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A Wireless Sensor Network (WSN) consists of autonomous wireless nodes that form
an ad hoc network for monitoring environmental phenomena. Each node contains
a firmware image, which consists of parameters, protocols and algorithms that are
necessary for the node to function in a WSN.

The firmware images of deployed nodes can be updated to fix programming errors,
introduce new features and add sensors to nodes or remove them. Analyzing the
different situations and reasons results in a list of requirements for firmware mana-
gement.

This thesis presents the design, implementation and experimental measurements of
firmware management for the Tampere University of Technology WSN (TUTWSN).
Firmware management consists of three server side and three node side components.
On the server side, the user interface has been developed for network administra-
tion, a firmware management database for storing firmware images and parameters,
and the Autoconfigurator for transferring images from the database into WSNs. On
the node side, the firmware image transfer protocol disseminates firmware images
between nodes, the bootloader monitors the integrity of the stored firmware image,
and the firmware parameter transfer protocol is responsible for parameters.

Firmware management was implemented on a TUTWSN platform with an 8-bit
2 MIPS Microchip PIC18LF8722 microcontroller and a 2.4 GHz Nordic Semicon-
ductors nRF24L01 radio. Firmware management requires less than 7 kilobytes of
program memory. Experimental measurements with hundreds of nodes in practical
WSNs have been executed. Based on the results, updating a single node wirelessly
takes less than ninety seconds, while a large scale WSN of 268 nodes can be updated
in five hours.

Firmware management has been shown to be a reliable method for resource con-
strained WSNs. It has reduced the amount of manual work, increased production
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yields, and added more flexibility in maintaining large WSNs. Although firmware
management was implemented for TUTWSN, the presented design is not tied to it,
but is applicable to other state of the art WSN architectures as well.
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Langaton sensoriverkko koostuu autonomisista langattomista mittalaitteista, jotka
muodostavat ad hoc verkon valvoakseen ympäristössä havaittavia ilmiöitä. Jokainen
mittalaite sisältää sulautetun ohjelmiston, joka koostuu parametreista, protokollista
sekä algoritmeista, jotka vaaditaan, että mittalaite voi toimia osana sensoriverkkoa.

Sulautettu ohjelmisto voidaan päivittää, jotta ohjelmistovirheitä voidaan korjata,
uusia ominaisuuksia lisätä sekä liittää sensoreita mittalaitteeseen tai poistaa niitä.
Kun tarkastellaan eri tilanteita saadaan aikaiseksi vaatimukset sulautetun ohjelmis-
ton hallinnalle.

Tässä työssä esitellään langattomien sensorien sulautetun ohjelmiston hallinnan
suunnittelu, toteutus sekä kokeelliset mittaukset käyttäen hyväksi Tampereen Tek-
nillisessä Yliopistossa kehitettyä TUTWSN sensoriverkkoa. Sulautetun ohjelmiston
hallinta koostuu kolmesta palvelinkomponentista sekä kolmesta mittalaitekompo-
nentista. Palvelinpuolella on kehitetty käyttöliittymä hallinnoimaan verkkoja, tie-
tokanta tallettamaan sulautettuja ohjelmistoja ja parametreja, sekä Autoconfigu-
rator siirtämään ohjelmistoja tietokannasta sensoriverkkoon. Mittalaitteen puolella
sulautettujen ohjelmistojen siirtoprotokolla siirtää ohjelmistoja mittalaitteiden vä-
lillä, käynnistyslataaja valvoo tallennetun ohjelmiston eheyttä ja sulautetun ohjel-
miston parametrien siirtoprotokolla on vastuussa parametreista.

Sulautetun ohjelmiston hallinta on toteutettu käyttäen langattomia TUTWSN lai-
tealustoja, joissa on 8-bittinen 2 MIPS:in Microchip PIC18LF8722 mikrokontrolleri
sekä 2.4 GHz Nordic Semiconductors nRF24L01 radio. Sulautetun ohjelmiston hal-
linta vaatii alle 7 kilotavua ohjelmamuistia. Kokeelliset mittaukset suoritettiin to-
dellisissa, satojen langattomien mittalaitteiden verkoissa. Tulokset osoittavat, että
yksittäisen mittalaitteen päivitys kestää alle 90 sekuntia, kun taas laajan sensori-
verkon, jossa on 268 mittalaitetta, päivittäminen kestää viisi tuntia.



v

Sulautetun ohjelmiston hallinnan on osoitettu toimivan luotettavasti resurssiraja-
tuissa langattomissa sensoriverkoissa. Se on vähentänyt työmääriä, kasvattanut tuo-
tannon saantia sekä lisännyt joustavuutta laajojen langattomien sensoriverkkojen yl-
läpidossa. Vaikka sulautettujen ohjelmistojen hallinta toteutettiin käyttäen TUTWSN
sensoriverkkoja, työssä esitetty suunnittelu ei ole sidottu siihen, vaan on sovelletta-
vissa myös muissa moderneissa sensoriverkkoarkkitehtuureissa.
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1. INTRODUCTION

Ubiquitous computing is a term that covers a broad range of technologies that en-
able computers and their interfaces to be embedded seamlessly within our natural
environment [49]. Embedded ubiquitous devices have different capabilities and lim-
itations, thus they need to cooperate to perform tasks and to gather, process and
present information to the end-user. One promising technology in the field of ubi-
quitous computing is Wireless Sensor Networks (WSNs).

A WSN is a network of independent wireless nodes that are equipped with sensors
that measure local physical quantities, such as temperature or humidity, and actuat-
ors that control other devices [1]. Each node communicates with its neighbors with a
radio to form an ad hoc wireless communication link, as shown in Figure 1.1. These
links are then used to transfer measurement data and commands between the nodes.
In a multihop WSN, nodes route data from one node to another through the WSN,
until the data reaches a gateway node at the edge of the network. The transferred
data is then processed by a network gateway and presented using end-user services.

Resource-constrained WSNs use hundreds of tiny low-cost nodes with very little
computation and storage capabilities [25]. These nodes are battery powered and
therefore have a limited amount of available energy further restricting their per-
formance. Conversely, application scenario requirements for a WSN often require
nodes to operate for months or even years. This requirement must be addressed in
both hardware and software development for WSNs. In this thesis, the term WSN
is considered to describe these resource-constrained multihop WSNs.

1.1 Node Firmware

In addition to the hardware, each node contains software. In this thesis, node
software is divided into applications and firmware. Applications perform high-level
tasks, such as performing measurements or gathering diagnostics data. Firmware
contains critical protocols and algorithms that enable a node to communicate with
its neighbors and execute applications. An instance of a compiled firmware source
code is called a firmware image. Each node must be programmed with a firmware
image before it can function in a WSN.

Multiple different parameters and options define how the firmware should func-
tion, as shown in Figure 1.2. First, WSNs might use different versions of protocols,
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Figure 1.1: The basic components of a WSN. Data gathered by node applications is trans-
ferred through a WSN and presented as charts and diagrams with end-user services.

algorithms and interfaces depending on when and how they were deployed. These
global parameters must be the same in multiple WSNs at the same time. Second,
WSNs can have different application requirements for latency, throughput, lifetime
or reliability. These WSN-specific parameters must have the same value in each
node in a particular WSN. And finally, nodes may be equipped with various sensors
or actuators, and they may be chosen to perform additional tasks, such as generat-
ing additional network traffic for testing purposes. These node-specific parameters
only apply to a limited number of nodes in a particular WSN. In this thesis, this set
of different parameters that are required to configure a firmware image are called
firmware parameters.

1.2 Firmware Management

WSNs are often deployed for months or years in harsh conditions as they have
a long lifetime, require very little existing infrastructure and exhibit a high level
of redundancy. In addition, access to the nodes and manual maintenance can be
difficult or even impossible. The long lifetime makes it highly likely that algorithm
and programming errors are discovered and fixed while multiple WSNs are still in
active use. Furthermore, it is not uncommon for the requirements of a WSN to
change during the deployment as new features and capabilities are requested by
end-users. These reasons also apply to smaller development WSNs that are used
for testing WSN algorithms and protocols. Although these testing WSNs are often
small in scale and easy to access, they must be updated much more frequently
as new software errors are found and new features are tested. Thus, a wireless
reprogramming mechanism is required for updating the firmware images in deployed
nodes. Not all WSNs architectures support reprogramming nodes and, therefore,
only those WSNs that allow it are discussed in this thesis.

In addition to changes in the firmware, there are also several reasons why the
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Figure 1.2: A firmware parameters value may either apply to all nodes in multiple WSNs
(Global), to all nodes in a single WSN (WSN-specific) or to only specific nodes in a WSN
(node-specific) depending of the parameters scope.

firmware parameters of deployed nodes must sometimes be updated. End-users often
wish to extend their existing WSNs by adding new nodes or by attaching new sensors
or actuators to existing nodes, which requires the firmware parameters of those nodes
to be changed. The manufacturing costs of current node designs [9] have been too
high for the nodes to be disposable in actual commercial use. Therefore, nodes
from one deployment are usually reused in later ones by updating their firmware
parameters to match the new WSN.

Updating the firmware parameters requires that the corresponding firmware im-
age is also updated. This can be done by recompiling the source code of the old
firmware images and then reprogramming the nodes. However, this can take sig-
nificant time and effort, if hundreds of nodes must be reprogrammed. In addition,
as the number of deployed WSNs and nodes rises, the task of tracking the different
firmware images and their parameters for long periods of time becomes difficult and
error prone.

This thesis presents the design, implementation and experimental measurements
of firmware management for WSNs. Firmware management consists of three server
side components and three node side components, as shown in Figure 1.3:

Firmware management user interface: Firmware images and parameters are
added, configured and removed with a graphical user interface running on a
personal computer.

Database storage: Firmware images and parameters are stored and mapped to
WSNs and nodes in a relational database, where they can be later retrieved
or updated.
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Figure 1.3: The scope of this thesis is the design and implementation of both node side
and server side firmware management components.

Autoconfigurator service: The autoconfigurator service monitors firmware im-
ages and parameters in the database and makes sure that new firmware images
and parameters are transferred to the correct nodes.

Firmware parameter transfer protocols: Firmware parameters are retrieved from
the database with the autoconfigurator service and transferred to a target node
using a firmware parameter transfer protocol. Initial firmware parameters are
transferred to nodes using a single-hop protocol when they are powered on
for the first time. Once the node has joined a WSN, a multihop protocol
can be later used to reconfigure the deployed node by sending the firmware
parameters through the multihop WSN.

Firmware image transfer protocol: Firmware images are injected into a WSN
and disseminated between nodes using an energy efficient firmware image
transfer protocol. nodes use software advertisements to compare information
about their firmware images and then use the transfer protocol to exchange
firmware images if necessary.

Bootloader: The bootloader increases the reliability of firmware transfers by mak-
ing sure that only successfully received firmware images are executed. If the
firmware image is missing or it is damaged, the bootloader automatically be-
gins executing the firmware image transfer protocol to fetch a new firmware
image.

The presented firmware management components have been designed with a prac-
tical point of view to meet the requirements of real world WSN deployments with
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hundreds of nodes deployed in remote locations. The firmware management com-
ponents were implemented using Tampere University of Technology Wireless Sensor
Network (TUTWSN) [12], which is a state of the art multihop WSN technology.
The limitations and capabilities of TUTWSN are comparable to many other WSN
technologies in general.

TUTWSN includes simulation tools for WSNs, energy-efficient communication
protocols, an embedded operating system, several different platform designs and a
comprehensive software infrastructure consisting of both existing applications and
services, and methods for designing and implementing new applications [25].

Several thousands of TUTWSN nodes have been deployed in almost a hundred
different WSN installations since 2007. Although the presented firmware manage-
ment components were created for WSN deployments with TUTWSN, the design of
firmware management is applicable to other WSN technologies as well.

This thesis is organized as follows. Chapter 2 presents an overview of WSN con-
cepts, technologies and standards that form the technical constraints when designing
and implementing software for WSNs. The architecture of TUTWSN is presented
in Chapter 3. Requirements for firmware management are presented in Chapter 4
by following the lifetime of a node from manufacturing to deployment and reuse.
Related technologies and proposed firmware transfer protocols and firmware man-
agement mechanisms offered by existing WSN operating systems are discussed in
Chapter 5. Chapter 6 presents the design of firmware management in TUTWSN.
Evaluation of firmware management in TUTWSN is given in Chapter 7. This thesis
is concluded in Chapter 8.
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2. WIRELESS SENSOR NETWORKS

To understand the background behind TUTWSN and firmware management, the
features of typical WSN must be first explored. This chapter first presents the char-
acteristics, capabilities and limitations of WSNs. Second, the layout of a deployed
WSN is discussed. Third, the characteristics of node hardware and software are
presented with a comparison to the Open Systems Interconnection (OSI) model. At
the end of this chapter, the Institute of Electrical and Electronics Engineers (IEEE)
802.15 standard and the ZigBee specification are presented as examples of popular
WSN standards.

2.1 WSN Characteristics

There has been a significant research interest in WSNs, as they offer major benefits
over traditional wired sensors. nodes can be freely deployed around the area of
interest as they can communicate wirelessly and contain their own power source.
Thus, WSNs require very little existing infrastructure. Due to the low cost of nodes,
the network coverage and the level of redundancy can be increased by deploying
sufficient quantities of additional nodes. In addition, the loss of individual nodes,
due to e.g. hardware failure, is tolerable due to this high level of redundancy. Several
common characteristics of typical WSNs are discussed in [25] and in [1].

Fault tolerance: Individual nodes are not reliable, as they may be destroyed by
environmental conditions: moisture, shock, and freezing, or may run out of
energy. WSNs may be deployed in harsh conditions and while some nodes may
fail, the WSN itself must remain operational. To achieve this fault tolerance
and level of redundancy, nodes must be deployed in sufficiently large quantities.

Self-organizing: As nodes are deployed in a adhoc manner, it is imperative that
WSNs are able to generate the necessary routes through the network automat-
ically. This self-organizing capability also has a significant impact on the fault
tolerance of WSNs. If one or more nodes become inoperable or a section of
the WSN is suffering from temporary communication interference, the WSN
must be able to reroute new paths around the affected area.

Performance: Unlike traditional wireless network technologies like Wireless Local
Area Networks (WLANs), the performance evaluation of WSNs is not based
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upon latency or throughput. Instead, WSNs are evaluated on how well they
fill the application requirements, such as reliability, lifetime and cost.

Rapid deployment: nodes can be freely placed around the area of interest, as long
as each node is close enough to the rest of the WSN to form a radio link. This
allows for rapid deployment compared to traditional sensor networks, as no
manual cabling or choosing precise node locations is required.

Long lifetime: Extending the lifetime of nodes is one of the goals of WSN re-
search [4]. WSNs may be deployed in locations where power supply is limited
and the maintenance of nodes is difficult or impossible. Replacing node bat-
teries is impractical, due to the large number of nodes in a typical WSN. One
possible solution is to harvest energy from the environment using solar panels
or peltier elements, but this is often inapplicable due to the high cost or if the
nodes are installed indoors. A more robust solution is to minimize the energy
consumption of nodes, which requires significant effort in both hardware and
software design.

Application specific: The benefits of WSNs over traditional sensors give them a
large application area, which cannot be sufficiently covered by any single WSN
technology. Therefore, WSNs are customized with application-dependent com-
munication protocols, hardware platforms, and end-user applications to meet
the requirements of the target application.

This combination of high reliability, low maintenance and rapid deployment make
WSNs a promising technology for many usage scenarios. These benefits of WSNs,
combined with a wide range of applications such as environmental monitoring, object
tracking and classification and actuator control of external devices, give WSNs a
wide application area.

Military: WSNs can be used in military situations to monitor activities on a battle-
field. WSNs can detect enemy combatants and vehicles, or they may be used
to monitor the presence of hazardous gasses. Friendly units may be equipped
with mobile sensors to provide realtime location information. In one instance,
a WSN was deployed to estimate the trajectory of incoming projectiles [24].

Health and safety: WSNs are very suitable for monitoring the working conditions
in office environments. nodes can monitor e.g. air quality and noise levels [39]
or control ventilation and lighting [38]. High scalability allow WSNs to be
deployed in both small offices and large office centers spanning several floors.
Their short deployment time enables temporarily deployed WSNs to be rapidly
moved from one office to another.
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Environment: Outdoor deployments of large-scale WSNs enable monitoring of
wildlife: the nesting of birds [27] or tracking of animals [18], and agricultural
use in farms [35] or orchards [52]. WSNs may be used to detect and analyze
natural phenomena: forest fires [23] or volcanic activity [50].

2.2 Wireless Sensor Network Architecture

Nodes have very little storage space and an user interface that often consists of
only a few push buttons and Light Emitting Diodes (LEDs). Therefore, additional
components are needed to store and present the gathered data, control access to the
WSN and monitor the WSN performance. In this thesis, the term WSN architecture
is used to describe the minimum set of necessary components that are needed to allow
end-users to interact with the WSN. Besides the physical WSN, this architecture
contains a network gateway software, which may be connected to multiple WSNs,
and external applications. The physical layout of a WSN application scenario is
shown in Figure 2.1.

A network gateway presents a high-level interface to a WSN. Thus, external
applications may access the WSN without knowing the specific details of the under-
lying WSN technology. A network gateway can offer multiple standard interfaces for
accessing a WSN, such as the Extensible Markup Language (XML) or the Simple
Object Access Protocol interfaces. A network gateway may perform access control
in either direction. Thus, a network gateway can limit which nodes may send meas-
urements to the external applications and which applications or users are allowed
to access the WSN.

External applications retrieve information fromWSNs through network gateways.
This information can be refined and stored in a database. In addition, multiple ap-
plications may share the refined data. External applications have three main duties.
First, they present the measured data to the end user. Measurement data can
be presented by generating periodical reports, where measurements from multiple
sensors are presented in graphs or tables. Second, applications can visualize the net-
work topology by graphing the node locations on a map view. And third, external
applications allow end users to manage the WSN and the network gateway. Ap-
plications can organize WSNs by selecting which nodes belong to which WSNs, by
giving nodes names or descriptions and by choosing which user accounts may access
those WSNs. In addition, applications can control WSN measurement services by
choosing what measurements are performed and what the measurement interval is.

The application scenario defines the goals that the WSN must meet, such as
measurement interval or network lifetime. A WSN consisting of multiple nodes is
deployed around a phenomenon. Nodes are placed in an adhoc manner without ex-
tensive planning or link quality measurements. Each node contains multiple different
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Figure 2.1: The physical layout of a WSN application scenario [21].

sensors that monitor the phenomenon. In addition, each node forms a communica-
tion link with its neighbors. The number of nodes in the WSN is not constant, as
nodes may be added or removed at any time. The routing paths for the data also
change with time, as sporadic radio interference causes nodes to find new neighbors
and routes.

WSNs can be heterogenous, as nodes often contain different sensors. In addition,
some of the nodes can be equipped with a gateway module that allows these gateway
nodes to transfer data to external networks, such as Local Area Networks (LANs).

Gateway nodes form a connection to an external network. This allows gate-
way nodes to act as so called sinks, as the measurement data flows towards them.
The gateway nodes then forward the data to the application server on the external
network. It is important to note that a sink and a gateway node are not always
the same thing. A handheld mobile terminal could directly access the WSN and
gather measurement data without transferring the data to other networks. Thus,
the mobile terminal would act as a sink but not as a gateway to another network
technology.

The application server hosts the network gateway software and external applic-
ations, which refine the measurement data and store it in a database. End users
may use terminals to access applications running on the application server. Con-
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Figure 2.2: General hardware architecture of a WSN node [22].

versely, end users may use local applications running on the terminal to retrieve the
measurement data straight from the database.

2.3 Wireless Nodes

The elementary building block of any WSN technology is the node. A typical hard-
ware platform has four main hardware subsystems, as shown in Figure 2.2: the power
generation, sensing, computation and communication subsystems. The power gener-
ation component contains a power source, which typically is a battery or a solar cell,
and the necessary voltage regulation components. The sensing component contains
sensors that measure both external and internal quantities, such as the battery
voltage or temperature. The computation component contains a microcontroller,
which stores and executes the node software, accesses the sensor devices and com-
municates with other nodes through the communication component, which includes
a radio unit and optional interface busses.

node design and capabilities are limited by three primary requirements [25] [1].

Low-cost: Increasing the performance, reliability and lifetime of a node may in-
crease the manufacturing costs substantially. In addition, this could lead to
WSNs that consist of a small number of expensive nodes and a limited network
size and coverage. Instead, a more natural approach is to increase the amount
of nodes by decreasing their cost and performance.

Small size: A typical goal of node design is to minimize the physical size as it makes
storage and deployment easier. In addition, small size is valuable when it is
desirable that nodes blend in with the environment. Conversely, minimizing
the physical size sets limitations on the size of the components and the energy
storage capacity. An early example of node miniaturization was the Smart
Dust-project [20], which was based on using Micro-Electro-Mechanical System
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Figure 2.3: General software architecture of a WSN node [25, page 104].

technology. The target was to create nodes, which were the size of a grain of
sand.

Long lifetime: Extending the node lifetime is limited by the energy consumption.
Any increase in performance, whether it is increased computational perform-
ance, storage space or communication capacity, inevitably leads to increased
energy consumption and often also increases the physical size and cost of nodes.
Thus, it is crucial that a balance is found between node lifetime, performance
and requirements of the application scenario.

The node software stack can be divided into six parts, as shown in Figure 2.3. The
Hardware Abstraction Layer (HAL) presents the hardware platform with an abstract
interface, which other software components use to access the platform. Abstracting
the platform-specific details allows porting the upper layers of the software stack to
other node platforms that are compatible with the same HAL. The operating system
in WSNs makes development easier by managing the resources of the node, such as
memory and timers, and by containing device drivers, algorithm libraries and data
structures [25]. The network stack contains communication protocols that allow a
node to reliably communicate with other nodes. The middleware connects together
other software components and implements an Application Programming Interface
(API) that allows applications running on the node to access the operating system
services and the hardware components, regardless of the underlying operating system
or the WSN architecture.

The network stack of the node can be further divided into layers according to
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Figure 2.4: The OSI model compared to a WSN protocol stack and the ZigBee protocol
stack.

the OSI model [17]. Comparison of a WSN protocol stack with the OSI model is
shown in Figure 2.4. As the OSI model is designed for general purpose networking
solutions, all of its layers are not necessary for WSNs. Thus, although the OSI
model consists of seven layers, WSN protocols only use five of them. The protocol
stack layers of the OSI model are:

Physical layer: As the lowest layer of the OSI model, the physical layer defines
the physical specifications of the communication medium, such as cable spe-
cifications and voltages. In WSNs, the radio implements the physical layer by
selecting the correct frequency channel, transmission power and modulation
method.

Data link layer: The data link layer performs medium access, error detection and
correction and sends data over the physical link. In WSNs the data link
layer often contains a Medium Access Control (MAC) and a Logical Link
Control (LLC) sublayer. The MAC decides when and how the physical layer
is operated. Using the radio may consume significant amounts of energy. In
addition, simultaneous transmissions from different nodes should be avoided as
they may collide and corrupt each other. Thus, the MAC layer has a significant
impact on the energy efficiency and performance of the WSN. The LLC layer
frames message segments and manages link layer addressing between nodes by
e.g. marking each message with a sender and receiver address. In addition,
the LLC can handle sequencing information and CRC checking.

Network layer: The primary task of the network layer is to form a routing path
from the source to the destination by connecting neighboring nodes on the data
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Figure 2.5: Typical WSN topologies. The star topology in a) is limited in coverage but
requires little energy and resources from the nodes. The mesh topology in b) is scalable
but increases the energy usage and communication overhead. The cluster tree topology
in c) is a viable alternative that allows the leaf nodes of the tree to be resource limited
without limiting the network coverage.

link layer. In WSNs, the network layer collects neighbor information from the
data link layer, chooses the optimal neighbors and then forms communication
links with them, as shown in Figure 2.5. The star topology limits the network
coverage to the radio range of the network sink. Mesh networks offer extended
coverage but also increase overhead costs as each node must communicate
with all of its neighbors. The cluster tree topology is a compromise between
the simplicity of the star topology and the scalability of the mesh topology.
Furthermore, the network layer performs self-configuration by monitoring the
reliability of individual communication links. When routing data, the network
layer selects the next hop destination by comparing the current neighbors.
Choosing the best next hop destination is not trivial, as the requirements for
different application types differ. High priority alarm data may prefer a low
latency connection while low priority measurement data should use links that
conserve energy.

Transport layer: The transport layer performs two tasks. First, it performs flow
control to avoid network congestion. Second, it performs additional error
checking to detect transmission errors that were not detected by the LLC in
the data link layer. Link reliability in WSNs is much worse than in wired
networks and the data memory capacity for buffering data in nodes is severely
limited. Thus, flow and error control are typically performed separately for
each link.

Session layer: The session layer manages logical connections by opening, closing
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and restarting connections between endpoints. This layer is not typically used
in WSNs, as connections from nodes to sinks are not explicitly opened and
closed [25].

Presentation layer: The presentation layer maintains the compatibility of data
formats between the endpoints. It may modify the byte order of the data or
alter the format of strings. Encryption is often performed at the presentation
layer. One of the goals of WSN software design is to present the underlying
hardware and network protocols for applications by using a high level interface
provided by the middleware [25]. The middleware can also manage the Quality
of Service (QoS) for end-user applications. Thus, WSN middleware can be seen
as a part of the presentation layer.

Application layer: At the highest layer of the OSI model, the application layer
communicates with the end-user applications to receive and transmit messages.
The application layer in WSNs typically offers an interface that supports tasks
running in parallel, such as measuring different sensors or monitoring the avail-
able resources of the node.

2.4 WSN Standards and Proposals

The purpose of standards is to enable interoperability between the protocol stacks
of devices from different manufacturers [25]. As WSNs are a new field of technology,
the standardization of WSN components has only been started recently. There-
fore, many existing WSN products are based upon proprietary solutions that are
incompatible with each other [28].

The IEEE has begun the standardization of WSN technologies and created the
IEEE 802.15 standard [45] for Wireless Personal Area Networks (WPANs). WPANs
are low range wireless networks formed between personal devices, such as mobile
phones or Personal Digital Assistants. WPANs allow these devices to both trans-
mit data between each other, and access infrastructure networks such as LANs.
Examples of WPAN technology are Bluetooth [11] and Infrared Data Association
(IrDA) [2].

The IEEE 802.15 standard contains seven task groups for defining different types
of WPANs. The IEEE 802.15.1 task group has created a standard for the physical
and MAC layers for WPANs using the Bluetooth specification. The 802.15.2 task
group is working on the issues of coexistence between WPANs and other wireless
networks.

The IEEE 802.15.3 standard describes the physical and MAC layers in high rate
WPANs for bandwidth intensive digital imaging and multimedia devices. Con-
versely, the IEEE 802.15.4 standard for Low-Rate Wireless Personal Area Networks
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Table 2.1: Frequency bands and data rates in IEEE 802.15.4-2003 as defined by ITU [25]

Band 868 MHz 915 MHz 2.4 GHz

Region EU, Japan US Worldwide
Channels 1 10 16
Data rate 20 kbps 40 kbps 250 kbps

(LR-WPAN) targets at defining the physical and MAC layers of WPANS with low-
power and low-cost devices, such as WSNs.

Requirements for mesh networking with WPANs are determined in the 802.15.5
task group. Short range and low frequency body area networks are being defined
in the 802.15.6 task group. The 802.15.7 task group defines the physical and MAC
layers for visible light communication WPANs.

2.4.1 IEEE 802.15.4 Standard

The IEEE 802.15.4 [44] standard enables LR-WPANs to be used in a wide range of
application areas, such as industrial, medical and residential applications, while re-
quiring little or no infrastructure. The main goals of IEEE 802.15.4 are to allow ease
of installation, reliability of short range data transfers, low cost and long lifetime of
devices. IEEE 802.15.4 uses the Industrial, Scientific and Medicine (ISM) frequency
bands defined by the International Telecommunication Union (ITU), as shown in
Table 2.1. The 2006 version of the standard also supports 250 kbps transfer speeds
in the 868 MHz and 915 MHz bands.

A IEEE 802.15.4 compliant network has two types of network devices [25]. First,
Full-Function Devices (FFDs) can act as Personal Area Network (PAN) coordinators
or regular coordinators. Each network must contain a single PAN coordinator that
is responsible for initializing the network. In addition, the PAN coordinator can act
as a gateway node to other networks. Regular coordinators route traffic between
other devices. Coordinators can also act as alternative PAN coordinators, which
can assume the role of the PAN coordinator, if the original PAN coordinator leaves
the network or malfunctions.

In addition to the FFDs, a IEEE 802.15.4 compliant network contains Reduced-
Function Devices (RFDs). RFDs have very limited resources compared to FFDs
and they can only communicate with one FFD at a time. RFDs are meant for small
cheap devices, such as light switches or low-powered sensors.

Each device in an IEEE 802.15.4 network has a unique 64-bit address that is used
when communicating with other devices on the data link layer. Each device may
also be assigned a shorter 16-bit address by the PAN coordinator. In addition, each
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Figure 2.6: ZigBee protocol stack [25].

independent PAN also uses a unique PAN identifier, that can be used to identify
different networks. The IEEE 802.15.4 standard does not define how the PAN
identifier should be chosen.

2.4.2 ZigBee

As the IEEE 802.15.4 standard only defines the physical and MAC layers of a WSN
stack, additional layers must be specified before a fully working WSN stack can be
implemented. Zigbee [34] is an open specification based on the IEEE 802.15.4 stand-
ard that the defines the necessary WSN protocol layers that are not included in the
IEEE 802.15.4 standard. The open and nonprofit ZigBee Alliance develops the Zig-
Bee specification and also provides certification, marketing and user education [25].
ZigBee targets low-powered and low-cost applications, such as wireless monitoring
and control in home automation, building control and industrial automation.

The protocol stack of a ZigBee node is shown in Figure 2.6. The physical and
data link layer follow the IEEE 802.15.4 standard. The network layer of ZigBee
supports the star, the mesh and the cluster tree topology. In ZigBee, FFDs and
RFDs are called ZigBee routers and ZigBee end-devices, respectively. In the star
topology all devices form a direct connection with the PAN coordinator, which is
called the ZigBee coordinator in a ZigBee network. Thus, the network size is limited
by the communication range of the ZigBee coordinator. On the other hand, the star
topology allows for better control of latency.

In the multihop mesh topology any router may communicate with its neighboring
routers. Thus, the coverage of the network can be extended by deploying more
routers. Although this increases the redundancy in the network, it also increases
the latency. In the cluster topology the routers act as cluster heads, while the leaf
nodes are either other routers or end-devices. At the root of every cluster tree is a
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single coordinator, which initiates the network and chooses which routers are allowed
to act as cluster heads.

Communication between ZigBee devices is conducted between endpoints. Each
ZigBee device contains from 0 to 255 endpoints, which are connected to application
objects. Endpoint 0 is connected to the ZigBee Device Object (ZDO), which is used
to configure the whole device, and endpoint 255 is a broadcast endpoint, which is
used to broadcast messages to all endpoints. The Security Service Provider (SSP)
controls the security aspects of the protocol stack. ZigBee supports data encryption
and uses 128-bit Advanced Encryption Standard for key generation. Finally, the
Application Support layer (APS) connects together the network layer, the SSP and
the application endpoints.
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3. TUTWSN

TUTWSN has been developed at the DACI Research Group at Tampere University
of Technology since 2002. The goals of TUTWSN development have not only been
to further advance WSN research but also to create viable commercial products that
utilize the state of the art technology. By the fall of 2009, almost 6000 nodes have
been deployed in research WSNs [13].

This chapter presents the architecture of TUTWSN that consists of the TUTWSN
network, the TUTWSN Gateway and the Sensor Network Application Platform
(SNAP). Second, this chapter also illustrates the hardware platform of resource-
constrained TUTWSN nodes. The protocol stack and the packet structure of TUT-
WSN are presented at the end of this chapter.

3.1 Architecture

The architecture TUTWSN can be divided in two sections, as shown in Figure 3.1.
The WSN domain contains the actual physical WSN, which is implemented with
TUTWSN technology. The information controller domain, on the other hand, is not
tied to a particular WSN technology but can interact with multiple different WSNs
from various manufacturers.

Nodes in a TUTWSN network can be divided into wireless nodes and wired gate-
way nodes. Unlike in the IEEE 802.15.4 WSNs, TUTWSN networks may contain
multiple gateway nodes which increases the reliability of the WSN and distributes
the traffic load to multiple gateway nodes. Gateway nodes form a connection with
a TUTWSN Gateway using the TUTWSN Gateway Interface [19].

The TUTWSN Gateway periodically sends data requests to the WSN. These
data requests define what sensor measurements should be performed and what is
the interval between measurements. Most commonly used measurement intervals
are between 30 seconds and 5 minutes. Each node that is equipped with the proper
sensor and the corresponding device driver and application begins performing meas-
urements at the requested interval and sending the results to the nearest gateway
node. The gateway nodes forward these measurement results to the TUTWSN Gate-
way as GWI messages, which the TUTWSN Gateway translates into Java objects,
which are then sent to the SNAP for storage.

Each TUTWSN Gateway can handle multiple WSNs. Large WSNs can generate



Chapter 3. TUTWSN 19

�������
��	
���

�
����
�
	�����

�������	���
���	���� ����

���	��

��������	
 �
�����	�
���
����������	


��	���
��
�

�
����
�
	
��	����


��������	��
��	����


����
�����


�������

	����

�
����
�� 
 ��	
����

�� 


����

�����
�
	
������
�!��
�

�
��
�	
����
��

�
�

Figure 3.1: Infrastructure of TUTWSN. SNAP provides centralized management of mul-
tiple TUTWSN Gateways and WSNs.

so many GWI messages that such a WSN is assigned to a dedicated TUTWSN
Gateway running on a separate server. WSNs that use different versions of the
GWI interface must also be assigned to different Gateways.

As the number of nodes, WSNs and TUTWSN Gateways grows, the challenge of
managing them becomes evident. SNAP provides centralized management for TUT-
WSN Gateways and WSNs by storing configuration and measurement information
in a database and offering user interface for monitoring and controlling TUTWSN
Gateways. In addition, SNAP provides service libraries for application developers
in order to rapidly create feature rich applications for WSNs. WSN Mobile, WSN
Portal and WSN Control Panel are existing TUTWSN applications that utilize these
services. WSN Mobile is a lightweight WSN monitoring interface for mobile devices.
WSN Portal is a framework for hosting web-based WSN applications. WSN Control
Panel is a Java application for monitoring and controlling WSNs. WSN Mobile and
WSN Portal are implemented with Java Server Pages.

3.2 Hardware Platforms

TUTWSN nodes and gateway nodes share a common hardware platform but the
gateway nodes are equipped with an additional ethernet module. Both classes of
devices either use the 2.4 GHz or the 433 MHz ISM bands. Each node contains a
limited physical interface that consists of a single push button and two LEDs. Every
physical TUTWSN node is identified with a globally unique serial number. TUT-
WSN nodes may contain a Dallas Semiconductors DS620 [36] digital temperature
sensors, an Avago Technologies APDS-9002 [41] luminance sensor or a three-axis
VTI SCA3000 accelerometer [47]. Additional external sensors may be attached with
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Figure 3.2: TUTWSN 2.4 GHz node.

a special connector. A battery powered 2.4 GHz TUTWSN node is shown in Fig-
ure 3.2.

TUTWSN nodes contain a Microchip PIC18LF8722 8-bit microcontroller [29]
with 128 kilobytes of program memory and 3936 bytes of data memory. In ad-
dition, the microcontroller has a 1024 byte Electronically Erasable Programmable
Read-Only Memory (EEPROM). The microcontroller operates at 4 MHz and has
an execution speed of 2 million operations per second. Furthermore, TUTWSN
gateway nodes use an additional PIC18F67J60 8-bit microcontroller [31] to execute
the TCP/IP protocol stack in parallel to the TUTWSN protocol stack.

TUTWSN nodes use two types of radios depending on the operating frequency.
The Nordic Semiconductors nRF24L01 [32] radio operates on the 2.4 GHz ISM
band, which is divided into 126 discrete channels. The radio offers a transfer rate of
2 Mbps with a payload size of 32 bytes. In addition, the radio can use four different
transmission powers, ranging from -18 dBm to 0 dBm. TUTWSN node platforms
that use the nRF24L01 radio typically have a communication range of 20 to 30
meters.

The Nordic Semiconductors nRF905 [33] radio is used for the 433 MHz ISM
band. The radio offers a transfer rate of 50 kbps and a payload size of 32 bytes. The
transmission powers of the nRF905 range from -10 dBm to 10 dBm. TUTWSN node
platforms that use the nRF905 radio can have a communication range up to one
kilometer but terrain conditions usually limit the range to a few hundred meters.
Neither radio supports RSSI.

The Texas Instruments CC1101 [42] radio is another choice for the 433 MHz band
TUTWSN platforms. The CC1101 offers a transfer rate of 50 kbps and a variable
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Figure 3.3: The TUTWSN protocol stack of a node, a gateway node and a client applica-
tion.

payload size between 1 and 255 bytes. The transmission powers of the CC1101
range from -30 dBm to 10 dBm. The CC1101 supports both RSSI and a link
quality indicator, that estimates how easily the received signal can be demodulated.

3.3 Protocol Stack

The protocol stacks of a TUTWSN node, a TUTWSN gateway node and a client
application are shown in Figure 3.3. Applications running on a node use an event-
based Node API [19] to transmit messages over the network. In addition, the Node
API makes sure that the applications do not conflict with the strict timing require-
ments of the MAC layer. Gateway nodes receive Node API messages and transmit
them to client applications using a Gateway Interface (GWI) protocol, the Internet
Protocol (IP) and the Transmission Control Protocol (TCP).

The routing layer of TUTWSN uses a QoS aware routing protocol [40]. As TUT-
WSN is designed to work with multiple applications with different QoS requirements,
such as latency, reliability and energy usage, the routing protocol defines multiple
traffic classes. Each application can choose which traffic class to use. Headnodes cal-
culate the routing cost for each sink and each traffic class, which are then advertised
to the cluster members.

The MAC layer of TUTWSN uses a cluster-tree network topology to maximize
scalability and minimize energy usage. Similarly to the FFDs and RFDs in the IEEE
802.15.4 standard, node roles are divided into headnodes and subnodes. Headnodes
perform routing and act as cluster heads or cluster members. Subnodes do not
route and can only act as cluster members. Gateway nodes act as sinks for the
data streams and always act as cluster heads. Each node is assigned with a 24-bit
node ID for addressing individual nodes on the MAC layer. The node ID is not
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Figure 3.4: Communication between nodes in a cluster.

necessary unique, as nodes in different WSN may use the same node ID. The node
ID is also used on the application layer to identify nodes and to act as a key to map
measurement data in a database to a particular node.

TUTWSN significantly reduces the energy usage of the data link layer and the ra-
dio by using a synchronized Frequency and Time Division Multiple Access (FTDMA)
MAC [25, Chapter 13.], where the frequency band is divided into discrete clsuter
channels and timeslots. These timeslots are called access cycles, as shown in Fig-
ure 3.4. Each access cycle begins with a superframe, which is used by the headnode
to communicate with its cluster members. In the beginning of the superframe the
headnode broadcasts a cluster beacon to the cluster members. Cluster members
need the data in the beacon to identify which slots are allocated to them during the
data exchange period. After sending the cluster beacon, the headnode communic-
ates with the cluster members one by one. The superframe is followed by an idle
period to preserve energy. While the cluster members are idle, the cluster head may
need to communicate with other clusters to forward the data to them.

The FTDMA schedule of a headnode, which contains the cluster channel and the
start time of the access cycle, is advertised periodically with network beacons on
a preselected network channel. Thus, headnodes and subnodes perform neighbor
discovery of nearby clusters by listening to the advertisements on the network chan-
nel, as shown in Figure 3.5. In addition, the accurate timing information allows the
cluster heads and members to wake up from sleep precisely at the right moment,
thus maximizing the time spent in power-saving sleep modes.
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Figure 3.5: Neighbor discovery in TUTWSN [25].

Communication between nodes happens in small packets called Protocol Data
Units (PDUs). Each PDU is 27 bytes long and may contain fields from different
protocol layers. The structure of a PDU from the TUTWSN temperature application
is shown in Figure 3.6. The first fields of the PDU belong to the MAC layer. The
header describes the PDU type and also contains information about the transmission
power that was used to send this packet. The source and the destination fields
contain the node ID of the sender and the receiver. The type field describes the
type of the packet contained in the MAC payload while the sequence field contains
the sequence number of the packet. On the Node API layer, the application field
identifies which application created the packet. The target field contains additional
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Figure 3.6: A measurement PDU from the temperature application.
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information, for example if the packet was targeted at applications in nodes that
belong to a particular group. The last 16 bytes are left for the application. The time
field stores the time stamp when the measurement was made while the value field
contains the actual measurement value. Rest of the PDU is marked as padding. It
is important to note, that as the number of protocol layers increases, the number of
bytes left for higher level applications can decrease dramatically.

The physical layer of the TUTWSN protocol stack is implemented with the
nRF24L01 and nRF905 radios. Both radios use a 3 to 5 byte long radio address
to control communication as different radio devices can only communicate with
each other if they use the same radio address. In TUTWSN, each WSN is assigned
with a unique radio address. This separates different WSNs, so that nodes from one
WSN cannot communicate with nodes in another WSN.

The TUTWSN protocol stack is implemented using the C programming language
and the MPLAB C compiler [30] is used to compile the protocol stack to a runnable
firmware image.
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4. REQUIREMENTS FOR FIRMWARE

MANAGEMENT

In order to understand the requirements for firmware management, the entire lifespan
of a TUTWSN node is explored. First, a summary of the requirements is presen-
ted. Second, the motivation behind firmware management is explained through
TUTWSN deployments. Third, the most significant parameters associated with the
TUTWSN protocol stack are identified. Fourth, TUTWSN nodes and WSNs are
followed from platform manufacturing to deployment and all the way to disposal
and redeployment, while specifying what requirements each phase has on firmware
management and how it can be used.

The following is a short summary of the requirements for firmware management:

Moving nodes between WSNs: Nodes must be easily moved from one WSN to
another.

Replacing nodes: The parameters of a defective node must be easily transferred
to replacement node.

Adding or removing sensors: It must be possible to add external sensors or ac-
tuators to nodes or to remove them.

Manual programming: Manually programming nodes is expensive and must be
avoided.

Persistent storage: Firmware images and their parameters must be stored so that
they may be later retrieved or modified.

Configuring modules: The parameters and options of individual applications,
device drivers or libraries must be configurable.

Firmware image changes: Firmware images in deployed nodes must be remotely
and reliably updatable.

Testing of nodes: Firmware images in nodes should support self testing.
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Table 4.1: TUTWSN deployments.

Monitoring Number of Frequency Coverage Location
type nodes band

Teaching 280 2.4 GHz University campus Tampere, Finland
Real estate 130 2.4 GHz Large college Tornio, Finland
Person tracking 110 2.4 GHz Hospital Kainuu, Finland
Person tracking 100 2.4 GHz Police Academy Tampere, Finland
Outdoor 60 433 MHz Fields, 6 km2 Kangasala, Finland
Industry 30 2.4 GHz Green house Turku, Finland
Domestic 30 2.4 GHz A home Tampere, Finland
Industry 25 433 MHz Pipe line, 5 km Voikkaa, Finland
Total 765

4.1 TUTWSN Deployments

The main motivation behind developing firmware management has come from ex-
periences in deploying TUTWSN networks, as shown in Table 4.1. The teaching
network and the real estate network are example of large scale, 2.4 GHz TUTWSN
monitoring networks for indoor use. Large TUTWSN networks have also been used
for tracking nurses in a hospital and police students in a training area. Outdoor
433 MHz networks have been used to cover large areas. The scale of TUTWSN
installations justifies the need for firmware management.

4.2 Firmware parameters in TUTWSN

The protocol stack of a TUTWSN node is controlled by seven major firmware para-
meters, as shown in Table 4.2. The Node API version defines the format of applic-
ation layer packets, which must be the same within a WSN. The Node API version
must also be compatible with the TUTWSN Gateway and, thus, multiple WSNs
typically share the same Node API version.

Each WSN is identified with a unique combination of a radio address and a net-
work channel. These two parameters allow nodes to communicate with other nodes
that belong to the the same network. As TUTWSN supports multiple concurrent
services and applications with different QoS requirements, the routing layer offers
them different routing classes. The routing cost controls how data belonging to a
specific traffic class is routed through the WSN.

The node ID is used to identify a single node within a specific WSN. On the
other hand, multiple nodes in separate WSNs may use the same node ID. The node
role parameter controls whether a node operates as a headnode or as a subnode. In
addition, the node role can be set to automatic whereby the node will autonomously
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Table 4.2: Node firmware parameters in TUTWSN.

Parameter TUTWSN Layer Scope Size
(bits)

Node API version Application Global 8
Radio address Physical WSN 24
Network channel MAC WSN 8
Routing cost Routing WSN 96
Node ID MAC Node 48
Node role MAC Node 2
Enabled applications Application Node 64

switch between headnode and subnode roles when needed.
On the application layer, a TUTWSN node supports multiple concurrent applic-

ations that control different sensors. These applications can be enabled and disabled
depending on which physical sensors are attached to a particular node.

TUTWSN gateway nodes share the same parameters as nodes, but also include
additional parameters related to their role as gateways, as shown in Table 4.3. As
each gateway node has a physical ethernet port, it must be assigned with a unique
ethernet MAC address. Each gateway node must also know the IP address and
the TCP port of the destination TUTWSN Gateway. Furthermore, each gateway
node implements a particular version of the GWI, which must be compatible with
the TUTWSN Gateway that it is being connected to. As each TUTWSN Gateway
handles multiple WSNs, the GWI version must be the same in all those WSNs.

4.3 Node Lifetime

In this section the lifetime of a TUTWSN node is analyzed. In addition, special care
is taken to recognize the tasks that could be automated with firmware management
to minimize the amount of manual work and reduce delays in the process. To
clarify the different tasks and responsibilities associated with WSN deployments,
four different roles are defined, as shown in Figure 4.1: the electronics contract

Table 4.3: Additional firmware parameters for gateway nodes.

Parameter Protocol Scope

MAC address Ethernet Node
Gateway destination address IP WSN
Gateway destination port TCP WSN
GWI version TUTWSN Gateway Global
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Figure 4.1: Lifetime of a TUTWSN node.

manufacturer, the WSN product vendor, the service operator and the end-user.
The manufacturer is responsible for producing nodes. The vendor creates WSN
products that the operator uses to create application-specific WSNs and services in
accordance to the requirements given by the end-user, who uses the WSN and the
services.

4.3.1 Manufacturing and Testing of Nodes

Before the manufacturing of nodes begins, the vendor places an order to the man-
ufacturer, as shown in Figure 4.2. The manufacturer is also supplied with a list of
available serial numbers for the nodes and the necessary design documents. The
vendor stores the serial number and platform type of each ordered node in a data-
base. Thus, each TUTWSN node is tracked before it is manufactured.

After the manufacturer has received the order, the hardware components and
Printed Circuit Boards (PCBs) are ordered from component suppliers and the nodes
are assembled. In addition, physical sensors are attached to node and each node is
enclosed in a chassis. Each node is also marked with a serial number for identifica-
tion. The finished nodes are then shipped to the operator. Firmware management
has three challenges during this phase.

First, the manufactured TUTWSN nodes must be programmed before shipping
them to the operator, so that they may immediately be used in deployments. As
manually programming a single node takes several minutes, it is impractical and
expensive to do so for several hundreds of nodes. Instead, the microcontrollers that
are used in the nodes must be pre-programmed with a TUTWSN firmware image
by the microcontroller manufacturer. This firmware image should contain a general
purpose TUTWSN protocol stack, so that the pre-programmed nodes may be used
in WSNs immediately.

Second, the firmware image must support wireless runtime configuration of the
firmware parameters and update of the firmware itself, so that the pre-programmed
nodes may be updated and configured later by the vendor and the operator. If the
target WSN is already installed and operational, the vendor and the operator must
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Figure 4.2: Manufacturing of TUTWSN nodes with pre-programmed microcontrollers.
Shipped nodes can be later updated wirelessly.

be able to remotely inject a new firmware image into the WSN so that the new
firmware image will propagate through the rest of the WSN without manual work.
This requires that nodes must have a protocol for sharing information about their
own firmware image and transferring a newer image to a neighboring node.

Third, the pre-programmed firmware image must support testing of the hardware
platform for physical defects. The hardware designs of different TUTWSN platform
types are updated regularly to meet new customer requirements or to reduce manu-
facturing costs and energy usage. These updates often require making small changes
to the PCB schematics or even replacing complete parts, which requires that the
assembly parameters, such as the amount of solder, are adjusted accordingly. On
the other hand, these adjustments of the manufacturing process also increase the
chances of physical defects, as the proper assembly parameters are not always known
a priori. Thus, a reliable testing process is required to allow the manufacturer to
discover problems in the manufacturing process before they can affect a large num-
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ber of platforms. The pre-programmed firmware image must contain a self-test
application, that allows the manufacturer to validate that the platform is operating
correctly. This self-test application can be wirelessly configured by the manufacturer
to account for possible external sensors, without requiring manual programming or
different firmware images for each platform type.

4.3.2 Pre-Deployment Phase

Before a WSN can be created and deployed, the operator and the end-user specify the
application requirements for the WSN, such as the target lifetime of the WSN and
the size of the monitored area. On the other hand, the operator may have several
predefined WSN products that fit typical customer requirements, such as small
WSNs for home monitoring or large WSNs for outdoor environmental monitoring.
In either case, once the application requirements have been specified, the operator
orders the WSN components from the vendor and begins building the WSN by
configuring the necessary nodes.

As TUTWSN nodes are pre-programmed with a general purpose TUTWSN pro-
tocol stack before the operator receives them, they can be immediately used in
WSNs. If the standard TUTWSN protocol stack is not applicable with regard to
the application requirements given by the operator and the end-user, the vendor
must adjust the protocol stack accordingly. An end-user may request that a par-
ticular node application transmits measurement packets in a specific format. This
requires that the corresponding application and the packet structure are changed in
all of the nodes of the WSN and that the firmware images of the nodes are recom-
piled. The compilation process must produce a firmware image that can be easily
stored in a database. After the compilation, the vendor must store the customized
firmware images in a database, so that they may be retrieved later by the operator.

Once all of the nodes have the correct firmware the operator needs to update the
firmware parameters in the database by giving each node the necessary parameters,
such as the node ID and the network information. Once the firmware parameters
in the database are updated, the operator configures the nodes to use the updated
parameters by wirelessly transferring the parameters to the nodes. In addition,
gateway nodes are configured by giving them Ethernet MAC addresses and the
connection parameters of the operators TUTWSN Gateway that handles the WSN.

4.3.3 Deployment, Service and Operation Phase

Once a WSN has been created and the nodes have been configured, the operator or
the end-user deploys the WSN around a measurement area. The operator sells the
end-user WSN services that gather and present information from the WSN to the



Chapter 4. Requirements for Firmware Management 31

end-user. At the same time, the vendor may gather diagnostic information on the
WSN that can be used to diagnose faulty nodes or problems in the communication.
As the length of the operation phase can be several months or even years, it is not
uncommon that the requirements for the WSN change during this time.

First, new nodes may be added to the WSN if the network coverage, node dens-
ity or level of redundancy is to be increased. End-users may also request that new
sensors are added to the existing nodes in order to add, for instance, security monit-
oring capabilities to an environmental monitoring WSN. As the firmware images and
parameters for each WSN are stored in a database, the operator can easily locate
the correct firmware images and transfer them into the new nodes.

In addition, the operator needs to change the firmware parameters of the nodes
to match the network parameters of the WSN and the new sensor and then transfer
these updated parameters to the nodes. As the nodes are already deployed, the
operator must transfer the updated parameters to the nodes by using the WSN
itself as the communication medium.

Second, in addition to changes in the physical features of a WSN, such as the
number of nodes, the developer and operator may want create new software features,
new node applications and improved protocols and offer them using existing WSNs,
which requires updating them. The long lifetime of a WSN makes it highly probable
that firmware images are updated several times while the network is still deployed.
Moreover, as WSNs can be deployed almost everywhere, physical access can be
expensive or impossible.

4.3.4 Maintenance, Disposal and Redeployment

During the deployment, nodes may be damaged or break down. In these situations,
the end-user sends these damaged nodes back to the operator. The operator may
then ask the vendor for a replacement node. When replacing a malfunctioning node,
the replacement node is added to the WSN as a normal node with the exception
that the replacement node is assigned with the same node ID as the malfunctioning
node. Thus, sharing the node ID allows the new replacement node to generate
measurements that are automatically combined with the earlier measurement data
of the malfunctioning node.

The final phase of a WSN deployment is the disposal of the WSN, where the
deployed nodes are gathered and shipped back to the operator. During long de-
ployments it is typical that some of the nodes are damaged. During disposal, these
broken nodes are either shipped to back to the manufacturer for repair, or discarded.
The rest of the nodes are reused in later WSN deployments, once their firmware im-
ages have been updated and their firmware configurations are cleared.
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5. RELATED TECHNOLOGIES

In this chapter the existing proposals for managing both wired and wireless hetero-
genous networks are discussed and analyzed based on how well they are suitable for
WSNs. First, the IEEE 1451 standard is included as it contains methods for storing
and discovering the parameters of sensor equipment. Second, the Simple Network
Management Protocol (SNMP) is presented as an example of a parameter manage-
ment architecture for wired networks. Third, TinyOS and Contiki are presented as
state of the art WSN operating systems and their solutions for handling firmware
management tasks are discussed.

5.1 IEEE 1451 Smart Transducer Interface Standard

Sensors and actuators from different manufacturers have a wide range of paramet-
ers that define how the measured data is to be interpreted: calibration data, value
and error ranges, measurement units and scales. Before a sensor can be measured
by a controlling device, the device must know these parameters. The IEEE 1451
standard family [43] defines how sensors and actuators from different manufacturers
can exchange this sensor information with measurement devices, such as nodes in
a WSN [25] to enable interoperability. The IEEE 1451 standard defines two device
classes: Smart Transducer Interface Modules (STIMs) and Network Capable Applic-
ation Processors (NCAPs). STIMs are sensing devices that contain the necessary
components to perform measurements and transfer the result to an NCAP device.
Each STIM contains a Transducer Electronic Data Sheet (TEDS), which describes
the sensor parameters of the STIM device in detail and is defined in the IEEE 1451.0
standard. The TEDS is usually implemented as an EEPROM memory module. As
opposed to STIMs, NCAPs are network connected devices that receive measurement
data from multiple STIMs. Accessing an NCAP device from an external network is
done according to the IEEE 1451.1 standard.

IEEE 1451 does not define how NCAPs and STIMs communicate with each other
on the physical or the data link layer, as shown in Figure 5.1. Instead, the standard
family supports interface definitions for several commonly used physical and data
link layers. First, the IEEE 1451.2 standard defines an interface and a TEDS for a
point-to-point wired link between an NCAP and a STIM using a Serial Peripheral
Interface bus. This standard is currently being revised to add support for Universal
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Figure 5.1: The interfaces between STIM and NCAP devices as defined in the IEEE 1451
standard [25, Figure 3.1].

Asynchronous Receiver / Transmitter and Universal Serial Bus busses. Second, the
IEEE 1451.3 standard defines an interface for multi-drop STIMs using a wired Home
Phone Network Alliance connection to connect multiple STIMs to a single NCAP.
Communication on a mixed-mode bus with both analog and digital modes is defined
in the IEEE 1451.4 standard. The IEEE 1451.5 standard defines communication over
wireless links using other IEEE standardized mediums: IEEE 802.11 compatible
WLAN, 802.15.1 compatible Bluetooth and 802.15.4 compatible ZigBee. Finally,
the IEEE 1451.6 standard defines interfaces for a Controller Area Network bus to
connect an NCAP and multiple STIMs.

Although the TEDS in the IEEE 1451.5 standard is designed to store a variety
of parameters, it is not suitable for firmware management. The standard implies
that each ZigBee RFD and FFD will act as a STIM and contain a single TEDS,
while a single ZigBee coordinator will act as an NCAP. On the other hand, this
requires that the TEDS in each node should contain all the possible parameters of
each available external sensor, so that the node can update its TEDS at runtime to
match the currently equipped sensors. However, storing TEDS parameters for every
possible sensor type would require a significant amount of memory and, thus, this
solution would not be scalable.

5.2 Simple Network Management Protocol

Managing networked devices has been a challenge long before WSNs. SNMP [46] is a
protocol for managing TCP/IP-based networked devices and it belongs to the Inter-
net Protocol Suite. SNMP defines two groups of devices. First, network elements are
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devices such as routers, terminals or desktop computers that are remotely managed.
Each network element contains an agent, which is a software component that stores
management information about the network element, such as the current operating
temperature or memory usage. This management information is stored as variables
in hierarchical structures known as Management Information Bases (MIBs). The
second group of devices are network management stations. These management sta-
tions manage network elements by using a software component called the network
management system to connect to the agents running inside the network elements
and performing queries on the MIBs.

When the relationship between network elements and network management sta-
tions is analyzed, it can be seen that the intelligence of the system exists within the
network management stations that perform queries, while the network elements act
as database nodes. This structure is not suitable for WSNs [37] as the demand for
data transfer between MIBs in network elements and network management stations
is too high. Instead, the proposed solution in [37] is to execute the management
functionality within each node in order to minimize the amount of data transferred.

5.3 Support for Firmware Management in WSN Operating
Systems

Current methods for transferring and reconfiguring firmware images in WSNs can
be divided into four groups according to their level of flexibility and energy costs,
as discussed extensively in [3]. First, full image binary upgrades allow the highest
degree of flexibility in configuring the firmware, as the whole firmware image is repro-
grammed at once. Conversely, the energy and storage cost of the update procedure is
also significant, as any change in the firmware image requires that the whole image is
disseminated. Modular binary upgrades allow segments of the firmware image, such
as libraries or applications, to be updated individually, thus forming a compromise
between the flexibility of the upgrade and the energy costs. However, this method
requires that nodes are able to relocate and link these modules dynamically during
runtime, which can be computationally intensive. Higher level functionality can be
configured with virtual machines, where applications are described as scripts and
interpreted during runtime. While transferring scripts rather than full binary im-
ages requires less energy, the energy cost of the runtime interpretation can outweigh
the benefits. Finally, parameter tuning frameworks allow fine tuning the firmware
images without requiring much energy. Conversely, they offer the least amount of
flexibility to configure the firmware images.
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5.3.1 TinyOS

TinyOS [14] is a free open-source operating system for WSNs. TinyOS is written
in nesC [10], which is based on the C programming language but optimized for
resource-constrained devices. TinyOS supports concurrency through callbacks and
by splitting long operations into shorter event-driven tasks. This enables TinyOS to
have a high level of concurrency, but also increases program complexity. As TinyOS
is both free and open-source, it is a popular choice for WSN research and a large
number of reprogramming protocols exist for WSN that are built upon TinyOS.
TinyOS code is statically compiled with nesC and it does not support loadable
modules. Thus, the TinyOS firmware image must be transferred and loaded as a
full binary image.

XNP [51] was one of the first reprogramming services for TinyOS and the MICA2 [5]
platform. It featured a single-hop reprogramming scheme where the firmware image
was sent as unicast to a particular node or broadcasted to a group of nodes. The
single-hop nature limited the scalability of XNP and it only served as an alternative
to manual wired reprogramming.

The successor to XNP is Deluge [16]. Deluge is an epidemic multihop protocol
that allows nodes to store several different firmware images in an external EEPROM
memory. One of these images can act as the so called Golden image, which is used
as a backup image if the main firmware image is corrupted. The 2.0 version [15]
also adds support for resuming incomplete firmware image downloads and additional
firmware image verification.

The Maté virtual machine [26], which is built upon TinyOS, bypasses the lack
of loadable modules in TinyOS by presenting a high-level virtual machine instruc-
tion set. Maté bytecode programs are significantly smaller than complete firmware
images, which lowers the energy cost of disseminating them. The downside is that
interpreting the bytecode creates an energy overhead. If new firmware images are
disseminated only seldom, then the energy consumption of the code interpretation
is dominant.

5.3.2 Contiki

Similar to TinyOS, Contiki [6] is a free open-source operating system for resource-
constrained devices. Although Contiki is event-driven, it avoids the increased com-
plexity by providing protothreads [8] over the event-driven kernel, which allows de-
velopers to avoid the excessive use of callbacks. Unlike TinyOS, Contiki supports
modular updates [7] to the firmware image. Like other modular solutions, this saves
energy as only parts of the whole firmware image need to be disseminated. Contiki
uses a virtual filesystem to load executable files, which are dynamically linked and
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Table 5.1: Comparison of related technology.

Technology Operating Update of Configuring Requires
system deployed deployed additional
independent nodes nodes resources

IEEE 1451 yes no yes data memory for TEDS
SNMP yes no yes data memory for MIBs
XNP no no no program memory for images
Deluge no yes no program memory for image
Maté no partly no bytecode interpretation
Contiki no partly no -

relocated. This dynamic loading only applies to the higher level modules, such as
libraries and applications. The core of Contiki, which contains the operating sys-
tem, the program loader and the device drivers, can only be updated with a separate
special image transfer program, which is a major restriction.

5.3.3 Conclusion

Table 5.1 contains a comparison of the presented technologies. IEEE 1451 and
SNMP require too much data memory for TEDS and MIBs, respectively. The
reprogramming protocols are either limited to a particular operating system, like
Contiki, or require additional program memory for storing firmware images. In
adition, Contiki and Maté can only update parts of the firmware image.
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6. DESIGN OF FIRMWARE MANAGEMENT

This chapter presents the design of six firmware management components that have
been created for TUTWSN. First, an overview of the components is presented.
Second, a prototype of the user interface is presented. The structure of the firmware
management database is described. Finally, the dissemination of firmware images
and parameters into WSNs is explored.

6.1 Architecture

Firmware management components are shown in Figure 6.1. The server side com-
ponents consist of a firmware management user interface, the Autoconfigurator ser-
vice and the firmware management database. The WSN developer uses the firmware
management user interface to add, remove and modify both firmware images and
firmware parameters of nodes.

The Autoconfigurator is a service running on SNAP that receives the firmware
images and parameters from the user interface and stores them in the firmware data-
base, which is a part of the configuration database of SNAP. The Autoconfigurator
also makes sure that new firmware images and parameter changes are transferred
to the correct WSNs and nodes through the TUTWSN Network Gateway and the
gateway nodes.

The node side components are the bootloader, the firmware image transfer pro-
tocol and the parameter transfer protocol. The bootloader manages the firmware
image. If the bootloader detects corruption in the firmware image, it invokes the
firmware transfer protocol. The firmware transfer protocol uses software advert-
isements to exchange firmware image information between nodes. The firmware
transfer protocol transfers full binary images between nodes. The parameter trans-
fer protocol is used by the Autoconfigurator service to transfer firmware parameters
to individual nodes.

Individual firmware parameters are combined into a parameter stream, which is
processed by a parameter handler interface in the receiving node. The single-hop
version of the parameter transfer protocol is used for nodes that have not received
their parameters at all. The multihop version of the parameter transfer protocol is
used to transfer updated parameters to nodes that already are a part of a deployed
WSN.
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Figure 6.1: Overview of firmware management in TUTWSN. Server side components are
highlighted in blue while the node side components are highlighted in orange.

6.2 Firmware Management User Interface

The firmware management user interface is used to add, remove and modify the
firmware images and firmware parameters.

A prototype of the firmware management user interface was created in Java and
allows a WSN operator to specify the firmware parameters, as shown in Figure 6.2.
The created parameters are transferred to the target node through a TUTWSN
Gateway and a gateway node using the single-hop parameter transfer protocol.
This approach bypasses the firmware management database and the Autoconfig-
urator service. A WSN operator may also use the prototype user interface to detect
uninitialized nodes.

6.3 Firmware Management Database

SNAP stores configuration information about nodes, WSNs and users as objects in
a configuration database. The structure of the configuration database makes it easy
to store firmware parameters in the existing objects. The primary classes of the
configuration database are shown in Figure 6.3.

In the configuration database, the Network object contains WSN-specific para-
meters, such as the network channel of the TUTWSN MAC layer. Each network
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Figure 6.2: A prototype of the firmware management user interface that can be used for
manually creating and transferring firmware parameters.
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Figure 6.3: Firmware management information in the SNAP configuration database.

contains multiple nodes that are stored in Node objects with other node-specific
information. These logical nodes are mapped to physical node devices with the
Device objects. Each physical device is of a certain platform type and contains
sensors and actuators. Platform information about a particular node, such as the
platform version, is stored in the Platform object. Sensors and actuators are rep-
resented with SensorDeviceComponent and ActuatorDeviceComponent objects that
are inherited from the DeviceComponent object. Each Platform object is linked to
multiple DeviceComponents to indicate what sensors and actuators the platform
supports. Each Device object is also linked to those DeviceComponents that are
equipped to that physical sensor.

Adding support for storing firmware images requires defining two new tables.
The Firmware object contains information about a particular firmware image: the
automatically generated version number, the version control system version number,
the name, the description, and a timestamp of when the firmware image was created.
The actual binary data of the firmware image is divided into multiple FirmwareData
objects. Each FirmwareData object contains a section of the firmware image and a
memory address that indicates where that section of the firmware image belongs in
the nodes program memory.

Firmware and Platform objects are linked in order to indicate what Platforms
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the Firmware object supports. Each Firmware can be mapped to multiple Network.
This allows operators to use an identical firmware image in multiple WSNs, which
makes it faster to move node from one network to another if they use the same
firmware. Mapping one firmware image to multiple WSNs also helps to keep the
number of different firmware images to a minimum.

6.4 Disseminating Firmware Images

This section describes how a new firmware image can be disseminated into a WSN
using five steps. First, source code files are compiled to create a firmware image that
supports the requirements of the WSN and is compatible with the deployed nodes.
Second, the firmware image is uploaded to a database and information about the
firmware image is transferred to the gateway nodes of the WSN. Third, gateway
nodes advertise the firmware to the nodes inside the WSN. Fourth, gateway nodes
fetch the firmware image from the database and transfer it to the neighboring nodes,
which then disseminate the image further into the WSN. And finally, the bootloader
is used to make sure that only successfully received firmware images are executed.

6.4.1 Creating a Firmware Image

Producing a working firmware image requires the source code files to be compiled and
the resulting object files to be linked together to form a file that can be executed
by the microcontroller of a node. Each firmware image also contains descriptive
information: verification values for validating the integrity of the firmware image,
software version numbering, platform compatibility information and descriptive text.
This information is monitored during the lifetime of a node to keep track of the
different firmware images and their features. In order to make uploading firmware
images in the database faster for the developer, the TUTWSN compilation process
automatically creates an XML file that describes the generated firmware image, as
shown in Program 6.1.

6.4.2 Injecting Firmware Images with Autoconfigurator

There are three ways of injecting a new firmware into TUTWSN nodes. First, a
WSN operator may manually update the firmware image of a single node and then
use this node to disseminate the new firmware image to the rest of the network.
This is not always applicable, as it requires the operator to have access to the WSN
in order to update one of the nodes.

Second, a WSN operator may use a special cloner node that is programmed with
the new firmware image which the cloner can wirelessly transfer to a receiving node.
The cloner node is useful in situations, where physical access to the WSN installation
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1 <?xml version=" 1 .0 " encoding="UTF−8" ?>
2 <firmware date="2010−01−13 16 :50 ">
3
4 <!−− Network in format ion −−>
5 <network radio_address="ADDDCCBBAA"
6 radio_channel="10" />
7
8 <!−− The ac tua l f i l e con ta in ing the firmware image −−>
9 <image f i l ename=" firmware . hex"

10 md5_checksum=" c753977bca6 f76a8c6 fe503 f38ce4eb2 " />
11
12 <!−− Sof tware in format ion −−>
13 <so f tware sw_version="33000"
14 svn_version="5402M"
15 boot loader="yes "
16 autocon f i g="yes " />
17
18 <!−− Hardware/ p la t form informat ion −−>
19 <hardware t a r g e t="headnode"
20 plat form=" simple "
21 plat form_vers ion="v2c"
22 hw_version="25856" />
23
24 </ firmware>

Program 6.1: An XML document for a firmware image that has been automatically created
during compilation

is possible but moving installed nodes or bringing programming equipment is difficult
or expensive.

Third, a WSN operator may use one or more gateway nodes to inject the firmware
image into the WSN, as shown in Figure 6.4. This is done by using the firmware
management user interface to send a firmware image and the firmware description as
an XML document to the Autoconfigurator service, which parses the XML document
and stores the image in the firmware management database. The operator can then
ask the Autoconfigurator service to fetch a list of the stored firmware images and
transmit this list to the gateway nodes, which will advertise the listed firmware
images into the WSN. Using gateway nodes to disseminate firmware images is more
suitable for real-world deployments, as the firmware image can be disseminated
without manual programming or physical access to the WSN. Furthermore, this
will significantly speed up the dissemination speed of the firmware images as the
firmware image can be injected into the WSN from multiple points at once.
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Figure 6.4: Storing and advertising a firmware image.

6.4.3 Software Advertisements in the Firmware Image Trans-
fer Protocol

The firmware image transfer protocol uses software advertisements as a way for
nodes to share information about their firmware image. Software advertisements
can have a significant effect on the performance of a dissemination protocol. Too
frequent advertisements create unnecessary overhead and increase energy consump-
tion. Conversely, infrequent advertisements can limit the propagation speed of a
firmware image. There are two mechanisms for performing software advertisements
with TUTWSN.

First, nodes advertise their firmware images periodically on a predefined advert-
isement channel, as shown in Figure 6.5. After each advertisement the source listens
for a reply. The parameter Ta adjusts the interval between these idle advertise-
ments. Increasing the frequency of idle advertisements also increases the energy
consumption in the source but decreases the average listening time of the receivers.

Idle advertisements allow nodes to perform code acquisition even if their protocol
stacks might otherwise be incompatible. Furthermore, if a node encounters a fatal
problem while reprogramming, it may use the idle advertisements to find a new
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Figure 6.5: Example of idle advertisements. Node A periodically transmits advertisements
with interval Ta. At tstartup, node B powers up, scans the advertisement channel and
receives an advertisement from node A. Node B then fetches the new firmware image from
node A using the channel of Node A.

source for image acquisition.
When integrating firmware management into TUTWSN, the TUTWSN network

channel is used as the advertisement channel, so that nodes can receive idle advert-
isements while they are scanning for nearby clusters.

Second, software versions are compared when a node connects with its neighbors,
as shown in Figure 6.6. Depending on the WSN architecture, this exchange of ver-
sion information can be performed either on the MAC or the routing layer. With
TUTWSN, it is performed when nodes associate on the MAC layer. Adding the
version information into the association protocol adds a small overhead, but signi-
ficantly improves the propagation speed of new firmware images without requiring
major changes.

Code acquisition begins automatically when a node detects that one of its neigh-
bors has a new version of a compatible firmware image. The node with a lower
version number sends a software request and the other node responds with a soft-
ware confirmation. After this, the nodes invoke the firmware transfer protocol. It
is important to note that the software advertisements are exchanged on a hop-by-
hop basis between neighbors without flooding the advertisements further into the
network. If a network contains multiple nodes with different platform identification
numbers, it may cause network segmentation.

6.4.4 Firmware Transfer Protocol

The firmware transfer protocol is responsible for reliably transferring a complete
firmware image from one node to another. Typical firmware transfer protocol store
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Figure 6.6: a) A node enters the network and discovers a neighbor. b) Nodes use software
advertisements to exchange information about their firmware images and decide if they
want to perform a transfer. c) Nodes use the firmware transfer protocol to update the
node that has the old version. d) Nodes reboot, discover new neighbors and disseminate
the new firmware image further.

firmware images in a temporary memory device [48]. But as TUTWSN nodes do not
have an external memory for storing firmware images, the firmware transfer protocol
must overwrite the main WSN stack as soon as the firmware transfer begins. Thus,
the protocol stack of the firmware transfer protocol and the main TUTWSN stack
are separated, as shown in Figure 6.7.

The separation of the memory sections and the lack of the external memory mean
that the firmware transfer protocol cannot update itself. Therefore, all services used
by the firmware transfer protocol are stored within this memory segment. On the
other hand, the number of included services must be kept to a minimum as they
increase the size of the memory segment and potentially introduce program errors.
Consequently, the firmware transfer stack includes only the necessary modules to
perform the firmware image transfer and the program memory rewrite. The firm-
ware transfer protocol and the main program are never executed concurrently. The
firmware transfer protocol can therefore utilize data memory segments during trans-
fer that are normally reserved for the main program. Overlaying the data memory
significantly reduces the data memory requirements of the firmware transfer pro-
tocol. Despite the overlaying, a small amount of dedicated memory is needed for
passing information between the main program and the firmware transfer protocol.

The firmware transfer protocol follows the general client-server architecture. The
receiver of the firmware image acts as a client, while the sender acts as a server.
Communication between the client and the server is performed at a channel selected
by the server, which is transmitted within the software advertisements. Servers may
choose to use a single network-wide dedicated channel for the image transfers or
they may use an appropriate channel selection algorithm to choose channels that
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Figure 6.7: The logical structure and the memory layout of the firmware image transfer pro-
tocol and the TUTWSN stack. The firmware transfer protocol is a separate protocol stack
that shares version information with the network layer in the WSN stack. The program
memory contains a separate section for firmware transfer protocol and the main firmware
image. The firmware parameter transfer protocol is also stored within the firmware image.

are not being used. Choosing different channels is preferred, as this lowers the
change of collisions with nearby image transfers or normal WSN communications.
With TUTWSN, the software advertisements use the cluster channel of the MAC
layer as the server channel to minimize the number of collisions between concurrent
program image transfers.

The client begins by requesting the header of the firmware image, as shown in
Figure 6.8. Once the header is received, the client marks the current header invalid
and requests the contents of the firmware image in segments. After each segment
the client immediately writes the data to the program memory, thus invalidating
the previous firmware image. After the whole firmware image is received, the client
validates the image by calculating the message authentication code of the received
firmware image and comparing it to the one in the header. If the calculated code
matches the one received in the header, the header is marked valid. Otherwise, the
header remains marked invalid. After the transfer the client and the server reboot.

6.4.5 Bootloader

Information about a firmware image is stored in a header, which is placed at the
beginning of the firmware image in the program memory of the node, as shown
in Table 6.1. First, firmware images are identified by a combination of a 16-bit
platform identification number and a 16-bit software version number. The platform
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Figure 6.8: The firmware transfer protocol first requests and validates the header, then
requests the firmware image in segments and finally validates the complete image.

identification number is used to limit the transfer of firmware images between in-
compatible nodes, while the version number is used to identify different versions of
the same firmware. An 8-bit hash value is calculated from the identifiers in order to
save bandwidth during image transfers. Firmware images are signed with a Rivest
Cipher 4 message authentication code, which allows the receiver to detect errors
in the received firmware image and validate that the image is from an authorized
source, as the authentication key is kept secred. The distribution enabled bit con-
trols whether or not the node is allowed to advertise its firmware image. This bit
is always enabled in end-user deployments but during testing it can be disabled to
easily limit the dissemination of firmware images that contain untested code. The
header contains a valid bit that indicates whether or not the firmware image has
been successfully received and validated and can be safely executed.

When a TUTWSN node powers up and begins executing code, it first executes a
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Figure 6.9: During startup the bootloader program checks that the firmware image is valid.
If the image is valid, it is then executed. The firmware transfer protocol is invoked if the
firmware image is invalid or if a software advertisement is received.

program called the bootloader, as shown in Figure 6.9. The bootloader is respons-
ible for verifying that the main firmware image is a valid executable. This is done
by checking the state of the valid bit in the header of the firmware image. If the
image is marked valid, the bootloader immediately begins executing the WSN stack
inside the firmware image from a predefined memory location. When software ad-
vertisements for a new firmware image are received, the stack may then invoke the
firmware transfer protocol to update itself. If the valid bit is set to an invalid state,
the bootloader begins scanning the TUTWSN network channel to detect idle ad-
vertisements. Once an advertisement for a compatible firmware image is received,
the bootloader begins executing the firmware transfer protocol.

Table 6.1: Contents of the header in a firmware image.

Field Length (bits)

Hardware identifier 16
Software version 16
Hash 8
Message authentication code 32
Distribution enabled 1
Image valid 1
Total 74
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Figure 6.10: Firmware parameters from different modules are combined to form a para-
meter stream.

6.5 Transferring Firmware Parameters

In addition to transferring firmware images, TUTWSN supports configuring them
during runtime. Configuring three steps.

First, the Autoconfigurator service fetches the parameters of a particular node
from the firmware management database and compresses them into a parameter
stream.

Second, this parameter stream transferred to the target node using either the
single-hop or the multihop parameter transfer protocol. If the node has not been
configured at all, the parameter stream is transferred by the single-hop parameter
transfer protocol. On the other hand, if the node is already deployed and a mem-
ber of a WSN, the parameter stream is transferred over the existing TUTWSN
Node API using the multi-hop parameter transfer protocol. Once the node receives
the parameters, it uses the parameter handler interface to store the parameters in
persistent memory and reconfigure itself accordingly.

6.5.1 Firmware Parameters

Each firmware parameter of a node belongs to a particular protocol layer, device
drive, library or application module. These modules can define parameter sets that
contain the firmware parameters that module requires, as shown in Figure 6.10.
Multiple parameter sets from different modules are combined to form a parameter
stream which contains all the firmware parameters the node requires.

Each parameter set is identified with a type field that indicates which module
owns the module parameters inside the set. Each set also contains a length field
that indicates the size of the payload section of the parameter set. Using a variable
length payload section and an explicit length field allows modules to encapsulate the
firmware parameters. Thus, parameter sets can be stored, reordered and transferred
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without knowing the exact contents of the payload section. Furthermore, new para-
meter sets and firmware parameters can easily be added without requiring changes
in other modules.

6.5.2 Single-hop Parameter Transfer Protocol

When a node powers up for the first time, it is in an uninitialized state because it has
not yet received its firmware parameters. The node cannot execute the TUTWSN
protocol stack as it does not know its node ID or the network parameters. A single-
hop parameter transfer protocol was designed so that these uninitialized nodes could
receive their initial firmware parameters during the manufacturing or the deployment
phase. The single-hop transfer protocol uses the same serial number that is used to
identify the physical hardware to address the nodes. Nodes can only be identified
if they already know their serial number: nodes can use a hardware serial number
memory chip or each microcontroller can be factory programmed with firmware that
contains the serial number.

If a node does not know its serial number, it must be identified manually by an
operator using a user interface, as shown in Figure 6.11. After powering up, an
uninitialized node begins periodically broadcasting requests on a predefined radio
channel, which is called the configuration channel, until it receives a reply.

As broadcasts from different nodes cannot be uniquely identified, the operator
must make sure that only one node is powered up at the same time. The operator
then commands a gateway node to listen to the configuration channel. Once the
gateway node hears a request, it forwards it to the Autoconfigurator service, which
shows a dialog to the operator on the firmware management user interface. The
operator then types in the serial number of the node. The operator may now either
manually type in the firmware parameters of the node or the Autoconfigurator may
automatically connect to the SNAP configuration database and fetch the predefined
firmware parameters. Once the firmware parameters are fetched, the Autoconfig-
urator transforms them into a parameter stream and transfers them to the node.
Upon receiving and verifying the parameters, the node acknowledges the received
parameter stream.

If each node knows its serial number, transferring the firmware parameters can
be automated, as shown in Figure 6.12. This allows preprogrammed nodes to be
directly shipped from the manufacturer to the WSN end-user and configured on-site.
Instead of manually configuring each node individually, the nodes automatically
begin broadcasting requests.

As the nodes know their serial number, the single-hop parameter transfer protocol
can now identify individual nodes. The Autoconfigurator service periodically asks
each gateway node in every WSN to listen for the configuration channel and notify
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Figure 6.11: Transferring parameters to a node without a serial number requires that an
operator identifies the node.

it if any node is sending requests for firmware parameters. If a request is received,
the Autoconfigurator service reads the serial number of the request and fetches
the firmware parameters from the firmware management database. The firmware
parameters are then transmitted to the node.

Whether or not a node knows its serial number, the communication protocol
for transferring parameter streams between a node and a gateway node remains
the same. The node begins the transfer by sending a request PDU, as shown in
Table 6.2.

The source field indicates if the packet is from a node or from a gateway node.
In this case, the source field is set to zero to indicate that the PDU was sent by a
node. An alternating bit protocol is used as the sequence number. Therefore, the
node chooses an initial value for the sequence bit, which is then inverted every time
a reply has been successfully received. The PDU type field indicates if the PDU is
a new request or a reply to a PDU.

The source address is the serial number of the node. If the node does not know its
serial number, the address field is set to zero. Finally, the packet contains a version
number to indicate what version of the simple parameter transfer protocol the node
supports.

The gateway node responds with a parameter stream reply PDU, as shown in
Table 6.3. In this case, the source field indicates that the packet originates from a
gateway node. The gateway node replies to the request using the same sequence
number it received in the request PDU. The reply PDU has a maximum payload
length of 20 bytes. If the transferred parameter stream is longer, it must be sent in
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Figure 6.12: Transferring parameters to a node with a serial number can be automated
with SNAP and the Autoconfigurator service.

multiple reply PDUs. The end of stream indicator is used to mark whether or not
the parameter stream ends in this PDU.

As the parameter stream might not need the whole payload section, the length of
the payload is explicitly marked in the PDU. The target address field is taken from
the request PDU to make sure that only the intended recipient of the parameter
stream will receive the payload. When filling up the payload section with parameter
sets, the gateway node only stores full parameter sets without splitting sets into
smaller parts. Even though this often leaves parts of the payload section unused, it
makes it easier for the node to process the payload. Finally, the payload is validated
with a 16-bit CRC checksum.

An example transfer of a 25 byte long parameter stream is shown in Figure 6.13.
The node begins by sending a request packet with a sequence number k. The

Table 6.2: Contents of a parameter stream request PDU.

Field Length (bits)

Source ( Node:0, Gateway:1 ) 1
Sequence 1
PDU Type ( Request:0, Reply:1 ) 1
Source address 32
Protocol version 8
Total 48
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Gateway nodeNode

Message("Source:GATEWAY, Seq:k, EOF:false, Length:18, Target:123, CRC:0xFED, payload[18]")2: 

Message("Source:GATEWAY, Seq:k+1, EOF:true, Length:5, Target:123, CRC:0xA02, payload[5]")5: 

Message("Source:NODE, Seq:k, Type:REQ, Addr:123, Ver:2")1: 

CheckCRC("crc, payload[18]")3: 

Message("Source:NODE, Seq:k+1, Type:REPL, Addr:123, Ver:2")4: 

CheckCRC("crc, payload[5]")6: 

Message("Source:NODE, Seq:k, Type:REPL, Addr:123, Ver:2")7: 

Figure 6.13: An example transfer of a parameter stream. The parameter stream does not
fit into a single PDU and, therefore, it is sent in two parts.

gateway node receives the request and replies with the same sequence number. As
the whole parameter stream does not fit into a single PDU, the gateway node splits
it into two parts and marks the first PDU with the end of stream bit set to false.
The node receives the reply, verifies the CRC checksum of the payload section and
processes the payload. Then, the node sends a reply with a sequence number k + 1

to indicate that the previous PDU was successfully received. As the end of stream
bit was set to false, the node knows to wait for additional PDUs. The gateway node
then sends the rest of the parameter stream and sets the end of stream bit to true.
Finally, the node receives the final reply, verifies it and sends the acknowledgement
to the gateway node with the sequence number k.

Table 6.3: Contents of a parameter stream reply PDU.

Field Length (bits)

Source ( Node:0, Gateway:1 ) 1
Sequence 1
End of stream indicator 1
Payload length 5
Target address 32
CRC checksum of the payload 16
Parameter stream payload 160
Total 216
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1 /∗
2 ∗ Set d e f a u l t v a l u e s f o r parameter s e t
3 ∗ and c l e a r memory .
4 ∗/
5 void in i t_parameters (void ) ;
6
7 /∗
8 ∗ Take the firmware parameters from the argument
9 ∗ param_set and s t o r e them in the EEPROM memory .

10 ∗/
11 void store_parameters ( ParameterSet_t∗ param_set ) ;
12
13 /∗
14 ∗ Read the firmware parameters from EEPROM and
15 ∗ process them .
16 ∗/
17 void enable_parameters (void ) ;
18
19 /∗
20 ∗ Ca l cu l a t e the CRC checksum over the firmware
21 ∗ parameters in the EEPROM.
22 ∗/
23 void ca l cu l a t e_cr c ( uint16_t∗ c rc ) ;

Program 6.2: Interface functions for the firmware parameter handlers

6.5.3 Multihop Parameter Transfer Protocol

As the single-hop parameter transfer protocol is designed for uninitialized nodes
and does not support routing, it does not meet the requirements for transferring
updated firmware parameters to nodes that have been already deployed. Instead,
the TUTWSN Node API was used to implement a multihop version of the para-
meter transfer protocol. Compared to the single-hop protocol, the downside of the
multihop version is that it offers a smaller payload size of 16 bytes and that it only
supports updating existing firmware parameters. Otherwise, it functions in a similar
manner to the single-hop parameter transfer protocol.

6.5.4 Firmware Parameter Handler Interface

Once a node has received one or more parameter sets, it must have methods for pro-
cessing, storing and using the received firmware parameters. Program 6.2 presents
a parameter handler interface, which program modules may implement if they wish
to receive firmware parameters.

When a node powers up, as shown in Figure 6.14, it calls the calculate_crc
-method for each module, which causes the modules to read their stored firmware
parameters from the EEPROM memory and to calculate a CRC checksum from
them. This value is compared to a previously stored CRC checksum. If the CRC cal-
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Figure 6.14: Processing parameters in a node

culations match, the enable_parameters-method is called for each module, which
causes them to read their firmware parameters and stores them in local variables.
Then, the execution of the TUTWSN protocol stack is started. Conversely, if the
CRC calculation results do not match due to memory corruption or if the push but-
ton of the node is pressed during startup, the node enters the single-hop parameter
transfer protocol loop.

There may be a large number of modules that implement the parameter handler
interface. Not all of these modules are always active nor do they always need their
parameters. A motion detection application may implement the parameter handler
interface and define many firmware parameters that control its function but only a
few nodes in a WSN might use this application. In order to minimize the amount of
parameters transferred, the handler interface has a method for disabling modules.
When a node receives parameters, it first checks whether or not the firmware para-
meters have been initialized. If not, the init_parameters-method is called. This
causes each module to revert back to default values for each firmware parameter.
Then, only those parameter sets that that particular node requires are transferred
while the rest of the firmware parameters stay in their default or disabled state.

During the parameter transfer, a group of parameter sets is received at once. As
each parameter set contains the type field, it can be dispatched to the correct module
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in a straightforward way using the store_parameter-method. The receiving module
will parse the firmware parameters from the set and store them in the EEPROM
memory. After the whole parameter stream has been received, the CRC calculation
is performed and the new checksum value of the firmware parameters is stored in
the EEPROM memory. Finally, the enable_parameters-method is called again
and the execution of the TUTWSN protocol stack is started.
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7. EVALUATION OF FIRMWARE

MANAGEMENT

This chapter presents the evaluation of firmware management with TUTWSN. First,
the implementation details, such as memory usage and the implemented parameter
sets, are presented. Second, the firmware transfer protocol is evaluated in four
different test scenarios ranging from link reliability measurements to updating a
deployed WSN. Third, the use of firmware management ing managing a large scale
WSN is evaluated by using a large campus WSN, where firmware management has
been extensively used to both update and configure the nodes. The use and benefits
of firmware management in the manufacturing of TUTWSN nodes is evaluated.

7.1 Implementing Firmware Management

The implementation of firmware management does not yet cover the whole TUTWSN
infrastructure from end to end. Instead, the implementation effort has been direc-
ted at the firmware transfer protocol and the single-hop parameter transfer protocol.
Implementing these two firmware management protocols allows verifying and test-
ing the core features and evaluating their usability in different scenarios. Once the
evaluation phase is complete, the implementation will focus on adding support for
firmware management in SNAP and implementing the multi-hop parameter transfer
protocol over the Node API layer.

The firmware transfer protocol and the single-hop parameter transfer protocol
have been integrated into the main TUTWSN protocol stack. In total, the imple-
mentation took a little over four thousand lines of C source code files, as shown in
Table 7.1. The program memory consumption of the firmware transfer protocol and
the single-hop parameter transfer protocol are 4130 and 2330 bytes, respectively.
The implementation of firmware management corresponds to a total of 6460 bytes
or 4.9% of the 128 kilobytes of program memory, as illustrated in Figure 7.1.
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Table 7.1: Lines of code and comments in the implemented protocols. The single-hop
protocol is implemented separately for gateway nodes and nodes while the firmware transfer
stack implementation is identical for both node types.

Component Lines of Lines of
code comments

Single-hop protocol, node 402 193
Single-hop protocol, gateway node 445 130
Single-hop protocol, common code 151 121
Firmware transfer stack 2321 783
Total 3319 1227

Single-hop transfer protocol, 1.8%

Operating system, 2.9%

Firmware transfer stack, 3.2%

Free, 1.2%

HW, 14.9%

Management, 11.2%

Misc, 8.1%

MAC, 26.7%

Routing, 11.3%

Application, 18.8%

0 %

25 %

50 %

75 %

100 %

Protocol layer

Figure 7.1: ROM consumption. 128 kilobytes of program memory is divided between the
protocol layers. The significant portion of the MAC layer is due to the complexity of the
synchronized FTDMA algorithm.
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Table 7.2: Implemented parameter sets and firmware parameters.

Parameter set Firmware Length Description
parameter (bytes)

Network channel 1 Network channel of the MAC
layer.

phy_address 5 Radio address of the physical
layer.

Node Management role 1 Node role.
node_id 3 Node ID of node.

Node API applications 8 64 bits long bit array of the en-
abled applications.

Motion application mot_devices 1 8 bits long bit array of enabled
motion detection devices.

Analog application adc_devices 1 8 bits long bit array of enabled
analog input devices.

Hardware serial_number 4 Serial number of the device.

The implemented firmware transfer protocol supports software advertisements
and disseminating firmware images within a multihopWSN. As the database support
through SNAP has not yet been implemented, the firmware transfer protocol cannot
be used remotely through gateway nodes. Instead, the current supported method
for injecting a new firmware image consists of manually programming a single node
with a new image or using a cloner node to transfer a firmware image from one node
to another.

Support for the single-hop parameter transfer protocol was implemented in both
gateway and nodes and in the TUTWSN Gateway. Several firmware parameters and
parameter sets were implemented for the protocol layers of the TUTWSN stack, as
shown in Table 7.2.

The channel and phy_address parameters allows nodes to be moved from one
WSN to another, while the node_id parameter allows changing the Node ID of a
node and replacing a broken node by reusing the same Node ID.

Higher level parameters applications, mot_devices and adc_devices control
what device drivers and applications are enabled in a node. A serial_number
parameter was created so that a serial number could be easily given to uninitialized
nodes.
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Table 7.3: Firmware transfer test cases.

Test case Number of Purpose
nodes

#1 2 Measure the the firmware image transfer time between two
nodes.

#2 2 Measure how the distance between nodes and the antenna
orientation affects the reliability of the radio link.

#3 25 Measure how effectively a firmware image spreads in a
dense WSN.

#4 25 Measure how effectively a firmware image spreads in a
sparse WSN.

7.2 Firmware Transfer Protocol Performance Evaluation

The performance evaluation of the firmware transfer protocol was done in four test
cases using 2.4 GHz TUTWSN nodes, as shown in Table 7.3. First, the transfer
time of a firmware image over a single hop was measured in test case #1. Second,
the reliability of the firmware transfer as a function of the radio link length was
measured in test case #2. Third, the update time for a WSN of 25 closely placed
nodes was measured in test case #3. In test case #4, the same 25 node WSN was
deployed in an office environment and the update time was measured.

The results of the test case #1 are shown in Table 7.4. The time to manually
program a node with a Microchip ICD2 device, or Tprog, is included for reference.
The firmware image was transferred in 4880 packets which each contained 27 bytes
of payload. By calculating a sum of the individual times

Tupdate = Tadvertise + Ttransfer + Tverify = 88.0s,

we can estimate the minimum time it will take for a node to notice a new firmware
image, transfer the image and verify it.

In test case #2, a firmware image was transferred between two nodes. The tests
were done using channels 41 and 101, which correspond to frequencies of 2.441 GHz
and 2.501 GHz, respectively. These frequencies were chosen so that the interference
caused by WLAN access points that operate near channel 41 could be observed.
Channel 101 is on a higher frequency that did not contain interference. Both nodes
were within a line of sight of each other and rotated so that they either faced each
other straight on or were side to side, as shown in Figure 7.2. This was done in
order to see how the orientation of the node and the antenna affects the radio link
reliability and what was the worst case performance, as nodes in a typical deployment
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Figure 7.2: Test setup for test case #2.

are installed in an ad hoc manner without considering the antenna orientation. The
reliability of the radio link was calculated as the ratio between the number of packets
received by the number of packets sent.

Results of test case #2 are shown in Figure 7.3. When the nodes were placed head
on, the reliability of the radio link was high and only a few packets had to be resent.
Reliability of channel 41 dropped when the distance approached 15 meters. This
was due to a nearby WLAN access point, that was active near the same channel.
When the nodes were placed side to side, the reliability of the radio link suffered
and the maximum reliable transfer distance dropped to around 20 meters on both
channel.

For test case #3, a small, high density WSN of 25 nodes was deployed in an office
environment. The nodes were placed in a five times five matrix where the distance
between nodes was approximately 20 centimeters. Each node executed a standard
TUTWSN protocol stack and took temperature and luminance measurements every
few minutes. The test case was started by updating one of the nodes with a cloner
node. The purpose of this test case was to see how the software advertisement
protocol handled a dense active WSN, where each node could hear many neighboring
nodes. The test was repeated twice.

Table 7.4: Results of test case #1.

Symbol Time (s) Description

Tprog 69.0 Manually programming a node.
Ttransfer 51.0 Transfer time for a firmware image between two nodes in

optimal conditions.
Tverify 24.3 Calculating the RC4 verification checksum for a received

firmware image.
Tadvertise 12.7 Average time to receive an advertisement from a updated

node.
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Figure 7.3: Reliability of individual packets in a firmware transfer as a function of distance
in test case #2. Transfers on channel 41 were disturbed by interference from a nearby
WLAN access point.

Results of test case #3 are shown in Table 7.5. During both measurements, over
7 concurrent updates were observed in the WSN. An exact reason for the few failed
transfers was not discovered, but the high amount of firmware transfer activity might
have caused interference. When a transfer failed, the bootloader correctly identified
that the firmware image was corrupted and it restarted the firmware transfer. In
the end, all the nodes were successfully updated.

When a node is updated, there is a small delay before the updated node begins
spreading its firmware image further. This software advertisement latency contains
the time it takes for the node to restart after receiving a firmware image, search
and associate with its neighbors and exchange version information about its new
firmware image.

In order to evaluate the latency of the software advertisements, the ideal update
procedure was simulated, as shown in Figure 7.4. The results show that an ideal
update process, where the advertisement latency is zero and the nodes immediately
know when an update is available, takes approximately 340 seconds. When the ideal

Table 7.5: Results of test case #3.

Measurement type Measurement #1 Measurement #2

Maximum simultaneous updates 8 7
Failed and restarted updates 4 1
Total time for update 611 seconds 849 seconds
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Figure 7.4: Updating a dense WSN of 25 nodes in test case #3. Time Tadvert is the
advertisement latency, which indicates how long it takes for an updated node to advertise
its new firmware to neighboring nodes.

process is adjusted to include an advertisement latency of 35 seconds, the simulated
performance is almost identical to the performance of the observed measurements.

In both measurements, the whole WSN was updated in about 10 minutes. In
the second measurement one of the nodes took an unusual long time to update.
This problem is inherent to the way the WSN was updated with a cloner node.
Active software advertisements are sent when nodes associate with each other. Nodes
always try to associate towards other nodes that are closer to the network sink.
Therefore, if a node was associated directly with the network sink, it might not
notice if an updated firmware image is spreading in the rest of the network. The
node would only notice the new firmware image once it either performed a network
scan to find new neighbors and received an idle advertisement, or if another, already
updated, node associated with it. This delay would not occur, if the firmware image
would be injected from the sink itself.

In test case #4, a 25 node WSN was sparsely deployed in an office environment,
as shown in Figure 7.5. The purpose of this test was to see how a firmware im-
age would propagate through a sparse WSN. Most of the WSN was updated in 20
minutes while the last two nodes were updated at 25 and 26 minutes, respectively.
While the firmware image was spreading through the WSN, some of the nodes at-
tempted to fetch the firmware image from updated nodes that were far away even
when other nearby nodes had already been updated. This caused the transfer time
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Figure 7.5: Updating a sparse WSN of 25 nodes in test cast #4.

of the firmware image to increase, as the reliability of the long radio link was low and
packets had to be resent. This behavior is due to the aggressive nature of the current
advertisement algorithm which causes nodes to fetch a firmware image immediately
when they receive an advertisement for a new compatible image. The measure-
ment data suggests that a more careful advertisement algorithm that considers link
reliability might prove to be faster.

Based on these four tests, the implemented firmware management components
met the stated requirements for firmware image transfers. Although a small number
of firmware transfers failed at first, the bootloader made sure that the nodes restarted
the transfers.

7.3 Usage of Firmware Management in a Campus-wide WSN

A large WSN of 268 nodes has been deployed at the Tampere University of Techno-
logy campus and it has been in active use since 2007. This campus WSN is used to
both monitor the indoor climate at the university and also to provide a real WSN
for students to use on WSN courses. The campus WSN contains several different
types of nodes, including mobile nodes that students carry with them, as shown in
Table 7.6. The stationary nodes are installed in public locations around six buildings
on the campus grounds, as shown in Figure 7.6.

In addition to being one of the first WSN to be used for teaching, the campus
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Table 7.6: Node types in the campus WSN.

Node type Sensors Number of
nodes

Gateway node temperature, luminance 7
Normal node temperature, luminance 200
Carbon dioxide node temperature, luminance, carbon 3

dioxide
Surveillance node temperature, luminance, infra-red 10
Humidity node temperature, luminance, humidity 2
Humidity and surveillance temperature, luminance, humidity, 7

infra-red
Mobile node temperature, luminance, 39

acceleration
Total 268

WSN is also the first large scale deployment to use firmware management. Each
node is programmed with an identical firmware image that supports updating and
configuring the firmware image. Replacing broken nodes or moving sensors from
one node to another only requires a course assistant to update the configuration
of a node using the prototype firmware management user interface. As the multi-
hop parameter transfer protocol has not yet been implemented, this has required
the course assistant to physically move the target sensor near a gateway node to
transfer the parameters. Regardless of this limitation, maintenance operations on
the campus WSN have already been significantly faster than on previous, manually
programmed, WSN deployments.

As the campus WSN supports updating firmware images, it is a suitable can-
didate for large scale testing of firmware image transfers. A firmware image was
injected into the campus WSN from the fourth floor of the Tietotalo computer
science building.

The updated firmware image first spread through the four floors of the Tietotalo
building and then through the rest of the WSN in five hours, as shown in Figure 7.7.
As the firmware image was injected from a single point using a cloner node, the
propagation speed suffered from the same limitations that were observed in test
case #3 in the previous section.

The propagation of the firmware image stopped for 30 minutes between the
Rakennustalo civil engineering building and the Main building, where two adja-
cent nodes where routing data in opposite directions and did not associate with
each other. Once the nodes exchanged advertisements, the update spread through
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Figure 7.6: Map of the campus at TUT.

the rest of the WSN in little over an hour.
Regardless of the propagation delay, updating the campus WSN took significantly

less time than manually updating the whole WSN, which can take several days.
Furthermore, once firmware images can be injected through gateway nodes, updating
a WSN like the campus WSN will happen in a fraction of the current update time.

7.4 Manufacturing Nodes with Firmware Management

In addition to updating and managing existing WSN, using firmware management in
the manufacturing and testing of nodes was also evaluated. Previously, the reliability
of assembled TUTWSN nodes has fluctuated from batch to batch. As the assembled
nodes were shipped from the manufacturing site and stored before testing, problems
in the soldering or the placing of components would surface weeks or months after
the nodes had been assembled.

Since the fall of 2009, manufactured TUTWSN nodes have been built using pre-
programmed microcontrollers. Each node contains an identical firmware image that
can be configured at the manufacturing site using the single-hop parameter transfer
protocol. The manufacturer has been supplied with the prototype firmware man-
agement user interface that can be used to quickly transfer predefined firmware
parameters and a serial number to each node, as shown in Figure 7.8.
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Figure 7.8: Node being configured wirelessly at the manufacturing site with the prototype
firmware management user interface and the single-hop parameter transfer protocol.
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The user interface reports whether or not the node successfully received the para-
meters. Therefore, the person operating the user interface immediately knows if
there has been a manufacturing fault in the node. Although this approach does not
test the equipped sensors, it reliably tests the power generation subsystem, the mi-
crocontroller and the radio of the node. Since the wireless configuring of nodes was
started, not a single faulty TUTWSN node has been shipped from the manufacturer.



69

8. CONCLUSIONS

This thesis presents the design, the implementation and the experimental measure-
ments of firmware management for WSNs. It is designed according to the analyzed
requirements of manufacturing and deployments of WSNs and to the inherent re-
strictions of low-energy, resource-constrained WSNs.

Firmware management was designed and implemented in a state of the art WSN
architecture. Firmware management contains three server side components and
three node side components. The firmware management user interface, the Auto-
configurator service and the database storage for firmware images and parameters
form the server side components while the firmware parameter transfer protocols,
the firmware image transfer protocol and the bootloader form the node side compon-
ents. Firmware management allows remotely disseminating firmware images from
a database into deployed WSNs without requiring physical access. Firmware man-
agement also allows dynamically altering the parameters of individual nodes, for
example, for moving nodes from one WSN to another.

The node side firmware management components have been implemented and
tested using TUTWSN node platforms, with an 8-bit 2 MIPSMicrochip PIC18LF8722
microcontroller and a 2.4 GHz Nordic Semiconductors nRF24L01 radio. The server
side components that are required for full end-to-end support for firmware man-
agement have not yet been implemented completely. Thus, the evaluation effort of
firmware management has been directed at evaluating the performance of the node
side firmware management components in real WSNs. The results have shown that
the implemented components have fulfilled the requirements for firmware manage-
ment.

Firmware management has shown that it can significantly ease the management
of large scale WSNs and that it can be used effectively in manufacturing of nodes
to increase production yields. Based on experimental measurements, updating a
node using the designed protocols takes less than 90 seconds, while a large scale
WSN of 268 nodes can be updated in five hours. Although firmware management
was designed and implemented for TUTWSN, the design of firmware management
is applicable as well to other modern WSN architectures, such as IEEE 802.15.4
based WSNs.

Future work on firmware management will concentrate primarily on two tasks.
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The first task will be on firmware image transfers and finding a balance between
increased propagation speed, higher reliability and lower energy usage. More spe-
cifically, the goal is to further explore the design of firmware image advertisement
protocols and enhance the current advertisement protocol to account for radio link
reliability when choosing a source for image acquisition. The second task is to fur-
ther develop the use of firmware management in the manufacturing of nodes. The
TUTWSN protocol stack will be modified to support more extensive self-testing and
reporting on nodes and their external sensors.
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