
OLLI MYLLÄRI

DIGITAL TRANSMITTER I/Q CALIBRATION: ALGORITHMS
AND REAL-TIME PROTOTYPE IMPLEMENTATION
Master of Science Thesis

Examiners: Prof. Mikko Valkama and
M.Sc. Lauri Anttila

Examiners and topic approved in the Faculty
of Computing and Electrical Engineering
Council Meeting on 7th of April, 2010

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
MYLLÄRI, OLLI: Digital Transmitter I/Q Calibration: Algorithms and Real-
Time Prototype Implementation
Master of Science Thesis, 85 pages, 19 appendix pages.
June 2010
Major: Digital Transmission
Examiners: Prof. Mikko Valkama and M.Sc. Lauri Anttila

Keywords: I/Q imbalance, digital pre-distortion, real-time implementation, USRP,
low-IF, direct-conversion

Nowadays, the direct-conversion and the low-IF transceiver principles are seen as the
most promising architectures for future flexible radios. Both architectures employ
complex I/Q mixing for up- and downconversion. Consequently, the performance
of the transceiver architectures can be seriously deteriorated by the phenomenon
called I/Q imbalance. I/Q imbalance stems from relative amplitude and phase
mismatch between the I- and Q-branches of the transceiver, thus resulting in self-
interference or adjacent channel interference. This thesis addresses details of the
real-time prototype implementation of the transmitter unit realizing a widely-linear
least-squares-based I/Q imbalance estimation algorithm and a corresponding pre-
distortion structure as previously proposed by Anttila et al.

First transceiver architectures and radio transmitter principles are discussed with
special emphasis on I/Q imbalance related aspects. Thereafter, the imbalance es-
timation principle itself is reviewed and a recursive version of it is derived. Then
the implementation platform and software are introduced. After that, implementa-
tion details are discussed and implementation-related practical issues are addressed.
Finally, simulation results and comprehensive RF measurement results from the
real-time prototype implementation are presented.

The work done in this thesis realizes a real-time prototype implementation of the
WL-LS I/Q imbalance estimation algorithm and corresponding pre-distortion struc-
ture. In addition, the implementation is shown to give consistent results with Matlab
simulations and it can operate on general purpose processors.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
MYLLÄRI, OLLI: Lähettimen digitaalinen I/Q kalibrointi: algoritmeja ja reaali-
aikainen prototyyppitoteutus
Diplomityö, 85 sivua, 19 liitesivua.
Kesäkuu 2010
Pääaine: Digitaalinen siirtotekniikka
Tarkastajat: Prof. Mikko Valkama ja DI Lauri Anttila

Avainsanat: I/Q epätasapaino, digitaalinen esivääristys, reaali-aikainen totetutus,
USRP, matalavälitaajuus, suoramuunnos

Nykyaikana suoramuunnos- ja matalavälitaajuuslähetin-vastaanotin periaatteet nähdään
lupaavimpina arkkitehtuureina tulevaisuuden joustaville radioille. Molemmat arkkite-
htuurit käyttävät taajuusmuunnoksissa kompleksista I/Q taajuus-sekoitusta. Tästä
johtuen mainittujen lähetin-vastaanotinarkkitehtuurien suorituskykyä huonontaa ilmiö
nimeltä I/Q epätasapaino, mikä johtuu suhteellisesta amplitudi ja vaihe epäsovituk-
sesta modulaattorin I- ja Q-haarojen välillä. Tämän vuoksi signaaliin muodostuu
itseishäiriötä tai viereisen kanavan häiriötä heikentäen radiotaajuisen signaalin puh-
tautta. Tässä diplomityössä esitellään reaaliaikaisen lähetin-vastaanotinprototyypin
toteutus, jossa on käytössä Lauri Anttilan aiemmin julkaisema laajasti lineaariseen
pienimmän neliösumman menetelmään perustuva I/Q epätasapainon estimointi al-
goritmi ja siihen liittyvä esivääristysrakenne.

Aluksi esitellään lähetin-vastaanotinarkkitehtuurit ja niihin liittyvät pääperiaatteet
painottaen I/Q epätasapainoon liittyviä asioita. Tämän jälkeen johdetaan I/Q epä-
tasapainon estimointiin käytettävän algoritmin rekursiivinen versio ja esitellään to-
teutukseen käytettävä kehitysalusta ohjelmistoineen. Tämän jälkeen käydään läpi
toteutuksen yksityiskohdat ja siihen liittyvät käytännön ilmiöt. Lopuksi esitellään
simulaatiotulokset ja kokonaisvaltaiset radiotaajuusmittaukset reaali-aikaisesta pro-
totyyppitoteutuksesta.

Diplomityöprojektin tuloksena on radiolähettimen reaali-aikainen prototyyppi to-
teutus, jossa on käytössä laajasti lineaariseen pienimpään neliösummaan perustuva
I/Q epäsovituksen estimointi ja vähentämis algoritmi. Implementaatio tuottaa yh-
denmukaisia tuloksia Matlab simulaatioiden kanssa ja pystyy toimimaan yleiskäyt-
töisen suorittimen laskentateholla.

IV

PREFACE

The research leading to this thesis was supported by the Academy of Finland, the
Finnish Funding Agency for Technology and Innovation (Tekes) and the Technol-
ogy Industries of Finland Centennial Foundation. It has been part of a strategic
research project in the Tekes GIGA Technology Programme called "DIRTY-RF:
Advanced Techniques for RF Impairment Mitigation in Future Wireless Radio Sys-
tems". Moreover, the research work presented in this thesis has been carried out
during the years 2009-2010 at the Department of Communications Engineering,
Tampere University of Technology, Finland.

First and foremost, I would like to express my sincere gratitude to my supervisor
Prof. Mikko Valkama for giving me an opportunity to join and work in his group
with interesting and challenging topics, and his guidance, advice and support during
the work. I would also like to express my deepest gratitude to M.Sc. Lauri Anttila
for fruitful talks and his invaluable guidance, advice, and co-operation during the
thesis project. Furthermore, the atmosphere at the Department of Communications
Engineering has been the most pleasant and inspiring. Therefore, I would like
to thank all the current and earlier personnels of the department for giving me
a possibility to become a member of this wonderful team.

Finally, I wish to express my warmest thanks to my parents Markku and Outi Myl-
läri for their help, support and love throughout my studies. At last, I deeply thank
my fiancée Mari Paju for love, support and patience during this work and especially
during the everyday life.

On 5th of May 2010, in Tampere, Finland.

Olli Mylläri

V

CONTENT

1. Introduction 1
1.1 Motivation and Background . 1
1.2 Scope and Outline of the Thesis . 2

2. Bandpass Transmission and Radio Transmitter Principles 4
2.1 Real and Complex Signals . 5
2.2 Frequency Translations . 6

2.2.1 Real Mixing . 6
2.2.2 Complex Mixing . 7

2.3 Bandpass Transmission . 9
2.4 Transmitter Architectures . 10

2.4.1 Superheterodyne . 11
2.4.2 Low-IF . 12
2.4.3 Direct-conversion . 13
2.4.4 All-Digital . 13

2.5 RF Impairments in Different Transmitter Architectures 14
2.5.1 Impairments in Mixing Stage . 15
2.5.2 Non-linearities in Power Amplifiers 17
2.5.3 Non-idealities in Digital-to-Analog and Analog-to-Digital Converters 19

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 22
3.1 Transmitter Signal Models . 23

3.1.1 Narrowband Frequency-Independent Model 23
3.1.2 Wideband Frequency-Selective Model 26

3.2 Mirror Frequency Interference Problem 32
3.3 Transmitter I/Q Mismatch Estimation and Compensation 33

3.3.1 I/Q Imbalance Estimation and Mitigation Schemes 34
3.3.2 Widely-Linear Least-Squares Approach 36

4. Development Environment for Real-Time Implementation 48
4.1 USRP and USRP2 . 48

4.1.1 VRT-49 . 51
4.1.2 Daughter Boards . 53

4.2 GNU Radio . 54
4.2.1 Python Flow Graphs . 55
4.2.2 Signal Processing Blocks . 55
4.2.3 GNU Radio Companion . 56

CONTENT VI

4.3 Other Software for Use With USRPs 57
4.3.1 Windows Drivers . 57
4.3.2 Matlab and Simulink Interfacing 58

5. Implementation Details and Practical Aspects 59
5.1 DC Offset Removal . 61
5.2 Integer Delay Estimation . 62

5.2.1 Fourier Transform Fitting Approach 62
5.2.2 Iterative Digital Differential Approach 63

5.3 Fractional-Delay Estimation . 65
5.3.1 Maximum-Likelihood Non-Data-Aided Approach 65
5.3.2 Recursive Maximum-Likelihood Data-Aided Approach 67

5.4 Fractional-Delay Compensation . 68
5.5 Implementation-Related Practical Aspects 69

5.5.1 Carrier Frequency Offset . 69
5.5.2 Feedback Loop Signal Delay . 70
5.5.3 Feedback Loop SNR . 73
5.5.4 Computational Complexity . 74
5.5.5 Convergence Behavior of Different Adaptive Algorithms 74

6. Measurements and Results 78
6.1 Measurement Setup . 78
6.2 Results from Real-Time Implementation 78

6.2.1 Direct-Conversion Transmitter Mode Measurements 79
6.2.2 Low-IF Transmitter Mode Measurements 79

7. Conclusions 85

References 86

Appendix A. Good Practices in GNU Radio Environment

Appendix B. GNU Radio Examples

Appendix C. USRP2 Firmware Update Procedure

VII

LIST OF ABBREVIATIONS

ACI adjacent channel interference

ADC analog-to-digital converter

AGC automatic gain control

ANSI American National Standards Institute

AM amplitude modulation

ARLS approximate recursive least squares

AWGN additive white Gaussian noise

BB baseband

BER bit-error rate

BPF bandpass filter

CFO carrier frequency offset

CIC cascade-integrator comb

CR cognitive radio

DA data-aided

DAC digital-to-analog converter

DC direct current

DDC digital down-converter

DSP digital signal processing

DUC digital up-converter

EVM error vector magnitude

FARLS fast approximate recursive least squares

FE front-end

FFT fast Fourier transform

FIR finite impulse response

List of Abbreviations VIII

FPGA field programmable gate array

FT Fourier transform

GN Gauss-Newton recursive least squares

GNSS Global Navigation Satellite System

GPP general purpose processor

GUI graphical user interface

HB half-band

I in-phase

ICI inter-carrier interference

IF intermediate frequency

IFFT inverse fast Fourier transform

IFT inverse Fourier transform

IMD intermodulation distortion

I/O input/output

I/Q in-phase/quadrature

IR image reject

IRR image rejection ratio

ISI inter-symbol interference

LMS least mean squares

LNA low noise amplifier

LO local oscillator

LP lowpass

LS least-squares

LUT look-up table

MFI mirror frequency interference

List of Abbreviations IX

MIMO multiple-input and multiple-output

ML maximum likelihood

MSE mean square error

NDA non-data-aided

NLMS normalized least mean square

OFDM orthogonal frequency division multiplexing

PA power amplifier

PAPR peak-to-average power ratio

PC personal computer

PGA programmable gain amplifier

PLL phase-locked loop

PSK phase shift keying

PM phase modulation

Q quadrature

QAM quadrature amplitude modulation

RF radio frequency

RLS recursive least-squares

RRC root-raised-cosine

RSSI received signal strength indication

RX/TX receiving/transmitting

SH sample-and-hold

SD secure digital

SDR software defined radio

SNR signal-to-noise ratio

SWIG simplified wrapper and interface generator

List of Abbreviations X

TCXO temperature compensated crystal oscillator

TDD time division duplex

UHD universal hardware driver

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

WL widely-linear

WL-LS widely-linear least-squares

XI

LIST OF SYMBOLS

0 Zero matrix or vector

a Interpolation weight vector

c Time domain cross-correlation

C(f) Frequency domain cross-correlation

D Imbalance filter impulse response delay

D(n) FARLS diagonal matrix

DCest DC offset estimate

e(n) Error in adaptive algorithms

f Frequency

fc Center frequency or carrier frequency

fIF Frequency of IF stage

fs Sampling frequency

g Feedback loop gain

gT Relative gain or amplitude imbalance of LO signal

ĝ Concatenated imbalance filter impulse response estimate

ĝ1 Non-conjugate imbalance filter impulse response estimate

ĝ2 Conjugate imbalance filter impulse response estimate

ĝ0
1 Zero-padded non-conjugate imbalance filter impulse response estimate

ĝ0
2 Zero-padded conjugate imbalance filter impulse response estimate

g1(t) Non-conjugate imbalance filter impulse response

g2(t) Conjugate imbalance filter impulse response

g1,p(t) Modified non-conjugate imbalance filter impulse response

List of Symbols XII

g2,p(t) Modified conjugate imbalance filter impulse response

g̃1(t) Observable non-conjugate imbalance filter impulse response

g̃2(t) Observable conjugate imbalance filter impulse response

G1(f) Non-conjugate imbalance filter transfer function

G2(f) Conjugate imbalance filter transfer function

G̃1(f) Observable non-conjugate imbalance filter transfer function

G̃2(f) Observable conjugate imbalance filter transfer function

ℎfb(t) Feedback loop impulse response

ℎI(t) Non-ideal in-phase filter impulse response

ℎQ(t) Non-ideal quadrature filter impulse response

ℎT (t) Relative non-ideal filter impulse response

Hfb(f) Feedback loop transfer function

I Identity matrix

IRRdB(f) Image Rejection Ratio in decibels

k(n) Kalman gain vector

l(t) LO signal

Lb Length of observed data sequence

Nbits Number of bits in numerical representation

Ng Length of imbalance filter impulse response

Nw Length of pre-distortion filter impulse response

OSF Over-sampling factor

p̂ Integer delay estimate

List of Symbols XIII

P(n) Inverse of covariance matrix

r(t) Transmitter output / RF signal

Rb Bitrate

t Time

u(n) Input vector for adaptive algorithms

w(t) Pre-distorter impulse response

ŵ Pre-distortion filter impulse response estimate

WOPT (f) Optimum pre-distorter transfer function

x(t) Baseband equivalent of the imbalanced RF signal

xp(t) Baseband equivalent of the pre-distorted RF signal

y(t) Observed feedback loop data sequence

y(n) Observed feedback loop data block at time instant n

Y (f) Fourier transform of y(n)

ymean Complex mean value of y

ycomp DC offset free version of y

z(t) Ideal baseband equivalent transmit signal

zp(t) Pre-distorted transmit signal

z(n) Original transmitted data sequence

Z(n) Convolution matrix of original transmitted data sequence

¯ FARLS gain vector

± RLS initialization factor

±(t) Impulse function

List of Symbols XIV

µ Feedback loop phase

¸ RLS forgetting factor

¹ LMS Step-size variable

¿ Fractional-delay estimate

ÁT Relative phase mismatch of LO signal

Ã ARLS gain variable

! Digital normalized frequency

ℑ [.] Imaginary part of the number

ℜ [.] Real part of the number

(.)T Transpose of a matrix or vector

(.)−1 Inverse of a matrix

(.)∗ Complex conjugate

(.)H Hermitian transpose of a matrix or vector

(.)+ Pseudo-inverse of a matrix

∥.∥ Norm of a vector

∧ (.∣.) Log-likelihood function

ℱ{.} Fourier transform

ℱ−1{.} Inverse Fourier transform

Tr{.} Trace of a matrix

1

1. INTRODUCTION

1.1 Motivation and Background

In recent years, the wireless communication sector has experienced unprecedented
growth as new emerging standards offer higher throughput, more reliable data trans-
fer and more diverse services. There are currently close to 4.6 billion cellular users
worldwide and this number is expected to grow as transmission rates grow [42]. This
rapid proliferation constitutes a challenging future for the wireless communication
industry.

The diversity of wireless standards creates a need for multi-standard terminals which
will support all existing as well as emerging wireless radio systems [35]. One partic-
ularly interesting approach in designing a multi-standard wideband transceiver is to
build a flexible system which utilizes one common radio frequency (RF) front-end
and can be programmed to operate in all communication modes [29, 15, 25, 72, 62,
63, 88], such a concept is also known as software defined radio (SDR). However,
the design of such a device poses many technical challenges which must be over-
come to enable its operation. The major challenge in this regard is the efficient and
undistorted use of spectrum, a scarce and valuable resource [35]. Wireless terminals
operate at frequencies of several gigahertz and the spectrum in this frequency range
is already crowded.

The current trend in implementing future wireless radio transceivers is to use the
direct-conversion [2, 1, 59] or the low-IF [61, 1] transceiver architectures. However,
there are still a number of practical issues to be overcome before these transceiver
architectures can be fully implemented in future wideband flexible transceiver units.
In both architectures many transceiver functions have been moved from analog parts
towards the digital signal processing (DSP) parts, enabling a low-cost, simple, less
power-consuming and highly integrable transceiver unit [56]. One practical problem,
however, is the sensitivity of such simplified analog front-ends to imperfections in
the used radio electronics [52].

Both of the above-mentioned transceiver architectures are based on the analog com-

1. Introduction 2

plex in-phase/quadrature (I/Q) up- and downconversion, which renders them vul-
nerable to amplitude and phase mismatch between the in-phase (I)- and quadrature
(Q) branches [21, 38, 5, 49, 89]. As a result, there is crosstalk between mirror frequen-
cies which, depending on the transceiver architecture selected, yields self-interference
or adjacent channels interference, when interpreted in the frequency domain. Other
major nonidealities on the transmitter side are local oscillator (LO) leakage, power
amplifier (PA) nonlinearity and phase noise, which will also contribute to signal de-
terioration [30]. Moreover, future wireless systems will demand higher transmission
rates, which involves wider bandwidths, higher order modulations and utilization of
non-constant envelope modulation schemes and multi-carrier techniques. In addi-
tion, signals with wider bandwidths and higher order modulations, and multi carrier
signals (e.g. orthogonal frequency division multiplexing (OFDM)) are especially sen-
sitive to analog front-end (FE) nonidealities [31].

1.2 Scope and Outline of the Thesis

This thesis provides a general overview of significant RF impairments but it focuses
particularly on I/Q imbalance. On the other hand, although the thesis mainly ad-
dresses the transmitter side of the transceiver, many functions are reciprocal and to
some extent applicable on the receiver side. The approach here is to calibrate the
transmitter with the help of DSP and digital pre-distortion, rendering the transmit-
ter more tolerant to mismatches in the analog circuits. I/Q imbalance is described in
detail with mathematical derivations and clarifying illustrations. Moreover, the I/Q
imbalance calibration algorithm applied is extensively discussed. The ultimate goal
is to develop a real-time transmitter prototype employing the I/Q imbalance estima-
tion and mitigation algorithm deduced from theoretical derivations and computer
simulations. In addition, details of the implementation of the real-time prototype
are described.

The thesis is divided into seven chapters. After the introductory section, in Chap-
ter 2, the basics of signal representations and the concept of bandpass transmission
are reviewed. Further, different mixing schemes are examined, as well as the func-
tionality of different radio transmitter architectures of interest. Chapter 3 provides
an understanding of I/Q imbalance as a phenomenon and of the kind of effects it
has on transmitter performance. In addition, not only mathematical models but
also estimation and mitigation schemes for I/Q imbalance on the transmitter side
are discussed. Next, Chapter 4 describes the development environment for real-
time implementation. Chapter 5 addresses all significant implementation details
and discusses implementation-related practical aspects. Chapter 6 presents all re-

1. Introduction 3

sults achieved and draws a comparison between theoretical simulation and real-time
implementation results. Finally, Chapter 7 summarizes the thesis and its achieve-
ments.

In addition, there are three appendices which give further information of the GNU
Radio environment. Appendix A discusses general practices which have been con-
sidered useful during the work. Thereafter, Appendix B addresses a few examples
of GNU Radio Python flow graphs, GNU Radio Companion flow graphs and GNU
Radio signal processing block source files. Finally, in Appendix C short guide for
updating the firmware of the USRP2 is given.

4

2. BANDPASS TRANSMISSION AND RADIO

TRANSMITTER PRINCIPLES

Future wireless systems will be required to support higher data rates for a large
number of simultaneous users. In addition, these co-existing users will be employing
a variety of mobile terminal equipment with multiple wireless transmission tech-
nologies. This trend has made multi-standard flexible transceivers desirable, giving
rise to greater demands on the design of future communication systems [12]. More-
over, a multi-standard flexible transceiver should be low-cost, portable and highly
integrable. One formerly prevalent transceiver architecture is the superheterodyne
principle [61], which is not however suited for the design of flexible transceivers.
This makes for closer interest in sophisticated transceiver architectures, which move
DSP parts closer to the RF front end, making the transceiver more flexible. Cur-
rent state-of-the-art radio transceivers employ advanced DSP techniques to meet the
given demands. In other words, a number of functionalities of a transceiver which
have traditionally been implemented with analog circuits are now being taken over
by digital signal processors.

The purpose of this chapter is to give a brief introduction to the traditional and mod-
ern transceiver architectures, as well as to reveal the imperfections and impairments
that are encountered in their constituent blocks. The focus is on the transmitter
architectures, as the whole thesis is concerned specifically with the transmitter side.
The chapter commences with different representations of signals in the time and
frequency domain and real and complex-valued signals are introduced in Section
2.1. A number of mixing or frequency translation techniques are then discussed in
Section 2.2. Thereafter, principle of bandpass transmission is reviewed in Section
2.3. Some of the most desirable transmitter architectures are depicted in Section 2.4.
Finally, and overview of the fundamental RF impairments encountered in wireless
transceivers is presented in Section 2.5.

2. Bandpass Transmission and Radio Transmitter Principles 5

2.1 Real and Complex Signals

The fundamental objective of a telecommunication system is to transport informa-
tion, essentially bits, from point A to point B. This information is represented with
signals which may be in the form of voltage, current or an electromagnetic wave; this
information-bearing signal can be described in the time domain and in the frequency
domain, and there exists a relation between these representations [36, 69].

In general, communication signals can have either real or complex representation.
Complex-valued signals are in practice signals which have two different real-valued
signals carrying the real and imaginary parts. A complex-valued signal z(t) is pre-
sented mathematically as

z(t) = zI(t) + jzQ(t) (2.1)

where ℜ[z(t)] = zI(t) is called the in-phase part of the complex-valued signal and
ℑ[z(t)] = zQ(t) the quadrature part.

Any signal which is a function of time is called a time domain signal and it has an
equivalent frequency domain representation under certain conditions. These con-
ditions are the Dirichlet’s conditions which state that z(t) should be absolutely
integrable and partially monotonic [33]. An analog time domain signal is frequently
called a continuous time signal and the corresponding sampled signal is called a dis-
crete time signal [47]. Transformation from the time domain to frequency domain
is called Fourier transform (FT). If a continuous time signal is denoted by z(t), its
corresponding FT [33] is

Z(f) = ℱ{z(t)} =

∫ ∞

−∞
z(t)e−j2¼ft dt. (2.2)

The magnitude of the Fourier transformed signal ∣Z(f)∣ as a function of frequency
is called the amplitude spectrum of the signal z(t). Similarly, the argument of the
Z(f) as a function of frequency is called the phase spectrum of the signal z(t).
Fourier transform Z(f) of the real-valued time domain signal z(t) obeys Hermitian
symmetry in the frequency domain, i.e. Z(−f) = Z∗(f) [33], see Figure 2.1(b). In
contrast, if z(t) is complex-valued, its FT Z(f) does not comply with this symmetry
as is depicted in Figure 2.1(a) [33]. In other words, the amplitude spectrum of a
real-valued signal is symmetric with respect to zero frequency, while that of the
complex-valued signal does not obey this feature. Congruent transformation from
the frequency domain to the time domain representation for the signal obtained from
equation (2.2) is called as inverse Fourier transform (IFT), which can be formulated

2. Bandpass Transmission and Radio Transmitter Principles 6

[33] in the following terms:

z(t) = ℱ−1{Z(f)} =

∫ ∞

−∞
Z(f)ej2¼ft df. (2.3)

Usually signals inside the digital parts of the transmitter are complex-valued, this
being convenient in signal processing. Complex-valued arithmetics are also very
useful and powerful tool for DSP. Moreover, positive and negative frequencies can
be processed independently. In contrast, the medium of transmission in wireless
telecommunication is always real-valued and a complex-valued signal cannot be
transmitted over the real channel directly. For this reason, the concept of I/Q
mixing or quadrature up/down conversion was initially introduced.

f0

BASEBAND

(a) Complex-valued signal

f0

BASEBAND

(b) Real-valued signal

Figure 2.1: Frequency domain examples of complex-valued and real-valued signals.

2.2 Frequency Translations

In many cases, like in wireless communication, a physical transmission medium is
incapable of transmitting frequencies at zero or very low frequencies. Consequently,
the baseband signal has to be translated to a frequency range which is free from
other signals and suitable to the communication system. This frequency translation
is accomplished by mixing the baseband signal with the LO signal. There are two
different approaches to the mixing operation, namely real mixing and complex mix-
ing. The following two subsections discuss the way these mixing techniques work
and their main differences.

2.2.1 Real Mixing

Real mixing is the traditional mixing technique widely employed in transceivers
during the era of RF communication. It is based on multiplying a real-valued signal

2. Bandpass Transmission and Radio Transmitter Principles 7

with a real-valued sinusoidal signal, which is usually called an LO signal, and this
signal is usually generated by an LO and a following phase-locked loop (PLL) circuit.
The resulting output signal has a spectrum similar to that of the original signal, but
translated up and down by fLO, where fLO is the frequency of the LO signal, called
carrier frequency. On the other hand, fc is called a center frequency and depending
on the transmitter architecture it can be different from fLO. The real mixing process
can be described by the following equation

r(t) = z(t)cos(2¼fLOt) = z(t)
1

2

(
ej2¼fLOt + e−j2¼fLOt

)
. (2.4)

The Fourier transform of the above equation yields the frequency domain result as

R(f) =
1

2
(Z(f − fLO) +

1

2
(Z(f + fLO) , (2.5)

where it can be clearly seen that the resulting bandpass signal has symmetric fre-
quency components at −fLO and fLO. Figure 2.2 comprises a general block diagram
of the real mixer and the corresponding spectrum illustration before and after the
mixing procedure.

Figure 2.2: Real frequency translation.

2.2.2 Complex Mixing

The complex mixing approach performs the frequency translation with a complex-
valued sinusoidal LO signal of frequency fLO. The desired real- or complex-valued
input signal is multiplied by the complex-valued LO signal to obtain the corre-
sponding bandpass signal. The complex mixing technique results in single fre-
quency translation without symmetry in spectral illustration. Using phasor no-
tation, a complex-valued LO signal can be denoted ej2¼fLOt and with the well-
known Euler theorem it can be shown to be a pair of orthogonal real-valued signals
cos(2¼fLOt) + jsin(2¼fLOt). The complex mixing process can be described by the

2. Bandpass Transmission and Radio Transmitter Principles 8

following equation

r(t) = z(t)ej2¼fLOt = z(t) (cos(2¼fLOt) + jsin(2¼fLOt)) . (2.6)

The Fourier transform of the above equation yields the frequency domain result as

R(f) = Z(f − fLO), (2.7)

where it can be seen that the resulting bandpass signal does not have symmetric
frequency components at frequencies −fLO and fLO like the real mixing process,
but only has a single energy concentration at frequency fLO. Figure 2.3 comprises a
general block diagram of the complex mixer and corresponding spectrum illustration
before and after the mixing procedure.

Figure 2.3: Complex frequency translation.

The complex mixing is in practice realized with real calculations as follows:

r(t) = z(t)ej2¼fLOt (2.8)

= z(t) [cos(2¼fLOt) + jsin(2¼fLOt)] (2.9)

= z(t)cos(2¼fLOt) + jz(t)sin(2¼fLOt) (2.10)

= zI(t)cos(2¼fLOt)− zQ(t)sin(2¼fLOt)

+jzQ(t)cos(2¼fLOt) + jzI(t)sin(2¼fLOt) (2.11)

= rI(t) + jrQ(t), (2.12)

where it can be seen that the same information is carried in rI(t) and rQ(t). This is
also illustrated in Figure 2.4.

2. Bandpass Transmission and Radio Transmitter Principles 9

Figure 2.4: Complex frequency translation with real calculations.

2.3 Bandpass Transmission

In the context of wireless communication, a signal whose spectral density is con-
centrated in the frequencies around the origin (i.e. fc = 0) is often referred to as
a baseband or low-pass signal [16]. On the other hand, a signal with a spectrum
centered on a non-zero frequency fc, where fc is usually called carrier frequency,
is called a bandpass signal [16]. If we denote the complex baseband signal as z(t),
where z(t) = zI(t) + jzQ(t), the corresponding analytic bandpass signal s(t) is

s(t) = z(t)ej2¼fLOt. (2.13)

I/Q modulation is used in wireless transmission systems to convey a complex-valued
signal over the real valued channel [71]. It is based on a technique where real and
complex components of the signal are modulated by two trigonometric functions
which have an exactly 90-degree phase difference. In practice this is done in such a
way that the real component of the signal is modulated with the cosine wave and the
complex component with the sine wave, and these two separately modulated signals
are subtracted from each other, as seen in Figure 2.5. Using the lowpass-to-bandpass
transformation the quadrature carrier form of the equation (2.13) is [64]

r(t) = 2Re{z(t)ej2¼fLOt}
= 2zI(t) cos(2¼fLOt)− 2zQ(t) sin(2¼fLOt)

= z(t)ej2¼fLOt + z∗(t)e−j2¼fLOt. (2.14)

It should be noted that taking real part of the complex signal corresponds to choosing
the real-valued terms from the (2.11) or (2.13). Moreover, the frequency domain

2. Bandpass Transmission and Radio Transmitter Principles 10

representation of (2.14) is

R(f) = Z(f − fLO) + Z∗(−f − fLO). (2.15)

According to (2.14) and (2.15), two real-valued signals zI(t) and zQ(t) can be trans-
mitted over the same bandwidth, resulting in increased spectral efficiency.

Figure 2.5: Basic I/Q Mixer.

If recovery of the transmitted RF signal r(t) is considered, the bandpass-to-lowpass
transformation is needed [64]. Moreover, in the frequency domain the FT R(f) of
the signal r(t) has Hermitian symmetry about the zero frequency but not about the
carrier frequency fLO, as shown in Figure 2.5. It appears that the signal concentrated
at frequency fLO carries exactly the same information as the signal concentrated at
frequency −fLO [83]. They are merely mirror images of each other. Either one of
the frequency components in (2.15) or (2.14) can be chosen for further processing
without loss of data.

2.4 Transmitter Architectures

Recently, most communication transmitters have been based on the superheterodyne
principle, which consists of multiple stages with amplifiers, RF and intermediate
frequency (IF) filters, mixers and frequency synthesizers to provide sufficient band
limitation for the desired frequency band, and to deal with non-idealities caused by
analog parts in the transmitters chain [61, 55]. In consequence, the superheterodyne
architecture is impractical for an integrated modern multi-standard communication
system. Consequently, there has been increasing interest in the direct-conversion
or homodyne, the low-IF transmitter architectures, and, the ultimate goal, the all-
digital architecture. In general, the current trend in the evolution of transceiver
architectures has been for the DSP part to move closer to the analog FE. In this

2. Bandpass Transmission and Radio Transmitter Principles 11

sense, the superheterodyne principle and the direct-sampling architecture are the
two extremities. The low-IF and the direct-conversion approaches offer a high level
of integration and low complexity, and promise multi-standard operation. On the
other hand, both approaches are more vulnerable to mismatches between different
analog components.

In the following, the main currently used and future transmitter architectures are
discussed and their advantages and disadvantages highlighted. First the superhetero-
dyne transmitter architecture is introduced in Subsection 2.4.1, where after low-IF
and direct-conversion architectures are addressed in Subsections 2.4.2 and 2.4.3, re-
spectively. At the end of this section, the all-digital architecture is discussed in
Subsection 2.4.4.

2.4.1 Superheterodyne

The superheterodyne architecture is a classical transmitter architecture widely used
in RF communication transceivers [55]. Hence, there are a number of different
variants of the conventional set-up. The architecture is based on multiple mixing
and filtering stages to provide sufficient spectral characteristics for the transmitted
waveform. As a result, this architecture has a complicated and power-consuming
structure, comprised of discrete analog components. Consequently, its integrability
level is very low and multi-standard operability is restricted by the IF frequencies
[56]. On the other hand, operation of the superheterodyne architecture is robust and
it has superior I/Q matching due to the low operating frequency in the IF stages.
Moreover, it avoids DC offset and LO leakage, as well as the 1/f -noise problems
[56]. The basic structure of the superheterodyne transmitter architecture founded
on quadrature frequency translation can be seen in Figure 2.6. [61]

First, the baseband signal generated in the DSP parts of the transmitter is converted
to an analog signal, and up-converted to IF by quadrature mixing. Thereafter, the
IF signal is band-pass filtered before final up-conversion to the carrier frequency. It
should be noted that, in general, frequency of the LO2 is fixed and the desired center
frequency on the system frequency band is tuned with IF from LO1. Then, after
final up-conversion, the RF signal is again filtered to reject up-conversion images
and LO leakage, and amplified before radiation from the antenna.

2. Bandpass Transmission and Radio Transmitter Principles 12

Figure 2.6: Block diagram of the traditional superheterodyne transmitter architecture.

2.4.2 Low-IF

The low-IF transmitter architecture usually consists of two larger functional parts, as
a number of transmitter functionalities are already performed in the digital domain.
Moreover, these segments comprise DSP-based and analog signal processing-based
parts. The low-IF architecture has significantly decreased the required number of
analog components, which yields higher integrability and lower cost [61, 1]. In
addition, the low-IF architecture consumes less power than the superheterodyne.
Similarly to the superheterodyne transmitter architecture, the low-IF principle over-
comes the DC-offset and 1/f -noise problems [56]. In contrast, the low-IF architec-
ture suffers from mirror image problems due to mismatch between the analog I
and Q branches. This is one of the most problematic drawbacks of this architec-
ture. In addition, the low-IF architecture suffers from IF-dependent LO leakage
[56]. One significant advantage from the system-point-of-view is that center fre-
quency of the communication system can be tuned by adjusting the digital low-IF
without changing analog LO frequency. In that case, the specifications of a digital-
to-analog converter (DAC) has to meet requirements set by the IF. In general, the
DSP part consists of generation of the desired signal waveform, channel filtering
and digital up-conversion to the low IF. Thereafter, DACs convert the discrete-time
digital signal to the continuous-time analog signal. The analog part consists of I/Q
up-conversion to the desired RF center frequency, band-selection filter and power
amplifier. A general block diagram of the low-IF transmitter architecture is given
in Figure 2.7 [3].

In the low-IF transmitter architecture the digital baseband signal is first up-converted
to digital low IF by digital complex mixing. Thereafter, the signal is fed through
DAC and up-converted with a quadrature mixer to the desired carrier frequency.
Finally, the signal is bandpass-filtered and amplified before radiation from the an-
tenna.

2. Bandpass Transmission and Radio Transmitter Principles 13

Figure 2.7: Block diagram of the low-IF transmitter architecture.

2.4.3 Direct-conversion

The direct-conversion architecture is also termed homodyne or zero-IF architecture.
As the name indicates, this architecture performs up-conversion directly from base-
band to RF frequencies [2]. The homodyne architecture is highly integrable, while
majority of the transmitter functionalities are performed in digital domain. This
makes homodyne an attractive choice for future multi-standard transceivers due to
its integrability, low power consumption and low cost [1, 59]. On the other hand,
the direct-conversion architecture is extremely vulnerable to the non-idealities of
the remaining analog RF components [56]. In addition, these components should
be very low-cost, which makes for inferior performance in the components. Another
drawback of the architecture is that the signal center frequency is directly the LO
frequency which sets higher quality demands on the LO. A general block diagram
of the direct-conversion transmitter architecture can be seen in Figure 2.8. [59, 4]

In the direct-conversion transmitter architecture the desired digital baseband signal
is first converted to an analog continuous-time signal. Thereafter, the signal is
directly up-converted by a quadrature mixer to the carrier frequency fc. Also with
this architecture the signal is finally bandpass-filtered and amplified before radiation
from the antenna.

2.4.4 All-Digital

The ultimate goal of the SDR or cognitive radio (CR) is the all-digital transceiver
architecture. Basically in this architecture up-conversion of the desired signal to the
RF frequencies is performed in the digital domain. The sampling frequency of the
DAC should be high enough to generate a continuous-time analog signal which is
directly on the desired RF center frequency fc without reconstruction problems. As

2. Bandpass Transmission and Radio Transmitter Principles 14

Figure 2.8: Direct-conversion transmitter architecture.

a result, this architecture is clearly the most highly digitized and it has the highest
level of integrability. On the other hand, as stated above, a higher digitalization level
means higher susceptibility to the impairments of the analog RF FE and difficulties
with DACs become more significant. The all-digital architecture is usually based
on a band-limited over-sampling approach [80]. A general block diagram of the
direct-conversion transmitter architecture is given in Figure 2.9. [90, 85]

In the all-digital architecture the desired signal is up-converted to the desired carrier
frequency fC inside the digital parts of the transmitter. The RF signal is then
converted from a digital discrete-time signal to an analog continuous-time signal.
Thereafter come the PA and bandpass filter before radiating the signal out from the
antenna.

Figure 2.9: All-digital transmitter architecture.

2.5 RF Impairments in Different Transmitter Architectures

This section describes in brief all the significant RF impairments and nonlinearities
present in radio transceivers. The main impairments and non-idealities degrading

2. Bandpass Transmission and Radio Transmitter Principles 15

the performance of future radio transmitters are I/Q mismatch, LO leakage, LO
phase noise, and PA nonlinear distortion. In addition, DAC reconstruction phe-
nomena and analog filter impairments also contribute to the signal deterioration.

First non-idealities and impairments in the mixers are addressed in Subsection 2.5.1.
Thereafter, non-idealities in the PA stage of the transceiver are discussed in Sub-
section 2.5.2. At the end of the section, basic non-idealities in the analog-to-digital
converter (ADC) and DAC stage are presented in Subsection 2.5.3.

2.5.1 Impairments in Mixing Stage

The fundamental function of a mixer is to translate the original signal from baseband
or IF to an RF carrier frequency, while keeping the characteristics of the original
signal unchanged. This is achieved by multiplying the original signal by the LO
signal, which is a pure undistorted sine wave. In practice, however, the signal is not
pure sinusoid. Typical impairments and non-idealities in regard to LO and mixer
are phase noise, I/Q imbalance, and LO leakage. In addition, the frequency offset
of the LO can be considered an non-ideality but it does not originate from a single
source.

Phase noise

In practice, the local oscillator signal is not a pure sine signal at a single frequency
due to phase noise and other imperfections in the oscillators. In the frequency
domain the non-ideal LO signal is a spread version of a pure sine wave. An LO signal
with phase noise can be seen in Figures 2.10(b) and 2.11(b) [53]. The effect of phase
noise is a phase modulation of the local oscillator signal which is directly transferred
to the original signal [43, 53]. From the point of view of the transmitted signal,
mixing the impaired LO signal with the ideal baseband or intermediate frequency
signal produces an RF signal with the phase noise of the LO superimposed on it.
This impaired mixing results in in-band as well as out-of-band distortion [53, 30].

The effect of the phase noise on a single carrier signal can be seen from amplitude
spectra in Figure 2.10 where the original undistorted signal is in Figure 2.10(a),
the LO signal with phase noise in Figure 2.10(b) and the resulting signal to be
transmitted in Figure 2.10(c). In practice, the in-band effect of a phase noise for
single-carrier signal shows as a phase ripple as can be seen from the constellation plot
of the signal s(t) in Figure 2.12(a). This phenomenon is even more severe when using
multicarrier waveforms where multiple adjacent sub-carriers start to interfere each

2. Bandpass Transmission and Radio Transmitter Principles 16

(a) Original signal (b) LO signal with
phase noise

(c) Output signal

Figure 2.10: Frequency domain illustration of local oscillator phase noise effects on a
single-carrier signal.

(a) Original signal (b) LO signal with phase
noise

(c) Output signal

Figure 2.11: Frequency domain illustration of local oscillator phase noise effects on a
multicarrier signal.

other [76]. For multicarrier signals, phase noise shows in two ways which are common
phase error, comparable to single-carrier signal, and inter-carrier interference (ICI).
Frequency domain representation of phase noise effect for a multicarrier signal can
be seen in Figure 2.11, where, again, x(t) is the original undistorted signal, l(t) the
LO signal with phase noise and s(t) the resulting signal to be transmitted. The
corresponding constellation plot of the signal s(t) in a multicarrier case can be seen
in Figure 2.12(b).

I/Q Imbalance

I/Q imbalance is a result of finite image band attenuation in the transmitter. It de-
pends on the relative amplitude and phase mismatch between the I and Q branches
of the quadrature modulator. In addition, low-pass filters, DACs and other analog
circuitry also contribute to the I/Q imabalance effects. In a direct-conversion trans-
mitter I/Q imbalance creates self-interference and degradates the signal quality. In
contrast, in low-IF transmitter architecture, I/Q imbalance is manifested as adja-
cent channel interference. [78, 17, 21, 26, 18, 8] This phenomenon is discussed in
greater detail in Section 3.

2. Bandpass Transmission and Radio Transmitter Principles 17

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Constellation plot for SC−16QAM signal influenced by phase noise

In−phase

Q
ua

dr
at

ur
e

Distorted signal
Ideal constellation

(a) Single carrier 16-QAM

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Constellation plot for OFDM signal influenced by phase noise

In−phase

Q
ua

dr
at

ur
e

Distorted signal
Original signal

(b) OFDM

Figure 2.12: Illustration of the LO signal phase noise in-band effect on the constellation.

LO Leakage

Usually in all transceivers the LO signal is conducted from the oscillator to the
RF output signal. This phenomenon is called LO leakage and it introduces an
undesirable spurious signal in the transmitted signal at the frequency of the LO
signal [30]. The presence of an LO signal in the transmitted signal causes in-band
interference in the case of receiver architectures which convert the baseband signal
directly to the given RF center frequency [70, 2, 56]. On the other hand, LO leakage
results in adjacent channel interference in low-IF transmitter architecture [30, 56].
An illustration of LO leakage in low-IF transmitter architecture is given in Figure
2.13.

2.5.2 Non-linearities in Power Amplifiers

The RF signal has to be always amplified before radiation from the antenna to attain
a sufficient output power level. As a result, PA is one of the important primary
components in any radio transceiver unit and is by nature nonlinear. As mentioned
above, PA is responsible for amplifying the transmitted signal in such away, that
it arrives at the receiver with a sufficient power level for successful detection. In
addition, the efficiency should be maximized, especially on the terminal side, in order
to maximize battery life. For this reason, linear PAs cannot be applied since their
power efficiency is very poor. It is, thus, necessary to use more efficient nonlinear
PAs and to drive them at or near the full power range [45]. Due to the driving of the
PA in the nonlinear region, nonlinear distortion, both harmonic and intermodulation

2. Bandpass Transmission and Radio Transmitter Principles 18

2395 2400 2405
−120

−100

−80

−60

−40

−20

0
Low−IF signal with LO leakage

M
ag

ni
tu

de
 [d

B
]

Frequency [MHz]

LO Leakage

Figure 2.13: Frequency domain illustration of LO leakage. Low-IF signal with 16-QAM
modulation, 8 times over-sampling, 22 % roll-off, 10 MHz sampling frequency and 2.4 GHz
LO frequency.

distortion (IMD), is produced in the PA output [45]. As a result, in the frequency
domain, the signal at the output of the PA contains not only the original signal
frequency contents but also additional frequency components. The effect of these
additional frequency components can be seen as in-band distortion, which results in
an elevated noise floor and thus a increased bit-error rate (BER) [44]. Additionally,
the spreading of the transmitted signal spectrum, called spectral regrowth, causes
out-of-band distortion which interferes with adjacent channel signals [44].

The AM-AM conversion is a conversion between the normalized input amplitude of
the PA to its normalized output amplitude and it is always present in PAs. In a
linear PA, this AM-AM graph should be a straight line. A strictly memoryless PA
can be modeled by its AM-AM characteristics.

The nonlinear distortion can be characterized as memoryless, quasi-memoryless or
memory-containing, depending on the waveform used. For narrowband input signals,
the PA does not show memory effects and the power amplifier can be regarded as
a memoryless or quasi-memoryless system [46]. In the strictly memoryless case, the
phase difference between the input and output signals is constant. Further, in the
quasi-memoryless case, there is a varying phase difference without memory effects
between input and output. As the bandwidth of the signal increases, the time span
of the PA memory becomes comparable to the time variations at the input signal
and the PA begins to show memory effects.

A conversion from amplitude modulation on the input signal to phase modulation on

2. Bandpass Transmission and Radio Transmitter Principles 19

(a) Spectra of original signal and distorted PA
output.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Constellation plot

In−phase

Q
ua

dr
at

ur
e

Distorted PA output
Ideal constellation

(b) Constellations of original signal and dis-
torted PA output.

Figure 2.14: Illustration of nonlinear PA effects on the transmitted signal. PA model was
the Wiener model of a class AB amplifier. Single-carrier signal with 16-QAM modulation,
8 times over-sampling and 25 % roll-off.

the output signal is known as AM-PM conversion [46, 44]. In practice, this means
that the delay in the PA varies over its input amplitude and results in a phase
modulation. A quasi-memoryless PA can be characterized with one set of AM-AM
and AM-PM conversions [46] and a PA with memory effects can be modeled with
multiple sets of AM-AM and AM-PM conversions [44]. Moreover, the behavior of
PAs with memory can be modeled for example with the Volterra model, Wiener,
Hammerstein and the Wiener-Hammerstein models [40].

PAs can be made linear via many approaches. Common strategies are linear ampli-
fication using nonlinear components (LINC), envelope elimination and restoration
(EER), peak-to-average power ratio (PAPR) reduction, feedforward linearization,
and digital pre-distortion.

2.5.3 Non-idealities in Digital-to-Analog and Analog-to-Digital
Converters

Among the most important parts of a radio transceiver are the DACs and ADCs.
The DAC is used to interface the digital part of a transmitter with its analog circuits,
namely analog front-end and, conversely, ADCs are used as an interface between the
analog front-end and the digital part of the transceiver. The non-idealitites associ-
ated with DACs and ADCs are quantization noise, sampling clock offset, sampling
jitter, and reconstruction phenomena. All these non-idealitites are briefly described
in this section.

2. Bandpass Transmission and Radio Transmitter Principles 20

Quantization Noise

Quantization noise in a DAC and ADC occurs due to the limited number of bits
which can be used to represent a sample value of the signal. A large number of
bits is desirable to reduce quantization noise, but this increases the cost and power
consumption of the DAC and ADC. Quantization noise appears as an additive noise
process on top of the desired original signal. By reason of the additive nature of
quantization noise, it is equally spread over the frequency span of the signal, and
the impact of the quantization noise can thus be reduced by sampling the signal
at a higher sampling frequency than the Nyquist theorem describes [47]. In other
words, if higher over-sampling factors are used, the effect of quantization noise can
be mitigated. The effect of quantization noise can be further reduced by using the
so-called delta-sigma DACs, which shape the frequency spectrum of the quantization
noise away from the desired signal band.

In general the maximum signal-to-noise ratio (SNR) of a signal can be calculated in
decibels by the formula [57]

SNRMAX = 6.02b+ 4.76− CFdB + 10 log

(
fS
2fB

)
[dB], (2.16)

where CFdB is the crest-factor of the signal in decibels, fS the sampling frequency
and fB the useful signal bandwidth. The rule-of-thumb for quantization noise is that
every additional bit in the DAC or ADC increases the SNR of the desired signal by
6.02 dB.

Clipping

In the time domain, clipping can be seen as cutting the signal peaks which exceed the
voltage range of the ADC. Usually this is a result of imperfect signal conditioning
in the radio transceiver. Clipping results in odd order harmonics and intermodula-
tion products and severe interference may occur if these new frequency components
appear on a weak desired signal band. [47]

Sampling Jitter

In practical circuits, sampling is affected by uncertainty in the clock. Additionally,
the delay between the logic generating the sampling phase and effective sampling is
to some extent unpredictable [13]. This phenomenon is called sampling jitter and it

2. Bandpass Transmission and Radio Transmitter Principles 21

occurs due to phase noise in the sampling clock. As a consequence, the instants at
which DAC converts the digital samples to an analog signal are not evenly spaced.
This also applies to ADCs. As already stated, the main source of sampling clock
jitter lies in instabilities in the LO clock and the buffer between the clock source and
the DAC or ADC [47]. The impact of sampling jitter is that the actual sampling
point is shifted from its ideal position, thus reducing SNR and BER. Sampling jitter
has the greatest impact on bandpass signals, as the frequencies of the input signals
are high, making the jitter an important parameter.

Sampling Clock Frequency Offset

One source of complication is sampling clock frequency offset. In transmitters, all
the clocks and local oscillators are usually driven by one common reference clock
and, in practice, the accuracy of the signals at each stage depends on the reference
signal. If the sampling frequency of the DAC or ADC is offset by some factor
with respect to the ideal sampling instant, the sampling points which are supposed
to be taken at (1, 2, ...,M)Ts are then taken at (1, 2, ...,M)(1 + ±)Ts, such that a
time shift n±Ts appears on every nth sample [74]. In a way, this can be seen as a
frequency offset it the output signal. Due to this, the signal is not sampled at the
optimum sampling instant, which degrades performance of the analog-to-digital of
digital-to-analog conversion.

Reconstruction Phenomena in DACs

Reconstruction of a digital signal waveform is usually done with a cascade of a
sample-and-hold (SH) circuit and a lowpass (LP) reconstruction filter. A SH circuit
of a DAC outputs a staircase-like analog waveform which can be seen in frequency
domain as additional high-frequency terms. Following reconstruction filter should be
able to remove all high-frequency terms from the SH output to smoothen the desired
signal while keeping the original signal waveform. As a consequence, reconstruction
filter may not be able to attenuate high frequency components adequately if signal
bandwidth is a large fraction of sampling frequency. This may create signal folding
on top of the desired signal. [57]

22

3. TRANSMITTER I/Q IMBALANCE AND

DIGITAL PRE-DISTORTION CALIBRATION

Communication transmitters based on the analog domain I/Q up-conversion princi-
ple encounter a common problem in amplitude and phase mismatch. Although this
complication is mainly inflicted by the I/Q modulators, which employ the principle
of having equal gain and an exact 90-degree phase difference between I- and Q-
branches, other analog FE components such as DACs and filters also contribute, in
general, to the imbalance effects.

In an ideal transmitter, analog circuits in different branches have equal charac-
teristics, but in practice, due to hardware manufacturing tolerances, a perfectly
amplitude- and phase-balanced analog FE is not achievable. In addition, the elec-
trical characteristics of analog components undergo short-time deviation due e.g. to
temperature variation and, similarly, they are subject to change over the long term
due to aging. These physical limitations result in a finite attenuation of the image
signal and degradation of signal quality in I/Q processing.

One approach which might be thought to overcome these problems is to improve the
quality of separate analog components to a level where the system performance loss
due to the residual impairments remains acceptable [24, 79, 81]. However, such an
approach may not be feasible in future radio transmitter architectures for the follow-
ing reasons. The first drawback is that designing high-quality analog components
satisfying all transmitter specifications will result in particularly expensive radio im-
plementation. Additionally, sufficient and robust performance can only be realized
over a narrow frequency band and practically only over a short period. These issues
constrain the performance and flexibility of the transmitter.

Another desirable and feasible solution is to use DSP techniques to compensate the
I/Q imbalance effects. The DSP-based calibration methods allow some errors in
the analog design and have the advantage of achieving good performance without
modifying the original transceiver architecture. In addition, DSP-based approaches
offer the possibility to follow time-variant changes in the transmitter FE [18, 26, 17,

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 23

8].

The purpose of this chapter is to give a conception of I/Q imbalance and its effect in
different transmitter architectures, and of how it can be efficiently mitigated. The
chapter begins with transmitter signal models in narrowband frequency-independent
and wideband frequency-selective cases. Moreover, a description of I/Q imbalance in
general and the concept of image rejection ratio (IRR) is set out. Thereafter, mirror
frequency interference (MFI) and its effects in different transmitter architectures are
discussed. Finally, I/Q mismatch compensation schemes are derived and discussed.

3.1 Transmitter Signal Models

I/Q imbalance effects can be either frequency-independent or frequency-selective
depending on the bandwidth of the desired signal and properties of the used elec-
tronics [8, 92]. In general, wideband signals usually experience frequency-selective
I/Q imbalance effects, which means that I/Q imbalance parameters vary over the
desired frequency band. On the other hand, narrowband signals experience only
constant amplitude and phase mismatch.

In this section transmitter signal models for frequency-independent and frequency-
selective I/Q imbalance effects are addressed and their effects on the desired signal
are evaluated.

3.1.1 Narrowband Frequency-Independent Model

The narrowband frequency-independent behavior of I/Q imbalance stems from rela-
tive frequency-flat differences between the analog components of the I/Q modulator.
A conceptual illustration of the frequency-independent transmitter model can be
seen in Figure 3.1.

If the above-mentioned imbalance model is considered as a transmitter signal model,
the imbalanced complex LO signal is modeled as [83]

xLO(t) = cos(!ct) + jgT sin(!ct+ ÁT), (3.1)

where gT and ÁT are transmitter amplitude and phase imbalances, respectively.

To obtain a better and more illustrative conception of the I/Q mismatch effect the
model in (3.1) is further expanded. Denote the ideal baseband equivalent transmit

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 24

Figure 3.1: Block diagram of the narrowband frequency independent transmitter model.

signal as z(t) = zI(t)+ jzQ(t). Then the corresponding I/Q up-converted signal r(t)
is

r(t) = ℜ{z(t)xLO(t)} = zI(t) cos(!ct)− zQ(t)gT sin(!ct+ ÁT). (3.2)

This can be expanded with the trigonometric identity sin(® + ¯) = sin(®) cos(¯) +

cos(®) sin(¯). Using the trigonometric identity and applying Euler’s theorem, (3.2)
becomes

r(t) = [zI(t)− zQ(t)gT sin(ÁT)] cos(!ct)− zQ(t)gT cos(ÁT) sin(!ct) (3.3)

=

[
zI(t)− zQ(t)gT

ejÁT − e−jÁT

2j

]
ej!ct + e−j!ct

2

−zQ(t)gT
ejÁT + e−jÁT

2

ej!ct − e−j!ct

2j
. (3.4)

With further manipulations and rearranging the terms, the above equation can be
written as

r(t) =

[
zI(t)− zQ(t)gT

ejÁT

j

]
ej!ct

2
+

[
zI(t) + zQ(t)gT

e−jÁT

j

]
e−j!ct

2
. (3.5)

As is known, branch terms zI(t) and zQ(t) can also be expressed with the help of
z(t) and its conjugate in the following way:

zI(t) =
z(t) + z∗(t)

2
, zQ(t) =

z(t)− z∗(t)
2j

. (3.6)

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 25

Substituting (3.6) to (3.5), the imbalanced transmitted signal becomes

r(t) =

[
z(t) + z∗(t)

2
− z(t)− z∗(t)

2j
gT

ejÁT

j

]
ej!ct

2

+

[
z(t) + z∗(t)

2
+

z(t)− z∗(t)
2j

gT
e−jÁT

j

]
e−j!ct

2
(3.7)

= [g1z(t) + g2z
∗(t)]

ej!ct

2
+ [g1z(t) + g2z

∗(t)]∗
e−j!ct

2
(3.8)

= ℜ{
[g1z(t) + g2z

∗(t)] ej!ct
}
, (3.9)

where non-conjugate and conjugate term weights g1 and g2 are

g1 =
1 + gT e

jÁT

2
, g2 =

1− gT e
jÁT

2
. (3.10)

Corresponding baseband equivalent of the imbalanced RF signal for narrowband
signal model can be denoted as

x(t) = g1z(t) + g2z
∗(t). (3.11)

From (3.10) and (3.11) it can be clearly seen that original signal is represented by
positive and negative frequencies weighted with g1 and g2, respectively. As a result,
the original signal on positive frequencies is partly manifested on negative mirror
frequencies. Moreover, if we consider the situation where gain factor gT = 1 and
phase difference ÁT = 0, we obtain g1 = 1 and g2 = 0. This yields a perfectly
balanced signal which has no mirror frequency term present. The ratio between
the squared amplitudes of g1 and g2 is called mirror image attenuation or image
rejection ratio and can be stated on a decibel scale as

IRRdB = 10 log10

(∣g1∣2
∣g2∣2

)
. (3.12)

Figure 3.2: Illustration of IRR in frequency domain in case of low-IF transmitter. Ideal
spectrum on the left and imbalanced spectrum on the right.

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 26

In general, IRR figure describes how much the mirror image is attenuated compared
to the desired signal. A conceptual spectral illustration of the IRR is seen in Figure
3.2. In case of low-IF transmitter, a numerical illustration of this ratio with different
amplitude and phase imbalances can be seen in Figure 3.3. As will be noted, both
imbalance factors have an extensive influence on the IRR.

10
−3

10
−2

10
−1

10
0

10
1

0

10

20

30

40

50

60

70

80

90

100

φ
T
 [degrees]

IR
R

 [d
B

]

g

T
 = 0%

g
T
 = 0.05%

g
T
 = 0.1%

g
T
 = 0.2%

g
T
 = 0.5%

g
T
 = 1%

g
T
 = 3%

g
T
 = 5%

0%

0.05%

0.1%

0.2%

0.5%
1%

5%
3%

Figure 3.3: Image Rejection Ratio as a function of amplitude and phase imbalance. gT
and ÁT denote amplitude- and phase imbalance, respectively.

3.1.2 Wideband Frequency-Selective Model

In a wideband system context, the overall effective I/Q imbalance effects can vary
as a function of frequency over the whole frequency band and wider bandwidths are
more vulnerable to the frequency-selective behavior of I/Q imbalance [26, 17, 8, 92].
Consequently, the I/Q imbalance can be modeled as frequency-selective relative
amplitude and phase difference between the I and Q branches. As stated earlier
in this chapter, gT and ÁT are the I/Q mixer amplitude and phase imbalances,
respectively. In addition, the non-ideal filter transfer functions in the I and Q
branches are modeled with the filters ℎI(t) and ℎQ(t). A conceptual block diagram
of the frequency-selective I/Q imbalance model can be seen in Figure 3.4.

In the following the wideband frequency-selective signal model is derived using the
frequency-independent I/Q imbalance model from (3.1) as a starting-point. For
further analysis, denote the ideal baseband equivalent transmit signal as z(t) =

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 27

Figure 3.4: Block diagram of the wideband frequency-selective transmitter model.

zI(t) + jzQ(t). Then the corresponding I/Q up-converted signal s(t) is [8]

r(t) = (ℎI(t) ∗ zI(t)) cos(!ct)− (ℎQ(t) ∗ zQ(t)) gT sin(!ct+ ÁT). (3.13)

Using the trigonometric identity sin(®+¯) = sin(®) cos(¯)+cos(®) sin(¯), the above
equation can be further expanded and it becomes

r(t) = [ℎI(t) ∗ zI(t)] cos(!ct)

− [ℎQ(t) ∗ zQ(t)] gT [sin(!ct) cos(ÁT) + cos(!ct) sin(ÁT)]

= [ℎI(t) ∗ zI(t)− {ℎQ(t) ∗ zQ(t)} gT sin(ÁT)] cos(!ct)

− [ℎQ(t) ∗ zQ(t)] gT cos(ÁT) sin(!ct). (3.14)

For further derivation the above equation has to be opened more and the terms have
to be rearranged. By Euler’s theorem (3.14) is tranformed to

r(t) =

[
ℎI(t) ∗ zI(t)− gT {ℎQ(t) ∗ zQ(t)} ejÁT − e−jÁT

2j

]
ej!ct + e−j!ct

2

−
[
gT {ℎQ(t) ∗ zQ(t)} ejÁT + e−jÁT

2

]
ej!ct − e−j!ct

2j
. (3.15)

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 28

Substituting (3.6) into (3.15) and rearranging the result, we obtain

r(t) =

[
ℎI(t) ∗ z(t) + z∗(t)

2
− gT

{
ℎQ(t) ∗ z(t)− z∗(t)

2j

}
ejÁT − e−jÁT

2j

]

⋅e
j!ct + e−j!ct

2

+

[
ℎI(t) ∗ z(t) + z∗(t)

2
− gT

{
ℎQ(t) ∗ z(t)− z∗(t)

2j

}
ejÁT + e−jÁT

2

]

⋅e
j!ct − e−j!ct

2j

=

[
ℎI(t) ∗ z(t) + z∗(t)

2
− gT

{
ℎQ(t) ∗ z(t)− z∗(t)

2j

}
ejÁT

j

]

⋅e
j!ct

2

+

[
ℎI(t) ∗ z(t) + z∗(t)

2
+ gT

{
ℎQ(t) ∗ z(t)− z∗(t)

2j

}
e−jÁT

j

]

⋅e
−j2!ct

2
(3.16)

= [g1(t) ∗ z(t) + g2(t) ∗ z∗(t)] e
j!ct

2

+ [g1(t) ∗ z(t) + g2(t) ∗ z∗(t)]∗ e
−j!ct

2
(3.17)

= ℜ{
[g1(t) ∗ z(t) + g2(t) ∗ z∗(t)] ej!ct

}
, (3.18)

where the imbalance filter impulse responses g1(t) and g2(t) are defined as

g1(t) =
ℎI(t) + gT e

jÁTℎQ(t)

2
(3.19)

and

g2(t) =
ℎI(t)− gT e

jÁTℎQ(t)

2
. (3.20)

The corresponding baseband equivalent of the imbalanced RF signal is then [83]

x(t) = g1(t) ∗ z(t) + g2(t) ∗ z∗(t). (3.21)

On the other hand, the frequency-selective nature can also be considered as being
only relative imbalance between the I and Q branches [8], thus branch filters ℎI(t)

and ℎQ(t) can be considered as one relative imbalance filter ℎT (t). This can be seen
by taking FT of (3.21), thereby the baseband equivalent signal becomes in frequency

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 29

domain as follows:

X(f) = G1(f)Z(f) +G2(f)Z
∗(−f) (3.22)

=
HI(f) + gT e

jÁTHQ(f)

2
Z(f) +

HI(f)− gT e
jÁTHQ(f)

2
Z∗(−f) (3.23)

= HI(f)

⎡
⎣1 + gT e

jÁT
HQ(f)

HI(f)

2
Z(f) +

1− gT e
jÁT

HQ(f)

HI(f)

2
Z∗(−f)

⎤
⎦ . (3.24)

It can be seen that HI(f) is a common factor for non-conjugate and conjugate
branches, thus it can be neglected. As a result, (3.22) becomes

X(f) =
1 + gT e

jÁTHT (f)

2
Z(f) +

1− gT e
jÁTHT (f)

2
Z∗(−f), (3.25)

where HT (f) = HQ(f)/HI(f). Consequently, the overall signal model is simplified
slightly. This means that equation (3.19) becomes

g1(t) =
±(t) + gT e

jÁTℎT (t)

2
(3.26)

and the equation (3.20) simplifies to

g2(t) =
±(t)− gT e

jÁTℎT (t)

2
. (3.27)

The corresponding signal model can be seen as a block diagram in Figure 3.5. This
signal model is used in all Matlab simulations in this thesis.

Figure 3.5: Block diagram of the wideband frequency-selective transmitter model with
only one relative non-ideal branch filter causing the frequency-selective behavior of the
I/Q imbalance.

Also with frequency-selective signal model, the mirror frequency attenuation can be
found from (3.22) to be the relation between G1(f) and G2(f) in decibel scale as

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 30

follows:
IRRdB(f) = 10 log10

(∣G1(f)∣2
∣G2(f)∣2

)
. (3.28)

Furthermore, in (3.28) and (3.43) FT G1(f) of g1(t) is

G1(f) =
1

2

[
1 + gT e

jÁTHT (f)
]

(3.29)

=
1

2

[
1 + gT∥HT (f)∥ejÁT ej arg(HT (f))

]
(3.30)

=
1

2

[
1 + gT∥HT (f)∥ej(ÁT+arg(HT (f)))

]
(3.31)

=
1

2

[
1 + gTOT (f)e

jÁTOT (f)
]

(3.32)

and FT G2(f) of g2(t) can be formulated as

G2(f) =
1

2

[
1− gT e

jÁTHT (f)
]

(3.33)

=
1

2

[
1− gT∥HT (f)∥ejÁT ej arg(HT (f))

]
(3.34)

=
1

2

[
1− gT∥HT (f)∥ej(ÁT+arg(HT (f)))

]
(3.35)

=
1

2

[
1− gTOT (f)e

jÁTOT (f)
]
. (3.36)

From (3.29)-(3.36) can be seen that total amplitude imbalance gTOT (f) is a product
of modulator amplitude imbalance and amplitude response of the relative I/Q im-
balance filter ℎT (t). Amplitude response of ℎTOT (f) can be found in Figure 3.6(a).
Similarly, total phase mismatch ÁTOT (f) is a sum of modulator phase mismatch and
phase response of ℎT (t). Phase response of ÁTOT (f) is in Figure 3.6(b).

Throughout this thesis, most of the simulations are performed with frequency-
selective I/Q imbalance model with gain imbalance 4 per cent, phase imbalance
4 degrees and non-ideal relative branch filter length NT 3. In Figure 3.6, can be
seen how amplitude and phase responses of imbalance filters form from non-ideal
relative branch filter response and modulator amplitude and phase imbalance. Cor-
responding front-end IRR graph can be found in Figure 3.6(g).

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 31

−1 −0.5 0 0.5 1
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Normalized frequency ω / π

A
m

pl
itu

de
 [l

in
ea

r
sc

al
e]

Linear amplitude responses of H
T
 and g

TOT

|g
TOT

|

|H
T
|

(a) Amplitude responses of
HT (f) and gTOT (f).

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

4

5

6

7

Normalized frequency ω / π

P
ha

se
 [d

eg
re

e]

Phase responses of H
T
 and φ

TOT

φ

TOT

arg(H
T
)

(b) Phase responses ofHT (f) and
ÁTOT (f).

−1 −0.5 0 0.5 1
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Normalized frequency ω / π

A
m

pl
itu

de
 [l

in
ea

r
sc

al
e]

Linear amplitude responses of relative non−ideal transmit
and non−conjugate imbalance filters

|H
T
(f)|

|G
1
(f)|

(c) Amplitude responses of
HT (f) and G1(f).

−1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

Normalized frequency ω / π
P

ha
se

 [d
eg

re
es

]

Phase responses of relative non−ideal transmit
and non−conjugate imbalance filters

arg(H

T
(f))

arg(G
1
(f))

(d) Phase responses ofHT (f) and
G1(f).

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized frequency ω / π

A
m

pl
itu

de
 [l

in
ea

r
sc

al
e]

Linear amplitude responses of relative non−ideal transmit
and conjugate imbalance filters

|H

T
(f)|

|G
2
(f)|

(e) Amplitude responses of
HT (f) and G2(f).

−1 −0.5 0 0.5 1
−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized frequency ω / π

P
ha

se
 [d

eg
re

es
]

Phase responses of relative non−ideal transmit
and conjugate imbalance filters

arg(H
T
(f))

arg(G
2
(f))

(f) Phase responses of HT (f) and
G2(f).

−1 −0.5 0 0.5 1
24

26

28

30

32

34

36

38

40

42
IRR realization for frequency−selective I/Q imbalance front−end model

Normalized frequency ω/π

IR
R

 [d
B

]

(g) Resulting imbalanced FE IRR.

Figure 3.6: Formation of frequency-selective I/Q imbalance model with gain imbalance
4 per cent, phase imbalance 4 degrees and imbalance model length 3. Non-ideal relative
branch filter impulse response ℎT = (0.97,−0.04, 0.02).

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 32

3.2 Mirror Frequency Interference Problem

Recent radio transmitters such as direct-conversion and low-IF utilizing I/Q sig-
nal processing are both vulnerable to mismatches between the I and Q branches.
Although both use the quadrature mixing approach, the effects of MFI are differ-
ent, though severe, for these architectures. In the following, the MFI problem is
illustrated in the cases of direct-conversion and low-IF transmitters.

Figure 3.7: Illustration of I/Q imbalance effects in low-IF transmitter.

In the case of the low-IF transmitter the MFI problem is referred to as adjacent
channel interference (ACI) because the mirror images originating in the transmitter
are located equally far from the LO frequency fLO as the desired signal. Namely,
mirror images are centered at frequency fMI = fLO − fIF . As a result, the mirror
images cause interference to adjacent channels located in the frequency range from
fLO − fIF − B/2 = fMI − B/2 to fLO − fIF + B/2 = fMI + B/2, where B is the
useful bandwidth of the desired signal [87, 61, 1]. An illustration of this can be seen
in Figure 3.7. If a multichannel wideband scenario is considered, there are multiple
communication signals with different power levels and some of the signal can be
even 60-100 dB stronger than the desired weaker signal. As a result, the image
interference may entirely mask the desired weak signal on the adjacent frequency
channel. Thus, the image attenuation of 30-40 dB provided by modern analog
electronics [56] is clearly not sufficient for architectures with low-IF and clearly
some kind of additional DSP-based processing is needed.

In contrast, the MFI problem in the direct-conversion transmitter causes self-interference
in such that the mirror images resulting in the transmitter are located on the car-
rier frequency fc, on the same frequency band as the desired signal [56, 17, 8, 73].
Thus, the image attenuation requirements for a direct-conversion transmitter are
not as high as for a low-IF transmitter if adjacent channel interference is considered.

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 33

Figure 3.8: Illustration of I/Q imbalance effects in direct-conversion transmitter.

Of course, in-band distortion should be adequately attenuated. An illustration of
self-interference in the frequency domain is given in Figure 3.8. The in-band effect
of frequency-independent I/Q imbalance for direct-conversion transmitter is two-
fold. The relative amplitude mismatch, greater than one, spreads the constellation
vertically, as can be seen in Figure 3.9(a). On the other hand, relative amplitude
mismatch, smaller than one, spreads the constellation horizontally. Moreover, the
relative phase mismatch skews the constellation as illustrated in Figure 3.9(b). The
combined effect of the amplitude and phase mismatch can be seen in Figure 3.9(c).
Similar behavior is also seen with frequency-selective I/Q imbalance model, the only
difference being that frequency-selectivity creates a conjugate inter-symbol interfer-
ence to the signal which is seen as a noise-like behavior in the constellation plots.
The in-band effect of I/Q imbalance with frequency-selective transmitter model can
be seen in Figure 3.10.

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Constellation plot

Quadrature

In
−

ph
as

e

Imbalanced signal
Original signal

(a) Effect of amplitude imbal-
ance

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Constellation plot

Quadrature

In
−

ph
as

e

Imbalanced signal
Original signal

(b) Effect of phase imbalance

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Constellation plot

Quadrature

In
−

ph
as

e

Imbalanced signal
Original signal

(c) combined effect of phase
and amplitude imbalance

Figure 3.9: Effect of I/Q imbalance in direct-conversion transmitter. Single-carrier signal
with 64-QAMmodulation, 5 times over-sampling and 25 % roll-off. Non-frequency-selective
I/Q imbalance model with gain imbalance 4 per cent and phase imbalance 4 degrees.

3.3 Transmitter I/Q Mismatch Estimation and Compensation

This section discusses digital pre-distortion-based transmitter I/Q imbalance calibra-
tion. The section briefly discusses known state of the art DSP-based I/Q imbalance

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 34

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Constellation plot

Quadrature

In
−

ph
as

e

Imbalanced signal
Original signal

(a) Effect of amplitude imbal-
ance

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Constellation plot

Quadrature

In
−

ph
as

e

Imbalanced signal
Original signal

(b) Effect of phase imbalance

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Constellation plot

Quadrature

In
−

ph
as

e

Imbalanced signal
Original signal

(c) combined effect of phase
and amplitude imbalance

Figure 3.10: Effect of frequency-selective I/Q imbalance in direct-conversion transmitter.
Single-carrier signal with 64-QAM modulation, 5 times over-sampling and 25 % roll-off.
Frequency-selective I/Q imbalance model length of 3, where total amplitude response varies
between 0.978 and 1.071, and total phase response varies between 1 and 7 degrees.

estimation and mitigation schemes. Thereafter, the widely-linear least-squares (WL-
LS) I/Q imbalance estimation and calibration algorithm is mathematically described
in detail and different possible recursive versions of it are formulated.

3.3.1 I/Q Imbalance Estimation and Mitigation Schemes

In addition to the WL-LS approach, there are also multiple other approaches to
mitigate transmitter I/Q imbalance effects. Some of them consider only frequency-
independent I/Q mismatch behavior and others estimate parameters for frequency-
selective signal models. In this section a few algorithms are briefly described and
discussed. Their differences to the WL-LS algorithms are also presented in a fairly
general manner.

In [26] Ding et al. address a frequency-dependent modulator imbalance modeling
and compensation scheme which is clearly the most similar to the WL-LS approach.
The imbalance model in the paper is similar to the above frequency-selective model in
Subsection 3.1.2. The difference is that the approach by Ding et al. does not include
separate estimation of the imbalance branch filter impulse responses. Instead, the
pre-distortion filter coefficients are estimated in one single step. The algorithm
estimates the post-inverse of the quadrature modulator from the feedback loop signal
and assumes that the corresponding optimum pre-inverse is equal to the estimated
post-inverse. Finally, the algorithm uses the pre-inverse as a pre-distorter. Moreover,
the algorithm can be used for direct-conversion and low-IF transmitter architectures.

Another approach byWindisch and Fettweis [87] is a method to compensate frequency-

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 35

independent modulator mismatch without complicated model fitting. The transmit-
ter model used in this approach is quite similar to the frequency-independent model
discussed in Subsection 3.1.1. The estimation stage relies on finding the actual am-
plitude and phase mismatch parameters from the feedback loop signal. They start
the estimation fixing the residual phase mismatch and adapting the amplitude mis-
match. After the amplitude mismatch estimate convergences it is fixed and phase
mismatch is adapted in similar way. The approach is only applicable for low-IF
transmitter architecture.

The work by Cavers and Liao in [17] proposes a frequency-independent I/Q imbal-
ance estimation and mitigation scheme with an asymmetric cross-coupled compensa-
tion structure to gain reduced number of calculations. The I/Q imbalance estimation
structure in the approach relies on transmitting four separate sinusoids with different
phases on the channel center frequency and adapting the pre-distorter by measuring
the corresponding modulator outputs from the feedback loop. It should be noted
that this approach is only capable of calibrating a direct-conversion transmitter.

Approach by Vasudev and Oliver in [84] addresses an I/Q imbalance compensator
structure similar to the WL-LS approach but the parameter estimation is done in a
completely different manner. They have chosen to estimate frequency-selective I/Q
imbalance parameters by sending complex sinusoids on selected frequencies over the
whole desired frequency span and measuring the corresponding modulator outputs.
Proper pre-distorter coefficients are then derived from the measurements. In conse-
quence, this approach cannot be considered as an on-line calibration scheme. The
algorithm is applicable for direct-conversion and low-IF transmitter architectures.

Last approach discussed here is proposed by Angrisani et al. found in [7]. They
address I/Q imbalance parameter estimation with error vector magnitude (EVM)
figure analysis. In practice, symbols are blindly recovered from the feedback loop
signal, and constellation points are averaged and clustered in a way that mean
deviation from the ideal symbol locations can be measured with EVM. The actual
parameter estimation from EVM figures becomes a system of equations which is
then solved with minimum-averaged-squared error method. The approach can only
be used with direct-conversion transmitters.

From now on this thesis concentrates entirely on the WL-LS I/Q imbalance es-
timation and compensation approach found in [8] as it will be the algorithm to
implement.

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 36

3.3.2 Widely-Linear Least-Squares Approach

The formulation in this section is based on the article written by Anttila et al.
found in [8]. The aim of I/Q imbalance mitigation is to remove the conjugate term
in (3.21) by properly pre-distorting the ideal transmitted data. Based on the above
imbalance model the following pre-distorter of the form [8]

zp(t) = z(t) + w(t) ∗ z∗(t) (3.37)

can be used. Here w(t) represents the pre-distorter impulse response. From (3.21)
and (3.37) it follows that the pre-distorted and imbalanced baseband equivalent
signal is

xp(t) = g1,p(t) ∗ z(t) + g2,p(t) ∗ z∗(t), (3.38)

where the modified non-conjugate imbalance filter impulse response is

g1,p(t) = g1(t) + g2(t) ∗ w∗(t) (3.39)

and the modified conjugate imbalance filter impulse response is

g2,p(t) = g2(t) + g1(t) ∗ w(t). (3.40)

From (3.40) it can be derived that the optimum solution for the pre-distorter is the
solution to

g2,p(t) = g2(t) + g1(t) ∗ wOPT (t) = 0,∀t. (3.41)

The solution can be seen more intuitively as follows after FT

WOPT (f) =
−G2(f)

G1(f)
. (3.42)

In addition, if non-ideal filter impulse responses g1(t) and g2(t) are considered known,
the IRR for estimated pre-distortion filter coefficients can be calculated as

IRRdB(f) = 10 log10

(∣G1(f) +G2(f)W
∗(−f)∣2

∣G2(f) +G1(f)W (f)∣2
)
. (3.43)

A transmitter block diagram with digital pre-distortion structure realizing the above
derivation can be seen in Figure 3.11.

In practice, however, the solution in (3.42) cannot be used directly to determine
optimum pre-distortion filter coefficients because g1(t) and g2(t) are considered to be
unknown. Thus, practical imbalance parameter estimation schemes using feedback

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 37

Figure 3.11: Block diagram of the estimation and pre-distortion structure with widely
linear least-squares approach.

from RF back to transmitter digital parts are next addressed. Even if g1(t) and g2(t)

could be considered known exactly, it would not ensure that finite length optimum
pre-distortion filter wOPT (t) would give infinite IRR for the transmitter. In Figure
3.12 is reasonably long optimum pre-distortion filter impulse response on logarithmic
scale which has only four to five dominating coefficients but it should be noted that
there are also other non-zero coefficients, though they are insignificant. Furthermore,
the optimum pre-distortion filter truncation effect can be seen in Figure 3.13.

First, a model for the observable feedback signal y(t) is derived. The feedback loop
employs real frequency translation to avoid any additional I/Q imbalance which may
be produced in the case of quadrature down-conversion. The observable feedback
signal, after translation to baseband and low-pass filtering, and after removal of
the possible frequency offset and delay between the original signal and the feedback
signal, can be shown to be

y(t) = gejµℎfb(t) ∗
(
g1(t) ∗ zp(t) + g2(t) ∗ z∗p(t)

)

= g̃1(t) ∗ zp(t) + g̃2(t) ∗ z∗p(t), (3.44)

where g, µ, and ℎfb(t) denote the unknown feedback loop gain, phase, and impulse
response, respectively. In equation (3.44), g̃1(t) and g̃2(t) represent observable im-
balance filters and are of the form

g̃1(t) = gejµℎfb(t) ∗ g1(t) (3.45)

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 38

Figure 3.12: Optimum pre-distortion filter wOPT (t) impulse response of length 256.

and
g̃2(t) = gejµℎfb(t) ∗ g2(t). (3.46)

This shows that the actual imbalance filters g1(t) and g2(t) cannot be directly es-
timated. However, it may be noted that the optimum pre-distortion filter can still
be found from the observed feedback loop signal. To show this, evaluate equation
(3.42) using the Fourier transforms G̃1(f) and G̃2(f) of the observable filters and
denoting FT of the feedback loop impulse response with Hfb(f). This yields

−G̃2(f)

G̃1(f)
= −gejµHfb(f)G2(f)

gejµHfb(f)G1(f)
= −G2(f)

G1(f)
= WOPT (f). (3.47)

This shows that the actual imbalance model with actual imbalance filters g1(t) and
g2(t) does not have to be estimated. The optimum pre-distorter can be calculated
with observed imbalance filters g̃1(t) and g̃2(t), because the feedback loop response
is canceled in the pre-distorter coefficient calculations.

In general, the estimation of g̃1(t) and g̃2(t) is based on least-squares (LS) model
fitting where original transmitted signal is adapted to the observed feedback loop
signal. Next all the equations for the block LS method are derived, which in prac-
tice gives a better understanding of the way the estimation is performed. Next, the
same equations are derived for the recursive least-squares (RLS)- and Gauss-Newton
recursive least squares (GN)-based estimation method, which are more suitable for
real-time implementation and give practically the same performance as the block

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 39

−1 −0.5 0 0.5 1
0

50

100

150

200

250

300

350

400

Normalized frequency ω / π

IR
R

 [d
B

]

IRR curves for different lengths of w
OPT

N

w
=25

N
w
=10

N
w
=8

N
w
=6

N
w
=4

N
w
=2

Figure 3.13: IRR as a function of normalized frequency with different optimum pre-
distorter lengths. Frequency-selective I/Q imbalance model length of 3, where total am-
plitude response varies between 0.978 and 1.071, and total phase response varies between
1 and 7 degrees.

LS-based method [36, 77]. The same estimation problem can also be solved with
mean square error (MSE) algorithms, e.g. least mean squares (LMS) [77] or normal-
ized least mean square (NLMS) [77], but, as will be shown, these give less accurate
estimation results than the RLS algorithm. Also approximate versions of the RLS
algorithm, namely approximate recursive least squares (ARLS) [19] and fast approx-
imate recursive least squares (FARLS) [20], are considered in view of their fairly
good performance. On the other hand, the plain LMS algorithm evinces such weak
performance that it will not even be considered. In contrast, the NLMS algorithm
achieves reasonably good estimation accuracy and will be considered as a potential
approach. The estimation equations for NLMS, ARLS, and FARLS are also given.

Block Least-Squares Approach

From now on, we switch to discrete time and vector-matrix notations for conve-
nience. First, we derive an estimator for g̃1 and g̃2, which includes also feedback
loop response, using a time-domain model fitting approach. Vectors g̃1 and g̃2 in-
clude the I/Q modulator and feedback loop responses. The aim is to find estimates
ĝ1 and ĝ2 which give the best fit between the original data sequence z(n) and the
observed feedback data sequence y(n). The observed feedback data sequence can be

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 40

formulated for auto-correlation data windowing as [8]

y(n) = Z(n)ĝ1 + Z∗(n)ĝ2 = [Z(n) Z∗(n)]

[
ĝ1

ĝ2

]
= Zb(n)

[
ĝ1

ĝ2

]
. (3.48)

Here y(n) = [y(n) y(n − 1) ⋅ ⋅ ⋅ y(n − Lb + 1)]T , Lb denotes the length of the
observed feedback data sequence, and Z(n) is the convolution matrix formed from
the original transmitted data sequence z(n). In general, if the LS solution is formed
by the auto-correlation data windowing method the estimation process gives biased
results [36]. This also applies to the WL-LS estimation approach. Consequently,
covariance and pre-windowing methods should be utilized, as they have been shown
during the work to be the best methods for the estimation process [48]. See Figure
3.15 for examples of the IRR curves with different data windowing methods [36].
For the covariance method the convolution matrix Z(n) of the original signal is
formulated as follows

Z(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(n−Ng + 1) z(n−Ng + 2) ⋅ ⋅ ⋅ z(n)

z(n−Ng) z(n−Ng + 1) z(n− 1)

⋅ ⋅ ⋅
⋅ ⋅ ⋅
⋅ ⋅ ⋅

z(n− Lb + 1) z(n− Lb) ⋅ ⋅ ⋅ z(n− Lb −Ng + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.49)

where Ng denotes the length of estimated imbalance filters ĝ1 and ĝ2. The corre-
sponding observed feedback data sequence is

y(n) = [y(n−Ng + 1) y(n−Ng) ⋅ ⋅ ⋅ y(n− Lb + 1)]T . (3.50)

The imbalance filter coefficients ĝ1 and ĝ2 best describing the data in the LS sense
can then be solved from [

ĝ1

ĝ2

]
= Z+

b (n)y(n). (3.51)

In equation (3.51) Z+
b (n) =

(
ZH

b (n)Zb(n)
)−1 ZH

b (n) is the pseudo-inverse of Zb(n).

After estimating imbalance filter coefficients ĝ1 and ĝ2 another model-fitting is
needed to solve pre-distortion filter coefficients from (3.41). In practice, they can be
solved with LS model-fitting with the equation

w = −(Ĝ
H

1 Ĝ1)
−1Ĝ

H

1 ĝ
0
2, (3.52)

where Ĝ1 is a convolution matrix formed from ĝ1, and ĝ0
2 = [ĝT

2 0 ⋅ ⋅ ⋅ 0]T is a

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 41

zero-padded version of ĝ2 with Ng − 1 additional zeros. Pre-distortion filter w can
be truncated to length Nw, where 1 ≤ Nw ≤ Ng. Truncation has a significant
effect on the maximum achievable performance of the I/Q imbalance mitigation al-
gorithm. Moreover, illustration of the effect can be seen in Figure 3.14(a) when
the frequency-selective I/Q imbalance model length has been fixed to three and
pre-distorter lengths are from two to four. On the other hand, in Figure 3.14(b)
shows how under- or over-determined estimation affects on the algorithm perfor-
mance. This problem could be overcome with order-recursive adaptive filters but
their computational complexity is considered too high, see e.g. [36]

−1 −0.5 0 0.5 1
20

30

40

50

60

70

80

90
Image Rejection Ratio with different pre−distorter lengths

Normalized frequency ω/π

IR
R

 [d
B

]

FE
N

w
=2

N
w
=3

N
w
=4

(a) Fixed I/Q imbalance model length, NT = 3
and Nw = Ng.

−1 −0.5 0 0.5 1
20

30

40

50

60

70

80

90

100

110
Image Rejection Ratio with different FE imbalance model lengths

Normalized frequency ω/π

IR
R

 [d
B

]

N

T
=4

N
T
=3

N
T
=2

(b) Fixed pre-distorter length, Nw = Ng = 3.

Figure 3.14: IRR as a function of normalized frequency when pre-distortion filter length
and I/Q imbalance model lengths are not same. Low-IF signal with 16-QAM modulation,
35 % roll-off, and 5 times over-sampling. Frequency-selective I/Q imbalance model length
of 3, where total amplitude response varies between 0.978 and 1.071, and total phase
response varies between 1 and 7 degrees. 25,000 samples used for estimation process.

Recursive Least-Squares Approach

The RLS algorithm follows the LS principle but does not perform matrix inversions,
which makes it computationally more efficient than plain LS. Recursion has been
implemented through the matrix inversion lemma, which provides tools to create
matrix inversions in a recursive manner [36, 77]. The following RLS formulation

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 42

−5 −2.5 0 2.5 5
25

30

35

40

45

50

55

60

65

70
IRR with auto−correlation data windowing

Frequency relative to carrier [MHz]

IR
R

 [d
B

]

(a) Auto-correlation.

−5 −2.5 0 2.5 5
25

30

35

40

45

50

55

60

65

70
IRR with covariance data windowing

Frequency relative to carrier [MHz]

IR
R

 [d
B

]

(b) Covariance.

−5 −2.5 0 2.5 5
25

30

35

40

45

50

55

60

65

70
IRR with pre−windowing data windowing

Frequency relative to carrier [MHz]

IR
R

 [d
B

]

(c) Pre-windowing.

−5 −2.5 0 2.5 5
25

30

35

40

45

50

55

60

65

70
IRR with post−windowing data windowing

Frequency relative to carrier [MHz]

IR
R

 [d
B

]

(d) Post-windowing.

Figure 3.15: Image Rejection Ratio for different data windowing methods as a function
of normalized frequency. Low-IF signal with 16-QAM modulation, 5 times over-sampling
and 30 % roll-off. Symbol rate was 2 MHz, sample rate 10 MHz and IF 2.55 MHz.

corresponds to the above block LS with covariance data windowing [36, 77].

k(n) =
¸−1P(n− 1)u(n)

1 + ¸−1uH(n)P(n− 1)u(n)
(3.53)

e(n) = y(n)− ĝH(n− 1)u(n) (3.54)

ĝ(n) = ĝ(n− 1)k(n)e∗(n) (3.55)

P(n) = ¸−1P(n− 1)− ¸−1k(n)uH(n)P(n− 1), (3.56)

where u(n) = [z(n) z(n−1) ⋅ ⋅ ⋅ z(n−Ng+1) z∗(n) z∗(n−1) ⋅ ⋅ ⋅ z∗(n−Ng+1)],
P(0) = ±−1I and ĝ(0) = 0 with 2Ng zeros. Parameter ± is a small positive constant to
ensure non-singularity of the covariance matrix of the original signal z(n). Likewise,
it ensures non-singularity of P(n), which is in practice the inverse of the covariance
matrix.

From estimated imbalance vectors ĝ we get ĝ1 = [ĝ(0) ⋅ ⋅ ⋅ ĝ(Ng − 1)]T and
ĝ2 = [ĝ(Ng) ⋅ ⋅ ⋅ ĝ(2Ng − 1)]T . Moreover, zero-padded versions ĝ0

1 and ĝ0
2 are

ĝ0
1 = [0 0 ⋅ ⋅ ⋅ ĝT

1]
T and ĝ0

2 = −[0 0 ⋅ ⋅ ⋅ ĝT
2]

T both with Ng − 1 appended

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 43

zeros. After this pre-distrotion filter coefficients ŵ are again solved with recursive
calculations comparable to equation (3.52), in basically a manner similar to the
estimation of ĝ. The only differences are that equation (3.54) is changed to

e(n) = ĝ0
2(n)− ŵH(n− 1)u(n), (3.57)

where u(n) = [ĝ0
1(n) ĝ

0
1(n − 1) ⋅ ⋅ ⋅ ĝ0

1(n − Ng + 1)] and equation (3.55) receives
the form

ŵ(n) = ŵ(n− 1)k(n)e∗(n). (3.58)

Again pre-distortion filter ŵ can be truncated to length Nw, where 1 ≤ Nw ≤ Ng.

Gauss-Newton Recursive Least-Squares Approach

The GN algorithm also follows the LS principle and does not perform matrix in-
versions, which makes it computationally more efficient than plain LS in a manner
similar to the normal RLS algorithm. Recursion has been implemented similarly to
the normal RLS algorithm with the additional parameter ®, which controls recur-
sion of the inverse of the covariance matrix P(n) of the original data. The following
GN formulation also corresponds in principle to the above block LS with covariance
data windowing.

k(n) =
¸−1P(n− 1)u(n)

1−®
®

+ ¸−1uH(n)P(n− 1)u(n)
(3.59)

e(n) = z(n)− ĝH(n− 1)u(n) (3.60)

ĝ(n) = ĝ(n− 1)k(n)e∗(n) (3.61)

P(n) =
¸−1

1− ®

[
P(n− 1)− ¸−1k(n)uH(n)P(n− 1)

]
, (3.62)

where u(n) = [z(n) z(n−1) ⋅ ⋅ ⋅ z(n−Ng+1) z∗(n) z∗(n−1) ⋅ ⋅ ⋅ z∗(n−Ng+1)],
P(0) = ±−1I and ĝ(0) = 0 with 2Ng zeros. Parameter ® in equations (3.59) and
(3.62) is a small positive constant which is greater than zero. Additionally, parameter
± is the same small positive constant to ensure non-singularity of the covariance
matrix of the original signal z(n) as in normal RLS formulation.

From estimated imbalance vectors ĝ we get ĝ1 = [ĝ(0) ⋅ ⋅ ⋅ ĝ(Ng − 1)]T and
ĝ2 = [ĝ(Ng) ⋅ ⋅ ⋅ ĝ(2Ng − 1)]T . Furthermore, the zero-padded versions of ĝ1 and
ĝ2, namely ĝ0

1 and ĝ0
2, are ĝ0

1 = [0 0 ⋅ ⋅ ⋅ ĝT
1]

T and ĝ0
2 = −[0 0 ⋅ ⋅ ⋅ ĝT

2]
T ,

both with Ng − 1 appended zeros. Thereafter pre-distrotion filter coefficients ŵ are
solved again with recursive calculations exactly corresponding to the normal RLS

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 44

algorithm in equations (3.57)-(3.58) [77].

u(n) = [ĝ0
1(n) ĝ

0
1(n− 1) ⋅ ⋅ ⋅ ĝ0

1(n−Ng + 1)] (3.63)

e(n) = ĝ0
2(n)− ŵH(n− 1)u(n) (3.64)

ŵ(n) = ŵ(n− 1)k(n)e∗(n). (3.65)

Again pre-distortion filter ŵ can be truncated to length Nw, where 1 ≤ Nw ≤ Ng.

Fast Approximate Recursive Least-Squares Approach

As is commonly known [32, 91], the main computational burden of the normal RLS
algorithm comes from the recursion of P(n), which is the inverse of the covariance
matrix of the original data sequence. The FARLS algorithm is an approximation to
the regular RLS algorithm, being thus an approximation of the LS principle. The
algorithm is actually more similar to the NLMS algorithm than to the normal RLS
algorithm. The FARLS algorithm makes the assumption that the matrix P(n) can
be replaced by a vector which includes only the diagonal elements of the matrix
P(n).

Let the itℎ diagonal element of the diagonal matrix D(n) be defined with [20]

Di(n) =
n−i+1∑
j=1

∥y(j)∥2. (3.66)

Next, denote the inverse of the diagonal elements of the matrix D(n) by d(n), and
the itℎ element of the inverse is thus defined as [20]

di(n) =
1∑n−i+1

j=1 ∥y(j)∥2 . (3.67)

The vector d(n) can then be updated by recursion [20]

di(n+ 1) = di−1(n) (3.68)

and
d1(n+ 1) =

1∑n+1
j=1 ∥y(j)∥2

. (3.69)

In practice, the above formulation means that updating the vector d(n) requires
only recalculation of d1(n). Using equations (3.68) and (3.69) the adaptation can

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 45

be performed with equations

d1(n+ 1) =
1∑n+1

j=1 ∥y(j)∥2
(3.70)

e(n) = y(n)− ĝH(n− 1)u(n) (3.71)

ĝ(n) = ĝ(n− 1) + d(n)e∗(n), (3.72)

where u(n) = [z(n) z(n−1) ⋅ ⋅ ⋅ z(n−Ng+1) z∗(n) z∗(n−1) ⋅ ⋅ ⋅ z∗(n−Ng+1)].
The algorithm is initialized with d(1) = [z(1)−2 0 0 ⋅ ⋅ 0] with Ng − 1 zeros and
ĝ(0) = 0 with 2Ng zeros.

The pre-distortion filter coefficients ŵ could be estimated with recursion based on
equations (3.70)-(3.72), but, in practice, there are only Ng adaptation iterations and
the FARLS algorithm will not have a sufficient number of iterations to converge. In
consequence, it has been found that the estimation process for the pre-distortion fil-
ter coefficients ŵ should be performed with RLS recursion, which has been discussed
in Section 3.3.2.

Approximate Recursive Least-Squares Approach

As already stated the main computational burden of the normal RLS algorithm
comes from the recursion of P(n). The ARLS algorithm is another approximation
to the regular RLS algorithm, thus being also an approximation of the LS principle.
It is referred to in the literature as the stochastic gradient algorithm. The algorithm
is similar to the FARLS algorithm and it makes the assumption that matrix P(n)

can be replaced by a single coefficient which is the trace of the matrix P(n) [19].
Let

Ã−1(n) = Tr
[
P−1(n)

]
= Tr

[
n∑

i=1

z(i)zH(i)

]
. (3.73)

From this it can be shown that the following formulation is equal to equation (3.73)
[19]

Ã−1(n) =
n∑

i=1

zH(n)z(n) =
n−1∑
i=1

[
zH(i)z(i)

]
+ zH(n)z(n). (3.74)

This gives the recursion for Ã−1(n), which becomes [19]

Ã−1(n) = Ã−1(n− 1) + zH(n)z(n). (3.75)

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 46

Based on the above formulation the algorithm uses the following equations for adap-
tation [19]

Ã−1(n) = Ã−1(n− 1) + uH(n)u(n) (3.76)

e(n) = y(n)− ĝH(n− 1)u(n) (3.77)

ĝ(n) = ĝ(n− 1) + Ã(n)e∗(n), (3.78)

where u(n) = [z(n) z(n−1) ⋅ ⋅ ⋅ z(n−Ng+1) z∗(n) z∗(n−1) ⋅ ⋅ ⋅ z∗(n−Ng+1)].
The algorithm is initialized with Ã−1(0) = z(0)2 and ĝ(0) = 0 with 2Ng zeros.

The pre-distortion filter coefficients ŵ could be estimated with recursion based on
equations (3.76)-(3.78), but as already stated, in practice there are only Ng adap-
tation iterations and the ARLS algorithm will not have a sufficient number of it-
erations to converge. Consequently, RLS recursions should be used in estimating
pre-distortion filters coefficients ŵ.

Normalized Least Mean Squares Method

NLMS creates few assumptions on the LS principle to simplify recursion. As a
result, its accuracy is not as good as that of the RLS algorithm. On the other hand,
the computational complexity is markedly reduced. The NLMS algorithm executes
equations (3.79) and (3.80) to obtain an estimate for ĝ. The following formulations
collect the NLMS algorithm [36, 77].

e(n) = z(n)− ĝH(n− 1)u(n) (3.79)

ĝ(n) = ĝ(n− 1) +
¹

²+ ∥u(n)∥2u(n)e
∗(n). (3.80)

In equations (3.79) and (3.80) u(n) = [y(n) y(n−1) ⋅ ⋅ ⋅ y(n−Ng+1) y∗(n) y∗(n−
1) ⋅ ⋅ ⋅ y∗(n − Ng + 1)] and in equation (3.80) ¹ is the step-size parameter of
the recursion and ² is an extremely small positive constant to overcome numerical
difficulties when ∥u(n)∥2 approaches zero. At first iteration ĝ(0) = 0 with 2Ng

zeros.

In a manner similar to the previous, from estimated imbalance vector ĝ we obtain
ĝ1 = [ĝ(0) ⋅ ⋅ ⋅ ĝ(Ng − 1)]T and ĝ2 = [ĝ(Ng) ⋅ ⋅ ⋅ ĝ(2Ng − 1)]T . Thus, the zero-
padded versions g0

1 and g0
2 are ĝ0

1 = [0 0 ⋅ ⋅ ⋅ ĝT
1]

T and ĝ0
2 = −[0 0 ⋅ ⋅ ⋅ ĝT

2]
T , both

with Ng − 1 appended zeros. Finally, the estimate for the pre-distortion coefficients

3. Transmitter I/Q Imbalance and Digital Pre-Distortion Calibration 47

ŵ is reached by the following equations

e(n) = ĝ0
2(n)− ŵH(n− 1)u(n) (3.81)

ŵ(n) = ŵ(n− 1) +
¹

²+ ∥u(n)∥2u(n)e
∗(n), (3.82)

where u(n) = [ĝ0
1(n) ĝ

0
1(n− 1) ⋅ ⋅ ⋅ ĝ0

1(n−N +1)] and ¹ is the step size parameter
of the recursion which is in practice different from the step-size used in equation
(3.80). The small positive constant ² remains the same.

This section addressed different methods to solve the least-squares model fitting
problem stated above. A number of algorithms based on LS and MSE approaches
were considered and their recursions were given in the form of equations. All con-
sidered adaptive algorithms are able to solve the model fitting problem under ideal
circumstances but their performance varies if signals are not ideal. Performance of
the algorithms is compared in detail in Section 5.5.

48

4. DEVELOPMENT ENVIRONMENT FOR

REAL-TIME IMPLEMENTATION

The development environment for real-time prototype implementation consists of a
personal computer (PC) with a general purpose processor (GPP), an SDR evalua-
tion board and an RF daughter board. In this thesis, the evaluation board is the
Universal Software Radio Peripheral (USRP) or USRP2 [28]. The evaluation board
together with the daughter board constitute an RF FE and digitalization unit of
the transceiver [34]. Furthermore, if a computer is added to the preceding system,
the components construct a fully functional transceiver unit [88, 58]. In addition,
this transceiver unit is definable with computer software and capable of full-duplex
operation.

The purpose in this chapter is to provide general information on the implementation
environment and its capabilities. The chapter commences with an introduction to
USRP and USRP2 platforms. Thereafter, different methods and software are dis-
cussed which can be used with USRP and USRP2. Particularly the GNU Radio and
its graphical user interface, the GNU Radio Companion, are presented in Sections
4.2 and 4.2.3, respectively. The last section of the chapter briefly discusses different
methods for the use of USRP and USRP2 in the Windows operating system.

4.1 USRP and USRP2

The USRP is an SDR platform developed by Ettus Research [28]. Nowadays, there
exist two different platforms which are USRP, or USRP Original, and USRP2 [34,
28]. The original USRP has been on the market for a few years and USRP2 was
launched at the beginning of 2009. Both platforms are field programmable gate
array (FPGA)-based and they provide ADCs, DACs, decimating/interpolating low-
pass filters, PC connectivity, multiple-input and multiple-output (MIMO) capability
and advanced input/output (I/O) ports which enable automatic gain control (AGC)
and received signal strength indication (RSSI) measurements [34]. In addition, both
USRPs offer interfacing for different daughter boards, which will be further discussed
in section 4.1.2.

4. Development Environment for Real-Time Implementation 49

Figure 4.1: Illustration of USRP1.

The original USRP has two transceiver paths, which enable it to function with
two transceiver daughter boards or with two transmitter and two receiver daughter
boards. The main components of the original USRP can be found in Table 4.1. All
four ADCs inside the USRP are manufactured by Analog Devices and the exact
model is AD9862 [34]. In fact AD9862 is capable of executing analog-to-digital and
digital-to-analog conversions. As a result, there are no separate ADCs and DACs
on the component level, only four ADC/DAC units. The full range of the ADCs is 2
V peak-to-peak voltage with 50 Ohm differential input [28], which yields a 16 dBm
maximum input signal power level without clipping with 12-bit resolution. Likewise,
DACs can provide 1 V peak-to-peak voltage, again with 50 Ohm differential load
[28], which results in a maximum output power of 10 dBm with 14-bit accuracy.
The programmable gain amplifier (PGA) can provide up to 17 dBm output power
for the output signal. General block diagram of original USRP’s FPGA board can
be seen in Figure 4.2.

The only functionally significant parts of the FPGA not yet discussed are the digital
down-converters (DDCs) and digital up-converters (DUCs). There is a DDC and a
DUC for each signal path, four in total. Both DDCs and DUCs have two decimation
and interpolation stages, respectively. The DDC consists of one cascade-integrator
comb (CIC) filter stage with variable decimation from 4 to 256 and one half-band
(HB) filter stage with a decimation factor 2. As a result, total decimation of the
original USRP is from 8 to 512. In addition, CIC filters in all DDCs and DUCs
have four cascaded stages. Similarly, DUCs consists of a CIC filter stage with
variable interpolation from 2 to 256 and one HB filter stage with decimation factor
2. Consequently, total decimation of the original USRP is from 4 to 512. Figure 4.3
shows how the frequency response of the DDC behaves with different decimation
factors. [34, 28, 14, 75]

USRP2 is topologically similar to the original USRP, its fundamental difference be-
ing that firmware is saved on a secure digital (SD) memory card and executed from

4. Development Environment for Real-Time Implementation 50

Figure 4.2: USRP1 FPGA block diagram.

there [28]. This difference gives an opportunity to write tailored FPGA implemen-
tations directly on the platform instead of writing signal processing blocks in GNU
radio software. Moreover, this enables a stand-alone operation where no computer
is needed. In general, USRP2 has better specifications throughout. The main com-
ponents of the USRP2 are listed in Table 4.1 [28]. As will be noted from Table
4.1, the greatest structural difference between USRP and USRP2 is the number of
transceiver paths, which also reduces the possible number of sub-channels in the
transmitter or receiver on the side of the USRP2. On the other hand, this is the
only drawback the new USRP2 has compared to the original USRP. USRP2 also
has a serial expansion port for connecting multiple USRP2s together for extended
MIMO capability [28].

The useful bandwidth of both USRPs is in practice limited by the PC connectivity
method. As discussed above, the original USRP has connectivity to the PC through
the USB 2.0 interface, which has a theoretical transmission rate of 480 Mbps, though
in practice the useful rate is around 320 Mbps. Although a 64 MHz sampling
frequency enables the receiver, with reference to Nyquist criteria, to receive signal
bandwidths as high as 32 MHz, this is in practice impossible. The useful transmission
rate of the USB 2.0 interface becomes a limiting factor [58, 34]. Every complex
sample is represented with two 16-bit signed integers, which yields in total 32 bits
for every complex sample. If the maximum useful data rate of the USB 2.0 interface

4. Development Environment for Real-Time Implementation 51

(a) Decimation factor 8 (b) Decimation factor 16

(c) Decimation factor 32 (d) Decimation factor 64

Figure 4.3: USRP DDC Responses with different total (CIC+HB) decimation factors.

is divided by the size of one complex sample we get

Rb

Nbits

=
320Mbps

32bits
= 10MHz. (4.1)

Additionally, the sampling frequency of original USRP must be an integer multiple
of four. As a result, the smallest decimation factor is 8, which yields a maximum
sampling frequency, using complex samples, of 64MHz/8 = 8MHz [34]. However,
if a simultaneous transmission path is used, the derived maximum frequency span is
divided between receiver and transmitter paths. Consequently, the maximum band
width for both transmitter and receiver is narrowed to 4 MHz [34]. Similarly, the
maximum bandwidth of the new USRP2 is 25 MHz and in transceiver state the
maximum bandwidth is narrowed down to 12.5MHz. The only difference in calcu-
lation is that the theoretical transmission rate of the Gigabit Ethernet connection
is 1000 Mbps [28].

4.1.1 VRT-49

There has been an enormous change in high-performance radio and signal processing
architectures hitherto dominated by customized architectures which are mutually

4. Development Environment for Real-Time Implementation 52

USRP USRP2
FPGA Altera Cyclone EP1C12 Xilink Spartan 3-2000
ADCs 4 x 12-bit, fs = 64MHz 2 x 14-bit, fs = 100MHz
DACs 4 x 14-bit, fs = 128MHz 2 x 16-bit, fs = 400MHz
DDCs 4 x programmable DDCs 2 x programmable DDCs
DUCs 4 x programmable DUCs 2 x programmable DUCs
Memory None 1 MByte SRAM
Connectivity Cypress FX2 Universal Serial Bus

(USB) 2.0 Interface (480 Mbps)
Gigabit Ethernet Interface (1000
Mbps)

2 Gbps serial expansion port

Auxiliary reference clock

1 PPS connection for Global Navi-
gation Satellite System (GNSS) pur-
poses

Table 4.1: Main components of the original USRP and USRP2.

Figure 4.4: Picture of USRP2.

incompatible. The VITA radio transport (VRT) protocol V49.x is an American
National Standards Institute (ANSI) norm which standardizes the framework for
SDR hardware platforms. The objective in the process is to unify the hardware
developed by different manufacturers. Further, the ultimate goal is that once writ-
ten transceiver software can be executed on any SDR platform which is developed
according to the VRT V49.x standard. Currently, the standard is in version 49.1.
Unlike other emerging SDR standards, the VRT V49.x does not specify the archi-
tecture of the transceiver unit. [86]

The VRT V49.x protocol addresses upcoming requirements, a definition of a trans-
port packet which includes unique signal data and signal context information. The
signal data packet provides a variety of data formats and it conveys the desired data.

4. Development Environment for Real-Time Implementation 53

(a) USRP (b) USRP2

Figure 4.5: FPGA Motherboards of USRPs.

Further, the formats can be 1-32 bit real or complex either integer or floating point
numbers and the signal data packet includes sample-wise time-stamp information.
The context packets convey other important information such as frequency, band-
width, gain, delay and inertial navigation parameters. Additionally, the packets
include geo-location information on the transceiver. Context packets are linked to
the signal data packets with time-stamp information. New stream identifiers give
the possibility for multiple labeled data streams. [67]

4.1.2 Daughter Boards

Daughter boards provide the RF FE for both USRPs. Ettus Research manufactures
a number of different daughter boards for different purposes [28, 34]. In addition,
there are daughter boards which have only the capability to receive or transmit, but
there are also transceiver daughter boards. Further, some of these latter are capable
of full-duplex transmission, while some are only capable of half-duplex transmission.
Receiver daughter boards perform bandpass filtering, amplifying with low noise
amplifier (LNA), down-conversion from RF to IF and lowpass filtering. Likewise,
transmitting daughter boards up-convert the desired signal from digital IF to RF
and perform the required filtering and power amplification. The type of the up- and
down-conversion depends on the selected daughter board, e.g. in RFX2400 they can
be performed with either real or I/Q mixing. Transceiver daughter boards have, of
course, the ability to perform both up- and down-conversion. All daughter boards
and their key features can be found in Table 4.2.

4. Development Environment for Real-Time Implementation 54

There is also third-party daughter board for USRPs called Bitshark USRP RX
(BURX). It is manufactured by Epiq Solutions. BURX employs direct-conversion
architecture with RF tuner covering frequencies from 300 MHz to 4 GHz. In addi-
tion, it has configurable channel filter supporting RF bandwidths up to 50 MHz, in-
tegrated high-stability 26 MHz temperature compensated crystal oscillator (TCXO)
and built-in MIMO capability. [27]

Figure 4.6: Block diagram of RFX2400 daughter board. Figure includes both receiver and
transmitter paths.

Within the scope of this thesis the RFX2400 daughter board is used. This board
has two RF antenna connections, another for half-duplex transmission and reception
called RX/TX and another for receiving called RX2 [28]. If the RX/TX connection
is used for transmitting and RX2 for receiving, the daughter board is capable of
full-duplex data transmission. A block diagram of the RFX2400 board can be seen
in Figure 4.6 [28, 34].

4.2 GNU Radio

GNU Radio is an open-source software running on the Linux operating system which
can be used with multiple hardware platforms from a sound card to sophisticated
SDR platforms such as USRP or USRP2. Although GNU Radio supports multiple
platforms, it is mainly intended for use with the USRP product family. [58, 34]

In theory, GNU Radio can run on all Linux distributions, but there are a few distri-
butions which are especially recommended, namely Arch, Debian, Fedora, Gentoo,
Mandriva, SuSe and Ubuntu [34]. GNU Radio has also been built and installed on
Mac OS X. Similarly, there have been attempts to install GNU Radio on Microsoft
Windows, but there has been no reported success.

4. Development Environment for Real-Time Implementation 55

Frequency range Rx Tx Maximum Tx power
Basic Rx 1-250 MHz Yes No N/A
Basic Tx 1-250 MHz No Yes -
LFRX 0-30 MHz Yes No N/A
LFTX 0-30 MHz No Yes -
DBSRX 800-2400 MHz Yes No N/A
TVRX 50-850 MHz Yes No N/A
WBX0510 50-1000 MHz Yes Yes 20 dBm
RFX400 (Flex 400) 400-500 MHz Yes Yes 20 dBm
RFX900 (Flex 900) 800-1000 MHz Yes Yes 23 dBm
RFX1200 (Flex 1200) 1150-1450 MHz Yes Yes 23 dBm
RFX1800 (Flex 1800) 1500-2100 MHz Yes Yes 20 dBm
RFX2400 (Flex 2400) 2300-2900 MHz Yes Yes 17 dBm
XCVR2450 2400-2500 MHz, 4900-5900 MHz Yes Yes 20 dBm
WBX0510 50-2200 MHz Yes Yes 20 dBm

Table 4.2: Different daughter boards manufactured by Ettus Research and their main
features.

GNU Radio includes a wide variety of signal processing blocks, a core library for
running signal processing blocks and a graphical user interface called the GNU Radio
Companion. The GNU Radio Companion is further discussed in Section 4.2.3.

4.2.1 Python Flow Graphs

Python flow graphs act as a framework for GNU Radio applications. They consist
of signal sources, signal processing blocks and signal sinks. As the name implies,
a signal goes through different blocks as it were flowing. Nonetheless, signals in
GNU Radio are discrete time signals, processed in block-wise manner. Each signal
processing block is scheduled to process a certain number of samples and each block
reports to the GNU Radio core scheduler the number of samples processed and the
number produced to the output of the signal processing block. Signal sources only
produce a signal, like the USRP and USRP2 source blocks which produce signals
from USRP and USRP2. Similarly, signal sinks have only inputs. Examples of
this are USRP and USRP2 sinks, which represent the transmission path of USRPs.
[34, 58, 88]

4.2.2 Signal Processing Blocks

GNU Radio includes a wide variety of built-in signal processing blocks [34, 88], which
usually work as intended. Due to the fact that GNU Radio comprises open-source
software and there are a large number of separate developers, some signal processing
blocks are realized better than others. Some blocks do not even work satisfactorily.

4. Development Environment for Real-Time Implementation 56

(a) RFX2400 (b) TVRX

Figure 4.7: Example pictures of daughter boards.

All signal processing blocks can be divided into two larger groups according to the
programming language they are coded with [14], namely, C++ and Python signal
processing blocks. The C++ programming language is considerably more efficient
than the Python and it has much better ability to execute computationally complex
calculations [14]. As a result, blocks with elaborate functionality are programmed
with C++ language.

Signal processing blocks based on the Python programming language are simply
Python flow graphs which do not have their own constructor. In addition, they
always consist of other signal processing blocks.

4.2.3 GNU Radio Companion

The GNU Radio Companion is a graphical user interface for designing GNU Radio-
based Python flow graphs. It enables the user to develop complicated flow graphs
without an extensive knowledge of the Python programming language. The logic of
user interface functionality is similar to the Matlab Simulink. The user drags-and-
drops signal processing blocks to the working area, connects multiple blocks together
and defines all the properties each signal processing block processes. A screen shot
of the GNU Radio Companion is shown in Figure 4.8. [23]

4. Development Environment for Real-Time Implementation 57

Figure 4.8: Screen shot of the GNU Radio Companion. The flow graph shown in the figure
is a QPSK receiver.

4.3 Other Software for Use With USRPs

As already mentioned, the GNU Radio is not the only software to use with USRP
and USRP2. There are multiple drivers and interface softwares for Linux, Windows
and Mac OS X environments. The motivation is quite obvious, since most of the
algorithm and simulation engineering work in the field of telecommunications is done
with Matlab. As a result, there is a need to be able to use both USRPs in a Windows
environment and in cooperation with Matlab. The goal in the following sections is
to provide the reader with an understanding of the different means of controlling
USRP and USRP2.

4.3.1 Windows Drivers

There are open-source windows drivers for the original USRP. These give a C++
interface to deliver control commands to USRP and daughter boards. Although the
driver gives the opportunity to control USRP, it still has a limited control command
set which restricts the use of the USRP. The driver also needs a Linux USB library
for Windows called LibUSB32. Efforts are under way to develop a Windows driver
for USRP2.

There is also on-going development towards universal hardware driver (UHD) drivers

4. Development Environment for Real-Time Implementation 58

by Ettus Research. UHD drivers should become compatible with all major operating
systems and it should give support for both USRPs. [28]

4.3.2 Matlab and Simulink Interfacing

The Communications Engineering Lab at the Karlsruhe Institute of Technology has
developed a Matlab Simulink interface called "Simulink-USRP: Universal Software
Radio Peripheral Blockset". It includes normal Matlab Simulink blocks to control
the original USRP. This approach should also be appropriate for real-time simula-
tions. Another approach is a Matlab interface developed by the SDR4All group.
This approach is used from the normal Matlab command line and in practice it cap-
tures a given time sequence of the received signal in a variable. Consequently, this
strategy is not suitable for real-time applications but becomes useful in algorithm
testing and simulation.

Currently, then, as there are no separate Windows drivers for USRP2, both ap-
proaches support only the original USRP, though, work is ongoing also to support
USRP2.

59

5. IMPLEMENTATION DETAILS AND

PRACTICAL ASPECTS

The implementation here was built on the USRP software radio platform and the
RFX2400 daughter board was used as a RF FE. As mentioned earlier in Chapter
4, the RFX2400 has two different antenna connections, one for time division duplex
(TDD)-based receiving/transmitting (RX/TX), called RX/TX, the other only for
receiving, called RX2. If these connections are used in parallel they provide for full-
duplex operation. In consequence, the RX/TX antenna connection of the RFX2400
was used as an RF output and the RX2 antenna connection as a feedback loop RF
FE. Physical connections of the implementation can be seen more clearly in the
block diagram in Figure 5.2.

The software part of the implementation was built on GNU Radio software by
writing C++ signal processing blocks for direct current (DC) offset compensation,
feedback loop signal synchronization, I/Q imbalance estimation and pre-distortion.
Additionally, interfaces of its own were written for USRP to ensure better controlla-
bility of digital IF and to enable real down-conversion in the feedback loop receiver
chain. Also GNU Radio Companion graphical user interface (GUI) blocks were
written for all programmed signal processing blocks to obtain easier usability of the
overall transmitter. GNU Radio Companion flow graph of the transmitter can be
seen in Figure 5.1.

5. Implementation Details and Practical Aspects 60

Figure 5.1: GNU Radio Companion flow graph realizing the transmitter with I/Q imbal-
ance mitigation.

5. Implementation Details and Practical Aspects 61

I/Q imbalance estimation and calibration algorithms have been discussed earlier in
Section 3.3. The rest of this chapter will discuss in detail which supportive algo-
rithms were used in the implementation. Here a supportive algorithm means and
algorithm which does not make the estimation itself but has an important role in the
overall process. First the basic algorithm for DC offset removal is addressed. There-
after, two different algorithms for integer delay estimation are discussed. Similarly,
two different iterative fractional-delay estimation algorithms are given. Then, the
fractional-delay compensation structure used in the implementation is depicted and
at the end of the chapter implementation related practical aspects are discussed.

Figure 5.2: Block diagram of the measurement setup showing connections and signal flow.

In the implementation, the accuracy of transmitter and feedback loop receiver os-
cillator signals was very good (in the order of 100 Hz), and thus no excess carrier
frequency offset (CFO) mitigation was here implemented. A block diagram of the
main DSP functionalities of the implementation can be seen in Figure 5.2.

5.1 DC Offset Removal

DC offset has to be removed from the feedback loop signal before I/Q imbalance
parameter estimation. If the DC offset is not properly compensated, the possibly
strong DC component in the feedback loop signal may bias the estimation process
or impair the performance of the algorithm.

In practice, DC offset means that the mean values of real and imaginary parts of
the feedback loop signal are non-zero. This can be compensated by taking the mean
value of the feedback loop signal in the following manner

ymean(k) =
1

M

M∑
i=1

yk(i), (5.1)

5. Implementation Details and Practical Aspects 62

where k = (1, 2, ..., r) and M the length of the signal block used for DC offset
estimation. Moreover, by reason of the block-wise signal processing of GNU Radio,
the DC offset estimates are averaged over all processed blocks in the following way.

DCest =
1

r

r∑
i=1

ymean(i), (5.2)

where r is the number of the current signal data block. Finally, the calculated mean
values are subtracted from the real and imaginary parts of the feedback loop signal
and the compensated feedback loop signal becomes then

ycomp = y−DCest. (5.3)

5.2 Integer Delay Estimation

Integer delay estimation is needed for estimating the integer number delay between
the original signal and the feedback loop signal. In general, integer delay estimation
and compensation is fairly trivial and easy to implement. In this work, two different
algorithms were implemented and tested. The first of them was built on the fast
Fourier transform (FFT)-based correlator and the other was based on time domain
differential correlator.

Integer delay is compensated simply by changing the vector indexing in the digital
sampled feedback loop signal.

5.2.1 Fourier Transform Fitting Approach

The approach addressed in this section retells the approach in [66]. Only difference
is that in the implementation integer delay is estimated for shorter data blocks and
the result is averaged over the time.

The delay between the original signal and the feedback loop signal appears as a
linear phase shift in the frequency domain. Delay can thus be estimated by taking
the FT of the original and the feedback loop signal. Then, integer delay between
two signal can be estimated by multiplying the FTs, taking IFT of the product and
finding maximum value of the IFT. Thereafter, to find fractional-delay the phase
difference between the two signals over frequency is calculated, and the fractional-
delay can be obtained from the slope of the phase. The major advantage of this
approach is that the delay can be resolved with subsample accuracy without need
for excessive amounts of oversampling.

5. Implementation Details and Practical Aspects 63

If the original signal is denoted by z(n) and the feedback loop signal by y(n), the
integer delay is simply estimated by multiplying the FTs of the original and the
feedback loop signal as follows:

C(f) = Y (f)Z∗(f). (5.4)

The time domain cross-correlation between the two signals can be determined with
an IFT as follows.

c(n) = ∥ℱ−1 {C(f)} ∥ = ∥
∫ ∞

−∞
C(f)ej2¼fn df∥. (5.5)

The integer delay estimate p̂ can then be defined simply by finding the maximum
value of c(n)

p̂ = argmax
n

c(n), n = 1..M. (5.6)

After removal of the integer delay, the phase difference between the two signals is

Δµ = arg(Y (f)Z∗(f)) (5.7)

and weight vector as
µw = −2¼∥C(f)∥. (5.8)

The slope for fractional-delay can be determined by using a LS model-fitting to the
phase of a unity delay as follows:

¿̂ = (µH
wµw)

−1µwΔµH . (5.9)

5.2.2 Iterative Digital Differential Approach

This algorithm was originally designed for use in FPGA-based systems, which makes
it suitable for real-time prototype implementation. The integer delay between the
original signal z(n) and the feedback loop signal y(n) is computed from an estimate
of the cross-correlation between the two signals, as can be seen in equation (5.10)
[82].

R̂zx(m) =

{
1
L

∑L−m−1
n=0 z(n+m)y∗(n) ,m ≥ 0

1
L

∑L−m−1
n=0 z∗(n−m)y(n) ,m < 0

, (5.10)

where −L + 1 ≤ m ≤ L + 1 and L is the number of samples used to calculate
the cross-correlation. In the following calculations the absolute value of the cross-
correlation is used, yielding

c(m) = ∥R̂zx(m)∥. (5.11)

5. Implementation Details and Practical Aspects 64

0 5 10 15 20 25 30 35
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Sample [n]

Cross−correlation
Differentiator output

Figure 5.3: Example behavior of the iterative digital differential approach. Integer delay
has been 31 samples, the signal a low-IF signal with 16-QAM modulation, 8 times oversam-
pling, 30 % roll-off, and the SNR of the signal 20 dB. Frequency-selective I/Q imbalance
model length of 3 with 4 per cent gain imbalance and 4 degree phase imbalance was used.

The second part of the iterative integer delay estimation process is a peak detector
which continuously seeks the index of the peak value [82]. This peak detector is, in
practice, implemented with a simple digital differentiator. The differentiator output
is formulated as follows [82]:

d(m) = c(m+ 1)− c(m− 1) + 2 [c(m+ 2)− c(m− 2)] . (5.12)

The algorithm continuously observes the cross-correlation value and digital differ-
entiator output. If cross-correlation c(m0) ≥ Tℎ, d(m0 − 1) > 0, and d(m0) ≤ 0 the
instant of the peak value is found [82]. When the peak value has been found the
integer delay estimate p̂ can be defined with the following equation [82]

p̂ =

{
m0 − 1 , ifc(m0) > c(m0 − 1)

m0 , otℎerwise
(5.13)

An example case of the algorithm output can be seen in Figure 5.3 where the true
integer delay has been 31 samples. The figure shows cross-correlation between the
original signal and the feedback loop signal, as well as the corresponding digital
differentiator output.

5. Implementation Details and Practical Aspects 65

5.3 Fractional-Delay Estimation

Fractional-delay estimation is a crucial part of real-time prototype implementation in
that the implemented algorithm has proved to be extremely sensitive to fractional-
delay in the model-fitting-based parameter estimation stage. Also for fractional-
delay estimation two totally different algorithms were implemented. Fractional-delay
compensation schemes are further discussed in Section 5.4. Both of the algorithms
perform reasonably well with signals distorted by I/Q imbalance. Interestingly,
however, the maximum-likelihood non-data-aided (NDA) algorithm was shown to
give the least biased result under I/Q imbalance.

5.3.1 Maximum-Likelihood Non-Data-Aided Approach

This maximum-likelihood NDA fractional-delay timing synchronization algorithm
may be found in [60, 64]. Additionally, the performance of the maximum-likelihood
NDA synchronization algorithm was improved with an interpolating polynomial
approach.

As earlier, z(n) and y(n) denote original signal and observed feedback loop signal,
respectively. Assume that any CFO between the two signals is set to zero. With
this assumption, the log-likelihood function of the fractional-delay estimator takes
the form [60]

∧
(
y∣µ̃, ¿̃ , c̃

)
= exp

{
1

N0

ℜ
(∫ T0

0

y(t)z∗(t)dt
)
− 1

2N0

∫ T0

0

∥z(t)∥2dt
}
, (5.14)

where µ̃ is likelihood parameter vector for phase, ¿̃ for fractional-delay, and c̃ for
known complex symbols. The aim of the algorithm is to find the maximum value of
∧ (y∣¿̃), which is the average of ∧

(
y∣µ̃, ¿̃ , c̃

)
with respect to µ̃ and c̃. In order to

find the maximum value of ∧ (y∣¿̃) the following approximation is made [60]

∫ T0

0

y(t)z∗(t)dt ≈ e−jµ̃

L0−1∑
i=0

c̃∗i y(iT + ¿̃) (5.15)

and, additionally, preforming expectetion of (5.15) with µ̃ uniformly distributed over
the frequency band [0, 2¼) yields the approximated log-likelihood function [60]

∧ (y∣¿̃) ≈
L0−1∑
i=0

∥y(iT + ¿̃)∥2. (5.16)

5. Implementation Details and Practical Aspects 66

In practice, the equation (5.16) is realized by calculating values for the approximated
log-likelihood over different over-sampling lags which yields

∧ (y∣i) =
M−1∑
n=0

∥y(nOSF + i)∥2, i = 0, 1, .., OSF − 1, (5.17)

where OSF denotes the over-sampling factor and M stands for data block length.
An example of the log-likelihood function can be seen in Figure 5.4. From equation
(5.17) the maximum value of the approximate log-likelihood function may be sought
by

° = argmax
i

∧ (y∣i) . (5.18)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Log−likelihood function in ML−NDA fractional−delay estimation

Lo
g−

lik
el

ih
oo

d

Over−sampling factor index

Figure 5.4: Example Log-Likelihood function of the maximum-likelihood NDA algorithm.
Actual fractional-delay has been 32.1 % of the sample interval, the signal a low-IF signal
with 16-QAMmodulation, 8 times oversampling, 30 % roll-off, and the SNR of the signal 20
dB. Frequency-selective I/Q imbalance model length of 3, where total amplitude response
varies between 0.978 and 1.071, and total phase response varies between 1 and 7 degrees.

The accuracy of the algorithm is improved by simple polynomial interpolation. For
this purpose, three log-likelihood function values around the maximum value are
chosen for further calculations in the following manner

p̂ =

⎧
⎨
⎩

S = {OSF − 1, 1, 2} , ° = 0

S = {OSF − 2, OSF − 1, 1} , ° = OSF − 1

S = {° − 1, °, ° + 1} , otℎerwise

(5.19)

5. Implementation Details and Practical Aspects 67

and the corresponding reorganized log-likelihood function is then

b = ∧ (y∣i) , i ∈ S. (5.20)

Finally, from equations (5.19) and (5.20) the fractional-delay estimate ¿̂ is derived
with third order polynomial interpolation as follows

¿̂ =
3b(0)− 4b(1) + b(2)

2 (b(0)− 2b(1) + b(2))
. (5.21)

5.3.2 Recursive Maximum-Likelihood Data-Aided Approach

In this section, the maximum-likelihood data-aided (DA) fractional-delay timing
synchronization algorithm as found in [54] is addressed. The algorithm was originally
designed for use in FPGA-based systems, which makes it particularly suitable for
real-time prototype implementation, even though it rests on computer-based DSP
with GPPs.

The fractional-delay estimation involves four nearest neighboring samples with the
following interpolation functions [54]

zI,in(n) =

{ ∑1
i=−2 ai(¿)zI(n+ i) , ¿ > 0∑1
i=−2 ai(1 + ¿)zI(n+ 1 + i) , ¿ < 0

, (5.22)

where zI(n) represent either the real part of z(n) and zI,in(n) denotes an interpolated
version of zI(n). Interpolation weight vector is defined as [54]

a1(¿) = ®¿ 2 − ®¿

a0(¿) = −®¿ 2 + (®− 1)¿ + 1

a−1(¿) = −®¿ 2 + (®+ 1)¿

a−2(¿) = ®¿ 2 − ®¿,

where ® is a parameter which controls the weight of the neighboring samples. It has
to satisfy the requirement 0 < ® ≤ 1.

With the same interpolation functions, the real part of the delayed feedback signal
can be expressed as [54]

yI(n) =
1∑

i=−2

ai(¿)zI(n+ i). (5.23)

5. Implementation Details and Practical Aspects 68

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

Iteration [m]

F
ra

ct
io

na
l−

de
la

y
[%

 o
f t

he
 s

am
pl

e
in

te
rv

al
]

Learning curve of the recursive ML−DA algorithm

FD Estimate τ̂

Actual FD

Figure 5.5: Example behavior of the recursive maximum-likelihood DA approach. Actual
fractional-delay has been 32.1 % of the sample interval, signal a low-IF signal with 16-
QAM modulation, 8 times oversampling, 30 % roll-off, and the SNR of the signal 20 dB.
Frequency-selective I/Q imbalance model length of 3, where total amplitude response varies
between 0.978 and 1.071, and total phase response varies between 1 and 7 degrees.

The error function is then defined to be

e(n) = zI(n)− yI(n) (5.24)

and the fractional-delay estimate can be derived from [54]

¿̂m+1 = ¿̂m+

{
³
L

∑L−1
j=0 sign [zI,in(mL+ j)− zI,in(mL+ j − 1)] e(mL+ j) , ¿̂m > 0

− ³
L

∑L−1
j=0 sign [zI,in(mL+ j)− zI,in(mL+ j + 1)] e(mL+ j) , ¿̂m < 0

(5.25)
In equation (5.25), L stands for the block length and ³ denotes the step size, and ³

must satisfy the requirement 0 < ³ < 2. An example plot of the adaptation can be
seen in Figure 5.5, where ® = 0.15, ³ = 0.8, and block length L = 64 samples.

5.4 Fractional-Delay Compensation

Fractional-delay was compensated with look-up table (LUT)-based fractional-delay
filtering. The LUT includes 100 all-pass fractional-delay filters generated off-line
with Matlab, thus giving an accuracy of 1 % of the sample interval for the compen-
sation. In Figure 5.6 group delay responses of the 100 fractional-delay filters can be
seen.

5. Implementation Details and Practical Aspects 69

Fractional-delay filters are based on the use of all-pass type finite impulse response
(FIR) filters with different group delays. Moreover, the group delay of the FIR filter
can be a fraction of the sample interval. The design process in the fractional-delay
FIR filters must be considered to lie outside the scope of this thesis, for which reason
design process and requirements will not be further discussed. For more information
on fractional-delay filters, see e.g [50].

0 0.2 0.4 0.6 0.8 1
15

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

15.9

16
Group delays for the 100 polyphase fractional−delay filters

Normalized frequency ω/π

G
ro

up
 d

el
ay

 [s
am

pl
es

]

Figure 5.6: Group-delay responses of the 100 fractional-delay filters used in look-up table
implementation. Order of the filters 32 and normalized cut-off frequency 0.8.

5.5 Implementation-Related Practical Aspects

There are a number of implementation-related issues which have to be taken into
account to attain maximum performance for the WL-LS algorithm, namely CFO,
delay between feedback loop signal and original signal, feedback loop SNR and the
computational complexity of different adaptive algorithms. An IRR over 55 dB is
considered sufficient performance for future wideband transmitters. In this section,
other adaptive algorithms found in the literature are considered aside from the RLS
algorithm, as this algorithm is computationally rather complex and the performance
of the other algorithms has been compared to it.

5.5.1 Carrier Frequency Offset

First of all, the CFO of the feedback loop signal has to be within certain limits. This
requirement should be easy to fulfill even with free-running LO found in USRP, since

5. Implementation Details and Practical Aspects 70

the frequency source is usually common for up- and down-conversion. For additional
information on frequency synchronization see e.g. [60, 64]. The basic impact of
the way the feedback loop CFO affects the average (integrated) IRR on the whole
transmission band can be seen in Figure 5.7. The figure shows that a CFO lower
than 220Hz is sufficient for the desired performance. It is also worth noting that
the GN algorithm outperforms other adaptive algorithms when considering CFO
between the original and the feedback loop signal.

0 500 1000 1500 2000 2500

20

30

40

50

60

70

80
Average IRR vs. feedback signal carrier frequency offset

A
ve

ra
ge

 IR
R

 [d
B

]

Frequency offset [Hz]

LS
RLS
NLMS
ARLS
FARLS
GN

Figure 5.7: Average IRR as a function of carrier frequency offset. Low-IF signal with 16-
QAM modulation, 35 % roll-off, and 5 times over-sampling. Symbol rate 1 MHz, sampling
frequency 5 MHz, and IF has been 1.25 MHz. Frequency-selective I/Q imbalance model
length of 3, where total amplitude response varies between 0.978 and 1.071, and total phase
response varies between 1 and 7 degrees. Pre-distorter length of 3 and 25,000 samples used
for estimation process.

5.5.2 Feedback Loop Signal Delay

Another more paramount requirement is delay estimation and compensation be-
tween the original digital transmitted signal and the digital feedback loop signal.
Integer delay is easily estimated and compensated, whereas estimation and com-
pensation of fractional-delay has been found to be more demanding. Moreover,
I/Q imbalance tends to bias fractional-delay estimates, which renders compensation
even more demanding. The effect of fractional-delay between original signal and
feedback loop signal on the IRR is illustrated in Figure 5.8. It can be seen that
the fractional-delay has a significant effect on the performance of the algorithm and

5. Implementation Details and Practical Aspects 71

that fractional-delays less than 2 % give adequate performance. In addition, around
1 % accuracy should be achievable with the algorihtms discussed in Section 5.3.

5 10 15 20 25 30 35 40

20

30

40

50

60

70

80

A
ve

ra
ge

 IR
R

 [d
B

]

Fractional−Delay [% of the sample interval]

Average IRR vs. fractional−delay between
original signal and feedback signal

LS
RLS
NLMS
ARLS
FARLS
GN

Figure 5.8: Average IRR as a function of fractional-delay between original signal and feed-
back loop signal. Low-IF signal with 16-QAM modulation, 35 % roll-off, and 5 times over-
sampling. Symbol rate 1 MHz, sampling frequency 5 MHz, and IF 2.55 MHz. Frequency-
selective I/Q imbalance model length of 3, where total amplitude response varies between
0.978 and 1.071, and total phase response varies between 1 and 7 degrees. Pre-distorter
length of 3 and 25,000 samples used for estimation process.

−1 −0.5 0 0.5 1
20

30

40

50

60

70

80

90
Image Rejection Ratio with different fractional−delays

Normalized frequency ω/π

IR
R

 [d
B

]

FD=0%
FD=1%
FD=2%
FD=5%
FE

(a) Image Rejection Ratio.

−1 −0.5 0 0.5 1
−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized frequency ω/π

M
ag

ni
tu

de
 [d

B
]

Compensated output spectrums with different fractional−delays

Uncompensated
FD=0%
FD=1%
FD=2%
FD=5%

(b) Compensated spectra.

Figure 5.9: IRR graphs and compensated spectra with different fractional-delays between
the original and the feedback loop signal as a function of normalized frequency. Low-IF
signal with 16-QAM modulation, 35 % roll-off, and 5 times over-sampling. Symbol rate 1
MHz, sampling frequency 5 MHz, and IF 2.55 MHz. Frequency-selective I/Q imbalance
model length of 3, where total amplitude response varies between 0.978 and 1.071, and
total phase response varies between 1 and 7 degrees. Pre-distorter length length of 3 and
25,000 samples used for estimation process.

5. Implementation Details and Practical Aspects 72

On the other hand, it is pointed out in [8] that with sufficiently long imbalance mod-
eling filters ĝ1 and ĝ2 the fractional-delay can be tolerated to some extent without
separate fractional-delay estimation and compensation. In this thesis, the effect of
longer imbalance modeling filters has been further simulated it has been shown that
longer imbalance filters indeed relax fractional-delay compensation requirements.
To achieve this, the assumption of imbalance filters ĝ1 and ĝ2 being minimum-phase
has to be relaxed and delay to them must be introduced. However, utilization of
longer imbalance filters requires a higher feedback loop signal SNR. A comparison of
IRR with different imbalance filter lengths, and corresponding delays, is presented
in Figure 5.10. The optimum delay is always D = ⌊(Ng − 1)/2⌋. This yields that
the observed feedback data sequence with covariance data windowing, in equation
(3.50), becomes

y(n) = [y(n−Ng −D + 1) y(n−Ng −D) ⋅ ⋅ ⋅ y(n− Lb −D + 1)]T (5.26)

From Figure 5.10, it is clear that algorithm performance between integer delay mul-
tiples is significantly improved, and it can tolerate fractional-delay to some extent
without performance degradation.

−600 −400 −200 0 200 400 600

10

20

30

40

50

60

70

80

A
ve

ra
ge

 IR
R

 [d
B

]

Fractional−Delay [% of the sample interval]

Average IRR as a function of FBL delay with different N
g

N
g
=5, D=2

N
g
=15, D=7

N
g
=23, D=11

N
g
=3, w/o delay

N
g
=3, w/o delay

N
g
=23, D=11

Figure 5.10: Average IRR with different filter lengths and delays as a function of delay
between the feedback loop and the original signal. Low-IF signal with 16-QAMmodulation,
35 % roll-off, and 5 times over-sampling. Symbol rate 1 MHz, sampling frequency 5 MHz,
and IF 2.55 MHz. Frequency-selective I/Q imbalance model length of 3, where total
amplitude response varies between 0.978 and 1.071, and total phase response varies between
1 and 7 degrees. Pre-distorter length fixed to 3 and 25,000 samples used for estimation
process.

5. Implementation Details and Practical Aspects 73

5.5.3 Feedback Loop SNR

In the real-time implementation in this thesis the SNR of the feedback loop signal
is around 35-45 dB. With such a high feedback loop signal SNR this aspect should
not become a limiting factor for the performance of the I/Q imbalance estimation
algorithm if we consider 55dB as an adequate IRR value.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Feedback−Loop SNR [dB]

A
ve

ra
ge

 IR
R

 [d
B

]
IRR vs. feedback−loop SNR

RLS, L
b
=10000

RLS, L
b
=20000

RLS, L
b
=30000

RLS, L
b
=40000

RLS, L
b
=50000

NLMS, L
b
=10000

NLMS, L
b
=20000

NLMS, L
b
=30000

NLMS, L
b
=40000

NLMS, L
b
=50000

NLMS, L
b
=10,000

RLS, L
b
=10,000

RLS, L
b
=50,000

NLMS, L
b
=50,000

Figure 5.11: Average IRR with different estimation lengths Lb as a function of SNR of
the feedback loop signal. Low-IF signal with 16-QAM modulation, 35 % roll-off, and 5
times over-sampling. Symbol rate 1 MHz, sampling frequency 5 MHz, and IF 2.55 MHz.
Frequency-selective I/Q imbalance model length of 3, where total amplitude response varies
between 0.978 and 1.071, and total phase response varies between 1 and 7 degrees. Pre-
distorter length of 3 and 25,000 samples used for estimation process.

In general, it is known that adaptive algorithms need a higher number of samples for
the estimation process if the input samples are distorted by noise. As a consequence,
the number of samples used for the estimation also influences performance. It can
be seen in Figure 5.11 that average IRR increases by about 1 dB for every additional
10,000 samples. It may also be seen that the SNR of the feedback loop signal should
be around 30 dB to keep the performance degradation due to feedback loop noise
acceptable. Fixed pre-distorter length results in a convergence of the IRR in Figure
5.11. Moreover, longer pre-distorter lengths would result in higher IRR.

5. Implementation Details and Practical Aspects 74

−1 −0.5 0 0.5 1
20

30

40

50

60

70

80

Normalized frequency ω/π

Im
ag

e
R

ej
ec

tio
n

R
at

io
 [d

B
]

Image Rejection Ratio with different feedback loop SNRs

SNR=∞
SNR=60
SNR=40
SNR=20
SNR=5
Front−end

(a) Image Rejection Ratio with different feed-
back loop SNRs.

−1 −0.5 0 0.5 1
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Normalized frequency ω/π

M
ag

ni
tu

de
 [d

B
]

Compensated output spectrums with different feedback loop SNRs

No PD
PD, SNR=∞
PD, SNR=40
PD, SNR=20
PD, SNR=5

(b) Simulated compensated spectra with differ-
ent feedback loop SNRs.

Figure 5.12: IRR graphs and compensated spectra with different feedback loop SNRs as
a function of normalized frequency. Low-IF signal with 16-QAM modulation, 35 % roll-
off, and 5 times over-sampling. Symbol rate 1 MHz, sampling frequency 5 MHz, and IF
2.55 MHz. Frequency-selective I/Q imbalance model length of 3, where total amplitude
response varies between 0.978 and 1.071, and total phase response varies between 1 and 7
degrees. Pre-distorter length of 3 and 25,000 samples used for estimation process.

5.5.4 Computational Complexity

The computational complexity of different adaptive algorithms is also a particularly
important aspect of real-time implementation in that computation power is always
limited and the computational burden should be kept as low as possible. In Figure
5.13 it will be seen that the RLS and GN algorithms are clearly the most complex
algorithms considered. It should be noted that the curve in the figure assumes Ng

to be the same length as Nw. The computational complexity of the RLS and GN
algorithms grows exponentially as pre-distorter length increases. ARLS and FARLS
algorithms are of a complexity close to the NLMS algorithm and their computational
complexity grows linearly as pre-distorter length increases. Additionally, their per-
formance is fairly good if the problems discussed above have been properly solved.
On the other hand, RLS and GN algorithms outperform other algorithms under
more demanding conditions.

5.5.5 Convergence Behavior of Different Adaptive Algorithms

This section briefly addresses the convergence behavior of the different adaptive
algorithms. All the convergence plots show evolution of the average IRR values.
In general, it will be noticed that RLS and GN algorithms have clearly the fastest

5. Implementation Details and Practical Aspects 75

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900

T
ot

al
 n

um
be

r
of

 c
al

cu
la

tio
ns

 p
er

 it
er

at
io

n

N
w

Complexity of algorithms as a function of pre−distortion filter length N
w

RLS
GN
FARLS
ARLS
NLMS

Figure 5.13: Computational complexity of adaptive algorithms as a function pre-distortion
filter length. Total number of calculations means number of additions, subtractions, divi-
sions and multiplications altogether during one iteration. Ng is assumed to be the length
as Nw.

convergence speed and they have the highest steady-state IRR values in all cases.
In practice, the limiting factor for the steady-state IRR of algorithms becomes the
variance of the additive white Gaussian noise (AWGN) in the feedback loop signal
and length of the pre-distortion filter. The IRR value can be considered good enough
if it is in the order of 55 dB.

In Figure 5.14 the IRR evolution curves for the ideal case can be seen. Around 2,000
samples in fact suffice for RLS and GN algorithms to converge perfectly, while other
algorithms would need a much higher number of samples to converge.

Similarly, in Figure 5.15 the IRR evolution graphs for the algorithms under differ-
ent degrees of CFO are shown. Amount of the CFO clearly has an effect on the
steady-state IRR of all the algorithms, but it is interesting to notice that RLS does
not converge. After 1,000 iterations it starts to diverge strongly and average IRR
value decreases significantly. It is also worth noting that the parameterless FARLS
algorithm has the lowest steady-state IRR under CFO.

In Figure 5.16 the IRR evolution curves for the algorithms can be seen under
fractional-delay. Around 5,000 samples is in fact a sufficient number for RLS and
GN algorithms to converge perfectly, whereas other algorithms need about 15,000
samples to attain a performance which can be considered adequate. As will be

5. Implementation Details and Practical Aspects 76

0 5 000 10 000 15 000 20 000 25 000

30

35

40

45

50

55

60

65

70

Iteration [n]

A
ve

ra
ge

 IR
R

 [d
B

]

Average IRR versus number of iteration for different algorithms

RLS
GN
FARLS
NLMS

Figure 5.14: Comparison of the IRR evolution of different adaptive algorithms under ideal
circumstances.

noted, the steady-state performance of different algorithms is fairly similar, the only
difference being the convergence speed.

5. Implementation Details and Practical Aspects 77

0 5000 10000 15000 20000 25000
−10

0

10

20

30

40

50

60

70
Average IRR versus number of iteration for different algorithm under CFO

IR
R

 [d
B

]

Iteration [n]

RLS, CFO=100 Hz
RLS, CFO=250 Hz
RLS, CFO=500 Hz
GN, CFO=100 Hz
GN, CFO=250 Hz
GN, CFO=500 Hz

FARLS, CFO=100 Hz
FARLS, CFO=250 Hz
FARLS, CFO=500 Hz
NLMS, CFO=100 Hz
NLMS, CFO=250 Hz
NLMS, CFO=500 Hz

Figure 5.15: Comparison of the IRR evolution of different adaptive algorithms under carrier
frequency offset between original and feedback loop signals. Sampling frequency was 5
MHz.

0 5000 10000 15000 20000 25000

20

30

40

50

60

70

80
Average IRR versus number of iteration for different algorithms under FD

IR
R

 [d
B

]

Iteration [n]

RLS, FD=0.1 %
RLS, FD=1 %
RLS, FD=10 %
GN, FD=0.1 %
GN, FD=1 %
GN, FD=10 %

FARLS, FD=0.1 %
FARLS, FD=1 %
FARLS, FD=10 %
NLMS, FD=0.1 %
NLMS, FD=1 %
NLMS, FD=10 %

Figure 5.16: Comparison of the IRR evolution of different adaptive algorithms under dif-
ferent fractional-delays between original and feedback loop signals. Over-sampling factor
was 5.

78

6. MEASUREMENTS AND RESULTS

This chapter aggregates the results which are based on the I/Q calibration concept
discussed earlier in this thesis. It will discuss only the laboratory measurement
results because Matlab simulation results have been given through out the thesis.

In the first section, an overview of the measurement setup is presented. There-
after, the measurement results obtained using the developed real-time prototype
implementation.

6.1 Measurement Setup

The measurement setup contained PC with an Intel Quadcore Q9550 processor,
original USRP with RFX2400 daughter board, a Mini-Circuits splitter which had
a frequency span from 1.5GHz to 8GHz, and an attenuator which was a variable
RF attenuator from Mini-Circuits. Additionally, a number of shielded RF cables
were used. All results were measured with a Rohde & Schwarz FSG 100A vector
spectrum analyzer, which is also able to measure EVM figures for the measured
signal. A general block diagram of the equipment connections can be seen in Figure
6.1.

RX2

USRP
+

RFX2400

RX/TX
SPLITTER

ATTENUATOR

PC + GNU Radio

USB
Rohde & Scwarz
FSG Spectrum

Analyzer

Figure 6.1: General block diagram of the used measurement setup.

6.2 Results from Real-Time Implementation

Although it has been verified with simulations that the pre-distortion algorithm
presented is capable of suppressing image signals originating due to I/Q imbalance,

6. Measurements and Results 79

a practical real-time prototype implementation is indispensable to prove that the
algorithm can also be used in practical real world radio transmitters.

The RLS parameters in all the measurements were ¸ = 1 and ± = 0.01 and from
25,000 to 30,000 samples were used for I/Q imbalance parameter estimation.

6.2.1 Direct-Conversion Transmitter Mode Measurements

In Figure 6.2 are measured IRR curves for USRP RF FE with and without pre-
distortion. The frequency-selective RF FE IRR was measured with two different
methods. First, complex sinusoids were transmitted over the whole frequency band
and IRR values were observed with spectrum analyzer. This can be seen as a
solid red curve in Figure 6.2. Thereafter, it was measured with model-fitting-based
approach. A data sequence of 200,000 samples was measured with spectrum analyzer
and then the imbalance filter impulse responses g1(t) and g2(t) were estimated with
I/Q imbalance estimation algorithm discussed earlier in Subsection 3.3.2. From g1(t)

and g2(t), the RF FE IRR was calculated with (3.28). After this, estimated g1(t) and
g2(t) were considered as correct imbalance parameters and RF FE IRRs for different
pre-distortion filter lengths were calculated with (3.43). Lower performance of the
pre-distorter with three and four taps could be explained with estimation noise due
to the rather low feedback loop SNR or other impairments which have not been
taken into account.

From Figure 6.3 it may be seen how the I/Q imbalance calibration algorithm af-
fects the USRP output constellation when it is used in direct-conversion transmitter
mode. The mean EVM value decreased from 10.15 % to 6.36 %. This means that
signal quality increased by over 37 % if the mean EVM value is used as a measure.

Figure 6.4 shows that the calibration was really done in real time without any
transmission interruptions. The EVM values were measured with a Rohde&Schwarz
FSG 100A spectrum analyzer from the USRP RF output. The overall high level
of the EVM value is a result of the rather high phase noise level in the USRP
LO. In Figure 6.4(a) normal steady-state transmission is illustrated. Thereafter, in
Figure 6.4(b) the corresponding EVM plots during the calibration can be seen for
direct-conversion transmitter mode.

6.2.2 Low-IF Transmitter Mode Measurements

Figure 6.5 shows the USRP RF output spectrum with narrowband signal. The
original digital signal was a low-IF signal with symbol rate of 250 kHz and 8 times

6. Measurements and Results 80

2452 2453 2454 2455 2456 2457 2458 2459 2460
0

10

20

30

40

50

60

70

80
Measured USRP Front−End IRR, zero−IF signal

Frequency [MHz]

IR
R

 [d
B

]

FE, measured with sinusoids
FE, calculated with model fitting
With PD, 1−tap
With PD, 2−tap
With PD, 3−tap
With PD, 4−tap

Figure 6.2: Measured USRP RF FE IRR graphs. FE was measured with Zero-IF signal
with 16-QAM modulation, 4 MHz symbol rate, 2 times over-sampling, 30 % roll-off, and
carrier frequency of 2.456 GHz. Pre-distorter coefficients were measured with Zero-IF
signal with 16-QAM modulation, 2 MHz symbol rate, 2 times over-sampling, 30 % roll-
off, and carrier frequency of 2.456 GHz. Pre-distorter length was from 1 to 4 and 30,000
samples used for the estimation.

over-sampling, which yields, with 25 % roll-off, a 312.5 kHz overall useful signal
bandwidth and 2 MHz digital sampling frequency. Moreover, the digital IF was 0.5
kHz, analog IF for feedback loop 6MHz, carrier frequency 2.456 GHz, and analog
sample rate 64 MHz. The pre-distorter length was 1 tap and 25,000 samples were
used for estimation. As can be seen from the figure, the performance of the algorithm
was very good. The image band signal was attenuated 67 dB, which is an eminently
good result.

Figure 6.6 shows the USRP RF output spectrum with slightly wider band low-IF
signal than in the previous spectrum in Figure 6.5. Digital sample rate was 4 MHz,
analog sample rate 64 MHz, digital IF 1MHz, analog IF for feedback loop 6 MHz,
and carrier frequency 2.456 GHz. The signal symbol rate was 1 MHz, which yields,
with 30 % roll-off, a 1.3 MHz overall useful signal bandwidth. The pre-distorter
length was 1, 2, and 3 taps. Moreover, 25,000 samples were used for estimation. As
can be seen from the figure, the performance of the algorithm was particularly good.
The image band signal was attenuated with 1-tap pre-distorter 59.4 dB, with 2-tap
pre-distorter 55.7 dB, and with 3-tap pre-distorter 55.8 dB. Linear distortion in the
spectrum comes from the overall response of the digital interpolation filter stage of
the USRP transmission path.

6. Measurements and Results 81

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Q
ua

dr
at

ur
e

In−phase

Constellations from the USRP RF output,
EVM values measured with spectrum analyzer over 1000 symbols

Original EVM=10.1472%
With PD (2−tap), EVM=6.3602%
Ideal constellation points

Figure 6.3: Measured constellation from the USRP RF output signal. Zero-IF signal with
16-QAM modulation, 1 MHz symbol rate, 4 times over-sampling, 30 % roll-off, IF of 1
MHz, and carrier frequency of 2.456 GHz. Pre-distorter length 2 and 25,000 samples used
for the estimation.

Figure 6.7 illustrates USRP RF output spectra and measured constellations in low-IF
mirror image interference demonstration. We have a reasonably weak desired signal
at center frequency of 2455.5 MHz generated with vector signal generator. Desired
signal is 16-QAM modulated signal with 500 kHz symbol rate and 30 % roll-off. In
addition, we have band-limited noise transmitted from the USRP at center frequency
of 2457 MHz with 1.4 MHz bandwidth. Due to the finite IRR of the USRP RF FE
without I/Q calibration, mirror image of the band-limited noise falls over the desired
signal which can be seen in Figure 6.7(a). In the measured constellation this is seen
as additional noise, see Figure 6.7(b). If the WL-LS I/Q imbalance calibration
scheme is used with 2-tap pre-distorter, the mirror image disappers almost entirely
and measured constellation is clearly less noisy. In addition, 30,000 samples were
used for the I/Q imbalance parameter estimation. The effect of the digital pre-
distortion-based I/Q calibration can also be seen in Figures 6.7(a) and 6.7(b).

All the results in the Section 6.2 show that the algorithm gives reasonably good
performance in real-time operation with real world signals. Multi-tap pre-distorters
perform equally as well as a 1-tap pre-distorter because the measurement signal can

6. Measurements and Results 82

0 20 000 40 000 60 000 80 000 100 000
0

5

10

15

20

25

E
V

M
 [%

]

Sample [n]

Direct−conversion transmitter without I/Q imbalance calibration

(a) Normal steady operation without PD.

0 20 000 40 000 60 000 80 000 100 000
0

5

10

15

20

25

30

E
V

M
 [%

]

Sample [n]

Direct−conversion transmitter with I/Q imbalance calibration

Samples used
for estimation
have been sent

Estimation
starts Pre−distortion

starts

USRP loop
delay

(b) During the calibration, direct-conversion.

Figure 6.4: In-band EVM figures from the output of the USRP unit during the calibration.
Zero-IF signal with 16-QAM modulation, 4 times over-sampling, 30 % roll-off, and carrier
frequency 2.456 GHz.

be considered narrowband and frequency-selectivity of the USRP RF FE is mild.

6. Measurements and Results 83

2455 2455.5 2456 2456.5 2457

−70

−60

−50

−40

−30

−20

−10

0

USRP output spectrums

Frequency [MHz]

M
ag

ni
tu

de
 [d

B
m

]

Without PD
With PD, 1−tap

Figure 6.5: USRP RF output spectrum without and with I/Q imbalance mitigation al-
gorithm. Low-IF signal with 16-QAM modulation, 250 kHz symbol rate, 8 times over-
sampling, 25 % roll-off, IF of 500 kHz, and carrier frequency of 2.456 GHz. Pre-distorter
length was 1 and 25,000 samples used for the estimation.

2454 2454.5 2455 2455.5 2456 2456.5 2457 2457.5 2458
−70

−60

−50

−40

−30

−20

−10

0

10
USRP output spectrums

Frequency [MHz]

M
ag

ni
tu

de
 [d

B
]

Without PD
With PD, 1−tap
With PD, 2−tap
With PD, 3−tap

Figure 6.6: USRP RF output spectrum without and with I/Q imbalance mitigation algo-
rithm. Low-IF signal with 16-QAMmodulation, 1 MHz symbol rate, 4 times over-sampling,
30 % roll-off, IF of 1 MHz, and carrier frequency of 2.456 GHz. Pre-distorter length 1, 2,
and 3. 25,000 samples used for the estimation.

6. Measurements and Results 84

2454 2454.5 2455 2455.5 2456 2456.5 2457 2457.5 2458
−100

−90

−80

−70

−60

−50

−40

−30
USRP output spectrums

Frequency [MHz]

A
m

pl
itu

de
 [d

B
m

]

With PD, 2−tap
Without PD

(a) USRP RF output spectra.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Constellations measured from USRP RF output

In−phase

Q
ua

dr
at

ur
e

Without PD
With PD, 2−tap

(b) Constellations measured from USRP RF
output.

Figure 6.7: Measurement results from low-IF mirror image interference demonstration.

85

7. CONCLUSIONS

The goal in this thesis project was to study all the implementation-related aspects
of the digital pre-distortion-based transmitter I/Q imbalance calibration algorithm
utilizing a WL-LS estimation approach. First, transmitter architectures and their
prospects and downsides were discussed. Thereafter, signal models for the frequency-
selective I/Q imbalance calibration algorithm were addressed. Then, an efficient
digital pre-distortion-based imbalance calibration method was presented and the
required equations defined. Next, the development platform and the development
environment were introduced and the performance figures briefly discussed. The
implementation details were also extensively discussed and the practical aspects of
the algorithm were addressed, with closest focus on the prototype implementation-
related aspects. Finally, the results from the Matlab simulations and from the
laboratory measurements were presented.

As mentioned in Chapter 3, the state of the art transmitters can achieve about
35-40 dB mirror image attenuation without additional calibration. In simulations
the WL-LS estimation and mitigation approach was shown to improve IRR from
the current level to about 55-70 dB, which is a very substantial advance and step
towards the realizability of a wideband multi-standard transceiver. In addition, the
real-time prototype implementation was shown to give results congruent with the
Matlab simulations when practical aspects were taken into account. In practice,
the reliability of the estimation algorithm is mostly dependent on the exact and
consistent delay compensation, which proved to be a demanding task. The study
also showed that recursive implementation of the WL-LS compensation approach is
feasible with the current SDR platforms and it was shown to be implementable with
quite limited computational resources.

This real-time prototype implementation gives a good basis for future research and
work to realize possible FPGA-based solutions. Future work will also include real-
time prototype implementation of the joint PA linearization and I/Q imbalance
mitigation algorithm proposed by the authors in [9, 10].

86

REFERENCES

[1] A.A. Abidi, "CMOS wireless transceivers: the new wave," IEEE Commun.
Mag., vol. 39, iss. 8, pp. 119-124, Aug. 1999.

[2] A.A. Abidi, "Direct-conversion radio transceivers for digital communications,"
IEEE J. Solid-State Circuits, vol. 30, iss. 12, pp. 1399-1410, Dec. 1995.

[3] A.A. Abidi, "Low-power radio-frequency ICs for portable communications,"
IEEE Proceedings, vol. 83, iss. 4, pp. 544-569, 1995.

[4] F. Agnelli, G. Albasini, I. Bietti, A. Gnudi, A. Lacaita, D. Manstretta, R.
Rovatti, E. Sacchi, P. Savazzi, F. Svelto, E. Temporiti, S. Vitali, and R.
Castello, "Wireless multi-standard terminals: system analysis and design of
a reconfigurable RF front-end," IEEE Circuits and Systems Mag., vol. 6, pp.
38-59, Jun. 2006.

[5] L. Angrisani, A. Napolitano, and M. Vadursi, "Measuring I/Q impairments in
WiMAX transmitters," IEEE Transactions on Instrumentation and Measure-
ment, vol. 58, iss. 5, pp. 1299-1306, 2009.

[6] L. Angrisani, and R. Colella, "Detection and evaluation of I/Q impairments in
RF digital transmitters," IEEE International SoC Design Conference (ISOCC),
vol. 151, iss. 1, pp. 39-45, 2004.

[7] L. Angrisani, M. D’Arco, and M. Vadursi, "Clustering-based method for detect-
ing and evaluating I/Q impairments in radio-frequency digital transmitters,"
IEEE Transactions on Instrumentation and Measurement, vol. 56, iss. 6, pp.
2139-2146, 2007.

[8] L. Anttila, M. Valkama, and M. Renfors, "Frequency-selective I/Q mismatch
calibration for wideband direct conversion transmitters," IEEE Trans. Circuits
Syst., vol. 55, pp. 359-363, Apr. 2008.

[9] L. Anttila, P. Händel, and M. Valkama, "Joint mitigation of power amplifier
and I/Q modulator impairments in broadband direct-conversion transmitters,"
IEEE Trans. Microw. Theory Tech., vol. 58, iss. 4, pp. 730-739, Apr. 2010.

[10] L. Anttila, P. Händel, O. Mylläri, and M. Valkama, "Recursive learning based
joint digital predistorter for power amplifier and I/Q modulator impairments,"
EuMA Internationa Journal on Microwave Theory, Special Issue, To appear in
Apr. 2010.

REFERENCES 87

[11] V. Arkesteijn, "Analog front-ends for software-defined radio receivers," Ph.D.
dissertation, University of Twente, Twente, Neatherlands, 2007.

[12] A. Baschirotto, R. Castello, F. Campi, G. Cesura, M. Toma, R. Guerrieri, R.
Lodi, L. Lavagno, and P. Malcovati, "Baseband analog front-end and digital
back-end for reconfigurable multi-standard terminals," IEEE Circuits Systems
Mag., vol. 6, pp. 8-28, Jun. 2006.

[13] D.M. Bland, and A. Tarczynski, "The effect of sampling jitter in a digitized
signal," Proceedings of 1997 IEEE International Symposium on Circuits and
Systems, vol. 4, pp. 2685-2688, 1997.

[14] E. Blossom, "How to write a signal processing block," [online], acces-
sible: http://www.gnu.org/software/gnuradio/doc/howto-write-a-block.html,
referred on 13.11.2009.

[15] M. Bruno, M. Murdy, P. Perrault, A.M. Wyglinski, and J.A. McNeill, "Widely
tunable RF transceiver front end for software-defined radio," IEEE Military
Communications Conference MILCOM 2009, 2009.

[16] A.B. Carlson, Paul B.C., and J.C. Rutledge, Communication Systems, 4tℎ ed.,
McGraw-Hill, 2001.

[17] J.K. Cavers, and M.W. Liao, "Adaptive compensation for imbalance and offset
losses in direct conversion transceivers," IEEE Trans. Veh. Commun., vol. 42,
pp. 581-588, Nov. 1993.

[18] J.K. Cavers, "The effect of quadrature modulator and demodulator errors on
adaptive digital predistorters for amplifier linearization," IEEE Trans. Veh.
Commun., vol. 46, iss. 2, pp. 456-466, May 1997.

[19] M.M. Chansarkar, U.B. Desai, and B.V. Rao, "A comparative study of the
approximate RLS with LMS and RLS algorithms," Fourth IEEE Region 10
Int. Conf., TENCON ’89. pp. 255-258, Nov. 1989.

[20] M.M. Chansarkar, and U.B. Desai, "A fast approximate RLS algorithm," IEEE
Region 10 Conf. on Computer, Communication, Control and Power Engineer-
ing, TENCON ’93, vol.3, pp. 532-536, Oct. 1993.

[21] H-H. Chen, J-T. Chen, and P-C. Huang, "Adaptive I/Q imbalance compensa-
tion for RF transceivers," GLOBECOM ’04. IEEE Global Telecommunications
Conference, vol. 2, pp. 818-822, Nov. 2004.

[22] S-J. Chen, and Y-H. Sieh, IQ Calibration Techniques for CMOS Radio
Transceivers, Springer, 2006.

REFERENCES 88

[23] A.B. Cooper, P. Mulligan, W.R. Kenan, and P. Strasser, "GNU Radio Compan-
ion," [online], accessible: http://gnuradio.org/trac/wiki/GNURadioCompanio,
referred on 13.11.2009.

[24] J. Crols, and M. Steyaert, "A fully integrated 900 MHz CMOS double quadra-
ture down converter," Proceedings IEEE International solid-State Circuits Con-
ference, pp. 136-137, Feb. 1995.

[25] I. Dagres, A. Zalonis, N. Dimitriou, K. Nikitopoulos, and A. Polydoros, "Flex-
ible radio: a framework for optimized multimodal operation via dynamic sig-
nal design," EURASIP Journal on Wireless Communications and Networking,
2005.

[26] L. Ding, Z. Ma, D.R. Morgan, M. Zierdt, and G.T. Zhou, "Frequency-dependent
modulator imbalance in predistortion linearization systems: modeling and com-
pensation," Conference Record of the Thirty-Seventh Asilomar Conference on
Signals, Systems and Computers, vol. 1, 2003.

[27] Epiq Solutions, [online], accessible: http://www.epiq-solutions.com, referred on
5.5.2010.

[28] Ettus Reseach, [online], accessible: http://www.ettus.com, referred on
24.3.2010.

[29] R. Farrell, M. Sanchez, and G. Corley, "Software-defined radio demonstrators:
an example and future trends," Hindawi International Journal of Digital Mul-
timedia Broadcasting, 2009.

[30] G. Fettweis, M. Löhning, D. Petrovic, M. Windisch, P. Zillman, and W. Rave,
"Dirty RF: a new paradigm," IEEE Personal Indoor and Mobile Radio Com-
munications, vol. 4, pp. 2347-2355, Sept. 2005.

[31] G. Fettweis, E. Zimmermann, V. Jungnickel, and E.A. Jorswieck, "Challenges
in future short range wireless systems," IEEE Veh. Commun. Mag., vol. 1, iss.
2, pp. 24-31, 2006.

[32] K. Fujii, and J. Ohga, "Sub-RLS algorithm with an extremely simple update
equation," IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 3, pp. 2325-2328, 1997.

[33] J. Glyn, and M.Moeneclaey, Advanced Modern Engineering Mathematics, Pren-
tice Hall, 2003.

[34] GNU Radio, [online], accessible: http://www.gnuradio.org, referred on
24.3.2010.

REFERENCES 89

[35] Q. Gu, RF system design of transceivers for wireless communications, Springer,
2005.

[36] S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice Hall, 1996.

[37] S. Haykin, Communication systems, 4tℎ ed., John Wiley & Sons, Inc., 2001.

[38] D.S. Hilborn, S.P. Stapleton, and J.K. Cavers, "An adaptive direct conversion
transmitter," IEEE Trans. Veh. Commun., vol. 34, iss. 2, pp. 223-233, May
1994.

[39] G. Hueber, Y. Zou, K. Dufrene, R. Stuhlberger, and M. Valkama, "Smart front-
end signal processing for advanced wireless receivers," IEEE Journal of Selected
Topics in Signal Processing, vol. 3, iss. 3, pp. 472-487, 2009.

[40] M. Isaksson, D. Wisell, and D. Ronnow, "A comparative analysis of behavioral
models for RF power amplifiers," IEEE Transactions on Microwave Theory and
Techniques, vol. 54, iss. 1, pp. 348-359, 2006.

[41] M. Ismail, Radio Design in Nanometer Technologies, Springer, 2006.

[42] International Telecommunication Union, [online], accessible:
http://www.itu.int/ITU-D/ict/newslog/ITU+Sees+5+Billion+Mobile +Sub-
scriptions+Globally+In+2010.aspx, referred on 23.3.2010.

[43] M. Iqbal, J. Lee, and K. Kiseon, "Performance comparison of digital modulation
schemes with respect to phase noise spectral shape," Canadian Conference on
Electrical and Computer Engineering, vol. 2, pp. 856-860, 2000.

[44] A. Katz, "Linearization: reducing distortion in power amplifiers," IEEE Mi-
crowave Magazine, vol. 2, iss. 4, pp. 37-49, 2001.

[45] P.B. Kenington, "Linearized transmitters: an enabling technology for software
defined radio," IEEE Communications Magazine, vol. 40, iss. 2, pp. 156-162,
2002.

[46] P. B. Kenington, High Linearity RF Amplifier Design, Artech House, 2000.

[47] W. Kester, The Data Conversion Handbook, Newnes, 2005.

[48] A.Q. Kiayani, "DSP based transmitter I/Q imbalance calibration - implemen-
tation and performance measurements," M.Sc. Thesis, Tampere University of
Technology, Tampere, Finland, 2009.

REFERENCES 90

[49] Y. Kim, and C-S. Lee, "A novel method to remove the mismatch of the up-
conversion mixer for a low IF transmitter," MWSCAS ’04. The 2004 47th Mid-
west Symposium on Circuits and Systems, vol. 1, pp. 25-28, Jul. 2004.

[50] T.I. Laakso, V. Välimäki, M. Karjalainen, and U.K. Laine, "Splitting the unit
delay," IEEE Signal Process. Mag., vol. 13, iss. 1, pp. 30-60, Jan. 1996.

[51] M. Laddomada, F. Daneshgaran, M. Mondin, and R.M. Hickling, "A PC-based
software receiver using a novel front-end technology," IEEE Commun. Mag.,
vol. 39, pp. 136-145, Aug. 2001.

[52] K-Y. Lee, S-W. Lee, Y. Koo, H-K. Huh, H-Y. Nam, J-W. Lee, J. Park, K.
Lee, D-K. Jeong, and W. Kim, "Full-CMOS 2-GHz WCDMA direct conversion
transmitter and receiver," IEEE Journal of Solid-State Circuits, vol. 38, iss. 1,
pp. 45-53, 2003.

[53] T.H. Lee, and A. Hajimiri, "Oscillator phase noise: a tutorial," IEEE Journal
of Solid-State Circuits, vol. 35, iss. 3, pp. 326-336, 2000.

[54] H. Li, D.H. Kwon, D. Chen, and Y. Chiu, "A fast digital predistortion algo-
rithm for radio-frequency power amplifier linearization with loop delay com-
pensation," IEEE Journal of Selected Topics in Signal Processing, vol. 3, iss. 3,
pp. 374-383, 2009.

[55] A. Luzzatto and G. G. Shirazi, Wireless Transceiver Design, John Wiley &
Sons, 2007.

[56] P-I. Mak, S-P. U, and R.P. Martins, "Transceiver architecture selection: review,
state-of-the-art survey and case study," IEEE Trans. Circuits Syst., vol. 7, pp.
6-25, April 2007.

[57] F. Maloberti, Data Converters, Springer, 2007.

[58] N. Manicka, "GNU Radio testbed," M.Sc. Thesis, University of Delaware,
Delaware, USA, 2007.

[59] C. Masse, "A 2.4GHz direct conversion transmitter for Wimax applications,"
IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 400-404,
Jun. 2006.

[60] U. Mengali, and A.N. D’Andrea, Synchronization Techniques for Digital Re-
ceivers, Plenum Press, 1997.

[61] S. Mirabbasi, and K. Martin, "Classical and modern receiver architectures,"
IEEE Commun. Mag., vol. 38, pp. 132-139, Nov. 2000.

REFERENCES 91

[62] J. Mitola, "The software radio architecture," IEEE Commun. Mag., vol. 33,
pp. 26-38, May 1995.

[63] J. Mitola, "Software radio architecture: a mathematical perspective," IEEE
Journal on Selected Areas in Communications, vol. 17, iss. 4, pp. 514-538, Apr.
1999.

[64] H. Meyr, and M. Moeneclaey, Digital communication Receivers: Synchroniza-
tion, Channel Estimation and Signal Processing, Wiley Interscience, 1998.

[65] K. Muhammad, and R.B. Staszewski, "Direct RF sampling mixer with recursive
filtering in charge domain," Proceedings of the 2004 International Symposium
on Circuits and Systems, vol. 1, pp. 577-580, May 2004.

[66] M. Nentwig, "Delay estimation by FFT," [online], accessible:
http://www.dsprelated.com/showarticle/26.php, referred on 24.3.2010.

[67] R. Normoyle, and P. Mesibov, "The VITA radio transport as a framework for
software definable radio architectures," Proceeding of the SDR 08 Technical
Conference and Production Exposition, 2008.

[68] J.B. Simoneau, and L.W. Pearson, "Digital augmentation of RF component
performance in software-defined radio," IEEE Trans. Microw. Theory Tech.,
vol. 57, pp. 573-581, Mar. 2009.

[69] P.Z. Peebles, Digital Communication Systems, Prentice-Hall, 1987.

[70] C. Peng, and Q. Wei, "A local oscillator leakage signal eliminating circuit for
direct quadrature up-conversion transmitters," IEEE International Conference
on Communication Technology, pp. 1-3, 2006.

[71] J. Proakis, Digital Communications, 4tℎ ed., McGraw-Hill, 2000.

[72] X. Qian, "Transceiver for Future Wireless Communications," The 3rd Confer-
ence on Mobile Technology, Applications and Systems - Mobility, 2006.

[73] B. Razavi, "Challenges in portable RF transceiver design," IEEE Circuits De-
vices Mag., vol. 12, pp. 12-25, 1996.

[74] J. H. Reed, Software Radio, Prentice Hall, 2002.

[75] E. Rikkonen, "Waveform development for software defined radio," M.Sc. Thesis,
Tampere University of Technology, Tampere, Finland, 2008.

REFERENCES 92

[76] H-G. Ryu, and Y-S. Lee, "Phase noise analysis of the OFDM communication
system by the standard frequency deviation," IEEE Transactions on Consumer
Electronics, vol. 49, iss. 1, pp. 41-47, 2003.

[77] Sayed, A.H. Adaptive Filters, IEEE Press, Wiley-Interscience, 2008.

[78] J.B. Simoneau, and L.W. Pearson, "Multitone feedback through demodulating
log detector for detection of spurious emissions in software radio," IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 54, iss. 10, pp. 2222-2228, Oct. 2007.

[79] J. Stevenhans, D. Haspeslagh, A. Delarbre, L. Kiss, Z. Chang, and J. F.
Kukielka, "An analog radio front end chip set for a 1.9 GHz mobile radio tele-
phone application," Proceedings IEEE International Solid-State Circuits Con-
ference, pp. 44-45, Feb. 1994.

[80] M. Streifinger, T. Müller, J.-F. Luy, and E.A. Biebl, "A software-radio front-
end for microwave applications," Digest of Papers IEEE Topical Meeting on
Silicon Monolithic Integrated Circuits in RF Systems, pp. 53-56, April 2003.

[81] A. Swaminathan, M. Snelgrove, S. Jantzi, and S. Bazarjani, "A monolithic com-
plex sigma-delta modulator for digital radio," IEEE-CAS Region 8 Workshop
on Analog and Mixed IC Design, pp. 83-86, Sept. 1996.

[82] S. Tang, K. Gong, J. Wang, K. Peng, C. Pan, and Z. Yang, "Loop delay cor-
rection for adaptive digital linearization of power amplifiers," IEEE Wireless
Communications and Networking Conference, pp. 1987-1990, 2007.

[83] M. Valkama, "Advanced I/Q signal processing for wideband receivers: models
and algorithms," Ph.D. dissertation, Tampere University of Technology, Tam-
pere, Finland, 2001.

[84] N. Vasudev, and O.M. Collins, "Near-ideal RF upconverters," IEEE Trans-
actions on Microwave Theory and Techniques, vol. 50, iss. 11, pp. 2569-2575,
2002.

[85] J. Venkataraman, and O. Collins, "An all-digital transmitter with a 1-Bit
DAC," IEEE Transactions on Communications, vol. 55, iss. 10, pp. 1951-1962,
2007.

[86] VITA, "Radio transport for SDR," [ónline], accessible:
http://www.digitalif.org, referred on 25.11.2009.

[87] M. Windisch, and G. Fettweis, "Adaptive I/Q imbalance compensation in low-
IF transmitter architectures," VTC2004-Fall IEEE 60th Vehicular Technology
Conference, vol. 3, pp. 2096-2100, Sept. 2004.

REFERENCES 93

[88] A.M. Wyglinski, M. Nekovee, and Y.T.Hou, Cognitive Radio Communications
and Networks. Elsevier Inc., 2010.

[89] Y. Xiao, G. He, and J. Ma, "A novel method for estimation and compensa-
tion of transmitter I/Q imbalance," IEEE International SoC Design Conference
(ISOCC), pp. 261-265, 2009.

[90] S-R. Yoon, and S-C. Park, "All-digital transmitter architecture based on band-
pass delta-sigma modulator," IEEE 9th International Symposium on Commu-
nications and Information Technology, pp. 703-706, 2009.

[91] Y.V. Zakharov, G.P. White, and J. Liu, "Low-complexity RLS algorithms us-
ing dichotomous coordinate descent iterations," IEEE Transactions on Signal
Processing, vol. 56, iss. 7, pp. 3150-3161, 2008.

[92] Y. Zou, "Analysis and mitigation of I/Q imbalances in multi-antenna transmis-
sion systems," Ph.D. dissertation, Tampere University of Technology, Tampere,
Finland, 2009.

1

Appendix A. GOOD PRACTICES IN GNU

RADIO ENVIRONMENT

This chapter will discuss some practices which have shown to be useful with GNU
Radio in general and while writing new signal processing blocks. The chapter will not
address any detailed information about the development of a new signal processing
block because there are reasonably good instruction on the Internet for that, see for
example [A1,A2].

A.1 Sample Timing Through Parallel Flow Graph Paths

If flow graph consists of parallel structures the programmer must take into account
that samples on the parallel paths may not be perfectly synchronized. Of course,
this may depend on various reasons but two main reasons are structure of signal pro-
cessing blocks and thread-based scheduling. Different delay between parallel paths
is obvious because different signal processing blocks may need varying number of
input samples to get desired output. On the other hand, the thread-based schedul-
ing may generate delay to the parallel sample streams which is not that obvious. If
parallel signal processing blocks are in the same thread the sample streams remain
synchronized, but if they are not, there will, or may, be some integer sample offset
in the parallel sample streams. This may become a major problem because the
programmer cannot know which signal processing blocks are in which threads. This
is why parallel signal processing blocks have to utilize some kind of synchronization
signal which keeps both blocks operating on same sample intervals. See Figure A.1
for conceptual illustration how parallel signal processing blocks can be divided to
different threads. In Figure A.1(a) parallel signal processing blocks are inside sep-
arate threads and symbol timing between parallel paths will be compromised. On
the other hand, Figure A.1(b) illustrates a case where symbols on parallel paths will
remain synchronized.

Appendix A. Good Practices in GNU Radio Environment 2

(a) Inside different threads. (b) Inside same thread.

Figure A.1: Illustration of how parallel signal processing blocks can be divided to different
threads.

A.2 Data Types in GNU Radio

There are special data types defined in GNU Radio and they can be found in more
detail from header files gr_types.h and gr_complex.h. As is seen in Table A.1, the
data types with the prefix ‘gr_’ are nothing but new names for the C++ built-in
data types. They are just represented by using a consistent and convenient way.

GNU Radio data type True C++ data type
gr_complex std::complex<float>
gr_complexd std::complex<double>
gr_vector_int std::vector<int>
gr_vector_float std::vector<float>
gr_vector_double std::vector<double>
gr_vector_void_star std::vector<void *>
gr_vector_const_void_star std::vector<const void *>
gr_int16 short
gr_int32 int
gr_uint16 unsigned short
gr_uint32 unsigned int

Table A.1: GNU Radio data types.

A.3 Callback Methods

Certain blocks have callback methods that allow their parameters to be changed
while executing flow graph. These callback methods can be used in normal Python
flow graphs or in GNU Radio Companion, albeit their usability in GNU Radio

Appendix A. Good Practices in GNU Radio Environment 3

Companion is little bit limited. Of course, variables can be passed from one block to
another with help of signal streams but this kind of procedure loads the flow graph
unacceptably much. As a consequence, the advantage of callback methods is that
the variable passing is done only on demand.

For example, in transmitter I/Q imbalance mitigation algorithm, callback methods
are used to pass pre-distortion filter coefficients from I/Q imbalance estimation block
to pre-distortion block and to pass permission to start estimation from synchroniza-
tion block to I/Q imbalance estimation block.

A.4 Real-Time Scheduling

Real-time scheduling gives the flow graph a low-level access to the operating system
kernel enabling faster and more reliable Gruel scheduling for the application. This
significantly improves the performance of the application.

In Python programming language real-time scheduling is enabled with command
"gr.enable_realtime_scheduling()" and in GNU Radio Companion selecting it from
document properties. In addition, the flow graph has to to be ran with super-user
privileges, otherwise the flow graph will be ran without real-time scheduling.

A.5 Useful Methods in All Signal Processing Blocks

There are a few useful methods related to all signal processing blocks. These meth-
ods are given and briefly discussed in this section.

A.5.1 The Method forecast()

The method forecast() is used to estimate the required number of input sam-
ples given the requested number of output samples. The first parameter nout-
put_items is the number of the required number of output samples for each output
stream and it has been introduced in general_work(). The second parameter nin-
put_items_required is a vector of integer values, saving the number of input samples
required from each input stream.

1 void tut_tx_iq_imb_mitig_cc : : f o r e c a s t (i n t noutput_items , gr_vector_int &
ninput_items_required) {

2 f o r (unsigned i n t n = 0 ; n < ninput_items_required . s i z e () ; n++) {
3 ninput_items_required [n] = 2048 ;
4 }

Appendix A. Good Practices in GNU Radio Environment 4

5 }

Listing A.1: Example code of using method forecast()

Listing A.1 gives an example how method forecast() can be overridden. It requires
2048 samples from each input. When the forecast() method is override, the number
of data items required on each input stream has to be estimated, given the request
to produce noutput_items samples for each output stream. The estimate does not
have to be exact, but should be close. The argument ninput_items_required is
passed by reference, so that the calculated estimates can be saved directly into it.
The program itself should not call method forecast() because GNU Radio scheduler
calls it when needed.

A.5.2 The Method set_history()

The method set_history() is used for telling the scheduler required history length.
The effect of this is that GNU Radio frame work will automatically overlap consec-
utive signal blocks. This is particularly useful method with signal processing blocks
which include filtering and need given number of samples from previous signal block
because of the filter delays. Command "set_history(N)" sets the history to be N

samples. In practice, in the example, N−1 samples are preserved from the previous
signal block.

A.5.3 The Method set_output_multiple()

Now let’s introduce the fourth member variable defined in gr_block: d_output_multiple.
It is used to constrain the noutput_items argument passed to forecast() and gen-
eral_work().

The scheduler will ensure that the noutput_items argument passed to forecast()
and general_work() will be an integer multiple of d_output_multiple. The default
value of d_output_multiple is 1.

Here is a critical point worth emphasizing. Suppose we’re going to design a block
class, after we override the general_work() or forecast() methods, who will use or
call these methods, and how? When we implement general_work() or forecast(),
we always assume noutput_items and other arguments have been provided concep-
tually. In fact, we never call these methods and set the arguments explicitly. The
scheduler will organize everything and call the methods according to the higher level

Appendix A. Good Practices in GNU Radio Environment 5

policy and buffer allocation strategy. The tricks behind the scene involve too many
details and are beyond the necessity.

We do have some level of control to the argument noutput_items. The variable
d_output_multiple tells the scheduler noutput_items must be an integer multiple of
d_output_multiple. We can set the value of d_output_multiple using the method
set_output_multiple() and get its value using the method output_multiple().

1 void gr_block : : set_output_multiple (i n t mul t ip l e) {
2 i f (mu l t ip l e < 1) {
3 throw std : : invalid_argument ("gr_block : : set_output_multiple ") ;
4 }
5 d_output_multiple = mul t ip l e ;
6 }

Listing A.2: Method set_output_multiple()

A.5.4 The Method set_relative_rate()

The fifth member variable d_relative_rate gives the approximate information on
the relative data rate, i.e. the approximate output rate / input rate. This informa-
tion provides a hint to the buffer allocator and scheduler, so that they can arrange
the buffer allocation and adjust parameters accordingly. d_relative_rate is 1.0 by
default, which is true for most signal processing blocks. Obviously, the decimators’
d_relative_rates should be less than 1.0, while the interpolators’ d_relative_rates
is larger than 1.0. We can set the value of d_relative_rate using the method
set_relative_rate() and get its value using the method relative_rate().

1 void gr_block : : s e t_re l a t i v e_ra t e (double r e l a t i v e_ra t e) {
2 i f (r e l a t i v e_ra t e < 0 . 0) {
3 throw std : : invalid_argument ("gr_block : : s e t_re l a t i v e_ra t e ") ;
4 }
5 d_re lat ive_rate = r e l a t i v e_ra t e ;
6 }

Listing A.3: Method set_relative_rate()

References

[A1] Radioware, "Writing a signal processing block for GNU Radio," [on-
line], accessible: https://radioware.nd.edu/documentation/advanced-
gnuradio.

[A2] E. Blossom, "How to write a signal processing block," [online], accessible:
http://www.gnu.org/software/gnuradio/doc/howto-write-a-block.html.

6

Appendix B. GNU RADIO EXAMPLES

This chapter gives a few basic examples of the use of GNU Radio with different pro-
gramming languages and GNU Radio Companion. First, simple FM radio receiver
and QPSK receiver without GUI are given with Python programming language.
Thereafter, GNU Radio Companion flow graphs are given for FM radio receiver,
QPSK receiver and basic spectrum analyzer. These flow graphs include GUIs. At
the end of this chapter, examples of C++ signal processing source codes are given.

B.1 Python Code Examples

In this section an example of a simple FM radio receiver is addressed. The receiver
receives 320 kHz bandwidth around given center frequency (e.g. 99.9 MHz). After
this, it filters, demodulates and decimates the signal and outputs it through sound
card. In the following, almost line-by-line comments are given for the source code.
More information about Python programming language can be found from [B1].

In the following, Listing B.1 is commented line-by-line. Line 1 tells to the GNU
Radio environment that this is a Python file and lines 3-11 simply import built-in
signal processing blocks and functions to be used in the implementation. Thereafter,
lines 13-14 define a method which finds and chooses suitable daughter board for the
receiver. Lines 17-20 start the class definition of the receiver. Lines 24-26 initialize
receiver parameters. Line 32 initializes USRP source with complex-valued samples.
Line 35 determines the sampling frequency of the USRP which should be 64 MHz.
After this, USRP DDC decimation rate is set accordingly on lines 38-39 to get 320
kHz sample rate. The sample rate is calculated on line 42. Thereafter, needed
decimation rates for sound card audio sample rate are calculated on lines 45-48.
Line 51 selects proper daughter board from the USRP. On line 54 USRP receiver
chain gain factor is set. Line 57 takes care of selecting USRP MUX value. In other
words, it selects which I/Q modulator outputs are connected to which ADC inputs.
Line 60 determines information on selected daughter board and on line 63 USRP
and daughter board are asked to tune to desired center frequency. Line 66 designs
lowpass filter for given parameters and line 67 generates corresponding lowpass filter

Appendix B. GNU Radio Examples 7

block. Line 70 initializes built-in FM demodulator block. Constant which is used
as a volume control is initialized on line 73. Output to sound card is initialized on
line 76. On line 79 all initialized signal processing blocks are connected together in
a right order. Lines 82-87 just run the flow graph and exit if any key is pressed.

1 #!/ usr / b in /env python
2
3 from gnuradio import gr , gru , eng_notation , o p t f i r
4 from gnuradio import audio
5 from gnuradio import usrp
6 from gnuradio import blks2
7 from gnuradio . eng_option import eng_option
8 from optparse import OptionParser
9 from usrpm import usrp_dbid
10 import sys
11 import math
12
13 def pick_subdevice (u) :
14 return usrp . pick_subdev (u , (usrp_dbid .TV_RX, usrp_dbid .TV_RX_REV_2, usrp_dbid .TV_RX_REV_3,

usrp_dbid .TV_RX_MIMO, usrp_dbid .TV_RX_REV_2_MIMO, usrp_dbid .TV_RX_REV_3_MIMO,
usrp_dbid .BASIC_RX))

15
16 c l a s s wfm_rx_block (gr . top_block) :
17
18 def __init__(s e l f) :
19 gr . top_block . __init__(s e l f)
20
21 ###
22 # I n i t i a l i z e parameters
23 ###
24 s e l f . vo l = .1
25 s e l f . f r e q = 99.9 e6
26 s e l f . ga in = 10
27
28 ###
29 # Bui ld f l ow graph
30 ###
31 # I n i t i a l i z e USRP
32 s e l f . u = usrp . source_c () # usrp data source
33
34 # Determine USRP sampl ing f r equency
35 sampling_frequency = s e l f . u . adc_rate () # 64 MHz
36
37 # Set USRP DDC decimat ion ra t e
38 usrp_decim = 200
39 s e l f . u . set_decim_rate (usrp_decim)
40
41 # Ca l cu l a t e sample r a t e
42 sample_rate = sampling_frequency / usrp_decim # 320 kHz
43
44 # Ca l cu l a t e f i n a l audio s i g n a l sample r a t e
45 chanf i l t_dec im = 1
46 demod_rate = sample_rate / chanf i l t_dec im
47 audio_decimation = 10
48 audio_rate = demod_rate / audio_decimation # 32 kHz
49
50 # Se l e c t sub−de v i c e (daugh ter board)
51 s e l f . rx_subdev_spec = pick_subdevice (s e l f . u)
52
53 # Set USRP gain
54 s e l f . subdev . set_gain (s e l f . ga in)
55
56 # Set USRP MUX va lue
57 s e l f . u . set_mux(usrp . determine_rx_mux_value (s e l f . u , s e l f . rx_subdev_spec))
58
59 # Determine sub−de v i c e (daugh ter board)
60 s e l f . subdev = usrp . se lected_subdev (s e l f . u , opt ions . rx_subdev_spec)
61
62 # Tune USRP to g i ven cen t e r f r e quency
63 s e l f . u . tune (0 , s e l f . subdev , ta rget_freq)
64
65 # Lowpass f i l t e r as channe l f i l t e r
66 chan_f i l t_coe f f s = o p t f i r . low_pass (1 , sample_rate , 80e3 , 115e3 , 0 . 1 , 60)
67 chan_f i l t = gr . f i r _ f i l t e r_ c c f (chanf i l t_decim , chan_f i l t_coe f f s)

Appendix B. GNU Radio Examples 8

68
69 # Bui l t−in FM r e c e i v e r b l o c k as FM demodulator
70 s e l f . fm_demod = blks2 . wfm_rcv(demod_rate , audio_decimation)
71
72 # Simple mu l t i p l i c a t i o n as volume con t r o l
73 s e l f . volume_control = gr . mult ip ly_const_ff (s e l f . vo l)
74
75 # Output audio to sound card
76 audio_sink = audio . s ink (i n t (audio_rate) , opt ions . audio_output , Fa l se)
77
78 # Connect d i f f e r e n t b l o c k s t o g e t h e r
79 s e l f . connect (s e l f . u , chan_f i l t , s e l f . fm_demod , s e l f . volume_control , audio_sink)
80
81
82 i f __name__ == ’__main__ ’ :
83 tb = wfm_rx_block ()
84 try :
85 tb . run ()
86 except KeyboardInterrupt :
87 pass

Listing B.1: Example Python code of FM receiver without GUI.

B.2 GNU Radio Companion Examples

In this section a few example flow graphs for GNU Radio Companion are given.
First, FM radio receiver similar to the above Python example is presented. There-
after, a simple OFDM transmitter is given. Then, a QPSK receiver is given without
and with receiver I/Q imbalance mitigation.

First example is a FM radio receiver with GUI. The flow graph for the receiver can
be seen in Figure B.1. The flow graph consists of three variable sliders, one variable,
USRP source, WBFM receiver, constant multiplication, audio sink and FFT sink.
Variable sliders give an ability to modify program parameters during the execution.
In this example we have variable slider for coarse frequency, fine frequency tuning
and volume control. Moreover, we have variable for decimation with decimation
factor 200 which yields 320 kHz sample rate for received signal. "USRP Source"
block is an interface to the physical device and it control USRP behavior. "WBFM
Receive" block is a quadrature FM demodulator block which takes received complex
samples as an input and outputs corresponding received audio signal. "Multiply
Const" block is used as a volume control for the received audio stream. Finally,
the "Audio Sink" block outputs the audio signal to a sound card installed to a PC.
"FFT Sink" block simply plots frequency spectrum of the received signal.

The example found in Figure B.2 is a flow graph for a simple OFDM transmitter.
The flow graph consists of random data source, OFDM modulator, gain controller,
FFT plotter and USRP sink. As is known, the DAC sampling frequency of the USRP
is 128 MHz and with interpolation factor 32 we get 4 MHz output bandwidth. The
"Random Source" block generates random byte sequence for the "OFDM Mod"
block. In this example "OFDM Mod" block uses QPSK as a sub-carrier modulation

Appendix B. GNU Radio Examples 9

Figure B.1: GNU Radio Companion flow graph of FM radio receiver.

and FFT length is 1024 with 800 occupied sub-carriers. Cyclic prefix length is 128.
Pad for USRP field means that if input data is too short, the output USB packages
are padded with random data to maintain continuous data flow. "AGC2" block is
a output gain controller block which scales digital amplitude of the signal. This is
only output power control with RFX2400 daughter board because it does not have
separate analog variable gain controller. "USRP Sink" acts as a interface between
GNU Radio and USRP transmitter chain. "FFT Sink" just shows digital output
spectrum of the signal.

Next example found in Figure B.3 is a basic QPSK receiver for original USRP. This
example has a number of variables with and without tuning sliders. The receiver is
designed for QPSK signal with 2 MHz symbol rate and 2 times over-sampling is used,
thus sampling frequency of the received signal is 4 MHz. RRC receiver filter with 30
% roll-off factor is used. The "Decimating FIR Filter" block realizes the RRC filter.
"MPSK Receiver" block consists of a Costas loop for frequency synchronization and
a Müller & Muller algorithm for symbol timing recovery. Multiplication with a
complex constant is used to make the constellation look like ¼/4-QPSK. "AGC2"
block scales symbols to original amplitude and "Scope Sink" block shows the received
constelaltion. For constellation plot the "XY Mode" of the "Scope Sink" has to be
turned on.

Appendix B. GNU Radio Examples 10

Figure B.2: Flow graph of simple OFDM transmitter for USRP.

Next example found in Figure B.4 is similar to the above QPSK receiver example.
Difference is that this example flow graph is utilizing receiver I/Q imbalance miti-
gation algorithm found in [B2]. In the following, only blocks different from above
QPSK receiver example are considered. "Rx I/Q Imbalance mitigation" block is
programmed following the paper [B2]. It mitigates I/Q imbalance with circularity-
based algorithm which is realized with LMS-style recursion. "Frequency Xlating FIR
Filter" block converts the desired complex signal to the baseband, low-pass filters
and decimates it. All remaining blocks function just like in above QPSK receiver
example.

Last GNU Radio Companion example is a simple spectrum analyzer. This example
does not have any new signal processing blocks, thereby they will not be separately
examined. The flow graph can be found in Figure B.5 and screen shot of the running
spectrum analyzer program is in Figure B.6.

Appendix B. GNU Radio Examples 11

Figure B.3: Flow graph of QPSK receiver for USRP.

Figure B.4: Flow graph of QPSK receiver for USRP with I/Q imbalance mitigation block.

Appendix B. GNU Radio Examples 12

Figure B.5: GNU Radio Companion flow graph of a simple spectrum analyzer.

Figure B.6: GNU Radio GUI when the spectrum analyzer is running.

Appendix B. GNU Radio Examples 13

B.3 C++ Code Examples

In this section few C++ source files and corresponding supporting files are examined.
When new GNU Radio signal processing block is developed it always needs a header
file, a source file and references to them in "Makefile.am". In addition, interface to
the signal processing block has to be introduced in a SWIG file which is in our case
"tut.i". It should be noted, that only algorithm specific code lines are commented
because C++ programming language specific issues are outside the scope of the
thesis. More information about C++ programming language and object-oriented
programming can be found e.g. in [B3, B4].

An example of SWIG interface file is found in Listing B.2. It introduces an inter-
face to the signal processing block which is used for pre-distortion with transmitter
I/Q imbalance mitigation. Most of the lines from 1 to 10 are common for all sig-
nal processing blocks. Line 8 is an exception because it points out the header file
name for the interface file. Line 13 is a GNU Radio function which makes the
current signal processing block to be a part of "tut" -class. In other words, the
signal processing block becomes accessible from Python application with command
tut.tx_iq_imb_mitig_predist(unsigned int n_taps, std::vector<gr_complex> taps,
bool debug). Lines 15-23 simply tell what kind of interface the signal processing
block has. It is completely same as the actual header file, thus it will be examined
later in this section.

1 /∗ −∗− c++ −∗− ∗/
2
3 %inc lude " except ion . i "
4 %import " gnuradio . i "
5
6 %{
7 #inc lude "gnuradio_swig_bug_workaround . h" // mandatory bug f i x
8 #inc lude "tut_tx_iq_imb_mitig_predist_cc . h"
9 #inc lude <stdexcept>
10 %}
11
12 // Tx I /Q imbalance pre−d i s t o r t i o n
13 GR_SWIG_BLOCK_MAGIC(tut , tx_iq_imb_mitig_predist_cc) ;
14
15 tut_tx_iq_imb_mitig_predist_cc_sptr tut_make_tx_iq_imb_mitig_predist_cc (unsigned in t n_taps ,

std : : vector<gr_complex> taps , bool debug) ;
16
17 c l a s s tut_tx_iq_imb_mitig_predist_cc : pub l i c gr_block {
18 pr iva t e :
19 tut_tx_iq_imb_mitig_predist_cc (unsigned in t n_taps , std : : vector<gr_complex> taps , bool

debug) ;
20
21 pub l i c :
22 void set_taps (std : : vector<gr_complex> taps) ;
23 } ;

Listing B.2: Example interface file of signal processing block which performs pre-distortion
filtering.

Next we go through and example of "Makefile.am" file found in Listing B.3. This
file is used as an input for Linux automake which is used when signal processing

Appendix B. GNU Radio Examples 14

blocks are installed to a computer. Practically on lines 4, 12 and 23 have to be
edited. Line 4 gives names of the header files to be included. The names can be
separated on multiple lines with back-slash. Line 12 is for the name of the SWIG
interface file introduced above. And line 23 similar to line 4 but it is used to declare
C++ source files.

1 inc lude $ (top_srcd i r) /Makef i l e . common
2
3 # C/C++ headers get i n s t a l l e d in ${ p r e f i x }/ i n c lude / gnuradio
4 grinclude_HEADERS = \
5 tut_tx_iq_imb_mitig_predist_cc . h
6
7 ###################################
8 # SWIG Python i n t e r f a c e and l i b r a r y
9 ###################################
10
11 TOP_SWIG_IFILES = \
12 tut . i
13
14
15 # I n s t a l l so that they end up ava i l a b l e as : import gnuradio . tut
16 # This ends up at :
17 # ${ p r e f i x }/ l i b /python${python_version }/ s i t e−packages / gnuradio
18 tut_pythondir_category = \
19 gnuradio
20
21
22 # add i t i ona l source s f o r the SWIG−generated l i b r a r y
23 tut_la_swig_sources = \
24 tut_tx_iq_imb_mitig_predist_cc . cc
25
26 # add i t i ona l LD f l a g s f o r l i n k i n g the SWIG−generated l i b r a r y
27 tut_la_swig_ldf lags = \
28 $ (AVCODEC_LIBS) \
29 $ (AVFORMAT_LIBS) \
30 −outd i r $ (bu i l dd i r)
31
32 inc lude $ (top_srcd i r) /Makef i l e . swig
33
34 # add some o f the v a r i a b l e s generated i n s i d e the Makef i l e . swig . gen
35 BUILT_SOURCES = $ (swig_bui l t_sources)
36
37 # Do not d i s t r i b u t e the output o f SWIG
38 no_di s t_f i l e s = $ (swig_bui l t_sources)

Listing B.3: Example Makefile.am file of signal processing block which performs pre-
distortion filtering.

In Listing B.4 we have a basic example of header file for GNU Radio signal processing
block. The header file is programmed for transmitter I/Q imbalance pre-distortion.
Lines 1-2 define are standard class definitions. Line 4 includes GNU Radio library for
synchronous signal processing block. This means that the block assumes number of
input samples to be same as number of output samples. Line 5 includes GNU Radio
library for input/output functionality. In practice, this library controls the signal
flow through the block. Line 6 includes GNU Radio library for complex exponential
function. Thereafter, lines 6 and 7 include GNU Radio libraries for mathematical
functions and complex arithmetics. Line 9 includes C++ standard library for com-
plex arithmetics. Line 11 includes GNU Radio library for FIR filter with complex
input and output, and complex filter coefficients. Then, line 23 includes GNU Radio
library for FIR filter design tools. Lines 17 and 19 define interface to boost dynamic
pointer to the class. It is used while interfacing the C++ signal processing block to

Appendix B. GNU Radio Examples 15

Python flow graphs. Lines 23-25 define private class variables for the block. There-
after, on line 27 is a interface to overridden method forecast(). This is used because
we want to control the number of needed input samples. Line 28 is directly related
to lines 17 and 19. It defines that the boost dynamic pointer is safe in private side
of the class. Line 29 defines the interface for the class initialization. Line 32 defines
interface for the class destructor and line 33 for a public callback method set_taps()
which is used to set the pre-distortion filter coefficients. Line 34 defines interface
to the general_work method of the signal processing block. All signal processing is
performed in the general_work method.

1 #i f n d e f INCLUDED_TUT_TX_IQ_IMB_MITIG_PREDIST_CC_H
2 #de f i n e INCLUDED_TUT_TX_IQ_IMB_MITIG_PREDIST_CC_H
3
4 #inc lude <gr_sync_block . h>
5 #inc lude <gr_io_signature . h>
6 #inc lude <gr_expj . h>
7 #inc lude <gr_math . h>
8 #inc lude <gr_complex . h>
9 #inc lude <complex>
10 #inc lude <vector>
11 #inc lude <gr_fir_ccc . h>
12 #inc lude <gr_f i r_ut i l . h>
13
14 c l a s s tut_tx_iq_imb_mitig_cc ;
15
16 // Shared boo s t p o i n t e r
17 typedef boost : : shared_ptr<tut_tx_iq_imb_mitig_cc> tut_tx_iq_imb_mitig_cc_sptr ;
18
19 tut_tx_iq_imb_mitig_cc_sptr tut_make_tx_iq_imb_mitig_cc (unsigned in t n_taps ,

std : : vector<gr_complex> taps , bool debug) ;
20
21 c l a s s tut_tx_iq_imb_mitig_cc : pub l i c gr_block {
22 pr iva t e :
23 unsigned in t d_n_taps ;
24 std : : vector<gr_complex> d_taps ;
25 gr_f ir_ccc ∗d_composite_fir ;
26
27 void f o r e c a s t (i n t noutput_items , gr_vector_int &input_items_required) ;
28 f r i e nd tut_tx_iq_imb_mitig_cc_sptr tut_make_tx_iq_imb_mitig_cc (unsigned in t n_taps ,

std : : vector<gr_complex> taps , bool debug) ;
29 tut_tx_iq_imb_mitig_cc (unsigned in t n_taps , std : : vector<gr_complex> taps , bool debug) ;
30
31 pub l i c :
32 ~tut_tx_iq_imb_mitig_cc () ;
33 void set_taps (std : : vector<gr_complex> star t_est imat ion) ;
34 i n t general_work (i n t noutput_items , gr_vector_int &ninput_items , gr_vector_const_void_star

&input_items , gr_vector_void_star &output_items) ;
35 } ;
36
37 #end i f

Listing B.4: Example header file of signal processing block which performs pre-distortion
filtering.

In Listing B.5 we have a basic example of C++ source file corresponding to the
header file found in Listing B.4. Line 5 includes the header file from Listing B.4
to the source file. Line 7 includes C++ standard library for printing to command
prompt and line 8 to be able to use string variables. Lines 12-14 realize the method
defined on line 19 in Listing B.4. It just returns the boost pointer to the signal
processing block. On lines 18-24 is the private class constructor of the block. On
the line 18 "gr_make_io_signature(2, 2, sizeof(gr_complex))" defines minimum

Appendix B. GNU Radio Examples 16

and maximum number of input streams, and size of on sample in the stream. Simi-
larly, "gr_make_io_signature(1, 1, sizeof(gr_complex))" defines numbers of output
streams. Line 21 initializes FIR filter used for the pre-distortion. Line 23 sets length
of the history for the block. Lines 26-28 realize the class destructor which releases
the memory used for the FIR filter. Lines 30-34 realize the overridden method fore-
cast() which was discussed in Section A.5.1. Lines 36-39 realize the callback method
used to set pre-distortion filter coefficients. Lines 41-53 realize the general_work
method of the block. The actual signal processing is done here. Lines 42-44 define
pointers to input and output streams. Thereafter, lines 47-49 perform pre-distortion
for current data block. Line 51 defines how many samples will be consumed from
each input streams. Finally, line 52 reports to the scheduler how many samples were
produced to the output stream.

1 #i f d e f HAVE_CONFIG_H
2 #inc lude " con f i g . h"
3 #end i f
4
5 #inc lude <tut_tx_iq_imb_mitig_predist_cc . h>
6 #inc lude <gr_io_signature . h>
7 #inc lude <iostream>
8 #inc lude <s t r i n g . h>
9 #inc lude <vector>
10 #inc lude <gr_math . h>
11
12 tut_tx_iq_imb_mitig_predist_cc_sptr tut_make_tx_iq_imb_mitig_predist_cc (unsigned in t n_taps ,

std : : vector<gr_complex> taps , bool debug) {
13 return tut_tx_iq_imb_mitig_predist_cc_sptr (new tut_tx_iq_imb_mitig_predist_cc (n_taps , taps ,

debug)) ;
14 }
15
16
17 // Pr i va t e c on s t r u c t o r
18 tut_tx_iq_imb_mitig_predist_cc : : tut_tx_iq_imb_mitig_predist_cc (unsigned in t n_taps ,

std : : vector<gr_complex> taps , bool debug) : gr_block (" tx_iq_imb_mitig_predist_cc" ,
gr_make_io_signature (2 , 2 , s i z e o f (gr_complex)) , gr_make_io_signature (1 , 1 ,
s i z e o f (gr_complex))) {

19 d_n_taps = n_taps ;
20 d_taps = taps ;
21 d_composite_fir = gr_f i r_ut i l : : create_gr_f ir_ccc (d_taps) ;
22
23 se t_hi s to ry (d_n_taps) ;
24 }
25
26 tut_tx_iq_imb_mitig_predist_cc : : ~ tut_tx_iq_imb_mitig_predist_cc () {
27 de l e t e d_composite_fir ;
28 }
29
30 void tut_tx_iq_imb_mitig_predist_cc : : f o r e c a s t (i n t noutput_items , gr_vector_int

&ninput_items_required) {
31 f o r (unsigned in t n = 0 ; n < ninput_items_required . s i z e () ; n++) {
32 ninput_items_required [n] = 1024;
33 }
34 }
35
36 void tut_tx_iq_imb_mitig_predist_cc : : set_taps (std : : vector<gr_complex> taps) {
37 d_taps = taps ;
38 d_composite_fir−>set_taps (d_taps) ;
39 }
40
41 i n t tut_tx_iq_imb_mitig_predist_cc : : general_work (i n t noutput_items , gr_vector_int

&ninput_items , gr_vector_const_void_star &input_items , gr_vector_void_star &output_items) {
42 const gr_complex ∗d_if_signal = (const gr_complex ∗) input_items [0] ;
43 const gr_complex ∗d_conj_if_signal = (const gr_complex ∗) input_items [1] ;
44 gr_complex ∗out = (gr_complex ∗) output_items [0] ;
45
46 // Perform pre−d i s t o r t i o n f i l t e r i n g
47 f o r (i n t n = 0 ; n < noutput_items ; n++) {
48 out [n] = d_if_signal [n] + d_composite_fir−>f i l t e r (&d_conj_if_signal [n]) ;
49 }

Appendix B. GNU Radio Examples 17

50
51 consume_each (noutput_items) ;
52 return noutput_items ;
53 }

Listing B.5: Example source file of signal processing block which performs pre-distortion
filtering.

References

[B1] J. Kasurinen, Python - ohjelmointiopas, Lappeenrannan teknillinen
yliopisto, 2007.

[B2] L. Anttila, M. Valkama, M. Renfors, "Circularity-based I/Q imbalance
compensation in wideband direct-conversion receivers ," IEEE Transac-
tions on Vehicular Technology, vol. 57, iss. 4, pp. 2099-2113, 2008.

[B3] B. Eckel, Thinking in C++: Introduction to Standard C++, Prentice
Hall Inc., 2000.

[B4] R. Lafore, Object-Oriented Programming in C++, Sams Publishing,
2002.

18

Appendix C. USRP2 FIRMWARE UPDATE

PROCEDURE

USRP2 firmware update procedure is quite tricky. First of all, the SD card does
NOT contain a file system, and it CANNOT be read from or wrote to using normal
tools. To perform firmware update an SD card programmer is needed. Any available
SD memory card reader is suitable for the procedure. In the following, the steps to
upgrade the firmware are briefly described. All firmware versions of USRP2 can be
found from http://gnuradio.org/releases/usrp2-bin/trunk/.

C.1 Building tools

First the firmware and u2_flash_tool have to be build by running make in the
gnuradio/usrp2 directory. The directory is found from GNU Radio installation di-
rectory. After the build is completed USB SD memory card reader is connected to
the computer. After this the mounting point of the SD memory card reader has
to be determined. To perform this, additional software called sg3-utils is installed.
This is extremely important because if the mounting point used in the flashing phase
is wrong, the system disk can be overwritten.

C.2 Installing sg3-utils

To install sg3-utils following commands have to be run in the terminal window

sudo apt-get update
sudo apt-get install sg3-utils

After this, command

sudo sg_scan -i

Appendix C. USRP2 Firmware Update Procedure 19

runs additional software to generate listing of all raw SCSI devices on the cur-
rent system. From the listing needs to be determined which SCSI device is most
likely the USB SD memory card reader attached to the computer. Finally, following
command has to be run in the terminal windows to discover which SCSI device is
associated with USB SD memory card reader

sg_map

This device could for example be /dev/sdb but it changes from time to time.

C.3 Flashing firmware and FPGA code

After determining SCSI device you have to go to gnuradio/usrp2 directory where
you have to run command

sudo u2_flash_tool –dev=/dev/XXXX -t s/w usrp2/firmware/txrx.bin -w

in the terminal, where XXXX is the mounting point of the memory card reader.
After this also the FPGA code has to be updated. This happens by running com-
mand

sudo u2_flash_tool –dev=/dev/XXXX -t fpga u2_rev3.bin -w

in the terminal, where, again, XXXX is the mounting point of the memory card
reader. Now the firmware has been updated and the SD memory card can be in-
serted to USRP2 memory card slot.

