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ABSTRACT 
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RODRIGUEZ ALVARADO, JOSE ROBERTO: Distributed Simulation in 
Manufacturing using High Level Architecture. 
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Manufacturing is a critical industry for all major economies. Every individual and 

industry depends on manufactured goods, which makes manufacturing crucial 

to the national economies. Competition is increasingly hard and globalization is 

leading to worldwide distribution of production, products and services, affecting 

all countries and economical regions. At the same time, markets are changing. 

Customers call for faster product changes and demand products, which are 

increasingly targeted to individual needs. Mass production is therefore replaced 

by customised and personalised production of individual products. 

Distributed simulation has the potential to become widely applicable for 

geographically-dispersed manufacturing environments, as is the case with 

desktop manufacturing or rapidly deployable micro-assembly stations. This 

thesis focuses on creating a generic framework that permits the distribution of 

manufacturing simulations, which was one of the goals of the MS2Value 

(Modeling and Simulation of Manufacturing Systems for Value Chains) project. 

Companies, nowadays, normally have their activities and resources 

geographically dispersed, which represents a challenge for the reusability and 

interconnection of their manufacturing simulation models. Different approaches 

have been taken by different communities like the research and military 

community, but no solution has been presented yet in the manufacturing field. 

The thesis work presented here proposes the use of the HLA (High Level 

Architecture) in combination with a simulation software as a solution to these 

problems. This proposal is demonstrated by an implementation of a distributed 

simulation using 3DCreate and an open source RTI (Runtime Infrastructure). 
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1. INTRODUCTION 

Manufacturing is a critical industry for all major economies. Every individual and 

industry depends on manufactured goods, which makes manufacturing crucial 

to the national economies. Competition is increasingly hard and globalization is 

leading to worldwide distribution of production, products and services, affecting 

all countries and economical regions. At the same time, markets are changing, 

customers call for faster product changes and demand products which are 

increasingly targeted to individual needs. Mass production is therefore replaced 

by customized and personalized production of individual products. 

Manufacturing companies are now living the time where fast prototyping is the 

rule and products should be assembled fast and accurately. Moreover, the life 

cycle of products is decreasing constantly on the market and costs have to be 

cut everywhere. One way to keep up with all those changes has been shrinking 

of the value chain with the main objective of producing high quality and fast 

deployable customized products.  

Constructing a prototype may be costly, infeasible, and/or dangerous [Fujimoto 

2003]. Using 3-D models, designers can study and refine assembly sequences 

for ease of execution, and identify problems that otherwise might not be 

detected until significant resources were already committed to production. [IMTI 

2003] 

MS2Value project 

The project MS2Value - Modeling and Simulation of Manufacturing Systems for 

Value Networks aims at developing methodologies and tools for the concurrent 

development of manufacturing operations and value networks. The main goal of 

the project was to develop a generic modeling and simulation framework that 

would enable the modeling and analysis of manufacturing operations in value 

networks. The framework includes tools for optimization and analysis on 

different levels of abstraction, as well as filtering of information from one tier to 

the next, going from machine level to supply chain.  

The modeling and simulation infrastructure was developed/enhanced to support 

distributed modeling and analysis. Through the automatic linking of several 

models, the end-user can execute “what-if” scenarios of local manufacturing 

models and see the changes on a global scale. The modeling infrastructure also 
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supports model validation to test the compatibility and usability of the created 

models. Case studies with industrial partners provided valuable feedback on the 

creation of the models, testing them with real-life scenarios and benchmarking 

them against best-practices from leading Finnish manufacturing companies. 

The research done during this thesis work focused on interconnecting different 

3D manufacturing models into a single distributed simulation. The theoretical 

part of the thesis offers background information about simulation and distributed 

simulation architectures. Furthermore, it proposes a method to distribute a 

manufacturing simulation. The practical part of this research analyses a set of 

software tools for implementing distributed simulation as well as describes the 

implementation done. 

Industrial trends affecting the simulation industry are presented in Chapter 2, as 

well as the problem presentation and the scope of this thesis work. Chapter 3 

contains the theoretical background, the foundation for all this research. The 

design of the infrastructure needed for a distributed simulation is discussed in 

Chapter 4, while the practical implementation is explained in detail in Chapter 5. 

Finally, the conclusions and results are presented in the Chapter 6. 
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2. TRENDS AND PROBLEM PRESENTATION 

The present chapter introduces the forces behind the work performed under the 

scope of this thesis.  It introduces some of the actual challenges that simulation 

faces on the industry and manufacturing as a driver of change. 

2.1. Industrial Trends Affecting the Simulation Industry 

Modeling and simulation is the key to optimizing the total product and system 

design before production; for optimizing the design for speed, quality, and 

affordability in production; and for optimizing the production processes so that 

they are in place and ready to execute upon production go-ahead. Maturation of 

the enabling technologies will enable system developers to slash months and 

years of development time and reduce costs by 50% or better from current 

design/build/test/fix practices. [IMTI 2003] 

Designing a product in the past has been a continuous iteration between 

prototyping and test-evaluate-modify those prototypes. With the implementation 

of M&S (Modeling and Simulation), the time spent on those iterations could be 

decreased, reducing the overall cost of development of product. 

Figure 1 shows the relative cost of the development of a product through time. 

As shown in the figure below, the major amount of expenses are going directly 

to testing, evaluating and modify a product. 

 

Figure 1 Iterative Prototyping consumes billion of dollars and years of 

development for complex products. M&S can drastically reduce those costs 

[IMTI 2000]. 
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Simulation, as just mentioned, has proved once and again its abilities as a tool 

of change, but still its real power hasn’t been yet fully exploited. Simulation is 

often used as a side development in projects or a requisite to fulfill a set of 

requirements and its results are not taken as a serious approach or are 

commonly misunderstood. In order to avoid the situations mentioned above and 

take advantage of simulation a list of goals was set by the industry. 

In March 2000, the AFRL (Air Force Research Laboratory) convened a (TBRP) 

Technology Blue Ribbon Panel to address issues and challenges related to 

M&S for manufacturing in the defense community. The TBRP effort conducted 

an extensive research of published studies and conference and workshop 

proceedings to identify manufacturing M&S technology voids and barriers to 

implementation. In addition, the team conducted several one-day visits to 

various prime contractors, government organizations, and software vendors to 

identify and validate technology voids and gain insight into each company’s 

needs and current information technology modernization plans. At a high level, 

the TBRP identified five technology voids it considered critical [IMTI 2003]: 

• Physical representation 

• New and improved tools 

• Database integration 

• Ease of use 

• Training. 

Based on these gaps, the IMTI established a plan to fill the holes known as the 

Modeling and Simulation for Affordable Manufacturing Roadmap. 

This roadmap defines more than 75 top-level goals and 250 supporting 

requirements for research, development, and implementation of M&S 

technologies and capabilities. Subsequent processing by the workshop 

participants distilled these needs into four focused, high-level goals [IMTI 2003]: 

• Automated Model Generation – Develop techniques to enable automated 

generation and management of models at various levels of abstraction 

for multiple domains. 

• Automated Model-Based Process Planning – Provide the capability to 

automatically generate manufacturing process plans based on product, 

process, and enterprise models, with integrated tools to evaluate 

producibility of features, resources, and repeatability. 
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• Interoperable Unit Process Models – Develop a shared base of robust, 

validated models for all materials and manufacturing processes to enable 

fast, accurate modeling simulation of any combination of processing 

steps. 

• Scalable Life-Cycle Models – Provide the capability to create and apply 

scalable product life-cycle models in every phase of the life cycle and 

across all tiers of the supply chain. 

In addition to those goals introduced by the IMTI, Fowler [Fowler, 2003] 

mentions four grand challenges that should be accomplished by simulations:  

• Grandest Challenge #1 – An Order-of-Magnitude Reduction in Problem-

Solving Cycles. 

• Emerging Grand Challenge #2 – Development of Real-Time Simulation-

Based Problem-Solving Capability. 

• Emerging Grand Challenge #3 – True Plug-and-Play Interoperability of 

Simulations and Supporting Software within a Specific Application 

Domain. 

• Big Challenge #4 – Greater Acceptance of Modeling and Simulation 

within Industry. 

This set of challenges should be accomplished by the companies developing 

simulation software and designers to position the simulation software as an 

improvement approach in the near future. 

Fowler [2003] calls the greater acceptance of Modeling and Simulation within 

the industry as the simulations grandest challenge. As he mentions, this 

challenge is more a social one and might be the most difficult. 

While the use of modeling and simulation in manufacturing is steadily gaining 

acceptance for certain applications, there is a still a long way to go before it is 

commonly applied for a multitude of other applications. Currently, modelers 

often spend much of their time convincing management of the need for these 

services. [Fowler 2003]  

Simulation software companies are committed, by following those goals, to 

make the use of simulation the rule and not the exception in the industry. 

Today, simulations are used for the engineering of logistics, machines and 

kinematics – and partly for process. Future engineers will need multi-scale 

simulation, with high-performance computing and the ability to adapt to real or 

forecast system behavior. New basic models of processes and simulation 
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techniques should be developed, extended by automated planning and 

programming and, possibly, by provision for cognition and learning features – 

as well as the integration into unified models of diverse simulation aspects such 

as mechanics, control and process physics. [Manufuture 2006] 

2.2. Simulation in the Defence Industry 

The Defence Industry has been really interested since first developments on the 

field of simulation, because it foresaw the potential use of simulation. Much of 

the work in distributed simulation for virtual environments began in the 1980s. A 

key factor driving the development and adoption of distributed simulations for 

synthetic environments has been the need for the military to develop more 

effective and economical means of training personnel prior to deployment. Field 

exercises are extremely costly. [Fujimoto 2003] 

Moving troops and vehicles for war exercises is quite expensive and might 

involve extra risks, like accidents resulting in loss of human lives, which 

simulations can avoid. These situations would make the simulation of battles a 

perfect tool for avoiding any risk and unnecessary cost. In addition, simulation 

software offers the possibility of engage armies in battles and scenarios that 

might be impossible to be executed in real life, offering commanders multiple 

forecasts depending on the actual situations. Figure 2 shows an U.S. Army 

soldier training on combat simulation. 

 

Figure 2 By training with simulations soldiers are better prepared for the real 

battlefield. [U.S. Army 2007] 
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An example of those trainings it is described by Macedonia (Macedonia 2002): 

“Weeks before U.S. pilots took to the skies above Afghanistan last October, 

they had a pretty good idea what they would see there. Already they had logged 

many hours doing virtual fly-throughs over the rugged mountain terrain, using a 

mission rehearsal system known as Topscene (Tactical Operational Scene). 

Built for the U.S. Department of Defense by Anteon Corp., Fairfax, Va., 

Topscene combines aerial photos, satellite images, and intelligence data to 

create high-resolution three-dimensional databases of a region.” 

Seated at computer consoles running on Silicon Graphics Onyx processors, 

pilots could visualize flying from ground level up to 12 000 meters, at speeds up 

to 2250 km/h. The detailed renderings, showing roads, buildings, and even 

vehicles, helped them plot the best approach, scout for landmarks, and identify 

designated targets. [Macedonia 2002] 

Early work in distributed simulation for virtual environments for the military 

began with the SIMNET (SIMulator NETWorking) project that extended from 

1983 to 1989. The success of the SIMNET experiment has had far-reaching 

effects throughout the defense modeling and simulation community in the 

United States. SIMNET was replaced by what came to be known as DIS 

(Distributed Interactive Simulation). A second major development springing from 

SIMNET was the ASLP (Aggregate Level Simulation Protocol) work that applied 

the SIMNET concept of interoperability to war game simulation. [Fujimoto 2003] 

The next major milestone in the evolution of this technology was the 

development of the HLA (High Level Architecture). HLA was mandated in 

September 1996 as the standard architecture for all modeling and simulation 

activities in the Department of Defense in the United States [Fujimoto 2003]. 

HLA was welcomed by the open community in 2000 under the standard 1516. 

After this several commercial and free RTIs have been developed. Many 

countries have followed the development of HLA and supported different 

projects. This is the case of the Department of the Defence of Australia that in 

May 2007 started supporting the Portico Project. [Portico 2007] 

Detailed information about DIS and HLA will be introduced to the reader in the 

following chapter. 

2.3. Simulation in Game Industry 

A second main thread of activities in DVEs (Distributed Virtual Environments) 

for nonmilitary applications grew from the interactive gaming and Internet 

communities [Fujimoto 2003]. Modern games can submerge players into a high 

detailed 3D graphics world, for example simulating a real-time cockpit.  
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Figure 3 Microsoft’s Flight Simulator X immerses players into realistic airplanes’ 

cockpits [Microsoft 2010]. 

An example of this is shown in Figure 3 where the player gets immerse in the 

pilot seat of a commercial airliner. In flight simulators games users can choose 

between different airplanes to use, take off or land from different airports, 

different visualizations of the surroundings of the airplane, offering the user a 

realistic experience of being the pilot of their favorite airplane. 

First-person games are similar to DVE where the player sees the simulated 

world as if she were immersed in the game. Many of those first-person games 

are shooting games, where the player faces a direct combat experience against 

bots controlled by the game or other human players.  Examples of those games 

are Quake 3, Counter Strike and Unreal Tournament. These games place 

sessions of tens of players per server to increase the responsiveness of game. 

The main purpose of those games is that players play against each other or 

align as teammates and fight against opponent teams. 

Even though it is difficult to compare these simulations to other approaches, 

first-person approach can be used to teach people how to react to different 

situations. An example of this could be a first-person simulator used to teach 

people to drive a car. 
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Figure 4 shows a snapshot of the game Counter Strike, where several factors 

can be observed:  Number of weapons, health indicator, radar, bullets available, 

etc. These factors, in addition to the reality scenery and sounds, which immerse 

the players into the virtual world, have increased the popularity of these games 

amongst young players. 

 

Figure 4 First-person shooter games have gathered a high number of players 

Another kind of game simulations is the third-person games. In this kind of 

games the player looks the environment from an outside point of view. These 

games can help to train players for commanding decisions in economics, 

construction or battle simulations. As example of these games: The Sims and 

Age of Empires. 

Games use, mostly, a client-server architecture approach. This kind of 

architecture will be explained in the next chapter. 

2.4. Simulation in Manufacturing 

Nowadays manufacturing enterprises are intensively using simulation in the 

different areas of application. Areas like factory design, PLC (Programmable 

Logic Controller) validation and simulation of robotic work cells where simulation 

has been used thoroughly. In contrast, the area of human simulation is one of 

the fields where simulation has just started to be used in recent years. Some of 

those areas are presented in detail next: 
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2.4.1. Factory Design and Layout  

Using simulation as a sales tool is nothing new. A few forward thinking 

companies with R&D budgets embraced the promise 3D simulation offered as a 

sales tool in the early 90’s. 3D simulation enables theses companies to 

demonstrate to the customer their current facility, how could be improved with 

the next round of equipment purchase and, most important, the lasting vision of 

what their manufacturing facility could be capable of in the future. Unfortunately 

the cost and skills required to implement simulation as a sales tool was a 

prohibitive for an SME (Small and Medium Enterprises) to consider. [Visual 

Components 2007] 

Recent advances in simulation technologies have drastically reduced, and in 

many cases eliminated the challenges faced by the early adopters. Thus, 

allowing 3D simulation to be deployed on a large scale by equipment 

manufacturers. These advancements include [Visual Components 2007]: 

1. Applying component software techniques to simulation data enabling the 

equipment to be easily connected and to drastically simplify the task of 

line layouts. 

2. Encapsulation of the complexity within a component based equipment 

model to facilitate the reuse and streamline maintainability. 

3. User focused simulation products designed for different skills level 

throughout the organization. 

4. The pricing model, whereby each simulation license does not cost tens of 

thousands of euros. 

5. Advancements in computer and software performance enabling 

interactive performance on laptops PC’s. 

Virtual reality factory models enable to move through factory mock-ups, walk 

through, inspect, and animate motion in a rendered 3D-factory model. This 

design and communication technology also provides design collaboration 

activities in order to view, measure, analysis, and inspect for clearance in a 3D-

virtual factory model. [Kühn 2006] 

These tools help the designers and engineers in charge of the development of 

the factory floor, since they provide a clear idea of how the machines could be 

arranged to improve the use of space in the factory floor. 
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2.4.2. Optimizing the Factory Flow 

In a company, an efficient flow of materials in the factory floor is crucial and 

directly reflected in production. Simulation can help to compare different layouts 

of the factory floor and choose the best layout for the task.  

 

Figure 5 Flow of products can be analyzed and optimized by using simulation. 

Enhancing the factory layout based on material flow distances, frequency and 

cost is a first step towards more efficient factory layouts, which directly result in 

reduced material handling and improved production outputs. [Kühn 2006] Figure 

5 shows an example of how the flow of a product can be reproduced and 

analyzed in order to improve the production.  

In addition, simulation tools also can exemplify the paths that humans and 

machines could use. This is important due the fact that, if human models move 

less, as same with machines and robots, then people become more efficient 

and less time is lost moving parts from one side to the other. 

2.4.3. Simulation of Robotic Workcells 

Robotic workcells are important elements in automated manufacturing systems 

for delivering required manufacturing materials and operations with industrial 

robots and associated peripheral devices. Rapid design and deployment of a 
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robotic workcell require the successful applications of concepts, tools, and 

methods for fast product design, manufacturing process planning, and plant 

floor/cell control support. An important technology for achieving this goal is 

robotic workcell simulation. [Cheng 2000] 

Simulation of robotic workcells focuses on the design, simulation, optimization, 

analysis and offline programming of robotic workcells and automated 

manufacturing processes in the context of product and production resource 

information. 

Motion simulation and synchronization of several robots and mechanism 

including 3D path definition is required to perform reachability checks, collision 

detections and optimization of cycle time. [Kühn 2006] 

Models, which are going to be used for offline programming, have to implement 

physical and control characteristics of robots and other automated devices. 

Robot offline programming requires accurate simulations of robot motion 

sequences in order to download machine programs to the real controller on the 

shop floor. [Eberst et al 2004.] 

 

Figure 6 Simulation helps not only to design a robotic cell, but also to improve 

its functionality. 

Figure 6 shows an example of a robotic cell that was designed for a fair. From 

this model is possible to get features like the size of the cage and height, to 
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improve the transportation and the space required to transport it and place it on 

the stand. The robot placed in the cell was programmed with different tasks 

accordingly to the requirements of the client, exemplifying the whole pick and 

place process. Some aspects as the cycle time were observed and improved 

during the development of the simulation. This simulation was the foundation of 

a project, which culminated as a real life robotic cell. 

2.4.4. Model Based PLC Offline Programming 

With time and cost pressure on introducing new products and production 

changes, the PLC programming shall not be handled as an isolated, 

independent function on the shop floor level. The PLC program generation 

integration in a 3D-integrated virtual environment allows working in parallel and 

sharing information from both mechanical design and control departments. This 

enables an automatic generation of PLC programming directly from the virtual 

manufacturing model and allows for the virtual commissioning prior to building 

the equipment on the shop floor. [Kühn 2006] 

These days, offline programming of PLCs and robots is possible since many 

simulation suites offer the possibility to export the code directly to their 

hardware counterparts.  In that case, only small code changes are needed to 

setup the PLC or robot correctly and place it to work. All these changes 

minimize the downtime in a work cell and also in a production line, which makes 

offline programming a really desired feature. This would speed up the setup of 

the process, reducing the waiting times that come when installing or making 

changes to a production line. 

2.4.5. Human Resource Simulation 

An accurate modeling, simulation and analysis of manual assembly designs, 

manual work places and human operations with detailed 3D virtual human 

models can optimize execution times and prevent work-related health problems. 

Human resources simulation focuses on [Kühn 2006]: 

• Detailed design of manual operations 

• Checking the feasibility of tasks 

• Ergonomic analysis 
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• Time analysis 

• Generating work instructions 

Figure 7 shows a human model handling a piece inside of an airplane structure. 

This model shows how spaces in the layout can be used by a worker, how long 

it will take for a human to handle the parts and to visualize any security 

measure needed to perform the desired task. 

 

 

Figure 7 Ergonomic analysis is possible by the inclusion of human models to 

the simulation environment. 

Although simulation software allows simulating human behaviors at present 

time, this type of simulations are still in early faces of development and should 

be developed further to increment the ease of use of these simulation models.  

These advances will allow non-specialized users to create prototypes of 

simulated environments including human models in no time.  
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2.4.6. Summary 

The applications mentioned above are some of the most common uses of 

simulation in manufacturing. Advances in technology had made possible that, 

nowadays, complex simulations can be simulated in laptop machines, which it 

was impossible almost a decade ago. In the near future, advances in 

technology surely will make possible the application of simulation technologies 

in additional tasks that at this moment are thought of as impossible. 

In the next section, the problem that this thesis work focuses on solve, is 

presented.  

2.5. Problem Presentation 

One of the main problems that companies faces with modeling and simulation 

of their activities is that resources are geographically dispersed. 

Interconnectivity between manufacturing simulations has used limited 

approaches if any at all. 

The game industry, defense and research community have used different 

architectures to solve this problem and allow to link simulations. In the 

Manufacturing Industry, simulation is a new field where most of the models and 

resources are spread not only in departments but also across continents.  

The present section introduces the domain in which this work is developed as 

the scope of this thesis. In the last section, the problem to be solved is 

presented. 

2.5.1. Domain and Scope 

The domain of this thesis is the Simulation of Manufacturing Systems, in 

particular the area of production. 

The work done in this thesis is focused on the use of the High Level 

Architecture to implement a distributed simulation network along resources 

spread across the world. 
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2.5.2. Problem Definition 

As was shown before, companies have been using Modeling and Simulation to 

increase their advantage in the markets today. Departments inside of 

companies usually develop their own models and simulations that are rarely 

shared. As result, plenty of models and simulations are isolated in different 

locations without any interaction. 

Another common problem is that models required for simulation are not in the 

same physical location. This makes more difficult to reuse models and 

simulations. In consequence, frequently new simulation models are design from 

scratch, resulting in additional time to develop new models. The additional time 

taken in developing the whole simulation often impacts on the budget of the 

project. 

The problem solved by the work of the present thesis is the interconnectivity 

issues between simulation software. In order to allow those applications to 

interact, an architecture is proposed that should allow the following: 

• Applications connected to the architecture should be able to publish or 

request data. 

• Multiple applications should be able to interconnect independently of 

their geographical location. 

• The architecture proposed should be flexible enough to allow new 

applications to integrate to it. 
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Figure 8 shows a geographically dispersed scenario targeted by the pilot 

implementation developed during this thesis. 

 

Figure 8 Geographically dispersed simulations. 

These and other issues will be approached by the work in this thesis. The next 

chapters will present different COTS (Commercial of the Shelf) simulation 

software, an analysis of their main characteristics and the architecture proposal 

for distributing simulations using the High Level Architecture. These areas 

would give the reader an overall view of the functionality of the simulation 

software and an in-depth view of the MS2Value architecture and its usage.
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3. THEORETICAL BACKGROUND 

The present chapter will introduce essential information about Distributed 

Simulation and High Level Architecture. Initially a definition of simulation and its 

elements is needed, as they are the foundation of Distributed Simulation. 

Subsequently some distributed architectures, in which HLA was based, are 

defined. At the end of this chapter the HLA and its elements are defined. This 

chapter contains the core knowledge in which the entire project is based on. 

3.1. Simulation 

A simulation is a system that represents or emulates the behavior of another 

system over time. In a computer simulation the system doing the emulating is a 

computer program. The system being emulated is called the physical system. 

The physical system may be an actual, realized system, or it may only be a 

hypothetical one, for example, one of several possible design alternatives that 

only exist in the mind of its inventor. [Fujimoto, 2003] 

Simulations can be classified in two groups: 

• Continuous. The state of the simulation can change in any time. 

• Discrete. Changes are only reflected at discrete times. Discrete 

simulations are also divided in two. 

• Time stepped. Every certain period of time the simulation is updated. 

• Event driven. When an event is triggered the simulation is updated. 

In the work handled in this thesis only event driven simulation approach was 

used. 

3.1.1. Elements of a simulation 

Model 

A model is a representation of a system or a process. A simulation model is a 

representation that incorporates time and the changes that occur over time. A 
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discrete model is one whose state changes only at discrete points in time, not 

continuously [Carson 2005]. In computer, a model of a system or process is 

represented in a programming language where inputs and outputs are 

represented in variables that adjust their value to the changes of the simulation. 

Although models are representations of a system, the level of detail of these 

representations may differ widely from one model to other, since two models of 

a system can focus in different aspects of the real system. 

 

State 

A model state is a list of values that are sufficient to define the complete state of 

the system at any point in time. In practice, a model’s state is defined implicitly 

by the internal status of all the entities used in the simulation software package 

[Carson 2005]. A state is usually represented as a vector of values, in which 

each value represents certain state in the simulation. In case that several faults 

 

Event 

An event is an instantaneous occurrence that changes the model’s state 

[Carson, 2005]. For example, when a conveyor transports a box, and the edge 

of the box reaches a sensor, this sensor then triggers a signal to the controller 

meaning that a box is present. The change on the signal value is an event. 

Based on the events received and the model state, the controller will make a 

decision on how to proceed. 

 

Activity 

An activity is a duration of time that is initiated by an event in conjunction with 

the model being in a certain state. [Carson 2005] 

 

Entities 

An entity is an object in the model that represents some real-world object that 

moves through a system [Carson 2005]. Commonly denominated virtual entity 

to enhance its non-physical nature. 

 

Resource 

A resource is an entity that provides a service to entities [Carson 2005]. In a 

manufacturing line, a resource can be a robotic arm, a lifter, etc. 

 

These are the definitions of the basic elements of the simulation and should be 

taken into account in the future chapters to avoid misunderstandings and ease 

the lecture. 
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3.2. Distributed Simulation 

Distributed simulation refers to distributing the execution of a single “run” of a 

simulation program across multiple processors. [Fujimoto 2003] 

Parallel and distributed technologies for analytic simulation applications 

originated largely from basic research in the late 1970 and throughout the 

1980s. This research has flourished in the 1990s. Work in this field began with 

the development of synchronization algorithms to ensure that the simulation is 

distributed across multiple computers, the same result are produced as when 

the simulation is executed on a single machine.  

There are several benefits from executing a simulation across multiple 

computers [Fujimoto 2003]: 

• First motivation for distributing the executions is to reduce the length of 

time to execute the simulation. In principal, by distributing the execution 

of a computation across N processors, one can complete the 

computation up to N times faster that if it were executed on a single 

processor. When confined to a single computer system there may not be 

enough memory to perform the simulations. Distributing the execution 

across multiple machines allows the memory of many computers system 

to be utilized. 

• The second motivation concerns the desire to integrate several different 

simulators into a single simulation environment.  

• The third motivation is the geographical extent over which the simulation 

executes. Often distributed simulations are executed over broad 

geographic areas. This is particularly useful when personnel and/or 

resources (e.g., databases or specialized facilities) are included in the 

distributed simulation exercise. Distributed execution eliminates the need 

for these personnel and resources to be physically collocated, 

representing an enormous cost savings. 

Distributed simulation has been present mostly using two common architectures 

in networking [Fujimoto 2003]:  

• Client-Server  

• Peer-to-Peer.  
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In the Client-Server architecture, clients request services and servers provide 

those services. A variety of servers exist in today's Internet -- Web servers, mail 

servers, FTP servers, and so on. The Client-Server architecture is an example 

of a centralized architecture, where the whole network depends on central 

points, namely servers, to provide services. [Krishnan 2001] 

The Client-Server architecture, as mentioned before, depends totally on the 

server availability. In case of server failure, the entire simulation would be 

impossible to run. Additionally, this architecture also presents the problem that 

the server becomes a bottleneck when the number of clients starts growing up.  

In the simulation field, a client-server approach would require that most of the 

operations are run in the server. The clients would log into the server and 

interact with the simulation. Figure 9 shows the client-server architecture. This 

approach offers more security, since only clients that are allowed to log in the 

server can participate in the simulation.  

 

Figure 9 The traditional approach of Client-Server allows more control of 

clients. 

The P2P (Peer-to-Peer) architecture overlay networks are distributed systems 

in nature, without any hierarchical organization or centralized control. Peers 

form self-organizing networks that are overlayed on the IP (Internet Protocol) 

networks, offering a mix of various features such as robust wide-area routing 

architecture, efficient search of data items, selection of nearby peers, redundant 

storage, permanence, hierarchical naming, trust and authentication, anonymity, 
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massive scalability, and fault tolerance. It allows access to its resources by 

other systems and supports resource sharing, which requires fault-tolerance, 

self-organization, and massive scalability properties. [Lua 2004] 

In a simulation that uses the P2P approach a small part of the simulation is run 

in every computer connected to the network. Each computer shares data with 

other computers as needed to perform the simulation task until the simulation is 

finished. As a drawback of the P2P networks, a small part of the code 

containing the management of the connections and the simulation has to be 

programmed in each of the clients. This complicates the process of 

administrating the whole mesh of computers and the simulation itself.  

Figure 10 shows the possible connections in a P2P approach. Peer to peer 

approach is preferred in several systems since it can scale up easily without 

bottlenecks. 

 

Figure 10 In a Peer-to-Peer architecture each computer is connected to several 

computers without a centralized server. 

LANs (Local Area Networks) carry messages at relatively high speeds between 

computers connected to a single communication medium, such as twisted 

copper wire, coaxial cable or optical cable. WANs (Wide Area Networks) carry 

messages at lower speeds between nodes that are often in different 

organizations and may be separated by large distances. [Colouris 2004] 

Mostly these definitions had been done in direct relationship to the geographical 

area that the networks cover, being the WANs the ones that serve as media to 

interconnect several LANs.   
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The management of the distributed system is greatly simplified by the 

centralized management of the simulation computation [Fujimoto 2003]. All the 

synchronization points are handled by the server, which simplifies the control of 

the overall simulation. In a P2P approach, some of the synchronization 

management has to be implemented in each of one of the peers. This increases 

the complexity of programming simulation software using the later approach. 

3.3. Distributed Interactive Simulation 

DIS (Distributed Interactive Simulation) is an infrastructure that enables 

heterogeneous simulators to interoperate in a time-and-space-coherent 

environment. In DIS, the virtual world is modeled as a set of entities that interact 

with each other by means of events that they trigger. Simulator nodes 

independently simulate the activities of one or more entities in the simulation 

and report their attributes and actions of interest to other simulator nodes'. The 

simulator nodes are linked by a communication network and communicate 

entity. [Cheung 1994] 

The initial focus of DIS has been on linking human-in-the-loop simulations, such 

as simulators used for training operators of tanks, aircraft and ships, in 

exercises for training forces that may include elements form more than one 

military service (Army, Navy, air Force, and Marina Corps) and multinational 

forces. 

DIS was defined by the IEEE (Institute of Electrical and Electronics Engineers) 

as the series of standards 1278 (IEEE Std. 1278, 1993). The Standard for 

Distributed Interactive simulation - Communication Services and Profiles (IEEE 

Std. 1278.2, 1995) specifies the requirements for the underlying network (see 

Figure 11) in a DIS. The most notable requirement is real-time delivery (100 to 

300 milliseconds) of the protocol messages to the simulation nodes on the 

network. 
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Figure 11 DIS Network topology. 

In DIS, there is no central computer. Instead, a number of computers are 

interconnected via a network (such as the one shown in Figure 11). [Cheung 

1994] 

DIS has been used extensively in building DVEs for training in the defense 

community. A principal objective of DIS (and subsequently the High Level 

Architecture effort) is to enable interoperability among separately developed 

simulators. [Fujimoto 2003] 

3.3.1. Overview of DIS 

DIS utilizes the following design principles [DIS Steering Committee, 1994]: 

• Autonomous simulation nodes. Each node is only responsible for the 

entity or entities it is simulating, and does not have to calculate what 

other nodes are interested in. Receiving simulations are responsible for 

determining the effects of an event on the entities it is simulating. The 

autonomy principle enables nodes to join or leave an exercise in 

progress without disrupting the simulation. 

• Transmission of “ground truth information”. Each node transmits the 

absolute truth about the state of the entity/entities it simulates. The 

receiving nodes are solely responsible for determining whether their 

objects can perceive an event and whether they are affected by it. 
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Degradation of information (essential for realistic portrayal of system 

behavior) is performed by the receiving nodes. 

• Transmission of state change information only. Simulations will only 

transmit changes in the behavior of the entities they represent, in order to 

reduce unnecessary information exchange. 

• Dead-Reckoning Mechanisms.  The objective of dead-reckoning (a term 

borrowed from navigation) is to determine new states based on previous 

ones, i.e. by extrapolation. Only when the ground truth data differs 

enough from the extrapolated data (by a predetermined threshold) is a 

new state issued. 

• Simulation Time Constraints. Current DIS standards primarily support 

human-in-the-loop simulations. The simulation time constraints (100 – 

300 milliseconds) were obtained based on human factors. Other types of 

simulations (such as wargames) operate faster or slower than real time. 

In order for these types of simulations to interact with real time 

simulations, interfaces to the constructive simulation need to be capable 

of issuing data at real time rates. 

 

The existing DIS protocols work extremely well for certain applications 

particularly between manned ‘virtual’ simulators. However, the United States 

DoD has defined as one of its future goals for Advanced Distributed Simulation 

development, increased interoperability among simulations for which the current 

DIS protocols are not well suited such as interactions with war games. As a 

result of that, HLA has been established, incorporating additional functionality 

and increased flexibility to allow this interoperability to occur. The HLA will 

support DIS-like exercises just as well as it supports detailed engineering or 

analysis modeling. The HLA also provides a growth path that the current 

generation DIS protocols may not have available. [Perry, 1998] 

The DIS Product Support Group (PSG) is a permanent support group chartered 

by the SISO Standards Activities Committee to support DIS products such as 

the IEEE 1278 series of standards.  The DIS PSG publishes, maintains, and 

updates a series of reference documents related to DIS that are helpful to users 

and developers. [SISO 2010] 
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3.4. High Level Architecture 

The High Level Architecture is an architecture for reuse and interoperation of 

simulations. The HLA is based on the premise that no simulation can satisfy all 

uses and users. An individual simulation or a set of simulations developed for 

one purpose can be applied to another application under the HLA concept of 

the federations: a composable set of interacting simulations. [Dahmann 1998] 

The roots for the HLA stem from DIS aimed primarily at training simulations and 

the ALSP (Aggregate Level Simulation Protocol) which applied the concept of 

simulation interoperability to war gaming simulations. The HLA development 

began in October 1993 when the DARPA (Defense Advanced Research 

Projects Agency) awarded three industrial contracts to develop a common 

architecture that could encompass the DoD modeling and simulation 

community. On September 10, 1996 the undersecretary of defense designated 

that the HLA become the standard high-level technical architecture for all 

modeling and simulation activities in the U.S. Department of Defense. [Fujimoto, 

2003] 

It came to public use as a standard by the IEEE with the name of IEEE Std. 

1516-2000. [IEEE Std. 1516 2000] 

Like DIS, the principal goal of the High Level Architecture is to support 

interoperability and reuse of simulations.  Unlike DIS, HLA provides explicit 

support for simulations other than training. [Fujimoto 2003] 

In the next sections, the main actors of HLA are presented. 

3.4.1. Federate 

Federate is an individual object that shares data with other federate(s). 

Federates can be of different types: pure software simulators such as computer 

generated forces, human-in-the-loop simulators such as virtual simulators, or 

live components such as instrumented weapon systems [Perumalla, 2006]. In 

addition, a passive logging application can act as a federate to record and 

report data of interest. 

Federate objects can be put together to interact with each other. In these 

interactions a federate doesn’t need to behave the same in each simulation. In 

other words, the behavior of a federate relies more in the design of the 

distributed simulation than in its own. 
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In a manufacturing simulation, a federate can be a model of a whole company, 

a manufacturing line, a robot cell or as simple as a gripper.  This gives flexibility 

to the designer to define the level of detail desired on the simulation. For 

example, if the designer wants to focus on a machine then the sensors and 

motors could be defined as federates and each of those would respond to 

messages and share information about the machine status. 

3.4.2. Federation 

The Federation is a common simulation between systems that interact and are 

part of that simulation. These federates don’t need to be from the same type. A 

common approach would be to have federates which represent a machine in a 

simulation and are hosted in a computer; whereas other federates can be the 

real machines sending and receiving data to other simulated instances in the 

simulation. 

 
Figure 12 An example of a Federation integrated by various types of federates. 

Figure 12 shows and example of a Federation where two computers are 

interacting with a flight simulator. In this simulation, several clients interact with 

each other without caring if they are the actual machines or simulated 

environments. 
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3.4.3. Run-Time Infrastructure (RTI)  

The RTI is a collection of software that provides commonly required services to 

simulation systems. The overall goal has been to keep the RTI “lean and 

mean.” However, this goal is occasionally moderated when it is clear that an 

additional service could be used across multiple simulation domains. The RTI is 

also intended to provide a measure of portability (across computing platforms, 

operating systems, and communication systems) and simulation interoperability. 

Of course, interoperability requires commonality between the Federation Object 

Models (FOM) of the simulations involved. The services of the RTI are 

described by the HLA Interface Specification [Calvin, 1996]. This interface has 

rules to coordinate and manage the federation. 

The RTI Interface Specification is composed by: 

• Federation Management 

• Object management 

• Time Management 

• Declaration Management 

• Ownership Management 

• Data Distribution Management 

3.4.4. Object Model Template (OMT) 

The Object Model Template specifies the HLA objects that provide a commonly 

understood mechanism for the exchange of data, coordination between 

federates and a description of the capabilities for possible federates. 

3.4.5. HLA Rules 

The rules for the High Level Architecture can be divided in two: From 1 to 5 to 

regulate the Federation and from 6 to 10 for the Federates. 

Rule 1 Federations shall have an HLA FOM, documented in accordance with 
the HLA OMT. 
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All data to be exchanged in accordance with the HLA shall be documented in a 

FOM. A FOM shall document the agreement among federates on data to be 

exchanged using the HLA services during federation execution and the minimal 

set of conditions of the data exchange. [IEEE Std. 1516, 2000] 

Rule 2 In a federation, all simulation-associated object instance representation 
shall be in the federates, not in the RTI. 

In the HLA, the responsibility for maintaining the values of HLA object instance 

attributes shall take place in the joined federate. In an HLA federation, all joined 

federate-associated instance attributes shall be owned by federates, not by the 

RTI. However, the RTI may own instance attributes associated with the 

federation Management Object Model. The RTI may use data about instance 

attributes and interactions to support RTI services (e.g., Declaration 

Management), but these data are merely used by the RTI, not changed. [IEEE 

Std. 1516, 2000] 

Rule 3 During a federation execution, all exchange of FOM data among joined 

federates shall occur via the RTI. 

The HLA federate interface specification (see IEEE Std 1516.1-2000) specifies 

a set of interfaces to services in the RTI to support coordinated exchange of 

instance attribute values and interactions in accordance with a federations 

FOM. Under the HLA, intercommunication of FOM data among joined federates 

participating in a given federation execution shall be executed by the exchange 

of data via the RTI services. Based on the FOM, joined federates shall identify 

to the RTI what information they will provide and require, along with instance 

attribute and interaction data corresponding to the changing state of object 

instances in the joined federate. The RTI shall then provide the coordination, 

synchronization, and data exchange among the joined federates to permit a 

coherent execution of the federation. [IEEE Std. 1516, 2000] 

Rule 4 During a federation execution, joined federates shall interact with the 
RTI in accordance with the HLA interface specification. 

The HLA provides a specification for a standard interface between the federate 

application and the RTI. Joined federates shall use this standard interface to 

access RTI services (see IEEE Std 1516.1-2000). The specification shall define 

how federate applications interact with the infrastructure. However, because the 

interface and the RTI will be used for a wide variety of applications requiring 

data exchange of diverse characteristics, the interface specification says 

nothing about the specific federate data to be exchanged over the interface. 

[IEEE Std. 1516, 2000] 
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Rule 5 During a federation execution, an instance attribute shall be owned by, 
at most, one joined federate at any given time. 

The HLA allows for different joined federates to own different attributes of the 

same object instance (e.g., a simulation of an aircraft might own the location of 

the airborne sensor, whereas a sensor system model might own other instance 

attributes of the sensor). To ensure data coherency across the federation, at 

most, one joined federate may own any given instance attribute of an object 

instance at any given time. Joined federates may request that the ownership of 

instance attributes be acquired or divested, dynamically, during federation 

execution. Thus, ownership can be transferred, dynamically during execution, 

from one joined federate to another. [IEEE Std. 1516, 2000] 

Rule 6 Federates shall have an HLA SOM, documented in accordance with the 
HLA OMT. 

The HLA SOM shall include those object classes, class attributes, and 

interaction classes of the federate that can be made public in a federation. The 

HLA does not prescribe which data are included in the SOM; this shall be the 

responsibility of the federate developer. SOMs shall be documented in the 

format prescribed in IEEE Std 1516.2-2000. [IEEE Std. 1516, 2000] 

Rule 7 Federates shall be able to update and/or reflect any instance attributes 
and send and/or receive interactions, as specified in their SOMs. 

The HLA allows for joined federates to make internal object representations and 

interactions available for external use as part of federation executions. These 

capabilities for external interaction shall be documented in the SOM for the 

federate. If documented in the SOM, these federate capabilities shall include 

the obligation to export updated values of instance attributes that are calculated 

internally in the federate and the obligation to be able to exercise interactions 

represented externally (i.e., by other federates in a federation). [IEEE Std. 1516, 

2000] 

Rule 8 Federates shall be able to transfer and/or accept ownership of instance 
attributes dynamically during a federation execution, as specified in their SOMs. 

The HLA allows ownership of instance attributes of an object instance to be 

transferred dynamically during a federation execution. The instance attributes of 

a federate that can be either owned or reflected, and whose ownership can be 

dynamically acquired or divested during execution, shall be documented in the 

SOM for that federate. [IEEE Std. 1516, 2000] 
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Rule 9 Federates shall be able to vary the conditions (e.g., thresholds) under 
which they provide updates of instance attributes, as specified in their SOMs. 

The HLA permits federates to own (i.e., provides the privilege to produce 

updated values for) instance attributes of object instances represented in the 

federate and to then make those values available to other federates through the 

RTI. Different federations may specify different conditions under which instance 

attributes will be updated [e.g., at some specified rate, or when the amount of 

change in value exceeds a specified threshold (such as altitude changes of 

more than 1000 ft, etc.). The conditions applicable to the update of specific 

instance attributes owned by a federate shall be documented in the SOM for 

that federate. [IEEE Std. 1516, 2000] 

Rule 10 Federates shall be able to manage local time in a way that will allow 
them to coordinate data exchange with other members of a federation.  

Federation designers will identify their time management approach as part of 

their implementation design. Federates shall adhere to the time management 

approach of the federation. [IEEE Std. 1516, 2000] 

The rules mentioned above are the corner stone of the HLA, any simulation 

should follow them to be HLA compliant. 

3.4.6. HLA Summary 

Federates are objects represented in HLA, those objects can be a model of 

several machines, a single feeder or a simulation of a process. An object has is 

unique identity, some attributes like parts per minute, actual state of the process 

called and its association to other objects. 

The HLA includes two components: a run time component and a non-runtime 

component. 

The runtime component, RTI, offers services that allow federates to interact 

between them and manages those interactions. As a rule on HLA, the values of 

the attributes of the objects are stored in federates, not in the RTI. In order to 

fulfill a general usability, the RTI doesn’t have knowledge of the information 

transmitted; it can be seen as a media utilized to transport information from one 

point to other. 

The non-runtime component, OMT, specifies the object model used by the 

federation, meaning the objects, attributes and associations possible. 
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3.5. Strategy to distribute a simulation using HLA 

In order to distribute a simulation across different machines a set of 

technologies have to work simultaneously. It is important to a deep research of 

the tools available to avoid issues of compatibility in the long run. To assure an 

optimal result certain of steps that have to be followed are named below: 

• Choose an HLA RTI 

• Choose a Simulation Suite 

• Create a Middleware, if needed 

• Create the Simulation Manager  

• Create the simulation models 

In general, these steps have deal with the overall architecture, available 

technologies and software packages, type of communications and expected 

interactions, etc. In addition, these steps will also present the needs of the 

project. A detailed guide of steps is explained next. 

Step 1 – Choose an HLA RTI 

The first step that has to be done is to select the HLA RTI since it will be the 

foundation of the project. The designer has to be careful at this step since the 

RTI has a direct impact on the behavior of the system and the services offered 

to connected systems. 

There are several commercial and open source RTI’s, which will give several 

options to the designer. This is an advantage since a lack of options would have 

imposed restrictions to the designers. 

In principle the designer should focus in: 

• Expected number of federates in the simulation. The number of federates 

running on a simulation in a RTI has impact in two different areas. The 

first impact goes to the efficiency of the RTI. Several RTI’s are better 

working in small environments whereas others are better suited for a 

large number of federates. The second aspect is the economic: 

commercial RTI’s regularly charge per-federate license, which would 

definitely bring repercussions to the overall price of the project. 

• Amount of interactions. The number of interactions in the simulation is 

correlated with the number of federates, but is not directly proportional to 

it. As was mentioned before, some RTI’s handle better small federations 

than large. A similar circumstance happens with the interactions, some 
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RTI’s are developed to handle a huge number of interactions per second, 

which also is reflects in the price of the software. Plan in advance which 

interactions will be needed and make a rough estimation about the 

expected number of interactions. 

• Hardware Requirements. RTI’s have different hardware requirements; 

most of them do not require expensive hardware to operate, but also 

state that best performance is achieved with high-end configured 

equipment. If the equipment that is intended to host the RTI is already 

owned, those specifications would be a constraint when deciding which 

RTI to choose. Otherwise, when a RTI is already is chosen, the host 

hardware should be acquired accordingly to the needs of the RTI. 

• Development Language: RTI’s are developed mostly on C++ and Java 

languages. It is important that the RTI offers a variety of interconnectivity 

solutions, so simulations can interconnect as federates easily, without 

requiring middleware, which would increase the development time. 

Step 2 – Choose a Simulation Suite 

The decision of what simulation suite to use will not be an easy one, since the 

suite should fulfill the needs of the designers and is also dependant on the HLA 

RTI chosen before. The designer of the system should focus on the following 

points to succeed in the implementation of the system: 

• Simulation requirements: Every project in a company has different 

needs; some of them just require a numeric result, whereas others will be 

in need of a 3D visualization. In the case, a 3D simulation software is 

needed to visualize and inspect the simulation process of a 

manufacturing line. In addition, the availability of predefined models, 

easiness to learn and use of the simulation suite should be taken into 

account when choosing it. 

• Hardware requirements: Depending on the type of simulation used is the 

type of hardware that will be needed. For example, 3D simulation 

software commonly needs a 3D Graphics card as a minimal requirement. 

These days simulation software should work almost in any computer 

without dedicated hardware. However, if a better performance of the 

simulation software is expected, the system designer must choose a 

hardware system above the minimal specs needed. 
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Step 3 – Create a Middleware if needed 

According to Linthicum et al. (2004) Middleware is a term that is used to mean 

different things in different contexts. In the context of distributed computing, the 

following definition can be used: “Middleware is any type of software that 

facilitates communication between two or more software systems.” [see 

Lindqvist 2007] 

After the decision for choosing the simulation suite and the HLA RTI is done, 

there is a possibility that the systems chosen cannot be connected directly. If 

that situation arises, a middleware will be needed.  

This middleware will have the main tasks of passing the messages between the 

simulation suite and the RTI. It should be done in some platform that allows 

both software suites to interact and preferably with the minimal delay possible.  

The use of a middleware should be avoided, if possible, since generally it 

increases the delays on communications and complexity of the project. It is 

preferable to select a simulation suite and RTI that can communicate directly to 

avoid any kind of overhead. 

Step 4 – Create the Simulation Manager  

The simulation manager is a federate that has the sole purpose of controlling 

the behavior of the Federation. The main tasks of the manager are to start and 

finish the execution of the Federation. 

The manager’s first task is to connect to the RTI and create a new Federation. 

The creation of a new Federation requires a unique name that the manager 

must provide. After the federation is created, the manager subscribes to the 

federation and then waits for new federates to join.  

After all federates have joined to the Federation, the manager can start the 

execution of the simulation. Federates are allowed to interact with each other, 

until the execution has started.  

The manager is also in charge of terminating the execution of the distributed 

simulation. At this step the manager tells federates to finish their interactions 

and resign from the Federation. The final step is to destroy the Federation, 

freeing resources from the RTI. 

There is the possibility that the management behavior is integrated as another 

federate, which would eliminate the need of having a federate for the sole 

process of administrating the distributed simulation. Additionally, other tasks as 
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logging or supervising some messages could be part of the tasks of the 

simulation manager. 

Step 5 – Create the simulation models 

In this step the designers of the simulation must focus on the main needs of the 

simulation and decide the representation that they want to give to the desired 

process. Some simulations may contain very detailed models while others might 

only need basic features to accomplish their goals. Defining those needs and 

creating the models for fulfilling them is an important step before moving 

forward to the next step. 

Step 6 – Create Federates models 

The creation of federate models is a necessary step to link the simulation 

models to the distributed environment. These federates are also simulation 

models which have some programming interface that would allow them to 

interact with other federates through the RTI.  

The interactions between simulators are done by sending information coming 

from the local simulation to the federation, for example, sending updates every 

time a product is created. The simulation models also retrieve information for 

the local simulation models from the RTI. An example of this situation is when a 

product is created a simulator can send this information to another simulator 

which triggers the process for creating the box for packing that product. 

It is desirable that federates models are as generic as possible so that they can 

be reused without needing a lot of changes. 
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4. DISTRIBUTED SIMULATION 
INFRASTRUCTURE DESIGN 

In order to distribute a simulation, two fields were observed. First step was to 

analyze which runtime infrastructure was the one that could fit better to the 

needs of a distributed manufacturing simulation. The second and final step was 

to analyze the simulation software to discover which simulation software was 

the best for the experiment. 

4.1. Analysis of High Level Architecture Infrastructures 

4.1.1. Commercial RTI’s 

MÄK High Performance RTI 

MÄK Technologies is a software company that developed their own HLA RTI. 

The MÄK RTI implements the full HLA Interface Specification, and has been 

verified by DMSO as fully compliant with both HLA 1.3 and IEEE 1516. As 

advantages, MÄK Technologies mentions [MÄK Technologies 2009]: 

• Verified by DMSO as Fully HLA compliant (HLA 1.3 AND IEEE 1516) 

• Fast and efficient 

• Lightweight Mode ! No rtiexec required 

• Sender-Side Filtering for Efficient WAN Operation 

• Network and Shared Memory Communication 

• Fault tolerant 

• Web-based RTIspy Diagnostic GUI (Graphic User Interface) 

• Plug-in API (Application Programming Interface) for user customization 
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Figure 13 MÄK RTI shows the federation data by using of plug-in applications 

[MÄK Technologies 2009] 

According to Burks et al (2001), the MÄK RTI has exceptionally low latencies, 

but is limited both in RTI functionality, and attribute size. While larger numbers 

of Data attributes could be moved by updating each attribute separately, no 

single attribute can exceed the maximum size of a UDP packet using best effort 

transport. As an advantage MÄK RTI permits the use of extension plug-ins, like 

the RTispy, shown in Figure 13 to extend the usability of the RTI. RTIspy 

permits the user to have access to the information of the federation. MÄK 

Technologies provides a fully functional RTI, free of charge, for up to two 

federates. 

PITCH pRTI 

In February 2000, pRTI™ 1.3 became the first commercial RTI to be certified by 

DMSO. As the HLA standard was transferred to IEEE it was seen the potential 

for a broader market. It was decided to develop pRTI™ for this standard and to 

get it certified. The development of pRTI™ 1516 has been driven by many 

different needs, several of them seemingly in conflict with each other - flexibility 

versus ease-of-use, performance versus complexity, etc. It was decided at the 

outset that should be certified. This meant that pRTI™ 1516 would be a 

complete RTI, and that no functionality would be sacrificed. This forced PITCH 

to look for solutions that achieved good performance while still providing full 

functionality [Karlsson et al. 2001]. 
!

The performance of pRTI™ 1516 was one of the most important parameters. 

The objective when creating pRTI™ 1516 was to assure that the performance 
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provided was good enough for the targeted market segment. After some 

research the following numbers were obtained [Karlsson et at. 2001]: 

• 100 federates 

• 100K object instances 

• < 3ms latency 

• 50 Hz time management 

• Object turnover 2000/minute = 35/second 

The installation of pRTI™ 1516 consists of simple steps. The number of 

options, settings and flags available to users are reduced to avoid 

overwhelming users with excessive menus. Mostly, people don’t take the time 

to learn about configuration options, they run things as-is out of the box. As a 

result of that, the default settings have to be the most conservative.  

Another aspect of ease-of-use is robustness. If the RTI is fragile and needs to 

be restarted whenever a developer makes a mistake, when a federate crashes, 

or when a network connection is lost then that puts an unnecessary burden on 

the user. pRTI™ 1516 is able to handle the following situations without ill effects 

[Karlsson et at. 2001]: 

• Graceful termination of federate without resign. 

• Crashing of federate without resign. 

• Crashing of federate after resign. 

• Invalid parameters. 

The graphical user interface allows users to inspect federations and federates in 

detail. Additionally, Pitch pRTI™ also supports the HLA Web Services API. As 

mentioned before now it is possible to use Web Services to connect to the RTI 

with full HLA functionality. From the previous facts it is possible to summarize 

the main advantages of pRTI as: 

• Interface accessible locally or over the network using a web browser. 

• High number of updates per second allowed. 

• Web services integrated, known also as HLA Evolved. 

• Graphical interface allows inspecting the federation. 
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4.1.2. Open source RTI’s 

Portico Project (formerly known as JaRTI Project) 

Portico is a fully supported, open source, cross-platform HLA RTI 

implementation. Designed with modularity and flexibility in mind, Portico is 

intended to provide a production grade RTI implementation and an environment 

that can support continued research and development. Portico is licensed under 

the terms of the Common Developer and Distribution License (CDDL) and is 

actively developed and maintained by its team of core contributors. [Portico 

2008]  

One of the primary purposes of the JaRTI project was to develop an RTI 

implementation that could function both as an RTI for general use, as well as a 

flexible environment in which extensions could be quickly developed, and easily 

deployed (be they for research or other purposes). As such, a significant 

amount of effort has been put into the creation of an underlying architecture to 

support this objective [Pokorny 2007].  

The JaRTI project provides various Java interfaces implementing the core HLA 

standards: 1.3 and IEEE 1516-2000. Additionally, a compatibility library is 

provided to mimic the interface often used with the older DMSO RTI-NG (in the 

hla.rti13.java1 package). Although a number of interfaces are provided, 

not all of the HLA services are implemented. The set of HLA features 

implemented at the beginning of 2007 included the following features: 

• Basic Services (create/destroy)  

• Synchronization Services  

• Publish and Subscribe Support  

• Object Creation, update and Removal 

• Interaction Sending 

• Time Management (not including optimistic)  
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Figure 14 shows the console of Portico’s main window after the RTI has been 

launched. On this simple but functional interface, allows clearing the console or 

quitting the application, by simple clicking the appropriated button.  In the 

console all the activities, form interactions to data exchange, are logged to give 

the user a deep inside view of the operations done through the RTI. 

 

Figure 14 Console of Portico Project RTI. 

The key features missing from this list are support for Data Distribution 

Management (DDM), Ownership Management and Save/Restore support. 

However, as with all open source projects, JaRTI is a work-in-progress. 

Open HLA 

Open HLA (oh-la) provides an open-source implementation of the HLA RTI 

spec 1.3 and IEEE 1516. It also provides a framework to wrap the standard RTI 

classes and FOM to code generation to make life simpler [Open HLA, 2009]. 

The project development was stopped in the year 2007, there are not updated 

versions or any information about future development to this day. 
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4.1.3. Analysis results 

Accordingly to the characteristics mentioned before the commercial RTIs had a 

superior support, development and options. As a downside, commercial RTIs 

offer packages for 5, 10, 15 or more federates which are directly reflected in 

their licensing prices. It also incurs in maintenance costs for future 

developments and plug-ins that have to be bought independently of the RTI. For 

analyzing the RTIs presented above, the following properties were taken into 

account: 

• Performance 

• Platform of development 

• Add-ons 

• Price 

• Compliance with standards 

• Support 

 

Table 1 shows the evaluation of these properties based on the information 

presented in the previous sections and the experiences of the author with those 

RTIs. 

 

Table 1 Comparison of different RTI’s properties. 

Runtime 
Infrastructure 

Performance 
Plataform of 
Development 

Add-
ons 

Price 
Compliant 
HLA 1.3 / 
1516-200 

Support 

MÄK High 
Performance 
RTI 

!!!* C++ 
RTISPy 

API 

High / 
Price 
per 

federate 

Yes Yes 

PITCH pRTI !!!* Java C++** 

High / 
Price 
per 

federate 

Yes Yes 

Portico 
Project 

!!! Java C++ Free Yes Yes 

Open HLA Not tested Java - Free Partially None 

*According to information of the product. 
**Incurs on extra expenses. 

     

In this case the main factor to don’t use a commercial RTI is the price per 

federates license terms, since that would have a direct impact on the budget of 
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the project. While some commercials RTIs offer the possibility to run up to two 

federates per federation, without having to pay a license fee, it is impractical for 

this experiment to have that few amount of federates. 

The open source RTIs represented a good option for the development of the 

project, since the software was provided without a charge. Two different options 

were analyzed: Open HLA and JaRTI. JaRTI was chosen as the best option 

since Open HLA had little support and documentation. JaRTI is constantly 

developed and supported by its core team of developers. The support is done 

via forums or IRC, which is free of charge and usually takes less than 2 days to 

have a satisfactory answer.  

In addition to the advantages mentioned above, the project has been very well 

documented. In the website of the project information for users and developers 

is available. Information for users consists on documents about how-to install 

the software, example federates, configuration of the software and tools.  

JaRTI is actually known with the name of PORTICO project. The change in the 

name was to give a more professional approach to maintain the long-term 

growth of the project. It was officially changed in May 2007 from JaRTI to 

Portico project with the founding from the ADSO (Australian Defence Simulation 

Office). 

After observing the advantages and disadvantages of the commercial and open 

source RTI’s, JaRTI was a good option since it is well documented, supported, 

developed and it was free of charge. It also offers the possibility to develop Java 

and C++ federates whereas commercial counter parts would incur in an extra 

charge. 

4.2. Analysis of Simulation Software 

Simulation software has been widely developed in the last 20 years that 

companies have now different options to model a desired process.  

These days simulation software can be created using so different options that is 

not an easy task to decide how to develop a simulation. From these options we 

can enclose the simulation software in three main areas:  

• Programming languages. 

• General Purpose Simulation Software. 

• Application Oriented Simulation Software. 
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All of them have their own advantages and drawbacks. The person on charge of 

choosing the simulation software must focus on the requirements of the 

simulation to model and the impact of the characteristics of the software suite 

on those requierments. 

4.2.1. Programming languages 

In the defense related applications the use of general programming languages 

on simulations is wide. Many “old” simulations are written in C or C++ language. 

Programming languages can create high efficient simulation software that would 

be executed using fewer resources on a computer. Another advantage is that 

the software can be programmed accordingly to specific needs.  

A major drawback of programming simulation software is that the development 

of an application from scratch is usually time consuming, which would have a 

direct impact on the budget of the project. In addition, maintaining the software 

can get difficult since these applications generally are coded in thousands of 

lines. 

4.2.2. General Purpose Simulation Software 

A key part in deciding to use general-purpose simulation software is flexibility to 

model the desired process. General purpose software simulation usually tends 

to develop simulation in less time since it provides most of the features needed 

to build a simulation model. Also the simulations are easier to modify and 

maintain when the model is build by General Purpose simulation software [Law, 

2000].  

The drawback of use a general purpose simulation software is that the learning 

curve at the beginning is big if the simulation developers are not familiarized 

with the application. Also sometimes these applications may be too generic for 

modeling complex or application oriented processes. 

4.2.3. Application Oriented Simulation Packages 

An application oriented simulation package is designed to be used for a certain 

class of application such as manufacturing, health care, or call centers [Law, 

2000]. Thus the main advantage of this kind of packages is that they are 
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focused on a special application, containing tools which would help the user to 

model the processes accurately.  

The research of simulation suites did not explore all the existing applications, 

but it explored only the most common applications on the market, which are 

listed next: 

• Applied Materials - AutoMod 

• Imagine That - Extend 

• Lanner Group - Witness 

• Rockwell Automation - Arena 

• Visual Components - 3DCreate  

A description of their features will be described in the following sections. 

 

Applied Materials - AutoMod 

AutoMod is a suite of simulation tools that provides an environment for building 

models for analysis and development, as well as for control system emulation.  

The AutoMod simulation system differs from other systems because of its ability 

to deal with the physical elements of a system in physical (graphical) terms and 

the logical elements of a system in logical terms. AutoMod also offers advanced 

features to allow users to simulate complex movement (kinematics and velocity) 

of equipment such as robots, machine tools, transfer lines, and special 

machinery. All graphics are represented in 3-D space with viewing control, 

including: translation, rotation, scale, light-sourced solids, perspective, and 

continuous motion viewing. [Phillips 1998] 

AutoMod consists of two working environments. The build environment is for the 

physical and logical model definition. After the user has defined the physical 

and logical components of the model, it is then compiled into an executable 

model, where the simulation and animation run concurrently. The executable 

model is fully interactive; it can be stopped at any instant in simulated time to 

view statistics and model status. It also provides the user a set of material 

handling system templates like conveyors, path based movement, cranes and 

kinematics for controlling the movement of robots and turntables. [Phillips 1998] 
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Imagine That - Extend 

The Extend simulation environment provides the tools for all the levels of 

modelers to efficiently create accurate and credible models. Extend’s design 

facilitates every phase of the simulation project from creating, validating, and 

verifying the model, to the construction of a user interface which allows others 

to analyze the system.  Extend’s blocks can be easily configured and combined 

to model very complex systems [Krahl 2003]. Extend offers different options 

depending on the needs of the modelers: 

• Extend CP. Designed for modeling continuous processes. 

• Extend OR. Adds the discrete event architecture and capabilities to the 

Extend CP. 

• Extend Industry. This option strength on the industrial approach 

• Extend Suite. This suite bundles leading analysis and animation software 

to the Extend Industry product. 

 

Lanner Group - Witness 

Witness, provides the means to model a working environment, simulate the 

implications of different business decisions and understand any process, 

however complex. 

The keys of this software are: 

• Simple and powerful building block design. 

• Modular and hierarchical structure. 

• Extremely interactive. 

• Powerful range of logic and control options. 

• Elements for discrete manufacture, process industries, BPR (Business 

Process Reengineering), e-commerce, call centers, health, finance and 

government. 

• Comprehensive statistical input and reports. 

• Quality graphical displays. 

• Great linkage-databases. 
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Witness is available in two versions: Manufacturing Performance Edition and 

Service and Process Performance Edition. In addition to those characteristics 

optional modules are offered to increase functions like CAD and Visio linkeage, 

Virtual Reality and a developer’s version with COM and ActiveX. WitnessVR 

incorporates 3D displays to any Witness simulation model. It allows viewing 

models from any angle, setting up fly pasts and adding additional animation 

effects. It can be also used separately to any simulation model. [Lanner 2008] 

 

Rockwell Automation - Arena  

Arena is a general purpose simulation suite property of Rockwell Automation, 

which comes in different versions to fulfill the needs of different customers. 

It is offered in five versions:  

• Basic. The introductory package offers customer service and internal 

business processes modeling. 

• Professional.  Focusing on complex and large-scale project related to 

manufacturing, logistics and supply chain. 

• Enterprise. A solution for the organization facing a wide range of 

modeling problems. 

• Contact center. Application focused on call centers simulation. 

• Factory analyzer. Package focused on manufacturing, process and 

packaging. 

 

The simulations are numerical, but in case the designer wants to see a 3D 

animation, the Arena 3DPlayer offers the ability to create and view animations. 

The animation speed can be controlled and it is possible to record AVI files. 

Also it can import VRML shapes and DXF files. It targets users who need a 

more realistic perspective of their simulation animations. 3DPlayer is offered as 

an option to the any of the versions mentioned above 

 

Visual Components - 3DCreate 

Visual Components’ 3DCreate is the authoring environment for developing 

interactive 3D simulation software and reusable visual component libraries. With 

3DCreate, users of all experience levels can generate high fidelity digital 
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replicas of current and developmental production equipment from existing 

design engineering information. Once created a visual component is published 

for general access via a web page or a local library. [3DCreate] 

 

Bringing 3D CAD data to life as a simulation component supports an 

organization and its trading partners on many levels. The life-like simulation 

behavior is a tool for engineers to analyze system performance in fine detail, 

and it's a tool for customers to reduce their risk in proposal selection 

[3DCreate]. 

The software uses a graphical approach for simulating different scenarios. It 

also provides an extensible behavior by using a COM interface and a python 

script executor. The application can be embedded in other programs and 

programs can be connected through COM. Those characteristics are very 

useful to extract statistics, display the data on charts or save it on databases. 

4.2.4. Comparison of Simulation Software 

This comparison was done based in the characteristics offered by the software 

that would fit better to the project needs. The requirements for the project were 

the follow: 

• Interface with Java or .NET. 

• Simulation models and execution in 3D. 

• Possibility to extend the functionality of the software via plug-ins or 

scripts. 

• Library of models available. 

• Easy to learn and use. 
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Table 2 shows a comparison of the different simulation software presented on 

the previous section. This table is based on the information recollected from the 

product vendors and the experience of the author with the software. 

 

 

Table 2 Comparison of Simulation Software 

Simulation 
Software 

Java/.NET 

Interface 

3D 

Simulation 

Scripts/ 

Plug-

ins 

Models 

availability 

Ease to 

use / Drag 

and Drop 

Programming 

Languages 
Yes No - - No 

General purpose 

software 
Yes No - Yes No 

Automod C++ 
No, uses a 3D 

viewer 
N/A Yes Yes 

Arena VB 
No, uses a 3D 

viewer 
Yes Yes Yes 

Extend .NET 
Only on 

ExendtSim 
Suite 

Yes Yes Yes 

3DCreate .NET Yes Yes Yes Yes 

Witness .NET 
No, uses a 3D 

viewer 
Yes Yes Yes 

 

In order to develop federates to connect to the federation the simulation 

package has to be able to have an interface for Java or COM (Component 

Object Model). This interface should allow to the developer to program the 

federate within the simulation objects or using a way to communicate from the 

simulation to an external federate (Web services, sockets, etc). 

Most of the simulation packages compared in here are based on models that 

are 2D, and they use external plug-ins to make the rendering of the model in 

3D. This was a drawback for such packages, since it is easier to work with a 

program where the models are already in 3D, easier to connect, move and 

rotate incrementing the ease of use for the end user. 3D simulation software is 

also easier to learn for first time users, resulting in the fact that designers don’t 

need to code or script any behavior. 

The ease of use is also increased when the software includes model libraries. 

Users can take advantage of those libraries and start designing their 

simulations as simple as drag-and-drop components to the scenario. The 

following table shows a comparison of the properties of different simulation 

suites. 
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As a result of the observations it was decided that the software that would fit 

better the needs of the project was Visual Components – 3DCreate. The 

decision was based in the fact the package complies with the needs of the 

project such as: 

• It has a COM Interface, indeed no Java supporting. 

• Based completely in 3D Models.  

• Scripting by using Python, which is a fast and powerful feature. 

• 3D Models library already available. 

• Drag and drop components to layouts. 

These characteristics were consistent also with our analysis of the HLA 

software. After this analysis the next step was to plan the test case and develop 

the tool that would allow us to distribute a manufacturing simulation. 
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5. HLA-DS PILOT IMPLEMENTATION 

This chapter describes the pilot implementation of the HLA-DS tool. The 

description goes from the implementation to the results obtained to allow the 

reader to fully understand its principles. 

The tool was named HLA-DS, as coming from High Level Architecture and 

Distributed Simulation conjunction. This tool uses different technologies that 

allow distributing simulations across the world. Figure 15 illustrates the intended 

connection between the simulation package and the HLA RTI software. 

 

Figure 15 Proposed connection between simulations and RTI. 

In order to accomplish this schema, an architecture had to be designed. The 

follow section describes the architecture and its parts in details. 
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5.1. Architecture 

The architecture was designed to allow several Visual Components 3DCreate 

simulations to communicate within each other by using HLA. 

With that goal in mind, different layers were designed to allow the flow of 

information from the simulation package to the HLA and backwards.  

Figure 16 shows the architecture design for the HLA-DS tool. The architecture 

consists of five layers, on the top layer resides the distributed software and in 

the bottom layer HLA. Each layer is explained next. 

 

Figure 16 Architecture for the HLA-DS tool. 

5.1.1. Layer one: HLA 

This layer is the mainframe where all the communications between simulations 

take place. All these interactions are done according to the High Level 

Architecture standard.  
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5.1.2. Layer two: JaRTI 

The second layer is completely handled by the RTI, in our case the JaRTI. It 

receives all the data from simulations in the upper layers and accordingly to the 

OMT it delivers this data to the next layer. This layer hosts all federates. These 

federates are in direct contact with the simulations through the next layer. 

Federates act as gateways for the simulations and components connected to 

them and their task is to pass the information that they received to the RTI. 

Based on the functionality needed from federates, two types were designed:  

• Management federates. 

• Simulation federates. 

The management federate is in charge of creating the federation, starting and 

stopping the execution of the federation, sending synchronization points and 

destroying the federation.  

The simulation federate is in charge of publishing or/and subscribing to 

information shared by other simulation federates. In addition, the simulation 

federates should warn to other federates when is about to leave the federation. 

This is important when other federates are subscribed to the data shared by the 

resigning federate, so this subscribers can take the necessary steps towards 

this event.  

 Federates can obtain information from the Information Delivery layer in two 

different ways: 

• Directly, by using sockets. 

• Connecting though the MS2Value Core via Web Services. 

Simulation federates receive and send information to the application through 

sockets, which are described in the next layer. 

MS2Value Core: 

Federates that manage the federation can connect through web services. This 

part of the project is explained in deep in the Web services part. The console 

was not part of this thesis project. 
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5.1.3. Layer three: Information Delivery 

This layer handles all them movement of data between the MS2Value API and 

the JaRTI layers. There are three forms of communication available under this 

architecture: 

• Sockets 

• Web services 

• Console 

A socket is an abstraction, which provides an end point for communication 

between processes. Sockets originate from BSD UNIX, but are also present in 

most version of UNIX, including Linux as well as Windows NT and Macintosh 

OS. For a process to receive messages, its socket must be bound to a local 

port and one of the Internet addresses of the computer on which it runs. 

Messages sent to a particular Internet address and port number can be 

received only by a process whose socket is associated with that Internet 

address and port number. Processes may use the same socket for sending and 

receiving messages [Colouris et al. 2001] 

The information flow between the MS2Value API and JaRTI is mainly handled 

through sockets. Each layer opens a socket port to listen and send information 

to the other layer. This information should be commonly understood by the 

receiver and sender.  

The console was planed to be a graphical application in which the user can 

connect to a federation and interact with it. By using this application the user 

can visualize federates that are connected and their shared attributes. In 

addition the console would also have some management tasks, e.g. disconnect 

federates, create and destroy federations. The web services communication is 

covered in detail in a following section of this chapter. 

5.1.4. Layer four: MS2Value API 

This layer is the interface between the 3DCreate software and the Information 

Delivery layer. The layer uses one of the advantages of 3DCreate, scripting 

languages and COM API. These allow creating programs that can extract 

information, modify the simulation environment and receive data from other 

simulations. 
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This layer was programmed by the use of two different tools: 

• Python Scripts 

• 3D Create COM API 

• The 3DCreate suite comes bundled with the 2.3 version of Python Script.  

Python is a dynamic object-oriented programming language that can be used 

for many kinds of software development. It offers strong support for integration 

with other languages and tools, comes with extensive standard libraries, and 

can be learned in a few days. [Python 2007] 

The python scripts are used to customize a machine model. 3DCreate offers to 

developers and designers complete access to the properties, methods and 

events of the components, the simulation environment and the application. This 

is very useful to create different behaviors and supervise them by using a 

python script, in case some event is triggered, e.g. a sensor; a response can be 

executed by the script. 

 

Figure 17 An example of a python code to get actions from buttons and menus 

in the 3DCreate suite. 
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Figure 17 shows an example of a script that allows capturing events from a 

button and menus in the program. This simple script allows different values to 

be printed out every time the value of a menu was changed. 

This offers infinite possibilities on how to use python scripts to improve the 

realism of the simulation. A component can contain multiple scripts. In addition 

to the advantages presented before, the scripts are lightweight executed by the 

software resulting in a detailed simulation that doesn’t overwhelm the processor 

when is executed. 

Python scripts embedded in components developed in this layer were executed 

when the simulation was run; at this point the connections between the previous 

layer and the next layer are done. After the connection is established the 

information starts flowing between these two layers. 

The 3DCreate COM interface provides all the operations available in the GUI as 

well as access to the layout model. It is designed primarily to allow client 

applications to create and manipulate components and layouts. It consists of 

the following parts [3DCreate User’s manual]: 

• Dynamic property interface 

• Application object 

• Component list and node tree 

• Command and selection lists 

• Feature tree interface 

• Behavior interface and descendants 

• Geometry interface 

The COM interface provides stronger control over the application. Applications 

can be created and embedded in the 3DCreate as a tabs or can run 

independently of the software. This interface allows programming software for 

the simulation suite in different programming languages, for example: 

• Visual Basic 

• Visual C++  

• Visual C# 
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In this layer, a tab for the HLA-DS application was designed for the 3DCreate 

environment. This tab was programmed on C# language using Microsoft® 

Visual Studio® 2003.  

5.1.5. Layer five: 3DCreate  

The 3DCreate layer is completely in charge of the simulation task. This is done 

completely by the 3DCreate simulation software.  

In 3DCreate users can create components, or use components from the local 

library and drag them to the simulation environment. After several components 

are dragged to the environment, these components can be snap with each 

other and/or arrange them in different layouts. An example of basic layout is 

shown in Figure 18. 

 

Figure 18 Example of a simulation running on the 3DCreate software. 

The simulation is executed by clicking on the “Run” button on the top-right 

corner. Following that action the simulation starts to be executed where 
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machines and robots start their preprogrammed tasks until the user ends the 

simulation by clicking the “Pause” button. 

The use of layers during the definition of the architecture of the system 

permitted to develop different areas that were implemented individually during 

the project. Layers allow to isolated areas, which eases finding problems and 

fixing them, with little or no repercussions at all in other areas of the system. 

5.2. Web services 

By definition “a Web Service is a software system designed to support 

interoperable machine-to-machine interaction over a network. It has an interface 

described in a machine-processable format (specifically WSDL). Other systems 

interact with the Web service in a manner prescribed by its description using 

SOAP-messages, typically conveyed using HTTP with an XML serialization in 

conjunction with other Web-related standards”. [Earl 2004] 

Using Web Services gives the following advantages: 

• Invocation of applications around the Internet and across companies. 

• Standardization of applications. 

• Scalable and extensible application. 

Service-Oriented Architecture (SOA) is defined in the W3C Glossary as “A set 

of components which can be invoked, and whose interface descriptions can be 

published and discovered.”[W3, 2008]  

A basis of SOA is the concept of service as a functional representation of a real-

world business activity that is meaningful to the end user and encapsulated in a 

software solution. Using the analogy between the concept of service and 

business process, SOA provides for loosely coupled services to be orchestrated 

into business processes that support business goals. [Stojanovic, 2005] 

In addition, SOA extends the use of Web Services for applications by 

embedding these services in the application. As a result, the applications are 

based in Web Services, not just applications with Web Services as an 

extension. 

SOA is based on Extensible Markup Language (XML), defined later in the 

document, using the XML Layers, with focus on exposing existing application 

logic as a loosely coupled application. [Earl 2004] 
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Applications using SOA integrate a new tier to the architecture of the 

application; this new tier is called the integration tier. This tier is in charge of 

sending data to the next tier of the application, as is shown in Figure 19. This 

makes possible that the next tier is not in the same system but anywhere in the 

world, being the principal advantage of using SOA. 

 

Figure 19 Logical Representation of a Service Oriented Integration Architecture 

[adapted from Earl 2004]. 

All of these advantages offered by Web Services and SOA were taken into 

account when planning and selecting the best technologies for the architecture 

of the HLA-DS application. Specifically these technologies were applied when 

developing the Federation Manager, which allowed creating a federation from a 

client without implementing the application in every client.  

Developed Web services  

As it is mentioned above, the second layer of the architecture specifies that the 

Manager federate would make use of web services technology for 

communicating with the federation. This allows invoking and controlling 

remotely the behavior of the federation via the manager federate. 

The following services where created to manage the federation:  

• Create federation. As it name points out, it creates a new federation and 

sets the federation to wait for clients to connect. 
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• Start Simulation. After all the clients have connected to the federations, 

the manager sets the simulation to start. This action will allow 

interactions from one client to other(s). 

• Stop Simulation. The stop simulation web service sends a message 

through the federation to all federates subscribed to it to stop their 

interactions in order to stop the simulation and resign from the federation. 

After all of them have resigned, it destroys the Federation. 

 

With the use of those three web services, the Manager federate facilitates the 

remote control of the federation. The following code is an extract of the web 

service implemented to create the federation: 
  
   public String createFederation (String fedname ) 
{ 
 ref = SingletonObject.getSingletonObject(fedname); 
 String result = ref.createFederation(fedname); 
 
 return ((String) result); 
} 

This code shows that after getting a unique reference of the Manager federate, 

this instance calls to the method that creates a federation instance. The 

parameter passed to the method is the desired name for the federation.  The full 

code programmed to create the Manager federate web services can be found in 

Appendix 1. 

There were several considerations when designing and implementing the 

federation Manager. First of all, there should be only one instance of the 

Manager running at the moment. When an application is invoked by a web 

service, a new instance of the application is created, giving the possibilities that 

several instances of the application can be created and run separately. In the 

case of the federation manager this behavior is not acceptable and undesirable 

since it will create problems if the service to create a new federation is called 

several times. This will cause that the web service tries to create several 

federation managers, which will result in different managers trying to start or 

stop the federation causing an erratic behavior in the Federation. 
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In order to avoid this problem the service was programmed to only create a new 

instance of the federation manager if no instance of it exists already. This kind 

of programming pattern is called “singleton” and is represented with following 

code: 
  public static SingletonObject getSingletonObject() 
{ 
 try { 
      if (ref == null) { 
           ref = new SingletonObject(); 
      } 

} 
 catch (Exception e){ 
  System.out.println("ERROR: " + e); 
 } 
 return ref; 
  } 

In case that an instance of a federation manager exists, every request would be 

served by the existing federation manager. This ensures that no errors are 

created in the federation, for example two federations trying to create a 

federation at the same time, since an error might disrupt its execution and result 

in erroneous behaviors or crash of the system. The full implementation of the 

Singleton that calls the federate manager is showed in the Appendix 2. 

The web services created were hosted in an Apache Tomcat server with Axis 2 

web services framework. The setup used for the implementation of this 

experiment was based totally on the instructions that came with the software. 

The explanation of how to install the web server is not covered in this thesis 

work. A very detailed explanation of how to install and configure the Apache 

Tomcat server can be found in the following address http://tomcat.apache.org. 

Additionally, a guide for installing the framework for supporting web services 

can be found in this address http://ws.apache.org/axis. 

For this implementation the version 6.0.13 of the Apache Server was used 

along the Axis2 1.2 build. These versions of the software are recommended and 

were tested during the implementation of the project. Newer versions of the 

software are available at the moment of writing, but due to time constraints the 

author was not able to test them.  

5.3. 3DCreate 

The following step was to define the federates that will connect to the 

simulation. These federates are implemented in the simulation suite and pass 

the information data from the simulation environment to the federation. 
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As proof of concept, an implementation of two models with different behaviors 

were created and programmed in 3DCreate. The first model was defined as 

sender of information to the federation; whereas the second model focused on 

receiving data sent by the first federate. Both models have the ability to change 

the simulation speed. Figure 20 shows the first created model, mentioned 

above, which presents a simulator where mobile telephone parts are packed. 

The machines in this simulator pick the parts from the feeders’ trays and place 

them on pallets that are transported by a conveyor. The receiver federate, 

shown in red on the right side of Figure 20, is placed at the end of the conveyor. 

This model connects this simulator to a federate, sending information every time 

a package arrives to it. The model uses a python script that opens a socket to 

communicate with its Federate counterpart and share information with the 

Federation. 

 

Figure 20 3D Simulation model with the federate implementation (shown in 

red).  
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The information that each federate shares with others was defined previously in 

the OMT of the federation. The full OMT definition can be found in Appendix 3. 

For this experiment the OMT only allowed interactions of two types of products 

the changes on simulation speed by the simulators, as shown by the following 

code: 
 
(class ManufacturedPackages reliable timestamp            
 (parameter packageA) 
     (parameter packageB)        
)  
(class SimulationSpeed reliable timestamp    
        (parameter simSpeed)       
 )  

During this experiment two types of products were defined to be sent from one 

simulator to the next one: one was only an empty container and the other one 

was a similar box containing a mobile phone, its cover and a battery. Figure 21 

shows one of the latter packages where all the mobile telephone components 

can be appreciated. 

 

Figure 21 Container sent by the Simulator “A”. 

The data corresponding to the box and its contents are sent by one simulator 

via the federate to the federation; from there other subscribed interface 

federates can pass the message to their simulators. In this specific experiment 
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the boxes were partly processed in the Simulator “A” and finally packed in 

Simulator “B”.  

To send all this information between simulations a message format was 

designed and implemented in the federates. The format chosen was XML since 

it is easy to use, adapt and extend to individual needs. The messages format 

used was similar to the following example: 
 
<objectP> 
 <Name>string</Name> 
 <VCID>string</VCID> 
 <objectC> 
  <Name>string</Name> 
  <VCID>string</VCID>  
  <Center.X>float</Center.X> 
  <Center.Y>float</Center.Y> 
  <Center.Z>float</Center.Z> 
 </objectC> 
</objectP> 
 

The simulation experiment was focused on sending packages from one 

simulator to another. As it was described above, a package is a board that 

contains several parts of a mobile phone. In the message the container board 

was designed as “objectP”, or parent object. The objects contained by this 

cardboard were designed as “objectC” or child objects. Name and VCID (Visual 

Componets Identity) are parameters that help to identify the type of product is 

being analyzed and shared by the federate. In Figure 21, the package show that 

in the container board has pockets specially designed for the placement for 

each of the parts of the mobile phone. In order to place the parts in the right 

position, additional information about the coordinates where the parts of the 

mobile phone have to be placed, are provided. XML permits that if several parts 

are provided on the container the “objectC” section will repeat as many times as 

needed by the container, describing each of the parts individually.  
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Figure 22 shows the console where Simulator “A” and its federate, Federate “A” 

subscribe to the Federation. It also shows that the step where the federate 

publishes/subscribes to the desired information.  

 

Figure 22 Screenshot of the console output of a Federation. 

The lines shown in the bottom of Figure 22 describe that the federate starts 

waiting for other federates to join to the Federation to start the simulation. This 

was a condition in this experiment, since the Federate Manager was the only 

federate able to start the simulation until all federates were signed in. 

5.4. Summary 

During this chapter the test implementation was presented and described. A 

detailed description of the architecture was shown as well as each of the parts 

composing the proposed architecture. Additionally the functionality of the test 

implementation and some algorithms used were described. It is important to 

note that the experiences of the author are included in this chapter. 

The conclusion and results of the experiment done during this thesis work are 

shown in the following chapter.  
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6. CONCLUSIONS AND RESULTS 

This thesis presented the advantages of using simulation as a tool in different 

industries, in particular, a distributed simulation for manufacturing processes. 

The requirements for implementing a distributed simulation and a method to 

distribute it along different clients were explained in detail. 

6.1. Conclusions 

The technological trends presented at the beginning of this thesis work have 

showed that until now, manufacturing companies haven’t taking real advantage 

of the real power of simulation for their own benefit. Game and defense 

industries have been using simulations for several years by now and have 

learned that simulation is a tool that will give them advantages over their 

competitors. Some of the fields where simulation has showed unquestionably its 

potential are designing of products and simulation of virtual environments, 

among others.  

Companies, which use simulation as a tool at the present time, still develop 

complex models that are commonly stored and forgotten in insolated 

computers. Additionally, in recent years companies have started to move their 

offices and production facilities closer to their customers in geographical 

dispersed locations. This latter fact has led to the situation where models are 

housed in those facilities without interaction with the outside world, becoming 

isolated and rarely reused. By using a distributed simulation approach, those 

problems can be solved. 

The implementation of the HLA-DS tool showed that the concept of integrating 

different tools like a 3DCreate simulation and a HLA RTI is feasible. This 

integration allowed common models designed in the simulation suite to 

communicate with other simulations by using plug-and-play components 

resulting in a set of simulations interconnected as a whole. 3DCreate allows 

using drag-and-drop components that are easily plugged to existing models. By 

using the components designed in the implementation of this thesis work, a 

previously isolated model was able to communicate with others models through 

the HLA RTI. 

Distributed simulation has the potential to become an important tool for widely 

distributed manufacturing organizations. A very promising field for the effective 
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use of distributed simulation is Desktop factories. Desktop factories are a push 

towards more efficient manufacturing operations, and because of their very 

nature, distributed operations are a must. This increases the complexity of 

overall capacity calculations and overall system simulation.  

The HLA-DS application developed as part of the MS2Value serves as a 

theoretical proof of distributed simulation for manufacturing systems. A pilot 

case study has been developed, but no industrial application has been foreseen 

in the near future. Development on the HLA-DS will continue still as an open 

source project, partly funded and developed by Visual Components and 

research partners, such as Tampere University of Technology. 

6.2. Future Work 

During the implementation of this thesis work there were new ideas of what 

could be a future development of this project to solve some of the problems 

found during the implementation phase. This is the case of the JaRTI 

framework, which didn’t allow a direct implementation with the 3DCreate suite. 

Federates in the future should be develop by using the feature of C++ bindings, 

which was not present at the time of the implementation. The use of those 

features would allow direct development of federates in connection with the 

simulation suite by means of the COM interface. That will solve any connection 

problem that could arise in the actual implementation and decrease the actual 

time of response of the simulations.   

The testing part of the federation was done in a limited scale. The amount of 

federates interacting concurrently during the tests done in the implementation 

phase was five at its maximum.  A set of tests with a larger number of federates 

must be planned and implemented to show that the system reliability is also 

good in a larger scenarios. Additionally the information shared by federates 

must be extended assure that other study cases could take advantage of this 

approach. At present time, federates exchange limited amount of information, 

based principally on the study case.  

Finally, the implementation of the visual console client should be done in the 

future for an easy exploration of the federation and the information exchanged 

by federates. The features mentioned above are not obligatory, but 

recommended by the author as a way to satisfy better the needs of future 

projects. 
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package ems; 
 
import com.lbf.middlesim.MSProxy; 
import com.lbf.middlesim.fom.ICMetadata; 
import java.util.Hashtable; 
import org.apache.log4j.Logger; 
import org.apache.log4j.PropertyConfigurator; 
 
public class SingletonObject 
{ 
 private MSProxy proxy; 
    private ICMetadata stopMetadata; 
    private static Logger logger = null; 
 private String fedfile; 
 private String iClass; 
 private Hashtable HT; 
 
  private static SingletonObject ref = null; 
 
  private SingletonObject(String fedname) throws Exception 
  { 
  HT = new Hashtable(); 
     this.fedfile = "C:/Federation/middlesim-
0.1.5/prot/config/prototype.fed"; 
  this.iClass = "InteractionRoot.Management.StopSimulation"; 
 
  // Specify the binding and create the proxy 
  System.setProperty( "msim.binding", "portico" ); 
 
  //This line went to the end, to use the Hash Table 
  //this.proxy = new MSProxy( "executionManager" ); 
  this.logger = 
Logger.getLogger(SingletonObject.class.getName()); 
  PropertyConfigurator.configure("C:/Federation/middlesim-
0.1.5/prot/config/log4j-prototype.properties"); 
 
 
  } 
 
  public static SingletonObject getSingletonObject(String fedname) 
  { 
 try { 
     if (ref == null) { 
         ref = new SingletonObject(fedname); 
     } 
 
 } 
 catch (Exception e){ 
  e.printStackTrace(); 
 } 
 
     return ref; 
  } 
 
  public Object clone()throws CloneNotSupportedException 
  { 
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    throw new CloneNotSupportedException(); 
    // that'll teach 'em 
  } 
 
  public String createFederation(String fedname) 
  { 
   if (! HT.containsKey("EX"+fedname)){ 
    try { 
    this.proxy = new MSProxy( "EX"+fedname ); 
      HT.put("EX"+fedname, proxy); 
 
      proxy = (MSProxy)HT.get("EX"+fedname); 
 
         // 1. create the federation // 

logger.info( "Create federation with fed file [" + 
fedfile + "]" ); 

     proxy.create( fedname , fedfile ); 
 
     // 2. join the federation // 
     proxy.join( fedname, "EX"+fedname, fedfile ); 
 
     // 3. announce JOINED sync point // 
     proxy.announce( "JOINED" ); 
 
 // 3.1 set up ability to send "StopSimulation" interaction // 
     this.prepare(); 
     return "Created"; 
  } 
 
  catch (Exception ex){ 
 
   HT.remove("EX"+fedname); 
   return "Error - "+ ex.getMessage(); 
  } 
 } 
 else{ 
 
  return "Error - Federation already exists"; 
 } 
  } 
 
  public void prepare() 
  { 
    // fetch the metadata for the interaction // 
  this.stopMetadata = proxy.getFOM().getInteractionClass( iClass ); 
 
    // publish the interaction class // 
    proxy.publishIC( iClass ); 
   logger.info( "Published interaction class [" + iClass + "]" ); 
  } 
 
  public String startSimulation(String fedname) 
  { 
   try{ 
   proxy = (MSProxy)HT.get("EX"+fedname); 
 
     logger.info( "Starting Simulation" ); 
 
     // 5. achieve the JOINED sync point // 
     proxy.achieveAndWait( "JOINED" ); 
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     // 6. announce and wait on the REGISTERED_OBJECTS 
sync point // 
     proxy.announce( "REGISTERED_OBJECTS" ); 
     proxy.achieveAndWait( "REGISTERED_OBJECTS" ); 
 
     // 7. announce the READY sync point // 
     // after this point has been achieved, the 
simulation will actually start // 
     proxy.announce( "READY" ); 
 
     // 8. achieve READY sync point // 
     proxy.achieveAndWait( "READY" ); 
 
     return "Started"; 
 
 } 
  catch (Exception ex){ 
 
   return "Error - "+ ex.getMessage(); 
 
 } 
 
  } 
  public String stopSimulation(String fedname) 
  { 
   try{ 
 
  proxy = (MSProxy)HT.get("EX"+fedname); 
    // send an instance of the stop simulation interaction // 
    proxy.sendRO( this.stopMetadata.createInstance() ); 
    logger.info( "Sent RO instance of [" + iClass + "]" ); 
 
    // 11. register FINISHED sync point and wait for it // 
    proxy.announce( "FINISHED" ); 
    logger.info( "Waiting for other federates to finish" ); 
    proxy.achieveAndWait( "FINISHED" ); 
 
    // 12. register DESTROY point // 
    proxy.announce( "DESTROY" ); 
     logger.info( "Waiting for other federates to resign" 
); 
     proxy.achieveAndWait( "DESTROY" ); 
 
     // 13. resign from the federation // 
     logger.info( "All other federates resigned, 
resigning and destroying" ); 
     proxy.resign(); 
 
     // 14. destroy the federation // 
     proxy.destroy( fedname ); 
     logger.info( "Execution over" ); 
     HT.remove("EX"+fedname); 
   return "Stopped"; 
  } 
  catch (Exception ex){ 
 
   return "Error - "+ ex.getMessage(); 
 
  } 
  } 
} 
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package ems; 
 
import ems.SingletonObject; 
 
public class ExecutionManagerService{ 
 private static SingletonObject ref = null; 
 
   public String startSimulation (String fedname) 
   { 
  ref = SingletonObject.getSingletonObject(fedname); 
  String result = ref.startSimulation(fedname); 
 
  return ( (String) result); 
 } 
 
 public String stopSimulation (String fedname) 
 { 
  ref = SingletonObject.getSingletonObject(fedname); 
  String result = ref.stopSimulation(fedname); 
 
  return ((String) result); 
 } 
 
 public String createFederation (String fedname ) 
 { 
  ref = SingletonObject.getSingletonObject(fedname); 
  String result = ref.createFederation(fedname); 
 
  return ((String) result); 
 } 
 
} 
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(FED 
   (Federation Prototype) 
   (FEDversion v1.3) 
   (spaces) 
   (objects  
    (class ObjectRoot 
       (attribute privilegeToDelete reliable timestamp) 
       (class RTIprivate) 
     (class Data 
              (attribute speed reliable timestamp)     

             (attribute time reliable timestamp)     
             (attribute size reliable timestamp)         
)                

    )  
   ) 
   (interactions 
     (class InteractionRoot reliable timestamp 
       (class ManufacturedPackages reliable timestamp 
           (parameter packageA) 
           (parameter packageB) 
       ) 
       (class SimulationSpeed reliable timestamp 
           (parameter simSpeed) 
       ) 
       (class Management reliable timestamp 
  (class AdjustRatio reliable timestamp                  
   (parameter newRatio) 
         )          
   (class StopSimulation reliable timestamp) 
       ) 
     ) 
   ) 
 ) 


