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For “Is” and “Is-not” thought with Rule and Line
And “Up” and “Down” by Logic I define,
Of all that one should care to fathom,
Was never deep in anything but−−Wine.

O. Khayyam (1048–1131)
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Abstract

The aim of this thesis is to present in the context of Gorenstein homological
algebra the notion of a “G-Gorenstein complex” as the counterpart of the
classical notion of a Gorenstein complex. We investigate the structure of a
G-Gorenstein complex. We will also find out in which extent classical results
about Gorenstein complexes generalize to this case. We establish equivalences
between the category of G-Gorenstein complexes of a fixed dimension and the
G-class of modules. In particular, the first category turns out to be equivalent
with a category of Cousin complexes whose terms are Gorenstein injective
and homology bounded and finitely generated.

One of our main tools is the notion of the canonical module of a complex.
We consider Serre’s conditions for a complex and study their relationship to
the local cohomology of the canonical module and its ring of endomorphisms.
We characterize complexes satisfying Serre’s conditions in terms of the ho-
mology of their Cousin complex.

Key words and phrases. G-Gorenstein complex, Serre’s conditions, Goren-
stein complex, Cohen-Macaulay complex, modules of deficiency, Cousin com-
plex.
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Introduction

The language of homological algebra is eminently categorical. Gorenstein
homological algebra is the relative version of homological algebra, where
classical injective and projective modules are replaced by Gorenstein injective
and Gorenstein projective modules, respectively. The study of this theory
goes back to the work of Auslander and Bridger in [4]. They introduced
the notion of a Gorenstein dimension of a finitely generated module over a
commutative Noetherian ring. Gorenstein dimension characterizes Gorenstein
rings like projective dimension does for regular rings.

The purpose of this thesis is to introduce an analogue of the notion of a
Gorenstein complex in the context of Gorenstein homological algebra. We
follow thereby the maxim “Every result in classical homological algebra has a
counterpart in Gorenstein homological algebra” suggested by Holm in [38].
In particular, we can extend several properties of Gorenstein modules proved
by Sharp to the case of G-Gorenstein complexes. Our work also generalizes
the earlier work of Aghajani and Zakeri on G-Gorenstein modules (see [1],
and also [42]).

Gorenstein complexes, defined in [36], play a crucial role in Grothendieck’s
theory of duality in the derived category of sheaves of modules over a locally
Noetherian scheme. He described an equivalence between the category of
Gorenstein complexes and the category of Cousin complexes whose terms are
injective and cohomology is bounded (see e.g. [22, Theorem 3.1.3]). In fact,
this equivalence is a restriction of an equivalence between the category of
Cohen-Macaulay complexes and the category of Cousin complexes discovered
by Suominen (see [59, Theorem 3.9]). Sharp initiated in [55] the study of
Gorenstein modules from the point of view of commutative algebra. His way
to characterize Cohen-Macaulay modules and Gorenstein modules in terms of
their Cousin complexes (see [54] and [55]) reflects the above ideas. Gorenstein
complexes have also been studied by Roberts in [49].

We will now describe our results in more detail. Let R be a commutative
Noetherian ring. The derived category of bounded complexes of R-modules
with finitely generated homology is denoted by Df

b (R). Generalizing the
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definition of a Gorenstein complex given in [36] we define a complex M ∈
Df

b (R) to be G-Gorenstein if it is Cohen-Macaulay and the local cohomology
modules Hi

pRp
(Mp) are Gorenstein injective for all i ∈ Z and prime ideals

p ∈ SpecR.
From now on we assume that (R,m) is a local ring admitting a dualizing

complex. We denote by DR the dualizing complex normalized with supDR =
dimR. It comes out in Proposition 3.1.7 that the G-Gorensteiness of M is
equivalent to dimR M = depthR M = GidR M . This is further equivalent to
M being of finite Gorenstein injective dimension and having depthR M =
depthR− infM . Recall the open question concerning the analogue of Bass’s
theorem in Gorenstein homological algebra: Does the existence of an R-
module of finite Gorenstein injective dimension imply that R is Cohen-
Macaulay (see [19, Question 3.26])? Regarding this question we point out in
Corollary 3.2.10 that if R satisfies Serre’s condition (S2), then the existence
of a G-Gorenstein module always implies that R is Cohen-Macaulay.

If M ∈ Df
b (R) is a complex of finite Gorenstein injective dimension, then

the biduality morphism L → RHomR(RHomR(L,M),M) can not be an
isomorphism for L ∈ Df

b (R) unless M is a dualizing complex. This was
observed by Christensen in [15, Proposition 8.4]. Nevertheless, it turns out
that if M is G-Gorenstein, then biduality preserves depth. In fact, we prove in
our first main result Theorem 3.1.13 that among complexes of finite Gorenstein
injective dimension G-Gorenstein complexes are characterized by the equality

depthR RHomR(RHomR(L,M),M) = depthR L

for all complexes L ∈ Df
b (R) of finite projective or injective dimension.

Let M ∈ Df
b (R). Our Theorem 3.2.2, Theorem 3.2.4 and Theorem 3.2.15

show that the following conditions are equivalent:

1) M is a G-Gorenstein complex of dimension t;

2) M �
∑−t HomR(K,DR) for some K ∈ G(R);

3) M �
∑−t DR ⊗R N for some N ∈ G(R);

4) RHomR(DR,M) �
∑−t N for some N ∈ G(R);

5) M � C for some C ∈ GIcz(Dt, R).

Here G(R) is the G-class modules, and GIcz(Dt, R) denotes the category of
Cousin complexes with respect to the filtration Dt = (Dt

i)i∈Z, defined by

Dt
i = {p ∈ SpecR | i ≤ t− dimR/p} (i ∈ Z),

7
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for which all terms are Gorenstein injective, and the homology is bounded
and finitely generated. As usual, the symbol “�” indicates an isomorphism
in D(R).

Let Dt−GGor(R) denote the full subcategory of Df
b (R) of G-Gorenstein

complexes of dimension t. In more abstract terms, we can then say that there
is a diagram

Dt−GGor

H−t RHomR(−,DR)
��

��

G(R)opp∑−t RHomR(−, DR)

��

HomR(−,R)

��

Dt−GGor

Id

��

H−t RHomR(DR,−)
��
G(R)∑−t DR ⊗L

R −
��

��

of equivalences of categories, where the horizontal arrows are quasi-inverses
of each other. The diagram is commutative up to canonical isomorphisms.
The upper equivalence is the restriction of an equivalence between the full
subcategory of Df

b (R) of Cohen-Macaulay complexes of dimension t and the
category of finitely generated R-modules. The latter equivalence was first
observed by Yekutieli and Zhang in [61] and later utilized by Lipman, Nayak
and Sastry in [47]. The lower equivalence comes from Foxby equivalence

A(R)
D⊗L

R−
��
B(R),

RHomR(D,−)
��

between the Auslander and the Bass classes. Moreover, we see that there
exists an equivalence of categories

GIcz(Dt, R)
EDt (−)

��
Dt−GGor(R)

Q(−)
�� .

Inspired by the theory of Gorenstein objects in triangulated categories
developed by Asadollahi and Salarian in [3], we want to consider G-Gorenstein
complexes as Gorenstein objects. Let t ∈ Z. Set D =

∑−t DR. We look at
towers

· · · D⊕ni+1 D⊕ni D⊕ni−1 · · ·

Mi+1 Mi Mi−1 Mi−2

di+1

gi+1 gi

di

fi fi−1
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of exact triangles in Df
b (R), where di = fi−1gi. It then comes out in The-

orem 3.2.27 that a complex M ∈ Df
b (R) is a G-Gorenstein complex of

dimension t if and only if M � Mi for some i in a tower of triangles, where
the triangles are both HomD(R)(D,−)-exact and HomD(R)(−, D)-exact (see
Definition 3.2.21). In Corollary 3.2.28 we look at the special case where R is
Cohen-Macaulay with the canonical module KR. Then a finitely generated
R-module M is G-Gorenstein if and only if M appears as a kernel in an exact
complex of R-modules

· · · → K
⊕ni+1

R

di+1→ K
⊕ni
R

di→ K
⊕ni−1

R → · · ·

which is both HomR(KR,−)-exact and HomR(−, KR)-exact. This means that
G-Gorenstein modules are exactly the KR-Gorenstein projective modules in
the sense of [25].

The new notion of a module of deficiency of a complex is an important
tool in this thesis. Generalizing the work of Schenzel in [51], we define
for any complex M ∈ Df

b (R) and any i ∈ Z the i-th module of deficiency
Ki

M by setting Ki
M = Hi(RHomR(M,DR)). The canonical module of M is

KM = KdimR M
M . The canonical module of a module always satisfies Serre’s

condition (S2). This does not necessarily hold for M ∈ Df
b (R) even if M is a

Cohen-Macaulay complex (see Example 2.1.3 and Example 2.2.16). We will
see in Proposition 2.1.6 that

AssR KM =
{
p ∈ SuppR M | dimR/p = dimRp Mp + infMp

}

=
⋃
i∈Z

(AssR Hi(M))i+dimR M .

This leads us also to study the concept of Serre’s condition for complexes.
Given k ∈ Z, we say that a complex M satisfies Serre’s condition (Sk) if

depthRp
Mp ≥ min

{
k − infMp, dimRp Mp

}

for all prime ideals p ∈ SuppR M . It is convenient to consider equidimensional
complexes i.e. complexes satisfying the condition

dimR M = dimRp Mp + dimR/p

for all p ∈ SuppR M (see page 11 and Lemma 2.2.4). It then follows from
Proposition 2.3.12 that (Sk) is equivalent to the natural homomorphism

Ext−i
R (M,M) → Ki+dimR M

M⊗L
RKM

(1)

9
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being bijective for all i > −k + 2, and injective for i = −k + 1. Note that
KM⊗L

RKM
∼= HomR(KM , KM). It makes also sense, for any l ∈ Z to look at

the condition (Sk,l) saying that

depthRp
Mp ≥ min

{
k − l, dimRp Mp

}

for all prime ideals p ∈ SuppR M . Observe that Serre’s condition (Sk) implies
(Sk,supM ). We reprove a result of Lipman, Nayak and Sastry ([45, Proposition
9.3.5]) saying that the Cousin complex of M

EDdimR M (M) ∼=
∑− dimR M HomR(KM , DR).

In particular, there is a natural morphism hM : M → EDdimR M (M). It then
comes out in Corollary 2.4.2 that a complex M satisfying condition (Sk,l) is
equivalent to the map Hi(hM) being bijective for i ≥ l − k + 2 and injective
for i = l− k + 1. Recalling that EDdimR M (M) is always Cohen-Macaulay, this
shows that in order to see how close M is to being Cohen-Macaulay, it is
enough to know how close hM is to an invertible morphism.

We then want to understand the relationship between the Cousin com-
plex of M and that of HsupM(M). Assume that M is an equidimensional
complex satisfying condition (S1). Then AssR HsupM (M) = AsshR HsupM (M).
Moreover, if M satisfies condition (S2), then HsupM(M) ∼= KKM

and

HomD(R)(M,M) ∼= HomR(KM , KM)

(see Corollary 2.3.16). Set M † = HomR(M,DR). Suppose that supMp =
supM for all p ∈ SuppR M . If M † satisfies Serre’s condition (S2), then KM

∼=
KHs(M), where s = supM . More precisely, it comes out in Corollary 2.4.4
that

EDdimR M (M) ∼=
∑s EDdimR Hs(M)(Hs(M)).

Finally, in Proposition 3.2.17 we look at the special case where M may
not be G-Gorenstein but its Cousin complex is G-Gorenstein. Suppose that R
satisfies Serre’s condition (S2). Assume also that M is equidimensional, and
that SuppR Hs(M) = SpecR where s = supM . If either, both M and KM

satisfy (S2) or bothM † and Hs(M) satisfy (S2), we can show that EDdimR M (M)
is a complex of Gorenstein injective modules if and only if Hs(M) ∼= KF for
some F ∈ G(R). This generalizes [23, Theorem 3.3] of Dibaei.

We will now describe the contents of this thesis. In Chapter 1 we recall
some preliminaries of hyperhomological algebra and Gorenstein homological
algebra. In Chapter 2 we investigate properties of modules of deficiency of
a complex. We also define Serre’s conditions for complexes. We then study
the Cousin functor for complexes. Finally, in Chapter 3 we turn to consider
G-Gorenstein complexes.

10
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Chapter 1

Preliminaries

In this chapter we fix some notation and recall some basic facts and theorems
which we shall often use in the sequel.

We will always use the letter “R” to denote a commutative Noetherian
ring with non-zero identity. In the case R is local, m and k denote the unique
maximal ideal and the residue field R/m, respectively. The set of all prime
ideals of R is denoted by SpecR.

1.1 Categories of Complexes

Throughout this thesis we work within the derived category D(R) of R-
modules. Acquaintance with derived categories is assumed. As usual, C(R)
denotes the category of complexes of R-modules. The localization functor is
Q : K(R) → D(R) whereK(R) is the homotopy category. We use homological
grading so that the objects of D(R) are complexes of R-modules of the form

M : . . . → Mi+1
di+1→ Mi

di→ Mi−1
di−1→ . . . .

The derived category is triangulated, the suspension functor
∑

being defined

by the formulas (
∑

M)n = Mn−1 and d
∑

M
n = −dn−1. We use the symbol

“�” for isomorphisms in D(R). For any i ∈ Z, the i-th homology functor is
denoted by Hi(−). The homological supremum and infimum of a complex M
are defined by:

supM = sup {i ∈ Z | Hi(M) �= 0} , infM = inf {i ∈ Z | Hi(M) �= 0} .

The amplitude is
ampM = supM − infM.

11
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We denote by D+ and D− the full subcategories of D(R), for which
infM > −∞ and supM < ∞, respectively. We use the subscript “b”
to denote the homological boundness and the superscript “f” to denote the
homological finiteness. So the full subcategory ofD(R) consisting of complexes
with finitely generated homology modules is denoted by Df (R). We use the
standard notations −⊗L

R− and RHomR(−,−) for the derived tensor product
functor and the derived homomorphism functor, respectively.

Let M,N,K ∈ D(R). Then the following functorial isomorphisms exist
in D(R):

(Adjointness)

RHomR(M ⊗L
R N,L) � RHomR(M,RHomR(N,L)); (1.1)

(Swap)

RHomR(M,RHomR(N,L)) � RHomR(N,RHomR(M,L)). (1.2)

Moreover, there are the following functorial morphisms:

(Tensor evaluation)

αM,N,L : RHomR(M,N)⊗L
R L −→ RHomR(M,N ⊗L

R L); (1.3)

(Homomorphism evaluation)

βM,N,L : M ⊗L
R RHomR(N,L) −→ RHomR(RHomR(M,N), L). (1.4)

The morphism αM,N,L is an isomorphism, if M ∈ Df
b (R), N ∈ Db(R) and

eitherM has finite projective dimension or L has finite flat dimension, whereas
the morphism βM,N,L is an isomorphism, when M ∈ Df (R), N ∈ Db(R) and
either M is of finite projective dimension or L is of finite injective dimension.

Krull Dimension and Support

Let M ∈ Db(R), and let p ∈ SpecR. The localization of M at p is defined by
Mp = Rp ⊗R M . The following inequalities hold:

supMp ≤ supM and infM ≤ infMp.

Furthermore, the support of a complex M ∈ D(R) is the set

SuppR M = {p ∈ SpecR | Mp �� 0} .

The Krull dimension of M is

dimR M = sup {dimR/p− infMp | p ∈ SuppR M} . (1.5)

12



18

One also has for any s ∈ Z,

dimR

∑s M = −s+ dimR M.

It has been shown in [18, Lemma 6.3.5]) that

dimR M = sup
{
dimR Hi(M)− i | i ∈ Z

}
. (1.6)

Obviously,
− infM ≤ dimR M ≤ dimR− infM. (1.7)

Depth and Width

Let (R,m) be a local ring, and let M ∈ Db(R). One defines the depth and
the width of M by the formulas

depthR M = − supRHomR(k,M) and widthR M = inf k ⊗L
R M,

respectively. More generally, for any ideal I ⊆ R

depthR(I,M) = inf
{
depthRp

Mp | p ∈ V(I)
}

(1.8)

where V(p) denotes the set of all prime ideals containing I (see [40, Proposition
5.4]). The following inequalities hold:

depthR M ≥ − supM and widthR M ≥ infM.

The first inequality turns to an equality if and only if m ∈ AssR HsupM(M),
while the second one is an equality if and only if k ⊗ Hinf M(M) �= 0 (see [18,
Observation 5.2.2 and Observation 5.2.5]. Finally, note that for any s ∈ Z,

depthR

∑s M = −s+ depthR M.

Equidimensionality

Let M ∈ Db(R). Recall from [16] that a prime ideal p ∈ SuppR M is called an
associated prime of M if depthRp

Mp = − supMp. The set of all associated
primes of M is denoted by AssR M . Furthermore, if M �� 0, then by [14,
A.6.1.2],

p ∈ AssR HsupM(M) if and only if depthRp
Mp = − supM. (1.9)

A prime ideal p ∈ SuppR M is called an anchor prime of M , if dimRp Mp =
− infMp. The set of all anchor primes of M is denoted by AncR M . The

13
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anchor primes play the role of minimal primes for complexes (see [17]). Set
also

W0(M) = {p ∈ SuppR M | dimR M − dimR/p+ infMp = 0} .

One has

Min SuppR(M) ⊆ AncR M and W0(M) ⊆ AncR(M).

In the case (R,m) is a local ring we say that the complex M ∈ Df
b (R) is

equidimensional, when W0(M) = AncR(M).

Local cohomology

For any ideal J ⊂ R, the derived section functor is denoted by RΓJ(−). As
usual, the i-th hypercohomology functor is Hi

J(−) = H−i(RΓJ(−)). Further-
more, when (R,m) is a local ring, the following equalities hold (see e.g. [31,
p. 8, 2.4]):

− infRΓm(M) = dimR M and − supRΓm(M) = depthR M. (1.10)

1.2 Dualities

In this section we review some basic definitions and known results about
dualizing complexes and recall their application in the local duality. Our
main reference here is [36].

Dualizing Complexes

Let R be a ring. A complex C ∈ Df
b (R) is said to be a semi-dualizing complex,

if the homothety morphism C : R → RHomR(C,C) is an isomorphism. A
semi-dualizing complex D ∈ Df

b (R) is called a dualizing complex if D has
finite injective dimension.

Let (R,m) be a local ring. Then the following statements hold:

• If a dualizing complex exists, then R is catenary;

• Every two dualizing complexes are isomorphic up to a suspension;

• Let D ∈ Df
b (R). Then D is a dualizing complex if and only if for some

n ∈ Z,
RHomR(k,D) �

∑n k.

14
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Moreover, a dualizing complex is said to be normalized, when n = 0. In this
case

Di =
⊕

dimR/p=i

ER(R/p).

Here ER(R/p) denotes the injective envelope of R/p (see [36, V.3.1, V.3.4 and
V.7.2]). From now on, we denote the normalized dualizing complex by DR. If
M ∈ Df

b (R), the dagger dual of M is defined by M † = RHomR(M,DR). We
also observe that by [51, Lemma 1.3.3]

(Mp)
†p �

∑− dimR/p(M †)p. (1.11)

Here the dagger dual on the left-hand side is taken with respect to the
normalized dualizing complex of the localization Rp.

Local Duality

Let (R,m) be a local ring admitting a dualizing complex. For M ∈ Df
b (R),

the local duality (see [36, V.6.2]) says that

RΓm(M) � HomR(M
†, ER(k)). (1.12)

Taking the homology gives

Hi
m(M) = HomR(Hi(M

†), ER(k)) (1.13)

for all i ∈ Z.

Dagger Duality

Let (R,m) be a local ring, and let M ∈ Df
b (R). It follows from formula (1.12)

together with formula (1.10) that

supM † = dimR M and infM † = depthR M. (1.14)

Therefore, M † ∈ Df
b (R). The canonical morphism M → M †† induces now an

isomorphism
M � M ††. (1.15)

In other words, there is an equivalence of categories

Df
b (R)

(−)†
��
Df

b (R)
(−)†

�� ,

which is called the dagger duality.
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1.3 Gorenstein Dimensions

In the current section we recall some basic notions of Gorenstein homological
algebra. This material is essential for Chapter 3.

Gorenstein Injective Dimension

Recall that an R-module N is called Gorenstein injective, if there is an exact
complex I of injective R-modules such that the complex HomR(J, I) is exact
for every injective R-module J , and that N appears as a kernel in I. For
M ∈ Db(R), the Gorenstein injective dimension of M , denoted by GidR M ,
is defined as the infimum of all integers n such that there exists a complex I
of Gorenstein injective R-modules for which I � M in D(R), and Ii = 0 for
i > −n. For details, see [20, 1.8]. Note that GidR M ≤ infM . We also have

GidR

∑s M = −s+GidR M

for any s ∈ Z.

Gorenstein Projective Dimension

The definition of a Gorenstein projective module is dual to that of the Goren-
stein injective one. For M ∈ Db(R), the Gorenstein projective dimension
of M , denoted by GpdR M , is defined as the infimum of all integers n such
that there exists a complex P of Gorenstein projective R-modules for which
M � P , and Pi = 0 if i > n. We have GpdR M ≥ supM . Observe that

GpdR

∑s M = s+GpdR M

for any s ∈ Z.

Gorenstein Flat Dimension

An R-module N is called Gorenstein flat, if there is an exact complex F of
flat R-modules such that the complex J ⊗R F is exact for every injective
R-module J , and that N appears as a kernel in F . The notion of Gorenstein
flat dimension of a complex M ∈ Db(R) is defined analogously to the previous
Gorenstein dimensions.

G-class of Modules

The G-class of modules, denoted by G(R), consists of all finitely generated
Gorenstein projective, or, equivalently, Gorenstein flat R-modules.
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Auslander class and Bass class

Let R be a ring admitting a dualizing complex D. Consider the pair of adjoint
functors (D ⊗L

R −,RHomR(D,−)). Let

εD− : D ⊗L
R RHomR(D,−) → Id and γD

− : Id → RHomR(D,D ⊗L
R −)

denote the unit and the counit of adjunction, respectively. The Auslander class
A(R) and the Bass class B(R) with respect to D are the full subcategories of
Db(R) defined by:

• A complex M ∈ Db(R) is in A(R) if and only if D ⊗L
R M ∈ Db(R) and

γD
M is an isomorphism;

• A complex N ∈ Db(R) is in B(R) if and only if RHomR(D,N) ∈ Db(R)
and εDN is an isomorphism.

It is now easy to see that we obtain an equivalence of categories

A(R)
D⊗L

R−
��
B(R),

RHomR(D,−)
��

which is called the Foxby Duality. If Af (R) and Bf (R) denote the restrictions
of Df

b (R) to the categories A(R) and B(R), this induces further an equivalence
Af (R) → Bf (R).

Finally, it is an important fact that in the case of a local ring the objects
of A(R) are the complexes M ∈ Db(R) of finite Gorenstein projective (or
equivalently of finite Gorenstein flat) dimension. Moreover, the dual statement
holds for B(R) (see [20, Theorem 4.4 and Theorem 4.1]).
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Chapter 2

Serre’s Conditions for
Complexes

The aim of this chapter is to generalize the notion of Serre’s condition to a
complex. This generalization is expected to give a criterion for evaluating
how far a complex is from being Cohen-Macaulay.

2.1 Modules of Deficiency of a Complex

In this section we introduce the notion of a module of deficiency of a complex
as a technical tool which will be used throughout the rest of this thesis.

In the module case this was done by P. Schenzel in [51].

Definition 2.1.1. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). For every i ∈ Z, set Ki
M = Hi(M

†). The modules Ki
M

are called the modules of deficiency of the complex M . Moreover, we set
KM = KdimR M

M , and say that KM is the canonical module of M .

Remark 2.1.2. Obviously, the modules of deficiency are finitely generated.
Using formula (1.14), we get

depthR M = inf
{
i ∈ Z | Ki

M �= 0
}

and dimR M = sup
{
i ∈ Z | Ki

M �= 0
}
.

Example 2.1.3. Any finitely generated R-module is canonical module of a
complex. Indeed, if K is a finitely generated module and t ∈ Z, set M =∑−t K†. Since dimR M = t by formula (1.14), it now follows by biduality
that

KM = Ht(
∑t K) = K.

Lemma 2.1.4. Let (R,m) be a local ring admitting a dualizing complex, and
let M ∈ Df

b (R). Then the following statements hold:
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a) (Ki
M)p ∼= K

i−dimR/p
Mp

for every p ∈ SuppR M ;

b) If p ∈ SuppR M with dimR M = dimRp Mp + dimR/p, then KMp
∼=

(KM)p.

Proof. a) Using formula (1.11) we get

(Ki
M)p ∼= Hi((M

†)p) ∼= Hi−dimR/p(Mp
†p) = K

i−dimR/p
Mp

.

b) Part a) immediately implies that

KMp
∼= (K

dimRp Mp+dimR/p

M )p = (KM)p.

Our next aim is to investigate the associated primes of modules of deficiency.
From now on we set

(X)i =
{
p ∈ X | dimR/p = i

}

for every X ⊆ SpecR and all i ∈ Z.

Lemma 2.1.5. Let (R,m) be a local ring admitting a dualizing complex, and
let M ∈ Df

b (R). Then the following statements hold for all i ∈ Z:

a) dimR Ki
M ≤ i+ supM ;

b) (AssR Ki−s
M )i = (AssR Hs(M))i where s = supM ;

c) (AssR KM)i = (AssR Hi−dimR M(M))i;

Proof. a) Using formula (1.6) we have

dimR M † = sup
{
dimR Ki

M − i | i ∈ Z
}
.

Therefore dimR Ki
M ≤ i+dimR M †. This implies the claim, since dimR M † =

supM by formula (1.14).

b) By a) we have dimR Ki−s
M ≤ i. Hence,

(AssR Ki−s
M )i = (SuppR Ki−s

M )i.

It is then is enough to prove that

(SuppR Ki−s
M )i = (AssR Hs(M))i.

19



25

Take first p ∈ (SuppR Ki−s
M )i. Then K−s

Mp
�= 0 by Lemma 2.1.4 a). Therefore

Hs(RΓpRp(Mp)) �= 0 implying that

s ≤ supRΓpRp(Mp).

On the other hand, we have

supRΓpRp(Mp) = − depthRp
Mp

by formula (1.10). It now follows that

s ≤ supRΓpRp(Mp) = − depthRp
Mp ≤ supMp ≤ s.

Therefore, − depthRp
Mp = s = supMp. By formula (1.9) this means that

p ∈ AssR Hs(M). So

(SuppR Ki−s
M )i ⊆ (AssR Hs(M))i.

Conversely, let p ∈ (AssR Hs(M))i. Then depthRp
Mp = −s by formula

(1.9). Hence − supRΓpRp(Mp) = −s implying thatK−s
Mp

�= 0. By Lemma 2.1.4

a) this means that (Ki−s
M )p �= 0. Thus p ∈ SuppR Ki−s

M . Therefore

(AssR Hs(M))i ⊆ (SuppR Ki−s
M )i.

c) This follows by applying b) to M †, because KM† ∼= Hs(M) by formula

(1.14).

We can now identify the associated primes and the support of the canonical
module of a complex.

Proposition 2.1.6. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Then

a) AssR KM = {p ∈ SuppR M | dimR/p = dimR M + infMp};

b) SuppR KM = {p ∈ SuppR M | dimR M = dimRp Mp + dimR/p}.

Proof. a) Let p ∈ SuppR M . We apply formula (1.9) to M †. Because
supM † = dimR M by formula (1.14), it thus follows that p ∈ AssR KM

if and only if depthRp
(M †)p = − dimR M . Using formulas (1.11) and (1.14)

we get

depthRp
(M †)p = depthRp

(Mp)
†p − dimR/p

= infMp − dimR/p.
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Hence p ∈ AssR KM if and only if

infMp − dimR/p = − dimR M.

This proves the claim.

b) Let p ∈ SuppR KM . Note first that SuppR M † = SuppR M . Indeed,
SuppR M † ⊆ SuppR M which implies that SuppR M ⊆ SuppR M † by biduality.
Since SuppR KM ⊆ SuppR M †, we then have p ∈ SuppR M . Take q ∈
AssR KM such that q ⊆ p. Then

dimR/q = dimR M + infMq

by a). Hence

dimRp Mp ≥ height p/q − infMq

=dimR/q − dimR/p− infMq

=dimR M − dimR/p,

where the first inequality is clear by the definition of Krull dimension and
the subsequent equality holds true, since R/q is a catenary integral domain.
Taking into account the inequality dimR M ≥ dimRp Mp + dimR/p (see [18,
Lemma 6.3.4]), we now get

dimR M = dimR/p+ dimRp Mp.

Suppose then that p ∈ SuppR M with dimR M = dimRp Mp + dimR/p. By
Lemma 2.1.4 we have (KM)p ∼= KMp �= 0. Thus p ∈ SuppR KM , and we are
done.

Remark 2.1.7. We observe that by Proposition 2.1.6 a) and Lemma 2.1.5
c)

{p ∈ SuppR M | dimR/p = dimR M + infMp} =
⋃
i∈Z

(AssR Hi(M))i+dimR M .

This can also be proved directly by using formula 1.5 together with formula 1.6.

Corollary 2.1.8. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Set t = dimR M and s = supM . Then dimR KM = s+ t
if and only if dimR Hs(M) = s+ t.

Proof. a) By Lemma 2.1.5 a) dimR KM ≤ s + t. Since Hs(M) ∼= KM† , we
also have dimR Hs(M) ≤ s+ t. Because (AssR KM )s+t = (AssR Hs(M))s+t by
Lemma 2.1.5 b), the claim follows.
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2.2 Cohen-Macaulay Complexes

There are two possibilities to introduce the notion of a Cohen-Macaulay
complex. In this section we will utilize the notion of the Cohen-Macaulay
defect. The other possibility will be discussed in the next section.

We start by recalling the following definition (see [7, p. 6]):

Definition 2.2.1. Let (R,m) be a local ring. The Cohen-Macaulay defect of
a complex M ∈ Db(R) is defined by

cmdR M = dimR M − depthR M.

It can be shown that if M ∈ Df
b (R) and M �� 0 then 0 ≤ cmdR M (see [18,

6.3.8]).

Proposition 2.2.2. Let (R,m) be a local ring, and let M ∈ Df
b (R). Then

the following statements are equivalent:

a) cmdR M = 0;

b) cmdRp Mp = 0 for every p ∈ SuppR M .

Proof. Note first that by [18, Lemma 6.1.11]

depthR M ≤ depthRp
Mp + dimR/p,

and by [18, Lemma 6.3.4]

dimR M ≥ dimRp Mp + dimR/p.

To see the equivalence of a) and b), it is now enough to observe that by the
above two inequalities

0 ≤ cmdRp Mp ≤ cmdR M.

Lemma 2.2.3. Let (R,m) be a local ring, and let M ∈ Df
b (R). If cmdR M =

0, then the following statements hold:

a) M is equidimensional;

b) dimR M = dimRp Mp + dimR/p for every p ∈ SuppR M .
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Proof. a) This is proved in [17, Theorem 2.3 (d)].

b) Since depthRp
Mp ≤ dimRp Mp, putting together [18, Lemma 6.1.11]

and [18, Lemma 6.3.4], one obtains

depthR M ≤ depthRp
Mp + dimR/p ≤ dimRp Mp + dimR/p ≤ dimR M.

Now because dimR M = depthR M , it follows from the above inequalities that

dimR M = dimRp Mp + dimR/p.

In this context we one to mention the following general fact.

Lemma 2.2.4. Let (R,m) be a catenary local ring, and let M ∈ Df
+(R).

Then the following conditions are equivalent:

a) M is equidimensional;

b) dimR M = dimRp Mp + dimR/p for every p ∈ SuppR M .

Proof. a) ⇒ b) : Let p ∈ SuppR M . By [18, Lemma 6.3.4] we have

dimRp Mp ≥ dimRq Mq + dimRp/qRp

for every qRp ∈ SuppRp
Mp. Take now q ∈ Min SuppR M such that q ⊆ p.

Then

dimRp Mp + dimR/p ≥ dimRq Mq + dimRp/qRp + dimR/p

= dimRq Mq + dimR/q

= − infMq + dimR/q

= dimR M.

Here the first equality holds true, since R/q is a catenary integral domain. The
second equality comes from the fact that Min SuppR M ⊆ AncR M (see [17,
Theorem 2.3 (a)]). The last equality then follows from the equidimensionality
of M . Since the converse inequality comes from inequality [18, Lemma 6.3.4],
we are done.

b) ⇒ a) : This is clear, since now

− infMp = dimRp Mp = dimR M − dimR/p

for every q ∈ AncR M .
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Definition 2.2.5. Let R be a ring, and let M ∈ Df
b (R). Then M is called

Cohen-Macaulay if M �� 0 and

cmdRm Mm = 0

for all m ∈ Max(R) ∩ SuppR M .

The following two results are well known for specialists. We write them
here for the convenience of the reader.

Proposition 2.2.6. Let R be a ring, and let M ∈ Df
b (R). Then the following

statements are equivalent:

a) M is Cohen-Macaulay;

b) Hi
pRp

(Mp) = 0 for all p ∈ SuppR M and i �= dimRp Mp;

c) Hi
mRm

(Mm) = 0 for all m ∈ MaxR and i �= dimRm Mm.

Proof. a) ⇒ b) : There is nothing to prove unless p ∈ SuppR M . By Propo-
sition 2.2.2 b) we have depthRp

Mp = dimRp Mp for every p ∈ SuppR M . It
thus follows from formula (1.10) that

supRΓpRp(Mp) = infRΓpRp(Mp) = − dimR Mp

implying b).

b) ⇒ c) : This is trivial.

c) ⇒ a) : We now have supRΓRm(Mm) = infRΓRm(Mm). Then using again
formula (1.10) we get the claim.

Notation 2.2.7. Let R be a ring. Let t ∈ Z. We denote by Dt−CM(R) the
full subcategory of Df

b (R) of Cohen-Macaulay complexes of dimension t.

Corollary 2.2.8. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Then the following statements are equivalent:

a) M is Cohen-Macaulay;

b) M † �
∑dimR M KM ;

c) M † �
∑t N for some finitely generated R-module N and t ∈ Z.

It follows that the functors

Dt−CM(R)
K−

��
(finitely generated R-modules)opp∑−t(−)†

��

are quasi-inverses of each other, and thus provide an equivalence of categories.
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Proof. a) ⇒ b) : Because Hi
m(M) = 0 for i �= dimR M by Proposition 2.2.6

c), it follows from formula (1.13) that Ki
M = 0 for i �= dimR M . This gives

M † �
∑dimR M KM .

b) ⇒ c) : This is trivial.

c) ⇒ a) : Using formula (1.14) one now has dimR M = depthR M as desired.

The above equivalence of categories is due to Yekutieli and Zhang (see [61,
Theorem 6.2]). In particular, we also recover the following (see [61, Remark
6.3]):

Corollary 2.2.9. Let (R,m) be a local ring admitting a dualizing complex.
Then Dt−CM(R) is an abelian subcategory of Df

b (R).

2.2.1 Canonical Modules of
Cohen-Macaulay Complexes

In this section we discuss how the Cohen-Macaulayness of a complex can
be seen in the canonical module. This is motivated by the equivalence of
categories stated in Corollary 2.2.8.

Remark 2.2.10. Let (R,m) be a local ring, and let M ∈ Df
b (R). Recall that

the Bass series and the Poincaré series of M are the series

IMR (x) =
∑
i∈Z

µi
R(M)xi and PR

M(x) =
∑
i∈Z

βR
i (M)xi,

respectively. Here the Bass numbers, µi
R(M), and the Betti numbers, βR

i (M),
are defined by the formulas

µi
R(M) = dimk H−i(RHomR(k,M)) and βR

i (M) = dimk Hi(k ⊗L
R M)

for every i ∈ Z.

Proposition 2.2.11. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Dt−CM(R). Then the following statements hold for every i ∈ Z:

a) µi
R(M) = βR

i−t(KM);

b) βR
i (M) = µi+t

R (KM).
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Proof. a) We will first show that IMR (x) = xtPR
KM

(x). Since M �
∑−t(KM )†

by Corollary 2.2.8 b), we have

IMR (x) = I
∑−t(KM)†

R (x) = xtI
(KM )†

R (x) = xtPR
KM

(x)IDR
R (x) = xtPR

KM
(x).

Here the third equality comes from [18, Lemma 6.2.10], whereas in the last
equality we use the fact that IDR

R (x) = 1 (see [18, Proposition 7.1.11 a)]). A
comparison of the coefficients now gives the claim.

b) The argument is similar to a), but we now use [18, Lemma 6.2.12] to see
that PR

M(x) = x−tIKM
R (x).

Proposition 2.2.12. Let (R,m) be a local ring, and let M ∈ Df
b (R) be a

Cohen-Macaulay complex. Then

AssR Hs(M) = {p ∈ SuppR M | dimR/p = dimR M + s} ,

where s = supM . In particular, AssR Hs(M) = AsshR Hs(M).

Proof. Let p ∈ SuppR M . By formula (1.9), p ∈ AssR Hs(M) if and only
if depthRp

Mp = −s. Since M is Cohen-Macaulay, we have depthRp
Mp =

dimRp Mp. It then follows from Lemma 2.2.3 b) that p ∈ AssR Hs(M) if and
only if dimR M = dimR/p− s.

Proposition 2.2.13. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R) be a Cohen-Macaulay complex. Then the following
statements hold:

a) SuppR M = SuppR KM ;

b) (KM)p ∼= KMp for every p ∈ SpecR;

c) AncR M = AssR KM .

Proof. a) By Corollary 2.2.8 b) M † �
∑dimR M KM . Hence SuppR KM =

SuppR M †. On the other hand, SuppR M † = SuppR M by formula (1.15).
Then

SuppR M = SuppR M † = SuppR KM .

b) If p /∈ SuppR KM , then p /∈ SuppR M so that KMp = 0. For p ∈ SuppR KM ,
the claim follows from a) together with Lemma 2.2.3 b) and Lemma 2.1.4 b).

c) Because AncR M = W0(M) by [17, Theorem 2.3 d)], the claim immediately
follows from Proposition 2.1.6 a).
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Corollary 2.2.14. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R) be a Cohen-Macaulay complex. Then

a) dimR KM = dimR M + supM ;

b) depthR KM = dimR M + infM .

In particular, KM is Cohen-Macaulay if and only if M is a module up to a
suspension.

Proof. Since KM �
∑− dimR M M † by Corollary 2.2.8 b), the claim follows

from formula (1.14).

The following result is an immediate consequence of Proposition 2.2.13 a)
and Corollary 2.2.14 a) together with Proposition 2.2.12.

Corollary 2.2.15. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R) be a Cohen-Macaulay complex. Then AssR Hs(M) =
AsshR KM , where supM = s.

If M is Cohen-Macaulay module, then so is KM . We end up this subsection
with the following example exhibiting that this does not necessarily hold for
complexes.

Example 2.2.16. Set R = K[X, Y, Z]m/(XY,XZ)m where K is a field and
m = (X, Y, Z). Then R is a non-Cohen-Macaulay ring of dimension two,
which admits a dualizing complex. Set M =

∑−2 DR. Then KM = R.
Although M is a Cohen-Macaulay complex by Corollary 2.2.8, KM is not even
equidimensional.

2.2.2 Cohen-Macaulayness with respect to a filtration

In this section we discuss the notion of a Cohen-Macaulay complex with
respect to a filtration, as defined by Grothendieck (see [36]).

Let X be a Noetherian topological space (i.e. it satisfies the descending
chain condition for closed subsets). Assume further that any irreducible closed
subset of X has a unique generic point (a point in a topological space is called
a generic point if its closure coincides with the whole space). Recall from [36]
that a filtration of X is a descending sequence

F = (Fi)i∈Z : . . . Fi−1 ⊇ Fi ⊇ Fi+1 ⊇ . . .

of subsets of X which satisfies the following conditions:

a) Fi = X for some i ∈ Z;
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b)
⋂
i∈Z

Fi = ∅;

c) For any i ∈ Z, if q, q′ ∈ Fi\Fi+1 and q is a specialization of q′ (i.e. q is
in the closure of {q′}) , then q = q′;

d) Each Fi is stable under specialization (i.e. if q′ ∈ Fi and q ∈ X is a
specialization of q′ , then q ∈ Fi).

From now on we set δiF := Fi\Fi+1 for every i ∈ Z.
Let R be a ring. We always assume that SpecR is equipped with the

Zariski topology. Note that by [11, Chap II, 401-4.3] any irreducible closed
subset of SpecR has a unique generic point. In this case a subset F ⊆ SpecR
is stable under specialization, if V(p) ⊆ F for any p ∈ F . It is easy to see
that a descending sequence F of subsets of SpecR is a filtration of a subspace
X ⊂ SpecR if and only if Fi = X for some i ∈ Z,

⋂
i∈Z Fi = ∅, and each

element of δiF is a minimal element of Fi with respect to inclusion.

Lemma 2.2.17. Let R be a ring, and let M ∈ Df
b (R). Set

Hi =
{
p ∈ SuppR M | i ≤ dimRp Mp

}
.

Then H(M) = (Hi)i∈Z is a filtration of SuppR M .

Proof. For every p ∈ SuppR M , we have

− supM ≤ − supMp ≤ − infMp ≤ dimRP
Mp

by formula (1.7). Thus H− supM = SuppR M . Since dimRp Mp is finite by
formula (1.7), then

⋂
i∈Z Hi = ∅. Suppose next that p ∈ δiH(M). To see the

minimality of p in Hi, assume for a contradiction that q ⊂ p for some q ∈ Hi.
Then

dimRq Mq ≤ dimRq Mq + dimRp/qRp ≤ dimRp Mp = i

where the last inequality is by [18, Lemma 6.3.4]. This contradicts q ∈ Hi,
and we are done.

Remark 2.2.18. Let R be a ring of finite dimension and let t ∈ Z. Set

Dt
i = {p ∈ SpecR | i ≤ t− dimR/p}

for all i ∈ Z. Then Dt = (Dt
i)i∈Z is a filtration of SpecR. In particular, if

M ∈ Df
b (R) and t = dimR M , we call this filtration as the “M-dimension-

filtration”, and denote it by D(M).
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Definition 2.2.19. (Compare [36, p. 238]) Let R be a ring, and let F be a
filtration of SpecR. Then M ∈ Df

b (R) is called a Cohen-Macaulay complex
with respect to F if Hn

pRp
(Mp) = 0 for all n �= i and p ∈ δiF . The full

subcategory of Df
b (R) of Cohen-Macaulay complexes with respect to F is

denoted by DF−CM .

Proposition 2.2.20. Let R be a ring, and let M ∈ Df
b (R). Then the

following conditions are equivalent:

a) M is Cohen-Macaulay;

b) M is Cohen-Macaulay with respect to the filtration H(M).

Moreover, if (R,m) is a local ring, then the above conditions are equivalent
to:

c) M is Cohen-Macaulay with respect to the filtration D(M).

In particular, Dt−CM(R) = DDt−CM(R) for any t ∈ Z. Furthermore, any
dualizing complex D is Cohen-Macaulay with respect to the filtration D(D).

Proof. The equivalence of a) and b) follows directly from the equivalence of
a) and b) in Proposition 2.2.6.

b ⇒ c) : Since M is now Cohen-Macaulay by a), it follows from Lemma 2.2.3
that dimR M−dimR/p = dimRp Mp for every p ∈ SuppR M . Hence the claim
follows from the definition.

c ⇒ a) : Because m ∈ δdimR MD(M), one now has Hi
m(M) = 0 for i �= dimR M .

Thus M is Cohen-Macaulay by Proposition 2.2.6.
Furthermore, the uniqueness of the dualizing complex implies that D �∑−t′ DR for some t′ ∈ Z. Hence D is Cohen-Macaulay of dimension t′. It

thus follows from c) that D is Cohen-Macaulay with respect to D(D).

2.3 Serre’s Conditions

In this section we will generalize Serre’s conditions to complexes. It is
convenient to begin with the following very general definition:

Definition 2.3.1. Let R be a ring. Let k ∈ N and N ∈ Df
b (R). We say that

a complex M ∈ Df
b (R) satisfies Serre’s condition (Sk,N), if

depthRp
RHomRp(Np,Mp) ≥ min

{
k, dimRp Mp + inf Np

}

for all p ∈ SpecR.
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Remark 2.3.2. Since

depthRp
RHomRp(Np,Mp) = inf Np + depthRp

Mp (2.1)

for all p ∈ SpecR by [30, Proposition 4.6], it is clear that (Sk,N ) is equivalent
to having

depthRp
Mp ≥ min

{
k − inf Np, dimRp Mp

}
(2.2)

for all p ∈ SpecR.

The following proposition is now immediate:

Proposition 2.3.3. Let R be a ring. Let k ∈ Z and N ∈ Df
b (R). Then

a complex M ∈ Df
b (R) satisfies the condition (Sk,N), if and only if Mp is

Cohen-Macaulay for every p ∈ SpecR with depthRp
Mp < k − inf Np.

Notation 2.3.4. If N = M or N =
∑l R for some l ∈ Z, we will speak

about the condition (Sk) or (Sk,l), respectively. In other words, the complex
M satisfies (Sk) if and only if

depthRp
Mp ≥ min

{
k − infMp, dimRp Mp

}

for all p ∈ SpecR. Similarly, M is said to satisfy (Sk,l) if and only if

depthRp
Mp ≥ min

{
k − l, dimRp Mp

}

for all p ∈ SpecR.

Remark 2.3.5. Let R be a ring, and let M ∈ Df
b (R). Since infMp ≤

supMp ≤ supM for all p ∈ SuppR M , we see that (Sk) always implies
(Sk,supM).

Remark 2.3.6. Note that our (Sk) differs from the condition given by Celikbas
and Piepmeyer in [13, 2.4] according to which a complex M ∈ Df

b (R) satisfies
(Sk) if

depthRp
Mp + infMp ≥ min {k, height p}

for every p ∈ SuppR M . However, because

dimRp Mp + infMp ≤ height p− infMp

by formula (1.7), we observe that the condition of Celikbas and Piepmeyer
implies our (Sk).
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Given an integer n, recall that the soft truncation of a complex M above
at n is the complex

M⊆n : . . . → 0 → Coker dMn+1 → Mn−1 → Mn−2 → . . . .

In D(R) we now have an exact triangle

∑n Hn(M) → M⊆n → M⊆n−1 →
∑n+1 Hn(M). (2.3)

Note that if n ≥ supM , then the natural morphism M → M⊆n becomes an
isomorphism in D(R).

The next definition was given for modules by P. Schenzel in [53, Definition
4.1].

Definition 2.3.7. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). We call the complex (M †)⊆dimR M−1 as the complex of
deficiency of M , and denote it by CM .

Remark 2.3.8. Clearly

Hi(CM) ∼=
{

Ki
M , if i ≤ dimR M ;

0, otherwise.
(2.4)

In particular, when M �� 0, we have CM � 0 if and only if M is Cohen-
Macaulay. If this is not the case, then inf CM = depthR M .

Remark 2.3.9. Because supM † = dimR M by formula (1.14), we obtain an
exact triangle

∑dimR M KM → M † → CM →
∑dimR M+1 KM . (2.5)

An application of the functor (−)† to (2.5) yields an exact triangle

C†
M → M →

∑− dimR M K†
M →

∑1 C†
M . (2.6)

From now on we denote the natural morphism M →
∑− dimR M K†

M by hM .

Lemma 2.3.10. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). If M is equidimensional, then (C†
M)p � C†p

Mp
for every

p ∈ SpecR.

Proof. Since SuppR C†
M ⊆ SuppR M , there is nothing to say if p �∈ SuppR M .

Assume then that p ∈ SuppR M . Set dimR M = t. We observe first that
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(CM )p �
∑dimR/p CMp . Indeed, by using formula (1.11) and Lemma 2.2.4, we

get

((M †)⊆t−1)p ∼= ((M †)p)⊆t−1

� (
∑dimR/p Mp

†p)⊆t−1

=
∑dimR/p((Mp

†p)⊆t−dimR/p−1)

=
∑dimR/p((Mp

†p)dimRp Mp−1).

Then
(CM)†pp �

∑− dimR/p C†p
Mp

,

so that by formula (1.11) (C†
M)p � C†p

Mp
as wanted.

Lemma 2.3.11. Let (R,m) be a local ring admitting a dualizing complex,
and let M , N ∈ Df

b (R). Suppose that M is an equidimensional complex.
Then the following conditions are equivalent:

a) M satisfies condition (Sk,N);

b) inf CMp ≥ k − inf Np for all p ∈ SpecR;

c) supRHomR(N,C†
M) ≤ −k;

d) dimR Hi(N)⊗R Kj
M ≤ i+ j − k for all i, j ∈ Z, j < dimR M ;

e) dimR/p ≤ n−k+inf Np for every p ∈ SuppR Kn
M and all n < dimR M ;

f) depthR(a
n
M , N †) ≥ k − n for all n < dimR M where anM = (0 :R Kn

M);

g) supRHomR(K
n
M , N †) ≤ n− k for all n < dimR M .

Proof. a) ⇔ b) : Let p ∈ SpecR. We want to show that the conditions

depthRp
Mp ≥ min

{
k − inf Np, dimRp Mp

}

and inf CMp ≥ k − inf Np are equivalent. If Mp is Cohen-Macaulay, this
is clear. Suppose thus that Mp is not Cohen-Macaulay. By Remark 2.3.8
the latter condition now means that depthRp

Mp ≥ k − inf Np. But because
depthRp

Mp < dimRp Mp, this implies the desired equivalence.

b) ⇔ c) : It is enough to observe that by Lemma [18, Lemma 5.2.8],
Lemma 2.3.10 and formula (1.14) we have

− supRHomR(N,C†
M) = inf

{
depthRp

(C†
M)p + inf Np | p ∈ SpecR

}

= inf
{
depthRp

CMp

†p + inf Np | p ∈ SpecR
}

= inf
{
inf CMp + inf Np | p ∈ SpecR

}
.
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c) ⇔ d) : Using adjointness and formula (1.14) we get

− supRHomR(N,C†
M) = sup(N ⊗L

R CM)†

= dimR N ⊗L
R CM .

The claim follows, since by [18, Lemma 6.3.9 b), (E.6.3.1)] and Remark 2.3.8
we have

dimR N ⊗L
R CM = sup

{
dimR Hi(N)⊗L

R CM − i | i ∈ Z
}

= sup
{
sup

{
dimR Hi(N)⊗L

R Hj(CM)− j | j ∈ Z
}
− i | i ∈ Z

}

= sup
{
dimR Hi(N)⊗L

R Hj(CM)− i− j | i, j ∈ Z
}

= sup {dimR Hi(N)⊗R Hj(CM)− i− j | i, j ∈ Z}
= sup

{
dimR Hi(M)⊗R Kj

M − i− j | i, j ∈ Z, j < dimR M
}
.

a) ⇔ e) Suppose first that M satisfies condition (Sk,N). Assume for the
sake of contradiction that there would exist p ∈ SuppR Kn

M with

n− dimR/p < k − inf Np.

By Lemma 2.2.4

n− dimR/p < dimR M − dimR/p = dimRp Mp.

On the other hand, because K
n−dimR/p
Mp

�= 0 by 2.1.4 a), we have depthRp
Mp ≤

n− dimR/p. It now follows that

depthRp
Mp < min

{
k − inf Np, dimRp Mp

}
.

This contradicts with formula (2.2).
Conversely, suppose that e) holds. If M would not satisfy condition (Sk,N ),

then we could find p ∈ SuppR M with

depthRp
Mp < min

{
k − inf Np, dimRp Mp

}
.

Put n = depthRp
Mp + dimR/p. One has

n < k − inf Np + dimR/p. (∗)

On the other hand, by Lemma 2.1.4 a)

(Kn
M)p ∼= K

n−dimR/p
Mp

= K
depthRp

Mp

Mp
�= 0.
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Hence p ∈ SuppR Kn
M . Because n < dimR M by [18, Lemma 6.3.4], it now

follows from the assumption that dimR/p− inf Np ≤ n− k. This contradicts
with the inequality (∗) so that M satisfies condition (Sk,N).

e) ⇔ f) Note that

depthRp
(N †)p = − dimR/p+ depthRp

(Np)
†p = − dimR/p+ inf Np,

where the equalities are by formulas (1.11) and (1.14), respectively. Hence
using formula (1.8)

depthR(a
n
M , N †) = inf {− dimR/p+ inf Np | p ∈ V(anM)} ,

implying that f) and e) are equivalent.

f) ⇔ g) : Since by formula (1.8) and [18, Lemma 5.2.8]

depthR(a
n
M , N †) = − supRHomR(K

n
M , N †)

the claim follows.

Proposition 2.3.12. Let (R,m) be a local ring admitting a dualizing complex.
Let k ∈ Z and M , N ∈ Df

b (R). Set dimR M = t. If M is equidimensional,
then the following conditions are equivalent:

a) M satisfies condition (Sk,N);

b) The natural homomorphism Ext−i
R (N,M) → Ki+t

N⊗L
RKM

is bijective for

all i ≥ −k + 2, and injective for i = −k + 1.

Proof. By applying the functor RHomR(N,−) on (2.6) we get the exact
triangle

RHomR(N,C†
M) → RHomR(N,M) →

∑−t RHomR(N,K†
M)

→
∑1 RHomR(N,C†

M).

Observe that RHomR(N,K†
M) � (N ⊗L

R KM)† by adjointness. Since (Sk,N)

is by Lemma 2.3.11 equivalent to supRHomR(N,C†
M) ≤ −k a look at the

corresponding long exact sequence of homology implies the claim.

In particular, if we take N = M , this applies to Serre’s condition (Sk).
For this case, we observe the following
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Proposition 2.3.13. Let (R,m) be a local ring admitting a dualizing complex.
Let M ∈ Df

b (R). Set t = dimR M . Then dimR M ⊗L
R KM = t. Moreover, the

natural homomorphism

Ext−i(KM , KM) → Ki+t
M⊗L

RKM

is an isomorphism for i > supCM − t. In particular,

KM⊗L
RKM

= HomR(KM , KM).

Proof. By adjointness

(M ⊗L
R KM)† � RHomR(KM ,M †).

Since HomR(KM , KM ) �= 0, it follows from formula (1.14) and [14, Proposition
A.4.6] that

dimR M ⊗L
R KM = supRHomR(KM ,M †) = supM † − infKM = dimR M.

An application of the functor RHomR(KM ,−) on (2.5), yields the exact
triangle

∑−t−1 RHomR(KM , CM) → RHomR(KM , KM) →
∑−t RHomR(KM ,M †)

→
∑−t RHomR(KM , CM).

The desired isomorphism now follows from the corresponding long exact se-
quence of homology, because supRHomR(KM , CM ) ≤ supCM by [14, Propo-
sition A.4.6].

Let us then consider the conditions (Sk,l).

Corollary 2.3.14. Let (R,m) be a local ring admitting a dualizing complex.
Let k, l ∈ Z and M ∈ Df

b (R). Set t = dimR M and s = supM . If M is
equidimensional, then the following conditions are equivalent:

a) M satisfies condition (Sk,l);

b) The natural homomorphism Hi(hM) : Hi(M) → Ki+t
KM

is bijective for
i ≥ l − k + 2, and injective for i = l − k + 1;

c) The natural homomorphism Hi
m(cKM

) : Hi+t
m (KM) → Hi(M)∨ is bijec-

tive for i ≥ l − k + 2, and surjective for i = l − k + 1.

Here (−)∨ = HomR(−, ER(k)).
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Proof. The equivalence of a) and b) follows from Proposition 2.3.12 by taking
N =

∑l R, whereas the homomorphism of c) is by local duality the Matlis-
dual of that b).

If R is a ring and N is an R-module, we use the notation

AsshR N = {p ∈ SuppR N | dim(R/p) = dimR N} .

Corollary 2.3.15. Let (R,m) be a local ring admitting a dualizing complex.
Let M ∈ Df

b (R) be an equidimensional complex. Set t = dimR M and
s = supM . If M satisfies Serre’s condition (S1), then

a) dimR Hs(M) = dimR KM = s+ t;

b) AssR Hs(M) = AsshR Hs(M).

Proof. a) Recall that (S1) implies (S1,s). By Corollary 2.3.14 the natural
homomorphism Hs(M) → Ks+t

KM
is injective. Then Ks+t

KM
�= 0 so that by

Lemma 2.1.5 a) we must have dimR KM = s + t. It now follows from
Corollary 2.1.8 a) that dimR Hs(M) = s+ t too.

b) Because dimR Hs(M) = s+ t by a), it is enough to show that

AssR Hs(M) = (AssR Hs(M))s+t.

By a) we also have an injective homomorphism Hs(M) → KKM
. So

AssR Hs(M) ⊆ AssR KKM
= (AssR KM)s+t,

where the last equality comes from [53, Proposition 2.3 b)]. Since

(AssR KM)s+t = (AssR Hs(M))s+t

by Lemma 2.1.5 b), we get

AssR Hs(M) = (AssR Hs(M))s+t

as wanted.

Corollary 2.3.16. Let (R,m) be a local ring admitting a dualizing complex.
Let M ∈ Df

b (R) be an equidimensional complex. Set s = supM . If M satisfies
Serre’s condition (S2), then

HomD(R)(M,M) ∼= HomR(KM , KM)

and Hs(M) ∼= KKM
. Moreover, if KM is equidimensional and satisfies Serre’s

condition (S2), then KM
∼= KHs(M).
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Proof. Recall first that

HomD(R)(M,M) ∼= Ext0R(M,M).

The desired isomorphism

HomD(R)(M,M) ∼= HomR(KM , KM)

comes from Proposition 2.3.12 by taking N = M and Proposition 2.3.13
whereas Corollary 2.3.14 and Corollary 2.3.15 provide the isomorphism
Hs(M) → KKM

. Combining the latter with [52, Theorem 1.14 (ii)], shows
that KHs(M)

∼= KKKM

∼= KM .

We now turn to look at the dagger dual:

Proposition 2.3.17. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). The complex M † satisfies Serre’s condition (Sk) if and
only if supMp = infMp for every p ∈ SuppR M with depthRp

Mp+infMp < k.

Proof. Note that by formula (1.11) together with formula (1.14) we get

dimRp(M
†)p = − dimR/p+ supMp

and
depthRp

(M †)p = − dimR/p+ infMp.

We also have

inf(M †)p = dimR/p+ infM †p
p = dimR/p+ depthRp

Mp.

The claim then follows from Proposition 2.3.3.

In order to apply Proposition 2.3.12 in this case, we need

Lemma 2.3.18. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Then ExtiR(M
†,M †) ∼= Exti(M,M) for all i ∈ Z.

Proof. By “swap” and dagger duality

RHomR(M
†,M †) � RHomR(M,M ††) � RHomR(M,M).

The claim now follows by taking homology.

Let us then observe the following:

Proposition 2.3.19. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Then the following statements are equivalent:
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a) M † is equidimensional;

b) supM = supMp for any p ∈ SuppR M .

Proof. We know by Lemma 2.2.4 together with formula (1.14) that M † being
equidimensional is equivalent to

dimRp(M
†)p = − dimR/p+ supM

for every p ∈ SuppR M . On the other hand by using formula (1.11) we get

dimRp(M
†)p = − dimR/p+ dimRp(Mp)

†p

= − dimR/p+ supMp

where the last equality comes from formula (1.14). So a) and b) are equivalent.

We can now state

Corollary 2.3.20. Let (R,m) be a local ring admitting a dualizing complex.
Let k ∈ Z and let M ∈ Df

b (R). Set s = supM . If M † is equidimensional,
then the following conditions are equivalent:

a) M † satisfies condition (Sk);

b) The natural homomorphism Ext−i
R (M,M) → Ki+s

RHomR(Hs(M),M) is bijec-
tive for all i ≥ −k + 2, and injective for i = −k + 1.

Proof. Note that dimR M † = s by formula (1.14). By dagger duality we have
KM† = Hs(M). By adjointness and biduality we then get

(M † ⊗L
R KM†)† � RHomR(KM† ,M ††) � RHomR(Hs(M),M).

The claim is then a direct consequence of Lemma 2.3.18 and Proposition 2.3.12.

In a similar way, Corollary 2.3.14 yields

Corollary 2.3.21. Let (R,m) be a local ring admitting a dualizing complex,
k, l ∈ Z, and let M ∈ Df

b (R). Set s = supM . If M † is equidimensional, then
the following conditions are equivalent:

a) M † satisfies Serre’s condition (Sk,l);

b) The natural homomorphism Ki
M → Ki+s

Hs(M) is bijective for i ≥ l− k+2,
and injective for i = l − k + 1;
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c) The natural homomorphism Hi+s
m (Hs(M)) → Hi

m(M) is bijective for
i ≥ l − k + 2, and surjective for i = l − k + 1.

Corollary 2.3.15 and Corollary 2.3.16 have now the following analogues:

Corollary 2.3.22. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Suppose that M † is equidimensional. Set s = supM . If
M † satisfies Serre’s condition (S1), then

a) dimR Hs(M) = dimR KM = s+ t;

b) AssR KM = AsshR KM .

Corollary 2.3.23. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Suppose that M † is equidimensional. Set s = supM . If
M † satisfies Serre’s condition (S2), then

HomD(R)(M,M) ∼= HomR(Hs(M),Hs(M))

and KM
∼= KHs(M). Moreover, if Hs(M) is equidimensional and satisfies

Serre’s condition (S2), then Hs(M) ∼= KKM
.
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2.3.1 Cousin Functor

In this subsection we recall the notion of a Cousin complex, which was
introduced by Grothendieck (see [36]). Some of the results are not new, merely
restated in the language of commutative algebra from [36], [45] and [59].

Throughout this section SpecR is assumed to be equipped with the Zariski
topology.

Definition 2.3.24. Let R be a ring, and let F be a filtration of SpecR. A
complex M ∈ C(R) is said to be a Cousin complex with respect to F , if for
all i ∈ Z

M−i =
⊕
p∈δiF

M(p),

where every M(p) is an Rp-module such that all elements of M(p) are pRp-
torsion.

Notation 2.3.25. We denote by Coz(F , R) the full subcategory of C(R) of
Cousin complexes with respect to F . Observe that every Cousin complex is
bounded above.

Remark 2.3.26. Let i ∈ Z, and M,N ∈ Coz(F , R). It is easily checked
that HomR(M(p), N(q)) = 0 for every p ∈ δiF and q ∈ δi−1F . Therefore, if f
and g are two homotopic homomorphisms from M to N , then f = g. Hence
Coz(F , R) can be considered as a full subcategory of K(R).

Example 2.3.27. Let K is a finitely generated R-module and let t ∈ Z. Set
N =

∑−t HomR(K,DR). Then N ∈ Coz(Dt, R). Indeed, for any i ∈ Z,

N−i =
⊕

dimR/p=−i+t

HomR(K,ER(R/p)) =
⊕

p∈δiDt

HomR(K,ER(R/p)),

where each Rp-module HomR(K,ER(R/p)) is supported at pRp.

Let R be a ring. Let Z ⊆ SpecR. Recall that for any R-module N , the
section module with support in Z is defined by the formula

ΓZ(N) = {n ∈ N | SuppR 〈n〉 ⊆ Z} .

More generally, if Z ′ ⊂ Z, we set

ΓZ/Z′(N) = ΓZ(N)/ΓZ′(N).

In this way we obtain additive functors ΓZ(−) and ΓZ/Z′(−) on the category
of R-modules. We set

Hi
Z(−) = H−i(RΓZ(−)) and Hi

Z/Z′(−) = H−i(RΓZ/Z′(−))

for all i ∈ Z.
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Lemma 2.3.28. Let R be a ring, and let Z ⊆ SpecR. Then

Hi
Z(M) = lim−→

V(a)⊆Z

Hi
a(M),

where a ⊆ R denotes an ideal, for all i ∈ Z and M ∈ D−(R).

Proof. It is enough to observe that if N is an R-module, then

ΓZ(N) = lim−→
V(a)⊆Z

Γa(N).

Indeed, if n ∈ ΓZ(N), then V(Annn) = SuppR〈n〉 ⊂ Z so that

ΓZ(N) =
⋃

V(a)⊆Z

V(a).

Remark 2.3.29. Let R be a ring. Let Z ′ ⊆ Z ⊆ SpecR. Assume that every
element in Z\Z ′ is minimal in Z (with respect to inclusion). Let N be an
R-module. Consider the natural map

ΓZ(N) →
∏

p∈Z\Z′

Np.

If n ∈ ΓZ(N) with 0 �= n/1 ∈ Np for some p ∈ Z\Z ′, then p ∈ Min SuppR 〈n〉.
Therefore, the image of the above homomorphism is contained in

⊕
p∈Z\Z′

ΓpRp(Np).

Furthermore, if 0 = n/1 ∈ Np for all p ∈ Z\Z ′, then SuppR 〈n〉 ⊆ Z ′ so that
n ∈ ΓZ′(N). It thus follows that the kernel of the above homomorphism is
ΓZ′(N). There thus exists an injective natural homomorphism

ξN : ΓZ/Z′(N) →
⊕

p∈Z\Z′

Np.

Lemma 2.3.30. Let R be a ring. Let I be an injective R-module, and let
p ∈ SuppR I. Then

a) The natural map I → Ip is surjective;

b) The natural map Γp(I) → ΓpRp(Ip) is surjective.
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Proof. For any s ∈ R, let Is denote the localization of I with respect to the
multiplicatively closed subset S = {si | i ∈ N} of R. Because I is injective,
we know by [37, III Lemma 3.3] that the natural map I → Is is surjective.
This implies a). By [12, Proposition 2.1.4] the module Γp(I) is also injective.
Therefore we can apply a) to get b).

Lemma 2.3.31. Let R be a ring, and let Z ′ ⊆ Z ⊆ SpecR. Assume that
every element in Z\Z ′ is minimal in Z (with respect to inclusion). If I is an
injective module, then the natural homomorphism

ξI : ΓZ/Z′(I) →
⊕

p∈Z\Z′

ΓpRp(Ip) (2.7)

of Remark 2.3.29 is an isomorphism.

Proof. By Remark 2.3.29, it is enough to show that ξI is surjective. Let

y = (yp)p∈Z\Z′ ∈
⊕

p∈Z\Z′

ΓpRp(Ip),

and let p0 ∈ Z\Z ′. We look first at the special case where yp = 0 for all
p �= p0. It follows from Lemma 2.3.30 b) that yp0 = i/1 for some i ∈ Γp0(I).
We will show that ξI(i+ ΓZ′(I)) = y. To see this, we need to prove that if
0 �= i/1 ∈ Ip for some p ∈ Z\Z ′, then p = p0. Suppose thus that (0 :R i) ⊆ p.
Because i ∈ Γp0(I), we have p0 ⊆ p. The ideal p being minimal implies that
p = p0. Thus y = ξI(i+ ΓZ′(I)) as claimed. It is now easy to see that ξI is
surjective.

Using Lemma 2.3.31, we see that there is natural isomorphism

RΓξM : RΓZ/Z′(M) →
⊕

p∈Z\Z′

RΓpRp(Mp) (2.8)

for every M ∈ D−(R). In particular,

Hi
Z/Z′(M) ∼=

⊕
p∈Z\Z′

Hi
pRp

(Mp). (2.9)

for all i ∈ Z.
Let F be a filtration of SpecR, and let M ∈ D−(R). Suppose that I is

an injective resolution of M , which is bounded above. Then corresponding to
F , there exists the following filtration of the complex I:

(ΓFi
(I))i∈Z : . . . ⊇ ΓFi−1

(I) ⊇ ΓFi
(I) ⊇ ΓFi+1

(I) ⊇ . . . . (2.10)
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This determines a canonical spectral sequence (Er
i,j, d

r
i,j) with

E0
−i,−j = ΓFi

(I−i−j)/ΓFi+1
(I−i−j) = ΓFi/ΓFi+1

(I−i−j)

and
E1

−i,−j = H−i−j(E
0
−i,•) = Hi+j

Fi/Fi+1
(M).

It is well known that every boundary map

d1−i,−j : Hi+j
Fi/Fi+1

(M) → Hi+j+1
Fi+1/Fi+2

(M)

is a connecting homomorphism in the long exact sequence of homology
associated to the short exact sequence

0 → ΓFi+1/Fi+2
(I) → ΓFi/Fi+2

(I) → ΓFi/Fi+1
(I) → 0 (2.11)

(see [60, Lemma 8.24], for example). Moreover, if (ΓFi
(I))i∈Z is bounded, then

the above spectral sequence converges:

E2
i,j

i→ Hn(M) where n = i+ j. (2.12)

Remark 2.3.32. Let (R,m) be a local ring, and let F be a filtration of
SpecR. Set m ∈ δtF for some t ∈ Z. Since m is the minimal element of Ft,
then Ft+1 = ∅. Therefore F is bounded so that the above spectral sequence
converges.

The Cousin complex of M corresponding to the filtration F is now the
complex

. . . −→ Hi−1
Fi−1/Fi

(M)
d1−i+1,0−→ Hi

Fi/Fi+1
(M)

d1−i,0−→ Hi+1
Fi+1/Fi+2

(M)
d1−i−1,0−→ . . .

consisting of the E1
−i,0 terms of the above spectral sequence. It is denoted by

EF(M). Note that by formula (2.9) there is a natural isomorphism

EF(M)−i =
⊕
p∈δiF

Hi
pRp

(Mp) (2.13)

Also observe that
Hn (EF(M)) = E2

n,0.

Let η : M → N be a morphism in D−(R). Take bounded above injective
resolutions I and J for M and N , respectively. Then η can be represented as
morphism of complexes I → J , which is unique up to homotopy. Moreover,
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this morphism is a morphism of filtered complexes inducing a morphism be-
tween the corresponding spectral sequences. Therefore we obtain a morphism
of complexes

EF(η) : EF(M) → EF(M).

In fact,
EF(η) = (H−i(RΓFi/Fi+1

(η)))i∈Z.

In this way, we obtain a covariant functor EF(−) : D−(R) → Coz(F , R).

Remark 2.3.33. Let η : M → N be a morphism in D−(R). By using the
natural isomorphism (2.8) we see that EF(η) is isomorphism, if

Hi
pRp

(ηp) : Hi
pRp

(Mp) → Hi
pRp

(Np)

is isomorphism for all i ∈ Z.

Lemma 2.3.34. Let R be a ring and let F be a filtration of SpecR. If
M ∈ Coz(F , R) and i, j ∈ Z, then

a) ΓFi
(M−j) = M−j for i ≤ j and ΓFi

(M−j) = 0 for i > j;

b) Hn
Fi/Fi+1

(M−j) = 0 for all n > 0;

c) RΓFi/Fi+1
(M) ∼= ΓFi/Fi+1

(M);

d) EF(Q(M)) ∼= M .

Here Q(−) denotes the localization functor from K(R) to D(R).

Proof. a) Let i > j. Now if p ∈ δjF , then p /∈ Fi. Take α ∈ ΓFi
(M−j). Then

by definition of a Cousin complex α = (αp)p∈δjF , where every αp is pRp-torsion.

If we would have αp �= 0 for some p ∈ δjF , then p ∈ SuppR 〈αp〉 ⊆ SuppR 〈α〉
would imply p ∈ Fi, which is a contradiction. Therefore ΓFi

(M−j) = 0. In
the case i ≤ j, one has ΓFi

(M−j) = M−j, because SuppR(M−j) ⊆ Fj.

b) By formula (2.9) it is enough to show that Hn
pRp

((M−j)p) = 0 for all
p ∈ δiF . Let M−j = ⊕q∈δjFM(q). Assume that Hn

pRp
(M(q)p) �= 0 for some

n ≥ 0. We will show that p = q. Since now M(q)p �= 0, we have q ⊆ p. On the
other hand, Hn

p (M(q)) is an Rq-module so that Hn
p (M(q)) ∼= Hn

pRq
((M(q))q).

Therefore the module Hn
p(M(q)) being non-zero implies that p ⊆ q. Hence

p = q as claimed. Now, in the case p = q, Hn
qRq

(M(q)q) = 0 for all n > 0,
because the elements of M(q) are qRq-torsion, and we are done.

c) Because the Cousin complex is ΓFi/Fi+1
-acyclic by b), we can by [44,

Proposition 2.2.6] use it as a resolution of itself to compute RΓFi/Fi+1
.
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d) By c) we now have EF(M)−i = Hi(ΓFi/Fi+1
(M)) for all i ∈ Z. But by

a), we see that ΓFi/Fi+1
(M)) =

∑−i M−i so that EF(M)−i = M−i. To get the
boundary maps, we look at the commutative diagram

0 ΓFi+1/Fi+2
(M) ΓFi/Fi+2

(M) ΓFi/Fi+1
(M) 0

0
∑−i−1 M−i−1 X

∑−i M−i 0

of exact sequences, where every vertical map is an identity morphism. Here
X denotes the complex

. . . → 0 → M−i

dM−i→ M−i−1 → 0 → . . .

concentrated in degrees −i and −i − 1. From the long exact sequences of
homology associated to the above exact sequences we get the commutative
diagram

Hi
Fi/Fi+1

(M) Hi+1
Fi+1/Fi+2

(M)

M−i M−i−1.

IdId

d1−i,0 = d
EF (M)
−i

δ−i

It is straightforward to directly determine the connecting homomorphisms of
the bottom sequence to obtain δ−i = dM−i. This now implies the claim.

The following result has been proved by Lipman, Nayak and Sastry in [45,
Proposition 9.3.5]. Similar results have been obtained in the module case by
Dibaei and Tousi in [24, Theorem 1.4], and by Kawasaki in [41, Theorem 5.4].

Proposition 2.3.35. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Then

ED(M)(M) ∼=
∑− dimR M HomR(KM , DR).

Proof. Set N =
∑− dimR M HomR(KM , DR). Then N ∈ Coz(D(M), R) by

Example 2.3.27. Lemma 2.3.34 implies that ED(M)(N) ∼= N . To see that
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ED(M)(M) ∼= N , it is enough to show that the natural morphism hM : M → N
induces an isomorphism

ED(M)(M) ∼= ED(M)(N).

We will utilize Remark 2.3.33. Let i ∈ Z and suppose that p ∈ δiD(M).
Localizing the triangle (2.6) at p and applying the functor RΓpRp(−) yields
the exact triangle

RΓpRp((C
†
M)p) → RΓpRp(Mp)

RΓpRp ((hM )p)
→ RΓpRp(Np) →

∑1 RΓpRp(C
†
M)p).

Using formula (1.10), we get

− infRΓpRp((C
†
M)p) = dimRp(C

†
M)p

≤ dimR C†
M − dimR/p

= supCM − dimR/p

≤ dimR M − 1− dimR/p

= i− 1.

Here the first inequality comes from [18, Lemma 6.3.4]. The second equality
is by formula (1.14), while the last one is because p ∈ δiD(M). Since
infRΓpRp((C

†
M)p) ≤ −i + 1, it follows from the long exact sequence of

homology corresponding to the above triangle that

Hi
pRp

((hM)p) : Hi
pRp

(Mp) → Hi
pRp

(Np)

is an isomorphism, as desired.

2.3.2 Sharp’s Cousin complex

Let R be a ring, and let F = (Fi)i≥0 be a filtration SpecR. Suppose that
M is an R-module with SuppR M ⊆ F0. Sharp introduced a commutative
algebra analogue of the Cousin complex. Sharp’s Cousin complex is a complex

C(F ,M) : · · · → 0
d2→ M

d1→ M0
d0→ M−1

d−1→ . . . ,

where
M−i =

⊕
p∈δiF

(Coker d−i+2)p

for all i ≥ 0. For details of the construction of this complex, we refer to [54]
and [57]. Note, however, that to get a Cousin complex in the sense of
Definition 2.3.24 one has to look at the complex

C(F ,M)′ : . . . → 0 → 0 → M0
d0→ M−1

d−1→ . . . .
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More generally, a complex

X = (Xn)n≤2 : 0
d2→ M

d1→ X0
d0→ X−1

d−1→ . . .

is said to be of “Cousin type for M with respect to F”, if it satisfies the
following conditions for all n ∈ N:

a) SuppR X−n ⊆ Fn;

b) SuppR H−n+1(X) ⊆ Fn+1;

c) SuppR Coker d−n+2 ⊆ Fn;

d) The natural homomorphism X−n →
⊕
p∈δnF

(X−n)p is an isomorphism

(see [48]). In particular, it was shown in [58] that C(F ,M) is of Cousin type
for M with respect to F .

We want to compare Sharp’s Cousin complex C(F ,M) and the Cousin
complex EF(M). Let d : M → H0

F0/F1
(M) be the natural homomorphism.

We will first show that

EF(M)∗ : 0 → M
d→ EF(M)0

d0→ EF(M)−1
d−1→ EF(M)−2 . . . (2.14)

is a complex of Cousin type. The following result, proved by Riley, Sharp
and Zakeri in [48, Theorem 3.3], will then yield EF(M)∗ ∼= C (F ,M).

Theorem 2.3.36. Let F = (Fi)i≥0 be a filtration of SpecR, and let M be an
R-module with SuppR M ⊆ F0. Suppose that X and Y are two complexes of
Cousin type for M with respect to F . Then there exists a unique isomorphism
of complexes φ : X → Y with φ1 = IdM .

To proceed, we first need two auxiliary results.

Lemma 2.3.37. Let R be a ring, and let F = (Fi)i≥0 be a filtration of SpecR.
Suppose M is an R-module. Then the following statements hold:

a) If p ∈ δiF , then i ≥ height p;

b) Ht
pRp

(Mp) = 0 for any p ∈ δiF and for any t > i.

Proof. a) We will show that if q ⊂ p for p ∈ δiF and q ∈ δjF , then j < i.
Assume for the sake of contradiction that i ≤ j. Because now Fj ⊆ Fi, q ∈ Fi.
This is impossible, since p is a minimal element in Fi, and we are done.
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Suppose next that height p = n. Let p0 ⊂ p1 ⊂ . . . ⊂ pn−1 ⊂ pn = p be a
saturated chain of prime ideals with pj ∈ δtjF for any j. Then,

t0 < t1 < . . . < tn = i

which is an increasing chain of length n+ 1. Since t0 ≥ 0, it thus follows that
i ≥ n, as wanted.

b) Because p ∈ δiF , we have t ≥ dimRp by a). Hence t ≥ dimRp Mp so that
Ht

pRp
(Mp) = 0 by formula (1.10).

Proposition 2.3.38. Let R be a ring, and let F = (Fi)i≥0 be a filtration of
SpecR. If M is an R-module, then

SuppR H−n(EF(M)) ⊆ Fn+2.

Proof. Let p ∈ SpecR. Set F ′ = (F ′
n)n≥0, where

F ′
n = {qRp ∈ SpecRp | q ∈ Fn} .

Using formula (2.8) we get that

(RΓFn/Fn+1(M))p ∼= RΓF ′
n/F

′
n+1

(Mp).

Therefore EF(M)p ∼= EF ′(Mp). Hence p ∈ SuppR H−n(EF(M)) if and only if
pRp ∈ SuppRp

H−n(EF ′(Mp)). So it is enough to prove the claim for EF ′(Mp).
We may thus assume without loss of generality that R is local.

We will use decreasing induction on r to show that SuppR Er
−n,0 ⊆ Fn+2.

By Remark 2.3.32 the spectral sequence now converges to the homology of M .
Thus E∞

−n+i,−i can be considered as a factor module of a bounded filtration of
H−n(M). Since H−n(M) = 0, E∞

−n+i,−i = 0 for all i ∈ Z. Hence Er
−n+i,−i = 0

for large enough r (see [50, Theorem 10.14], for example). Therefore we may
assume that SuppR Er+1

−n,0 ⊆ Fn+2 for some r > 1, which forms the basis of
the induction. Note also that

E1
−n+r,−r+1 =

⊕
p∈δn−rF

Hn−1
pRp

(Mp) = 0

by formula (2.9) and Lemma 2.3.37 b). Hence Er
−n+r,−r+1 = 0. Consequently,

the complex

. . . → Er
−n+r,−r+1

dr−n+r,−r+1→ Er
−n,0

dr−n,0→ Er
−n−r,r−1

dr−n−r,r−1→ . . .

gives the exact sequence

0 → Er+1
−n,0 → Er

−n,0

dr−n,0→ Er
−n−r,r−1.
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Suppose next that height p = n. Let p0 ⊂ p1 ⊂ . . . ⊂ pn−1 ⊂ pn = p be a
saturated chain of prime ideals with pj ∈ δtjF for any j. Then,

t0 < t1 < . . . < tn = i

which is an increasing chain of length n+ 1. Since t0 ≥ 0, it thus follows that
i ≥ n, as wanted.

b) Because p ∈ δiF , we have t ≥ dimRp by a). Hence t ≥ dimRp Mp so that
Ht

pRp
(Mp) = 0 by formula (1.10).

Proposition 2.3.38. Let R be a ring, and let F = (Fi)i≥0 be a filtration of
SpecR. If M is an R-module, then

SuppR H−n(EF(M)) ⊆ Fn+2.

Proof. Let p ∈ SpecR. Set F ′ = (F ′
n)n≥0, where

F ′
n = {qRp ∈ SpecRp | q ∈ Fn} .

Using formula (2.8) we get that

(RΓFn/Fn+1(M))p ∼= RΓF ′
n/F

′
n+1

(Mp).

Therefore EF(M)p ∼= EF ′(Mp). Hence p ∈ SuppR H−n(EF(M)) if and only if
pRp ∈ SuppRp

H−n(EF ′(Mp)). So it is enough to prove the claim for EF ′(Mp).
We may thus assume without loss of generality that R is local.

We will use decreasing induction on r to show that SuppR Er
−n,0 ⊆ Fn+2.

By Remark 2.3.32 the spectral sequence now converges to the homology of M .
Thus E∞

−n+i,−i can be considered as a factor module of a bounded filtration of
H−n(M). Since H−n(M) = 0, E∞

−n+i,−i = 0 for all i ∈ Z. Hence Er
−n+i,−i = 0

for large enough r (see [50, Theorem 10.14], for example). Therefore we may
assume that SuppR Er+1

−n,0 ⊆ Fn+2 for some r > 1, which forms the basis of
the induction. Note also that

E1
−n+r,−r+1 =

⊕
p∈δn−rF

Hn−1
pRp

(Mp) = 0

by formula (2.9) and Lemma 2.3.37 b). Hence Er
−n+r,−r+1 = 0. Consequently,

the complex

. . . → Er
−n+r,−r+1

dr−n+r,−r+1→ Er
−n,0

dr−n,0→ Er
−n−r,r−1

dr−n−r,r−1→ . . .

gives the exact sequence

0 → Er+1
−n,0 → Er

−n,0

dr−n,0→ Er
−n−r,r−1.

48



54

Therefore using the induction assumption for r + 1, we obtain

SuppR Er
−n,0 ⊆ Fn+2 ∪ SuppR Er

−n−r,r−1.

It is then enough to check that SuppR Er
−n−r,r−1 ⊆ Fn+r. To see this, assume

that I is an injective resolution for M . Then

SuppR E1
−n−r,r−1 = SuppR Hn+1

Fn+r/Fn+r+1
(I)

⊆ SuppR ΓFn+r(I−n−1)

⊆ Fn+r,

which completes the proof.

We are now ready to show that

EF(M)∗ : 0 → M
d→ EF(M)0

d0→ EF(M)−1
d−1→ EF(M)−2 . . . (2.15)

is a complex with SuppR H1(EF(M)∗) ⊆ F1 and SuppR H0(EF(M)∗) ⊆ F2.
Suppose that I is an injective resolution of M , which is bounded above.

Consider the commutative diagram of complexes

0

ΓF2(I)

0 ΓF1(I) ΓF0(I) ΓF0/F1(I) 0

0 ΓF1/F2(I) ΓF0/F2(I) ΓF0/F1(I) 0.

0

j Id

Taking homology we get the commutative diagram of modules

0 ΓF1(M) M E1
0,0 H1

F1
(M) . . .

0 H0
F1/F2

(M) H0
F0/F2

(M) E1
0,0 E1

−1,0 . . . .

d γ

Id f

d0
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One clearly has d0d = 0. Moreover ker d ∼= ΓF1(M) so that

SuppR H1(EF(M)∗) ⊆ F1.

Let us then show that SuppR H0(EF(M)∗) ⊆ F2. Note that the natural map

H0 (EF(M)∗) → ker f

which sends e+ Im d to γ(e) for any e ∈ ker d0, makes sense. This is injective
so that SuppR H0(EF(M)∗) ⊆ SuppR ker f . On the other hand, because
f = H−1(j), we get SuppR ker f ⊆ F2. This shows that

SuppR H0(EF(M)∗) ⊆ F2,

as desired.
Hence, by Proposition 2.3.38 we now have SuppR H−n+1(EF(M)∗) ⊆ Fn+1

for all n ∈ N. We then look at the short exact sequences

0 → H−n+1(EF(M)∗) → Coker d−n+2 → Im d−n+1 → 0.

Since SuppR Im d−n+1 ⊆ Fn, then SuppR Coker d−n+2 ⊆ Fn for all n ∈ N.
In order to complete the proof that EF(M)∗ is a complex of Cousin type,

we still need to show that the natural homomorphism

EF(M)−n →
⊕
p∈δnF

(EF(M)−n)p

is an isomorphism for all n ∈ N. But by formula (2.13)

EF(M)−n =
⊕
p∈δnF

Hn
pRp

(Mp)

so that

(EF(M)−n)p =
⊕
q∈δnF

(Hn
qRq

(Mq))p

= (Hn
pRp

(Mp))p

= Hn
pRp

(Mp)

for all p ∈ δnF .
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2.3.3 Cousin Functor for Complexes
of Sheaves of Modules

Finally, we want briefly sketch the relationship between the Cousin functor
constructed in this work and the one defined in [36]. Let R be a ring, and let
(SpecR,OSpecR) be the associated affine scheme. One denotes by D(OSpecR)
the derived category of the category of OSpecR-modules.

Let Z ⊆ SpecR. Let G be a sheaf of OSpecR-modules. We denote by
ΓZ(G) the subsheaf of G whose sections over any open subset U ⊆ SpecR
consist of those sections of G(U) whose support lies in Z. This gives a functor
ΓZ(−). Moreover, given Z ′ ⊆ Z, by setting ΓZ/Z′(U) = ΓZ(U)/ΓZ(U) for any
open subset U ⊆ SpecR, we obtain a functor ΓZ/Z′(−). Finally, set

Hi
Z(−) = H−i(RΓZ(−)) and Hi

Z/Z′(−) = H−i(RΓZ/Z′(−))

for all i ∈ Z.
Note that for any sheaf G of OSpecR-modules,

ΓZ(G) = lim−→
F⊆Z

ΓF (G),

where F ⊆ Z is closed. In particular, if M is an R-module, we obtain

ΓZ(M̃) ∼= lim−→
V(a)⊆Z

ΓV(a)(M̃)

∼= lim−→
V(a)⊆Z

(Γa(M))˜

∼= ( lim−→
V(a)⊆Z

Γa(M))˜

∼= (ΓZ(M))˜ .

Here the second isomorphism follows from [34, Exposé II. Corollaire 4]. The
second last one holds true, since the functor (−)˜ is exact, and the last
one follows from Lemma 2.3.28. More generally, if M ∈ D−(R) and I is an

injective resolution of M , then by [36, II. Corollary 7.14] Ĩ is an injective

resolution of M̃ . It follows that

Hi
Z(M̃) = (Hi

Z(M))˜ (2.16)

for all i ∈ Z. Moreover, when Z ′ ⊂ Z, then also

Hi
Z/Z′(M̃) = (Hi

Z/Z′(M))˜ . (2.17)
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Suppose then that F is a filtration of SpecR. Recall that a quasi-coherent
complex M ∈ Db(OSpecR) is called a Cohen-Macaulay complex with respect
to F , if

Hi
Fn/Fn+1

(M) = 0

for every i �= n (see [45, p. 41]). However, taking into account our earlier
Definition 2.2.19 , we prefer to look at bounded Cohen-Macaulay complexes
with finitely generated cohomology, and denote by DF−CM(OSpecR) the cor-

responding full subcategory of Df
b (OSpecR).

Recall from [36, p. 241] that a complex N of OSpecR-modules is called
a Cousin complex with respect to F , if for every n ∈ Z there is a family
(M(p))p∈δnF , of Rp-modules such that the elements of M(p) are pRp-torsion,
and that

M−n
∼=

⊕
p∈δnF

ip,∗(M(p))

where ip : SpecRp → SpecR is the natural morphism. It is well known that
i∗,p(Mp) are quasi-coherent (see [33, Proposition 7.24], for example). Hence
any Cousin complex is a complex of quasi-coherent sheaves. The category of
Cousin complexes with respect to F is denoted by Coz(F ,OSpecR).

The notion of the Cousin functor in D−(OSpecR) is defined in a similar
way as it was done in D−(R), but now using the sheaf valued functors ΓZ(−).
For more details on this construction, one may consult [36, Chapter IV].

Remark 2.3.39. Let F be a filtration of SpecR. Suominen observed in [59,
Theorem 3.9] that the Cousin functor EF(−) together with the localization
functor Q(−) makes an equivalence of categories between the category of
Cousin complexes and that of Cohen-Macaulay complexes. This now restricts
to the equivalence

Cozfb (F ,OSpecR)
Q(−)

��
DF−CM(OSpecR)

EF (−)
�� .

Lemma 2.3.40. Let R be a ring, and let (SpecR,OSpecR) be the associated
affine scheme. Suppose that F is a filtration on SpecR. Then the following
statements hold:

a) If M ∈ D−(R), then EF(M̃) ∼= (EF(M))˜ . In particular, EF(M) ∼=
ΓSpecR(EF(M̃));

b) A complex M ∈ DF−CM(R)) if and only if M̃ ∈ DF−CM(OSpecR);

b’) A quasi-coherent complex M ∈ DF−CM(OSpecR) if and only if
ΓSpecR(M) ∈ DF−CM(R);
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c) A complex N ∈ Coz(F , R) if and only if Ñ ∈ Coz(F ,OSpecR);

c’) A complex N ∈ Coz(F ,OSpecR) if and only if ΓSpecR(N ) ∈ Coz(F , R).

Proof. a) Suppose that I is an injective resolution for M , which is bounded
above. Let (Er

i,j, d
r
i,j) denote the spectral sequence associated to the filtration

(ΓFi
(I))i∈Z : . . . ⊇ ΓFi−1

(I) ⊇ ΓFi
(I) ⊇ ΓFi+1

(I) ⊇ . . . .

of I. By [36, II. Corollary 7.14] Ĩ is an injective resolution of M̃ . Since

ΓFi
(Ĩ) = (ΓFi

)˜ for all i ∈ Z and the functor (−)˜ is exact, it follows that

(Ẽr
i,j, d̃

r
i,j) is now the spectral sequence associated to the filtration

(ΓFi
(Ĩ))i∈Z : . . . ⊇ ΓFi−1

(Ĩ) ⊇ ΓFi
(Ĩ) ⊇ ΓFi+1

(Ĩ) ⊇ . . . .

of Ĩ. Then also EF(M̃) ∼= (EF(M))˜ , and by [37, II. Proposition 5.1 (d)]

EF(M) ∼= ΓSpecR(EF(M̃)).

b) By formula (2.17) Hn
Fi/Fi+1

(M) = 0 if and only if Hn
Fi/Fi+1

(M̃) = 0 . The
claim now follows by formula (2.9) from the definition of a Cohen-Macaulay
complex.

b′) Note that by [37, II Corollary 5.5 ] the functor (−)˜ gives an equivalence
between the derived category of R-modules and the derived category of quasi-
coherent OSpecR-modules. Hence M � M̃ for some M ∈ Db(R). Moreover,
ΓSpecR(M) � M . The claim thus follows from b).

c) Let n ∈ Z. Suppose that (M(p))p∈δnF is a family of Rp-modules such

that the elements of M(p) are pRp-torsion. Now ((N(p))˜ ∼= ip,∗(N(p))
(see [33, Proposition 7.24], for example). On the other hand, we have
Γ(SpecR, ip,∗(N(p))) = N(p). So

N−n
∼=

⊕
p∈δnF

N(p)

if and only if

(N−n)
˜ ∼=

⊕
p∈δnF

ip,∗(N(p)).

c′) Noting that N is a quasi-coherent complex, the claim follows as in b’).
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Remark 2.3.41. Let F be a filtration of SpecR. We look at the diagram

Cozbf (F ,OSpecR)
Q(−)

��

ΓSpecR(−)

��

DF−CM(OSpecR)
EF (−)

��

ΓSpecR(−)

��

Cozbf (F , R)

(̃−)

��

Q(−)
��
DF−CM(R)

EF (−)
��

(̃−)

��

of categories and functors, where the upper arrows make the equivalence
mentioned in Remark 2.3.39. Because EF(Ñ) ∼= (EF(N))˜ by Lemma 2.3.40
a), the diagram is commutative. The vertical arrows are also equivalences
of categories by Lemma 2.3.40 b) and c). It therefore follows that the lower
arrows provide an equivalence of categories.

2.4 Conclusion

If M is a non-zero finitely generated module, it is known that M satisfying
Serre’s condition (Sn) is equivalent to Sharp’s Cousin complex C(H(M),M)
being exact at the spots 1, 0,−1, . . . , n − 2 (see [56, Theorem 2.2] and [58,
p. 516]). Inspired by this result, we state our next Theorem 2.4.1. It follows
immediately from Proposition 2.3.14 and Proposition 2.3.35.

Theorem 2.4.1. Let (R,m) be a local ring admitting a dualizing complex.
Let k ∈ Z and M,N ∈ Df

b (R). If M is equidimensional, then the following
conditions are equivalent:

a) M satisfies Serre’s condition (Sk,N);

b) The natural homomorphism Ext−i
R (N,M) → Ext−i

R (N,EH(M)(M)) is
bijective for all i > −k + 2, and injective for i = −k + 1.

In particular, this gives

Corollary 2.4.2. Let (R,m) be a local ring admitting a dualizing complex.
Let k, l ∈ Z. If M ∈ Df

b (R) is equidimensional, then the following conditions
are equivalent:

a) M satisfies Serre’s condition (Sk,l);

b) The morphism Hi(M) → Hi(EH(M)(M)) is bijective for for all i >
l − k + 2, and injective for i = l − k + 1.
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We record here also the next two consequences of Proposition 2.3.35.

Corollary 2.4.3. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Set s = supM . If M and KM are both equidimensional
and satisfy Serre’s condition (S2), then

EH(M)(M) ∼=
∑s EH(Hs(M))(Hs(M)).

Proof. Set t = dimR M . We know by Corollary 2.3.15 that dimR Hs(M) =
s + t. Moreover, since Hs(M) ∼= KKM

by Corollary 2.3.16, then Hs(M) is
equidimensional. Therefore by Proposition 2.3.35 we get

EH(Hs(M))(Hs(M)) ∼=
∑−s−t(KHs(M))

† ∼=
∑−s−t(KM)† ∼=

∑−s EH(M)(M)

where the second isomorphism comes from Corollary 2.3.16.

Corollary 2.4.4. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Set s = supM . Suppose that supR Mp = supM for any
p ∈ SuppR M . If M † satisfies Serre’s condition (S2), then

ED(M)(M) ∼=
∑s ED(Hs(M))(Hs(M)).

Proof. Set t = dimR M . Note thatM † is equidimensional by Proposition 2.2.4,
and dimR Hs(M) = s + t by Corollary 2.3.22. Since KHs(M)

∼= KM by
Corollary 2.3.23, Proposition 2.3.35 gives

ED(Hs(M))(Hs(M)) ∼=
∑−s−t(KHs(M))

† ∼=
∑−s−t(KM)† ∼=

∑−s ED(M)(M).
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Chapter 3

G-Gorenstein Complexes

3.1 Structure

In this chapter we will introduce the category of G-Gorenstein complexes in
Df

b (R) which strictly includes the category of Gorenstein complexes. Recall

from [36, p. 248] that a complex M ∈ Df
b (R) is called a Gorenstein complex

if it is Cohen-Macaulay and the local cohomology modules Hi
pRp

(Mp) are
injective Rp-modules for all i ∈ Z and p ∈ SpecR. Motivated by this, we now
give

Definition 3.1.1. Let R be a ring. A complex M ∈ Df
b (R) is called a

G-Gorenstein complex if it is a Cohen-Macaulay and the local cohomology
modules Hi

pRp
(Mp) are Gorenstein injective Rp-modules for all i ∈ Z and

p ∈ SpecR.

Taking into account that every Gorenstein complex is a G-Gorenstein
complex, the following question immediately comes out:

Question 3.1.2. Is there a G-Gorenstein complex that is not a Gorenstein
complex?

The above question will be answered by Proposition 3.2.3.

Remark 3.1.3. Suppose that R admits a dualizing complex. Then Hi
pRp

(Mp)
is Gorenstein injective as an Rp-module if and only if it is Gorenstein injective
as an R-module (use [1, Lemma 3.2] and [20, Proposition 5.5] ).

We could reformulate Definition 3.1.1 in the presence of a dualizing
complex as follows by using only maximal ideals:
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Proposition 3.1.4. Let R be a ring admitting a dualizing complex, and let
M ∈ Df

b (R). Then M is a G-Gorenstein complex if and only if M is Cohen-
Macaulay and the local cohomology modules Hi

m(M) are Gorenstein injective
Rm-modules for all m ∈ Max(R) and i ∈ Z.

Proof. Let m ∈ Max(R) and i ∈ Z. It is enough to show that if Hi
m(M) is

Gorenstein injective, then Hi
pRp

(Mp) is Gorenstein injective for all p ∈ SpecR
with p ⊆ m. Since R admits a dualizing complex, it follows from [20,
Proposition 5.5] that Hi

mRm
(Mm) ∼= (Hi

m(M))m is Gorenstein injective. We
may thus assume that R is local. We have Hi

m(M) ∼= HomR(K
i
M , ER(k)). The

module Hi
m(M) now being Gorenstein injective, this implies by [14, Theorem

6.4.2] that Ki
M is Gorenstein flat. By Lemma 2.1.4 a)

Ki
Mp

∼= (K
i+dimR/p
M )p.

So Ki
Mp

is Gorenstein flat. Using [14, Theorem 6.4.2] again shows that

Hi
pRp

(Mp) ∼= HomRp(K
i
Mp

, ERp(Rp/pRp)) is Gorenstein injective as wanted.

In analogy with Sharp’s result [55, Theorem 3.11 (vi)] on Gorenstein mod-
ules, we want to characterize G-Gorenstein complexes in terms of Gorenstein
injective dimension. First we need two lemmas.

Lemma 3.1.5. Let (R,m) be a local ring admitting a dualizing complex, and
let M ∈ Df

b (R). Then GidR M = GidR RΓm(M).

Proof. Since R admits a dualizing complex, we know by [20, Theorem 5.9 b)]
that GidR RΓm(M) and GidR M are simultaneously finite. So we can suppose
that both of them are finite. We will use [20, Theorem 6.8)] according to
which

GidR N = sup
{
depthRp − widthRp Np | p ∈ SpecR

}

for any N ∈ Db(R). Here widthRp Np = ∞ if p /∈ SuppR N . Noting that
SuppR RΓm(M) = {m}, it then follows that

GidR RΓm(M) = depthR− widthR RΓm(M).

Recall thatRΓm(M) � Cm(R)⊗L
RM , where Cm(R) denotes the Čech complex

on m (see [43, Proposition 3.1.2], for example). Note that widthR Cm(R) = 0,
because Cm(R)⊗R k � k (this small sentence is added instead of the reference
[A.6.5]). Therefore, widthR RΓm(M) = widthR M . Furthermore, we have
widthR M = infM , since M ∈ Df

b (R). On the other hand, by [20, Theorem
6.3)] GidR M = depthR−infM . We can thus conclude that GidR RΓm(M) =
GidR M , as wanted.
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Lemma 3.1.6. Let (R,m) be a local ring admitting a dualizing complex.
If M ∈ Df

b (R) has finite Gorenstein injective dimension, then GidR M ≥
dimR M .

Proof. One has GidR M = GpdR M † by [20, Corollary 6.4]. Obviously we
have GpdR M † ≥ supM †. So the claim results from formula (1.14).

We are now ready to prove

Proposition 3.1.7. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Then the following statements are equivalent:

a) M is a G-Gorenstein complex;

b) dimR M = depthR M = GidR M ;

c) The Gorenstein injective dimension of M is finite and

depthR M = depthR− infM.

Proof. a) ⇔ b) : Set dimR M = t. In any case, M is Cohen-Macaulay. So
RΓm(M) �

∑−t Ht
m(M) by Proposition 2.2.6. By Lemma 3.1.5 we then have

GidR M = GidR

∑−t Ht
m(M) = t+GidR Ht

m(M).

This shows that Ht
m(M) is Gorenstein injective if and only if GidR M = t, as

needed.

b) ⇔ c) : Because GidR M is finite, we know from [20, Theorem 6.3] that
GidR M = depthR − infM . Since dimR M ≥ depthR M , it follows from
Lemma 3.1.6 that depthR M = depthR − infM if and only if dimR M =
depthR M = GidR M .

Proposition 3.1.8. Let (R,m) be a local ring admitting a dualizing complex,
and let M be a G-Gorenstein complex. Then

W0(M) = AssR ∩ SuppR M.

Proof. Let p ∈ SuppR M . Since Mp is G-Gorenstein, we now have

dimRp Mp = depthRp − infMp

by Proposition 3.1.7. Thus p ∈ AssR if and only if dimRp Mp = − infMp.
But M being Cohen-Macaulay, we know by [17, Theorem 2.3 (d)] that this is
further equivalent to dimR/p− infMp = dimR M .
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∑−t Ht
m(M) by Proposition 2.2.6. By Lemma 3.1.5 we then have

GidR M = GidR
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m(M) = t+GidR Ht
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This shows that Ht
m(M) is Gorenstein injective if and only if GidR M = t, as
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b) ⇔ c) : Because GidR M is finite, we know from [20, Theorem 6.3] that
GidR M = depthR − infM . Since dimR M ≥ depthR M , it follows from
Lemma 3.1.6 that depthR M = depthR − infM if and only if dimR M =
depthR M = GidR M .

Proposition 3.1.8. Let (R,m) be a local ring admitting a dualizing complex,
and let M be a G-Gorenstein complex. Then

W0(M) = AssR ∩ SuppR M.

Proof. Let p ∈ SuppR M . Since Mp is G-Gorenstein, we now have

dimRp Mp = depthRp − infMp

by Proposition 3.1.7. Thus p ∈ AssR if and only if dimRp Mp = − infMp.
But M being Cohen-Macaulay, we know by [17, Theorem 2.3 (d)] that this is
further equivalent to dimR/p− infMp = dimR M .
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3.1.1 Flat Base Change and the Dualizing Property

We first investigate the stability of G-Gorenstein complexes under flat base
change.

Proposition 3.1.9. Let f : (R,m) → (S, n) be a flat local homomorphism of
local rings. Suppose that R admits a dualizing complex, and that the fiber S/
mS is Gorenstein. Let M ∈ Df

b (R). Then M is G-Gorenstein as a complex of
R-modules if and only if M ⊗L

R S is G-Gorenstein as a complex of S-modules.

Proof. By [7, p. 60], we have

dimS M ⊗L
R S = dimR M + dimS/mS, (†)

and
depthS M ⊗L

R S = depthR M + depthS/mS.

The above equalities together with the Cohen-Macaulayness of S/mS now
imply that M ⊗L

R S is Cohen-Macaulay if and only if M is Cohen-Macaulay.
Note also that the existence of a dualizing complex was not yet needed.

Suppose that D is a dualizing complex for R. Since S/mS is Gorenstein,
f is a Gorenstein homomorphism by [6, Proposition 4.2]. It therefore follows
from [6, Theorem 5.1] that D ⊗L

R S is a dualizing complex for S.
We will use Proposition 3.1.7 b). We know by [20, Theorem 5.3] that

GidR M and GidS M ⊗L
R S are simultaneously finite. Moreover, infM ⊗L

R S =
infM , because S is a faithfully flat R-module. Thus [20, Theorem 6.3] implies
that

GidS M ⊗L
R S = depthS − infM ⊗L

R S

= depthR + depthS/mS − infM

= GidR M + dimS/mS.

We now get by (†) together with the above equality that GidS M ⊗L
R S =

dimS M⊗L
RS if and only if GidR M = dimR M . This completes the proof.

Let R be a ring. Recall that for any x ∈ R, the Koszul complex of x,
denoted by K(x), is the complex 0 → R

x→ R → 0 concentrated in degrees
1 and 0. For any sequence x = x1, . . . xn in R, the Koszul complex K(x) is
defined as the complex K(x) = K(x1) ⊗R K(x2) ⊗R . . . ⊗R K(xn). Finally,
for any M ∈ D(R), we set K(x,M) = K(x)⊗R M .

Corollary 3.1.10. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Assume further that x = x1, . . . xn is an R-regular
sequence. Then M is G-Gorenstein as a complex of R-modules if and only if
the Koszul complex K(x,M) is G-Gorenstein as a complex of R/xR-modules.
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Proof. Because x is an R-regular sequence, the natural homomorphism R →
R/xR is flat. Moreover, by [46, Theorem 16.5] K(x) � R/xR so that
K(x,M) � R/xR⊗RM . Now the result is a consequence of Proposition 3.1.9.

It is natural to ask when a G-Gorenstein complex can be considered as a
semi-dualizing complex.

Proposition 3.1.11. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R) be a G-Gorenstein complex. Then the following statements
are equivalent:

a) M is a semi-dualizing complex;

b) M is a dualizing complex;

c) KM
∼= R;

d) KM is a semi-dualizing module.

Proof. a) ⇒ b) : Because M has finite Gorenstein injective dimension by
Proposition 3.1.7, we know by [15, Proposition 8.4] thatM must be a dualizing
complex.

b) ⇒ c) : By the uniqueness of the dualizing complex, we have M �
∑−t DR

for some integer t. Then M † �
∑t R. Hence dimR M = t by formula (1.14)

so that
KM

∼= Ht(
∑t R) ∼= R.

c) ⇒ d) : This is clear.

d) ⇒ a) : By Corollary 2.2.8 KM �
∑−dimR M M †. Using “swap” we then

obtain

RHomR(KM , KM) � RHomR(M
†,M †)

� RHomR(M,M ††)

� RHomR(M,M),

which implies the claim.
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3.1.2 A Formula for the Depth

Let (R,m) be a local ring admitting a dualizing complex and let M ∈ Df
b (R)

be a G-Gorenstein complex. We know by Proposition 3.1.11 that the biduality
morphism L −→ RHomR(RHomR(L,M),M) cannot be an isomorphism for
L ∈ Df

b (R) unless M is dualizing. As the main result of the current subsection
we will show in Theorem 3.1.13 below that the G-Gorenstein complexes can
be characterized as those complexes M ∈ Df

b (R) of finite Gorenstein injective
dimension for which the equality

depthR L = depthR RHomR(RHomR(L,M),M)

holds for all complexes L of finite injective or finite projective dimension.
We will use the following lemma in the proof of Theorem 3.1.13.

Lemma 3.1.12. Let (R,m) be a local ring admitting a dualizing complex. If
a complex M ∈ Df

b (R) has finite Gorenstein injective dimension, then

widthR RHomR(L,M) = depthR L−GidR M

for all complexes L ∈ Db(R) of finite projective or injective dimension.

Proof. If L has finite injective dimension, then [21, Theorem 6.3 (iii)] and [20,
Theorem 6.3] immediately yield

widthR RHomR(L,M) = depthR L+ widthR M − depthR

= depthR L−GidR M.

In the case L has finite projective dimension, we know by [21, Theorem
4.7(ii)] that GidR RHomR(L,M) has finite Gorenstein injective dimension.
So another application of [21, Theorem 6.3 (iii)] gives

widthR RHomR(DR,RHomR(L,M)) = widthR RHomR(L,M)− depthR,

since depthR DR = 0. On the other hand, by [21, Theorem 6.2 (ii)]

widthR RHomR(L,RHomR(DR,M))

= depthR L+ widthR RHomR(DR,M)− depthR

= depthR L−GidR M − depthR,

where the second inequality is by the already established case (take L = DR).
Since

RHomR(DR,RHomR(L,M)) � RHomR(L,RHomR(DR,M))

by “swap”, we get widthR RHomR(L,M) = depthR L−GidR M , as wanted.
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Theorem 3.1.13. Let (R,m) be a local ring admitting a dualizing complex
and let M ∈ Df

b (R) be a complex of finite Gorenstein injective dimension.
Then the following statements are equivalent:

a) M is G-Gorenstein;

b) If L ∈ Db(R) has finite projective or injective dimension, then

depthR RHomR(RHomR(L,M),M) = depthR L;

c) There exists a complex L ∈ Db(R) of finite projective or injective
dimension such that L �� 0 and

depthR RHomR(RHomR(L,M),M) ≥ depthL.

Proof. In order to see the equivalence of a) and b) note that

depthR RHomR(RHomR(L,M),M) = widthR RHomR(L,M) + depthR M

= depthR L−GidR M + depthR M.

The first equality comes from [30, Proposition 4.6] while the second one
follows from Lemma 3.1.12. Hence the equation

depthR RHomR(RHomR(L,M),M) = depthR L

is equivalent to depthR M = GidR M . Noting that GidR M = depthR −
infM by [20, Theorem 6.3], the equivalence of a) and b) is then clear by
Proposition 3.1.7.

As discussed above, the claim stated in c) is equivalent to GidR M ≤
depthR M . Hence using Proposition 3.1.6 we now have

dimR M ≤ GidR ≤ depthR M.

This implies that dimR M = depthR M = GidR M , and the claim results from
Proposition 3.1.7.

For the proof of coming Corollary 3.1.15, we need the following well-known
lemma, which we prove here for the convenience of the reader.

Lemma 3.1.14. Let (R,m) be a local ring admitting a dualizing complex. If
M ∈ Df

b (R) then

RHomR(ER(k),M) � RHomR(DR,M)⊗R R̂.
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Proof. By local duality, adjointness, and tensor evaluation, we get

RHomR(ER(k),M) � RHomR(RΓm(DR),M)

� RHomR(DR,RHomR(RΓm(R),M))

� RHomR(DR,M ⊗R R̂)

� RHomR(DR,M)⊗R R̂.

Corollary 3.1.15. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R) be a complex of finite Gorenstein injective dimension.
Then the following statements are equivalent:

a) M is G-Gorenstein;

b) depthR RHomR(M,M) = depthR;

c) depthR RHomR(RHomR(DR,M),M) = 0;

d) depthR RHomR(RHomR(ER(k),M),M) ≥ 0;

Proof. Using Theorem 3.1.13 we can take L = R or L = DR to see that a),
b) and c) are equivalent. In order to prove that a) and d) are equivalent set
X = RHomR(RHomR(ER(k),M),M). Then

X � RHomR(R̂,RHomRRHomR(DR,M),M)

by Lemma 3.1.14 and adjointness. Using the above isomorphism it now
follows from [30, Proposition 4.6] that

depthR X = widthR R̂ + depthR RHomRRHomR(DR,M),M)

= depthR RHomR(RHomR(DR,M),M).

Hence the claim results from c) together with Theorem 3.1.13 c).

3.1.2.1 Some Comments

The following result is known for Gorenstein modules and Gorenstein com-
plexes (see [55, Theorem 3.11] and [49, Theorem 3.3]):

Theorem 3.1.16. Let (R,m) be a local ring, and let M ∈ Df
b (R). Then the

following statements are equivalent:

a) M is a Gorenstein complex;
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b) ExtiR(k,M) = 0 for i �= t and some t ∈ Z;

c) If L �= 0 is a finitely generated R-module, then ExtiR(Ext
j
R(L,M),M) =

0 for i < j.

One can show that c) is further equivalent to

d) ExtiR(Ext
j(k,M),M) = 0 if i < j

(see the proof of [55, Theorem 3.11]).
In this subsection we will discuss the counterpart of the above result

for G-Gorenstein complexes. We also present an example showing that the
counterpart of b) does not hold for G-Gorenstein complexes.

Remark 3.1.17. We know by [18, Lemma 5.2.10] that

supRHomR(N,N ′) = sup {supRHomR(Hn(N), N ′)− n | n ∈ Z}

for any complexes N ∈ Df
+(R) and N ′ ∈ D−(R). Let M ∈ Df

b (R) be a
complex of finite injective dimension. Set

X = RHomR(RHomR(k,M),M).

It follows from the above formula that

supX = sup
{
supRHomR(Ext

j
R(k,M),M) + j | j ∈ Z

}
.

It is then straightforward to see that condition d) is equivalent to supX ≤ 0.
On the other hand, supX = − depthR X by [16, 13, 1.4.1]. Indeed, condition
d) means that

depthR RHomR(RHomR(k,M),M) ≥ 0.

We thus see that Corollary 3.1.15 d) is the counterpart of condition d) in the
case that M is of finite injective dimension.

Recall that the grade of a complex M ∈ D(R) is defined by the formula

gradeR M = − supRHomR(M,R).

Definition 3.1.18. (see e.g. [32, p. 5]) A complex M ∈ Df
b (R) is said to be

G-perfect if gradeR M = GpdR M .

Proposition 3.1.19. Let (R,m) be a local ring admitting a dualizing complex.
Let t ∈ Z. If M ∈ Df

b (R) has finite Gorenstein injective dimension, then the
following statements are equivalent:
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a) ExtiR(ER(k),M) = 0 for every integer i �= t;

b) M † is G-perfect.

Proof. It follows from Lemma 3.1.14 that

ampR RHomR(ER(k),M) = ampR RHomR(DR,M).

On the other hand,

GidR M = − infRHomR(DR,M)

≥ − supRHomR(DR,M)

= − supRHomR(M
†, R)

= gradeR M †.

Here the first equality comes from [20, Corollary 6.7], and the second one
is by biduality and “swap”. Thus ampR RHomR(ER(k),M) = 0 if and only
if GidR M = gradR M †. Noting that GidR M = GpdR M † by [20, Corollary
6.4], it now follows that the two statements a) and b) are equivalent.

In order to see that the counterpart of Theorem 3.1.16 b) does not hold
for G-Gorenstein complexes, it is enough to provide an example of a complex
M ∈ Df

b (R) which is not G-Gorenstein, but the complex M † is G-perfect.

Example 3.1.20. Let (R,m) be a local ring admitting a dualizing complex.
Let x ∈ R be a regular element, and set M = (R/xR)†. One may use the
complex 0 → R

x→ R → 0 as a projective resolution of R/xR to get

RHomR(M
†, R) � RHomR(R/xR,R) �

∑−1 R/xR.

By [14, Corollary 2.3.8] we then obtain that

GpdR M † = − infRHomR(M
†, R) = 1.

Also
gradeR M † = − supRHomR(M

†, R) = 1

It thus follows that M † is G-perfect. Therefore ampR RHomR(ER(k),M) = 0
by Lemma 3.1.19. In order to prove that M is not G-Gorenstein, observe
that depthR M = infM † = 0 by formula (1.14) and GidR M = GpdR M † = 1
by [20, Corollary 6.4]. Then Proposition 3.1.7 implies the claim.
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3.2 Equivalences of Categories

In this section we will show that that the category of G-Gorenstein complexes
of fixed dimension is equivalent to the G-class of modules. This equivalence
follows by restriction either from the equivalence of Yekutieli and Zhang
considered in Corollary 2.2.8 or the Foxby equivalence. In particular, we can
characterize the rings whose class of G-Gorenstein complexes strictly includes
the class of Gorenstein complexes.

Notation 3.2.1. Let R be a ring. Let t ∈ Z. We denote by Dt−GGor(R) the
full subcategory of Df

b (R) of G-Gorenstein complexes of dimension t.

We are now ready to prove our main results. What follows also holds
true after replacing G-Gorenstein complexes and the G-class by Gorenstein
complexes and the class of finitely generated free modules, respectively.

Theorem 3.2.2. Let (R,m) be a local ring admitting a dualizing complex.
For any t ∈ Z, the equivalence of Corollary 2.2.8 induces an equivalence of
categories

Dt−GGor(R)
K−

��
G(R)opp.∑−t(−)†

��

Furthermore, the following statements are equivalent for a complex M ∈
Df

b (R):

a) M ∈ Dt−GGor(R);

b) M � (
∑t KM)† and KM ∈ G(R);

c) M � (
∑t K)† for some K ∈ G(R).

Proof. The equivalence of a), b) and c) is clear as soon as we have established
the claimed equivalence of categories. To do the latter, we need to show that
the restriction of the equivalence of Corollary 2.2.8 makes sense.

Suppose therefore that M ∈ Dt−GGor(R). Of course M ∈ Dt−CM(R).
Now Ht

m(M) = HomR(KM , ER(k)). Since Ht
m(M) is Gorenstein injective,

an application of [14, Theorem 6.4.2] shows that KM is Gorenstein flat. So
KM ∈ G(R).

Conversely, take K ∈ G(R) and set M =
∑−t K†. Then M ∈ Dt−CM (R).

By local duality Ht
m(M) = HomR(K,ER(k)), so that Ht

m(M) is Gorenstein
injective by [14, Theorem 6.4.2]. Hence M ∈ Dt−GGor(R) by Corollary 3.1.4
as wanted.
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We can now answer Question 3.1.2 in the following Proposition 3.2.3. It
is an immediate consequence of Theorem 3.2.2.

Proposition 3.2.3. Let (R,m) be a local ring admitting a dualizing complex.
Then the class of all G-Gorenstein complexes strictly includes the class of all
Gorenstein complexes if and only if the G-class of modules strictly includes
the class of finitely generated free modules.

Let us then consider the Foxby equivalence.

Theorem 3.2.4. Let (R,m) be a local ring admitting a dualizing complex.
For any t ∈ Z, Foxby equivalence induces an equivalence of categories

Dt−GGor

H−t(RHomR(DR,−))
��
G(R).∑−t DR ⊗L

R −
��

Furthermore, the following statements are equivalent for a complex M ∈
Df

b (R):

a) M ∈ Dt−GGor(R);

b) M �
∑−t DR ⊗L

R N for some N ∈ G(R);

c) RHomR(DR,M) �
∑−t N for some N ∈ G(R).

Proof. Let us first check that the restiction of the Foxby equivalence makes
sense. Take M ∈ Dt−GGor(R). Since M by Proposition 3.1.7 is of finite
Gorenstein injective dimension, we know that M ∈ Bf (R). By Theorem 3.2.2
b) we have M �

∑−t K†
M , where KM ∈ G(R). By [29, Lemma 2.7] and [14,

Proposition 2.2.2] we get

RHomR(
∑−t DR,M) � RHomR(DR, K

†
M) (†)

� RHomR(KM , R)

� HomR(KM , R).

This shows that H−t(RHomR(DR,M)) ∈ G(R), as desired.
Conversely, let N ∈ G(R). Set M =

∑−t DR ⊗L
R N . By [29, Lemma 2.7]

and [14, Proposition 2.2.2]

M † �
∑t(DR ⊗L

R N)† �
∑t RHomR(N,R) �

∑t HomR(N,R) (‡).

By formula (1.14) dimR M = t. Since HomR(N,R) ∈ G(R), we have M ∈
Dt−GGor(R) by Theorem 3.2.2 b).
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The equivalence of a) and b) is now immediate. It is also clear that b)
implies c). To see the converse, recall from [14, Theorem 3.3.2 (b)] that
RHomR(

∑−t DR,M) ∈ A(R) implies M ∈ B(R). By Foxby equivalence one
then has

M �
∑−t DR ⊗L

R RHomR(
∑−t DR,M).

The equivalences of Theorem 3.2.2 and Theorem 3.2.4 are compatible
in the sense that the following diagram is commutative up to a canonical
isomorphisms. In fact, this compatibility can also be seen as a special case
of [29, Lemma 2.7]. We reprove it here for the convenience of the reader.

Proposition 3.2.5. Let (R,m) be a local ring admitting a dualizing complex.
Then the equivalences of Theorem 3.2.2 and Theorem 3.2.4 give raise to the
following diagram, which is commutative up to canonical isomorphisms:

Dt−GGor

K−
��

��

G(R)opp∑−t(−)†
��

HomR(−,R)

��

Dt−GGor

Id

��

H−t RHomR(DR,−)
��
G(R)∑−t DR ⊗L

R −
��

��

Proof. The proof is straightforward. Taking the homology of (†) in the proof
of Theorem 3.2.4 yields

H−t RHomR(DR,M) � HomR(KM , R)

for M ∈ Dt−GGor(R), implying that the inner diagram commutes. Commuta-
tivity of the outer diagram can be deduced from (‡) by applying the dagger
duality. Indeed, this gives

∑t(DR ⊗L
R N)† �

∑t HomR(N,R)

for any N ∈ G(R), as needed.

Inspired by [49, Theorem 3.3 (2)] we prove the following result.

Proposition 3.2.6. Let (R,m) be a local ring admitting a dualizing complex.
If M ∈ Df

b (R) has finite Gorenstein injective dimension, then the following
statements are equivalent:

a) M is G-Gorenstein of dimension t;
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b) There exists a Gorenstein injective module I and natural isomorphisms

RHomR(L,M) �
∑−t HomR(L, I)

for all bounded complexes L with SuppR L = {m} consisting of either
injective modules or projective modules.

Proof. a) ⇒ b) : Set I = Ht
m(M). We then know that I is Gorenstein injective

and RΓm(M) �
∑−t I. Now [43, Proposition 3.2.2] and [20, Corollary 2.12]

yield

RHomR(L,M) � RHomR(L,RΓm(M)) �
∑−t HomR(L, I).

b) ⇒ a) : We want to use Theorem 3.2.4 c). Therefore we need to show that
RHomR(DR,M) �

∑−t N for some N ∈ G(R). We now have

RHomR(DR,M)⊗R R̂ � RHomR(ER(k),M)

by Lemma 3.1.14. By assumption

RHomR(ER(k),M) �
∑−t HomR(ER(k), I).

It follows that RHomR(DR,M) �
∑−t N for some finitely generated R-

module N . Now HomR(ER(k), I) is Gorenstein flat by [21, Corollary 3.7 (c)].
So N ⊗R R̂ is Gorenstein flat as an R-module. By [21, Lemma 2.6 (a)] it
is then Gorenstein flat also as an R̂-module. Therefore N ∈ G(R) by [5,
Theorem 8.7 (5)].

3.2.1 Application to Modules

By Proposition 3.1.7 we immediately recover [1, Theorem 3.8].

Corollary 3.2.7. Let (R,m) be a local ring admitting a dualizing complex.
If R is Cohen-Macaulay, then a finitely generated R-module is G-Gorenstein
if and only if it is a maximal Cohen-Macaulay module of finite Gorenstein
injective dimension.

We also observe the following:

Corollary 3.2.8. Let (R,m) be a local ring admitting a dualizing complex.
If R admits a G-Gorenstein module with dimR M = dimR, then R is Cohen-
Macaulay.
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Proposition 3.2.9. Let (R,m) be a local ring admitting a dualizing complex.
If R satisfies Serre’s condition (S2) and M ∈ Df

b (R) is a G-Gorenstein
complex, then dimR M = dimR − supM . It follows that ampM = cmdR.
In particular, if R is Cohen-Macaulay, then any G-Gorenstein complex is
isomorphic to a module up to a suspension.

Proof. Recall first that Serre’s condition (S2) for R implies that AssR =
AsshR (see e.g. [2, Lemma 1.1]). This together with Proposition 3.1.8 shows
that dimR/p = dimR for any p ∈ SuppR M with dimR/p − infMp =
dimR M . Because SuppR M = SuppR KM by Proposition 2.2.13 a), we get
dimR KM = dimR. Thereby the desired formula dimR M = dimR− supM
follows from Proposition 2.2.14 a). Since dimR M = depthR − infM by
Proposition 3.1.7, this shows that ampM = cmdR. The last statement is
now obvious.

This gives immediately the following

Corollary 3.2.10. Let (R,m) be a local ring admitting a dualizing complex
and satisfying Serre’s condition (S2). If R admits a G-Gorenstein module,
then R is Cohen-Macaulay.

Notation 3.2.11. If R is a ring, we denote by GGor(R) the category of all
G-Gorenstein modules.

Corollary 3.2.12. Let (R,m) be a Cohen-Macaulay local ring admitting a
canonical module KR. Then there exists a diagram

GGor(R)
K−

��

��

G(R)opp
K−

��

HomR(−,R)

��

GGor(R)

Id

��

HomR(KR,−)
��
G(R)

KR⊗R−
��

��

of equivalences of categories, where the horizontal arrows are quasi-inverses of
each other. The diagram is commutative up to canonical isomorphisms. Fur-
thermore, if M is a finitely generated R-module, then the following statements
are equivalent:

1) M is a G-Gorenstein module;

2) M is an equidimensional module satisfying Serre’s condition (S2) and
KM ∈ G(R);
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3) M ∼= KR ⊗R N for some N ∈ G(R);

4) HomR(KR,M) ∈ G(R).

Proof. Set d = dimR. This is the diagram mentioned in Proposition 3.2.5 in
the case t = d. Indeed, DR �

∑d KR by the Cohen-Macaulayness of R. If
N ∈ G(R), then by the Auslander-Bridger formula (see [14, Theorem 1.4.8])
N is a Cohen-Macaulay module of dimension d. So

∑−d N † � KN . Moreover,
using [20, Corollary 2.12], we now observe that

RHomR(DR,M) � HomR(DR,M) �
∑−d HomR(KR,M)

whereas by [20, Corollary 2.16]

∑−d DR ⊗L
R N �

∑−d DR ⊗R N � KR ⊗R N

for all N ∈ G(R).
To see the equivalence of a) and b), we can use the diagram. Indeed,

if M is G-Gorenstein, then M ∼= KKM
, where KM ∈ G(R). Note that the

module KKM
is equidimensional and satisfies (S2) by [52, Lemma 1.9, c)

and e)]. Conversely, if M is an equidimensional module satisfying (S2), then
M ∼= KKM

by [52, Proposition 1.1.4]. The equivalence of a), c) and d) follows
directly from Theorem 3.2.4.

Proposition 3.2.13. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). If M is a G-Gorenstein complex, then Hs(M)p is G-
Gorenstein as an Rp-module for all p ∈ AssR Hs(M), where s = supM .

Proof. Suppose p ∈ AssR Hs(M). Then depthRp
Mp = − supMp, because

AssR Hs(M) ⊆ AssR M by [16, 2.4.1]. Also dimRp Mp = − infMp, because
AssR M ⊆ AncR M by [17, Theorem 2.3 (d)]. Noting that supMp = s, it
follows from Proposition 2.2.2 b) that infMp = supMp = s. This implies
that

Mp �
∑s Hs(M)p.

Therefore, using the fact that G-Gorenstein complexes are preserved by both
suspensions and localization, we see that Hs(M)p is G-Gorenstein as an
Rp-module.
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3.2.2 Connection to Cousin Complexes

Notation 3.2.14. Let R be a ring, and let t ∈ Z. Consider the filtration
Dt. We look at the associated Cousin complexes, whose terms are Gorenstein
injective, and whose homology is bounded and finitely generated. We denote
by GIcz(Dt, R) the corresponding full subcategory of the category Cozfb (Dt, R).

In this section we will show that the equivalence of Suominen, considered
in Remark 2.3.41, restricts to an equivalence between the category GIcz(Dt, R)
and the category Dt−Ggor(R).

Theorem 3.2.15. Let (R,m) be a local ring admitting a dualizing complex.
For any t ∈ Z, the equivalence of Remark 2.3.41 induces an equivalence of
categories

GIcz(Dt, R)
Q(−)

��
Dt−GGor(R).

EDt (−)
��

In particular, the following statements are equivalent for a complex M ∈
Df

b (R):

a) M ∈ DdimM−Ggor(R);

b) M � ED(M)(M), and ED(M)(M) ∈ GIcz(D(M), R).

Proof. We recall first that by [20, Theorem 6.9] and [39, Theorem 2.6] the class
of Gorenstein injective R-modules is closed under direct sums and summands.

Let us then begin by checking that the restriction of the equivalence of Re-
mark 2.3.41 makes sense. Take N ∈ GIcz(Dt, R). Then Q(N) ∈ DDt−CM (R),
and Q(N) is Cohen-Macaulay of dimension t by Proposition 2.2.20. Therefore,
it remains to show that the Rp-modules Hi

pRp
(Q(N)p) are Gorenstein injective

for all i ∈ Z and p ∈ SpecR. By the Cohen-Macaulayness, we may assume
that i = dimRp Np. Note that i = t − dimR/p by Lemma 2.2.3. Because
N ∼= EDt(Q(N)) by Lemma 2.3.34, formula (2.13) implies that

N−i
∼=

⊕
i=t−dimR/p

Hi
pRp

(Q(N)p).

Since N−i is Gorenstein injective, it follows that each Hi
pRp

(Q(N)p) is Goren-
stein injective as an R-module. Since R admits a dualizing complex, it follows
from Remark 3.1.3 that they are Gorenstein injective also as Rp-modules.

Conversely, let M ∈ Dt−GGor(R). The modules Hi
pRp

(Mp) are then Goren-
stein injective for every p ∈ SpecR and all i ∈ Z. So is then also

(EDt(M))−i
∼=

⊕
i=t−dimR/p

Hi
pRp

(Mp)
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Thus M ∈ GIcz(Dt, R). The equivalence of a), b) immediately follows from
the established equivalence of categories.

Remark 3.2.16. Recall that a complex M ∈ C(R) is called a minimal
complex, in the sense of [8, Proposition 1.7], if every homomorphism f : M →
M homotopic to IdM is an isomorphism. Also note that by [8, Example 1.8]
this agrees for ‘injective resolutions’ with the classical notion. It is clear by
Remark 2.3.26 that any Cousin complex is minimal. Let (R,m) be a local
ring admitting a dualizing complex. It then follows from Theorem 3.2.15
that if M ∈ Df

b (R) is a G-Gorenstein complex, then ED(M)(M) is a minimal
complex with Gorenstein injective terms.

The following Proposition generalizes a result of Dibaei (see [23, Theorem
3.3]) to the case of complexes.

Proposition 3.2.17. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Set t = dimR M and s = supM . Suppose that M is
equidimensional and that SuppR Hs(M) = Spec(R). Assume that R satisfies
Serre’s condition (S2), and that one of the following conditions holds:

i) M and KM satisfy Serre’s condition (S2);

ii) M † and Hs(M) satisfy Serre’s condition (S2).

Then

a) Both KM and Hs(M) are equidimensional;

b) Hs(M) ∼= KKM
and KM

∼= KHs(M).

Moreover, if one of the conditions i) or ii) holds, then the following statements
are equivalent:

c) ED(M)(M) ∈ GIcz(DdimM , R);

d) Hs(M) ∼= HomR(F,KR) for some F ∈ G(R).

Proof. a) Note first that R is equidimensional by [35, Remark 2.4.1]. This
implies that Hs(M) is equidimensional. We then have, in each situation i) or
ii), that Hs(M) ∼= KKM

by Corollary 2.3.16 and Corollary 2.3.23, respectively.
Therefore SuppR KM = SuppR Hs(M), so that KM is equidimensional.

b) This follows from part a), Corollary 2.3.16, and Corollary 2.3.23.

c) ⇒ d) : Proposition 2.3.35 combined with [14, Theorem 6.4.2] implies that
ED(M)(M) ∈ GIcz(DdimM , R) if and only if KM ∈ G(R). Because Hs(M) ∼=
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KKM
by b), we have dimR KM = dimR. Hence Hs(M) ∼= HomR(KM , KR),

which proves the claim.

d) ⇒ c) : Note that Hs(M) ∼= KF , since dimR F = dimR. Using [14, Theorem
6.4.2], it is enough to show that KM ∈ G(R). Now

KM
∼= KHs(M)

∼= KKF

by b).
We will first show that F is equidimensional and satisfies Serre’s condition

(S2). Because SuppR F = SuppR Hs(M), SuppR F = SpecR so that F is
equidimensional. Take p ∈ SpecR. By the Auslander-Bridger formula
(see [14, Theorem 1.4.8]), we have

depthRp
Fp = depthRp

Rp ≥ min
{
2, dimRp Rp

}
= min

{
2, dimRp Fp

}
.

So we have proved the above claim.
Since now KKF

= F by [52, Theorem 1.14], KM = F ∈ G(R), and we are
done.

Corollary 3.2.18. Let (R,m) be a local ring admitting a dualizing complex,
and let M be a finitely generated module. Suppose that R and M satisfy
Serre’s condition (S2). If (0 :R M) = 0, then the following conditions are
equivalent:

a) ED(M)(M) ∈ GIcz(DdimM , R);

b) M ∼= HomR(F,KR) for some F ∈ G(R).

Proof. Since R is equidimensional by [35, Remark 2.4.1], the assumption
(0 :R M) = 0 implies that M is equidimensional. The claim is then an
immediate consequence of Proposition 3.2.17.

3.2.3 G-Gorenstein Complexes as Gorenstein objects

Let C be a class of objects in an abelian category A. Consider an exact
complex

X : · · · → Xi+1
di+1→ Xi

di→ Xi−1
di−1→ · · ·

in A, where Xi ∈ C for all i ∈ Z. Recall that X is called C-totally acyclic
if it is both HomA(C,−)-exact and HomA(−, C)-exact, i.e., the complexes
HomA(C,X) and HomA(X,C) are exact in the category of abelian groups
for any objects C in C. A C-Gorenstein object is an object in A appearing as
a kernel in a C-totally acyclic complex. In this section we want to show that
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in a certain sense G-Gorenstein complexes can be considered as Gorenstein
objects in the nonabelian category D(R).

We first need a suitable notion of exactness in a triangulated category.
Our definition is a special case of the one Beligiannis gives in [10, Definition
4.7] (see also [3] ). In the definition ∆ refers to the class of all exact triangles
in a triangulated category D (see [10, Example 2.3]). We will always denote
the suspension functor by

∑
.

Definition 3.2.19. Let D be a triangulated category. A ∆-exact complex in
D is a diagram

X : · · · → Xi+1
di+1→ Xi

di→ Xi−1
di−1→ · · ·

of objects and morphisms in D such that there exists for all i ∈ Z an exact
triangle

Mi
fi→ Xi

gi→ Mi−1 →
∑

Mi

where di = fi−1gi.

Remark 3.2.20. By [3, Proposition 2.4 (a)], one has di−1di = 0 for all i ∈ Z.
Thus a diagram X as above is indeed a complex.

The next two definitions are inspired by [3, Definition 3.2 and Definition
3.3].

Definition 3.2.21. Let D be a triangulated category. Let C be a class of
objects in D. We say that an exact triangle N → M → L →

∑
N in D is

HomD(C,−)-exact if the induced sequence of abelian groups

0 → HomD(C,N) → HomD(C,M) → HomD(C,L) → 0

is exact for all C in C. The notion of a HomD(−, C)-exact triangle is defined
analogously.

Definition 3.2.22. Let D be a triangulated category. Let C be a class of
objects in D.Consider a ∆-exact complex

X : · · · → Xi+1
di+1→ Xi

di→ Xi−1
di−1→ · · ·

in D, where Xi ∈ C for all i ∈ Z. We say that X is totally C-acyclic if all the
associated exact triangles

Mi
fi→ Xi

gi→ Mi−1 →
∑

Mi

are both HomD(C,−)-exact and HomD(−, C)-exact.
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Remark 3.2.23. If X is a ∆-exact complex in D whose associated triangles
are HomD(C,−)-exact (resp. HomD(−, C)-exact), then by pasting together
the corresponding exact sequences of abelian groups, we see that the complex
HomD(C,X) (resp. HomD(X,C)) is exact for all C ∈ C.

Let R be a ring. Let t ∈ Z. We aim next to investigate the relationship
between the notion of ∆-exactness in Df

b (R) and the usual exactness in the
abelian category Dt−CM(R) of Cohen-Macaulay complexes of dimension t.
For this we need some basic facts about t-structures.

Recall therefore from [9, Définition 1.3.1] that if D is a triangulated
category, then a t-structure on D is a pair (C≥0, C≤0) of full subcategories of
D satisfying the conditions:

1)
∑

C≥0 ⊂ C≥0 and
∑−1 C≤0 ⊂ C≤0;

2) If M ∈ C≥0 and N ∈
∑−1 C≤0 then HomD(M,N) = 0;

3) If M ∈ D, then there exists an exact triangle N → M → L →
∑

N
with N ∈ C≥0 and L ∈

∑−1 C≤0.

Set C≥n =
∑n C≥0 and C≤n =

∑n C≤0 for all n ∈ Z. Then the heart of the
above t-structure is H =: C≥0 ∩ C≤0. The heart is an abelian category. For
the proof of this and the following fact, we refer to [9, Théorème 1.3.6].

Fact 3.2.24. A sequence

0 → X
f→ Y

g

→ Z→ 0

in H is exact if and only if there exists a morphism h such that

X
f→ Y

g→ Z
h→
∑

X

is an exact triangle in D.

Lemma 3.2.25. Let (R,m) be a local ring admitting a dualizing complex.
For any t ∈ Z, there is a t-structure on Df

b (R) whose heart is Dt−CM(R).

Proof. Let (D≥t, D≤t) be the so called standard t-structure on Df
b (R), where

D≥t =
{
X ∈ Df

b (R) | Hi(X) = 0 for i < t
}

and
D≤t =

{
X ∈ Df

b (R) | Hi(X) = 0 for i > t
}
.
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By the dagger duality this gives raise to a t-structure (D′
≥0, D

′
≤0), where

D′
≥t =

{
X ∈ Df

b (R) | X† ∈ D≥t

}

and
D′

≤t =
{
X ∈ Df

b (R) | X† ∈ D≤t

}
.

Corollary 2.2.8 c) now implies that the heart of this t-structure is D′
≥t∩D′

≤t =
Dt−CM(R).

Proposition 3.2.26. Let (R,m) be a local ring admitting a dualizing complex.
Let t ∈ Z, and set D =

∑−t DR. Consider a diagram

X : · · · → Xi+1
di+1→ Xi

di→ Xi−1
di−1→ · · ·

of objects and morphisms in Dt−CM(R). Then X is an exact complex in the
abelian category Dt−CM(R) if and only if it is a ∆-exact complex in Df

b (R)
with HomD(R)(−, D)-exact associated triangles. Moreover, the associated
triangles are

Mi
fi→ Xi

gi→ Mi−1 →
∑

Mi

where di = fi−1gi and Mi denotes the kernel of di in Dt−CM(R) for every
i ∈ Z.

Proof. Suppose first that X is exact in Dt−CM (R). Let Mi denote the kernel
of di in Dt−CM(R) for every i ∈ Z. By Fact 3.2.24 we get exact triangles

Mi
fi→ Xi

gi→ Mi−1 →
∑

Mi,

where di = fi−1gi. So X is ∆-exact. Let us look at the long exact sequence
of homology associated to the functor HomD(R)(−, D) = (Ht(−)†). Since
Mi ∈ Dt−CM(R), we have Kn

Mi
= 0 for all n �= t. We thus obtain the exact

sequences
0 → KMi−1

→ KXi
→ KMi

→ 0

showing that the triangles are indeed HomD(R)(−, D)-exact.

Conversely, letX be ∆-exact complex inDf
b (R) with HomD(R)(−, D)-exact

associated exact triangles

Mi
fi→ Xi

gi→ Mi−1 →
∑

Mi.

We will first show that every Mi ∈ Dt−CM(R). Since Kn
Xi

= 0 for n �= t, the
long exact sequence of homology associated to the functor HomD(R)(−, D)
gives for any n �= t an isomorphism Kn

Mi

∼= Kn−1
Mi−1

and an exact sequence
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0 → Kt+1
Mi

→ Kt
Mi−1

→ KXi
→ Kt

Mi
→ Kt−1

Mi−1
→ 0.

Our triangle now being HomD(R)(−, D)-exact, we must have Kt+1
Mi

= Kt−1
Mi−1

=
0. But then an easy induction shows that Kn

Mi
= 0 for all n �= t. Thus

Mi ∈ Dt−CM(R). Fact 3.2.24 then shows that the sequences

0 → Mi
fi→ Xi

gi→ Mi−1 → 0

are exact in Dt−CM(R). Finally, we observe that now Ker di = Ker gi and
Im di+1 = Im fi implying that X is an exact complex in Dt−CM(R).

We can now prove the promised main result of this section.

Theorem 3.2.27. Let (R,m) be a local ring admitting a dualizing complex,
and let M ∈ Df

b (R). Let t ∈ Z, and set D =
∑−t DR. Then M is a G-

Gorenstein complex of dimension t if and only if there exists a D-totally
acyclic complex

· · · → D⊕ni+1 di+1→ D⊕ni di→ D⊕ni−1 di−1→ · · ·

in Df
b (R) such that M � Mi where Mi belongs to some associated exact

triangle

Mi
fi→ D⊕ni gi→ Mi−1 →

∑1 Mi.

Proof. By Theorem 3.2.2 we know that M ∈ Dt−GGor(R) if and only if
M ∈ Dt−CM(R) and KM ∈ G(R). The latter means that KM appears as a
cokernel in a totally acyclic complex of finitely generated free R-modules. In
the equivalence of categories of Corollary 2.2.8

Dt−CM(R)
K−

��
(R−mod)opp∑−t(−)†

��

this complex corresponds to a D-totally acyclic complex

· · · → D⊕ni+1 di+1→ D⊕ni di→ D⊕ni−1 di−1→ · · · (*)

in Dt−CM(R). It follows that M ∈ Dt−GGor(R) if and only M is isomorphic
to a kernel in this complex.

In light of Proposition 3.2.26 and Remark 3.2.23 it remains to show that if
(∗) is D-totally acyclic complex in Dt−CM (R), then the corresponding ∆-exact

78



84

complex in Df
b (R) has HomD(R)(D,−)-exact associated triangles. Consider

thus the triangles

Mi
fi→ D⊕ni

gi→ Mi−1 →
∑

Mi,

where di = fi−1gi and Mi is the kernel of di in Dt−CM(R) for all i ∈ Z. Because
KMi

∈ G(R), the complex Mi is G-Gorenstein. By Theorem 3.2.4 c) we then
have Hi(RHomR(D,Mi)) = 0 for all i �= 0. The long exact sequence of
homology associated to the functor HomD(R)(D,−) = H0(RHomR(D,−))
therefore yields the exact sequences

0 → HomD(R)(D,Mi) → HomD(R)(D,D⊕ni ) → HomD(R)(D,Mi−1) → 0

as needed.

The following result is an immediate consequence of Theorem 3.2.27.

Corollary 3.2.28. Let (R,m) be a Cohen-Macaulay local ring admitting a
canonical module KR. Let M be an R-module. Then M is a G-Gorenstein
module if and only if M is a kernel in a totally KR-acyclic complex

· · · → K
⊕ni+1

R

di+1→ K
⊕ni
R

di→ K
⊕ni−1

R → · · ·

of R-modules.
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