2B28 Phase-II Extended UGT2B31 Many2many 

UGT2B4 Phase-II Extended ENSCAFG00000030088 Many2many 

UGT2B7 Phase-II Core ENSCAFG00000030088 Many2many 

UGT8 Phase-II Extended UGT8 One2one 

UMPS Unknown Reltated UMPS One2one 



	 xx	

UNC93B1 Target/Receptor Related ENSCAFG00000011210 One2many 

UROC1 Target/Receptor Related UROC1 One2one 

USF1 Unknown Reltated USF1 One2one 

VDR Unknown Core VDR One2one 

VEGFA Unknown Reltated VEGFA One2one 

VKORC1 Target/Receptor Core VKORC1 One2many 

XDH Phase-I Extended XDH One2one 

XRCC1 Unknown Reltated XRCC1 One2one 

YEATS4 Unknown CPIC YEATS4 One2one 

ZBED1 Target/Receptor Related ENSCAFG00000004548 Many2many 
 
 


